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ABSTRACT

Four Local C olorings o f  G raphs

by

James Katseanes

Dr. Ebrahim Salehi, Examination Committee Chair 
Associate Professor of M athematics 

University of Nevada, Las Vegas

A proper coloring of a graph G is a m apping c :V{G)  — > N th a t assigns colors to the vertices 

of G in such a way th a t adjacent vertices are labeled with different colors. A coloring c is 

called a 4-local coloring if for every subset S  Ç V{G),  with 2 <  |5 | <  4 there are two vertices 

u, V such th a t the difference between colors of u and v, is greater than or equal to the number 

of edges in the subgraph induced by S. T hat is,

V5 3 u ,v  E S  3  |c(u) — c(u)| >  rris,

where is the number of edges in the subgraph induced by S, rris = \ E { <  S  > )|. The 

maximum color assigned by a local coloring c to a vertex of G is

Xi { c )  =  max{c(u)|u G U(G)}.

The four local chromatic number of G is defined as

X i { G )  = m in{x 4 (c)} =  min{max{c(G)|where c is a 4-local coloring of G}}.

In this thesis, the four local chromatic number of some well known class of graphs will be 

determined.

iii
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CHAPTER 1 

INTRODUCTION

Historically graphs have helped to shed light on various m athem atics problems. One such 

problem, described in [1], is the scheduling of courses at a college. Two requirements are 

stated in this problem;

1. No two courses can meet at the same time, in case a student plans to  take both courses 

and

2. We want a schedule th a t is most efficient, a schedule requiring the fewest number of time 

periods.

The question is: what is the minimum number of time slots needed for such a schedule?

This scheduling problem is related to graphs by letting each class of the schedule be 

a vertex of a graph G. An edge connecting two vertices represents th a t some student is a 

member of both  corresponding classes. The minimum number of time slots needed for such 

a schedule of classes is called the chromatic number of G.

The four-color mapping theorem described in [4] is a graph theory problem that involves 

chromatic numbers on planar graphs. A planar graph can be drawn on a plane in such a 

way tha t no two edges intersect except a t a vertex. The four-color theorem states th a t the 

chromatic number of all planar graphs is less than or equal to four. In other words, any 

arbitrary m ap of counties (planar graph) can be colored, with a t most four colors, in such a 

way th a t no two adjacent countries have the same color.
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A function c : V  (G) — > N is called a proper coloring of a graph G if whenever u ,v  e V  (G) 

are adjacent, then c{u) c{v). An n-coloring of G is a proper coloring using n  colors. The 

chromatic number of a  graph G, denoted X{G) ,  is defined as the minimum value n for which 

an n-coloring exists. T ha t is, x(G ) =m in{n| G has an n-coloring}. Another way to  define 

the chromatic number is as follows. Consider the function /  where /  : V{G)  — > N. Let /  

have the property th a t V5 Ç V{G),  with S  = {u,v} ,  then |/ (n )  — f {v)\  >  m ,, where is 

the number of edges in the subgraph induced by vertices u,v. /  is called a 2-local coloring 

of G. X2 {f )  = m ax{ /(u ) [where v E C(G)} and X2 {G) =m in{m ax{/(G ) [where / i s  a 2-local 

coloring}}. This yields an equivalent chromatic definition.

T heorem  1. X2{G) =  x(G).

Proof. Suppose /  : V{G)  — > N is a 2-local coloring, then VS C V{G),  with S  = {n,u}, we

have |/ (n )  — f {v) \  > m ,. If u and v are adjacent, then \ f{u)  — f {v)\  > =  1. Therefore

certainly f {u)  f  f {v)  for all adjacent vertices. If u,v are not adjacent, then \ f{u) — f{v)\  > 0. 

In either case /  meets the requirements of a proper coloring of G.

Conversely, let c be any proper coloring of G. Let %(G) = n , S  = {u,v}  and 

rris = \E{< S >)[. Then since c is a proper coloring, c{u) f  c{v) for all adjacent vertices u and 

V. If u and v adjacent, then [c(u) —c(u)| >  1. If u and v are not adjacent, then \c{u)—c{v)\ >  0. 

In either case |c(u) — c(u)| > m^. Hence c is a 2-local coloring of G. Consequently the set of 

all 2-local colorings of G equals the set of all proper colorings of G. T hat is,

{ /I / i s  a 2-local coloring of G} =  {c[ c is a proper coloring of G}

m ax{/[ / i s  a 2-local coloring of G} —max{c[ c is a proper coloring of G}
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m in{m ax{/| /  is a 2-local coloring of G}} =min{max{c| c is a proper coloring of G}} 

Henceforth, X2 {G) =  %(G). □

In view of this equivalency Chartrand et al [2] generalized the concept %(G) as follows: 

Let k > 2, define a function c : V{G)  — > N to be a /c-local coloring if VS Ç V{G)  with 

2 < |S| <  /c, 3 it,u  G y  (G) 3 |c(ii) — c(u)| >  rris, where is the number of edges of the 

subgraph induced by S. The fc-local chromatic number is defined as Xk { G)  =min{max{c(G) 3  

c is a /c-local coloring}}.

