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ABSTRACT

The Thermal Ecology of the Red-spotted Toad,
Bufo punctatus, Across Life History

by

Candice Marie Rausch

Dr. Frank van Breukelen, Examination Committee Chair 
Assistant Professor of Biology 

University of Nevada, Las Vegas

Compared with other terrestrial vertebrates, amphibians are generally less tolerant of 

thermal extremes. The Mojave Desert has ambient temperatures outside the proposed 

thermal tolerance zone of its most abundant amphibian, the Red-spotted toad (Bufo 

(Anaxyrus) punctatus). Few data have been presented regarding the thermal ecology of 

these animals, including their thermal histories and proposed strategies to avoid 

temperature extremes. Previous studies suggest B. punctatus avoids extreme thermal 

exposure and adult toads experience body temperature (T^) below a proposed critical 

thermal maximum (CT„,^) of 35° C, and can maintain T  ̂at 25° C during the winter. 

Further, previous studies indicate a CT„̂ „̂  for tadpoles of 33° C. A reassessment of the 

thermal ecology of Red-spotted toads was warranted based on personal observations 

reported in this thesis.

I recorded environmental and/or Ty of Red-spotted toads across their entire life 

history: eggs, tadpoles, juveniles and adults. In the field, eggs and tadpoles may

iii
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encounter water temperatures as high as ~40° C. Juveniles can experience Ty as high as 

42.2° C. Adult toads experience Ty as high as 39.1° C. These observations were 

combined with experimental determination of CT„,j,,,across life history statges; the CT„,̂ ,( 

of tadpoles was variable, but decreased as development progressed; adult toads exhibit a 

as high as 45.2 ± 1.0° C. I documented thermal preferences (Tp) of tadpoles and 

adults. In contrast to other studies of the effect of ontogeny on preferred temperature, Tp 

of Red-spotted toads remains fairly constant across development. I documented 

developmental time from egg deposition to metamorphosis at 18 days in the summer and 

47 days in the spring -  both periods are less than the previously described 60-day 

developmental period. Finally, I present preliminary data on apparent basking-like 

behavior of late stage tadpoles in the field.

Despite seemingly high and presumably stressful environmental temperatures. Red- 

spotted toads do not generally live on the verge of thermal tolerance. However, later 

stage tadpoles may encounter potentially lethal temperatures. The collected data 

document the thermal ecology of Red-spotted toads and contradict previously assumed 

limits that may not have been experimentally-derived. These data may allow informed 

decision making in land use and conservation efforts by better defining an important 

ecological parameter in a species that may be subjected to increased pressures by human 

activity and climatic change.

IV
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CHAPTER 1 

INTRODUCTION

Despite potentially detrimental extremes in temperature and water availability, North 

American deserts have been home to various anuran species. Over time, this diversity 

has been stunted by vast population extinctions and marked declines among individual 

populations (Bradford et al., 2005). It has been hypothesised that these extinctions have 

resulted from climatic change and more direct human activity, including regional water 

diversion and local non-indigenous species introduction (Bradford, 2002; Hayes and 

Jennings, 1986). As anurans tend to be heavily impacted by environmental temperature, 

it would be helpful to establish if they are living close to their physiological limits or if 

they are well within their zone of thermal tolerance.

1.1 Background

There is little known of the thermal life history of Bufo (Anaxyrus) punctatus (the 

Red-spotted toad), the most abundant Mojave Desert anuran (Bradford et al., 2005). 

Personal observations of this species suggest that assumptions of its thermal ecology 

were in need of réévaluation. The Mojave Desert often experiences air temperatures (T^y) 

below freezing in winter and in excess of 45° C in summer (see Figure 1.1). Such 

seasonal ambient temperature (TJ fluctuations may have significant impacts on the body

1
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Figure 1.1 Air temperature in Brownstone Basin 

Temperature recorded with a small data-logger in a sheltered sandstone crevice where 

toads have been observed. This location is shaded from solar radiation for the entire year 

and gives an approximation o f air temperature in the study area. Individual points 

represent temperature (° C) measured hourly over the course of one year.
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temperatures (Ty) and physiology of ectothermic organisms (Cloudsley-Thompson,

2001). It has been widely assumed that desert anurans do not experience high body 

temperatures, as most amphibians behaviorally will select thermal microhabitats to 

regulate body temperature within reasonably narrow limits (Lillywhite, 1970; Seebacher 

and Alford, 2002). Zweifel (1968) estimated a range of tolerance for developing B. 

punctatus embryos of 16° C -  33° C. However, water temperatures in some local 

breeding pools frequented by B. punctatus exceeds 35° C almost daily in late summer.

No temperature data previously have been measured for juvenile Red-spotted toads. 

McClanahan et al. (1994) propose a critical thermal maximum (CT„„„,) of 35° C for adult 

B. punctatus and anecdotally describe an individual Red-spotted toad that experienced a 

consistent body temperature (Ty) of 25° C during the winter months. Moore and Moore 

(1980) presented Ty data of B. punctatus adults in the field. While their observations 

were limited to only 2-3 summer days, they showed a maximum experienced temperature 

of 37° C and indicate that the previously proposed CT„,^„ of 35° C may be too low.

1.2 Bufo punctatus -  Life History

The Red-spotted toad {Bufo (Anaxyrus) punctatus) can be found in much of North 

America’s desert regions, as is illustrated by Figure 1.2 (Korky, 1999; Bradford et al., 

2005). B. punctatus appears to prefer habitats near springs, persistant and ephemeral 

pools, and rocky crevices. Ranging in elevation from near sea level to 2,000 m (Stebbins, 

1985), B. punctatus appears to be more tolerant of habitat change than any other anuran 

species of the Mojave, having varied little from its historical distribution (Bradford et al.,

2005^
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Figure 1.2 Geographic distribution of the Red-spotted toad, Bufo punctatus

(Figure from  Korky, 1999)

Bufo punctatus is the most common toad in the Mojave Desert, and its distribution 

extends into much of the North American deserts/Southwest. The closed circles 

demonstrate various collection sites, the open circle represents the type locality. Stars 

indicate locations of known fossil records.
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Red-spotted toads typically breed between April and June, although breeding has 

been noted as late as August and even September (Tevis, 1966; J. Jaeger, personal 

communication; personal observations). While some data are available for adults in these 

brief active periods (Moore and Moore, 1980), little is known of the temperatures 

experienced in other developmental stages and seasons.

1.3 Thermal Experience of Anurans in Ephemeral Ponds

Temperature experienced over an anuran’s lifetime can be highly variable and life 

stage dependent. The general thermal intolerance of amphibians is likely a factor of their 

unique relationship of individual species with multiple distinct ecotypes throughout life 

history and their ability to behaviourally thermoregulate (Bentley, 1966; reviewed in 

Alford & Richards, 1999). Mojave Desert anurans start life confined to aquatic 

environments. Behavioral thermal regulation is limited, as escape from the aquatic 

environment can only occur after metamorphosis, suggesting increased thermotolerance 

in larval stages. It has been emphasized that as a result of their elevated evaporation rates 

and ability to behaviorally thermoregulate adult desert anurans are perhaps buffered from 

the possibility of experiencing extremely elevated Ty (Tracy, 1976; McClanahan et al., 

1994).

It has been widely assumed that egg and larval stages, for the most part, are protected 

from high temperature. The high specific heat capacity of water allows for thermal 

buffering, especially in larger ponds. Although thermoregulation is limited, tadpoles may 

select microclimates provided by vegetation, rocks, and variable water depth (Ultsch et
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al., 1999). Eggs are unable to behaviorally thermoregulate and are dependent on parental 

site choice of deposition.

Embryonic thermal tolerance is often greater than larval thermal tolerance (Zweifel, 

1968; Ultsch et al., 1999). What happens to thermal tolerance after hatch is still quite 

debatable. In some species, data indicate larval thermal tolerance increases and becomes 

more restricted as tadpoles approach metamorphosis (Dupre and Petranka, 1985). 

However, others present data for increased thermal tolerance as early stage tadpoles, 

followed by a reduction in thermal tolerance in the later stages of metamorphosis (e.g., 

Cupp, 1980; Noland and Ultsch, 1981; Sherman, 1980; reviewed in Ultsch et al., 1999).

Mojave ephemeral pond systems subject young B. punctatus to rapidly evaporating 

habitats with little vegetation, typically shallow water depths, and thus, likely extreme 

thermal exposure. Currently, B. punctatus is believed to require 60 days to 

metamorphose after a 72 h embryonic period; evaporating pools in the Mojave seldom 

provide 63 days of water (Wright and Wright, 1949; Tevis, 1966). Many tadpoles, 

particularly those indigenous to temporary pools, exhibit phenotypic plasticity in 

developmental rate as pools experience rapid evaporation (Newman, 1989; Denver,

1997). There is evidence that physiological stress and other correlates of rapidly 

developing pools can result in a premature activation of the endocrine pathways 

regulating metamorphosis (Denver, 1997). Additionally, as ponds evaporate, decreases 

in water volume result in less thermal inertia and wider temperature fluctuations. As 

temperatures rise and water levels drop, tadpoles develop more quiekly and may manage 

to leave the pond before all the water evaporates. However, if temperatures rise above
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tadpole thermal tolerance, tadpoles can experience respiratory distress, resulting in a 

dramatic decrease in survivorship (Ultsch et al., 1999).

1.4 Thermal Experience of Juveniles & Adults

Upon completion of metamorphosis, tadpoles emerge from the water as newly 

metamorphosed juveniles, or toadlets ('0.2 -  0.5 g). 1 have witnessed juveniles 

traversing extremely hot substrates with surface temperatures in excess of 60° C around 

the ephemeral pond network in Brownstone Basin, NV. The complete thermal 

experience of juvenile desert anurans has not been well defined. It is known that younger 

adults are often more heat tolerant than older adults (Mayhew, 1968). In addition, 

basking behavior has been documented in juvenile Bufo debilis and Bufo spinulosus, and 

has been suggested as a means to speed growth by elevating body temperature above 

ambient temperatures (Seymour, 1972; Lambrinos and Kleier, 2002, respectively).

Due to methodological limitations, most field studies on Ty of free-ranging 

individuals (using radio-telemetry or thermocouples), while valuable, have been 

restricted to a few days or include limited numbers of measurements (e.g., Lillywhite, 

1970, Seymour, 1972; Moore and Moore, 1980; Carey, 1978; van Gelder et al., 1986; 

Seebacher and Alford, 2002; Lambrinos and Kleier, 2002). Longer duration studies have 

been conducted using toads in enclosed constructed habitats in temperate regions (Smits, 

1984), but do not address differences among various developmental stages.

