
UNLV Retrospective Theses & Dissertations 

1-1-2007 

Design and implementation of NoC routers and their application Design and implementation of NoC routers and their application 

to Prdt-based NoC's to Prdt-based NoC's 

Shankar Narayanan Neelakrishnan 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds 

Repository Citation Repository Citation 
Neelakrishnan, Shankar Narayanan, "Design and implementation of NoC routers and their application to 
Prdt-based NoC's" (2007). UNLV Retrospective Theses & Dissertations. 2253. 
http://dx.doi.org/10.25669/f0c3-qr7r 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized 
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/f0c3-qr7r
mailto:digitalscholarship@unlv.edu


DESIGN AND IMPLEMENTATION OF NOC ROUTERS AND THEIR 

APPLICATION TO PRDT-BASED NOC ’ S

by

Shankar Narayanan Neelakrishnan

Bachelor of Engineering in Electrical and Electronics Engineering 
University of Madras, India 

April 2004

A thesis submitted in partial fulfillment 
o f the requirements for the

Master of Science Degree in Electrical Engineering 
Department of Electrical and Computer Engineering 

Howard R. Hughes College of Engineering

Graduate College 
University of Nevada, Las Vegas 

Decemeber 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 1452265

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1452265 

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 E. Eisenhower Parkway 

PC Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced witfi permission of tfie copyrigfit owner. Furtfier reproduction profiibited witfiout permission.



UMZ Thesis Approval
The Graduate College 
University of Nevada, Las Vegas

November 6 20 07

The Thesis prepared by

Shankar N eelak rish n an

Entitled

"D esign  and Im p lem en tation  o f  NoC R outers and t h e ir

A p p lic a t io n  to  PRDT-Based NoC's'

is approved in partial fulfillment of the requirements for the degree of 

_____________ M asters o f  S c ien ce  in  E le c t r i c a l  E n g in eer in g

Exannnation Comm ittee M en

lination Oommittee M ember

Graduate College Faculty Representative

Lxannnation/ioyfim ittee Chair

Dean o f the Graduate College

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Design and Implementation of NoC Routers and their Application to PRDT-based 
NoC's

by

Shankar Narayanan Neelakrishnan

Dr. Mei Yang, Exarnination Committee Chair 
Assistant Professor of Electrical and Computer Engineering 

University of Nevada, Las Vegas

With a communication-centric design style, Networks-on-Chips (NoCs) emerges as a 

new paradigm of Systems-on-Chips (SoCs) to overcome the limitations of bus-based 

communication infrastructure. An important problem in the design of NoCs is the router 

design, which has great impact on the cost and performance of a NoC system. This thesis 

is focused on the design and implementation o f an optimized parameterized router which 

can be applied in mesh/torus-based and Perfect Recursive Diagonal Torus (PRDT)-based 

NoCs.

In specific, the router design includes the design and implementation of two routing 

algorithms (vector routing and circular coded vector routing), the wormhole switching 

scheme, the scheduling scheme, buffering strategy, and flow control scheme. 

Correspondingly, the following components are designed and implemented: input 

controller, output controller, crossbar switch, and scheduler. Verilog HDL codes are 

generated and synthesized on ASIC platforms. Most components are designed in 

parameterized way. Performance evaluation of each component of the router in terms of

111
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timing, area, and power consumption is conducted. The efficiency o f the two routing 

algorithms and tradeoff between computational time (tsetup) and area are analyzed.

To reduce the area cost o f the router design, the two major components, the crossbar 

switch and the scheduler, are optimized. Particularly, for crossbar switch, a comparative 

study of two crossbar designs is performed with the aid of Magic Layout editor, 

Synopsys CosmosSE and Awaves.

Based on the router design, the PRDT network composed o f 4x4 routers is designed 

and synthesized on ASIC platforms.

IV
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CHAPTER 1 

INTRODUCTION

As predicted by the International Technology Roadmap for Semiconductors (ITRS) 

[32], for the next 5 to 10 years, System-on-Chips (SoCs), using 32 nm transistors 

operating below one volt, will grow to multi-billion transistors running at a frequency of 

lOGHz or higher. One of the major challenges in designing such highly integrated SoCs 

will be to find an effective way to integrate pre-designed Intellectual Property (IP) cores 

for power and performance concerns [2]. As the device feature size is continuously 

shrinking and the bandwidth requirements are increasing, traditional bus-based SoC 

architecture [42] have been found creating a performance bottleneck. Networks-on-Chip 

(NoC) communication architectures have emerged as a promising alternative to overcome 

those limitations of bus-bused communication infrastructure by employing a packet- 

based micro-network for inter-lP communication.

As the interface of an IP to the on-chip interconnection network, the router design has 

an important impact to the cost and performance a NoC design. This thesis is foeused on 

the design and implementation of a parameterized NoC router. This chapter introduces 

the background of this work and gives the outline of the thesis. First, an overview of NoC 

architectures is given and challenges in NoC designs are addressed. Next, the review of 

existing router design is provided. At the end of this chapter, we discuss the motivation 

for this study followed by an outline of the thesis.
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1.1 Overview of NoC Architecture

In general, a packet-based NoC consists of routers, the network interface between the 

routers and the processing units, and the interconnection network [15]. Figure 1.1 shows 

a regular 4x4 NoC architecture with a mesh-based interconnection network. Each 

processing unit can be a general-purpose processor, a DSP, an embedded memory etc. 

Each processing unit is attached to a router which connects it to its neighboring 

processing units. Later in the text, we use node to refer a processing unit and its 

associated router.

Router

^ Network interfice 

Processing unit

Figure 1.1: A mesh-based NoC architecture.

The design of a NoC system must address the following challenges.

Scalability: In a NoC system, the interconnection network plays an important role in 

providing scalability to accommodate larger number of transistors and alleviate 

design productivity gap [24] [19]. On-chip networks will likely use networks with 

lower dimensionality to keep wire lengths short [30].

Energy-efficiency: When designing a NoC system, power needs to be treated as a 

major design constraint as significant amount of power is consumed by its
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interconnection network [73]. The power consumption of the interconnection network 

largely depends on the energy consumed by the routers and the energy consumed on 

the interconnection links, which is related to the interconnection architecture itself, 

the routing and switching schemes employed, and the implementation techniques 

[24].

• Reconfigurability: Reconfigurable architecture emerges as one of the most important 

architectural paradigm for satisfying the simultaneous requirements for application 

performance and flexibility [33] [73]. Reconfigurable architecture is particularly 

desirable for real-time applications due to the high-performance they can offer, the 

cost saved, improved time-to-market, and improved flexibility and upgradability [38]. 

The design of NoCs involves trades-off between several important choices, such as 

topology selection [47] [1] [29] [35] [48] , communication protocol selection [20] [26], 

and application mapping to processing units [34] [50]. A formal categorization of the 

NoC design issues is given in [53]. In the following, an overview of the topologies and 

communication protocols used in NoCs is provided as they are directly related to the 

router design.

1.1.1 Network Topology

Most NoCs adopt regular forms of network topologies that can be laid out on a chip 

surface (a 2-dimensional plane), for example, k-dxy 2-cube, commonly known as grid- 

type topology. The k-ary n-cube topology, where k is the degree of each dimension and n 

is the number of dimensions, was first described in [10] for multicomputer networks. The 

popular Ar-ary 2-cube type NoC topologies are the mesh which uses bidirectional links 

and torus which uses unidirectional links. To reduce the routing delay on long wires, fold
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toms is proposed in [11]. The k-ary tree and the k-ary n-dimensional fat tree are two 

alternate regular forms of networks explored for NoC . Figure 1.2 shows examples of 

regular forms o f topology. The network area and power consumption scales predictably 

for increasing size of regular forms of topology. Generally, mesh topology makes better 

use of links (utilization) [45], while tree-based topologies are useful for exploiting 

locality of traffic. In [37] , Octagon NoC is another example for novel regular NoC 

topology.

o
6 1ao 4'

O io

o
(a) Mesh (b) Toms (c) Binary tree

Figure 1.2: Regular network topology.

Irregular forms of topologies are derived by mixing different forms in a hierarchical, 

hybrid, or asymmetric fashion [5], which are usually based on the concept o f clustering. 

In [55], the impact of clustering on five NoC topologies is studied. Irregular forms of 

topologies scale nonlinearly in regard to area and power consumption [5]. The examples 

o f indirect tree-based networks are fat-tree in SPIN [21] and butterfly in [55]. The fat-tree 

(figure 1.3) used in SPIN is proven in to be the most hardware efficient compared to 

other networks [21]. However, the size of this network grows in (nlog n)/8, where n is the 

number of terminals. In [22], a honeycomb stmcture is proposed. As shown in Figure 1.3 

(a), in the honeycomb NoC, the resources including computational, storage and I/O are
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organized as nodes of the hexagon with a local switch at the center that interconnects 

these resources.

KesouiTi' tfleniciits organised al 
DChjc of a hexagon.

mknrtmntcimg resources \  atnodcsofhrŵ mndto
% BagMwarmg wiicbe*

j l l  •  1 ^  •  g i  M u h i  c o n n e c t e d  t o  a l i e m m t e

4 equivalent tree roots

Æ

(a) Honeycomb [1]
16 terminals at the leaves of the tree

(b) Fat tree [21]
Figure 1.3: Irregular topologies.

