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ABSTRACT

Quantitative Comparison of Sample Preparation Methods 
for Low-Level Alpha Spectrometry

By

Sherry Alina Stock

Dr. R alf Sudowe, Examination Committee Chair 
Assistant Professor o f Health Physics 

University o f  Nevada, Las Vegas

There are currently several widely accepted methods o f sample preparation procedures

for alpha spectroscopy. Alpha spectroscopy is becoming more important due to

increased concentration on nuclear waste management, site decontamination and

decommissioning, and environmental assessment. Due to increased emphasis on

emergency response and preparedness, there is a strong desire to make the analysis o f

samples as quick and efficient as possible. Three methods evaluated in this project are

electrodeposition, microprecipitation, and evaporation. Actinides are the main elements

o f concern, namely a tracer o f  ̂ "^'Am is used. Each method is itself optimized and

evaluated quantitatively, and then the methods are compared against one another.

Parameters such as energy resolution, sample yield and preparation time are evaluated to

determine the most productive method for each scenario for preparing samples for alpha

spectroscopy. M icroprecipitation is the recommended due to the high yields produced

and consistency o f the results.

Ill
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CHAPTER 1 

INTRODUCTION

I . I Alpha Spectroscopy

Alpha spectroscopy is a useful detection method for determining alpha emitting 

radionuclides in environmental samples. In modem  times, alpha spectroscopy is 

becoming more important due to the shift from nuclear weapons development to nuclear 

waste management, site decontamination and decommissioning, and environmental 

assessment. Due to increased emphasis on emergency response and preparedness, there 

is a strong desire to make the analysis o f samples as quick and efficient as possible. It is 

uncertain if  and when the malevolent use o f radioactive material, a severe nuclear 

accident or some other incident will occur. In order to recover as quickly and effectively 

from such an incident, rapid analysis methods need to be developed for alpha 

spectroscopy.

Alpha spectroscopy is a useful tool in the field o f radiation detection for several 

reasons. It allows determination o f isotopic composition o f samples because o f  the 

ability to collect, store and create a spectmm o f the energies o f the particles emitted from 

an alpha source. Each isotope has one or more corresponding energies o f the emitted 

alpha particle which can be used to identify the content o f the sample. Unlike other types 

o f  decays, alpha decay results in a monoenergetic line spectrum that allows assignment o f
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lines to individual transitions. This property not only provides for nuclide identification, 

but also quantification as well. Since each individual alpha particle reaching the detector 

is recorded, they will add up in “bins” in the multi-channel analyzer (MCA). The amount 

o f  events recorded at each particular energy is calculated as counts per second, which can 

then be converted to disintegrations per second using the known efficiency o f  the detector.

Because o f the nature o f alpha radiation, many factors must be taken into 

consideration that would not normally be o f concern with the detection o f other types o f 

radiation. High-resolution alpha spectroscopy requires a very thin, as close to monatomic 

as possible, uniform source. There should be no foreign matter in the source to attenuate 

the alpha particles. Alpha particles are relatively massive and have a charge o f +2, 

therefore they expend their energy over a short distance and typically show limited 

penetration into materials with typical path length on the order o f a few centimeters or 

less in air. Some parameters important for acceptable results are limiting self absorption, 

limiting absorption into the air and the detector window, minimizing coincidence losses 

and minimizing backscatter. Because o f these sample requirements, preparation time for 

the samples can be more time consuming than sample preparation methods for other 

types o f counting.

The application o f alpha spectroscopy has several potential problems that can 

compromise the validity o f  data and results and complicate detection. Sample 

preparation, no matter the method, can negatively affect the quality o f the sample being 

measured. For environmental samples, collection o f an alpha spectrum is complicated by 

low levels o f radioactivity coupled with the limited range o f the alpha particle. Because 

o f this property, any excess matter contained in the sample, including the radionuclide
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itself i f  the sample is too thick, will attenuate the alpha particles. Foreign matter causes 

decreases in energy resolution. The sample needs to be as close to monatomic as possible 

with as little foreign matter in order to get the best results from alpha spectroscopy.

W hen samples are counted that have high activities, recoil contamination can become 

a problem that can lead to an increased background in the system after only a single 

sample has been counted. This issue can make decontamination o f the detectors 

necessary after each use, which can become quite time consuming if  there is a large 

amount o f samples to be counted in the laboratory (Canberra 2001). W hen the samples 

are ready to be counted by alpha spectroscopy, the only parameters left to control are the 

background and efficiency o f the detectors. Since detector efficiency can only be 

controlled by replacing a detector with a more efficient model, the background must be as 

low as possible, especially for environmental samples. Too much background can lead to 

radionuclides being undetectable if  the samples have a very low specific activity.

Usually, laboratories that analyze samples with varying activity levels will dedicate at the 

very least a few chambers to environmental level samples to avoid the time consuming 

task o f cleaning the detectors before every sample. On today’s market, the detectors with 

the highest efficiency run at about 37 % and are able to achieve energy resolutions as low 

as 10 keV.

1.2 Introduction o f Methods

There are currently several accepted methods o f  sample deposition for alpha 

spectroscopy. The three main categories o f sample deposition procedures are 

eleetrodeposition, microprecipitation, and evaporation. Each o f these methods can be
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performed in several different ways. These three categories and the preferred methods 

will be discussed in detail in the following seetions.

1.2.1 Eleetrodeposition

Eleetrodeposition is one o f the most accepted methods o f sample preparation for alpha 

spectroseopy. One o f the most aeeepted methods is the Kressin method, developed in 

1977 by Ivan Kressin. The Kressin method uses a self-buffered solution o f  sodium 

sulfate-sodium bisulfate as an electrolyte solution. W hen electrodepositing a 4 pCi 

sample o f  americium or plutonium, the method produced results o f 102.4 % ± 3.4 

recoveries for americium and 100.9 % ± 2 for plutonium with excellent spectral 

resolution for the alpha energies (Kressin 1977).

The process o f  eleetrodeposition involves adding a solution containing activity into 

an electrolytic solution then applying voltage to the deposition cell for a certain set 

current and a certain set amount o f time. Some parameters important for 

eleetrodeposition that will be evaluated are the current, plating time, current density, 

applied voltage, and whether or not the planchets are eleetropolished and washed before 

the start o f the electroplating process. The results are dependent upon the chemical 

properties o f the element, especially the electrochemical potential and possible foreign 

material present in the solution. The electrochemical potential o f the element, which 

depends on the nature o f the ion; its chemical form, and its concentration, is very 

important. Aside from the radionuclide part o f the sample, current density, material and 

design o f the electrode and eleetrochemieal cell are all important in optimizing the 

procedures (Zolotov 1990).
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1.2.2 Eleetrodeposition Theory

The general basis behind eleetrodeposition is that electroehemical reactions allow 

radionuclides present as ions in solution to be deposited onto an electrode. This will 

occur either by a spontaneous process or by a nonspontaneous process. During a 

spontaneous process, radionuclides are deposited due to a favorable electrode potential 

existing between the ion and electrode. For nonspontaneous process to occur, an external 

voltage must be applied (MARLAP). The eleetrodeposition process discussed in this 

paper is nonspontaneous.

Deposition o f actinides can be more difficult to control because o f the decomposition 

o f  water and reactions o f anions and cations at electrodes (A dolff and Guillaumont 1993). 

For this reason, each individual step o f the eleetrodeposition process and each part o f the 

sample solution must be examined to determine the best combination. Overall, the 

effectiveness o f eleetrodeposition o f trace components o f actinides depends on the 

electrode potential, electrode surface area and material, properties o f the electrolyte 

solution, duration o f eleetrodeposition and temperature (Zolotov 1990).

The first step in the process o f sample preparation for the Kressin method is to add 2 

mL o f 5 % NaHS 0 4  and 0.5 mL o f 70 % HCIO4 to the sample in a 30-50 mL beaker and 

heat at 180-200 °C until dryness. The 5 % NaHS 0 4  is added to prevent tracer quantities 

o f the actinides from baking onto the beaker during fuming (Kressin 1977). The 70 % 

HCIO4 drives o ff any organics found in the solution. As the fuming proceeds to dryness, 

the actinides remain in an acid salt that has formed the NaHS 0 4 . The NaHS 0 4  will 

remain with the radionuclide sample and will act with as part o f the electrolyte solution 

during the plating process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the next step, the beaker is rinsed with DI water to wash o ff anything that may 

have gotten onto the sides o f the beaker above where the solution was. Next 1 mL o f 

concentrated HCl is added and again heated until it is dry. This step is usually only 

performed twice, but it can be repeated as much as needed to get the acid salt to become 

white, which means the sample is pure and should have no organics that will interfere and 

cause resolution losses when the sample is counted by alpha spectroscopy. I f  the sample 

is not white, but has more o f a wet translucent appearance, this indicates there may still 

be HCIO4 present (Kressin 1977).

Once the sample has cooled to room temperature and before the sample is ready to be 

added to the cell to be plated out, 3 mL o f DI w ater is added and let sit for 10 minutes to 

allow for dissolution o f the NaHS 0 4 . The pH o f the solution at this point is only 0.9 

which has proven too low for the eleetrodeposition process. A buffer must be added to 

the sample to raise the pH. The salt o f an acid is an ideal buffer for that acid (Kressin 

1977). N a 2 S0 4  is an ideal buffering agent for NaHS 0 4  which will bring the pH o f the 

solution to between 1.5 and 2.5. The ideal pH for eleetrodeposition is approximately 2. 

Sodium sulfate is also an excellent electrolyte which acts to decrease the eleetrieal 

resistance o f the cell (Kressin 1977).

1.2.3 Mieropreeipitation

M icroprecipitation is another common sample preparation method for alpha spectroscopy 

that rivals eleetrodeposition in sample yields. It is newer than the eleetrodeposition 

methods and some consider it to be the preferred method. Literature states that although 

the spectral resolution o f microprecipitated samples is almost as good as eleetrodeposited
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samples, the mieropreeipitation procedures are mueh faster, more reliable, and generally 

give chemical yields greater than 98 % (Sill 1987).