T heorem  2. I f  f  is any k-local coloring of G that generates the k-local chromatic number, 

then there exists a vertex v in V{G) such that f {v)  =  1 and a vertex u in V{G) such that 

/ ( u )  — Xk { G) .  The numbers 1 and Xk { G)  are always used in the k-local coloring that produces 

the k-local chromatic number.

Proof. Suppose tha t Xk { G)  =  s  and th a t function /  provides this chromatic number. Suppose 

tha t t = m in{/(u )|u  G H(G)} and < >  1. Since s is the chromatic number, s  = m ax{ /(u )|u  G 

V{G)}  and s =min{max{c(G) 3 c is a /c-local coloring}}. Then the function h : V{G)  — > N 

defined by h{v) = f {v)  — l i s a  &-local coloring of G with max{/i(u)|u G H(G)} =  s  — 1. 

Hence m ax{/i(u)|u G G)} < max{f {v) \ v  G G)} thus contradicting s =min{max{c(G) 3  c is 

a fc-local coloring}}. Hence /  does not produce Xk { G)  when t > I. Therefore t = I. □

T heorem  3. I f  H  is a subgraph of G,  then X k { H )  <  Xk{ G) .

Proof. Suppose X k { H )  > Xk { G)  and H is  a subgraph of G. Suppose the function /  provides 

the local chromatic number for G and H, then m ax{/(u)|u  G G)} < m ax{/(u )|u  G H)}.  

Hence there is a at least one vertex v in V(H) th a t is not in V(G). This contradicts H as a 

subgraph of G. Therefore X k { H )  < Xk { G )  is necessary for H a subgraph of G. □
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CH APTER 2

ESTABLISHED RESULTS 

Let G be a graph with finite vertices. V{G)  is the set of vertices in G. The size of V{G)  

is called the order of G. E{G)  is the set of edges in G. Adjacent and coincident are analogous 

term s meaning th a t two vertices have an edge in common. The degree of a vertex is defined 

to be the number of adjacent vertices. The compliment of G is denoted G^ and has the same 

set of vertices, V{G) = V{G^)  and u and v are adjacent in G, if and only if u and v are not 

adjacent in G^. If Gi  and Gg are isomorphic graphs, then the degrees of the vertices of Gi 

are exactly the degrees of Gg. If u and v be two vertices of a tree G. The diameter of a tree 

graph G is the max u-v path  in G. A famous result from Euler is if G is a connected plane 

graph with p vertices, q edges and r regions, then p — q + r = 2.

The following results for three local chromatic colorings on finite graphs are due to [2]. A 3- 

local coloring is defined as follows; Let /  be a function such tha t /  : V{G)  — > N, VR C R(G ), 

with |5 | <  3., 3 u ,u  e  V{G) 3 \ f{u)  -  f {v) \  > nis = E{< S  >). Let c (/)= m a x { /(u ) | 

V e  y (G )} , then the three local chromatic number is defined as %a(G) = m in{c(/)| /  is a

3-local coloring}.

T heorem  4. For every graph G of order at least 3, %g(G) < %g(G) <  2%3(G) -  1. 

T heorem  5. For n >  3,  XsiPn) = 3.

T heorem  6. For n > 3, XsiEn) = •
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T h e o re m  7. Let G =   «t, where k > 2  and n, >  2 for all i with 1 < i  < k.

Then XaiG) = 2k — 1.
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CHAPTER 3

FOUR LOCAL CHROMATIC NUMBER 

In this chapter, we consider the subsets with 2 <  |5 | <  4. The function /  : V{G)  — > N is 

said to be a 4-Local Coloring (4LC) if for any S  Ç V(G),  with 2 <  |5 | <  4 there are vertices 

u , v  ^  S  such th a t \ f{u) — f{v)\  > rUs, where nis is the number of edges in the subgraph 

induced by S. The maximum color assigned by a 4-local coloring c to a vertex of G is n ( / )  =  

m a x { f  {v)\v E V{G)].  The four local chromatic number of G is defined as %4 ( C )  — m in{n(/) | 

/  is a 4-local coloring}}. We define a 4-Local Ghromatic Goloring (4LGG) of G to be a 4LG 

th a t provides the X4 (G). In the Figure 3.1 all possible graphs with order four are illustrated. 

Note tha t all Graphs G are paired with their complement except for the Path  graph P3 . 

If G =  P 3 , then G = GL

O O

E(K 4)=6 E(v ,v,v,v )= 0 E (T heta(1,2,1))=5 E(P3,v)=1

0

0

o

) 0
E(P3,v)= 2

0
E(S4)=3

o — ©

© 0 
E(P4)=3

Figure 3.1: Four Local Ghromatic Golorings on Graphs of Order 4.
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Four Local Colorings of Trees 

A Tree is a connected graph th a t contains no cycle subgraphs. A path  is a simple example 

of a Tree. Paths are Trees with no branches. We first establish a few results for Paths.

T h e o re m  8. I f  n > 4, then Xa{Pti) = 4.

Proof. Let Vi,V2 , be the vertices of P„ as illustrated in figure 3.2

0 -------©  © ---------- ©  ©

Figure 3.2: G raph of a Typical P a th  of Order n.

