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ABSTRACT

Evaluation of Quantitative Polymerase Chain Reaction for Measuring the 
Concentration of Total Bacteria in Environmental Air Samples

by

Vanessa Louise Stevens

Linda D. Stetzenbach, Ph.D., Committee Chair 
Professor, Department of Environmental and Occupational Health 

School o f Public Health 
University o f Nevada, Las Vegas

The air quality o f both indoor and outdoor environments is a primary human health 

concern, particularly for individuals that have asthma, respiratory ailments and immune 

disorders. Airborne microorganisms have been shown to cause a variety of diseases, 

allergic reactions, and irritations. Universal quantitative polymerase chain reaction 

(QPCR) was compared to the traditional methods o f culture analysis and microscopy to 

determine if  it was an effective method to quantitate total bacterial counts in 

environmental air samples. A composite standard curve was developed using four 

bacterial species and applied to laboratory cultures and environmental air samples. Two 

hypotheses were tested, (i) to determine if universal QPCR was a more sensitive method 

to analyze environmental air samples and (ii) if  universal QPCR can provide a more 

accurate measurement o f airborne bacteria than culture analysis or microscopy. A total of 

22 air samples were collected with an SKC BioSampler® and were analyzed by culture, 

microscopy and universal QPCR. Results showed microscopy being able to determine 

higher bacterial concentrations as compared to universal QPCR. However, microscopy

111
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may over-estimate those concentrations. It was concluded that universal QPCR was a 

more sensitive method than culture or microscopy when comparing the lower detection 

limit (LDL) o f each method. Universal QPCR was determined to be a relatively accurate 

method to assess airborne microbial populations compared to microscopy. Culture 

analysis caimot determine total bacterial concentrations therefore it was not included 

when assessing accuracy of universal QPCR. It was also noticed that universal QPCR is 

not truly universal. Specificity testing revealed that some species did not amplify with 

universal QPCR. Further research needs be conducted to strengthen the method of 

universal QPCR.
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CHAPTER 1 

INTRODUCTION

The air quality o f both indoor and outdoor environments is a primary human health 

concern, particularly for individuals that have asthma, respiratory ailments and immune 

disorders (Cox and Wathes, 1995; Stetzenbach et a l,  2004). As a result poor air quality 

has become an increasing public health concern (Douwes et a l, 2003). Airborne 

microorganisms have been shown to cause a variety o f diseases, allergic reactions, and 

irritations (Stetzenbach, 2007). Some microorganisms produce spores that are hardy and 

persist in the environment for years; some can cause infection long after the initial 

exposure has occurred and can also cause hypersensitivity diseases (Burge, 1990). 

Anthropogenic influences and natural environmental variations may alter atmospheric 

microbial composition (Brodie et a l, 2007). Continuous construction of commercial, 

industrial and private buildings and the dry drought-stricken environment produce 

outdoor air that is often inundated with particulate that may contain high levels of 

microorganisms. Therefore, the Las Vegas Valley experiences periods of poor air quality 

throughout the year (Clark County Department of Air Quality and Environmental 

Management, 2007). Indoor environments are also at risk o f poor air quality 

(Stetzenbach, 2007; Hirvonen et a l,  2005; Douwes et a l,  2003). Faulty construction, 

broken pipes and leaking air conditioning systems all have an impact in creating 

conditions that enhance the growth of bacteria and fungi indoors. These problems lead to
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water damage and resulting microbial growth on building materials and furnishings that 

deteriorate the materials and may impact the health of occupants (Stetzenbach, 2007).

For indoor environments, the ability to detect and identify airborne microorganisms can 

help determine bio-contamination and the presence of pathogens that can affect healthy 

individuals.

Airborne microorganisms are measured by air sampling. Commonly used methods to 

sample air include impaction, liquid impingement, and filtration (Grinshpun et al., 2007). 

The samples that are collected by these methods can then be analyzed. The advantage of 

using an impinger is that airborne particles are deposited into a liquid collection buffer 

and the liquid can be analyzed by several means including culture, microscopy, molecular 

methods, immunoassays and biochemical assays (Cruz and Buttner, 2007; Stetzenbach et 

a i, 2004). Culture is commonly used to characterize and quantitate airborne 

microorganisms. Culture analysis involves inoculation o f nutrient media and enumeration 

of microorganisms that grow and produce visible colonies (Cruz and Buttner, 2007). The 

disadvantage o f culture-based analysis is that only a fraction o f viable organisms are 

capable o f growth on laboratory media. Culture-based techniques identify less than 1% of 

all microbial populations in an environmental sample (Farris and Olson, 2007; Amann et 

al., 1995; Bomeman et al., 1996). Culture also can take days to weeks to produce results 

(Cruz and Buttner, 2007).

Microscopy-based analysis involves enumerating microorganisms using a 

microscope. Enhanced microscopy can be obtained using a fluorescent stain. The 

disadvantage o f microscopy is that it is labor intensive, expertise is needed for 

identification, and it has poor sensitivity (Grinshpun et a l,  2007). Microscopic analysis
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of bacteria provides data on total cell concentrations, but cannot assess viability or 

discriminate between genera or species. In addition, the time needed to complete both 

culture and microscopic methods can delay decisions as to the contamination of the 

sampled area and potential effects on the health of building occupants.

Advances in molecular biology have provided alternatives to traditional analysis 

methods. Molecular methods such as polymerase chain reaction (PCR) have had 

tremendous success in advancing the analysis o f environmental samples (McDevitt et a l, 

2004), and molecular methods have been shown to detect low numbers of organisms 

(Tsai and Olson, 1992).

PCR is a procedure used to rapidly amplify specific DNA sequences (Saiki et a l, 

1985). This technique has been used successfully to enhance the detection of 

microorganisms in a variety of matrices (Cruz and Buttner, 2007). Application of the 

PCR technique to environmental sampling provides an alternative to culture or 

microscopic enumeration. The use o f PCR is particularly suited for detection of 

microorganisms that are difficult to culture, grow very slowly, or have never been 

cultured in vitro (Cruz and Buttner, 2007). Advantages o f PCR over traditional methods 

are that it is rapid, results are obtained quickly, and a small amount of sample is needed. 