The major problems with some of the aforementioned topologies are: they are either 

not scalable (e.g., mesh and torus), or not reconfigurable (most irregular topologies). To 

address these two problems, a novel class o f topologies named Recursive Diagonal Torus 

(RDT) is proposed for NoC [80]. The RDT structure is constructed by recursively 

overlaying 2-D diagonal torus, and it was originally designed as the interconnection 

network of a massively parallel processor [77][78][69]. In [80], it shows that the RDT 

structure has the following features: recursive structure, smaller diameter and average 

distance, embedded mesh/torus topology, a constant node degree of 8, and robust routing 

schemes. Hence, it has good scalability and is reconfigurable to simpler structures (such 

as mesh or torus). A special type of RDT, called Perfect RDT (PRDT) [75], is considered 

to be a promising on-chip interconnection network topology due to its symmetric 

structure and simpler link connections than other RDT structures.
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1.1.2 Routing Algorithm

The selection of routing scheme greatly affects the network performance [66] and 

power consumption [28][54]. Given a NoC architecture and the source and destination 

nodes, the routing algorithm running in each router decides the output port to route the 

packet. Implementation eomplexity and performance requirements are two major 

eoncems in selecting the routing algorithm [53]. In general, the routing algorithms for 

NoC can be classified into two categories -  deterministic routing and adaptive routing 

[1].

In deterministie routing, the routing algorithm is independent o f the network 

conditions. Hence, it requires fewer resources and guarantees an orderly packet arrival.

XY (or YX) routing is deterministic routing algorithm wherein a packet is first 

forwarded in the X dimension and then along the Y dimension, restricting the maximum 

number o f allowed turns to one [10]. An extension to this algorithm has been proposed in 

[20][7I], whieh imposes certain turn rules on the XY routing algorithm. Deflection 

routing is another deterministic routing algorithm that forwards the packet towards the 

path with the lowest delay [6]. The odd-even turn model [7] is designed for partially 

adaptive wormhole routing algorithms without adding virtual channels. In comparison 

with the well-known turn model, this scheme provides more even routing adaptiveness. 

The model restricts the locations where some turns ean be taken so that deadlock is 

avoided. The degree of routing adaptiveness provided by the model is more even for 

different source-destination pairs. The mesh network may benefit from this feature in 

terms of communication efficiency. In addition, this property results in a smaller 

fluctuation of the network performance with respect to different traffic patterns.
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In adaptive routing, the path that a packet chooses depends on the source and 

destination address as well on the dynamic traffic conditions. Hence, it may provide 

better throughput and lower latency by allowing alternate paths based on the network 

congestion. A contention aware hot potato routing scheme is proposed in [52]. A 

variation to the model developed in [7] , where an odd-even adaptive routing algorithm 

for meshes is proposed. Hu et al. [74], propose a routing scheme which switches between 

deterministic and adaptive according to network congestion simation. There has been an 

in-depth survey on some efficient routing algorithms in [49]. Comparison of various 

routing algorithms over different topologies is discussed in [13][23] [51].

Deterministic routing requires less resource and guarantees an orderly packet arrival. 

On the other hand, adaptive routing provides better throughput and lower latency by 

allowing alternate paths based on the network congestion. Out-of-order message arrival is 

an important problem associated with adaptive algorithms. Deadlock is an important 

issue in NOC’s, since deadlock (livelock) detection and recovery mechanisms are 

expensive and they may lead to unpredictable delays. Virtual channels may be used to 

avoid deadlocks as well as to utilize the channel bandwidth better. Deterministic and 

partially adaptive algorithms based on the turn model [20]; guarantee free deadlock and 

livelock operation, while fully adaptive strategies require extra precaution and virtual 

channels. Deterministic routing is appropriate if  the traffic generated by the application 

under consideration is predictable.

Being application-dependent, the routing algorithm for NoCs ean indeed be 

customized to match the application traffic pattern [53]. Stochastic routing for fault- 

tolerant in NoCs has been discussed in [16]. In [76], the fault-tolerant routing scheme for
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RDT-based NoCs is discussed. A power-aware, adaptive routing strategy that regulates 

the routing decisions to satisfy peak power constraints is proposed in [63]. However, this 

approaeh does not address timing constraints, which are likely to coexist with power 

constraints. Hence, a power- and performance aware- technique [28] [29] is needed . 

Moreover, more complicated routing strategies result in larger design.

1.1.3 Switching Technique

A problem related to routing is the switching technique used in the network, which 

determines when the routing decisions are made, how the switches inside the routers are 

set/reset, and how the packets are transferred along the switches [53].

Switching techniques have been a well researched area in traditional data networks 

for a long time. There are four switching techniques which are considered promising for 

NoCs.

■ Store-and-forward: Commonly known as packet switching, the entire paeket is 

stored in the buffer at an intermediate node before it is forwarded to a selected 

neighboring node based on the destination node address stored in the packet 

header. In packet switching, the bandwidth is utilized in a flexible way. As an 

example, the CLICHÉ NoC [41] employs store-and-forward swtching.

■ Circuit switching: Circuit switching involves the establishment of a physical 

circuit between the source and destination nodes and reservation o f the circuit 

until the transport of data is complete. As such, circuit switching can provide 

guaranteed service as required by some applications.

■ Wormhole: This technique combines the advantages of packet switching and 

circuit switching and achieves low data latency. In wormhole switching [9][49],a
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packet is divided into fixed size flits (flow eontrol unit, whieh is typically set as 

one or multiple wire bit width) and then these flits are routed through the 

network one after another, in a pipelined fashion. The header flit of a packet 

contains the destination address and other control information. At each 

intermediate node, once receiving a header flit, it makes the routing decision and 

sets up the conneetion from the incoming input port to the destined output port in 

the switeh. This connection will be valid until the last flit o f the packet is 

transmitted. Due to the small flit size, wormhole switching achieves low data 

latency with small buffer requirement.

■ Virtual cut-through (VCT) [39]: In this switching technique, the forwarding 

router waits for a guarantee from the next node in the path that it will accept the 

entire paeket. This handshaking allows the forwarding router to transmit the 

intermediate flits as it receives them, thus reducing the data latency.

Among the commonly used switching techniques, wormhole switching seems to be 

the most promising one for typical NoC applications due to its advantage of low data 

latency with small buffer requirement. A wormhole NoC router [49] is used in MANGO 

[3]. In [81], a soft core router, RASoC, is developed which uses wormhole switching.

In data networks, wormhole switching is preferred than circuit switching due to the 

poor performance of the latter under dynamic traffic. However, for application-specific 

NoCs, circuit switching is preferred. Moreover, guaranteed service operation, as required 

by some applications, is relatively easier to be satisfied by using circuit switching. For 

example, the NOSTROM NoC [45] adopts circuit switching and implements a service of 

guaranteed bandwidth (GB) using virtual circuits [4].
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Therefore, circuit switching is a promising alternative, despite its implementation 

complexity and static nature. It remains to be seen whether or not a partieular switehing 

technique, or a hybrid combination, is more advantageous. Some of the hybrid switching 

techniques are given in [25][65] [14].

The switch used in the router is the device that sends flits from input ports to output 

ports. Its size is determined by the number o f input/output ports. In [70], the estimation 

for power consumption for various switch designs is discussed. Bit energy consumed by 

the switching fabric, internal buffers, and interconnect wires is calculated and analyzed 

for several switching fabrics, including crossbar, fully connected, banyan, and batcher- 

banyan networks.

1.1.4 Buffering Technique

The next important aspect to be discussed is the buffer allocation. The input channel 

buffers at each router in the NoC have a serious impact on the overall area. For instance, 

by increasing the buffer size at each input channel from 2 to 3 words, the router area o f a 

4x4 NoC increases by 30% or more [61]. Thus, the overall use of buffering resources has 

to be minimized to reduce the implementation overhead in NoCs. On the other hand, 

depending on the network load, increasing the buffer size can reduce the data latency by 

orders of magnimde. The properties of on-chip buffers are studied in [61]. The authors 

report gate-level area estimates and analyze the performance of the network and buffers 

utilization across the network. An efficient algorithm for the buffer size allocation 

problem is proposed in [27]. Although queuing theory can help achieving significant 

performance improvements through smart buffer allocation, many problems remain to be 

solved. Some critical issues are discussed in [27].

10
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1.2 Existing NoC Router Design

In the literature, a number of NoC router designs have been proposed. In the 

following, a review of these designs is given.

A router based on adaptive routing is proposed [40] with minimum message latency. 

It is a two-stage pipelined architecture; using look-ahead routing, speculative allocation 

and optimal output path selection, in case of concurrency. One more novelty of this router 

is the use of decomposed cross-bar switches, which reduces the contentions.

In [43], a router based on the new crossbar scheduling algorithm called TREE is 

proposed. The Tree algorithm has many advantages, such as the arbitration is computed 

concurrently with packet propagation and thereby latency is reduced, and the overall area 

o f the scheduler is reduced compared with the round-rohin scheduling algorithm. The 

complexity o f the TREE algorithm is 0(log n) whereas that of round-robin is 0{n) for a 

«-input/output crossbar swith.

In [59], the guaranteed throughput (GT) and best effort (BE) router architectures are 

combined in an efficient implementation by sharing resources. Based on circuit 

switching, the GT router uses slot table to avoid contentions on a link and for dividing the 

bandwidth per link. Based on packet switching, the BE router uses matrix scheduling. In 

this design, the GT and BE routers are combined together and the traffic is controlled by 

an arbitration unit and the two routers share the links and switch in common.

In [62], a prototype design of a 5-input/output scalable switehing node is presented. 

The packet connected circuit (PCC) technique, a combination of circuit switching and 

packet switching is used in this design. The switching node basically consists of input
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and output finite state machine (FSM), priority encoder, address decoder module, and an 

arbiter.

In [25], a switch is designed without using memory buffer. Here the PCC technique is 

also used but without any arbiter. This switch is implemented with lots of design 

simplifications in AMS 0.18 technology.

In [8I][83], a soft router core, router architecmre for SoC (RASoC), is developed 

using parameterized VHDL model. The RASoC features a distributed router architecture 

based on wormhole switching approach. It uses XY routing algorithm (deterministic), 

round-robin arbitration, and input buffering. The advantage of this router design is that, it 

is been implemented in parameterized VHDL so that it can be reused for different sizes in 

order to meet the requirements o f the target applieations by just changing the parameters. 

RASOC is implemented on SoCIN (Sytem-on-Chip Interconnection network).