Consider the function /  : F (P„) — > N defined by

1 if i is odd,
/ ( u )  =  ^

4 if i is even.

where u, E V(P„), 1 <  z <  n. The function /  is a 4LC. Therefore Xi{Pn) < 4.

On the other hand i f g : P  (P,) — > N is any 4LC of G then we choose S  =  {ui, U2 , %, V4 }. 

There should be vertices v^,Vj  3  \g{vi)  — g{v j ) \  >  3. Therefore max{g(u)|u G F(G )} >  4. 

Hence 4 <  Xa{Pti)- Therefore 4 <  Xi{Pn) <  4. Henceforth X4 (P„) = 4  □

T h eorem  9. In any f L C C  of  Pin at least n vertices are colored 4 and at least n vertices are 

colored 1.

Proof. We proceed by induction on n.

For n  =  1, X4 (Pi) =  4 and by Theorem 2, the colors 1 and 4 must be used.

Assume the statem ent is true for n =  fc, we wish to  show th a t it is also true for n =  fc +  1.
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Suppose th a t if c is any 4LCC of then at least k vertices are colored 4 and k vertices 

are colored 1 . To show th a t for any 4LCC of P 4 (fc+i) a t least A: +  1 vertices are colored 4 and 

k + \  vertices are colored 1 , we note th a t Pi{k+i) is just P̂ k+A-, which is Pik along with P 4 . 

We know from the Inductive step tha t if c is any 4LCC of Pj^, then at least k vertices are 

colored 4 and k vertices are colored 1 . From the Base step, if c is any 4LCC of P 4  then at 

least 1 vertex is colored with a 4 and 1  vertex is colored with a 1. Thus k + 1 vertices are 

colored 4 and A; +  1 vertices are colored 1. Therefore in any 4LCC of Pi(fc+i) at least A: +  1  

vertices are colored 4 and A: +  1 vertices are colored 1 . Hence, in any 4LCC of Pi„ at least n

vertices are colored 4 and n vertices are colored 1. □

Trees P„ have paths as subgraphs. The diameter of T„ is the max u-v path in T„. Let 

P„ represent the diam eter of T„. Note tha t P„ need not be unique. Choose either term inal 

vertex of P„ to be labeled Vi. Let Vi,V2 , ...,u„ be the vertices of P„ with Vj adjacent to u^+i, 

1 <  j  <  -  1 as illustrated in Figure 3.3. The vertex labeled vi is considered the initial

vertex and acts as the root of T„. Define the depth of a vertex v E 1/(7},) to be the number 

of edges, th a t lie in a v-V[ path. Let d{v) denote the depth of a vertex; the number of edges 

in the unique path  v — v-y.

Clearly d{vi) = 0, and diameter of a tree is equal to the maximum depth. The vertex 

Vn E V{Pn)  Ç  V{Tn)  has depth n — 1, d(u„) =  n — 1. Thus the diameter of is n  — 1. The

vertex Vh E V { P n )  has depth /i -  1, d(u/,) =  h -  I .  If the vertex vy E 1/(7},) has depth k,

d{vi) = k, then k number of edges (and (A -  2) vertices th a t form a path) separate u, from 

uj. In Figure 3.3, the vertices not on P„ with depth k are labeled dk-

T h e o re m  10. X4 {Tn) =  4, n  >  4.

Proof. Suppose, n  >  4. To show that %4 (7 },) <  4, consider the function c : 1/(7},) — > N,
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g

©

Figure 3.3: Tree Graph with Diameter n-1.

defined for v G V{Tn)  as

1 if d{v) is even;
c(v] =

4 if d{v) is odd.

In order to show that this function c provides a 4LC of Tree T„, Choose any subset 

S  C V{Tn)  with 2 <  |5 | <  4}. Then the induced subgraph < S  > has a t most 3 edges. 

If S contains one or more adjacent vertices then 3 u ,v  e  S  3 c{u) =  1 and c{v) = 4, hence 

|c(u) — c(u)| =  |1 — 4| =  3 >  rris = \E{< S  > )|. If there are no vertices coincident in S then 

rUs = |E (<  S  > )| =  0, it follows th a t 3 u ,v  e  S  3 \c{u) -  c(u)| >  0 =  =  |E (<  S  > )|.

In either case c provides a coloring such th a t V5 Ç  V{Tn)  with 2 <  |5 | <  4, 3 u ,v  £ S  3  

|c(u) -  c(u)| > m-s = \E{< S  > )|. Therefore the function c is a FLC, thus X4 {Tn) <  4.

Figure 3.4: 4LC of a Tree with Diameter 6.
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The four local chromatic number for paths along with the use Theorem 3 will set the 

lower bound for Tree graphs. To show X4 (T„) >  4, n  >  4, note th a t all trees have paths 

as subgraphs, then using the Theorem 3 we have, if Pk is a subgraph of T„ for 4 <  A: <  n, 

then Xi{Pk) <  Xii'^n)- By Theorem 8  we have tha t 4 =  X ii^n )  <  Xi{Tn)- Therefore 

4 <  XiiTn) < 4, Hence X4 (T„) =  4. □

Trees of Diameter 2 (Stars)

Figure 3.5: ST4  and a 4-local Coloring of S T 4 .