The mieropreeipitation method that will be evaluated in this project is the CeFs 

method. In this method, a cerium carrier is added to a centrifuge tube containing the 

sample. Concentrated hydrofluoric acid is then added and swirled to mix. The solution 

is then left to drain onto a filter which is set up in an apparatus to which a vacuum is 

applied to speed the filtration process. W hen the sample has all been filtered through, the 

filter is then dried under an infrared lamp and mounted onto a planchet to be analyzed by 

alpha spectroscopy. Some parameters important for mieropreeipitation are the total 

amount o f carrier used, fraction o f  the carrier in total solution, type o f carrier, 

precipitation time, and the amount o f hydrofluoric acid in the solution. Sources prepared 

by mieropreeipitation should be thoroughly dry before measurements to prevent self

absorption and scattering.

1.2.4 Mieropreeipitation Theory

During mieropreeipitation, insoluble compounds o f a specific radionuclide are formed 

and isolated from other foreign ions in the solution. For this method, both the carrier and 

the hydrofluoric acid play important roles. The carrier is defined as a substance that is 

added in an appreciable amount, which, when associated with the tracer o f a specified 

substance, in this case Am, will carry the substance through the chemical and physical 

process. In many solutions, especially those o f environmental samples, the concentration 

o f  the radionuclide o f interest is too low to cause precipitation, even in the presence o f 

high concentrations o f its counter-ion, because the product o f the concentrations does not 

exceed the solubility product. I f  a radionuclide is present in solution at sub-miero
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concentrations, the radionuclide will not form an insoluble compound upon addition o f a 

counter-ion. In these cases, the radionuclide can often be brought down from solution by 

co-precipitation, associating it with an insoluble substance that precipitates from solution. 

The cerium carrier acts as the insoluble substance that will co-precipitate with the 

americium (MARLAP).

The hydrofluoric acid in the system automatically dissociates in water. The cerium 

carrier is cerium (III) nitrate hexahydrate. W hen the eerium (Ce^^) combines with the 

fluorine atom (F ) from the hydrofluoric acid, CeF] is formed. The rare earth fluorides 

are very effective scavengers o f actinides in oxidation states III and IV, but not for 

actinides in oxidation states V and VI. Cerium is a lanthanide element that is highly 

insoluble in water when complexed with fluoride ions, thus a precipitate will be formed. 

The mass and size o f these elements are comparable to actinides, making them better 

scavengers for precipitation.

The Gelman filter has an important role in the mieropreeipitation process as well. 

Excess solution is removed by the 0.1 micron filter while precipitate losses are minimized. 

The filters are washed with ethanol prior to the mieropreeipitation process to clean the 

filter and check for possible leaks in the apparatus. W hen the sample has been filtered 

through, the filter is again washed with ethanol in order to remove some excess water.

The filters must be dried under an infrared lamp prior to counting by alpha spectroscopy 

in order to set the precipitate and eliminate excess w ater that can lead to attenuation o f 

the alpha particles.
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1.2.5 Evaporation

Evaporation is the third type o f  sample preparation method for alpha spectroscopy. It is a 

simpler procedure for sample preparation, therefore it does not require nearly as mueh 

time as the previously mentioned two methods. Due to the nature o f this method, it is 

most commonly used when samples need to be quickly processed and a high degree o f 

sample uniformity is not required.

After a planchet is cleaned with water or dilute hydrochloric acid, an aliquot o f  the 

sample is pipetted onto a planchet and then heated on a hot plate until the sample is dry. 

Care must be taken to avoid sample loss onto the hot plate due to unacceptable pipetting 

methods or a hot plate temperature that is too high and could cause sputtering o f  the 

sample. Some parameters important for evaporation are the temperature o f the hot plate, 

drying time, method o f addition and planchet geometry. The most common problem with 

this method is the possibility o f non-uniform sample spreading on the planchet or the 

sample not being thin enough, causing self-attenuation.

1.2.6 Evaporation Theory

This method is considered more primitive than eleetrodeposition and 

mieropreeipitation due to the fact that there are no chemical techniques performed on the 

sample to remove any contaminants. Anything left on the planchet after evaporation will 

cause unwanted, unaccounted for attenuation. Peak tailing on the low energy end o f the 

peak will occur because partieles will reach the detector with lower energies. Since the 

alpha particles are being attenuated, they will hit the detector with an energy less than the 

characteristic energy o f  the isotope they were emitted from. The attenuation only slows 

down the alpha particles, which is why the high end energy o f the peak is usually almost
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vertical. The less o f a tailing the peak has on the low energy end, the better the energy 

resolution o f the sample is whieh will make it much easier for identification and 

quantification the sample.

1.3 Objective o f Research

This research project will examine and compare the three sample preparation methods for 

alpha speetroscopy mentioned above. Each o f the methods will be optimized based on 

yield, energy resolution, and time. The best procedure for each o f the three methods will 

then be compared and a selection can be made as to which procedure is best for each 

possible scenario, whether it be emergency response or routine sample analysis. A 

standard solution o f  ̂ "^'Am in dilute hydroehlorie acid will be used for each method in 

order to concentrate solely on the sample deposition aspect o f sample preparation. Using 

the same radionuclide standard for each method allows for easier comparison between the 

three methods.

For data analysis purposes, there are several goals o f this research project. The first 

goal is to obtain the best possible spectral resolution. This is important due to the fact 

that many alpha emitting isotopes emit alpha particles in energies in very close 

proximities to other isotopes, some on the range o f 10-20 keV. M ost detectors cannot 

obtain spectral resolutions better than 12 keV so sample preparation must be as clean as 

possible to eliminate as much attenuation as possible in the sample itself. Another goal is 

to obtain the best possible yield. For the sake o f counting statistics, a high yield must be 

obtained in order to shorten the length o f  time the sample will need to be counted for. If  

approximately 1 0 , 0 0 0  counts are obtained under a peak, the counting error will be an

10
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acceptable 1 %. The reduetion o f sample preparation time is also a goal o f this research 

project. I f  any o f the steps in the sample preparation are rushed, however, the yield and 

energy resolution o f  the sample can become compromised. Certain areas o f the sample 

preparation can be optimized to a certain extent, however, without compromising the 

sample thinness or cleanliness.

The last and possibly most important or all-encompassing goal o f this research project 

is to be able to assign the best method o f  sample preparation to each task that needs to be 

completed. I f  a task involves radionuclide identification, a method with a high energy 

resolution is needed to make sure there is no peak blending. A task that needs to achieve 

a quantification o f the radionuclide needs to be performed using a method that produces 

the best sample yield. I f  time is o f most concern and the energy resolution and yield 

don’t need to be optimized, a method is needed that can be performed in the least amount 

if  time.

I I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2 

MATERIALS AND METHODS

2.1 Materials

A list o f materials used for all experiments can be found in appendix II.

2.2 Eleetrodeposition

2.2.1 Apparatus

The equipment used for the electroplating process consists o f a 12 volt eleetrodeposition 

unit with a current range from 0 to 2.0 amps and an eleetrodeposition cell. The 

electrodepositor is a piece o f equipment providing a current to an anode and cathode 

placed in the cell in order to deposit the sample onto the planchet. Components o f the 

electroplater include the power supply box, resistance adjustment knobs, meters to 

monitor the resistance, a toggle switch for each o f the twelve stations which reverses the 

current for the option o f electropolishing or eleetrodeposition, and a platinum electrode. 

All o f this can be seen labeled in Figure 2.1 below.
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Figure 2.1. Eleetrodeposition Apparatus.

The cell is the piece o f equipment that holds the sample. It consists o f a plastic 

scintillation vial with the bottom cut out, the vial eap, a rubber seal, a copper anode and a 

stainless steel planchet. Figure 2.2 shows the components o f the cell and how it is 

assembled. Once the cell is assembled, it is set onto the eleetrodeposition unit and the 

platinum electrode is lowered into the cell.

13
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Figure 2.2. Eleetrodeposition Cell

2.2.2 General Method

The method o f eleetrodeposition uses an electroplating apparatus and an electrolyte 

solution to deposit the sample onto a stainless steel planchet using an applied current. A 

700 pL sample o f  ̂ "^'Am is first placed into a 50 mL beaker. Next, 2 mL o f an electrolyte 

solution o f 5% sodium bisulfate (NaHS0 4 ) and 0.5 mL o f perchloric acid (HCIO4) are 

added to the beaker. The beaker is then placed on a hot plate at temperatures between 

180°C and 200°C to drive o ff the perchloric acid. Complete removal o f  perchloric acid 

can be determined by when the sample stops firming in a white color. Addition o f  the 

perchloric acid is done to drive o ff any organics in the solution that may later interfere 

w ith the purity o f the sam ple. The beaker is then a llow ed  to coo l before rinsing w ith de

ionized (DI) water, adding 1 mL o f hydrochloric acid (HCl) and placing it back on the 

hot plate to dry. After repeating the HCl addition and drying 2 to 3 times, the sample is 

allowed to cool again to room temperature before adding 3 mL o f DI water. After the
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sample is left to dissolve for 10 minutes, 4 mL o f 15 % sodium sulfate (Na2 S0 4 ) is added. 

Sodium sulfate is the second part o f the electrolyte solution and acts as a buffer to 

maintain a pH o f approximately 2 in the solution. The sample is then transferred to the 

electrodepositing cell. The beaker is rinsed with DI w ater and the rinse is also added to 

the cell.

Once the solution has been transferred to the cell and the cell is set up on the 

electrodepositor, the platinum wire which acts as the anode is lowered into the cell 

containing the solution, about 3-4 mm above the planchet. The spacing o f the electrode 

determines the electric field which will affect how well the sample is eleetrodeposited 

onto the planchet. Also, if  the platinum anode is lowered too far into the cell, this can 

create trapped bubbles which can interfere with the eleetrodeposition process. The 

electroplater is then switched on and set to the deposit setting. Each individual cell to be 

plated is switched on and the current is adjusted to 1.0 A. The current is monitored for 

approximately the first 15 minutes and again after 1 hour o f plating time. Cells are also 

monitored for leakage throughout the process. Usually, the current holds steady after 

equilibrating for about 15 to 20 minutes. After the sample is allowed to plate out for 2 

hours, 2 mL o f 4 M potassium hydroxide (KOH) is added and left to plate for an 

additional 2 minutes. The current will jum p when the KOH is added so care must be 

taken to keep the current adjusted to 1.0 A. The addition o f the KOH is done to 

neutralize the acidic solution. The Am tends to deposit as a hydroxide and the addition 

o f  the KOH will prevent the AmOH from dissolving back into the solution.