In [82], PARIS (Parameterizable Interconnection Switch), advancement to RASoC is 

proposed. PARIS has all the benefits of RASoC and extends the parameterization to the 

techniques used for packet forwarding (eg. Routing, arbitration and flow control). PARIS 

is implemented on SoCINfjp (Sytem-on-Chip Interconnection network fully 

parametrized), an advancement of SoCIN.

In [60], asynchronous multi-service level QNoC router is proposed. Wormhole 

routing and a simplified version o f source specified routing are used in this design. A 

MUTEX-NET arbiter is adopted and its fairness is diseussed in the paper.

In [3], the MANGO router is proposed. This is a clockless router which is derived 

from the globally asynchronous and locally synchronous (GALS) principle. Some 

advantages using the clockless NoC are; they operate in maximum speed and they have

12
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zero dynamie power consumption. The MANGO router exploits virtual ehannels (VCs) 

to provide connection-oriented guaranteed serviees (GS) and connectionless best effort 

(BE) routing. The BE router uses source routing and the GS router is setup by 

programming through the BE router. The GS router uses a VC control module whieh 

employs share-based VC control, which is nothing but a non-blocking circuit switching. 

In [57] [66] some techniques for synthesis o f custom NoC architectures are explained.

1.3 Contribution and Overview of the Thesis

As discussed in previous seetion, the Reeursive Diagonal Torus (RDT) is a class of 

topologies suitable for NoCs. Partieularly, the PRDT strueture has redueed eomplexity 

but keeps the distinct architectural features o f RDT. The study in [75] shows that the 

PRDT-based is promising and it is feasible to be implemented with eurrent VLSI 

teehnologies.

Discussed in Section LI,, the cost and performance of a NoC largely depends on the 

router architecture. Henee, it is neeessary to build an effieient router for PRDT-based 

NoC. This thesis is focused on developing an efficient parameterized router for PRDT- 

based NoC. Due to the architecture feature o f PRDT, the same router ean also be applied 

for mesh/torus-based NoCs. Two routing algorithms and wormhole switehing teehnique 

are implemented in this router.

The rest of the thesis is organized as follows. In Chapter 2, the PRDT structure and 

the vector routing algorithm will be introduced in details. In Chapter 3, the design of 

router will be described. In Chapter 4, the experiment results will be provided and

13
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discussed. In Chapter 5, a comparative smdy on Crossbar is presented. Chapter 6 

concludes the thesis.

14
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CHAPTER 2 

PRDT AND ITS ROUTING ALGORITHMS

2.1 Introduction

Among the various intereonnection networks proposed for NoCs (refer to Chapter I), 

the RDT structure [77] has the following advantages: 1) high scalability with its recursive 

structure, 2) small diameter and average distance, 3) architectural reconfigurability with 

its embedded mesh/torus topology, and 4) fault-tolerance capability with a constant node 

degree and robust routing schemes. In [80], it is shown that the RDT structure is feasible 

to be implemented with current VLSI technologies. A a special type of RDT, PRDT is 

studied in [75]. PRDT has a simpler structure but keeps the architecmral feamres of RDT. 

Hence, it is suitable to build on-chip interconnection network for NoCs with several to 

hundreds of processing units (interchangeably with nodes).

In this chapter, the structures of RDT and PRDT will be deseribed in details followed 

by the description o f the routing algorithms designed for PRDT.

2.2 Structure of RDT and PRDT

The RDT strucmre is constructed by recursively overlaying 2-D diagonal meshes 

(tori) [77][78]. The base torus is a two-dimensional square array of nodes, each of which 

is numbered with a two-dimensional number (/,j), 0<z<A-I, 0^< A -I, where N  = nk and 

both n and k are natural numbers. The torus network is formed with four links between
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



node(x, y) and its neighboring four nodes: (mod (x±l, N), y) and (%, mod (y±l, AO). The 

base torus is also called rank-0 torus. On top of rank-0 torus, a new torus-like network 

(rank-1 torus) is formed by adding four links between node (%, y) and nodes (x±n, y^n). 

The direction of the new torus like network is at an angle of 45 degrees to the original 

torus. On rank-1 torus, another torus-like network (rank-2 torus) can be formed by 

adding four links in the same manner. In a more general sense, a rank-(r+I) torus can be 

formed upon rank-r torus. In [80], one type of RDT structure, RDT(2, 2, l)/a, is studied. 

It is demonstrated that the least number of layers needed for laying out RDT(2, 2, l)/a  is 

6, which is feasible for implementation with current VLSI technologies. Hence, RDT(2, 

2, l)/a  offers a practical solution for on-chip interconnection network, especially for 

large-scale NoC systems.

OOr-Ck

o i r - O :

(a)
Figure 2.1: PRDT structures ((a) 8x8, (b) 4x4) [75].

A perfect RDT [75] is an RDT in which every node has links to form all possible 

upper rank tori (i.e. RDT(rz, R, R)), denoted as PRDT(«, R), where n is the cardinal
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number, and R is the maximum rank. Particularly, we consider PRDT(2, 1), in which 

each node has a constant degree of 8 except for PRDT(2, 1) with 4x4 nodes. Figure 2.1(a) 

shows the structure of 8x8 PRDT (2, 1). Figure 2.1(b) shows the structure of 4x4 PRDT 

(2,1), where each node has 5 links, one on the rank-1 torus and the other four on the rank- 

0 torus.

Table 2.1 [75] shows the comparison of the diameter and average distance of PRDT 

(2, 1) , mesh, torus, and hypercube with different network sizes. One can see that PRDT 

(2, 1) has the smallest diameter and average distance among the four different structures 

for most network sizes. With only rank-0 and rank-1 links, the wiring cost of PRDT (2, 1) 

is dramatically reduced compared with RDT (2, 2, l)/a. Hence, PRDT (2, 1) is very 

promising for interconnecting NoC systems with tens to hundreds of nodes.

Table 2.1: Comparison of four types of interconnection networks. (R stands for

PRDT(2,1) M esh Torus Hypercube

Size R AD R AD R AD R AD

4x4 2 1.56 6 2^2 4 2 4 2

8x8 3 228 14 523 8 4 6 3

16x16 5 3.64 30 10.67 16 8 8 4

32x32 9 6.31 62 2123 32 16 10 5

2.3 Routing Algorithm for PRDT

XY routing is implemented in PRDT. Two variations of vector XY routing algorithm 

are used. The first one is normal vector routing [67] and the second is circular coded 

vector routing, which is derived from the binary routing algorithm [12] for PRDT.
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2.3.1 Vector Routing Algorithm (VR)

The basic routing algorithm for PRDT (2, 1) is the vector routing algorithm [67], in 

which a route from a source node to a destination node is represented with a vector. The 

goal of the vector routing algorithm is to represent the vector with an expression that 

combines all unit vectors in the rank-0 and rank-1 torus. Figure 2.2 shows the directions 

of the unit vector for each rank torus, which rotate in clockwise direction at an angle of 

45 degrees as the rank increases.

Yo

Xi -

Xq -

Yi +

Y i-

Xn +

X, +

Yo +

Figure 2.2: Directions for dimensions.

The vector from a source node to a destination node is denoted as A , A = aX^ -h 61^, 

where and are the unit vectors o f the rank-0 torus. A can be derived as 

A = a X^ + + a X̂■, + b^f^, where X^ and are the unit vectors in the rank-1 torus,

and a , , 6,, and are chosen such that the hop number on the route (which is

determined by a, + 6, + üq +b^) is minimized. A can be represented with a combination 

of the unit vectors X^^ , Y  ̂ , ..., on rank-R to rank-0 tori as
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= + + v ^ i;+ .. .  + Vo,i'o+V(„};„ where (Vr*, W

represents the vector on rank-r torus, where R > r > 0 .  And Vrh and Vn, are maximized in 

order to use the upper rank torus as much as possible. Given the vector A = aA,, + 6)^ 

corresponding to the destination address (a, b); the general vector routing algorithm is 

given as follows, where the array vector is used to store the routing vectors for each rank. 

Algorithm Vector Routing for PRDT(n, R):

begin 

loop r = R downto 0 

g = (a+b)/2n 

f  = (b-a)/2n 

Vrh = a -  (n*g - n*f)

Vrv = b -  (n*g + n*f) 

a = g 

b = f  

endloop 

end

The vectors are computed at the source node and encapsulated into the packet. Then 

the packet is routed following the order of rank-i?, rank-(7?-l), ... rank-0 vectors. On the 

same rank torus, the routing is performed according to a predetermined order, for 

example, XY routing [49].

For PRDT (2, 1), only 2 ranks are involved, so the algorithm can be simplified. As 

shown below, the routing vectors are directly stored in 4 variables {vccX q, vccYq, vecX\, 

vecY\) and no iteration is required.
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Vector Routing Algorithm for PRDT(2, 1);

begin

vecXl = (a + b) / 2n 

vecYl = (b -  a) / 2n 

vecXO= a -  (n* vecXl -  n* vecYl) 

vecYO= b -  (n* vecXl + n* vecYl) 

end

At each intermediate node, the routing vectors will be checked in the order of vecX], 

vecY], vecXo, vecYo. The packet will be routed to the direction decided by the first 

variable with non-zero and the variable’s value will be updated accordingly.

2.3.2 Circular Coded Vector Routing (CCVR)

CCVR (unpublished report) is an extension of the binary routing algorithm [12]. The 

X coordinate and the Y coordinate of the nodes are represented with a 2-bit binary shift 

code, as shown below. The binary code for each node is a 4-bit binary number combining 

its X coordinate and Y coordinate. The codes for all the 16 nodes of 4x4 network are 

listed below.

0000 0100 1100 1000 

0001 oloi 1101 1001 

0011 0111  n i l  1011 

0010 0110 1110 1010 

Figure 2.3: Shift code representation

2.3.2.1 Basic functions o f shift-code

At the source node, th e f u n c t io n  is used to determine the direction (c )  of routing. 