Let STn be a star with n  vertices. 5T„ has a central vertex th a t is adjacent to  n — 1 

term inal vertices. Label the terminal vertices in 57’„ as r>i, r>2 , ..., and label the central 

vertex as illustrated in Figure 3.6. Note th a t ST 2 — P2 and S T 3 =  P 3  and their 4-local 

chromatic number have already been determined. So, for ST 2 we may assume n >  4.

Figure 3.6: Craph of 5T„.

Also, since 5T„ is a Tree with diameter two, by Theorem 10, if n  >  4, then Xi iST^)  = 4.

10
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The function c : F (5T „) — > N, defined by.

c(i%)

Provides a four local coloring for STn-

1 i f l < z < n  — 1;

4 if Î =  n.

T)Q

Figure 3.7: Proper Colorings on S T u  and 5T„.

Four Local Colorings of Stars with order 17 and order n are illustrated in 3.7.

Special case: Star *ST^

*ST^ is defined as the Star with the three term inal vertices colored with fours and one terminal 

vertex colored with a one.

Figure 3.8: Star *ST^ and a Proper Coloring of *ST^

T h e o re m  11. =  7.

11
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Proof. Let c be a function such th a t c : V{*STf)  — > N. Let c be a proper coloring of *3T^. 

Let V{*ST^)  =  {vi ,V2 ,v-s,0 4 , 0 5 }, with c(ui) =  cfug) =  c(ug) =  4 and 0 (0 4 ) = 1 . This implies 

oi, V2 , V3 andu4  share no edges. Thus % is the so called central vertex th a t is coincident to 

other four term inal vertices. Notice |E(*5'T^)| =  4. To find an upper bound on %4 (*5 'T^), 

determination of c(us) is needed. W hat does the central vertex % have to be colored with in 

order c be a proper coloring? Let represent one of the 5 subgroups of *8 X3 with \Hi\ = 4 ,  

1  <  i <  5. Let V{Hi)  = {0 3 , 0 2 , 0 3 , 0 4 }, V {H 2 ) = {'fi, ^5 , ^̂3 , ’̂4 }, ^ ( 7 / 3 ) =  {uj, U2 , U5 , '̂ ’4 }, 

1 4 (7 / 4 ) =  {uj,U2 ,U3 ,U5 } and V{Hf)  = {ui,U2 , U 4 }. We conclude \E{Hi)\ = \E{H2 )\ = 

\E{H2 )\ = 17/ ( 7 7 4 ) 1  =  3 and \E{H3)\ = 0. Consider the subgroup P I4 , which has the three 

terminal vertices colored with fours and the coloring c(us) is undetermined. Essentially Xi iHi)  

is desired. For the function c to be a proper coloring, the following inequality must be satisfied. 

|c(u5 ) — c{oi)\ > niHi =  1/ 7 (7 7 4 ) 1  =  3, with 1 <  i <  3. Hence |c(u5 ) — 4| >  3. Thus there are 

two options; 1. c(us) — 4 <  —3. Which yields 0 (0 3 ) < 1, in which c(us) =  1. This contradicts 

c being a proper coloring; since 04  and 0 3  are coincident, they must be colored with different 

colors. Hence 0 (0 3 ) ^  1. Or 2. 0 (0 3 ) — 4 > 3. Which yields 0 (0 3 ) > 7. Let c(us) =  7 This c is 

an optimal efficient proper coloring of *ST3 , since we need X4 (G) = min {X4 (c)|where c is a

4-local coloring}}. Hence %4(*5'7^) <  7.

An ad absurdum argument shows 7 is a lower bound if we assume falsely X4 (*ST3 ) < 7. 

Thus X4 (*'S'7 ^) <  6 , this implies the existence of a coloring such th a t 0 (0 3 ) = 6 . Which gives 

the result of the maximum difference between colors is |c(u5 ) — 4| =  | 6  — 4| =  2 >  3 =  m//^- 

Thus there does not exist a function c th a t is a proper coloring of *8 X3 , such that 0 (0 3 ) = 6 . 

Hence 6  < %4 (*5 '7 ^) and thus 7 <  X4 (*5 T5 ). Therefore 7 <  X4 (*5 "Tk) <  7, henceforth

=  7. O

12
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Trees of Diameter 3 (Double Stars)

Double stars are Trees of diam eter three, Hence XiiDSn)  =  4. Figure 3.9 shows a 4LC 

of DSn  graph.

Figure 3.9: 4LCC of a Double Star

Trees Containing P 4  as Subgraphs (Caterpillars)

Since Caterpillar are Trees, then by theorem 10, Xi{Caterpillar) = 4. Figure 3.10 shows 

a Four Local Coloring of a Caterpillar graph.

1

Figure 3.10: 4LCC of Caterpillar with diameter n

13
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CH APTER 4

FOUR LOCAL COLORINGS OF CYCLE RELATED GRAPHS

T heorem  12. I fn>2>, then

4

5 if  n  = 4.

Proof. Case n =  3. Let f i , f 2 ,Ug and be the vertices of C3  as illustrated in Eigure 4.1.