As thermal tolerance range is known to be relative to a given animal’s T  ̂range 

(Snyder and Weathers, 1975), I hypothesize that low water availability and rapidly 

evaporating ponds may sometimes facilitate more severe thermal exposure of desert
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anurans than previously assumed, resulting in higher overall thermal tolerance and

developmental rate.

1.5 Thesis Overview

I define the thermal experience and discuss the thermal ecology of B. punctatus 

across season, as a function of developmental stage (eggs, tadpoles, juveniles and adults), 

and determine at what life stages Red-spotted toads are likely naturally to experience 

thermal stress. 1 document the developmental rate and temperatures experienced by 

spring and summer clutch tadpoles and evaluate the behavioral response across life 

history to ecologically relevant thermal extremes. I also address the thermal experience 

of adults in the winter months in the greatest detail to date using implanted data loggers. 

The immediate knowledge gained in this work will be critical to our understanding of 

desert anurans and other desert animals.

1.6 Thesis Objectives

1.6.1 Objective 1. Thermal experience across development

In order to understand the thermal biology of any organism, we must first have a solid 

understanding of the thermal experience of the organism in its natural environment. 

Before this study, few data existed for free-ranging desert anuran body temperature. 1 

present Ty across season and development from eggs to adults.

1.6.2 Objective 2. Behavioral response to eeologieally relevant thermal extremes 

Data on thermal experience are nearly useless without some understanding of their

physiological impact. I established Tp and CT^ ,̂; for various stages from tadpole to adult.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.6.3 Objective 3. Thermal biology across developmental stages

The temperatures experienced and thermoregulatory techniques of anurans vary 

throughout development. This study compares the natural thermal experience and 

response to thermal extremes of various distinct life stages of the Red-spotted toad.

1.7 Achievements

I characterized the thermal history of the Red-spotted toad throughout development 

(eggs, three tadpole stages, juveniles, and adults) and determined critical temperatures 

(CT„,a,j and Tp) throughout development.

1 present chemical and thermal profiles for 24-hour periods during tadpole 

development. 1 present the thermal experience of eggs and tadpoles as a function of 

water temperature (T,^,^) throughout development, as a function of early or late season 

breeding, from egg deposition to metamorphosis. I present mid-day summer body 

temperatures of juvenile Red-spotted toads. This study documents body temperature 

experienced by four free-ranging adult Red-spotted toads over the course of four seasons 

of a year. To the best of my knowledge, this study exhibits the most complete record of 

free-ranging body temperature of any desert anuran.

1 document that B. punctatus likely is not at the limit of thermal tolerance in terrestrial 

stages, but rather is most in danger of thermal detriment in late aquatic stages. This study 

fills in many important voids in the description of the thermal experience of the Red- 

spotted toad and presents methods that may be appropriate to further investigate the 

thermal ecology of other animals. Particularly those potentially at risk of population 

reduction or extinction.

9
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CHAPTER 2

THERMAL ENVIRONMENT AND TOLERANCE OF EGGS 

AND TADPOLES TO ECOLOGICALLY 

RELEVANT THERMAL 

EXTREMES

Due to their inability to leave water before metamorphosis, aquatic eggs and tadpoles 

are less capable of escaping ambient thermal extremes than are terrestrial juveniles and 

adults. However, their aquatic environments typically do not experience the thermal 

extremes observed on dry land. Water exhibits increased thermal stability because of its 

relatively high specific heat and thermal inertia. As ephemeral pools evaporate, 

decreased volume results in the potential for greater temperature fluctuations.

These ephemeral ponds can experience temperatures frequently in excess of 35° C 

and periodically exceeding 40° C. I observed thermal environments and developmental 

rates of tadpoles in a spring pond and rapidly evaporating late summer pond, from time of 

egg deposition to metamorphosis. Tadpoles were capable of leaving the water and 

inhabiting land within 47 days in spring and 18 days of egg deposition in summer. To the 

best o f  my knowledge, this latter metamorphosis period is the most rapid metamorphosis 

ever documented for a Bufo species. Through the use of water temperature monitoring 

and laboratory experiments, I show that water temperature in desert pools can exceed the

10
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thermal tolerance of some late stage tadpoles. However, typical water temperatures 

rarely pose a hazard to eggs, embryos or early stage tadpoles.

A basking-like behavior was observed in late stage tadpoles. 1 document preliminary 

data on the occurrence of this behavior, which appears to slightly elevate body 

temperature (T y) as a function of time. Surprisingly, this behavior is commonly exhibited 

in a life stage that demonstrates decreased thermal tolerance in the laboratory. Further 

research is necessary to assess possible benefits of this behavior.

2.1 Introduction -  Eggs & Tadpoles

Eggs and tadpoles are generally subject to the range of habitat temperatures selected 

by their parents. Tadpoles will often select optimal conditions for development if choices 

are available (Freidenburg and Skelly, 2004). However, as eggs are immobile, there 

likely is strong selection for increased and broader thermal tolerance in the embryonic 

stages (Ultsch et al., 1999). Ephemeral pond environments, like those typically used by 

Bufo punctatus, may experience water temperatures as high as 39.6° C (personal 

observation). As a result of high temperature and low relative humidity, aquatic stages of 

B. punctatus can be exposed to a rapidly evaporating environment, and subsequent 

increased population density, decreased food availability, drastic changes in water 

chemistry, and thermal instability.

Larval development is heavily dependent on environmental temperature. When 

temperatures rise, developing ectotherms may experience accelerated growth and 

differentiation rates (Smith-Gill & Berven, 1979; Buchholz and Hayes, 2002). In the 

field, tadpoles will typically select warmer microhabitats corresponding to the optimal

11
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temperature of development (preferred temperature, Tp or PBT; Huey and Stevenson, 

1979; Freidenburg & Skelly, 2004). However, further elevation in temperature may 

expose animals to increased morbidity or mortality. Experimental determinations of 

preferred temperature and thermal tolerance can be used to better understand an 

organisms thermal environment. Thermal gradients and varying thermal compartments 

are used in the laboratory to estimate the preferred environmental temperatures of 

animals, by allowing individuals to move freely between temperatures and body 

temperature is monitored. An approximation of the high temperature that will limit an 

animal’s ability to escape danger can be determined in the laboratory and is termed the 

critical thermal maximum (CT„,^). CT^^ is typically '10° C above Tp. Tp of many 

temperate species tadpoles is between 28° C and 32° C (Ultsch et al., 1999). Warm 

acclimated animals often demonstrate increased thermal tolerance and preference 

(Brown, 1969; van der Have, 2002).

Concomitant with decreased water availability in an evaporating ephemeral pond, 

water temperatures (T^g^J may become more variable, and extremes in T̂ t̂er more likely. 

Ephemeral desert pools, experiencing marked thermal extremes as compared with other 

aquatic habitats, can exhibit temperatures in excess of 35° C daily. Many bufonids 

experience a decrease in CT̂ g,̂  just before metamorphosis (e.g., Cupp, 1980; Noland and 

Ultsch, 1981; Sherman, 1980; Ultsch et al., 1999). While rising temperature corresponds 

to an increase in metabolism and commensurate increase in the rate of metamorphosis, I 

hypothesize that B. punctatus tadpoles experience temperatures that may be lethal or 

physiologically damaging, particularly as pool volume, and presumably tadpole thermal 

tolerance, decreases near the end of metamorphosis.

12
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In ephemeral pools, tadpoles that fail to develop before the pool evaporates die. In 

many bufonids including B. punctatus, metamorphosis has been reported to require ~60 

days (Wright and Wright, 1949; Tevis, 1966). It is known that Spadefoot toads, 

Scaphiopus couchii, typically leaves the water ~60 days after hatch. However, in an 

evaporating pond, metamorphosis may occur only 8 days after egg deposition (Newman, 

1989), and other spadefoot species can develop in about 14 days (Bragg, 1945; Klassen,

1998). Given the environmental conditions of some B. punctatus habitats, 1 hypothesize 

that metamorphosis may become similarly accelerated and occur more quickly than the 

previously described 60 days. Indeed, in the Brownstone Basin, near Las Vegas, NV, 

few periods occur when water is available for 60 days, and yet B. punctatus thrives in this 

area.

2.2 Materials & Methods -  Eggs & Tadpoles

2.2.1 Field Environment of Eggs and Tadpoles

Field research was conducted in the ephemeral pond network of Brownstone Basin 

near Las Vegas, NV, USA (N 36°10'59.56 W 115°25'51.11, elev. 1487 m). The site is a 

fairly isolated mixed sandstone and limestone rainwater catchment network of ephemeral 

ponds, which may be inundated by rainfall and/or snow throughout the year, but which 

typically dry out and refill during the summer monsoon rainy season.

Thermal environment of eggs and tadpoles was monitored using small programmable 

I-Button data loggers (Dallas Semiconductor, model DS1922L) submerged in ponds 

where eggs and tadpoles were observed in Brownstone Basin. For a few representative 

days during each season, 1 recorded water chemistry, including pH, dissolved oxygen,

13
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conductivity, and temperature, using a YSI (model 556 MPS) water analyzer. To assess 

thermal variability within a single pond, data loggers were placed at 15 locations in a 

pond where eggs had been recently deposited. Temperature was also measured at the 

bottom of three ponds whenever water was present to get an idea of each pond’s thermal 

capacity and thermal extremes.

2.2.2 Field Observations of Development in the Field

The rate of development was tracked in spring and summer, from the time of egg 

deposition until metamorphosis. During the summer, digital photographs were taken of 

tadpoles almost every day of development. All tadpoles were staged using Gosner’s 

staging (Gosner, 1960). On two occasions, access to the field site was precluded due to 

flooding in the area. Water temperature was recorded from time of the first rain of the 

season to the time toadlets left the water.

Temperature data were analyzed for daily mean temperatures and daily range. 

Tadpoles were measured using Image! (www.NlH.gov) image analysis software. Total 

body length (TB, body including tail) and body length (BL, body excluding tail) were 

measured in accordance with descriptions of acceptable tadpole measurement 

(McDiarmid and Altig, 1999). An ANCOVA was used to assess change in 

developmental rate as compared across developmental stages, defined as pre-leg 

development (stages 1 -  "30) and during leg development (stages ~30 -  46). Further 

ANCOVAs were used to define the difference in growth rate between TB and BL, to 

assess changes in growth rate in early and late development.