At the end o f the plating run, the cell is disassembled and the planchet is then washed 

with 1 % ammonium hydroxide (NH 4 OH). This is done to make sure the deposited

15
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surface o f the planchet is neutralized and the americium is in the form o f a hydroxide.

The planchet is then heated on a hot plate until dry, and then it is ready for counting by 

alpha spectroscopy.

2.2.3 W ashed Flanchets

The Kressin method calls for the planchets to be washed prior to electrodepositing a 

sample onto them. Planchets are shipped with a plastic coating to protect the surface that 

the sample will be electrodeposited onto. Once the plastic is removed, the planchet is 

washed with acetone to remove any residue the plastic may have left on the planchet. 

Next, the planchet is washed with nitric acid (HNO 3 ) to remove any excess organics from 

the surface. Any substance that is not cleaned o ff o f the planchet can interfere with the 

sample deposition and can cause attenuation o f the alpha particles when they are being 

counted by alpha spectroscopy.

In this part o f the study, comparisons were made to determine if  washing the 

planchets before plating had any effect on the energy resolution o f  the sample or the 

sample yield. Several samples were electrodeposited onto washed planchets and the 

same number o f samples were electrodeposited onto unwashed planchets.

2.2.4 Polished Planchets

The Kressin method also calls for the planchets to be electropolished before the sample is 

electrodeposited. This process involves adding 10 mL o f a solution containing 4.5 mL o f 

51% sulfuric acid (H2SO4), 3.5 mL o f 86% phosphoric acid (H3PO4), and 2.0 mL o f DI 

water to the cell. For this process, for each cell containing a planchet to be 

electropolished, the toggle switch is set to the polish setting, which reverses the flow o f 

the current, and a current o f 1.0 A is applied for 15 minutes. This process is performed in
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order to make the surface o f the planchet smoother for less attenuation o f the alpha 

particles when counting by alpha spectroscopy.

Once the polishing step is complete, the cells can remain assembled with the planchet 

remaining a part o f the cell. It is best if  the cells are rinsed several times to remove all 

traces o f  the acidic solution and then refilled with a few mL o f DI water until they are 

needed for the electrodeposition process. Unless leakage occurred from the cell during 

the electropolishing process, it is recommended that the cell remains assembled so that 

the electropolished portion o f the planchet will be exactly the same surface that the 

sample will be electrodeposited onto. I f  the cell is disassembled, it is possible that some 

o f the electrodeposition will occur on parts o f the planchet that were not electropolished. 

In this part o f  the study, a comparison was made to determine if  electropolishing the 

planchets before plating has any effect on the energy resolution o f the sample or sample 

yield. Several samples were electrodeposited onto electropolished planchets and the 

same number o f samples were electrodeposited onto planchets that had not been 

electropolished.

2.2.5 Time Study

It has been in question whether the sample really needs to be plated for a full 2 hours at

1.0 A. In order to answer this question, aliquots o f sample solution are removed at 

various time intervals during the electrodeposition process. The Kressin method is used 

as described above using planchets that have been both washed and polished. Once the 

sample solution is transferred to the cell, the electroplating run is started as normal. For 

the first 30 minutes o f electrodeposition, 50 pL or 100 pL aliquots are pipetted out o f the 

cell every 5 minutes and added to a scintillation vial containing 10 mL o f liquid
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scintillation cocktail. This process is repeated every 10 minutes for the second 30 

minutes o f electrodeposition time and every 2 0  minutes for the last 60 minutes o f 

electrodeposition time. The final sample was taken after the addition o f  the potassium 

hydroxide. An aliquot is also taken before eurrent is applied to the cell. Twice the 

quantity o f sample from the general procedure is used in order to account for the aliquots 

being removed and to improve eounting statisties. The amount o f  liquid in the cell was 

closely monitored throughout the electrodeposition process so that the total volume 

remained at 10 mL. If  the level o f solution reached below 10 mL, DI w ater was added to 

bring the sample volume back up to 10 mL.

Once all o f the aliquots were collected, they were eounted on a Perkin Elmer Tri-Carb 

Model 31OOTR liquid scintillation counter, each for a period o f one hour. The planehets 

were rinsed with 1 % ammonium hydroxide and then heated on a hot plate to dry, then 

counted by alpha spectroseopy on a Canberra Alpha Analyst. The results from the alpha 

speetroscopy o f the planehets were compared to the results from the liquid scintillation 

samples to better determine the yield o f the sample.

2.2.6 Current Study

Along with the time study, the main goal o f the eurrent study is to decrease the amount o f 

time needed for the sample to plate out and to see the effects o f changing the current on 

the electrodeposited sample. Using the Kressin method, the current was varied in 

increments o f 0.2 A from 0.6 A to 1.4 A while keeping the plating time constant at 2 

hours. Aliquots o f 100 pL o f sample were taken from the cell at the end o f the 

electrodeposition run and counted by liquid scintillation. The electrodeposited planchets 

were counted by alpha spectroscopy and compared to the results from the liquid
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scintillation samples to get a more accurate yield measurement. As with the time study, 

care must be taken to monitor the solution level during the electrodeposition process. If  

the sample level drops below 10 mL from either evaporation or aliquot removal, DI water 

was added to maintain a total sample volume o f 10 mL.

2.3 M icroprecipitation

2.3.1 General Method

The experimental setup for the microprecipitation procedure uses two 100 mL 

polypropylene flasks. The second flask is used as a trap which is connected to a vacuum 

pump as seen in Figure 2.3. A 25mm 50 mL polysulfone funnel is connected to the top 

o f  the first flask using a rubber stopper to seal the flask. A 0.1 micron 25 mm diameter 

polypropylene Resolve filter is placed on the Gelman apparatus consisting o f a 

polycarbonate base and metal screen between the bottom of the funnel and on top o f the 

rubber stopper. Vacuum is applied to the system and the filter is prewetted with ethanol 

(C2H5OH) to check for leaks.

Once it is assured that there are no leaks, the system is rinsed with DI water.

A 350 pL sample volume o f  ̂ "^'Am is added to a 50 mL centrifuge tube. Next, O.I mL o f 

a cerium carrier, cerium (III) nitrate Hexahydrate (Ce (NOg)] 6 H 2 O) at a concentration o f 

0.00155 g mL ' is added to the centrifuge tube. Next, 1.0 mL o f 28 M hydrofluoric acid 

(HF) is added and then the whole solution is swirled to mix and left to sit.

After the solution has been left to sit for at least 30 minutes and the experimental 

setup is ready, the solution is poured into the funnel with vacuum applied. The solution 

runs through the filter and into the flask. Neither the ^"^'Am nor the CeFa will filter
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through and thus be left on the resolve filter. The filter is then washed with DI water and 

with ethanol for drying. Once the vacuum has been turned o ff and the pressure has gone 

up in the system, the resolve filter can be removed carefully with tweezers and placed in 

a plastic Petri dish to be dried under an infrared lamp. The filter is then m ounted on a 

stainless steel planchet to be counted by alpha spectroscopy.

Figure 2.3. M icroprecipitation Apparatus 

2.3.2 Time Study

The method used calls for letting the solution sit for at least 30 minutes to precipitate out 

(Eichrom  2004). In order to determ ine i f  the precipitation tim e has an effect on  y ield  or 

energy resolution, several samples are created with varying precipitation times. 

Precipitation times used in this part o f the procedure range from 10 minutes to 60 minutes 

in 10 minute increments. The samples are then all prepared the same w ay as described
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for the general method and counted by alpha spectroscopy. Samples are compared to one 

another to determine the least amount o f precipitation time that can be used to produce 

the best yield and energy resolution.

2.3.3 Amount o f Carrier and Hydrofluoric Acid

Cerium fluoride is used as the primary carrier for the method. The amounts o f  cerium 

carrier and hydrofluoric acid are manipulated to see if  there is any effect on the resulting 

spectra when the samples are counted by alpha spectroscopy. This is done by changing 

the total amount o f cerium carrier as well as the amount o f hydrofluoric acid while 

keeping the two in the same ratio used in the general method. Care is taken to not add 

too much o f the carrier or it will interfere with the microprecipitation process or make the 

samples too thick for alpha spectroscopy.

2.3.4 Fraction o f  Cerium Carrier

In this part o f the study, the amount o f cerium carrier will be manipulated while the 

amounts o f  ̂ "^'Am and hydrofluoric acid are held constant. This is done to determine if  

there is any effect on the ability o f the CeF] to carry the AmF] through the co

precipitation process.

2.3.5 Fraction o f Hydrofluoric Acid

Hydrofluoric acid is a corrosive acid that requires extra training and personal protective 

equipment for its use. Due to these conditions, this part o f  the research is aimed at 

determining the minimum amount o f hydrofluoric acid that can be used and still produce 

acceptable results when the sample is counted by alpha spectroscopy. As with the cerium 

carrier, the amount o f  hydrofluoric acid must be in the correct proportion to the rest o f the
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solution and the amount o f carrier in particular in order to avoid any interference with the 

microprecipitation process.

2.4 Evaporation

2.4.1 General Method

The liquid drop method for evaporation is used for this part o f the study. The method 

involves placing a planchet onto a hot plate at a certain temperature and then pipetting an 

aliquot o f the sample directly onto the planchet. The sample deposition is considered 

complete when the planchet is dry. The sample is then ready for counting by alpha 

spectroscopy. The setup for this procedure is shown in Figure 2.4 below. It should be 

noted that the planchets used for the evaporation method differ from those used in the 

electrodeposition method. The planchets for the evaporation method are lipped to 

prevent any sample loss from the sides o f the planchets.

Figure 2.4. Evaporation Apparatus
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A hot plate is used for this method and an Extech model number 42510 infrared 

thermometer is also used to monitor the planchet temperature since there are no 

temperature readings on the hot plate itself. The infrared thermometer has an aeeuraey o f 

± 2% o f reading or ± 2 °C, whichever is greater, for the range o f 18 °C to 28 °C. It should 

be noted that temperature tends to vary greatly on different loeations on the hot plate.