Culture may take days to weeks to grow before results are obtained (Cruz and Buttner, 

2007). PCR can be used for direct detection of a single organism or as a multiplex assay 

amplifying several target organisms. However, there are limitations o f the method, such 

as the inability to differentiate between viable and non-viable cells. In addition, the
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presence o f PCR inhibitors may result in false negatives and reduce sensitivity (Cruz and 

Buttner, 2007).

Quantitative PCR (QPCR) is a recently developed technology that allows sensitive, 

specific detection and enumeration of target microorganisms. It is a real-time assay that 

measures product accumulation with fluorogenic probes (Cruz and Buttner, 2007). The 

assay requires binding o f a forward primer and reverse primer to a specific location on 

the target DNA. A TaqMan® probe, which contains a fluorescent dye, binds between the 

primers. When DNA is being synthesized the probe is cleaved producing a fluorescent 

signal. The detected fluorescent signal is reported as the cycle threshold (Cj) value. The 

C t value is the cycle where fluorescence is first detected crossing the threshold. It is 

inversely proportional to the concentration o f the sample. The amount of fluorescence 

measured is used to determine the amount o f DNA in a sample. However, to use PCR or 

QPCR, the DNA sequence o f the target organism(s) must be known and specific, and 

complimentary DNA primers and probes must be developed. An alternative to PCR and 

QPCR for detection o f bacteria is universal PCR.

Universal QPCR is a method that amplifies organisms using a primer and probe set 

that targets the 16S rDNA region which is highly conserved in all bacteria. Universal 

QPCR has been developed to study microbial diversity in environmental and clinical 

samples (Blackwood et al., 2005; Fierer et a l, 2005; Nadkami et a l,  2002; Suzuki et a l, 

2000). Most studies using universal QPCR have focused on clinical samples and 

environmental soil and aquatic samples (Nadkami et a l, 2002; Horz et a l, 2005; Suzuki 

et a l, 2000; Takai and Horikoshi, 2000). Previous studies have shown that universal 

QPCR is not tmly universal in that some organisms are not detected and there is
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variability in amplification between species (Buttner and Cruz, 2006). To date, it is not 

known why certain organisms do not amplify with universal bacterial PCR. A published 

primer and probe set (Nadkami et ah, 2002) was previously tested to determine the 

ability to amplify the DNA of representative bacteria from every bacterial phylurn 

(Buttner and Cmz, 2006). The Applied Biosystems 7900HT Fast Real-Time PCR 

System (Foster City, CA) was used to perform universal QPCR analysis. Results showed 

that 6 of the 39 representative bacteria did not amplify when using optimized universal 

primers and probe. In addition, bacteria did not amplify with the same efficiency when 

using the same amount o f DNA template. However, the universal primers and probe did 

not cross-react with non-bacterial organisms.

The purpose o f this study was to evaluate the utility o f universal QPCR to detect and 

quantify total airborne bacteria in environmental air samples as compared to traditional 

methods of culture and microscopy. To effectively determine if  universal QPCR is a 

suitable tool, two hypotheses were tested in this study. The first hypothesis was; 

universal QPCR provides a more sensitive measurement of airborne bacteria than culture 

or total direct microscopic enumeration. This hypothesis was tested by determining the 

lower detection limit (LDL) o f the universal QPCR assay and comparing it to the LDL of 

the two traditional methods, culture and microscopy. The second hypothesis was: 

universal QPCR provides a more accurate measurement o f airborne bacteria than culture 

or microscopy. This hypothesis was tested by preparing universal QPCR standards of 

known concentration with four bacterial species and comparing the three methods, 

culture, microscopy (acridine orange direct counts, AODC), and universal QPCR. 

Statistical analysis o f the results was conducted by analysis of variance
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(ANOVA), and the accuracy o f microscopy and universal QPCR were compared to the 

reference method of electronic particle enumeration. The results o f this study are 

expected to provide a more accurate and sensitive method for determining airborne 

bacterial concentrations in environmental air samples.
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CHAPTER 2

MATERIALS AND METHODS 

Experimental Design 

To evaluate the utility o f universal QPCR for detection and quantification o f total 

airborne bacteria, universal QPCR was compared with two traditional methods, culture 

analysis and microscopy, in laboratory and field experiments. Field air samples were 

collected (n=22) using a volumetric air sampler at various locations in the Las Vegas 

Valley. Culture analysis, microscopic analysis, and universal QPCR were performed on 

all environmental samples.

Laboratory experiments were conducted using Staphylococcus aureus, Escherichia 

coli, and Bacillus cereus. Each organism was cultured in nutrient broth, grown to log 

phase and then electronically enumerated. Mixed cultures containing equal 

concentrations o f the three test bacteria were prepared at three concentrations, 3.0 x lO’ 

cells/ml, 3.0 X 10  ̂cells/ml and 3.0 x 10  ̂cells/ml. Aliquots of each culture were reserved 

from each concentration for DNA extraction and universal QPCR to determine if  there 

was variability in amplification among the three species that could influence universal 

QPCR amplification values.

The accuracy o f universal QPCR was tested by preparing QPCR standards o f known 

concentration with four organisms, Shewanella oneidensis. Pseudomonas aeruginosa, 

Cellulomonas jim i, and Bacillus atrophaeus. These standards were analyzed by:
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microscopy and universal QPCR, and the results were compared to the reference method, 

electronic enumeration, to determine the accuracy o f each assay.

The sensitivity o f the universal QPCR assay was determined from serial dilutions and 

amplification of universal QPCR standards to determine the lower detection limit (LDL) 

of the assay. The LDL of the universal QPCR standards for each organism was 

compared to the known LDL of culture analysis and microscopic enumeration.