Figure 4.1: Cycle C3  and its 4LC.

To show th a t <  4, consider the function c : — > N, defined by c{vi) =  1,

0 (^2 ) =  2  and 0 (1 1 3) =  4, This function c provides a 4LC of C 3 .  Therefore X4 (C'3 ) <  4. 

To show that %4 (C3 ) >  4, suppose ^ 4 (0 3 ) <  4, by letting ^ ^ (Q ) =  3. This would imply 

th a t there exists a function c th a t is a proper coloring, with c : ^ (C s) — > N, such that 

max{c(ui)|ui G U(C's)} =  3. Thus 3v, 6  V ( C ‘j) 3 c(vi) — 3 and 3 G V{Cs) 3  cfvj) = 1 . 

The maximum difference of colors is \c{vi) — c{vj)\ =  |3 -  1| =  2 > =  m.,. This contradicts c 

being a proper coloring, thus there does not exist a c such tha t c(Ca) =  3. Thus 3 <  ^^(Cs), 

which implies 4 <  Hence 4 <  Xi{C^) < 4. Therefore X4 (Cs) =  4.

14
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C ase  a  — 4. ; The 4 local chromatic number of a cycle with four vertices is a special case since 

the number of edges, in the only subgroup with four vertices, is four; i.e. =  |£ '(C 4 )| =  4. 

Let vi,V2 ,V3 and V4 be the vertices of C4  as illustrated in Figure 4.2.

©  ©  ©

©  ©

Figure 4.2: Cycle Graph C4 and its 4-local coloring.

To show th a t % 4 ( C 4 )  <  5, consider the function c : U ( C 4 )  — > N,defined by 

c(ui) =  1 , c{v2 ) = 2, 0 (1 3 ) =  3 and 0 (^4 ) =  5. This function c is a proper coloring of C4 . 

Therefore X4 (C'4 ) <  5.

Suppose %4 (C 4 ) <  5, by letting XiiCi)  =  4. This would imply tha t there exists a function 

c tha t is a proper coloring, with c : — > N, such th a t max{c(u;)|u, € ^ ( Q ) }  =  4.  Thus

3vi  G y ( C 4 ) 3  c(u,) =  4 and 3  Vj G ( C 4 ) 3  c{vj )  =  1. The maximum difference of colors is 

| c(ui)  — c (u j ) |  =  |4 — 1[ =  3 > 4  =  m,g. This contradicts c being a proper coloring, thus there 

does not exist a c such th a t c(C4 ) =  4.  Thus 4 <  X4 (C4 ), which implies 5 <  X4 (C 4 )- Hence 

5 <  X4 (Q )  <  5. Therefore X4 (C'4 ) =  5.

C ase n >  5. Let U2 , ..., be the vertices in V (C„) with adjacent to V\ and Vi adjacent 

to l < i < n  — l a s  illustrated in Figure 4.3.

15
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Figure 4.3; Cycle of Order n. 

Consider the function c : V (C„) — > N for n  >  5 defined by

1  if i is odd;

c(u,;) =  < 3  if i ig o(j(f and i=n;

4 if i is even;

This function c is a 4LC of C„. Hence X4 (C'„) <  4.

4

41

4

41

Figure 4.4: Four-local colorings on Cycles C4 , C5 , Cg.

Since A  is a subgraph of with n >  4, then from theorem 3, Xi{Pi)  <  XiiCn)- From 

T h eorem  10 w e h ave 4 =  X 4. { P a )  <  X4 (C „). H ence 4 <  X4 (C „). H ence 4 <  X4 (C „) <  4.

16
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Therefore X4 (C„) =  4. Henceforth, If n  >  3, then

4 if n 7  ̂ 4;
X4(C'n) =  ^

5 if n  =  4.

□

Special case of C4 .

Let the special Cycle *C"4 have two vertices labeled with fours.

T heorem  13. X 4{*Ci) = 8.

Proof. Let the vertices of be labeled Vi, V2 , V3 and V4 . Let V4 be adjacent to Vi and let

Vi be adjacent to  Uj+i, for 1 <  f <  3. Notice 4 =  =  |E (*C 4 )|. Consider the function

c : V{*C4 ) — > N, defined by 0 (^2 ) =  0 (^4 ) =  4 as shown on left in Figure 4.5.

Figure 4.5: *C4 and 4LC of *C"4 .

Let c(ui) =  cfuf) = 8 . This function c is a proper coloring of *€ 4 , since V5 Ç 

with 2 <  |5 | <  4, 3u,v  e  S  3 \c{u) — c(u)| >  m*. Therefore %4 (*C4 ) <  8 .

Since *C4  has the same structure as C4 , then the requirement tha t two vertices must 

be labeled with a 4 could only increase the value of the 4 chromatic number. Therefore by 

Theorem 3, %4 (C 4 ) <  X4 (*C'4 ). From section 10, %4 (C4 ) — 5. Thus 5 =  X4 (C4 ) <  %4 (*C4 ). 