2.4.2 Time and Temperature Study

The time and temperature study is conducted to optimize the method itself for the specific 

hot plate used in the experiment. Essentially, the aim is the determination o f  the best 

temperature for the given hot plate that will dry the sample in the shortest amount o f time 

without any sputtering due to overheating. This is important because if  the sample is 

overheated, some o f it may sputter o ff o f the planchet causing yield losses and 

contamination o f the hotplate.

2.4.3 Method o f Addition Study

The main question in this part o f the study is to determine whether there is an effeet on 

yield and energy resolution depending on how the sample is added to the planehet. For 

the method o f addition there are two possibilities, full volume addition and drop by drop 

addition. Full volume addition is when the full 350 pL sample is added to the planchet at 

the same time, while drop by drop addition requires the 350 pL sample to be added in 

drops in different loeations spread across the planchet. Data sets will be created for 

samples that are added as a full volume addition and as drop by drop addition.
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2.5 Liquid Scintillation Counting

2.5.1 System Specifications and Parameters

The system used is a Perkin Elmer model 31 OOTR liquid scintillation counter. A 

counting protocol has been set up that includes several parameters to optimize the liquid 

scintillation counting. Count time is set for 60.0 minutes per sample with the count mode 

set to normal and the pre-count delay set to 0. Background subtraction is set to “o f f ’ but 

is performed manually after the count is complete. This is performed by subtracting the 

number o f counts per minute o f a blank from that o f the sample. The blank was counted 

along with the rest o f the samples. The 2 sigma % terminator is set to on for any region 

and the low CPM threshold is set to off, since the samples in this experiment are not 

considered low CPM.

2.5.2 General Counting Procedure

The samples are loaded into a cartridge with the blank first, standard solution next and all 

o f the samples following. The cartridge is loaded into the liquid scintillation counter and 

a protocol with the above conditions is loaded. Once the samples are done counting, a 

report is printed out with information including counts per minute, count time and 

amount o f  quench. For liquid scintillation counting, the amount o f quench in the sample 

determines the yield o f the sample. I f  the SIS quench level is above 500, it can be 

assumed that the liquid scintillation counter has 1 0 0  % efficiency for that set o f alpha 

particle emitting samples. The background is then subtracted from the CPM for each 

sample for the final result. Results from liquid scintillation counting in this research 

project are used to determine the activity in solution during the electrodeposition process 

for the time and current study. The results are also used to determine the activity o f the
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standard solution to use in the yield calculations. The standard solution has a purity o f > 

99 % so contributions from ^^^Np can be neglected.

2.6 Alpha Spectroscopy

2.6.1 System Specifications and Parameters

The system used is a Canberra Alpha Analyst model 7200-04 with 12 detectors available 

for data collection. An Edwards 2 stage vacuum pump is used to evacuate the chambers 

for counting. The detectors are Canberra Passivated Implanted Planar Silicon (PIPS) 

detectors with an active volume o f 450 mm^ with an electronic resolution o f 10.2 keV. 

The MCA is run by GENIE 2000 alpha analyst software from Canberra.

2.6.2 General Counting Procedure

Samples are loaded in the Teflon planchet holders are placed in the chamber at a 

specified shelf level. There are 10 shelf levels in each chamber that are spaced 

approximately 2.5 mm apart. Shelf level four, which is approximately 15 mm from the 

detector, is used for all o f the samples counted in this project because it is far enough 

away from the detector to obtain better energy resolution due to the solid angle and close 

enough to obtain acceptable detector efficiency.

Once the samples are loaded, the chambers are evacuated to a pressure o f 0.200049 

torr. Count times are set for 3 hours which allows at least 10,000 counts to be recorded 

under the peak for each sample. This results in a counting error o f 1 % or less. If  

samples are used with differing activities from those in the above procedures, count time 

must be adjusted so the count error remains at or below I %.
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Electrodeposited standard sources were used to perform system calibrations before 

samples were counted. The data for the standard sources can be seen in Tables A and B 

in Appendix III. Using the information from the ealibration, the ^"^'Am peak is set to the 

known decay energy o f 5.485 MeV and then the charmel number and energy o f  another 

known radionuclide, in this case ^'°Po, is set to correspond with the data from the 

standard electrodeposited source used for calibration. Once the energy to channel ratios 

are set, the software calculates the energy resolution o f  the Am peak. Information that 

is collected from the software for data analysis includes energy resolution (FWHM) in 

keV, live time, and number o f counts recorded with error.
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CHAPTER 3 

RESULTS AND DISCUSSION

3.1 Data Analysis

3.1.1 Alpha Spectroscopy

Each o f the detectors on the alpha spectrometer are calibrated monthly using an 

electroplated ^^^Pu standard with a Am peak. The standard had an activity level o f 

0.0054 pCi on 29 May 1991 and is labeled “HRC 118.” Measurements are taken at each 

shelf level in the detection chamber starting at level 2 and working down to level 10. The 

efficiency o f  every detector is calculated at each shelf level. Shelf levels are 

approximately 2.5 mm apart.

As mentioned earlier, samples are counted on the alpha spectrometer for a sufficient 

period o f time to obtain at least 1 0 , 0 0 0  counts under the peak for good statistical data. 

Electrodeposition and evaporation samples are eounted on the fourth shelf level while 

microprecipitation samples are eounted effeetively at the 3.5 shelf level beeause o f their 

unique geometry consisting o f the Eichrom filters being mounted to the bottom o f lipped 

planchets.

3.1.2 Yield

For each sample, the detector, number o f  counts with error, and live measurement time 

were recorded. The disintegrations per second (DPS) o f the sample was calculated by
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using Equation 3.1 below. This equation is used assuming a 100 % radiation yield for 

that alpha transition.

DPS = CPS/eff

where CPS = counts per second

E ff = detector efficiency at the 

corresponding shelf level

Equation 3.1

After the DPS is calculated, the yield can be calculated using Equation 3.2.

Yield = (DPS/Activity)*99.4 % 

where Activity is the amount o f activity in the 

standard solution added to the sample

Equation 3.2

The 99.4 factor is used to convert the final result to percentage rather than a fraction. It is 

multiplied by 99.4 instead o f 100 due to the fact that “̂̂ 'Am decays due to alpha radiation

99.4 % o f the time. The yields for all data from each method were calculated this way.

3.1.3 Energy Resolution

The same electroplated ^^^Pu standard mentioned above was used for energy resolution 

calculations. Centroid channel numbers o f the ^^^Pu and Am peaks from the 

electroplated standard are noted for use in calibrating the samples. After a sample was 

counted, an energy only calibration was performed. The channel numbers for ^^^Pu and
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for each detector were entered as calibration points for the samples. This 

essentially sets the energy to channel ratio so the energy resolution can be calculated by 

the alpha acquisition (GENIE 2000) software.

3.1.4 Liquid Scintillation Counting

In order to determine the amount o f activity in the Am standard, an aliquot o f the 

standard solution was taken using a liquid scintillation detector. The same quantity o f the 

standard solution is taken as is added to the samples used for electrodeposition and 

microprecipitation and counted by liquid scintillation counting. The quench level o f  the 

sample was always low enough to assume an efficiency o f 1 0 0  % for the liquid 

scintillation counter. Liquid scintillation samples were counted for either 60 minutes or 

two sigmas, whichever occurred first. A blank sample o f 10 mL o f liquid scintillation 

cocktail was counted every time a sample was counted to determine the background.

This data was then used as the known activity for each sample to calculate the yield.

3.2 Electrodeposition

3.2.1 General Method

The results for the general method include samples in which the planchets have been both 

washed and eleetropolished, as the general method calls for. Eight samples were created 

using the general method. W hen counted by alpha spectroscopy, an average yield o f  99 ± 

14 % was obtained with an energy resolution o f 45 ± 21 keV. These results were 

caleulated using only six o f the eight samples ereated since two o f the data points were 

removed after mathematically being determined as outliers.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.2 Washing and Electropolishing

Eight samples exist for each combination o f washed and polished planchets. The four 

combinations are washed polished (W-P), washed unpolished (W-UP), unwashed 

polished (UW-P), and unwashed unpolished (UW-UP).

O f the eight samples for the washed polished study, two were removed as they were 

statistically considered outliers. The resulting energy resolution was 45 keV ± 2 1  keV. 

The yield was calculated to be 99 ± 14 %. Only one outlier was removed in the washed 

unpolished data set. An energy resolution o f  32 ± 12 keV and a yield o f 61 ± 8  % were 

obtained. Seven o f eight samples were used in the unwashed polished data set. The 

energy resolution was calculated to be 59 ± 9 keV and the yield was calculated to be 60 ±

20 %. The unwashed unpolished data included seven o f eight samples, with one omitted 

as an outlier. The energy resolution was calculated as 44 ± 18 keV with a yield o f 73 ±

21 %. Results are summarized in Table 3.1 and plotted in Figures 3.1 -  3.2. The data for 

each individual sample, including outliers, can be seen in Tables C-F in Appendix IV.

Table 3.1. Average yield and energy resolution results for each data set for 
washed and eleetropolished planchet study.

Sam ple ID E nergy  R esolution Yield
W ashed Polished 45 ± 2 1  keV 99 ± 14 %

W ashed Unpolished 32 ±  12 keV 61 ± 8  94
Unwashed Polished 59 ± 9  keV 60 ± 2 0  %

Unwashed Unpolished 4 4 ±  I 8 keV 73 ± 21  %
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Figure 3.1. Average energy resolution for electrodeposited samples with different 
planchet pretreatments procedures. W ashed polished (W-P), washed unpolished (W-UP), 
unwashed polished (UW-P), and unwashed unpolished (UW-UP).
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Figure 3.2. Average energy resolution for electrodeposited samples with different 
planchet pretreatments procedures.
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3.2.3 Time Study

Four samples were created taking 50 pL aliquots and four samples were created taking 

100 pL aliquots at given times during the eleetrodeposition proeess. During the 30 

minutes o f eleetrodeposition, samples were taken every five minutes, with the first 

aliquot taken before any current was applied. Aliquots were taken every ten minutes for 

the second 30 minutes and then every 20 minutes during the last hour o f  eleetrodeposition. 