Given two m bits shift-code: A and B, where A = a\a2a^...am and B  = 6 , 6 2 6 3  .6 m, the
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function is defined as c = f^{A ,B )  as below, where p  = ^ (< 3 , gives the distance
;=l

between A and B:

If p  = 0 , then c = 0

if a, = 6, = 0, then if  a, = 6, = 1 then
m m

1 i f
; = 1  1=1 

-1  i f  £ 6 ,. < £ a ,.
c = <

(=1 /=!

m m

1 i f  £ 4  < £ a ,
i = l  1 = 1

-1  i/" £ 6 ,  > £ a ,
/=1 i= \

if a ,= 0 ,6 , =1, then if a, =1,6, = 0, then

c = <
1 i f  £ 4  < = £ « ,

/=1 /=1

-1 i f  £ 4  > £ ^ i

c = <

1 = 1  i = l

1 i f  £ 6 ,  > = £ « ,
f = l  t = l

-1  i f  £ 4  < £ « i
1 = 1 1 = 1

Given the source and destination addresses S=SxSy, D=D^Dy, where SJD^ and SfDy 

represent the X  coordinate and Y coordinate o f the source/destination node in m-bit shift 

code, respectively, the direction and distance values on both coordinates, (c^, pf) and (cy, 

Py)̂  can be calculated according to the above formula.

2.3.2.2 Intermediate node function/,

Once the direction values and distance values are calculated, the intermediate node’s 

address MJAy for N x N  PRDT(2, 1), which is used in Circular Coded Vector routing 

algorithm, is calculated as below.

/ \ fm odlA ,,+«,v) when c > 0

w he. c ,< 0

mod(A^ + n, N)  when c, > 0  
m o d {S ^-n ,N ) when c ^<0

Where c^and c represents direction along horizontal(X) and vertical(Y) co-ordinates.
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2.3.2.3 Circular Coded Routing Algorithm

In Circular Coded Vector routing, all the routing steps are calculated and stored in a 

routing vector (vecXo, vecho, vecV,, vecYi) based on the destination node address D  and 

the source node address S. The routing vector is then embedded in the data packet. In the 

transmission of the data packet, the routing direction in each step will be decided 

according to the value in the routing vector. Below lists the pseudo code for the circular 

coded routing algorithm for PRDT(2, 1).

Circular Coded Routing Algorithm for PRDT(2, 1): 

begin

initialize vecAb, vecYo, vecXj, vecY\ to zero

let Mj=Sx,M/=Sy

while (Djf and Dy My) do

calculate (c^, pf)  and (Cy, py) u s in g /  function 

if  ( c x  =  0 and Cy =  0) then 

assign all vectors as zero 

elseif (px + Py< 2) then //do rank 0 routing 

if  (cx ^ ) then vecXo = vecXo + 1 

if (cx<0) then vecAo = vecAo -  1 

if (Cy^) then vecYo= vecYo +  1 

if  (cy<0) then vecFo= vecYo -  1 

find Mx and My u s in g / function 

elseif (px + Py> 2) then //do rank 1 routing 

if  (cx> 0 and Cy> 0) then vecA, = vecA + 1 

if  (cx> 0 and Cy< 0) then vecY] = vecYi -  1 

if  (cx< 0 and Cy> 0) then vecTi = vecY\ + 1 

if (cx< 0 and Cy< 0) then vecA, = vecA, -  1 

find Mx and My u s in g / function 

endif
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endwhile 

end

For PRDT(2, 1), the while loop at most executes twice to get the routing vector 

calculated.

2.4 Fault-Tolerant Routing Algorithm under Single Link/Node Failure

The major cause affecting the reliability of the VLSI global interconnects is the 

shrinking of the feature size [32], which exposes them to different faults of permanent, 

transient or intermittent nature. This degrades NoC’s QoS characteristics [18] or, 

eventually, led to failures of the whole NoC-based system. Traditionally, error detection 

and correction mechanisms are used to protect communication subsystems against the 

effects o f transient malfunctions. Fault-tolerant design of Network-on-chip 

communication architectures requires the addressing of issues pertaining to different 

elements described at different levels of design abstraction -  these may be specific to 

architecture, interconnection, communication and application issues. In [76] various 

fault-tolerant routing schemes applicable to the RDT(2,2,1 )/a-based interconnection 

network is proposed. Though the fault models and fault-tolerant algorithm are designed 

for RDT(2, 2, l)/a  structure, they are applicable for PRDT(2, 1). In the following 

paragraphs fault model and fault tolerant routing algorithm [76] are discussed. Only the 

single fault cases are considered.

2.4.1 Fault Model

The following assumptions are used in [76][79]. 1) Any link or node in the network 

can fail, and the faulty components are unusable; that is, data will not be transmitted over
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a faulty link or routed through a faulty node. 2) The fault model is static, that is, no new 

faults occur during a routing process. 3) Both source and destination nodes (on any rank 

torus) are fault-free. 4) The faults occur independently. 5) If a node fails, the four links 

associated with the node on rank-r torus also fail. 6) Faulty link(s)/node(s) are known to 

all other nodes in the same rank. Two types o f faults were discussed [79], link failure and 

node failure and are shown in the Figure 2.4 and 2.5, where faulty links are marked by X.

- 0 ----- % r*-Q  0 -  - 0 ---------------  o -  -O ----- Q rX -Q----- 0 “

-0  O;---- Q-— Ô - -Ô   Ô p -  -p  p- P P -1.1 rl 1.1

I M M M r  T T M r T
OO O)

Figure 2.4: Single link failure on rank-r torus of the RDT(2, 2, l)/a  structure [76].

- a -6

-Q- -p-

(a) (b)

Figure 2.5: Single node failure on rank-r torus of the RDT(2, 2, l)/a  structure [76].

2.4.2 Fault-Tolerant Routing Algorithm under Single Link/Node Failure

As one can see from Figures 2.4 and 2.5, if  the failure is on the X  (or Y) direction, then 

the packet should be detoured by sending it through the Y (or X) direction first. The 

vector needs to be changed to reflect the detour if  necessary.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Let Xr+ denote the X+ direction on rank-r, X r- denote the X -  direction on rank-r, Yr 

+ denote the Y+ direction on rank-r, and Yr -  denote the Y- direction on rank-r. A 

distributed fault-tolerant floating routing algorithm is listed as follows, where (L, iy) 

represents the vector of a node i on rank-0 torus.

Vector Routing with Single Fault Tolerance Algorithm (FVRSF):

begin

// Step 1 : The source node eomputes the veetors from rank R downto 0 

// Other nodes decrement the veetor value aecordingly 

if i = S & S ^ D  

Call Vector Routing 

r = max {i | (vecXi, vecYi) 7  ̂(0,0)} 

elseif packet is received from X r- 

VecXr= VecXr -  1 

elseif packet is reeeived from Yp- 

vecYr= vecYr -  1 

elseif packet is received from Xr + 

vecX r- vecXr + 1 

elseif packet is received from Yr + 

vecYr= vecYr + 1 

elseif packet is received from Xo -  

vecXo= vecXg- 1 

elseif packet is received from Y q- 

vecYo- vecYo -  1 

elseif packet is received from Xo +
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vecXo= vecXo +1 

elseif packet is received from Yo + 

vecYo= vecYo + 1 

endif

// Step 2: Check the availability o f the link and send the packets accordingly

if  i is on rank-r

if  (vecXr, vecYr) t  (0,0)

if vecXri^ 0 & vecXr = not faulty

send the packet to vecXr direction

elseif vecXr = 0 & vecYr = not faulty

send the packet to vecYr direction

elseif vecXri^ 0 & vecX, = faulty

if  vecYr = 0 

send the packet to Yr+ 

else send the packet to vecYr direction 

endif 

elseif vecYr = faulty 

send the packet to Xr+ 

endif

elseif find p =  r -  1 to 0 and (yecXp, vecYp) 96 (0,0) then 

r = p , goto Step 2 

else quit 

endif

end

In FVRSF, the extra processing in ease o f failure is minimized. Another advantage of 

the FVRSF algorithm is that each router decides the best route based on the fault 

information of its four links on one rank torus. Thus no global fault information needs to
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be maintained at each router. In this way, the overhead introduced is very low. In [76], an 

algorithm is proposed for multiple fault tolerance, but it is not implemented because of 

the hardware complexity involved.
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CHAPTER 3

PRDT ROUTER DESIGN 

In this chapter, the router designed for PRDT-based NoCs will be described in details. 

The data unit format will be introduced first before the router design is diseussed.

3.1 Data Units

In this router design, wormhole switching is implemented. It is assumed that the data 

messages to be sent will be first breaked into packets, which will be further decomposed 

into flits. As shown in Fig. 3.1, each packet is composed of header bits and payload/data 

bits. Header bits store the routing information, which includes the destination node 

address and routing vector (calculated by the routing algorithms). Each node in the 

network is identified by a pair of coordinates (xid, yid) in binary numbers, as shown in 

Figure 2.1b.

Header bits Payload bits

Figure 3.1: Packet format.
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A flit is the basic unit for flow control. It can be as large as a packet or as small as the 

physical channel width (also called phit). In this design, we set the flit size equal to the 

phit size, which is set as 24 bits. Figure 3.2 shows the flit format. The two bits at the front 

o f each flit tell if  the flit is the beginning flit of the paeket (BOP) or the tail flit of the 

packet (EOP).

H eader flits

D ata flits

T a i l  f l i t s

■flit

E B 
O O 
P P

Figure 3.2: Flit format.

The header flit carries the same information of the header bits of a packet. The header 

flit format is shown in Figure 3.3, whieh includes the coordinates of the destination 

node’s address {Xdest, Ydest)-> and the routing vector generated by the routing algorithm 

(refer to Chapter 2.3 for the two routing algorithms). For a A x  APRDT(2, 1) network, 

the destination field needs 21og A bits. The routing vector field stores the values of vecXo, 

vecYo, vecX], vecY\, each with 3 bits.