Test Organisms and Culture Media

All test organisms were obtained from the American Type Culture Collection 

(ATCC; Manassas, VA) with the exception of Bacillus atrophaeus (U.S. Army Dugway 

Proving Ground, Dugway, UT). Shewanella oneidensis ATCC 700550D, Pseudomonas 

aeruginosa ATCC 15442, Cellulomonas fim i ATCC 484, and Bacillus atrophaeus were 

used in the preparation of universal QPCR standards. Staphylococcus aureus ATCC 

6538, Escherichia coli ATCC 15597, and Bacillus cereus ATCC 14579D were used in 

laboratory experiments. All organisms were cultured on Tryptic Soy Broth (TSB, pH 7.0, 

Difco, Sparks, MD) or Tryptic Soy Agar amended with cycloheximide, final 

concentration lOOpg/ml (TSAC; pH 7.0, Difco) and incubated at 28°C for 24 to 48 hours.

Air Sampling

Field sampling was conducted using an SKC BioSampler® (SKC Inc., Eighty Four, 

PA), a liquid impingement sampler used to collect airborne microorganisms (Grinshpun 

et al., 2007). Twenty ml of sterile 0.01 M potassium phosphate buffer (PB, pH 7.0) was 

added to a sterile BioSampler®, and was operated for 10 min at a flow rate of 12.5
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liters/min. An aliquot was cultured as indicated below and the remaining sample was 

preserved at -70°C for microscopic and universal QPCR analyses. Different 

environments in the Las Vegas Valley were selected at random for sampling airborne 

microorganisms (Table 1).

Table 1. Locations where environmental air samples were collected and the number of 
samples collected at each location.

Location Number of samples 
(n=22)

Cattle yard 2
Desert garden 1
Indoor arena 2
Urban river 6
Kennel (indoor) 4
Bam 5
Field* 2

*Field contained temporary stalls for horses

Preparation o f Mixed Cultures 

The test organisms E. coli, S. aureus, and B. cereus were cultured in TSB as indicated 

above. Cells were grown to log phase and then electronically enumerated as indicated 

below. Each test organism was diluted with PB to three different concentrations; 1.0 x 

lO’ cells/ml, 1.0 X 10  ̂cells/ml, and 1.0 x  10  ̂cells/ml. The test organisms were 

combined in equal concentrations for a final concentration in each sample of 3.0 x 10  ̂

cells/ml, 3.0 X 10  ̂ cells/ml, and 3.0 x 10  ̂ cells/ml. Pure cultures of each organism were 

also prepared at the same three concentrations. Both the mixed cultures and pure cultures 

were tested by universal QPCR to determine if  there was any effect on the assay.
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Culture Analysis

Culture analysis was performed by plating of the SKC collection buffer. Duplicate 1 

ml samples were processed by filtration through a 47-mm-diameter, 0.45-)Lim-pore-size 

mixed cellulose-ester membrane (Pall Corp, Ann Arbor, MI) and plating onto TSAC. In 

addition, samples were serially diluted in PB prior to inoculation onto TSAC. After 

incubation, the number o f colony forming units (CPU) per plate were enumerated; counts 

from replicate plates were averaged. The number of CFU/ml and the number of CFU/m^ 

of air sampled were calculated. The number of CFU/ml were determined by the 1 ml 

volume filtered and the CFU/plate. The number of CFU/m^ was determined using the 

number of CFU/ml, the sample volume, the sampler flow rate and sampling time.

Microscopic Analysis 

Microscopic analysis was performed on organisms used for universal QPCR 

standards and in laboratory experiments by staining samples with 0.1% Acridine Orange 

with 2% formaldehyde (Hobble et a l,  1977). A 1.8 ml sample aliquot was stained with 

200 pi of Acridine Orange (final concentration, 0.01%, Sigma, St. Louis, MO) and 

incubated at room temperature for 5 min. The stained sample was filtered through a 

black 25-mm-diameter, 0.2-pm-pore-size nucleopore polycarbonate membrane 

(Whatman, Florham Park, NJ) and rinsed with PB. The filter was applied to a microscope 

slide and a drop of immersion oil was placed on the membrane followed by a cover slip. 

The number of cells was enumerated using epifluorescense microscopy with an oil 

immersion lOOX objective. Twenty fields were counted for each sample using a 0.08mm 

by 0.08mm ocular grid.

10
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Electronic Enumeration 

Organisms that were used in laboratory experiments and for making universal QPCR 

standards were enumerated electronically. Cultures o f S. oneidensis, P. aeruginosa,

C. fim i, B. atrophaeus, S. aureus, E. coli, and B. cereus were grown on TSAC from 

freezer stocks and incubated at 28°C for 24 to 48 h. An overnight culture was prepared 

for each test organism by inoculation of 100 ml of TSB and overnight incubation at 28°C 

and 60 rpm in an environmental shaker (New Brunswick Scientific, Edison, NJ). One ml 

of the overnight culture was transferred to a flask containing 100 ml of TSB and 

incubated at 28°C and 200 rpm. The ODôoonm was determined using a Spectronic 

Genesys Spectrophotometer (Milton Roy, Rochester, NY) at periodic intervals until an 

absorbance OD o f 0.9 to 1.0 was reached. Twenty ml o f culture was then harvested by 

centrifugation at 10,000 x g for 5 min at room temperature. The supernatant was 

removed and the cell pellet was washed and centrifuged two times with PB. After the 

final wash the supernatant was removed and the pellet was resuspended in 20 ml o f PB. 

Cells were electronically enumerated using a Beckman Coulter Multisizer 3 with a 30 pm 

diameter aperture (Beckman Coulter, Miami, EL). Dilutions of cells were suspended in 

Isoton II (Beckman Coulter), an electrolyte solution. Each bacterial suspension was 

electronically enumerated 5 times. Coincidence correction was applied to values by the 

instrument software. Values were averaged to determine cells/ml, and each analysis was 

repeated for 3 replicate suspensions to determine the variability o f the method.

11
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Preparation o f Universal QPCR Standards 

S. oneidensis, P. aeruginosa, C.fimi, and B. atrophaeus were used to make universal 

QPCR quantitation standards. After electronic enumeration each organism was serially 

diluted 10-fold to concentrations ranging from 1.6 x 10° to 1.6 x 10  ̂cells. The DNA 

from 500 pi aliquots of each dilution was extracted, purified and stored at - 70°C.