Eaeh aliquot was plaeed into a scintillation vial containing 10 mL o f liquid scintillation 

cocktail and then counted, along with a blank and standard, by liquid scintillation 

counting. Results are plotted in Figures 3.3 -  3.4. The data for each individual sample, 

including outliers, ean be seen in Tables G-N in Appendix IV.
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Figure 3.3. Fraction o f  activity rem aining in the eleetrodeposition ce ll as a function o f  
deposition time (50 pL aliquots).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100 uL Aliquots

1.0

0 .9  -i

0.8

0 .7

0.6

0 .5

0 .4

0 .3  -

0.2  -

0.1
0.0

♦  ♦

♦  Sam ple 1 

■ Sam ple 2  

Sam ple 3 

Sam ple 4

0 20 4 0 6 0  8 0  

Time (min)

100 1 2 0 14 0

Figure 3.4. Fraction o f activity remaining in the eleetrodeposition cell as a function o f 
deposition time (100 pL aliquots).

As seen by Figures 3.3 and Fig. 3.4, some activity still remains in the solution after the 

eleetrodeposition process is complete. This is most likely due to the fact that the current 

through the cell was interrupted each time an aliquot was taken. An interruption o f 

current could cause the precipitate to redissolve directly affecting the eleetrodeposition 

process.

For the yield analysis o f the electrodeposited samples created for alpha spectroscopy, 

the total amount o f activity removed with the aliquots must be taken into consideration. 

Another aspect that must be considered is that the sum o f the yields o f the 

electrodeposited sample counted by alpha spectroscopy and the yield o f the liquid 

scintillation sample cannot be greater than 100 %. Total yields o f less than 100 % could
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be due to activity losses to the eleetrodeposition cell or electrode. Results are 

summarized in Table 3.2.

Table 3.2. Average energy resolution and yield o f electrodeposited samples counted by 
alpha spectroscopy as a function o f  deposition time. This table also includes liquid

Sample FWHM (keV) Yield (%) LSC Yield (%) Total Yield (%)
50 pL #1 75.0 483 243 73.2
50 pL #2 46.0 393 34.6 74.3
50 pL #3 2&0 3.6 74.0 77.6
50 pL #4 30.6 10.5 783 88.5
1 0 0 p L # l 35.7 8.5 51.0 59.5
100 pL #2 79.4 21.5 46.0 67.5
100 pL #3 56.0 48.4 55.0 103.4
100 pL #4 91.5 520 533 105.0

3.2.4 Current Study

Four samples were created for each current setting o f 0.6, 0.8, 1.0, 1.2, and 1.4 amps.

The Kressin method was used for all samples using planchets that were washed and 

eleetropolished before the eleetrodeposition process. At the end o f  each electroplating run, 

after the KOH was added, a 100 pL aliquot was taken from each cell. The aliquot was 

then added to 10 mL o f liquid scintillation cocktail and counted by a liquid scintillation 

counter. The planchets were then counted as usual by alpha spectroscopy. Volume in the 

cell was maintained at 10 mL in order to make activity concentration calculations as 

accurate as possible. The results are summarized in Table 3.3 and plotted in Figures 3.5 

and 3.6. The data for each individual sample can be seen in Tables O -  S in Appendix IV.
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Table 3.3. Average energy resolution and yield results as a function o f  eleetrodeposition 
current.

current (A) FWHM (keV) a spec Yield (%)
0 . 6 9 0 ± 3 1 63 ± 9
0.8 124 ± 52 8 6 ± 13
1 . 0 8 6  ± 1 84 ± 1 0
1 . 2 1 2 1  ± 1 1 87 ± 9
1.4 72 ± 5 83 ±14
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Figure 3.5. Average energy resolution as a function o f eleetrodeposition current.
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Figure 3.6. Average yield as a function o f eleetrodeposition current.

3.3 M icroprecipitation

3.3.1 General Method

For the general method, four samples were created following the general cerium fluoride 

procedure, allowing 30 minutes for precipitation. The average energy resolution o f the 

four samples was 36 ± 7  keV. The average yield o f the four samples was calculated to be 

1 0 2 ± 8  94.

3.3.2 Time Study

In this part o f the study, four samples were ereated for eaeh different precipitation time o f 

10, 20, 30, 40, 50 and 60 minutes. The samples were then all proeessed by vaeuum 

filtration in the same manner as the general method. Results are shown in Table 3.4 and 

Figures 3.7 -  3.8. All data points are shown in Tables T -  Y in Appendix IV.
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tim e (min) F W H M  (keV) yield (% )
1 0 55 ± 1 8 109 ± 7
2 0 55 ± 2 0 133 ± 10
30 36 ± 7 125 ± 1 0
40 51 ± 1 3 116±  15
50 5 8 ± 3 3 118 ± 7
60 57 ± 2 2 116 ± 6

30

10

Energy R esolution Vs Precipitation Time

20 3 0  40

Precipitation Time (min)

50 60

Figure 3.7. Average energy resolution as a function o f precipitation time.
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Figure 3.8. Average yield as a function o f precipitation time.

3.3.3 Amount o f Carrier and Hydrofluoric Acid

The amounts o f cerium carrier and hydrofluoric acid used for precipitation were varied in 

this part o f the study, keeping the ratio between the two the same, i.e. if  the amount o f 

cerium carrier was reduced from 100 pL to 50 pL, the volume o f hydrofluoric acid was 

reduced from 1 mL to 0.5 mL. Four data sets were created for this part o f the study, with 

volumes o f cerium carrier solution o f 50 pL, 25 pL, 10 pL, and 5 pL and corresponding 

hydrofluoric acid volumes o f 0.5 mL, 0.25 mL, 0.1 mL and 0.05 mL respectively.

Results are shown in Table 3.5 and in Figures 3.9 -  3.10. All data points can be seen in 

Tables Z — CC in Appendix IV.
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Table 3.5. Average energy resolution and yield as a function o f cerium carrier amount
Data Set FWHM (keV) Yield (%)

0.00775 mg Ce 86 ± 1 7 101 ± 3
0.003875 mg Ce 56 ± 5 113 ± 2
0.00155 mg Ce 6 0 ±  18 101 ± 2

0.000775 mg Ce 41 ± 10 105 ± 5

Energy Resolution

12(1 
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C  80

w
s  60 
a
fe 40 - 

20 - 

0 -

0.0075 mg Ce 0.003875 mg Ce 0.00155 mg Ce

Sample ID

0.000775 mg Ce

Figure 3.9. Average energy resolution as a function o f the amount o f cerium carrier.
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Figure 3.10. Average yield as a function o f  the amount o f  cerium carrier.

3.3.4 Fraction o f Carrier

The fraction o f  cerium carrier in total solution was varied in this part o f the experiment. 

While the Am and HF volumes were held constant, the volumes o f cerium (111) nitrate 

used were 100 pL, 50 pL, and 10 pL. Results are displayed in Table 3.6 and in Figures 

3.11 -  3.12. All data for this study can be seen in Tables DD -  FF in Appendix IV.

Table 3.6. Average energy resolution and yield for each data set o f the fraction o f  carrier 
study.

mol mol F FWHM (keV) Yield (%)
1.98E-04 1.56E+01 27 ± 2 98 ± 6
1.02E-04 1.56E+01 41 ± 6 105 ± 4
2.09E-05 1.56E+01 36 ± 7 102 ± 14
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Figure 3.11. Average energy resolution for microprecipitation as a function o f the 

fraction o f cerium carrier in solution.
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Figure 3.12. Average yield for microprecipitation as a function o f the fraction o f  cerium 
carrier in solution.
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3.3.5 Fraction o f Hydrofluoric Acid
The fraction o f  hydrofluoric acid in total solution was also varied. W hile the "̂*’Am and 

cerium (III) nitrate volumes were held constant, the volumes o f hydrofluoric acid used 

were 1.0 mL, 0.50 mL, and 0.10 mL. Results are shown in Table 3.7 and in Figures 3.13 

-3 .1 4 . All data for this study can be seen in Tables GG -  II in Appendix IV.

Table 3.7. Average energy resolution and yield as a function o f the fraction o f HF in 
solution.

mol F mol FWHM (keV) Yield (%)
1.56E+01 1.98E-04 57 ± 5 90 ± 3
1.08E+01 1.98E-04 5 0 ±  14 104 ± 8
3.11E+00 1.98E-04 36 ± 7 102 ± 14

7 0  - 

6 0  

5 0  4
Î&  4 0

3 0

20

10

0

Energy R eso lu tion  - Fraction o f  HF

1 .5 6 E + 1  m o lF - 1 .0 8 E + 1  m o l E- 

M ols o f  F

3 .1  lE + 0  m o lF -

Figure 3.13. Average energy resolution for microprecipitation as a function o f the 
fraction o f HF in solution.
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Figure 3.14. Average yield for microprecipitation as a function o f the fraction o f HF in 
solution.

3.4 Evaporation

3.4.1 General Method

The general method for the evaporation part o f the study called for 350 pL o f the Am 

standard to be pipetted onto a planchet on a hot plate at about 120 °C. Four samples were 

created using this method with an average energy resolution o f  74 ± 13 keV and an 

average yield o f 83 ± 9 %.

3.4.2 Time and Temperature Study

Six samples were created at each heat setting on the hot plate from 3.0 to 4.4 in 

increments o f 0.2. Results are listed in Table 3.8 and plotted in Figures 3.15 -  3.17. All 

data for this study can be seen in Tables JJ -  QQ in Appendix IV.
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Table 3.8. Average energy resolution and yield results as a function o f  time and

Sample
Temperature

(°C)
Evaporation Time 

(M:SS)
FWHM
(keV) Yield (%)

3.0 101 ± 2 7:43 ± 1:00 6 3 ± 8 96 ±15
3.2 107 ± 3 6:08 ± 0 :1 4 54 ± 9 84 ± 3
3.4 110 ± 3 7:03 ± 0 :5 7 77 ± 1 0 80 ± 4
3.6 115 ± 1 6:08 ± 0 :5 6 69 ± 7 8 2 ±  10
3.8 124 ± 3 5:01 ± 0 :0 7 7 9 ±  16 84 ± 8
4.0 128 ± 4 4:53 ± 0:22 8 6 ±  15 94 ± 6
4.2 134 ± 3 4:39 ± 0 :3 9 7 9 ±  14 84 ± 6
4.4 138 ± 3 4:07 ±0 :15 7 4 ±  14 92 ± 6

7:12

I  6:00
H

4:48

336

Evaporation Time Vs Temperature

-H T

95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0

Temperature (C)

Figure 3.15. Average time for complete sample evaporation as a function o f temperature.
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Figure 3.16. Average energy resolution as a function o f temperature.
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Figure 3.17. Average yield as a function o f temperature.
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3.4.3 Method o f Addition

There are two methods o f adding the sample to the planchet for evaporation; full volume 

addition and drop by drop addition. Since the quickest time has been determined in the 

time and temperature part o f the study, all samples for the method o f  addition study were 

created at the 4.4 heat setting which corresponds to a temperature o f  about 135-140“C. 