14
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2.2.3 Animal Collection and Gare for Laboratory Experiments

Eggs and tadpoles from multiple clutches and ponds were collected in late summer. 

Eggs and tadpoles were returned to the lab and held in filtered pond water from the 

collection site (0.22 pm Millipore filters). Tadpoles were fed a suspension of Spirulina 

daily ad libitum.

2.2.4 Laboratory Determined Thermal Preference of Tadpoles

Tadpoles (n = 5 from each stage) of Gosner stages 23 and 39, were used in laboratory 

thermal tolerance and thermal preference experiments (Tp). To establish Tp, I used a 

Sable Systems, Inc. actively regulated thermal gradient. The gradient is comprised of a 2 

cm thick aluminum surface bound by Plexiglas sides and an independently operated 

Peltier device on either side of a 6 cm x 66 cm long chamber. The Plexiglas walls are 

lined with 64 LED light gates, spaced approximately every 1 cm, to allow for 

observation of an animal’s location with a computer operated location logging device 

(see Appendix 1). The gradient was established between 10° C and "37° C. Tadpoles 

were placed, individually, in the center of the gradient and freely allowed to select 

temperatures within the available range for 30 min. The gradient was base-lined prior to 

each tadpole trial. The water temperature at every gate was measured manually before 

and after each trial with a thermocouple. After several trials, the change in temperature 

was found to be negligible and was only measured at 8 cm increments monitor 

consistency between trials. The location of each tadpole was logged and integrated over 

time by LadScan software (Sable Systems, Inc.) and analyzed with water temperature at 

each location to calculate the average water temperature experienced by each tadpole 

(preferred body temperature, as defined by Reynolds and Casterlin, 1979). Tp were
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averaged and SE was determined. Preliminary experiments demonstrated no effect of 

using either the average experienced temperature or the temperature most frequently 

experienced, as a result, average experienced temperature was used as an approximation 

of Tp. Linear thermal gradients will typically yield activity profiles demonstrating edge 

effects as animals will often move to the end of the gradient, turn around, and proceed 

back, increasing the time spent near the edges of a linear gradient. Although edge effects 

are often a concern in thermal gradients, they were not evident in any of the trials in the 

data set (as assessed by changing the gradient range), most likely because of the wide 

thermal range available and the generally low activity of B. punctatus tadpoles.

2.2.5 Laboratory Determined Thermal Tolerance of Tadpoles

Tadpoles (n = 5 of each) from Gosner stages 23 and 35, were exposed to temperatures 

ranging from 25° C to ~42° C in a filtered water filled Petri dish. Temperature was 

inereased at approximately 0.5° C/min. Animals were assessed for response to stimulus 

with soft forceps before every completed degree increment. Body temperature was 

approximated from water temperature measured with a thermocouple. When animals 

failed to respond by avoiding the stimulus, they were removed and allowed to recover in 

cool filtered pond water. All animals recovered in less than 22 minutes and no animals 

exhibited sustained changes in motility, aetivity or eating habits one day following the 

experiment.

2.2.6 Preliminary Analysis of Apparent Basking Behavior in Tadpoles in the Field 

Tadpoles (typically >  Gosner stage 39) had been observed to spend prolonged periods

of relative inactivity positioned near the water surface ('1 -  2 cm below the water 

surface) on partially submerged rocks in relatively deep murky pools. I asked if this
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behavior affected their thermal biology. Tadpoles were observed, and time was 

measured, from the time to first visit a shallow rock surface to the time they left.

Tadpoles were eaught using a small fish net and held near to the roek surface with the net 

held taut to avoid thermal effects of handling. I measured tadpole body temperatures by 

inserting a miero thermocouple into the dorsum. Tadpoles were removed from the pond 

to avoid resampling and replaced at the conclusion of the experiment.

2.3 Results -  Eggs & Tadpoles

2.3.1 Field Observations

The widest ranges in pH were present in spring. Spring ponds periodically varied 

nearly 3 pH units on a diel cycle (Figure 2.1). Water temperature in a shallow spring 

pool (HO em in depth), with tadpoles present, exhibited a ~12° C range over the eourse of 

24-hours. Temperature corrected dissolved oxygen demonstrated a similar pattern, as it 

decreased nearly 100% saturation at night. Temperature eorrected conductivity, a proxy 

for salinity, did not vary appreciably in a 24 hr period. Conductivity increased when 

pools evaporated and decreased substantially with large volumes of precipitation (Figure 

2^0.

The late summer storms typical of the Mojave Desert were often accompanied by 

massive floods that invoked topographic alteration, faunal displacement, and acute 

organism exposures to changes in temperature and water chemistry. I was witness to a 

hail storm in late July. One small pond experienced dramatic changes in water 

temperature and chemistry as it transitioned towards an icy slurry; temperature was
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Figure 2.1 The ephemerality of an ephemeral pool in spring 

I present water chemistry data, measured with a temperature correcting YSI water 

analyzer, for a tadpole inhabited pool in spring. Temperature (open circles), salinity or 

conductivity (open squares), dissolved oxygen (open diamonds) and pH (open triangles) 

are shown over a 28-hour period. pH can exhibit a nearly 3 pH unit shift in a 24-hour 

period, becoming lowest in the dark early morning hours. Temperature can change ~12° 

C. Dissolved oxygen, like pH and temperature, was lowest at night while conductivity 

changed very little.
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Figure 2.2 Water chemistry of an ephemeral pond during a summer storm 

The water chemistry measured in late July during a heavy summer hail storm. (A) 24 -  

hour period before, during, and after a summer storm. There was a large reduction in 

temperature and conductivity as a result of the shallow (< 10 cm) pond filling with low 

ion hail. As a much larger adjacent pond began to overflow, water chemistry rapidly 

returned to typical summer levels. (B) The onset of the storm (gray box from A) has been 

expanded to reveal detail. Water temperature of the shallow pond decreased from ~37° C 

to '10° C in a matter of minutes, and was restored to 25° C almost as quickly.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



reduced ~27° C in a matter of a few minutes (Figure 2.2 B). The rapid influx of low ion 

content water decreased conductivity to the lowest salinity ever recorded in the pond 

network, 0.010 mS/cm. As the storm progressed, a much larger pond farther up the 

catchment network began to overflow, quickly re-establishing more seasonally typical 

water chemistry (Figure 2.2 B). Tadpoles that survived in the pool did not seem 

adversely affected by the rapid and violent change in their environment. Summer pool 

pH will commonly shift '2  units in a 24 hour period, exhibits a ~5° C range in larger 

ponds and as much as an '20° C range in small, rapidly evaporating ponds (Figure 2.2). 

Though changes in measured pH and DO are often an artifact of changing temperature, 

the YSI water analyzer used in this study corrected for temperature in all measurements.

In addition to temporal variation in the ephemeral pond environment, there is a great 

deal of spatial variability among ponds and within each pond. With the exception of 

displacement by the occasional flood, tadpoles and eggs are confined to the pools in 

which they were originally deposited. Each pool is of different depth and has variable 

inflow/outflow water relative to other portions of the network. Within a single pool there 

is variability in depth, vegetation, solute composition and concentration, and the index of 

solar radiation. To better characterize the thermal microhabitats available to tadpoles at 

any given time, I measured water temperature in one egg-inhabited pool, in 15 distinct 

locations (including surface temperature). At various depths and microhabitats within a 

pond, there is some refuge from thermal extremes. Over a 24-hour period (July 21 -  22, 

2006), water temperature fluetuated between 17.61° C and 36.72° C (Figure 2.3). Water 

temperature varied by water depth and vegetation coverage, forming a gradient of 

between 0.13° C and 5.58° C, at any given time. The widest thermal gradients occurred
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Figure 2.3 Thermal environment available in a single pool over a 24-hour period 

Maximum (heavy dotted black line), minimum (light dotted black line) and average 

temperature (light black line) recorded with data-loggers at 14 different locations within a 

single pond when eggs were present from July 21 -  22, 2006. Surface water temperature 

measured with a data-logger wet, but not submerged, in the pond (gray line). Maximum 

range for the 24-hour period was 15.11° C.
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with the highest daily temperatures. The warmest times of day presented the widest 

thermal choices and water temperature reached a high of 36.72° C in some locations 

(Figure 2.3). In this same pool, there was a 30 minute period when water did not drop 

below 34° C at any available location (Figure 2.3). It is not abnormal for eggs and 

tadpoles to be exposed to water temperature of greater than 35° C for extended periods 

(Figure 2.3 and 2.5).

Spring eggs were deposited in late April and developed in 47 days to metamorphose 

in mid June 2006. Temperature recorded every 15 min of development is presented in 

Figure 2.4. Average daily water temperature for spring eggs was 19.63 ± 0.26° C, but 

daily mean temperature fluctuated across development between 16.21 ± 0.19° C and 

22.55 ± 0.15° C. Eggs deposited in late July, 2007, metamorphosed from eggs to toadlets 

in 18 days (Figure 2.5). The range of daily mean water temperature was variable across 

development, range = 21.87° C to 27.93° C, but averaged 24.47 ± 0.35° C (mean ± SE). 

Growth rate was faster in earlier stages (< stage 30; regression analyses, p < 0.05). Rate 

during hind limb differentiation changed significantly: total body with tail (TB; slope = - 

0.15, = 0.78) and body length without tail (BE; slope = -0.02, = 0.69; p < 0.05).

There was a significant difference between the slope of TB and BE prior to stage 30 (p < 

0.05). However, there was no significant difference in growth rate from stage 30 to 

metamorphosis (p > 0.05). As a consequence of heavy storms there was a breach of a 

natural dam, decreasing the volume of the pond and allowing wider fluctuations in water 

temperature, as can be seen in Figure 2.5.