DNA Extraction and Purification 

Five ml aliquots o f environmental air samples were concentrated with a sterile 13- 

mm-diameter 0.65-pm-pore-size HA filter membrane (Millipore Corp., Bedford, MA), 

and resuspended in 500 pi o f PB. Air samples, standards and cell cultures were extracted 

by heat and enzymatic treatment, a process previously developed by Buttner et al. (2001). 

Briefly, a 500 pi aliquot of each sample was treated with sodium dodecyl sulfate (SDS, 

final concentration, 0.5%, Sigma) and proteinase K (final concentration, 20 pg/ml. 

Sigma), heated at 50°C for 5 minutes and boiled for 15 minutes. Samples were chilled 

for 2 minutes followed by addition o f bovine serum albumin (BSA) (final concentration, 

0.05%, Sigma) and incubation in an environmental shaker for 5 minutes at 37°C and 230 

rpm. The membrane was aseptically removed from environmental air samples and 

discarded. The extracted DNA was purified using Pellet Paint™ (Novagen, Madison, WI) 

according to manufacturer’s instructions. After purification DNA samples were 

resuspended in 50 pi o f Tris-EDTA buffer (TE, pH 8.0), gently mixed at room 

temperature for 90 minutes and stored at -70°C.

12
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Universal Quantitative Polymerase Chain Reaction 

The 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA) 

was used for universal QPCR amplification. The target DNA codes for the 16S rRNA 

gene, a conserved region of bacterial DNA, producing an amplicon length of 466-bp. 

Universal primers and probe sequences are shown in Table 2. Universal primers were 

obtained from Operon Technologies (Huntsville, AL) and the probe was obtained from 

Applied Biosystems.

Table 2. Universal primers and probe used for universal QPCR analysis. 
Nadkami et al. (2002).

Forward Primer 5 '-TCCTACGGGAGGCAGCAGT-3 '
Reverse Primer 5 ’-GGACTACCAGGGTATCTAATCCTGTT-3 ’
TaqMan Probe 6-FAM-CGTATTACCGCGGCTGCTGGCAC-TAMRA-3’

The amplification conditions for a 25 pi total reaction volume were 5 pi DNA 

template, IX Universal Master Mix (Applied Biosystems), 0.1% BSA, 0.2 pM forward 

primer, 0.5 pM reverse primer, 0.15 pM probe, and sterile nuclease-free water (Promega, 

Madison, WI). Standard Mode was selected on the Applied Biosystems 7900HT PCR 

system. Cycling conditions were 50°C x 2 min, 95°C x 10 min, followed by 40 cycles of 

95°C X 15 sec and 60°C x 1 min. The results were analyzed by the instmment software 

producing a standard curve of C j versus concentration. The C? is the QPCR cycle where 

fluorescence is first detected crossing the threshold and is inversely  proportional to the 

concentration o f the DNA. Concentrations for laboratory samples and environmental air 

samples were determined by using the equation for the composite standard curve. All 

primer and probe sequences and amplification and cycling conditions for universal QPCR

13
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were previously determined (Buttner and Cruz, 2006). Negative controls were included 

in all universal QPCR assays and consisted o f nuclease-free water (Promega). Positive 

controls consisted of universal QPCR standards with known concentrations as described 

above.

Determining Inhibition o f Environmental Samples 

To determine if environmental samples contained inhibitors a positive internal 

control (IPC) was included with all environmental air samples (IPC-VIC probe; Applied 

Biosystems). The IPC contains a VIC-labeled probe, DNA and primers. The universal 

QPCR amplifies a known concentration o f IPC DNA along with the sample DNA. 

Inhibition is determined by noticeable changes in amplification o f IPC DNA.

Statistical Analysis

Statistical analyses were conducted using SPSS v 14.0. A composite standard curve 

was developed by plotting the Ct value versus the log of the concentration of the 

universal QPCR standards. A linear regression was applied to the best fit line to develop 

the equation for the composite standard curve to be applied to laboratory samples and 

environmental air samples. A two way analysis of variance (ANOVA) was calculated to 

determine if there was a significant interaction between organism and analysis method. 

This was performed to determine if methods could be compared statistically in the 

absence o f organism. A Tukey’s post hoc test was performed to identify significant 

differences between methods. Eor laboratory experiments a paired t-test was conducted 

to determine significant differences between electronic enumeration and universal QPCR

14
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concentrations. Environmental air samples were tested by a Shapiro-Wilks test to 

determine if data were distributed normally. The data from these samples were then 

analyzed statistically by a paired t-test comparing microscopy and universal QPCR.

15
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CHAPTER 3

RESULTS 

Evaluation o f Universal QPCR Standards 

Universal QPCR standards were developed to quantify total bacteria in environmental 

air samples and laboratory samples. Each of the standards, 1.6 x 10  ̂to 1.6 x 10°, was 

amplified by real-time QPCR using universal primers and probe (n=5). A standard curve 

was obtained for each organism, as well as a 95% confidence interval for estimation (Fig. 

1). The standard curves of each organism were plotted and compared to each other to 

show the difference in amplification efficiency. Amplification of B. atrophaeus standards 

showed poor sensitivity compared to the other 3 organisms (Fig. 1). To correct for this, a 

composite standard curve was determined (Fig. 2) and the equation for the straight line 

was calculated by conducting a linear regression of the best fit line (Fig. 3). The equation 

for the composite standard curve was applied to environmental air samples and laboratory 

samples to calculate concentrations. The sensitivity was determined for each of the 

methods by comparing the lower detection limits of each assay (Table 3). Culture has a 

theoretical LDL of 1 cell/ml. However, culture can only detect viable cells and cannot 

determine total bacterial counts thus having poor sensitivity when compared to total 

count methods. The LDL for microscopy was calculated at
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1.7 X 10 cells/ml, indicating this method has poor sensitivity. Universal QPCR was able 

to detect 1.6 x 10^ cells/ml whereas the composite standard curve, developed for 

universal QPCR, had a sensitivity o f 1.22 x 10^ cells/ml.