The average energy resolution for full volume addition was calculated to be 74 ± 14 keV 

with an average yield o f 92 ±6 %. The average energy resolution for drop by drop 

addition was calculated to be 56 ± 5 keV with an average yield o f 56 ± 15 %.

3.5 Discussion

3.5.1 Electrodeposition

The general method o f the electrodeposition study was performed to become familiar 

with the process o f electrodeposition, as well as to have baseline data to compare the rest 

o f  the samples to. Samples created using the general Kressin method had a very high 

average yield and an acceptable average energy resolution.

The point o f the planchet pretreatment study was to determine if  the washing and 

electropolishing processes are parts o f the procedure that affect the energy resolution and 

yield results drastically. W hen energy resolution is a concern, it appears planchets that 

have been polished have a slightly worse energy resolution when compared to planchets 

that were not polished prior to the electrodeposition process. This is thought to be caused 

by the fact that, when viewed under an optical microscope, electropolished planchets 

seem to be rougher than planchets that have not been electropolished. Further 

investigation using a scanning electron microscope are necessary to confirm this. W hen
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the surface o f a counting media is rougher, this leads to the sample not being uniformly 

deposited. Non-uniform deposition can result in losses in energy resolution due to 

scattering and attenuation. Samples with the best average energy resolution were 

samples that had been washed but not electropolished.

High yields produced on polished planchets are most likely due to the fact that the 

roughness caused by the electropolishing procedure creates more surface area for the 

sample to attach to. The highest average yield was achieved with planchets that were 

both electropolished and washed so that was the procedure that was continued to be used 

for the remainder o f the electrodeposition study.

The time study for electrodeposition was performed to determine whether the amount 

o f  electrodeposition time could be reduced without affecting the yield and energy 

resolution negatively. Generally, the amount o f  activity left in solution in the 

electrodeposition cell was at its lowest at around 100 minutes into the electrodeposition 

process. After 100 minutes o f electrodeposition, the amount o f activity in solution shows 

signs o f an increase. This could be due to a number o f factors such as the aliquot not 

being taken from the same area or inhomogeneous mixing o f the sample. Longer 

deposition times need to be investigated to confirm this. The last aliquot taken after the 

completion o f the electrodeposition process should be representative o f the amount o f 

activity that was not plated out onto the planchet. The fraction o f activity left in solution 

after the electrodeposition process added to the yield o f the electrodeposited sample 

counted by alpha spectroscopy should not add up to more than 100 %. Although some o f 

the yields o f the planchets counted by alpha spectroscopy may seem low, when the liquid 

scintillation data is added, the yields are more on the order o f the electrodeposition results
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seen in the rest o f  the experiments. From the results shown for the rest o f the 

electrodeposition experiments, the energy resolutions o f the electrodeposited samples 

created in the time study are what should be expected.

The electrodeposition current study was performed to determine the optimum current 

for electrodeposition that will produce the best energy resolution and yield results.

Energy resolution results show no pattern corresponding to the specific current for each 

set o f samples. Samples created at a current o f 1.0 A showed the least statistical variation 

between samples while samples created at 0.6 A and 0.8 A showed a high statistical 

variation between samples.

The yield results showed more o f  a trend than the energy resolution results for the 

current study. Samples that were created with current settings o f 0.8 A, 1.0 A and 1.2 A 

all showed similar results, all with yields from 84 -  87 %.. The samples with the lowest 

yield were samples created at a current o f 0.6 A. These samples had an average yield o f 

only 63 %. The low yield is most likely a cause o f not enough current being present to 

support the electrodeposition process. At a current o f 1.4 A, the yield starts to decrease 

from what is seen in the 0.8 -  1.2 A range. This is most likely caused by bubble 

formation from the increased electrical flow through the cell which interferes with the 

deposition o f  the ^"^'Am onto the planchet.

3.5.2 Microprecipitation

As with the Kressin method for electrodeposition, the cerium fluoride method for 

microprecipitation was performed to become familiar with the process o f 

microprecipitation as well as to have baseline data to compare the rest o f the samples to. 

Samples created using the general cerium fluoride method had acceptable energy
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resolution results and exceptional yield results. The standard deviation o f  the samples 

was also much less than that o f samples created by electrodeposition, proving 

microprecipitation to be more reliable.

The time study for microprecipitation was performed in order to determine the 

optimal precipitation time for the procedure. The lowest energy resolution was seen in 

the data set o f  samples that had a precipitation time o f 30 minutes. Samples created with 

less time for the precipitate to form may have higher energy resolutions due to 

inhomogeneous sample deposition. The precipitate would form smaller clumps so there 

would be less o f a chance o f the whole filter area being covered with activity. If  more 

precipitation time is allowed, the precipitate could form larger clumps which would lead 

to an increase in energy resolution because the thickness o f the sample would lead to 

more attenuation.

Data for the yield o f samples created with different precipitation times shows the best 

energy resolution for samples that were allowed to precipitate for 30 minutes. All o f the 

yields are close to 100 % so precipitation time should not be o f concern when trying to 

obtain the best results for yield.

In the part o f the microprecipitation experiment where the amount o f cerium carrier 

and hydrofluoric acid were varied, there is no real effect on the yield o f the samples. All 

o f  the yields are around 100 % so no recommendation can be made on the optimal 

amount o f cerium carrier and hydrofluoric acid to use to obtain better microprecipitation 

yields. The energy resolution, however, does change with the variations o f  solutions used. 

There is a general downward trend where the energy resolution improves with the 

decrease in cerium carrier and hydrofluoric acid used. Since the amounts were only
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varied in the range that would still allow the AmFg to be carried through the co

precipitation process with the CeFs, the improved energy resolution at lower carrier and 

acid volumes is caused by a thinner sample with less interference o f carrier.

The fraction o f cerium carrier in total solution was varied to determine the effects on 

energy resolution and yield. Energy resolution was the lowest for samples with 0.01 mL 

o f cerium carrier in total solution. This is due to the fact that there is not as much excess 

cerium to attenuate the sample. Yield results are similar for all fractions o f  cerium carrier 

in solution showing that the cerium carrier was kept above the level needed for the AmF] 

to co-precipitate.

The fraction o f hydrofluoric acid in total solution was varied to determine effects on 

energy resolution and yield. A volume o f 1.0 mL o f hydrofluoric acid in total solution 

showed the best energy resolution and yield results. The worst energy resolution and 

yield results were seen in the samples with 0.1 mL o f hydrofluoric acid, the least amount 

used in the study. This trend is most likely due to the fact that when the amount o f 

hydrofluoric acid is reduced, there are less fluorine atoms available for the cerium and 

americium to complex with, showing losses in yield.

3.5.3 Evaporation

The general method for evaporation was performed in order to have data to compare for 

the rest o f the evaporation studies. Average energy resolution was calculated to be 

approximately 74 keV, which is higher than the results for both the electrodeposition and 

microprecipitation. This is due to the fact that there is nothing done prior to evaporation 

to eliminate any matter on the planchets that might interfere with the sample spectrum. 

Yield results are approximately 83 %, which again is lower than the results for both
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electrodeposition and microprecipitation. Losses in yield during the evaporation process 

are likely caused by possible sputtering o f the sample o ff the planchet during heating, 

even though this may not be visible to the naked eye.

The time and temperature study for evaporation was performed in order to determine 

the optimum hot plate temperature for evaporation and the evaporation time that 

corresponds to that temperature. As mentioned before, the ideal temperature is one that is 

hot enough to make the sample evaporate quickly, but not so hot that the sample sputters 

o ff the planchet leading to losses in yield. The highest temperature used for evaporation 

was approximately 138 °C since sputtering o f  water was seen at higher temperatures. 

Samples created at 138 °C are evaporated to dryness in approximately 4 minutes. No 

significant changes in energy resolution or yield are seen throughout the changes in 

temperature. This shows that samples can be evaporated at any temperature within the 

range without a measurable effect on the energy resolution and yield results.

In the last part o f the evaporation study, the effects o f  the method o f addition o f the 

sample to the planchet were evaluated. The energy resolution for full volume addition 

samples was higher than that for drop by drop addition samples. W hen the sample is 

added all at once, the energy resolution can worsen because any contamination present in 

the sample or on the planchet will be concentrated in the center o f the sample, attenuating 

a greater percentage o f  particles. The yield for full volume addition samples was higher 

than that for drop by drop addition samples. A sample that is added to the planchet all at 

once with the full volume in the middle o f the planchet will have a higher yield because 

there will be less sample loss to the edges o f  the planchets.
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CHAPTER 4 

ERROR ANALYSIS

4.1 Data Analysis

4 .1.1 Standard Deviation Calculations

The standard deviation for all data is calculated using Microsoft Excel. The unbiased or 

“n - I” method is used for these calculations. The equation for standard deviation is 

shown in Equation 4.1 below:

( » - l )

Equation 4.1

In this equation, x represents the sample, x  is the sample mean and n is the number o f 

samples. A standard deviation is calculated for the energy resolution and yield o f each 

data set created in this project.

4.1.2 Removal o f Outlying Data Points

In some cases during the course o f this project, certain data points could be considered as 

outliers. An outlier is considered to be a data point that exists far from the mean. These 

points lead the average and standard deviation o f the data set to be so far off, the results 

o f the entire project could be changed. In order to determine if  these outliers can be 

eliminated, mathematical analysis must be performed.

Chauvenet’s criterion is the established condition for discarding data in such 

circumstances, which states that a data point should be discarded if  less than half an event
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is expected to be farther from the mean than the suspect point (Bevington 2003). Since 

the elimination o f  an outlier has more o f an effect on the standard deviation than the 

mean, care should be taken to make sure deleting a point w on’t lead to deletions o f other 

points and so on.