Xdest Ydest vxo VYO VX1 VY 1

2i°gN  3blts 

Figure 3.3: Header flit format.
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3.2 PRDT Router Design

The router designed is a Verilog HDL soft-core based on a library of parameterizable 

pre-designed blocks. It has up to 9 communication ports compliant with the links in a 

PRDT network, named N, NE, E, SE, S, SW, W, NW and L. The Local (L) is reserved to 

attach an IP, and the other ones (whose names follow the eight directions) are used for 

conneeting other routers in eight directions. Each port has both input channel and output 

channel, e.g. NEin and NEout are the two channels for the port NE. Fig. 3.4 shows the 

nine ports and their directions.

PRDI
Router

Figure 3.4: Communication ports of the router.

Before describing the building blocks of the router it is neeessary to analyze the basie 

functions of the router. Figure 3.5 shows the function flow diagram of the router. The 

main function of the router includes buffering, routing, seheduling, switehing, and flow 

control. When a packet is sent out in flits by a core or IP to a router port, it is stored in a 

buffer temporarily and waited to be forwarded. Buffering can be done at both the input 

and output sides of the router. The header flit is then read and an appropriate routing
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algorithm is applied to decide the output port. Flow eontrol is needed to synchronize the 

data transmission between routers and inside the router. The input channel module is 

designed to implement buffering, routing, and input flow control.

Scheduling is needed to solve the conflict when multiple flits from different input 

ports are destined to the same output port. A scheduler is designed to implement the 

scheduling scheme. A request signal is sent from the input controller to the scheduler, 

whieh does the arbitration and communicate with the requested output channel and sends 

the grant back to input controller.

After scheduling, then the flits are sent from the input ports to the output ports 

through a switehing matrix. To implement switching, a crossbar switch is designed, 

which receives the control signal (Sel) from the scheduler.

At the output port, the slits are sent out to the output channel. An output channel 

module is designed to implement the flow control. It also notifies the scheduler whenever 

the output channel is empty or occupied with output grant (OG).
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B u fien n g  and input How control

G rant

Input contro llers
R equest

R outing

S w itching 4 Sel.. Scheduling

O utput flow  control and contro llers

Figure 3.5: Function flow diagram of router.

3.3 Building Blocks of Router

The building blocks of the router include input channel module (ICM), output 

channel module (OCM), crossbar switch, and Scheduler. Fig. 3.6 shows the block 

diagram of the PRDT router, which includes up to 9 pairs of Input-Output controllers. 

Each building block is described in the following subsections.
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Figure 3.6: Block diagram of PRDT router.

3.3.1 Input Channel Module (ICM)

The ICM performs the following functions:

(i) Buffers the incoming flits into the FIFO buffer and analyzes the flit at the head of 

the buffer.

(ii) Performs the routing algorithm.

(iii) Generates a request (req) to the scheduler for the appropriate output channel.

The ICM is shown in Figure 3.7. It is composed of three architectural blocks named

Input Flow Controller (IFC), FIFO, and Input Controller (IC).

Packetin
val
ret

read

write

Packet to 
crossbar

full empty
IFC

FIFO

Figure 3.7: Input controller.
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3.3.1.1 Input Flow Controller (IFC)

The IFC has two inputs (val, full) and two outputs (ret, write). The “full” signal 

comes from the FIFO and it toggles to one or zero when FIFO is full or not. The “val” 

signal, generated from the OFC of a requesting neighbor router, requests the permission 

to send the flit. The “write” signal sent to FIFO tells to write the data into the FIFO or 

not. The meaning o f the “ret” signal varies with the flow control approach used. For the 

handshake one, it means that an acknowledgment for a flit received on the channel. For 

the credit-based approach, it means that a position was freed on the input buffer (i.e., the 

FIFO) of the receiver, and a credit is being returned to the sender. The sender can just 

send a Hit if  the receiver’s buffer is not full. The state of the buffer is monitored by using 

an up-down counter that is initialized at power-up with a number of credits equaling the 

receiver buffer depth. The counter is decremented when a flit is received and incremented 

when a credit is returned. If the credit counter equals 0, it means that the receiver’s buffer 

is full.

3.3.1.2 FIFO

FIFO is responsible to store flits of incoming packets before they are forwarded to an 

output channel. FIFO has three inputs (Packetin, write, read) and three outputs (dataout, 

full, empty). The “write” signal is from the IFC and the “read” signal is from IC to write 

the data and to read from FIFO, respectively. The “full” and “empty” signals basically 

inform the status of the buffer to IFC and IC.

3.3.1.3 Input Controller (IC)

The IC block performs the routing function. It detects the header flit received from 

FIFO, analyses the address field, runs the routing algorithm to select an output channel.
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Two types of routing algorithms are implemented: the vector XY routing and the circular 

coded vector routing. In both the algorithms, the routing vector (vecXi, vecY], vecX^, 

vecYo) is generated. As discussed in Chapter 2, the direction of the output channel is 

decided by the first variable with non-zero value and the variable’s value will be updated 

accordingly. Figure 3.8 illustrates the output channel directions associated with the rank’s 

directions. For example, if  the routing vector has vecX\=2 and vecYo^-l, it means the 

packet should be first routed in the SE direction for two steps and then routed in the N 

direction for one step. After the direction is selected, the IC emits a request to the 

scheduler for the destined output channel. Notice that the request from the IC of the ICM 

of one direction can only target to one of the other eight directions. For instance, i.e., the 

L channel cannot send a request to itself. Once it receives the grant from the scheduler, 

the header flit is updated with the new routing vector accordingly (vecX\=l for the 

previous example) and sent to the output channel through a crossbar switch.

Yo - (N)

Xi - (NW)

Xo - (W)

(Sx.Sy),/

Yi + (SW )

Yi - (NE)

Xo +(E)

X, + (SE)

Yo + (S)

Figure 3.8: Directions of the output channels.
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It is worthy to point out that only at the ICM for the local input port (the port that is 

connected to the core or IP), the routing algorithm is implemented and the routing vector 

is calculated. For other ports, the routing vector is just updated and stored back to the 

header flit.

There are three inputs (din, grant, empty) and three outputs (Packet to crossbar, req, 

read) in 1C block. The “read” signal indicates FIFO data read is about to start. The flit is 

read from FIFO through the “din” input. Other signals are self-explainable.

3.3.2 Output Channel Module (OCM)

This module works independently of input controller or scheduler for the same router. 

As it works independently, the OG signal for the scheduler is readily available, even if 

the 1C is not requesting for that output, thereby making the Scheduler more efficient and 

faster.

The output channel module is shown in Figure 3.9. It is composed of two 

architectural blocks named Output Flow Controller (OFC), and Output Controller (OC).

Packet from 
crossbar

Packetouten
OG

rettoOC ret
valfree

OFC

OC

Figure 3.9: Output channel module.

3.3.2.1 Output Flow Control (OFC):

The OFC block have two inputs (free, ret) and two outputs (rettoOC, val). OFC 

checks whether the OC is busy or not and sends a “val” (validate) signal to the IFC of the
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requested neighbor router ports. After receiving the “val” signal, the IFC sends an 

appropriate ret (return) signal as described earlier. The “ret” signal is just passed onto the 

OC through the “rettoOC” output.

3.3.2.2 Output Controller (OC):

The OC block has two inputs (Packetfromcrossbar, rettoOC) and four outputs (OG, 

en, free, Packetout). OC updates its status (occupied or free) to the scheduler with the 

appropriate grant signal (OG). Once it gets the confirmation (“ret” signal) from the 

requested neighbor router, the packet is passed to “Packetout” output to the next router, 

en signal is given to the scheduler and used to control the input to encoder ctrl, which in 

turn control the mux-based crosspoint array, en signal is set when the eop reaches OC.

3.3.3 Crossbar Switch

System designers can construct non-blocking crossbar switch matrices by using 

crosspoint switching fabric integrated circuits, mostly built using advanced very large 

scale integration (VLSI) technology. Closing the switch at the appropriate crosspoint in 

the matrix creates a connection between an input and an output. An A x M  crossbar 

consists of N  parallel horizontal wires (input) and M  parallel vertical wires (output). Each 

horizontal wire crosses every vertical wire and a crossing switch may be placed at the 

cross-point. A crossing switch can be programmed to connect or disconnect the 

orthogonal wires at the cross-point. A crossbar is full if  there is a crossing switch at each 

crosspoint; otherwise it is partial. Figure 3.10 shows an example of a partial crossbar 

where a diamond shape at a cross-point indicates a crossing switch. A full N x  M crossbar 

can route any set o f k  input signals to any set of k  outputs in any permutation
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provided Â: < N  < M  [17] .In  particular, a full A x  A  crossbar can do all permutations of 

A  inputs/outputs.

Crossbars can be fabricated by using pass transistors or transmission gates as crossing 

switches with all horizontal wires in one metal layer and vertical wires in another. 

However, when A  is large, a lull A x  A  crossbar is too expensive in area cost because the 

silicon area cost of switch modules is mainly attributed by the transistors used for 

switches and controls o f the switches. Therefore, the study on crossbar design for 

programmable on-chip networks focuses on partial crossbars satisfying certain routing 

specifications, for example, Lemieux and Lewis [44] gives a several highly routable 

sparse crossbar designs.

For the XY routing, only the 72 out of 81 connections represented by circles are 

allowed (Figure 3.10). For instance, it is forbidden for an input channel of a given 

communication port to request the output channel o f the same port. To allow fault- 

tolerant routing, it is allowable to have the input channels on the Y direction (Nin and 

Sin) to request the output channels on the X  direction (Eout and Wout). Hence, the 

building cost of the crossbar switch is expected to be reduced.