Bacillus atrophaeus Pseudomonas aeruginosa

39-
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3 3 -

O 3 0 -

2 7 - R Sq Linear 
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2 4 -

2 1 -

0.0 1.0 2.0 3.0 4.0 5.0 6.0
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C oncjog C oncjog
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Ceiluiomonas fimi Shewanella oneidensis

39- 3 9 -

36 - 3 6 -
3 3 - 3 3 -

3 0 - Ü  3 0 -
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2 4 - R Sq Linear 2 4 - R Sq Linear
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0.0 1.0 2.0 3.0 4.0 5.0

C oncjog
6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Concjog

Figure 1. Universal QPCR results with C? values of the four test organisms for each 
standard dilution, 1.6 x 10^ to 1.6 x 10  ̂cell equivalents/ml, plotted against the logio of 
the concentration (n=4). The Cy is when fluorescence is first detected crossing the 
threshold during the universal QPCR assay. The concentration was determined by 
universal QPCR and the log was calculated. A best fit line with 95% confidence interval 
was applied to the data points for each o f the test organisms.
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24-
R Sq Linear =

0.82321 -

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Concjog
Figure 2. The composite standard curve was developed by plotting the mean C? values 
of the four test organisms for each standard dilution, 1.6 x 10  ̂to 1.6 x 10  ̂ cell 
equivalents/ml, against the logio of the concentration (n=4) determined by universal 
QPCR. The Ct is when fluorescence is first detected crossing the threshold during the 
universal QPCR assay. A best fit line with 95% confidence interval was applied to the 
data points.

Formula o f composite standard curve

y = mx + b where, y = PCR Ct value 
m = slope =-3.172 
X = log o f concentration 
b = y-intercept = 42.318

Therefore,

X = antilog (v -  42.318)
-3.175

igure 3. The composite standard curve equation derived from the composite of all data 
points from the four organisms used for universal QPCR standards.
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Table 3. Comparison of lower detection limit for each method.

Method Lower Detection Limit 
(cells/ml)

Culture 1
QPCR-C.)l/M f 1.6
QPCR -  S. oneidensis 16
QPCR -  B. atrophaeus 160
QPCR -  P. aeruginosa 160
QPCR -  composite standard curve 122
Microscopy L 7 x l0 f

Methods Comparison 

Pure cultures o f organisms used as universal QPCR standards were used to compare 

three different methods: culture, microscopy, and universal QPCR to determine the 

variability o f the methods individually and compared to each other. All methods were 

compared to the reference method of electronic enumeration with a Coulter Multi sizer 3 

(Fig. 4).

A statistically significant (p< 0.001) interaction was observed between the 

organisms and the analysis method; significance o f method and organism cannot be 

tested independently. Therefore, an ANOVA was conducted on the three methods for 

each organism to determine significance of interaction. For C. fim i the ANOVA had a p- 

value of 0.006 indicating that there was a significant interaction between methods. A 

Tukey’s post hoc test showed that there was a significant difference between microscopy 

and electronic enumeration (p = 0.008). There was no significant difference between 

microscopy and universal QPCR (p = 0.014) or between electronic counts and universal 

QPCR (p = 0.839). When the methods were compared for S. oneidensis by ANOVA, the
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p-value was 0.085 indicating that none o f the methods were significantly different. 

ANOVA results for 5. atrophaeus showed significant interaction of methods (p < 0.001). 

A Tukey’s post hoc test was conducted showing significant difference between eleetronie 

enumeration and universal QPCR (p < 0.001) and microscopy and universal QPCR 

(p < 0.001) supporting the evidence of poor amplification of B. atrophaeus. An 

ANOVA was conducted on P. aeruginosa which showed a significant interaction 

between the methods (p = 0.009). In addition, a Tukey’s post hoc test was performed 

which showed electronic enumeration and universal QPCR being significantly different 

(p = 0.007). For this organism microscopy and universal QPCR (p = 0.113) and 

microscopy and electronic counts (p = 0.115) were not significantly different. The 

method of universal QPCR was shown to be a less accurate method for B. atrophaeus and 

P. aeruginosa based on the Tukey’s post hoc results. Flowever, for C .fim i and 

S. oneidensis no significant differences were seen between universal QPCR and 

electronic enumeration, the reference method, suggesting that it was an accurate method 

for determining cell concentrations.

Figure 5 shows the variability of the methods with bar heights representing the 

span of the 95% confidence interval. The means 95% confidence interval (C.I.) were 

plotted for each method for each organism (Fig. 5). When the 95% confidence intervals 

cover the same range in concentration it suggests that the means are not different. C. fim i 

had overlapping of the concentrations for all three methods suggesting that there was not
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Figure 4. Results comparing analysis methods for each test organism to determine if any 
significant differences exist between methods. Bar heights represent the mean of three 
replicates (culture and AODC), mean o f fifteen replicates (Coulter), and eight replicates 
(universal QPCR). Error bars represent the standard error o f the means (uQPCR = 
universal QPCR, AODC = microscopy, and Coulter = electronic enumeration).
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Figure 5. Comparison o f the logio of the means with a 95% confidence interval for 
electronic enumeration (Coulter), microscopy (AODC) and universal QPCR (PCR) for 
each test organism.

a significant difference between methods. S. oneidensis and P. aeruginosa exhibited 

similar results and did not show overlapping of the electronic enumeration and 

microscopy methods, suggesting significant differences between these methods; however, 

they are both overlapped by universal QPCR, indicating no difference with this method.