Suppose 7 <  %4 (*C4 ). This implies the existence of c, a function th a t is a proper coloring

17
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of * € 4  such th a t c : V{*C4 ) — > N with 3vi G V[*C4 ) 3 7 = m ax{c(uj|u; G ¥ { * € 4 ) = 

(uj,U2 ,U3 ,U4 )}. Let c(ui) =  7 and let 0 (^2 ) =  0 (^4 ) =  4. The maximum difference between 

colors is |c(ui) — c(u2 )| — | 7 - 4 |  =  3 > 4  =  ttIs, thus there does not exist a function c 

such tha t 7 =  max{c(ui)|u; G F (*C 4 ) =  (ui,U2 ,U3 ,U4 )}. Thus there does not exist vertices 

u ,u  G y (*0 4 ) 3 | c (u )  — c (u ) |  > mg = 4. This contradicts tha t c is a 4LC of *C4 , and the 

supposition 7 < %4(*C4). Hence 7 < %4(*C4). This implies tha t 8 <  %4(*C4). Therefore 

8 <  X4 (*C'4 ) <  8 , hence X4 (*C'4 ) =  8 . □

Cycles with P Chords

CCn is formed by connecting the vertices of C» in such a way as to divide CC„ in subgraphs 

of C4 when n is even and subgraphs of C4  and C3 when n is odd.

C ase A . When n is even then CCn can be organized is terms of only C4 subgraphs. Figure 

4.6 illustrates a 4LC of CCn when n is even.

©  ©  © — ••• - ©

©  © --------- © — • • • —©

©  O  © — ••• —(D

©  ©  © — •••  —©

Figure 4.6: Graph Containing an Even Outer Cycle and a 4LC of CCn-

In this organization there will be four vertices with degree 2 (adjacent to two vertices). 

The remaining n — 4 vertices all have degree 3 (adjacent to three vertices). Label one of 

the four vertices as V\ and label the vertex th a t is adjacent to vi and has degree 3  as U2 - 

Label the vertex th a t is adjacent to uj and has degree 2 as Ui and the vertex th a t is adjacent

18
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to  u\  and has degree 3 U2 - Note tha t % and U2 are adjacent. The un-labeled vertex, (not 

U2 ), th a t is adjacent to V2 shall be called ng. The un-labeled vertex th a t is adjacent to U2 

shall be called U3 . Label a vertex Uj+i if it is adjacent to Vi and label the vertex Ui+\ if it is 

adjacent to n, for 1 <  f <  m — 1. Continuation of this labeling method creates a ladder where 

the sides of the ladder are two paths and P/„. W here V{Pm) =  {vi,V2 ,V3 , and

V{P!^) — {ui ,U2 ,us, The vertices Vm and are the other two vertices th a t have

both have degree 2. Notice tha t m =  The vertices u, and Ui are adjacent. The consecutive 

vertices Vi and Vi+\ are adjacent 1 <  f <  m  — 1. We also have that u, is adjacent to tii+i, for 

1  <  f < m — 1 . Thus the structure of Cycle Chord graphs is that of two paths.

C ase  B . W hen n is odd, then CCn cannot be organized is terms of only C 4  subgraphs. 

W hen there is an odd outer cycle, then we need the odd subgraph C3  with the rest of the C 4  

subgraphs. Figure 4.7 illustrates a FLC of CCn when n is odd.

iS)— • ••

—  • • •  — ( Q

<D— ••• -<D

<D © — •••  —O

Figure 4.7: Graph Containing an Odd Cycle and a Proper Coloring of CCn

In this organization there will be three vertices with degree 2 (adjacent to two vertices). 

The remaining n -  3 vertices all have degree 3 (adjacent to  three vertices). Label the unique 

vertex vq € V { C C n )  th a t is adjacent to two vertices th a t both have degree three. The two 

remaining vertices th a t have degree 2 shall be labeled and Ujn- Label the two vertices 

th a t are adjacent to vq as ui and ui.  Label the vertex th a t is adjacent to ui and has degree

19
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3 as f 2 and the vertex th a t is adjacent to ui and has degree 3 u^- Note th a t V2 and ug are 

adjacent. Continue this pattern  labeling a vertex Vi+i if it is adjacent to Uj and labeling Uj+i 

if it is adjacent to for 1  <  z <  m — 1 .

T heorem  14. Xi{CCn)  =  5

Proof. To show X 4 (C'C„) <  5, let function c { V { C C n ) )  — > N be definded ,for v € V ( C C „ ) ,

as

c(v) =

1  if
V =  Uj, for i is even;

V — Ui, for i is odd; 

2  if u =  Vq;

V =  Vi, for i is odd;
5 if

V — Ui, for i is even.

This function c is a proper coloring since V5 Ç  with 2 <  |5 | <  4, 3v^,Vj £ S  3

\ c{vi )  -  c { v j ) \  > n i s  =  \ E { <  S  > ) | .  Hence % 4 ( C C » )  <  5.

To show X 4 {CCn) > 5, We use Theorem 12 and the Subgraph Theorem 3. Since Q  is a 

subgraph of CC„ then %4 (C4 ) <  X 4 (CC„). Thus we have that 5 =  X 4 {Ci) < %4 (CCn). 