For verilog soft-core implementation, multiplexers and splitters are used to 

implement the crossbar switch. Nine 8-to-l multiplexers were used and is shown in the 

Figure 3.11. Shaded line represents a splitter. The control signals are provided by the 

scheduler.
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3.3.4 Parameterized Round Robin Arbiter based Scheduler (PRRAS)

As a basic building block of a router, a fast and fair scheduler is critical to the 

efficiency of the router. In the ParlS router design [82], a distributed scheduling scheme 

is used, where an arbiter is located in each ICM and OCM. However, the distributed 

approach is not scalable with the router size increasing. Another problem is that the 

wiring cost (as each pair of ICM and OCM needs a wire for request signal and a wire for 

grant signal) and the delay involved in scheduling is not desirable. To achieve better 

scalability and reduce the wire cost and timing delay, the PRRAS adopts a centralized 

structure.

The major component of PRRAS is the Parallel Round Robin Arbiter (PRRA) 

[84][85], which is associated with one output port and responsible for arbitrating the 

requests to the output port from up to N  input ports. The PRRA design is based on a 

simple binary tree structure, which makes it scalable for large N. In [84], it showed that 

the PRRA design achieves significant improvement in area and timing compared with 

other round-robin arbiter designs, such as the switch arbiter (SA) and the programmable 

priority encoder (PPE). In the next section, we will introduce the structure of PRRAS 

followed by the design of each component.

3.4 Design o f PRRAS

As discussed in Seetions 3.2 and 3.3, the PRRAS receives the requests from input 

ports and the OG status from output ports, and decides a matching between input ports 

and output ports. The grant signals will be sent back to the input ports. The PRRAS 

design is parameterized with the router size. Fig. 3.12 shows basic block diagram of
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PRRAS for an NxN  router. The PRRAS has N  request (R) inputs, each one from an input 

port, and N  OG and en inputs, each from an output port, N  grant (G) outputs, each to an 

input port, and N  control (C) outputs to the crossbar switch.

Figure 3.12 shows a block diagram of PRRAS and Figure 3.13 shows the complete 

design o f the PRRAS, which consists of N  PRRAs, N  decoders, and N  OR gates. A 

decoder is used to decode the request signal from an input port which gives the index of 

the output port that the input port requests to. The inputs of each PRRA are provided by 

the outputs o f the decoders in the following way; the first input comes from the first 

decoder, the second input comes from the second decoder, and so on. It is important to 

notice that each PRRA may receive multiple simultaneous requests.

Sinee each input port only requests one output port, the grant to each input port can 

only come from one output. Hence, an OR gate is used to generate the grant signal to an 

input port. Similarly, the inputs to each OR gate are provided by the outputs o f PRRAs as 

follows: the first input to all the OR gates comes from the first RRA, the second input to 

all the OR comes from the second RRA, and so on.

C t n  C t ]  C t 2  C t n _ ]

R€-
R|-
Rj-

R w

Go
G ,

G2

JN-1 < -

PRRAS

igure 3.12: Block diagram of PRRAS.
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Figure 3.13: Complete Design of PRRAS.

In the following, the design o f the decoder and PRRA will be discussed.

3.4.1 Decoder

The input to each decoder is provided by the request signal from each input. As 

discussed before, the request signal is obtained from the routing vector. For a NxN  router, 

the request signal has log 2# bits.

A normal m-io-2^ decoder may be used in the PRRAS design. Since the size o f the 

router N  may not equal to 2"*, to save the wire cost, a log 2N-io-N decoder is designed 

here. The decoder is parameterized with A as a parameter.
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3.4.2 PRRA

PRRAS has two input signals to each arbiter viz. OG and en. The en and 0 0  is 

generated from the output controller of the router. Only if the output controller is free, 

OG signal is sent and the arbitration is done.

There is an encoder ctrl in PRRAS, which is not shown in the figure 3.13, which 

provides the control signals for mux-based cross-point array through Ct, depending on 

the grants generated by the arbiters. The input to the encoder ctrl depends on the en 

signal generated by the OCM. en signal is used to check the eop o f the packet, once the 

eop reaches the OCM, en signal will be set and then the grants from the arbiters will 

control the encoder Ctrl accordingly. Thereby computation time and delay is reduced.

The arbiter design follows the PRRA design [84], which is reviewed as follows. The 

function of a PRRA is: Given binary inputs Rj and H„ 0<i< N-l ,  where /?/=l indicates a 

request from input i and //,=1 indicates the selection starts from compute binary grant

outputs Gi, 0<i< A-1. It is assumed that there is at most one //,=1.

The following guidelines are used in PRRA design:

(1) Use a tree to carry out the processing steps, such that the state information is 

collected in the up-trace (i.e. from leaves to the root), and the search is performed in the 

down trace;

(2) Use combinational circuits as much as possible to fasten the design and the 

circuits must be simplified as much as possible; and

(3) Use flip-flops to keep the current circular pointer information (which can 

initialized as H q=1), and use the tree and grant signals to update flip-flops.
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Figure 3.14: Structure of PRRA.

The basic idea of the PRRA design is to directly implement the PRRA-tree using 

hardware. Figure 3.14 shows the structure of a PRRA with 8 requests and its inputs and 

outputs. The RRA designed consists of three main components: 1). /-node, 2). r-node, 3). 

/-node. In the figure, there is no memory at the r-node and /-node to store the state 

information. Memories are only needed for storing the circular pointer at the /-node level, 

/-nodes are connected as a ring.

3.4.2.1 /-node

An /-node is implemented as combinational circuit. It has four inputs from its two 

child nodes (which are either /-nodes or /-nodes): ^ ja n d  5 “ from its left child, and

S]f and s i  from its right child. It provides two outputs 5*’ and to its parent node. If an /- 

node is the left (respectively, right) child of its parent node, then its S' and 5^ are 

identified as 5^ and S l  (5"]̂  and6"j|, respectively) of its parent respectively. An /-node 

has one input G from its parent node. If this /-node is the left (resp. right) child node o f its
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parent node, this input is the Gl (resp., Gr) output o f its parent node. It has two outputs 

Gl and Gr to its child nodes, which in turn are G inputs of its left and right child node 

respectively. The input and output relations of an /-node are specified by the following 

Boolean functions.

3.4.2.2 r-node

The implementation of r-node is same as the /-node except its one input (G) is fed 

from OG of OCM and no S \  outputs. The Boolean functions are shown below:

3.4.2.3 /-node

Memories are only needed for storing the circular pointer at the /-node level. The 

entire processing is partitioned into two phases, up-trace for generating S \  S^, and down- 

trace for searching the desired /-node and generating grant signals. The state information 

S'', 5  ̂ for all nodes is computed on-the fly recursively from /-nodes towards the r-node. 

Then, the partial grants (Gr and Gr signals) are generated from the r-node towards /- 

nodes in parallel by the same circuits. The circular pointer is updated according to the 

final grant after an arbitration cycle. Figure 3.15 shows how /-nodes are connected. Each 

dashed rectangle represents an /-node, which mainly consists of an RS flip-flop Head.
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Figure 3.15: Structure of /-node.

3.4.2.3 PRRA Implementation

Rather than using a recursive approach as reported in [84], in this design, a 

parameterized PRRA is implemented. The PRRA design has three types o f nodes, /-node, 

r-node, and /-node. The /-node design follows the design shown in Fig. 3.15. The r-node 

can be implemented using /-node by assigning the input G=l. For an A-input PRRA, N-l  

/-nodes will be implemented. Actually as discussed before, the /-node design will not 

change with N. By this way, certain amount of area and timing can be saved compared 

with the previous PRRA design.
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CHAPTER 4

OPTIMIZATION AND SIMULATION RESULTS 

In this chapter, the simulation results of the router design are reported and discussed. 

The optimization of the scheduler is also discussed.

As specified in Chapter 3, the major components of the router are input channel 

module (ICM), output channel module (OCM) crossbar switch, and the scheduler. Two 

routing algorithms, the Vector Routing (VR) algorithm and the Circular Coded Vector 

Routing (CCVR) algorithm, are implemented in the ICM. Both are designed with fault 

tolerance of single fault. For each component, Verilog HDL code [8] [31] is generated 

and synthesized on Synopsys’s design analyzer [68] using TSMC O.I8pm technology. 

Performance evaluation of each component and the whole router in terms of timing, area, 

and power consumption is conducted.

4 .1 Results of components of the router

4 .1.1 Input Channel Module

The ICM includes IC, FIFO and IFC. The FIFO is designed to contain 4 flits, which 

can be adjusted according to the real setting. Two types of input controllers (ICs) are 

designed: IC for the local port (IC l), the port that connects the local node to the router, 

and IC at other ports (ICo). The ICl performs one o f the routing algorithms, whereas ICo 

simply does routing vector checking and update. Table 4.1 lists the area (in terms of
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number of 2-input NAND gates), the timing delay, and power (both dynamic power and 

leakage power) of the ICl for two routing algorithms. The ICl using CCVR has larger 

area and consumes more power as since the computation in the CCVR algorithm involves 

more variables (implemented as registers) than the other one. However, ICl using CCVR 

has less timing delay.

Table 4.1 : Results o f area, timing, and power consum )tion of two types o f IClS.
ICl Using 

Vector Routing 
(Fault Tolerance)

ICl Using Circular 
Coded Vector Routing 

(Fault Tolerance)
Total Area (2-input NAND gate) 242.64 316.215

POWER Dynamic Power 
(mW)

7.0567 I I . 1655

Leakage Power 
(nW)

27.3093 3T3723

Timing Delay (ns) 11.73 A23

Table 4.2: Results of area, timing and power consumption of FIFO and IFC
FIFO IFC

Total Area (2-input NAND gate) 274.0383 3.043
POWER Dynamic Power 

(mW)
4.8497 7R3008

Leakage Power 
(nW)

54.0854 71.5297

Timing Delay (ns) Z74 0.40

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.3: Results of area, timing, and power consumption o f ICMs with ICl.
ICM Using Vector 

Touting 
(Fault Tolerance)

ICM Using Circular 
Coded Vector Routing 

(Fault Tolerance)
Total Area (2-input NAND gate) 511.012 584.586
POWER Dynamic Power 

(mW)
6.0938 &5496

Leakage Power 
(nW)

81.4663 85^293

Timing Delay (ns) 12.27 8.10

Table 4.2 lists the area, timing delay, and power o f the FIFO and IFC, which do not 

have difference for two routing algorithms. Table 4.3 shows the results for ICMs for local 

ports, which are consistent with the results in Table 4.2, i.e., the ICM using CCVR has 

higher area cost but lower timing delay than the ICM using VR.