B. atrophaeus does not exhibit overlapping between any methods suggesting that the 

means are very different for this organism. Universal QPCR has the greatest variability 

with all four organisms due to large error bars. Microscopy seems to have the lowest 

variability due to the tightness of the error bars.
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Evaluation of Universal QPCR 

Quantitative PCR was evaluated by comparing it to electronic enumeration by using 

mixed cultures of test organisms that were not used in preparing the PCR standards 

(Table 4). QPCR results showed that the high concentration of mixed cultures had an 

average concentration o f 1.55 x 10  ̂± 3.26 x 10  ̂templates/ml. Average concentrations 

of the pure cultures ranged from 2.04 x 10  ̂± 1.23 x 10  ̂templates/ml to 6.90 x 10  ̂± 3.64 

X 10  ̂templates/ml. Mid-range mixed cultures had average concentrations of 2.39 x 10  ̂± 

7.32 X 10  ̂templates/ml. Average concentrations of the pure cultures ranged from 1.14 x 

lO*’ ± 2.04 X 10  ̂templates/ml to 5.14 x 10  ̂± 7.87 x 10  ̂templates/ml. Low-range mixed 

cultures had average concentrations o f 1.68 x 10  ̂± 1.06 x 10  ̂ templates/ml. Average 

concentrations of the pure cultures ranged from 1.27 x 10  ̂± 6.49 x lO' templates/ml to

1.08 X lO"* ± 7.36 X 10  ̂templates/ml (Table 4).

A paired t-test was performed to determine if  there was a significant difference 

between the electronic enumeration concentrations o f the mixed and pure cultures and 

universal QPCR concentrations o f the same cultures. Based on these data, there is 

evidence to suggest that the electronic enumeration and the universal QPCR 

concentrations were not equal (t = -5.205, d f = 35, p <0.001). However, they are highly 

correlated (correlation coefficient = 0.971), with a strong linear relationship (Fig. 6).

This suggests that the QPCR values and the electronic enumeration calculations have a 

significant linear association even though their distributional means were not equal.
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Table 4. Universal QPCR analysis o f mixed culture using 3 test organisms at equal 
concentrations as determined by electronic particle counting (Coulter). Pure cultures of 
each organism used in the mixed culture were also analyzed by universal QPCR for 
comparison to determine the effect on the universal QPCR assay. The percent difference 
between Coulter and universal QPCR was calculated. (Mixed cultures (n=7) and pure 
cultures (n-2)).

Coulter Universal QPCR
Concentration Concentration % Difference between

Culture (cells/ml) (cell equivalents/ml), ± 1  S.E. Coulter and QPCR

Mixed culture 3.00 X lO’ E 55x 10* ±3.26 X lO'' 81
E. coli 3.00X 10^ 8.17 X 10  ̂ ±3.64 X 10? 63
S. aureus 3.00X 10^ 6 .9 0 x l0 7 ± 5 J 8 x l0 * 57
B. cereus 3.00X 10? 2.04 X 10  ̂ ±1.23 X lO’ 32

Mixed culture TOOxlOf 2 3 9 x 1 0 *  ± U 32xl0S 87
E. coli 3.00 X 10^ 1.14 X 10* ±2.04 X 10* 74
S. aureus 3 .00 X 10^ 1.75x10* ±4.44x10* 83
B. cereus 3.00 X  10^ 5.14x10* ±7.87x10* 94

Mixed culture 3.00 X  lO^ UOSxlOf ± U 06xl03 44
E. coli TOOxlOf 127x10^ ± & 49x lO ' 56
S. aureus 3.00 X 10^ 2.67x10^ ± 2 4 1 x 1 0 ^ 11
B. cereus 3.00 X 10^ EOSxlOf ± 2 3 6 x 1 0 ^ 72
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Figure 6. The logio o f the concentration (cell equivalents/ml) for universal QPCR was 
plotted against the logic of the concentration (cells/ml) for electronic enumeration for 
mixed cultures containing E. coli, B. cereus, and S. aureus. A best fit line with a 95% 
confidence interval was applied to the data points. The methods of electronic 
enumeration and universal QPCR had a strong linear relationship and were highly 
correlated (correlation coefficient = 0.971). (Universal QPCR mixed cultures (n=7) and 
electronic enumeration (Coulter) (n=3)).

Analysis o f Environmental Air Samples 

The environmental air samples were analyzed by culture, microscopy and universal 

QPCR. Electronic enumeration was not used in the analysis because particles that are 

captured along with the bacteria cannot be differentiated from bacteria. Culture analysis 

was performed on environmental air samples (Table 5), but because not all bacteria are 

able to form colonies when cultured the results were not included in the statistical 

analysis.
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Table 5. Culture results from environmental air samples (n=22). Lower detection limit 
for culture is defined as 1 CFU/ml. (CPU = colony forming units).

Sample
Name CFU/ml

113006A < 1
113006B 3.9 X 10
120606/1 1.5 X 10'
120706A 3.1 X 10'
120706B 7.7 X 10'
121106A 1.5 X 10
121106B 3.7 X 10
030907al 3.0 X 10'
030907a2 6.0 X lO'
030907bl 1.0 X 10'
03090762 3.0 X lO'
030907c1 5.0 X 10'
030907c2 2.0 X lO'
032307al 2.0 X 10
032307a2 3.0 X 10'
03230761 2.0 X 10'
03230762 4.0 X 10'
032607al 1.0 X 10
032607a2 2.5 X 10
03260761 1.5 X 10
032607cl 5.5 X 10
032607c2 1.3 X 10'

A Shapiro-Wilks’ test was performed on the universal QPCR and microscopy results 

to determine if the data were normally distributed. Results of the test indicated that data 

for universal QPCR (p == 0.525) and microscopy (p = 0.159) were normal. To statistically 

test normal data, a paired t-test was performed to compare microscopy and universal 

QPCR. The p-value was < 0.001 concluding that the mean for microscopy was greater 

than the universal QPCR mean. This suggests that microscopy was able to determine 

higher total bacterial concentrations in air samples than universal QPCR (Fig. 7).
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Figure 7. Comparison o f universal QPCR and microscopy concentrations from 
environmental air samples (n=22) reported as cells/m^. Bar heights represent the means 
of four replicates (universal QPCR) and only one replicate for microscopy ± 1  S.E. Due 
to limited sample volume duplicate microscopy analysis was not performed.