Therefore 5 <  X 4 (CC„) <  5, hence X 4 (CC„) =  5. □

Books

A Book {Bn,k) is constructed by taking k m ultiple graphs th a t share one edge and thus 

two vertices. Consider only Books (B„ j.) with n >  5 and k > 2.

T heorem  15. Xi{Bn,k) =  4, n >  5.

Proof. To show Xi{Bn,k) <  4, n  >  5, label each C„ page of Bn,k in the same m anner as 

labeling C„. Label each of the k pages which are identical C„ subgraphs with the same color

20
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scheme on corresponding vertices. c(%i) — 1, 0 (^2 ) =  4, 0 (^3 ) =  1, 0 (^4 ) =  4,...,c('u„) =  4(if n

is even), c(n„) =  3(if n is odd). Consider the function c ; V{Bn,k) — > N for n  >  5 defined by

1  if i is odd;

c(Vi] = { 4  if i is even;

3 if i is odd and i = n.

Since V5 Ç  V{Bn,k) with 2 <  l^l <  4, G S' 9 |c(n) -  c(u)| > rUs = \E{< S  >)j .  This 

function c is a proper coloring of Bn,k Therefore Xii^n^k) <  4.

4

Figure 4.8: 4LCs on Books Big 3  and Big 4 .

To show Xi{Bn^k) >  4, n >  5, we use the fact th a t B4  is a subgraph of B^ k- Since B4  is 

a subgraph of B„_fc, then %4 (B|) <  %4 (Bn,t), by Theorem 3. From Theorem 8  we have 4 =  

% 4 ( B i )  < X i { B n , k ) -  Hence 4 <  X 4 { B n , k ) ,  and 4 <  X i i^ n x )  <  4. Therefore X A{ B n ,k )  =  4. □

21
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Fans

Fan with n vertices

C ase n = 1 3 .

Define F 1 3  to be P 1 2  joined with U1 3 . Let ^ (F is )  =  (F (F i 2 ), fis). Let f i , f 2 , be the

vertices of the path subgraph of F 1 2  with Vi adjacent to u,+i, 1  <  f <  1 1  as illustrated in 

Figure 4.9.

Figure 4.9: Fan of Order 13

To show th a t %4 (F i3 ) <  7, Consider the function c : F (F 1 3 ) — > N, defined by

1  if i is odd;

4 if i is even;

7 if f =  13.

where Vi € 1 <  i <  n. This function is a proper coloring, hence X4 (Bi3 ) <  7.

To show %4 (Fi3 ) >  7, we use Theorem 3 together with Theorem 9 and Theorem 11. The 

vertex u is adjacent to the vertices in P 1 2 , therefore by 9, u is adjacent to three vertices 

colored 4 and three vertices colored 1. There is a subgroup of F 1 3  where u is adjacent to three 

vertices colored with fours and one th a t is colored with a one, hence * 8 5  is a subgraph of F 1 3 . 

Therefore applying Theorem 3 and Theorem 11, 7 =  X4 (*‘?4 ) <  XiiFys)- .'. 7 <  X4 {Fn) < 7.

22
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Hence X4 (Fi3 ) =  7.

Let F„ be the graph defined by P„_i joined with a single vertex labeled Every vertex 

in P „-i is adjacent to f„. Label the vertices on the P„_i part of F„ as f i , f 2 , where

Vi adjacent to  fi+ i, — 2, as illustrated in Figure 4.10.

Figure 4.10: Fan Graph of Order n.

T h e o re m  16. X4 (Pr) =  7, (n >  14).

Proof. Consider the function c : F (F „) — >• N, n  >  14, defined by,

1  if i is odd and i ^  n:

4 if i is even and i ri]

7 if 2 =  n.

C i V i  =  <

This function c is a proper coloring of F„, hence X4 (P i) <  7. From Theorem 17 and Theorem 

3, we have 7 =  XiiFis) < XiiFn)- Therefore 7 <  X4 (P i) <  7, hence X4 (Pn) =  7. □

Bi-Fan with n  vertices

C ase  n = 1 0 .

Label the vertices on the Pg part of Bi-Fio as f i , f 2 , - . ,fg  with Vi adjacent to 1 <  

i < 7. Let vertices fg and uio both be adjacent to the eight vertices in Fg, but not adjacent 

to  each other as illustrated in Figure 4.11.
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Figure 4.11: Bi-Fan of Order 10.

T heorem  17. XiiBi-Fio) = 8.

Proof. To show XiiBi-Fio) < 8 , consider the function c : V{Bi-Fyf)  — > N defined as

c{vf) =

1 if i =  1 ,3 ,5 ,7 ;

4 if 2 =  2 , 4 , 6 , 8 ;

7 if 2 =  9;

8  if i -  1 0 .

The function c is a proper coloring of Bi-FiQ. Hence X4 (B 2-Fio) <  8 .