4.2 Electrodeposition Experiments

4.2.1 Error during the Sample Preparation Process

There are several steps in the electrodeposition process that can introduce an error into 

the measurement. The two main contributions to the error are due to the experimenter 

and errors due to the equipment used. Potential sources o f error will be discussed by 

following the method used for electrodeposition in chronological order.

First, error can be introduced by incorrect or inaccurate pipetting. Two variable 

volume VW R pipettors are used for the sample preparation process for electrodeposition. 

The 1000 -  5000 pL pipettor has an accuracy o f ± 0.6 -  0.5 % while the 100 -  1000 pL 

pipettor has an accuracy o f ± 0.9 -  0.6 %. Any error in the pipetting will lead to incorrect 

quantities o f  stock solution added in the sample preparation process. This inaccuracy will 

propagate all the way through to the end o f the electrodeposition process. Another source 

o f  error is introduced by heating the beaker for an insufficient amount o f  time. This can 

result in some o f the perchloric acid being left in the sample. I f  this occurs, some 

organics may still be left in the beaker. This effect will also carry throughout the whole 

process and lead to sample attenuation during counting by alpha spectroscopy and 

possible reduction in yield. An indication that all o f the perchloric acid has been driven
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off is given if  the sample in the beaker is white in color. Translucence o f the sample 

indicates that there is still perchloric left in the beaker.

After addition o f 4 mL o f 15 % Na2 SÛ 4  to the sample, it must be left to sit for a 

sufficient amount o f time in order to ensure that the electrolyte solution has mixed 

completely with the sample and is ready for electrodeposition. The beaker must be rinsed 

well to make sure the entire sample is transferred into the electrodeposition cell to avoid 

losses in yield.

4.2.2 Error during the Electrodeposition Process

During the electrodeposition process, care must be taken to maintain the proper settings 

required for an ideal sample to be created. The current must be maintained at 1.0 A for 

the general method and at a constant setting during the experiments in which the current 

was varied. As shown by the results, the current does have an effect on the yield and 

energy resolution. It therefore must remain consistent with the method. Any deviations 

from the required current could affect the quality o f the electrodeposited sample.

Even though the current can be controlled by the experimenter, fluctuations within 

the cell itself cannot be controlled. The general accuracy with which the current meters 

can be read is approximately 0.05 A. Poor electrical contacts in the system can lead to 

variations in the current during the two hours required for the electrodeposition process. 

Sometimes when monitoring the current, it may jum p. This is caused by bubble 

formation in the solution which makes the current vary throughout the solution and can 

cause uneven electrodeposition. Also occurring in the cell is the fact that during the 

electrodeposition process, part o f the electrolyte solution will be used up. This causes the 

current in the cell to decrease which will in turn affect the electrodeposition process.
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Planchets used for electrodeposition can have an effect on the energy resolution and 

yield. Stainless steel planchets with a 25 mm diameter are used in this project. While 

stainless steel planchets are most commonly used for electrodeposition, planchets made 

o f  nickel and platinum have also been used for electrodeposition. Any change in the 

material o f the planchet can have an effect on the energy resolution and yield o f the 

sample.

Preparation o f the planchets prior to electrodeposition o f the sample is also a factor in 

the quality o f the sample. Planchets that are electropolished before electrodeposition may 

show a greater standard deviation in results. Scratches on the surface o f planchets can 

occur during electropolishing. These effects can be seen qualitatively under a 

microscope, but cannot be quantified. W ashed planchets should have less variation in 

results as long as the washing process was performed sufficiently for each planchet.

4.3 M icroprecipitation Experiments

As with electrodeposition, pipetting errors can occur during the microprecipitation 

process. For the microprecipitation, a 100 -  1000 pL variable volume VW R pipettor was 

used to transfer the Am from the vial with stock solution to the centrifuge tube. The 

accuracy o f  the VW R pipettor is ±0.9 - 0.6 %. Eppendorf pipettors were used for the 

addition o f  the hydrofluoric acid and the cerium carrier. The aecuraey o f the 100 pL 

Eppendorf pipettor is ± 0.8 % and the accuracy o f the 1000 pL Eppendorf pipettor is ±

Another source o f error depends on how well the centrifuge tube and 

microprecipitation apparatus are rinsed at the end o f the filtration procedure. I f  any o f the
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sample is left in the eentrifuge tube or on the futmel, yield losses will oeeur. 

Unfortunately, there is no way this error ean be quantified. Everything the sample came 

in contaet with should therefore be rinsed at least twiee.

A third souree o f error eould be caused by any dirt or eontamination the filters had 

present on them before the mieropreeipitation proeess. The filters are stored in the 

packaging they eame in, proteeted by separate papers between each filter. Tweezers are 

used to transfer the filters from the paekage to the filtration apparatus. I f  there is any 

contamination on the tweezers, it could be transferred to the filter. Care is taken to 

minimize any outside contamination on the filters.

Other sources o f  error oeeur due to equipment inaccuracies o f balances for the carrier 

preparation as well as experimenter error in time measurement. The aecuraey o f  the 

balance used to measure out 0.155 g o f solid cerium (111) nitrate is ± 0.01 g. The 

accuracy o f the 100 mL volumetric flask used to measure the D1 water used to dilute the 

cerium (111) nitrate is ± 0.08 mL. A wall clock was used to determine the length o f 

precipitation time. Experimenter error in time measurement is estimated to be ± 5 -  10 

seconds.

4.4 Evaporation Experiments

Pipetting is again a possible source o f error for the evaporation process. A 100 -  1000 

pL variable volume VW R pipettor is used for this method which has an accuracy o f ±0.9 

- 0.6 %. The only washing done to the planchets prior to evaporation is done with water, 

therefore another source o f error could be caused by any kind o f organic material that 

may be on the planchet from either the manufacturer, or from handling them in the lab.
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Any amount o f organic material on the planchet has the ability to interfere with the alpha 

spectrum, causing errors in yield and energy resolution.

Time measurements are taken using a four channel digital timer from VWR. The 

aeeuraey o f the timer is 0.01 %. Experimenter error also exists in time measurements 

since it is sometimes hard to visually determine if  the sample is fully evaporated. 

Temperature measurements are taken using an Extech infrared thermometer with 

aeeuraey in the range o f 18 °C to 28 °C o f ± 2 % o f the reading or ± 2 “C, whichever is 

greater. No accuracy was given outside o f the temperature range listed above. Lastly, it 

should be noted that the temperature o f the hot plate varies greatly, up to 30 °C, 

depending on the placement. This should have no effect on results since the temperature 

is measured directly at the planchet location, but should be noted anyway.

4.5 Alpha Spectroscopy Measurements

4.5.1 Statistical Error within the Detector

In the present day, silicon detectors for alpha spectroscopy systems are available that can 

produce energy resolution results greater than or equal to a full width at half o f the 

maximum o f 10 keV. Because o f the properties o f  the silicon diode detectors, it is 

expected that charge carrier formation statistics will limit the achievable energy 

resolution (Knoll 2000). Using the Fano Factor, F, the ionization energy s and the energy 

o f the alpha particle E, the limiting FWHM ean be calculated using the following 

equation:
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FWHMiim = 2.35 ^fFË£

Equation 4.2

The F value for silicon is 0.11, e is equal to 3.62 eV and E o f is equal to 5.485 

MeV. W hen these values are entered into the above equation, a value o f  3.47 keV is 

obtained, which would be the best resolution that could be obtained by a silicon detector 

without any other interferences. Alpha particle energy resolution has been demonstrated 

at about 8 keV under very controlled laboratory conditions, but in general, a FW HM of 

less than 10 keV should not be expected in a laboratory setting (Knoll 2000).

4.5.2 Counting Error

The accuracy with which the yield o f a sample can be determined depends strongly on 

counting statistics. The standard deviation o f  the eount rate is determined by the 

following equation;

a  = ^^N

Equation 4.3

In this equation, o is the standard deviation and N is equal to the number o f counts. For a 

spectrum with 10,000 counts under the peak, the standard deviation will be 1 %. All o f 

the samples created in this study were counted for a sufficient time to include at least 

10,000 counts under the peak in order to achieve a standard deviation for the counting o f 

1 % or less
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4.6 Liquid Scintillation Measurements

There are a several sources o f error to be considered in liquid scintillation counting as 

well. Quenching occurs when there are any chemical or optical impurities in the sample. 

This can lead to decreases in counting efficiency. In order to minimize quenching, the 

sample should be as clear, colorless and homogeneous as possible. For the liquid 

scintillation counting performed in this project, a 100 % counting efficiency is assumed 

for samples that have an SIS quench level o f greater than 500.

Another source o f error in liquid scintillation counting is electronic noise created in 

the sample by static that eould be present. I f  this occurs, pulses will be generated that 

could add to the spectrum. This can also occur if  any light enters into the system. A 

solution to light interference is to allow the samples to dark adapt before counting. This 

was not done with the liquid scintillation samples created in this project due to the high 

eount rate involved because it would have a minimal effect on the outcome o f the data.

As with any other method o f counting radioactive samples, the amount o f time the 

sample is counted for is directly related to the counting error. In the liquid scintillation 

counting performed in this project, the protocol was set to count each sample for 60 

minutes or until 2a  was reached. The only samples to reach 2a  before 60 minutes was up 

were the standard solutions. A standard solution o f 100 pL o f  100 Bq m L '' ^""Am 

usually only needed to count for 2 -  3 minutes for a eount rate o f  approximately 4000 

counts per minute to be obtained.
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CHAPTER 5

RECOM MENDATIONS FOR SAMPLE PREPARATION PROCEDURES 

Recommendations to determine whieh method should be used are based upon the quality 

o f the results that need to be obtained. W hen a sample containing radioactivity needs to 

be analyzed, it is more than likely it will need to be done either quickly or quantitatively. 

Depending on which outcome is desired, a method can be assigned to achieve that goal.

For samples that are being analyzed to identify whieh radionuclides are present, a 

procedure that produces the best energy resolution is required. The Kressin method for 

electrodeposition, when performed without varying any procedures produces an average 

energy resolution o f 45 keV. Energy resolutions in this experiment were seen as low as 

25 keV FWHM. Mieropreeipitation procedures show slightly higher energy resolutions 

with an average o f around 55 keV. The general method, however, produced energy 

resolution results o f approximately 35 keV. More samples would need to be created in 

order to have more conclusive results as to whieh o f the two methods should be used to 

obtain the best energy resolution. If, however, time is o f major concern as well as energy 

resolution, mieropreeipitation produces acceptable results in one quarter o f the amount o f 

time per sample as does eleetrodeposition.