Input C han ne l  (L) Module

58%

35%

O R o u tin g  a lg o r i th m  B FIFO □  iC  lo g ic  a n d  IFC

Figure 4.1: Area distribution of components in ICM l.

The pie chart (figure 4.1) shows the area distribution of ICM. It is evident that FIFO 

takes up a lot of space (58%) and it is unavoidable.42% of the ICM is occupied by the 

IC l, in which 35% is occupied by routing algorithm module.
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For the ICM with ICq, considerable amount o f area and timing can be saved due to 

the simple function performed at the ICo- The results of the ICMs with ICq are shown in 

the Table 4.4. Compared with the ICM with ICq, 35% more saving is achieved in area 

than the ICM with IC l. Since the operation of two routing algorithm do not differ much 

for ICo, the results for the two ICMs are very close.

Table 4.4: Results of area, timing, and power consumption of ICMs with ICq.
ICM Using Vector 

Routing 
(Fault Tolerance)

ICM Using Circular 
Coded Vector Routing 

(Fault Tolerance)
Total Area (2-input NAND 

gate)
339.9488 339T928

POWER Dynamic Power 
(mW)

5.669 5.6829

Leakage Power 
(nW)

60.0262 60.5103

Timing Delay (ns) 2.74 2.74

4.1.2 Output Channel Module

The output channel module performs very little function as explained in Chapter 3 

and the OCM design is independent of the routing algorithm. The results of the OCM are 

shown in Table 4.5.

Tal )le 4.5: Results of area, timing, and power consumption of OCM
OCM

Total Area (2-input NAND gate) 37.089
Power Dynamic Power (mW) 1.0456

Leakage Power (nW) 7.5771
Timing Delay (fs) 0J3
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4.1.3 Scheduler

PRRA is the main component of the Parameterized Round Robin Arbiter Based 

Scheduler (PRRAS) design. The area and timing results of the PRRA design will 

dominate the results of the scheduler design. In this section, simulation results of new 

PRRA design and previous PRRA design [84] [85] are analyzed using Synopsys’ design 

analyzer.

Both the previous PRRA design and the new PRRA design are modeled using verilog 

HDL codes and synthesized on Synopsys using TSMC 0.18///W technology. Both designs 

were optimized under the same operating conditions and the tool is directed to optimize 

area cost o f each design. Table 4.6 and Table 4.7 show the area (in terms of number of 2- 

input NAND gates) and timing results (ns) of both PRRA design for arbiter input size N  

= 4, 8, 16. Although the results depend on the standard cell library used, they represent 

the relative performance of these designs.

Table 4.6: Area results (in number sq microns) of two PRRA designs.
Arbiter Size New PRRA Design Previous PRRA Design

4 558J2 604.80

8 1365.12 1411.20

16 2977.92 3024.00

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.7: Timing resultsÇn^) of two PRRA designs
Arbiter Size New PRRA Design Previous PRRA Design

4 0.92 0.91

8 1.45 1.44

16 1.97 1.96

It is clear from the above tables that the new PRRA design reduces a considerable 

amount of area compared with the previous PRRA design. The area improvement o f the 

new PRRA design over the previous PRRA design is 7.6% when A=4 and the 

improvement effect is less significant when N  is increasing. Timing result shows that the 

new PRRA design increases the timing (0.0IMS') compared with the previous design, 

which is negligible. Similarly power consumptions between the two designs are the same. 

Hence, the new PRRA design is adopted in the PRRAS design.

In the PRRAS design, the number of PRRAs is determined by the number of inputs to 

the router (N). And the number of inputs to a PRRA must be a 2 ’s power which is equal 

or greater than N. For the PRDT router design, the router has 9 inputs, hence, there are 9 

16-input PRRAs in the PRRAS. In this case, 7 inputs in the each arbiter are wasted.

In order to solve the problem, the scheduler is optimized in the following way. 

According to the XY routing principle, an input port will not request to the output port on 

the same direction of itself. For example, the NE input port will not request for the NE 

output port. Therefore, each input port will request the remaining 8 output ports in the 

router. The PRRA arbiter associated with eaeh output port accepts the 8 inputs which 

represent the requests from the possible 8 input ports. As such, the scheduler is reduced 

to have 9 8-input PRRAs. Table 4.8 shows the results of the non-optimized seheduler and
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optimized scheduler. One can see that the area and power o f the optimized scheduler is 

reduced by 50%.

Table 4.8: Results of area, timing, and power consumption of PRRAS with 9 inputs
Non-optimized Optimized

Total Area (2-input NAND gate) 1638.654 1151.50

Power Dynamic Power (m W) 23.4471 22.3977
Leakage Power (nW) 152.3767 82.3323

Timing Delay (%s) 4.81 4.23

4.2 Results of Complete Router

The PRDT router with 9 input/output ports is built using all the components described 

earlier. The area distribution of the router using the non-optimized designs is shown in 

Fig. 4.2. The crossbar switch and the scheduler are the two components that occupy the 

most part of the area of the router. The optimization of the scheduler (as described in 

Section 4.1.3) and the crossbar switch (will be described in Chapter 5) has been 

conducted. Table 4.9 summarizes the results o f the router design based on the vector 

routing (VR) algorithm and the router design based on the eircular coded vector routing 

algorithm (CCVR) with and without optimization. Fig. 4.3 and Fig. 4.4 illustrate the 

results in bar graph. . It is clear that the router design using CCVR consumes a little more 

area (around 1%) but has significant less timing delay (around 27%) than the router 

design using VR. The power results of the two designs are very close.
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Area distribution in router

11% 7%

25% 34%

23%

I ICM local port ■ ICMo x 8 □ Scheduler □ Crossbar ■ OCM x 9 

Figure 4.2: Area Distribution o f All Components of the Router.

Table 4.9: Results of area, timing, and power consumption of two routers with and

Non- 
Optimized 

Router Using 
VR

Non- 
Optimized 

Router Using 
CCVR

Optimized 
Router Using 

VR

Optimized 
Router Using 

CCVR

Area (2-input 
NAND gates)

7058.07 7131.82 6192.84 6266.415

Dynamic Power 
(mW)

67.2197 67.0591 6L3938 62.1609

Leakage Power 
(nW)

802.5729 807.1178 754.9756 759.0386

Timing Delay
(»j)

25J^ 18.41 12.27 8T0
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4.3 Report on PRDT Network

The optimized router design is used to build the PRDT network. The PRDT networks 

with 4x4 routers and 8x8 routers have been built. Both designs have been generated in
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verilog HDL code and synthesized on Synopsys’s design analyzer using TSMC 0.18pm 

technology. The synthesis of 8x8 PRDT network design is not successful due to the limit 

of resources available in the design library. In the following, we report the results of 4x4 

PRDT network.

As shown in Fig. 2.1(b), 4x4 PRDT(2, 1) is a special network that does not need all 

the nine ports. Three variations of the network design are considered, 1) using 6-port 

routers instead of 9-port routers, 2) using 9-port routers but with necessary connections 

(as shown in Fig. 2.1 (b)), 3) using 9-port routers and with complete connections (as 

shown in Fig. 2.1 (a)). Table 4.10 and Table 4.11 list the area, power, and timing results 

for the 4x4 PRDT networks constructed with the routers using VR algorithm and the 

routers using CCVR algorithm, respectively. In both versions, compared with the design 

with 9-port routers with minimum connections, the design with 6-port routers 

significantly reduces the area consumption (around 38%), timing delay (around 8%), and 

power consumption (around 31% in dynamic power). There is not much difference 

between the results of the design using 9-port routers with minimum connections and the 

design using 9-port routers with complete connections.

Table 4.10: Results o f 4x4 PRD " Network Using Routers with CCVR Algorithm.
Area (2 i/p 

NAND gates)
Timing Delay

(»j)
Dynamic 

Power (mW)
Leakage 

Power (uW)
6-port routers 60334.8 15.64 357.2202 7.7023
9-port routers 

(minimum 
connections)

98398.9867 16.94 518.4472 11.6425

9-port routers 
(complete 

connections)
98916.6733 16.94 518.5639 11.6425
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Table 4.11: Results of 4x4 PRDT Network Using Routers with VR Algorithm.
Area (2 i/p 
nand gates)

Timing Delay
(%j)

Dynamic 
Power (mlV)

Leakage 
Power (u W)

6-port routers 59115.42 2T36 357.2134 7.6090
9 port routers 

(minimum 
connections)

97179.3867 23.40 518.4091 11.5491

9 port routers 
(completes) 97697.08 23.40 518.5259 11.5491

Comparing the corresponding results of Table 4.10 and Table 4.11, the design using 

CCVR-based routers has a little worse area result but better timing result than the design 

using VR-based routers, which is consistent with the trend shown in Table 4.9.

4.4 Timing Analysis of the 4x4 PRDT network:

The computational time of the network mainly depend on th, the time for header to 

reach the destination.

th -  tr * number of hops

where, tr = header flit propagation time per hop.

From the simulation results tr and th is calculated. Fig. 4.5 shows a graph comparing th 

o f the 4 x4 PRDT network build with CCVR-based router and VR-based router (keeping 

the source node = (0,0)). It is evident from the graph max(th) is 12 clock cycles for VR- 

based network and 9 clock cycles for CCVR based network, tr is found out from the 

simulation.

M ax (no. o f  hops for V R  based 4 x4  PRDT network) =  3.