To show that X4 (B 2-Fio) >  8, we make use of the fact tha t Bi-Fio contains the subgraph 

Pg as well as the subgraph defined previously. From Theorem 3 for n = 2, in any 4LC 

of Pg a t least 2 vertices are colored 4 and 2 vertices are colored 1. Applying Theorem 3 

and Theorem 13 yield 8 =  X4 (*C'4 ) <  X 4 { B i - F i o ) .  Therefore 8 <  X 4 { B i - F i o )  <  8. Hence

X 4 (B T F io) =  8. □

Let Bi-Fn be the graph defined by F „ _ 2  joined with two vertices labeled f„_ i and 

Every vertex in P „ _ 2  is adjacent to f„_ i. Label the vertices on the P„ - 2  part of Bi-Fn as 

f i ,  f 2 , fn - 2  where Vi adjacent to 1 <  f <  n — 3. Let vertices f„_i and v„ both be 

adjacent to the n -  2  vertices in P„_ 2 , but not adjacent to each other as illustrated in Figure 

4.12.
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N

c(vi) =  <

Figure 4.12: Bi-Fan Graph of Order n.

T heorem  18. XiiBi-F^)  =  8, for  n  > 10.

Proof. To show that XiiBi-Fn)  <  8 , n  >  10, consider the function c : V{Bi-Fn)  

defined by,

1  if i is odd and i ^  n , n  — I]

4 if i is even and z n, n  — 1;

7 if 2 =  n — 1;

8  if 2 =  n.

The function c is a proper coloring of Bi-Fn.  Hence XA{Bi-Fn) <  8 .

To show th a t Xi{Bi-Fn)  >  8 , n  >  10, we use the fact th a t Bi-Fn, n  >  10, contains the 

subgraph Bi-Fy). Applying Theorem 3, and Theorem 19 yields 8  =  XA{Bi-Fio) < Xi{Bi-Fn).  

Therefore 8  <  XA{Bi-Fn) <  8 . Hence XA{Bi-Fio) =  8 . □

Wheels

Wheel with n vertices

Let a Wheel with n  vertices be C„_i coupled with a single vertex th a t is adjacent to 

every vertex in the cycle graph. In terms of vertices; F(VF„) =  (F (C „_i), 2 2). In term s of the 

number of edges; \E{Wn)\  = 2n

Label the vertices on the C„_i part of W„ as f i ,  1 2 2 , fn - i  where f„_i is adjacent to vi, 

and Vi adjacent to 1 <  2 <  n  — 2. Label the the lone vertex th a t is adjacent to all other
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Figure 4.13: Two Different Looks of tlie Same Wheel of Order n.

c{vi) = <

vertices as w„ as illustrated in Figure 4.13.

T heorem  19. X i i ^ n )  =  7, (n >  14)

Proof. To show th a t X i i ^ n )  <  7, n  >  14, consider the function c : F(VF„) — > N for n  >  14, 

defined by,
'

1  if i is odd and i ^  n\

3 if i is odd and f =  n -  1;

4 if i is even and i ^  n\

7 if 2 — n.

This function c is a proper coloring of VF„. Hence %4 (Wn) < 7.

To show XaO^u) >  7, 22 >  14, we use the fact th a t F u  is a subgraph of W„.

From Theorem 3 and Theorem 17 we have the following; since F\g is a subgraph of VF„, then 

7 =  X4 (Fis) <  X4 (VF„), with n > 14. Therefore 7 <  XiiWn) < 7. Hence X i i ^ n )  =  7.

□

Bi-Wheels (Bi-Wn)

Bi-Wheels are composed of a Wheel joined with another hub vertex. V { G )  =  V { C n ~ 2 , u , v ) .

Label the vertices on the C„ _ 2  part of Bi-Wn  as Vi,V2 , ...,2 2 ^ - 2  with Vi adjacent to  Vi+i, 

1 <  2 <  72 — 2. Let vertices t2„ and î2„_i both be adjacent to  the 72 — 2 vertices in C„_2 , but
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Figure 4.14: Bi-Wheel of Order n. 

not adjacent to  each other as illustrated in Figure 4.14.

T h e o re m  20. X i iB i  — VF„) — 8 , for  n  >  11.

Proof. To show th a t XiiBi-Wn)  <  8 , n  >  1 1 , Consider the function c : V(Bi-Wn)  

n  >  1 0  defined as

1  if i is odd and i n , n  — I]

3 if i is odd and i — n — 2]

c(vi) =  { 4 if i is even and i n, n — 1;

7 if 2 =  n — 1;

8  if 2 =  72.

N,

The function c is a proper coloring, hence Xi(B i  — VF„) <  8 .

To show th a t X4 (Bi-Wn)  >  8 , n  >  11, we use Theorem 3 in conjunction with Theorem 

20, which produces 8  =  x ^ iB i  — Fan)  <  x-\(Bi -  W„). Therefore 8  < X4 (Bi-Py,f) < 8 . Hence 

XA(Bi-Pyn)  =  8. □
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CHAPTER 5 

CONCLUSION

In conclusion I reiterate the fact tha t graphs shed light on various m ath problems. Vertices 

are representative of cities on a route map, atoms in a chemical compound, or microproces­

sors in a computer. The idea for four local chromatic colorings were started  with the Four 

Color Mapping Theorem. All vertex labeling and graph colorings stem from this problem. 

C hartrand extended the definition of proper colorings and defined k-local colorings. In this 

paper we have determined the 4-Local Chromatic Number for some classes of well known 

graphs.
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