I compared early and late clutch developmental temperature and time to 

metamorphosis (Figure 2.6). When water temperature and time were integrated (f (ZT^ /
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Figure 2.4 Water temperatures during the developmental period of Red-spotted toads in a

pond in spring

Eggs were deposited on April 30*, the first toadlets left the water on June 16* of 2006. I 

present the (A) water temperature during this 47 - day period of development. (B) 

Maximum, average, and minimum, daily temperatures are displayed for clarity.
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Figure 2.5 Development of Bufo punctatus tadpoles in an evaporating pond 

I present late summer clutch development from egg deposition in late July to 

metamorphosis in early August. From bottom: (° C) across development; thermal

variation in terms of daily mean and range (mean daily averaged ~25° C); total body 

length (TB, closed squares) and body length excluding tail (BL, open squares) are 

expressed in the top panel (mean ± SE). Solid gray bars correspond to major 

developmental phases (from left to right: developing embryo, hatchling, larva with leg 

buds, larva with developed hindlimbs, larva with developed forelimbs). Diagonal white 

stripes represent rainstorms. Developmental stage is represented in the top bar with 

corresponding Gosner stage.
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Figure 2.6 Summer and spring developmental temperatures and time to develop 

On the same time and temperature scale, summer (black) and spring (gray) 

developmental temperatures are displayed. Temperature plots stop at the time of 

metamorphosis (summer = 18  days, spring = 47 days).

50

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 time)) and spring and summer clutches were compared, I found a ratio between of 

summer to spring of 38.3%. When only time to develop was compared between the two 

seasons, there was a 33.5% decrease from spring to summer. The similarity of these 

ratios suggests the difference in developmental rate is primarily due to developmental 

temperature. However, when minimal temperature of development, 16° C, was accounted 

for (Brattstrom, 1966), spring tadpoles developed at 18.65% of the rate of summer 

tadpoles.

Late stage tadpoles (post stage 35) were observed to be resting on the shallow 

surfaces of partially submerged rocks in the ponds. T„^,„ was generally lower than the 

temperature of tadpoles when they first visited the rock surface. T^^ surface was higher than 

any tadpole temperature measured. Tadpole T^ increased with time spent on the rock 

surface (Figure 2.7; n = 11, r  ̂= 0.67).

2.3.2 Laboratory Observations

Tadpoles do not appear to prefer different temperatures across metamorphosis (Figure 

2.2). In the laboratory, tadpoles preferred similar temperatures across development, Tp 

range = 24.02 ± 0.37° C (stage 26; mean ± SE) to 25.85 ± 0.39° C (stage 35), with a 

range of less than 2° C, there was no significant difference between stages (p > 0.005). 

These temperatures are comparable to the average daily temperatures of many late 

summer ponds. However, CT̂ ^̂  ̂exhibited marked variation across development.

Thermal tolerance was not testable by behavioural assessments in eggs. However, late 

summer eggs were capable of surviving up to 40° C thermal shocks, but not 45° C shocks 

of up to 2 h (see Future Work and Figure 5.3.1). Hatchling tadpoles (stage 23) 

demonstrated tolerance to 41.6 ± 0.3° C (mean ± SE). Thermal tolerance was reduced in
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stage 35 tadpoles (early in hind limb development) to 36.6 ± 0.5° C. Stage 39 tadpoles 

(developed hind limbs) did not survive even one hour at 35° C in the laboratory.
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Figure 2.7 Tadpole Ty while presenting basking-like behavior 

I observed tadpoles approximately 1 -  2 cm below the surface of the water, on a partially 

submerged rock surface. Temperature of the submerged roek surface (30.1° C, T^^ surface) 

and the temperature of the water column at the depth of the tadpoles are shown (27.0° C, 

Twater)- Thc tlmc spent on the roek, by each tadpole, is shown graphed with Ty. As 

tadpoles left the roek, they were captured and held near the roek with a small net as their 

Ty was measured with a miero thermocouple. Diagonal line represents a line of best fit to 

the data (n = 11, r̂  = 0.67).
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2.4 Discussion -  Tadpoles & Eggs

B. punctatus eggs are laid between late spring and late summer. In the faee of 

environmental variability, B. punctatus young appear to ‘bloom where they are planted.’ 

Even with water temperatures and chemistry that exhibit marked variation between 

seasons and across the course of a single day, many B. punctatus manage to survive to 

metamorphosis. Wide fluctuations in pH and DO characteristic of ephemeral ponds may 

have stressful effects independent of temperature. DO during the day, often greater than 

100%, may allow ephemeral tadpoles the advantage of higher body temperature without 

limitations of O2  availability (Noland and Ultseh, 1981). This period corresponds to the 

time of highest tadpole activity and metabolic demand. pH, temperature, and DO all 

decrease rapidly at night. Drastic changes in chemistry, specifically pH, can have huge 

physiological implications. Additionally, lower pH and DO reduce effieieney of gas 

exchange as low pH reduces the ability of aquatic organisms to eliminate CO 2  

(Cloudsley-Thompson, 1970) and low DO requires increased gill ventilation for 

comparable Oj extraction (Burggren and West, 1982).

In early spring clutches, developmental averages '20° C, while late summer 

water temperatures average '25° C and can experience much wider diel oscillations as 

volume decreases. Surprisingly, even at a developmental temperature averaging '20° C, 

tadpoles developed in 47 days, rather than the previously suggested 60 days (Wright and 

Wright, 1949; Tevis, 1966). Tadpoles averaging ~5° C warmer experience more than a 3 

fold increase in developmental rate (Figure 2.6). The ratio o f temperature integrated to 

time, juxtaposed to the ratio of time alone (in comparing spring and summer clutches) 

suggests this difference in developmental rate to be primarily due to increase temperature
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rather than phenoplasticity of the endocrine system regulating metamorphosis. However, 

when minimal temperature of development, 16° C, was accounted for (Brattstrom, 1966), 

spring tadpoles developed at 18.65% of the rate of summer tadpoles. This variation does 

support the hypothesis of inereased phenotypic plasticity as a result of endocrine 

upregulation during times of stress and a precocious induction of metamorphosis 

hormones should not be overlooked (Denver, 1997).

Tadpoles have the ability to select among available thermal mierohabitats in their 

parent-selected ponds to regulate body temperature (Ultseh et al., 1999). This ability 

allows for upregulation of metabolism and developmental rate to the limit of lethal 

temperatures. Of the ponds monitored in the Brownstone Basin rainwater catchment, 

even those exhibiting the most variable mierohabitats, demonstrate relatively narrow 

thermal gradients (Figure 2.3). Extreme temperatures typical of small evaporating ponds 

are often inescapable in late summer.

CT^ax demonstrated significant variation across development. Thermal tolerance 

decreased drastically during the late stages of metamorphosis, as is consistent with the 

literature (Cupp, 1980; Noland and Ultseh, 1981; Sherman, 1980; Ultseh et al., 1999). 

Irrespective of the substantial variation in thermal extremes of ephemeral desert ponds 

verses temperate persistent ponds, remains fairly constant across species, between 

"36° C - "43° C over the course of development (Ultseh et ak, 1999, Noland and Ultseh, 

1981; Sherman, 1980).

Evaporating pools exhibit temperatures below  the CT„j„, o f most tadpole stages. 

However, water temperatures in small evaporating pools occasionally surpassed the 

of late stage tadpoles during late summer. Increased differentiation in late stage
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tadpoles during limb development is synonymous with increased rate of metabolism and 

protein synthesis, increasing demands on oxygen (Ultseh et al., 1999). Increased 

metabolic demand, due to high temperature and accelerated differentiation, coupled with 

low oxygen availability, as a result of low PO 2  at high temperature, have the potential to 

force late stage tadpoles into respiratory distress (Ultseh et al., 1999). It is possible that 

the high DO of ephemeral pools during the warmest part of the day essentially rescues 

late stage summer clutch B. punctatus from respiratory distress as a result of inereased 

oxygen availability, but it is likely that other physiological and behavioral methods exist 

that act to reduce this danger (e.g., Wassersung and Seibert, 1975).

Evaporation and radiation are largely unavailable to tadpoles as thermoregulatory 

mechanisms. However, tadpoles are subject to conductive and convective heat exchange 

making them generally the same temperature as the surrounding water (poikliothermie). 

Tadpoles appear to behaviorally increase developmental temperature using social 

aggregation (Brattstrom, 1962). There is some evidence for tadpole basking in the 

present study (Figure 2.6). Tadpole temperature after short periods of basking-like 

behavior was often lower than the temperature of the water column, suggesting tadpoles 

had been in cooler, possibly deeper waters earlier. Ty inereased slightly with time on the 

roek. However, Ty was typically only slightly higher than the temperature of the water 

column (27.0° C), and never exceeded roek surface temperature (30.1° C). Higher 

preference for this behavior or increased site fidelity was associated with higher Ty.

There seemed to be a trend towards larger, later stage tadpoles exhibiting this behavior.

It is possible that these animals are attempting to increase body temperature to speed 

development, as their larger body size may have resulted from lower developmental
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temperatures (Smith-Gill and Berven, 1979). While it is likely that the behavior is 

associated with increasing body temperature, it is equally possible that the intent is 

unrelated to body temperature, e.g., to select locations with inereased oxygen availability, 

reduce metabolism by resting, or access a preferred food source. More research is 

necessary to address the true reason for and effects of this behavior.
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CHAPTER 3

THERMAL ENVIRONMENT OF 

JUVENILE RED-SPOTTED 

TOADS

To the best of my knowledge, there are no data regarding the thermal experience of 

newly metamorphosed juvenile Red-spotted toads {Bufo (Anaxyrus) punctatus). In other 

species, juveniles toads experience higher body temperatures than in any other life stage. 

Having observed juvenile B. punctatus on substrates that exceed 60° C, I hypothesized 

that juveniles experience more extreme temperatures than any other life stage. I observed 

newly metamorphosed toads in late summer and recorded time exposed to the sun and 

body temperature (T J. There is marked individual variation in the experienced 

temperatures. The highest Ty recorded in the field was 42.2° C. As expected, Ty of 

juvenile B. punctatus generally increases with time spent in the sun. Juvenile Ty was 

often higher when traversing dry substrates as compared with moist substrates. Body 

temperature was more closely associated with air temperature (r  ̂= 0.57) than substrate 

temperature (r  ̂= 0.23). Juvenile Red-spotted toads exhibit a preferred temperature (Tp) 

of 24.2 ± 0.7° C on dry substrate and 24.5 ± 0.7° C in an aquatic gradient. These data 

suggest juvenile Red-spotted toads experience higher temperatures than in any other life 

stage.
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3.1 Introduction -  Juveniles

The thermal experience of juvenile desert anurans has not been well defined.