An internal positive control (fPC) PCR was conducted on all environmental air 

samples to determine if  there were inhibitors present. Results showed that inhihitors 

were not present in environmental air samples (data not shown).
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CHAPTER 4

DISCUSSION 

Evaluation of Universal QPCR Standards 

Quantitation standards are needed to adequately measure total airborne bacterial 

concentrations with universal QPCR. Due to the varied amplification of bacteria, noted 

during previous studies (Buttner and Cruz, 2006; Nadkami et a l ,  2002), a composite 

standard curve of four test microorganisms was developed in this study. When the 

standard curves were developed for each test organism independently, variation of 

amplification was noted (Fig. 2). This exhibits the same finding that was seen during the 

specificity testing where it was noted that organisms had different amplification 

efficiencies with the universal primers and probe (Buttner and Cruz, 2006). This could be 

due to the number o f target sequences (rDNAs) varying among bacterial species in the 

number o f copies per genome as well as with the growth phase of the harvested eell 

(Lyons et a i,  2000; Klappenbach, 2001). Multiple copy numbers seen during rapid 

growth are due to increased cellular components produced during cell replication.

Lyons et a l  (2000) successfully used a composite standard curve o f four organisms to 

quantify mixed samples when testing total bacteria in dental plaque. Therefore, this 

method was adopted with modifications in this study to correct for variation in 

amplification efficiencies. Cultures were harvested at approximately the same growth 

stage to maintain consistency. Any variations in copy number should have been
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normalized during the electronic enumeration and DNA extraction. By using electronic 

enumeration for standards and extracting standards and samples in the same manner, both 

multicopy DNA and DNA losses during extraction were resolved, respectively. This 

would eliminate any concern due to differences in growth phase and copy number. Other 

studies have generated standard curves using CPU, 16S rDNA copy number or prepared 

from cells gathered the same way as samples being tested (Lyons et al., 2000; Nadkami 

et a l, 2002; An et a l ,  2006). The advantage of using electronic enumeration is that it 

applies a total count method and does not rely on culture or rDNA copy number. A cell 

is counted as one cell regardless o f the number of copies o f the same gene. Extracting 

standards in the same manner as the samples compensates for losses that may occur. 

Therefore, when utilizing standards to enumerate environmental samples a more accurate 

method of quantitation results regardless o f cell viability or copy number.

The hypotheses proposed in this study were that universal QPCR could provide a 

more accurate and sensitive method for measuring airborne bacteria than the traditional 

methods o f culture analysis and microscopy. These hypotheses were tested with the 

standards developed to quantitate environmental air samples. The first hypothesis, 

providing a more sensitive method, was determined by calculating and comparing the 

lower detection limits o f universal QPCR, microscopy and culture analysis. Table 3 

showed the values for each method and the conclusion was that universal QPCR is a 

more sensitive detection method for measuring total bacterial concentrations in air 

samples.

The second hypothesis, providing a more accurate method, was tested by comparing 

universal QPCR to microscopy and culture analysis. A statistical analysis showed that
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B. atrophaeus and P. aeruginosa had significant differences between the reference 

method, electronic enumeration, and universal QPCR. B. atrophaeus showed poor 

amplification for reasons unknown at this time. This lowered the accuracy of universal 

QPCR. However, C. fim i and S. oneidensis showed no differences between universal 

QPCR and electronic enumeration concluding universal QPCR to be a fairly accurate 

method for measuring airborne bacteria.

Methods Comparison

Four methods were tested in this study; culture, microscopy, electronic enumeration 

and universal QPCR. Although, electronic enumeration, used as a reference method, is 

very accurate it cannot differentiate between bacterial microorganisms and other 

particulate; therefore, it cannot be used for environmental sample analysis. However, it 

was used to determine bacterial cell suspension concentrations and as a reference method 

for comparison in laboratory experiments.

Culture was not directly comparable to microscopy and universal QPCR even with 

pure cultures. Some cells may be viable but not culturable (VBNC) due to stressful 

conditions such as aerosolization, sampling stresses, nutrient deficiencies or competition 

on the culture media and not detected. Microscopy and universal QPCR are other 

methods that are available to quantitate total bacteria in samples. It was observed (Fig. 5) 

that microscopy was better at quantitating test organisms than universal QPCR. Due to a 

significant interaction (p<0.001) between organism and methods a statistical analysis 

could not be performed independently on laboratory methods.
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According to the E. coli variability map of the 16S rRNA gene provided by the 

European Ribosomal RNA database over 10% of the nucleotides in the 16S rRNA gene 

are totally conserved but none o f them form a continuous conserved region for universal 

priming (Baker et a l,  2003). This makes designing a primer difficult, and the likelihood 

o f unamplified products increases due to probable mismatches.

Microscopic analysis using the direct count method with the Acridine Orange stain 

was shown to be slightly more effective in determining the concentration o f test 

organisms (Fig. 4). However, microscopy can be overestimated due to auto fluorescence 

or nonspecific staining o f particulate (Kepner and Pratt, 1994; Terzieva et a l, 1996). In 

addition, bacterial cells can be “rafted” or attached to debris (Maron et a l, 2005) making 

the bacterial cell harder to see, leading to inaccurate total counts of environmental 

samples.

Evaluation o f Universal QPCR 

To determine if there was an interaction of mixed cultures with the universal QPCR 

assay, three test organisms that were not used as universal QPCR standards were equally 

mixed at three concentrations and analyzed by universal QPCR. The results indicated 

that although the electronic enumeration concentrations and the universal QPCR 

concentrations were not equal they had a significant linear association. Although the 

universal QPCR concentrations were higher than the electronic enumeration 

concentrations they were not extremely different. Farrelly et al. (1995) noticed in their 

PCR amplifications that the pairing o f Bacillus subtilis and Thermus thermophilus 

produced unexplained high deviations from the predicted values and that there is an
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intrinsic but unknown feature that is causing this result. The Farrelly et al. (1995) study 

suggested possible factors resulting in these deviations, including 16S rDNA proportions, 

G+C content, and location o f rrn opérons on the genome. However, knowing this still 

does not provide exact predictions. It has been observed that organisms with a high G+C 

content such as Actinohacteria are underrepresented or even absent in 16S rRNA PCR 

based studies (Hill et al., 2006). C.fimi, which was used as a universal QPCR standard in 

this study, belongs to the Phylum Actinohacteria and amplified well in universal QPCR 

testing. In a previous study conducted by Buttner and Cruz (2006), 39 microorganisms 

were tested with universal primers, 6 of which were Actinohacteria. Four o f the 6 

Actinohacteria showed strong amplification. However, these data were derived from 

pure culture and may be different from those obtained from air samples. Discovery of 

new taxa with 16S rDNA sequences not complementary to standard universal primers 

suggests that current 16S rDNA libraries are not representative o f true prokaryotic 

biodiversity (Baker et al., 2003). Therefore, the variability of universal primers raises the 

question as to the accuracy o f universal QPCR.