Max (no. of hops for CCVR based 4x4 PRDT network) = 2.
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From the results it is proved that in PRDT 4x4 network, Circular Coded Vector 

routing algorithm takes the minimum number of hops and hence the shortest path 

compared to Vector Routing algorithm.

■  CCVR

■  VR

14

12

>  10 C

1 " 
u

2

6 -

O O O p
o  k) CO o K )  CO

Destination

j v j  N 5 ISO K )  CO CO CO p
C l  - k  f o  CO O  N J  CO

Figure 4.5: Calcualtion of th w.r.t (0,0) as source.
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CHAPTER 5

STUDY OF CROSSBAR SWITCH DESIGN 

From Figure 4.2, it is evident that the crossbar switch design takes above 25% area of 

the router. Lots of research [43] [17] is going in this field to improve the design of the 

crossbar. There are different ways to design a crossbar, and the tradeoffs involved in 

those designs are explained in [56]. This chapter gives a comparative study of the 

crossbar switch designs based on crosspoints and multiplexers.

5.1 Overview of Two Types of Crossbar Switch Design

There are two basic methods for implementing crossbar switch in hardware. Some 

customized ASICs and standard products rely on an A-way multiplexer at each output 

port to select data input from the input ports. This method is referred as MUX-based 

design in the following text. Many semiconductor vendors have built crossbar switch 

products based on this simple methodology. Unfortunately, this type of design is limited 

in terms of architectural flexibility and performance, and is difficult to be implemented 

efficiently at transistor level.

The second method implements a cross-point array that has a crossing switch at each 

intersection of the input wire and the output wire. This method is referred as crosspoint-
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based This method offers greater flexibility than the other method, making it feasible to 

build larger size crossbar switches economically using modem VLSI technology.

For both methods, both the verilog HDL code and the manual design using MAGIC 

layout editor are conducted and compared. Functionally a crosspoint-switch can come in 

two versions: bit or bus. The bit-version switch can only switch one bit from an input to 

an output while the bus-version can switch the multiple data bits (decided by the bus 

bitwidth) from an input to an output. The bus-version switch design is coded in verilog 

HDL. The bit-version switch design is carried out using MAGIC layout editor.

5.2 Designs in Verilog Code

The MUX-based design is explained in the chapter three. Generally, the number of 

inputs to a multiplexer is equal to the number of inputs of the crossbar switch. For 9-port 

PRDT router, the crossbar switch should have 9 inputs and 9 outputs. Hence it requires 9 

9-input multiplexers. However, using the XY routing principle as explained in Chapter 3, 

each output only needs consider 8 inputs. By this way, 9 8-input multiplexers are needed 

in this design. The MUX-based design is implemented in verilog HDL and synthesized 

using Synopsys’ design analyzer. Table 5.1 lists the design with and with this 

optimization. The optimized MUX-based design considerably reduces the area, timing 

delay, and power consumption compared with the non-optimized design.
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Table 5.1: Results of MUX-based 9x9 crossbar switch design.
Non-

optimized
Optimized

Total An 
NAN

:a (2-input 
D gate)

1789.704 1631.734

Power Dynamic 
Power (mW)

2L9764 19.7669

Leakage 
Power (nW)

45.3580 42.7494

Timing Delay (ns) 1.86 1.64

The crosspoint-based design is also implemented using verilog HDL code, 

synthesized. Table 5.2 shows the area and timing results of 4x4 crosspoint-based design 

and 4x4 MUX-based design. The crosspoint-based design is much more expensive than 

the MUX-based design in terms of area cost. This is due to the fact that the optimization 

provided by the design tool is not sufficient for the design written in behavior description 

code. Hence, it is necessary to conduct the comparison of the manual design using 

MAGIC layout editor.

Table 5.2: Comparison of MUX-based and erosspoint-based crossbar designs (both in

4x4 Mux-based design 4x4 Switch-based design

Area (2 ip nand gates) 487.648 1070.868

Data Arrival Time(ns) 1.92 2.10

5.3 D esign  using Layout Editor

On MAGIC layout editor, the bit-version switch design is conducted. For NxN 

crossbar switch, the MUX-based design uses N  output multiplexers and N  splitters as
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shown in Fig. 3.11. Transmission gates are used to build the multiplexer [58].Fig. 5.1 

shows a two-input multiplexer design.

i;
DO

—  Y

D1 —

Figure 5.1: 2-Input multiplexer based on transmission gates.

For comparative study, transmission gates are also used to build crosspoint-based 

crossbar switch [36].Fig. 5.2 shows the crossing switch designed with transmission gate 

and Fig. 5.3 shows how they are connected in a 4x4 crossbar switch.

I n p u t O u t p u t

Ctr l

Figure 5.2: Crossing switch designed with transmission gate.
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Figure 5.3: 4x4 Crossbar switch using crossing switches.

Both bit-version MUX-based and crosspoint-based designs are laid out using MAGIC 

layout editor for different crossbar switch sizes (2x2, 4x4, and 8x8 respectively). Area is 

directly measured from the layout by counting the number of girds. Power and timing 

analysis is done using Hspice. TSMC 0.18//W technology is used for Hspice simulation 

and the waveforms are viewed using Synopsys A waves. Table 5.3 lists the results of area, 

timing, power consumption, and number of transistors used vs. crossbar switch size of 

two types of bit-version switch design. Figures 5.4-5.7 illustrate these results.

From Table 5.3 and the figures, one can see that the crosspoint-based design requires 

more area when N is 2 or 4 while less area when N is 8 than the MUX-based design. This 

is not consistent with the trend shown in the no. of transistors needed in these designs 

since the wiring cost counts a significant amount in the area result. The timing result and 

power result of the MUX-based design are worse than the crosspoint-based design.
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Table 5.3: Report on crossbar (using layoui
Crossbar Area (sq. 

microns)
Propagation 
Delay (ns)

Total
power
(/jfn

No. of 
Transistors

Crosspoint- 
based (2x2)

55.2825 0.01 1^3 16

Crosspoint- 
based (4x4)

215.9136 0.01 6.14 64

Crosspoint- 
based (8x8)

817.5006 0.03 24.9 256

MUX- 
based (2x2)

34.5384 0.01 1.53 12

MUX- 
based (4x4)

165.24 0.025 12.2 72

MUX- 
based (8x8)

860.8761 0.05 73.4 336

I

(A
C 1000
2
0
1

800 ÉMSwfS"
£ 600 -
j 400

1
200

0

ü Switch based design 
■ Mux based design

2x2 4x4
Size of the Network

8x8

Figure 5.4: Area vs. Crossbar switch size.
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Figure 5.5: Timing delay vs. Crossbar switch size.
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Figure 5.6: Power consumption vs. Crossbar switch size.
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Figure 5.7: Transistor count vs. Crossbar switch size.

Through the comparison, the following summary is given for bit-version NxN  

crossbar switch design:

1. Crosspoint-based design consumes less area than the MUX-based design.

2. Crosspoint-based design is symmetrical while the MUX-based design is not.

3. The wiring in MUX-based design is more complex than the erosspoint-based 

design.

4. Number of crossing switches in crosspoint-based design: N^.

5. Number of multiplexers in MUX-based design: TV.

6. The architecture of the crossing switch does not change with different switch size, 

whereas the architecture of the multiplxer changes with different switch size. For 

example, the 2x2 MUX uses 6 gates, the 4X4 MUX uses 1 Sgates (equivalent to 3 

2x2 MUX).

7. Number of transistors of crosspoint-based design: 4 * TV̂
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8. Number of transistors of MUX-based design: N  * (n * (TV-1)), where n is the 

number of transistors require to build a 2x2 MUX (« = 6 in the design reported).

Hence, we expect that for larger TV, the MUX-based design will consume more area 

and no. o f transistors than the crosspont-based design.

Note that, the above results are for bit-version switch design only. From Table 5.3, an 

estimation of bit-version switch design can be derived. For a 24-bit crossbar switch, 

roughly 1536 bit-based design is calculated. For crosspoint-based design, the estimation 

is given as: area consumption = 200002.8 sq. microns, power consumption = 597 ^W , 

and no. o f transistors = 9437184. For MUX-based design, it is estimated that area 

consumption = 246787.8 sq. micron (which is almost equal to area report generated using 

Synopsys design analyzer, see Table 5.1), no. of transistors = 14146560.

Though the crosspoint-based design is promising in terms of area, timing, and power 

consumption, it is difficult to integrate the design into the router design. Hence, in 

Chapter 4, we employ the MUX-based crossbar switch design.
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CHAPTER 6 

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, a new router design has been conducted for the PRDT-based NoCs. The 

PRDT router designed is based on parameterized and synthesizable components coded in 

verilog HDL. These components include input controller module, output controller 

module, crossbar switch, and the scheduler. In the input controller module, two routing 

algorithms with fault tolerance capability are implemented, i.e., the vector routing 

algorithm and the circular coded vector routing algorithm. The synthesized results for all 

the components have been reported.

As the two major components o f the router, the scheduler design and the crossbar 

switch design have been optimized. The design of the PRRAS uses the new PRRA design 

which improves the previous PRRA design. For crossbar switch, two design methods 

have been studied and compared in verilog HDL code and MAGIC layout editor, one 

using MUX-based design, the other using crosspoint-based design. Further, these designs 

are optimized according to the XY routing principle. Through this optimization, 

significant improvement has been achieved in terms of area, timing, and power 

consumption.

An important feature of this router design is that it can be simply modified to be used 

for mesh/torus-based network as the PRDT network naturally embeds the mesh/torus.
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6.2 Future Work

Currently, the crossbar design is not parameterized since the MUX design is changing 

with the switch size. The study shows that the crosspoint-based design has better results 

than the MUX-based design. It is advisable to replace the current design by a better 

parameterized crossbar.

In current router design, the two routing algorithms implemented are deterministic. In 

the future, adaptive routing schemes can be implemented. In those algorithms, virtual 

channels [4] [46] can be added at the input controller module.
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