Younger toads are more often heat tolerant than older adults (Mayhew, 1968). I observed 

active juvenile Red-spotted toads throughout the day even when conditions seemed 

conducive to rapid water and heat stress. Newly metamorphosed toads are often exposed 

to full sun on hot summer days and will commonly cross substrates in excess of 60° C. 

Although no data have been presented for the thermal environment of juvenile Red- 

spotted toads, there have been a few studies in other species evaluating the effect of 

basking behavior on juvenile body temperature (e.g., Seymour, 1972; Lambrinos and 

Kleier, 2002).

Seymour (1972) reports body temperature (T y) and aetivity of wild juvenile Bufo 

debilis along a moist riverlet bank in New Mexico. Seymour found Ty in basking 

juveniles was as high as 35° C (mean = '30.9° C). However, juveniles traversing a 45° C 

substrate experienced mean Ty of '25.8° C. Water availability was critical for successful 

basking behavior. Juveniles kept in an open container in full sun reached temperatures of 

43° C and died within 40 -  50 minutes. In my ephemeral pond system, water availability 

is unreliable. I asked what the body temperatures of juvenile Red-spotted toads were in 

this system. I relate these data to the preferred temperature and the amount of time spent 

exposed to sunlight.
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3.2 Materials & Methods -  Juveniles

3.2.1 Body Temperature in the Field

The handling of small poikliothermie organisms has the potential to substantially 

affect Ty (Seymour, 1972). To reduce the effect of handling, a device was fashioned 

from a wire coat hanger formed into a loop ('10 em in diameter) with a handle. 1 

stretched a small portion of pantyhose over the loop to produce a gentle “toad swatter.” 1 

observed toads as they left their shaded refuges. 1 recorded the time each juvenile toad 

spent in the sun and followed at a sufficient distance not to impact the movement of the 

toadlet. As toadlets neared shaded regions on the periphery of the dry pond, 1 restrained 

them and measured body temperature with a dorsally inserted micro thermocouple 

through the pantyhose "swatter". 1 measured the time spent by toads in the sun. 

Following measurement, toads were placed in a shaded plastic box to avoid re-sampling.

3.2.2 Thermal Preference

Thermal preference (Tp) in an aquatic system was determined in an aquatic system as 

described in Section 2.2.6. Thermal preference also was assessed using moist paper 

towels as a substrate.

3.3 Results -  Juveniles

3.3.1 Field Observations

Average high Ty measured in the field was 33.7 ± 0.76° C (n = 22, mean + SE). The 

highest Ty recorded for any juvenile was 42.2° C. T ŷ for this toad was 43.6° C 

(measured 1 cm above the ground), while the dry sand was 51.5° C (Figure 3.1). It is 

interesting to note that this body temperature was found after '5  minutes of exposure. 1
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observed toads traversing warmer substrates, '60° C, and/or for longer periods of time, 

however the miero thermocouple was not available. As would be expected with the 

effect of evaporative heat loss, surface temperatures and Ty were lower when associated 

with moist substrates. Toadlets generally exhibited lower body temperatures on moist 

substrates as compared to dry substrates (Figure 3.1). Ty exhibited a closer association 

with T^y than with (Figure 3.2; f  = 0.57 and r  ̂= 0.23, respectively). Juvenile Ty 

increased slightly with time spent in the sun (Figure 3.3, r̂  = 0.66).

3.3.2 Lab Observations

Juveniles preferred 24.81 ± 0.10° C (n = 5, mean ± SE) on dry substrates and 24.50  ̂

0.69° C in aquatic media. Unfortunately, critical thermal maxima (CT„„J could not be 

obtained as juveniles failed to consistently right at any temperature.
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Figure 3.1 Juvenile body temperature, air temperature and surface temperature during

mid-day aetivity

I measured temperature of juveniles (Ty, medium gray) found on sandstone (n = 3), dry 

sand (n = 8), and moist sand (n = 11). For each measurement, air temperature ('1 em 

from the ground surface, as an approximation of toad ambient temperature) was also 

measured (T^y, light gray), and ground surface temperature at the location of each toad is 

presented in dark gray (T,urf.J.
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Figure 3.2 Juvenile body temperature plotted against ambient temperature and

surface temperature

Body temperature of dry toadlets was measured using a micro thermocouple and (A) 

plotted against ambient air temperature measured at approximately 1 cm above the 

substrate. The data have been fit to a polynomial line of best fit (r  ̂= 0.57). (B) Toadlet 

body temperature is plotted against surface temperature and fit to a line of best

fit (r" = 0.23).
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Figure 3.3 Juvenile body temperatures after time in the sun 

I measured body temperature (T^) of juveniles, with a micro thermocouple. Toads were 

followed from the time emerged from a shaded refuge. Time in the sun was recorded and 

body temperature measured. As a reference, I indicate average and T̂ r̂facc with 

brackets (mean ± SE). The data were fit to a line of best fit (r̂  = 0.66).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Discussion -  Juveniles

Thermal accounts of juvenile anuran body temperature focus heavily on body 

temperature while basking (Seymour, 1972; Lambrinos and Kleier, 2002). I observed 

and measured Ty newly metamorphosed (juveniles or toadlets), B. punctatus during late 

summer in their natural habitat. None of the animals observed appeared to bask.

Juvenile anurans will bask in order to increase body temperature and speed 

development (Lillywhite, 1970). From my observations, Bufo punctatus does not appear 

to bask. Rather, juvenile Red-spotted toads may be occasionally found traversing 

extremely hot surfaces (>60° C) in the heat of the day. Previous studies of other species 

and my data suggest juveniles experience higher temperatures than in other life stages 

(Mayhew, 1968). Evaporative water loss may serve to cool toads (Tracy, 1976). When 

water is available, use of evaporative water loss may confer a selective advantage 

(Seymour, 1972). However, in dry environments, evaporative water loss could result in 

death. Basking behavior may not be continuously available to B. punctatus in ephemeral 

environments, as water availability is unreliable. However, further data are necessary to 

confirm this hypothesis.

The data presented here likely underestimate the thermal experiences of juvenile 

toads. Substrate temperatures in previous years were as high as 65° C, and frequently 

exceeded 60° C, while knots of newly metamorphosed toads were observed on these 

substrates (unpublished data). Future efforts will be aimed at collecting Ty data when 

similar conditions are presented.
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CHAPTER 4

THERMAL ENVIRONMENT OF 

ADULT FREE-RANGING 

TOADS

I measured body temperature (Ty) in free-ranging adult Bufo punctatus across all four 

seasons of a year using implanted data loggers. There is marked individual variation in 

the temperatures experienced by these toads. As expected, toads generally escape 

extreme seasonal and diel temperature fluctuations. However, these data demonstrate a 

much wider Ty range than was previously assumed. Although often for short periods, 

Red-spotted toads do experience Ty as low as 3.1° C and as high as 39.1° C. All animals 

experienced periods of prolonged thermal stability in cooler months and wider diel 

oscillations in warmer months. As previously described for many amphibians. Red- 

spotted toad thermal history is likely a function of site choice; the exploitation of 

different refuges results in diverse thermal experiences. My field data indicate that B. 

punctatus must exhibit a higher critical thermal maxima (CT^^) than originally 

presumed. was experimentally determined to be 45.2 ± 1.02° C (mean ± SE; n =

5). Adult Red-spotted toads (n -  5) had a preferred temperature (Tp) that closely matched 

their average temperature experienced in active seasons, 26.4 ± 0.4° C for dry substrate 

and an aquatic Tp of 25.4 ± 0.5° C.
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4.1 Introduction -  Adults

While some data are available for a brief period in mid-summer (e.g. Moore and 

Moore, 1980), the thermal ecology of adult Red-spotted toads during the rest of the year 

has not been well described. Although no data are shown, McClanahan et al. (1994) refer 

to a single Red-spotted toad that maintained a body temperature (T J  of 25° C between 

September and December, and further suggest a maximal thermal limit of 35° C for B. 

punctatus. Based on personal observations, the work of Moore and Moore (1980) and 

ambient temperature (T J monitoring of a typical habitat in Southern Nevada, 1 

hypothesize B. punctatus to experience more extreme and variable temperatures than 

previously suggested.

By exploiting small programmable data loggers, 1 was able to track Ty hourly in free- 

ranging adult toads for nearly an entire year, including the winter period. These 

observations were correlated with the determination of thermal preference (Tp) and 

critical thermal maxima (CT„j,J in an effort to characterize more fully the thermal 

ecology of the Red-spotted toad in nature.

4.2 Materials & Methods -  Adults

4.2.1 Monitoring of Adult Body Temperature in the Field

1 studied the Red-spotted toad in the same ephemeral pond system as Chapters 2 and 

3 (Brownstone Basin near Las Vegas, NV, U. S. A.; N 36°10'59.56 W 115°25'51.11, 

elev. 1487 m). Adult toads, B. punctatus (n = 15), were collected during the summer.

The toad collection and release area is adjacent to a gravel arroyo and is found within a 

mixed sandstone and limestone rainwater catchment network of ephemeral ponds, which
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may be inundated by rainfall throughout the year, but which typically dry out and refill 

during the summer.

Only larger adult animals were collected to ensure adequate size to accommodate data 

loggers (July 2005). I anaesthetized toads in 3% ethyl-m-aminobenzoate (MS-222;

Sigma Chemical Company) dissolved in a 50 mM bicarbonate solution, pH 7.2. A small 

abdominal incision was made and a ~3 g, ~1.5 cm diameter paraffin-coated I-Button data 

logger (Dallas Semiconduetor model DS1922L), preset to log temperature every hour, 

was inserted into the abdominal cavity. The incision was sutured and treated with 

antimicrobial ointment. Animals were rinsed in fresh water until alert, allowed to recover 

with access to fresh water, and released in the locations from which they were originally 

collected. I allowed animals to reeover for several hours and observed them to be fully 

ambulatory prior to the time of release. I recovered data loggers from four toads. All 

four toads were in good body condition and exhibited normal activity level as evidenced 

by mating behavior. I collected one toad after approximately 2 years in the wild (August 

2007); the others were collected approximately one year after release (June and July 

2006).

4.2.2 Monitoring of Environmental Temperature

As a referenee, I logged air temperature and humidity by placing an I-Button data 

logger (model DS1923) in a shallow rock crevice ("10 cm depth) where toads had been 

observed. Pond water temperatures were recorded when water was present using 

submerged I-Buttons (D S1922L ) in three adjacent ponds in the toad collection habitat.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.3 Data Analysis

Upon retrieving data loggers, data were analyzed for patterns in thermal fluctuation, 

daily means were calculated along with mean seasonal daily mean with standard error for 

all toads, air and pond water (Table 1).