Analysis o f Environmental Air Samples 

There are various methods for collecting air samples that incorporate a culture hased 

approach including liquid impingement (Grinspun et al., 2007). Microhial stress during 

aerosolization and sampling of airborne microorganisms and the violent motion in the 

liquid during collection may affect the viable count in an impinger sample in a time- 

dependent manner but most damaged cells could recover (Terzieva et a l,  1996). 

However, total count analysis methods are still necessary.
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In this study microscopy showed higher concentrations than universal QPCR when 

analyzing environmental samples (Fig. 7). However, microscopy may 

over-estimate total bacterial counts. Microscopy is labor intensive and requires an 

experienced observer to differentiate between particulate and microorganisms. 

Autofluorescence, nonspecific staining of cellular components, and dark or shadowed 

cells make it difficult to correctly identify bacterial organisms (Terzieva et a l, 1996). 

This may be a reason for the higher concentrations obtained by microscopy compared to 

universal QPCR.

Hill et a l (2006) suggested that organisms such as Actinohacteria are 

underrepresented or nondetectable in environmental samples. C. fimi, a member of the 

Phylum Actinohacteria, was one of the four microorganisms used to make a composite 

standard curve in this study. DNA extracted from a pure culture amplified very well in 

universal QPCR assays. A previous study conducted using the universal primers and 

probe amplified 6 representative bacteria from the phylum Actinohacteria with C t values 

ranging from 20 -  40 (Buttner and Cruz, 2006). Two o f the 6 Actinohacteria had poor 

amplification. In addition, universal QPCR amplification of organisms retrieved by 

sampling may produce decreased amplification efficiencies of those organisms. This may 

be caused by the cell membrane becoming disrupted and internal components being 

destroyed (e.g., shearing of the DNA). Samples in this study were exposed to several 

cycles of freeze-thaw during storage and quantification by universal QPCR analysis.

This may have also had an effect on bacterial DNA detection. Another source for 

concern is DNA degradation over time which has been reported (Josephson et a l,  1993).
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Another factor that could pose a problem for universal QPCR is the presence of 

inhibitors. Inhibitors can interfere with QPCR preventing target DNA from amplifying 

and producing false negative results (Stetzenbach et a l, 2004). Although microscopy was 

slightly better than universal QPCR in determining sample concentrations it is lahor 

intensive, time consuming, and expertise is needed. The advantages of universal QPCR 

are that it is rapid, sensitive, has a high sample throughput, and low numbers of targeted 

microorganisms are needed for detection (Alvarez et a l,  1995). The advantages of 

universal QPCR make it a suitable candidate for detecting bacterial concentrations in 

environmental air samples.
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CHAPTER 5 

(:()NCI,USI()N

This study focused on using universal QPCR primers and probe to quantify total 

bacterial concentrations in environmental air samples. While not perfect, this method 

was able to effectively amplify bacterial DNA from environmental air samples.

Universal QPCR can be a quick and efficient method to determine if  an air quality 

complaint or event is bacterial in nature allowing for immediate action. Additional 

research is needed to address the amplification efficiencies of organisms present in 

environmental samples.

Universal QPCR can be useful in indoor air quality surveillance. Bioterrorism and 

biowarfare have constantly been an issue since the attacks on the World Trade Center in 

New York City in 2001. Currently there are multiple sampling units placed in cities 

around the United States which monitor the air for certain biowarfare agents. The 

problem lies in the ability of these units detecting anything other than the specific agents 

of interest. If an unknown non-target, but pathogenic bacterial agent were to be collected 

by one o f these units it would not be detected due to the specific detection parameters that 

the unit was designed to test for. Therefore, universal QPCR can be used to determine if  

there is a large increase in a sample, other than normal seasonal fluxes, o f a bacterial 

nature, allowing the correct evacuation or decontamination procedures to take place.
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Another use for universal QPCR is for monitoring o f biocontamination. This would 

aid in indoor air quality investigations to determine if  there is a high indoor bacterial 

count. Water damaged environments and/or work environments such as hospitals, dentist 

offices and medical clinics could benefit from this method. Industrial applications of 

universal QPCR include waste water treatment plants, agricultural settings, food 

industries, and landfills. High (undetected) concentrations of bacteria can be problematic 

for those that work in these environments leading to adverse health effects. Other areas of 

concern are enclosed spaces such as International Space Station, Shuttle, and submarines. 

Monitoring these spaces with a method such as universal QPCR could help identify 

bacterial problems that may be hazardous to the occupants.

Universal QPCR assays for detection of airborne bacteria can aid in determining the 

nature o f an outbreak with health related illnesses. Knowing if  an outbreak is caused by 

airborne bacteria a course o f treatment can be applied sooner than waiting for culture 

analysis results that could take weeks if  the unknown agent is able to grow when 

cultured.

An example would be the Legionnaire’s convention o f 1976. O f the 182 members of 

the Pennsylvania American Legion that became sick, 29 individuals died (Winn, 1988). It 

was not known if  the mysterious affliction was chemical, bacterial or something else. If 

this type o f event were to occur today universal QPCR could be used as a screening tool 

to determine if  the agent was bacterial.
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Although, universal QPCR, may still need improvement it is more rapid and less time 

involved than microscopy. There are many possible applications to using universal QPCR 

but further testing needs to he conducted to improve on the accuracy and sensitivity of 

the method. Future studies should include the development of composite standard curves 

with additional organisms.
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