Seasonal categories were based on the solstice calendar: fall from September 22 to 

December 20, winter from December 21 to March 20, spring from March 21 to June 20, 

and summer from June 21 to September 21.

4.2.4 Characterization of Available Thermal Microhabitats

In order to characterize the available thermal microhabitats on a typical summer day,

1 placed data loggers in a variety of microhabitats that may be used by the toads. Data 

loggers that may have been exposed to direct sunlight, I encrusted them with pebbles to 

minimize the effect of direct solar radiation.

4.2.5 Critical Thermal Maxima in the Laboratory

I defined CT,,,,,,, of adult toads collected in late summer (n = 5) using righting 

response. T  ̂was increased, starting from 25° C, at '0.5° C/min, in a narrow 1 L beaker 

(with ~5 cm of moist sand) submerged to 1 cm below the brim in an 8 L water bath. I 

assessed animals for righting response before every completed degree increment. When 

animals failed to right, I removed them and allowed them to recover on a cool moist 

paper towel. All animals recovered in less than 10 min and no animals showed changes 

in motility, activity or eating habits one day following the experiment. 1 measured body 

temperature with a cloacal thermocouple. I also measured substrate and air temperature 

during each trial. Ty varied < 2° C from substrate temperature.
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4.2.6 Thermal Preference in the Laboratory

I determined thermal preference (n = 5) using a dual Peltier thermal gradient, as in 

tadpoles and juveniles (Sections 2.2.6, 3.2.3 and Appendix I), in both dry and aquatic 

gradients. Toads (n = 5) were allowed to select thermal preference in 5 cm of water, 

between 12.7° C and 36.5° C. The same toads were allowed to select preferred 

temperature on a moist surface gradient, surface temperature ranged from 11° C -  52° C. 

Toad position was monitored for one hour by computer logged light gates indicating the 

location of the toad within the gradient (Appendix I). Recordings were only made when 

I observed toads to be calm and not intent on escape.

4.3 Results -  Adults

Body temperatures in red-spotted toads were highly variable throughout the year and 

ranged from a low of 3.1° C to as high as 39.1° C (Figure 4.1 A - D). In general, diel 

change in Ty during what are apparently active periods (i.e., April to October) oscillated 

in parallel to T  ̂(Figure 4.1 F). I logged T  ̂in a rock crevice as a reference. While these 

data likely are more representative of conditions experienced by the toads, the collected 

T,, data underestimate the extremes in available temperature microhabitats (e.g. see Figure 

4.4). Nevertheless, Ty for all four toads rarely exceeded T,, during the warm months and 

Ty demonstrated less diel variability than T  ̂(Figure 4.2).

I present temperature data for what I consider typical 3-day intervals for each season 

(Figure 4.3). These data demonstrate relatively less tracking of T  ̂to diel T  ̂changes 

during fall and winter (Figure 4.3 A - B) than during spring and summer (Figure 4.3 C - 

D). Figure 4.2 supports this observation.
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Figure 4.1 Annual patterns of Ty in free-ranging adults 

I present T,, of four individual adult Red-spotted toads, Bufo punctatus, from time of 

release until time of recapture (A - D) for each. Ambient temperature (T J of a shallow 

rock crevice (F) is included as a reference of environmental fluctuation. Data represent 

hourly temperature recordings.
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Figure 4.2 Daily mean temperature and range by season 

Mean daily Ty of each toad (white bars, A-D) and ambient air in a shallow crevice (grey 

bars, T J  by season. Bars represent range in temperature, the crosscutting lines represent 

seasonal means in daily temperature.
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Figure 4.3 Ty for all four toads, T ,̂ and water temperature (if available) for typical

representative 3-day sequences 

(A) fall, November 1 - 3 ;  (B) winter, February 22 - 24; (C) spring, April 10 - 12; and (D) 

summer July 28 - 30. Data represent temperatures obtained hourly from midnight the first 

day to midnight of the third day in the sequence. The vertical shaded bars represent the 

periods between sunset and sunrise.
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Two toads (B and D) demonstrated little to no diel variation in Ty throughout the 

winter (Figure 4.1 A, D). During the same period, the other two toads had greater 

(although still damped) diel oscillations (Figure 4.1 B, C). I presume these differences 

represent site choices for over-wintering. When toad B apparently exited its thermally 

stable site, its Ty immediately plunged to the lowest value recorded (3.1° C; Figure 4.1 

B). Unfortunately, ambient temperature data are not available for this period since the 

data logger was washed away in a heavy storm.

On a typical summer day, toads had choices of microhabitats that ranged from below 

20° C to ~60° C (Figure 4.4). Yet, the highest Ty recorded was 39.1° C. Although 

exposure to this very high Ty was brief (< Ih), this same toad experienced multiple 

several-hour periods above 35° C (Figure 1 A, Table 4.1).

My field data indicated that B. punctatus must exhibit a higher CT^^ than previously 

presumed (e.g. McClanahan et al., 1994). This is further demonstrated by laboratory 

observations that was 45.2 ± 1.02° C (mean ± SE; n = 5). Red-spotted toads (n =

5) had a preferred temperature (Tp) of 26.4 ± 0.4° C for dry substrate and an aquatic Tp of

25.4 ± 0.5° C.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<u

Ia.

70

60

50

40

30

20

Day

-ArNxentaf
-  Directly u noar san d  surface

5 cm wKMr non-aquaK sechnonis 
• 10 cm under non-aaualtc  sedim ents
-  Beneaih demae shrubs 
.De^rockcrewce

8/12 8/13
Day

Figure 4.4 Temperature of various microhabitats for three typical summer days 

I logged (A) surface temperatures of sand (dotted line), sandstone (thin grey line), gravel 

(thin black line), and ambient air temperature of a shallow rock crevice for reference 

(thick grey line). (B) Temperatures of possible toad refuges including: directly under the 

sand surface (thick black line); under 5 cm of dry sediment adjacent to pond areas (thin 

dotted line); under 10 cm of dry sediment adjacent to pond areas (thick dashed line); 

beneath dense shrubs (thin black line); and a deep sandstone rock crevice (approximately 

30 cm; thick dotted grey line).
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Table 4.1 -  SUMMARY DATA FOR SEASONAL CHANGES IN TEMPERATURE
Error terms indicate standard error of the mean.

T em pcraum Scaaon Atr iSnaOo: Fend  w a o '" '0 3 d  A " '0 3 3  b — 'o o d  Ü " 'o a d  D " "

Moan Sam m er 2 B .2z  ]  6 2 3 .6 :  3 .-6 2 6 .: .- 3 .33 25.2.'. 3.33 25 .7  ,. 3 .-3 2 4 .8 :  3 .-2
Fan 1 5 .B iO ."9 3.4 1 3 - 3 - 3.2 z 3.33 i6 .2 iO . - 3 : 3 .7 1 0 .0 7 -5 .7  1 3 . "

Winter 9 .2 ^ 3 . '.  3 5 .5 :. 3 .04 -3 .3 ^ 3 .0 4 8 .3 1 0 .0 2 -6 .- lO.OS S .2 i0 .0 2
Spririg 20.9 . .0 . - 7 '6 .5  1 3 , - ' " 7 ,2 z 3 . ' '4 - 3 .3 i O . '2 - 3 .5 1 0 .- 3 -a .-  i 3 . - 4

MgKirrwm Summer 4 5 5 35.7 39.1 34.6 34.6 35.2
Fan 42 .2 21.5 32 ,6 3 '.6 31.1 24.7
Winter 26 .7 10.2 13.1 : ] .6 21.6 -0 .2
Spring 3 9 7 27 .7 30.1 33.1 31.0 35.7

Miijmum 6 2 15,0 4 / "3  8 1 2 8 -0 .7
to 3.4 3.0 3 - ' ]  ■ 6 7
Winter 1.9 2.1 3.5 7 5 3.5 5.2
Spring 3.1 5.1 X .6 3.-. 5.T

Temperatures recorded in Brownstone Basin, NV 
*When water present 
**Toad internal temperature recorded between July 12,2005 and May 22,2006. 
***Toad internal temperature recorded between July 27,2005 and July 3,2006. 
****Toad internal temperature recorded between July 12,2005 and June 16,2006.
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4.4 Discussion -  Adults

I am unaware of any previous description of Ty for free-ranging anurans that spans all 

four seasons. Although important contributions were made in the elucidation of thermal 

ecology of anurans by many previous workers (e.g. Carey, 1978; Lillywhite, 1970;

Moore and Moore, 1980; O ’Connor and Tracy, 1992; Seebacher and Alford, 2002; 

Seymour, 1972; Sinsch, 1989; Smits, 1984; van Gelder et al., 1986), these authors were 

limited by experimental constraints to short periods of monitoring and/or artificial 

environments. 1 employed implanted data loggers and documented Ty in free-ranging B. 

punctatus over the course of the entire year.

Despite T,, in accessible crevices that may be as low as -1.9° C or as high as 45.5° C 

or (Table 4.1, Figure 4.1 E), surface temperatures that may be greater than 60° C (Figure 

4.4) and as much as a 40° C thermal gradient available to them (Figure 4.4), Red-spotted 

toads appear to escape most temperature extremes. Of note, no toad in this study 

experienced freezing temperatures, although 1 have measured microhabitat temperature as 

low as -12° C in the area (data not shown). The coldest measured Ty was 3.1° C.

Further, toads may be warmer than the average crevice temperature for the entire winter 

(Figure 4.2). In summer, all toads are cooler than the average daily temperature (Figure 

4.2) and despite a wider range of microhabitat temperatures, toads experience relatively 

moderate Ty (Table 4.1 ). In contrast to the work of Carey (1978) on boreal toads in 

montane regions, where summer Ty fluctuated as much as 20-30° C in a diel oscillation,

toads in the present study experieneed mueh more damped diel oseillations (average diel 

Ty oscillations for all toads = 5.04 ±0.15° C, maximum recorded diel Ty oscillation was
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21° C). Summer active toads avoided extreme heat. These data, and those of Moore and 

Moore (1980) indicate that Red-spotted toads experience Ty above 35° C (Table 4.1).

Adult toads experience damped diel oscillations in Ty as compared to T^, presumably 

through thermal microhabitat selection (Huey, 1991). Adult toads are rarely active 

during the midday in warmer months (personal observations); rather these toads are 

active at night when radiative heat gain is minimized (Tracy, 1976).

Although data loggers were recovered from four toads, I am unaware of the fate of 

the remaining implanted toads. Toads may have avoided recapture, or have been lost due 

to relocation, predation, or mortality. Although it is tempting to speculate that some 

animals experienced fatal temperatures, our experimentally derived CT^ ,̂; of '45° C 

would suggest very few opportunities for toads to experience lethal temperatures in the 

wild.

In accordance with expectations, adult B. punctatus do not appear to experience broad 

temperature fluctuations in an extreme environment like the Mojave Desert. However, in 

the laboratory, I found these toads to be capable of tolerating much higher and lower 

temperatures than those reported previously. Although toads apparently withstand 

extreme temperatures for short periods, it is likely that these toads exploit behavioral 

selection of thermally moderate microhabitats to avoid the most extreme of desert 

temperatures.
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CHAPTER 5 

CONCLUSION & FUTURE DIRECTIONS

5.1 Summary

I documented ecologically relevant body temperature (Ty) for all stages of the Red- 

spotted toad. I found temperatures that exceeded previously suggested limits. 

Furthermore, I found Red-spotted toads to rarely experience temperatures that approach 

the thermal limits determined in these studies. However, later stage tadpoles are more 

sensitive to environmental temperatures and may oceasionally experience lethal 

temperatures in nature.

Contrary to the literature, these data suggest a slightly higher thermal tolerance of 

early stage tadpoles as compared to eggs, but consistent with the literature, generally 

lower thermal tolerance as larval development progresses (e.g., see table 5.1; Cupp, 1980; 

Ultsch et al., 1999; Noland and Ultsch, 1981; Sherman, 1980). The severity and extent of 

reduced thermal tolerance during the late stages of metamorphosis was not expected, 

particularly as water becomes warmest just before the completion of metamorphosis.

As expected, juvenile B. punctatus do experience the highest temperatures of any life 

stage and will voluntarily spend '10  minutes on extremely hot dry substrates, in excess of 

60° C. The data in Chapter 3 may underestimate ecologically relevant Ty in juveniles, as 

surface temperatures were not nearly as hot as in previous years.
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Table 5.1 -  SUMMARY DATA FOR DAYS SURVIVED BY ALL GROUPS AFTER

HEAT SHOCK. Error terms indicate standard error of the mean.

S ta g e
T e m p ,

R o a red G o n W

A v e m g e  D a y s  

3 5 ' C  t h

S u fv w e d  by  H c a :  S " « :<  S " o .
91» f  Oh 4 ^ »  '  f

:•
4 : ' C . 2 h 4 5

E g g s 15 7 .S 4 È 1  84 1 1 1 2 3 0 8 8 3 1 1 .4 3 5 8 8 1 1 8 5 4 8 8 1 1 8 5 0

(7 /2 6 ) 25 3 .5 1 1.41 8 .46  ± 2 3 3 4 1 1 ,0 2 2 .4 8 1 1 8 3 2 0 2 1 3 4 2 0

E w  {&051 2 , 3 3 4  tO IM 8 4 8 1 2 3 4 2 8 1 7 1 3 .1 ? 8  7 1 1 2 8 5 6 8 3 1 1  33 c

E g g s r ] 2 8  2 9 . 3 2 ' 1 1 2 5 l 2 j W ' 2 9 8 2 1 4 8 8 ' 2

W OBI 25 .3 .33±0.G 0 1 0 .0 8 1 1 ,7 0 1 & J0 4 1 3 8 8 0

T a t W w 15 3 3  8 6  ± 4  4 5 3 9  8 6 1 8  40 ] '

H a tcK ln g a 25 3 2 2 9  t5 J 8 3 3 1 8 8 1 5 .1 4 3 3 '1  t : ; 5 0

T a d p o lM '5 2 4 1 4 8 3 2 ;  1 1  31 0

S ta g e  % 2 5 2 6  5 1 5 .9 5 rC 7 ' iG .7 8 0 0 0

T a a p o te s 0 0 Q 0
S i a g e 2 9

'Eggs did not develop

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Adult Red-spotted toads do not appear to be subjected to the extremes I originally 

expected of their thermal environments. However, like juveniles, adults do experience 

temperatures higher than most tadpoles. High Ty experienced in nature, was several 

degrees higher than their previously assumed CT^,^. I found their CT„„ to be much 

higher ('6° C) than any temperature they experienced in the field and even sufficient to 

allow, admittedly brief, excursions on the hottest desert days.

B. punctatus tadpoles do not persist in these pools during winter. The fate of juvenile 

toads is largely unknown during the colder months. Adult toads over-winter in a habitat 

that provides severe cold (T  ̂below 0° C). However even at prolonged low T  ̂in an 

available crevice, internal body temperatures of the toads never approached freezing, 

suggesting selection of thermally buffered crevices or burrows. It is notable that all 

individuals managed to stay cooler than T  ̂in the heat of the day, even in the cool winter 

months (though very cold periods showed exception), suggesting a behavioral tendency 

to stay in reduced temperatures and the use of evaporative cooling. Selection of cooler 

microhabitats may be a physiological advantage on many fronts. Decreases in Ty afford 

substantial declines in water loss, some toads will go into a behavioral hypothermia in 

times of low water availability (Malvin and Wood, 1991). It is likely that desert toads 

like B. punctatus exploit a similar behavior to avoid desiccation. Alternatively, decreased 

temperature as a function of water loss may subject toads to more rapid desiccation.

Preferred temperature did not change significantly across development (Figure 5.1, p 

> 0.05), as would be expected (Dupre and Petranka, 1985). Low thermal variability 

within warm pools during the heat of the day may suggest the preference for a moderate
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Figure 5.1 Tp of Red-spotted toads across development 

Thermal preferences of tadpoles staged to Gosner stage 26, reared at 15° C, tadpoles of 

stage 35, reared at 25°, and juveniles and adults in both wet and dry gradients. With the 

exception of stage 39 heat shocked compared with controls, p < 0.05, there was no 

change between treatments or developmental stage (p > 0.05). When assessed as a group, 

stage 39 tadpoles were not significantly different from any other developmental stage (p 

> 0.05). There was no difference between wet and dry treatment juveniles and adults (p 

>0.05).
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temperature (~25° C), may be advantageous across development, particularly as late stage 

tadpoles become more thermally intolerant. Adults may select moderate temperatures to 

reduce fuel consumption and water loss.

In contrast to thermal preference, CT„,ax showed substantial variability across 

development (Figure 5.2). As opposed to other species, these data suggest adult B. 

punctatus to be more thermally tolerant than larvae (Cupp, 1980; Floyd, 1983; Sherman, 

1980). In light of the comparatively higher temperature of the adult thermal environment 

this finding is somewhat intuitive as thermal CT„,a„ is often correlated with environmental 

temperatures (Snyder and Weathers, 1975). Unfortunately, a reliable test of thermal 

maxima was not successful in juveniles. However, the highest field Ty recorded, 42.2° C, 

suggests the possibility of a CT„„„( near that of adults.

Late stage tadpoles undergo differentiation events resulting in higher metabolic 

demand (Smith-Gill & Berven, 1979). The partial pressure of oxygen in water decreases 

as temperature increases, this tendency, coupled with increased metabolic demand of 

rapid differentiation, likely exposes late stage tadpoles to respiratory distress (Ultsch et 

al., 1999). Late stage tadpoles are often observed swimming ventral-side-up at the 

air/water interface and resting on rocks just below the water surface (Figure 2.7). It is 

possible that these behaviors may be utilized to increase body temperature or acquire 

food, respectively. However, one or both of these behaviors may play a role in increased 

thermal tolerance by increasing oxygen up-take. Oxygen is more available at, and just 

below, the water surfaee. The basking-like behavior I observed was aeeompanied by 

very little activity and close proximity to the water surface, these factors together may
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Figure 5.2 Thermal tolerance across life history 

I present thermal tolerance across development: hatchling, larva with hind leg buds, and 

adults. Values were derived from laboratory heat shock experiments of response to 

stimulus (Hatchling, stage 23; Larva, leg buds, 35) and righting response (Adults) and are 

presented with SE (n = 5).
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help reduce metabolic rate and increase O 2  availability. Although surface-skimming 

tadpoles previously appeared to be eating algae from the water surface, it is possible that 

they are exhibiting atmospheric air gulping (described in fish; Ultsch, 1989). Some 

tadpoles, including Bufo woodhousii, exhibit this and slightly modified behaviors. 

Woodhouse tadpoles do not take in atmospheric oxygen directly as bufonids generally 

lack developed lungs, but take advantage of increased dissolved oxygen and aeration at 

the pond surface in hypoxic waters (Wassersug and Seibert, 1975). This behavior has not 

been previously associated with B. puncatus, but could potentially reduce the metabolic 

demand of gill function and increase oxygen availability sufficient to reduce oxygen 

deprivation, thereby increasing thermal tolerance and survivability in hot ephemeral 

ponds. More research is necessary to support this hypothesis (see Future Work, Section 

5.3.1).
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5.2 Evaluation

Due to the abnormally dry spring and summer season in the year tadpoles were 

closely analyzed (2007), there was only sufficient rainfall to fill the ponds in the late 

summer, resulting in a few small clutches in late July and early August. In past years, 

eggs were deposited much earlier in the year (e.g., late April, the previous year. Figure 

2.). In years when late spring eggs were deposited, there were also clutches as late as 

July or August. This multi-voltine tendency could present diverse thermal physiology 

between clutches that was unavailable for study in the year of the presented research.

Previous years also provided much larger clutch sizes, as a result, newly 

metamorphosed toads numbered in the thousands and were observed traversing substrates 

where surface temperatures may exceed 60° C. No surface temperatures recorded during 

the juvenile study approached such extremes. For this reason, I feel the juvenile data to 

be underestimated and in need of additional assessment. Additionally, the thermal 

tolerance of juveniles was not obtained as attempts to use righting response were 

unreliable as an indication of physiological thermal limit. Other assays could not be 

implemented, as the animals collected were likely to have become lab acclimated and 

field animals were quickly becoming less heat adapted as a function of early fall.

5.3 Future Work

5.3.1 Behavioral Methods of Reduced Respiratory Distress and Increased Thermal 

Stability in Late Stage Thermally Sensitive Tadpoles

Late stage tadpoles appear to be on the verge of their lethal thermal limits. However, 

development appears to continue through metamorphosis, even in high temperature
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pools. I hypothesize that late stage tadpoles must reduce the impact of high temperature 

by some behavioral means. Two distinct behaviors emerged in this study and seem 

heavily correlated with late stage, but seemingly not early stage, tadpoles. Both surface- 

skimming and basking-like behaviors appear to be demonstrated more frequently in late 

stage tadpoles, particularly in the heat of the day and in deeper murky pools. Future work 

is necessary to better quantify and qualify the frequency and occurrence of this behavior 

across development, season, oxygen availability, radiation levels, and water temperature. 

Other possible outcomes of this behavior and possibly surface skimming are increased or 

preferred food acquisition, increased solar radiation, or increased oxygen availability.

5.3.2 Heat Shock Response

Increased body temperature often results in dénaturation of critical proteins. These 

modifications result in loss or alteration of function, eliciting an up-regulation of various 

protective mechanisms (Hochachka & Somero, 1984). In an effort to reduce the 

detrimental effects of thermal stress, cells often induce expression of proteins that 

function to maintain native protein structure (Hubbard and Sandler, 1991). These heat- 

shock proteins (Hsps), are members of a larger group of molecular chaperones that are 

essential in protein trafficking, folding, intracellular localization, assembly, secretion, 

regulation, and degradation in both stressed and content cells (Feder & Hoffmann, 1999; 

Hubbard and Sander, 1991). These highly conserved chaperones, and the genes that 

encode them (hsps), are nearly universal among all organisms and can be used as 

indications of stress.

Using Hsp70 as a marker for physiologic thermal stress, we can establish if toads are 

naturally enduring physiological stress and if this stress response changes across
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development. The comparison of HspVO profiles across developmental stages and season 

will allow a better understanding of thermal tolerance in Red-spotted toads, and may 

yield insight into thermal tolerance and stress of other desert organisms.

In order to assess the physiological consequences of ecologically relevant temperature 

exposures, I exposed eggs and tadpoles to temperatures of 35° C, 40° C, and 45° C, for 

one or two hours, and reared a subset to assess developmental time and possible 

abnormalities. A subset of eggs and tadpoles from each test group were snap frozen and 

stored at -80° C for later analysis of HspVO expression.

My preliminary data reveal that heat shock may facilitate development (Table 5.1). 

However, some eggs failed to develop and further work is required before definitive 

conclusions can be drawn. No egg or tadpole survived the 45° C thermal shock process. 

Eggs and tadpoles were reared at 15° C and 25° C to approximate cooler spring and 

warmer summer conditions. All embryos reared at 15° C, either did not hatch or died 

before metamorphosis. Due to sporadic and/or retarded hatching, survival (but not 

hatching) was determined for eggs reared at 15° C. Three different groups of eggs, from 

three late summer clutches were shocked and reared (designated Eggs 1; Eggs 2; and 

Eggs 3 (only shocked for one hour; Figure 5.3.1). Similar trends in survival persisted 

throughout trial groups and are presented in Table 2.1. A profile of one egg group is 

presented in Figure 5.3.2 (Eggs 1).

Surprisingly, control embryos typically died within only a few days of egg deposition. 

This event presented a problem in assessing the effect o f  a heat shock in respect to a non

treatment control. However, this striking die-off event suggests a developmental 

advantage for late summer B. punctatus experiencing a thermal shock early in
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Figure 5.3.1 Percent survival of eggs to hatch after heat shock for three trial groups 

Preliminary data suggest an advantage to being thermally shocked as eggs at 35° C. 

Unfortunately, a large die-off event occurred in every control group, disallowing analysis 

in comparison to the control. These data present many questions and will likely spur 

continued work on spring and early summer clutches.
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Figure 5.3.2 Average days survived beyond hatch and rates of deformity, of heat 

shocked developing embryos (eggs), reared at 25° C 

The days survived, days to hatch and days survived after hatch are represented (reference 

left axis) for each heat shock group (n = 24) reared at 25° C (mean ± SE). The percent of 

individuals from each group to hatch is displayed in white and the percent of all 

individuals who exhibited deformity during development is represented by diagonal lines 

(reference right axis).
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development. Of the embryos that developed at 25° C, the 35° C shocked individuals 

exhibited deformation (evidenced by bilateral asymmetry) in proportions equivalent to 

those demonstrated in the surviving control animals, 8.3%. In contrast, 40° C shocked 

eggs exhibited a 38% deformity rate (5.3.2).

Eggs shocked at 35° C or 40° C and reared at 25° C developed much faster and out 

lived control (no treatment) eggs (Table 5.1). In one experiment, no control eggs 

survived to hatch. However, in two other experiments, a few eggs developed to hatch, 

but died promptly. Eggs that had been heat shocked at 35° C showed the highest rate of 

survival to hatch. 40° C shock groups showed high hatch rates and similar times to hatch 

as 35° C shock groups, while having much longer survival times, but still none reached 

adulthood (Figures 5.3.2, 5.3.3, 5.3.4). There did not appear to be a clear advantage of 1- 

hour or 2-hour heat shocks. Some experiments demonstrated a survival advantage for 2- 

hour thermal shocks, while others exhibited an advantage after 1 hour.

Hatchlings (stage 23) and tadpoles (stage 35) shocked at 35° C demonstrated similar 

survival rates to controls. Hatchlings also exhibited similar survival rates following a 

40° C shock, while stage 35 tadpoles did not survive the 40° C shock. Survival declined 

drastically in 40° C shocked hatchlings after a period of several days. Late stage tadpoles 

(> stage 39), all died during 35° C and 40° C heat shocks; this stage was not shocked at 

45° C.
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Figure 5.3.3 Percent survival of heat shocked developing embryos (eggs), reared at

15° C

Percent survival of developing embryos (eggs) after no treatment (control, closed black 

circles), after being heat-shocked at 35° C (squares), 40° C (triangles), or 45° C (right 

triangles), for 1 (closed shapes) or 2 hours (open shapes). Heat-shock was applied 

within 24-hours of egg deposition and no tadpoles had developed beyond embryonic 

stages. No eggs survived a thermal shock of 45° C, for any period. No eggs developed 

to metamorphosis.
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Figure 5.3.4 Percent survival of heat shocked developing embryos (eggs), reared at

25° C

Percent survival of developing embryos (eggs) after no treatment (Control, closed black 

circles), after being heat-shocked at 35° C (squares) or 40° C (triangles), for 1 (closed 

shapes) or 2 hours (open shapes). Heat-shock was applied within 24-hours of egg 

deposition and no tadpoles had developed beyond embryonic stages. Eggs were raised at 

25° C, and were carefully observed to characterize time to hatch and survival after hatch. 

No eggs developed to metamorphosis.
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5.3.3 Trade-offs of Water Loss, Drinking & Thermal Avoidance

Evaporative cooling is crucial to terrestrial staged anurans’ maintenance of moderate 

body temperature. However, this cooling method does not come without cost. In order 

to acquire enough water for metabolism and cooling, amphibians must absorb water and 

have enough either available in the environment or stored in the bladder and tissues to 

cool the body to reasonable temperatures. Anurans acquire most of their body water 

through cutaneous absorption, this method of water uptake requires increase capillary 

dilation and substantial increases in blood flow across the seat patch (Viborg & Hillyard, 

2005X

In future efforts, I would like to look at the physiological cost of water absorption 

using indirect calorimetry, and establish an energy budget model addressing the interplay 

between increased body temperature, water loss and cost of water uptake. At what body 

water will amphibians down-regulate water loss in the face of increasing body 

temperature?
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APPENDIX I

SABLE SYSTEMS THERMAL ACTIVITY GRADIENT

The thermal gradient from Sable Systems Inc., Las Vegas, NV, was used in all 

thermal preference experiments. The gradient uses two independently operated Peltier 

devices, controlled by a dual Peltier regulator, to establish a linear thermal gradient along 

a 2 cm thick aluminum surface 66 cm x 6 cm (Sable Systems Inc., Las Vegas, NV, USA). 

6 cm high Plexiglas walls, lined with 64 motion triggered LED light gates allow for 

observation of animals from the side and with a computer operated location logging 

device. Once the gradient was established, the temperature was measured at each of the 

gates.

The consistency of the gradient was verified between each trial of the experiment by 

measuring temperature at 8 cm increments. The temperature of each animal-selected 

location at the conclusion of the experiment was verified with a thermocouple. Location 

data were logged using a Linear Activity Detector, LAD (Sable Systems Inc., Las Vegas, 

NV, USA), interfaced with LadScan software (Sable Systems Inc., Las Vegas, NV,

USA). When an individual LED beam was interrupted, the LAD transmitted a signal to 

LadScan corresponding to the location of the animal. All data of location and time spent 

were integrated in LadScan.

The gradient was covered to reduce stress to animals. Though accommodations were

attempted to record the locations of smaller tadpoles, several trials were removed from
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the data set as the tadpoles failed to trigger the light gates on their own. Initially, thermal 

gradients of no more than 10 degrees were used, however the gradient proved so effective 

at forming linear gradients even at much broader thermal ranges, the gradient was set to 

allow animals the high and low limits of their preferences in a single gradient. This 

change in method also reduced edge effects to the point of being undetectable.

Figure A .l Sable Systems Thermal Gradient
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APPENDIX II

LIST OF ABBREVIATIONS AND ACRONYMS

Tb -  Body temperature
CT„3 ,( -  Critical Thermal Maxima
Tp -  Preferred body temperature
PBT -  Preferred Body Temperature
Tjiir -  Air temperature
T  ̂-  Ambient temperature

& T„ -  Water temperature 
Twater column -  Water temperature when measured mid water column 
T r o c k  s u r f a c e  “  Rock surfacc tempcrature
TB -  Total Body length, the length of a tadpole’s body from snout to tip of tail 
BE -  Body Length, the length of a tadpole’s body excluding tail, from snout to the base 

of tail musculature
DO -  Dissolved Oxygen, the amount of oxygen dissolved in solution, often expressed by 

percent
PO 2  -  Partial Pressure of Oxygen 
h -  Hour(s) 
min -  Minute(s)
ANCOVA -  ANalysis of COVAriance 
SE -  Standard Error
n -  sample size, number of individuals in a sample or trial
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