For quantification o f a radionuclide, a procedure that results in the highest yield is 

recommended. In this case, mieropreeipitation is the recommended procedure. Although
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eleetrodeposition can sometimes produce samples with yields averaging 90 %, 

mieropreeipitation samples come much closer to 100 %. Another factor making 

mieropreeipitation the recommended method for sample quantification is the faet that 

there are fewer chances for interferences to be introduced into the sample. The results o f 

eleetrodeposition and evaporation samples are often much more varied than those o f 

mieropreeipitation because o f uncontrolled interferences. As mentioned above, the time 

to create a sample using the mieropreeipitation method is much shorter than 

eleetrodeposition. All o f  these reasons make mieropreeipitation the recommended 

method for producing high yield samples for alpha spectroscopy.

For fast analysis and samples where the yield and energy resolution are not a leading 

concern, evaporation is the recommended procedure. Evaporation is a very quick 

procedure that produces acceptable yield results, but samples usually have a poor energy 

resolution. Samples created by evaporation should not be used to identify radionuclides 

present in the sample without prior chemical separation due to the fact that many 

actinides have energies in close range with other actinides. Sometimes as little at 30 - 40 

keV exists between two radionuclides and a sample created by evaporation would not 

produce good enough energy resolution results to discern the two peaks from each other. 

Sample yields o f evaporated samples, on the other hand, rival those o f electrodeposited 

samples with yields seen from 80 to 96 %. In case o f a scenario where massive amounts 

o f  samples need to be quantitatively analyzed, evaporation could be used. Although 

sample counting times will increase, the preparation time o f the samples would be much 

shorter than even mieropreeipitation.
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CHAPTER 6 

CONCLUSIONS

Three methods o f sample preparation for alpha spectroscopy were examined in this 

research project. Each method was scrutinized to optimize the performance while 

keeping the time o f sample preparation in mind. The process o f eleetrodeposition was 

examined using the Kressin method and varying such parameters as time, applied current 

and planchet preparation. For mieropreeipitation, the cerium fluoride method was used 

and parameters varied included precipitation time, amount o f cerium carrier and 

hydrofluoric acid, fraction o f cerium carrier in total solution and fraction o f hydrofluoric 

acid in total solution. Evaporation was the third procedure compared and evaporation 

time, hot plate temperature, and method o f sample addition were varied.

For the eleetrodeposition method, the procedure with the best yield results was the 

general method using planchets that had been both washed and electropolished prior to 

eleetrodeposition. The energy resolution was the best for planchets that had been washed 

but not electropolished. A study on the amount o f solution deposited showed the fraction 

o f  activity in solution to decrease steadily over time until about 100 minutes o f 

eleetrodeposition time. This should be continued with longer eleetrodeposition times in 

order to determine what the optimal amount o f  deposition time is. W hen the current was 

varied, results led to a recommendation o f keeping the current set between 0.8 A and 1.2
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A for the best results in yield. The best energy resolution results were seen when the 

current was set at 1.0 A.

The mieropreeipitation method was studied with varying parameters such as 

precipitation time, amount o f cerium carrier and hydrofluoric acid, fraction o f cerium 

carrier and fraction o f hydrofluoric acid in total solution. For the general method 

involving a precipitation time o f 30 minutes and solutions o f 0.1 mL o f cerium carrier 

and 1.0 mL o f hydrofluoric acid, an average energy resolution o f  36 ± 7 keV and a yield 

o f  102 ±  8  % was seen. W hen the amount o f precipitation time was varied, the best 

energy resolution was seen for samples precipitated for 30 minutes. There was no 

conclusive relation o f the yield to precipitation time. The best results for energy 

resolution when changing the amounts o f cerium carrier and hydrofluoric acid in the 

solution were seen for 1.98E-4 mol o f Ce^^.

Evaporation was the method that involved the least amount o f chemistry performed 

on the samples before deposition onto the counting media. An evaporation temperature 

o f approximately 140 °C was determined as the most effective. No dependency on 

evaporation or temperature was seen for energy resolution or yield results. For the best 

yield results, the sample should be added to the planchet at the same time in the center o f 

the planchet.

For identification o f radionuclides using alpha spectroscopy, eleetrodeposition is the 

best method because o f low energy resolution o f  samples created. W hen time is an issue, 

mieropreeipitation can be substituted for eleetrodeposition. I f  quantification o f  a sample 

is the main concern, mieropreeipitation produces the highest yields and therefore would
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be considered the best method. Samples that need to be analyzed quickly with less o f a 

concern for energy resolution and yield should be prepared using evaporation.

Future work should be conducted for the mieropreeipitation procedure. This research 

showed that reducing the amount o f hydrofluoric acid can have a positive effect on the 

energy resolution and yield. The amount o f hydrofluoric acid used for this procedure 

should be examined more thoroughly in order to determine the optimum amount o f 

hydrofluoric acid to use. The same should be done for the amount o f  cerium carrier used.
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APPENDIX I 

CHEMICALS

Cerium (III) Nitrate Hexahydrate, 99.9%, Strem Chemicals 

CAS 10294-41-4 

Hydrofluoric Acid, 48-51%, J.T. Baker 

CAS 7664-39-3 

Titanium Chloride, 30% weight in 2N HCl, Acros Organics 

CAS 7705-07-9 

Nitric Acid, 4 molar, Fisher Scientific 

CAS 7697-37-2 

Acetone, Fisher Scientific 

Potassium Hydroxide, J.T. Baker 

CAS 1310-58-3 

Phosphoric Acid, J.T. Baker 

CAS 7664-38-2 

Sulfuric Acid, >51% acid, J.T. Baker 

CAS 7664-93-9 

Perchloric Acid, 69-72%, J.T. Baker
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CAS 7601-90-3 

Hydrochloric Acid, J.T. Baker 

CAS 7647-01-0 

Sodium Sulfate, J.T. Baker 

CAS 7757-82-6
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APPENDIX II

MATERIALS

^" '̂Aiii in I M hydrochloric Acid, 100 Bq mL"', Isotope Products

Cerium (III) Nitrate Hexahydrate, 99.9 %, Strem Chemicals

Hydrofluoric Acid, 48-51%, J. T. Baker

Nitric Acid, 4 mol L~\ Fisher Scientific

Acetone, Fisher Scientific

Potassium Hydroxide, 88.2%, J. T. Baker

Phosphoric Acid, 85-87 %, J. T. Baker

Sulfuric Acid, > 51  %, J. T. Baker

Perchloric Acid, 69-72 %, J. T. Baker

Hydrochloric Acid, 37-38 %, J. T. Baker

Sodium Sulfate, 99.0 %, J. T. Baker

Deionized water

12 Volt Electrodeposition unit

Electrodepositing Cell

Flat 25 mm stainless steel planchets
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Lipped 25 mm stainless steel planchets

25 mm diameter seals, part number 016F75Q, M cM aster Can-

Variable volume VW R pipettors

100 pL Eppendorf pipettor

1000 pL Eppendorf pipettor

50 mL Centrifuge tubes

Gelman filter apparatus

Hot plate. Coming PC-101

Heat lamp

Petri dishes

Vacuum pump. Dry-fast, model number 2012B-01 

2 stage vacuum pump, Edwards

Resolve filters 0.1 micron 25 mm polypropylene, Eichrom 

Infrared thermometer. Extech

Liquid Scintillation Counter, Perkin Elmer Tri-Carb, model 31OOTR 

Canbena Alpha Analyst Spectrometer, 450 mm^ active area PIPS detectors
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APPENDIX III

CHEMICAL NAM ES AND FORMULAS

HNO 3

H 3 PO 4

H 2 SO4

NaHSÜ 4

HCIO4

HCl

N a 2 S 0 4

KOH

NH 4 OH

DI water

Ce (NOa)) 6 H 2 O

HF

Nitric Acid 

Phosphoric Acid 

Sulfuric Acid 

Sodium Hydrogen Sulfate 

Perchloric Acid 

Hydrochloric Acid 

Sodium Sulfate 

Potassium Hydroxide 

Ammonium Hydroxide 

Dionized water

Cerium (111) Nitrate Hexahydrate 

Hydrofluoric Acid
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APPENDIX IV

SUPPLEMENTAL TABLES

T able A. Calibration source data.

Source Po-210 Source Am-241
Energy 5.3044 MeV Energy 5.485 MeV

Size 12.7 mm Size 19.6 mm

Area 127 mm^ Area 302 mm^
Aetivity 4422 Bq Activity 268 Bq
Origin 1-Aug-06 Origin 27-Apr-89
Time 392 days Time 18.35 years

tl/2 138.38 days t|/2 432.7 years

Lambda 0.0050079 days"' Lambda 0.00160157 years '
Aetivity 620.938 Bq Activity 260.238 Bq
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Table B. Alpha spectrometer calibration data for detectors 1 A, IB, 2A, 2B, 3A, 3B, 4A, 

and 4B.

lA IB
Energy Channel Energy Channel

4.197 MeV 410 4.197 MeV 412

4.788 MeV 497 4.788 MeV 496
5.156 MeV 551 5.156 MeV 551
5.485 MeV 599 5.485 MeV 600

2A 2B

Energy Channel Energy Channel
4.197 MeV 413 4.197 MeV 413
4.788 MeV 496 4.788 MeV 496
5.156 MeV 551 5.156 MeV 552
5.485 MeV 600 5.485 MeV 601

3A 3B
Energy Channel Energy Channel

4.197 MeV 409 4.197 MeV 410
4.788 MeV 496 4.788 MeV 495
5.156 MeV 550 5.156 MeV 551
5.485 MeV 600 5.485 MeV 600

4A 4B
Energy Channel Energy Channel

4.197 MeV 411 4.197 MeV 410
4.788 MeV 496 4.788 MeV 494
5.156 MeV 552 5.156 MeV 550
5.485 MeV 601 5.485 MeV 600

Table C. AU energy resolution and yield data for washed polished eleetrodeposition.

sample detector FWHM (keV) yield (%)
2 IB 64.360 104.74
3 2A 68.829 90.05
4 2B 35.471 93.51
5 lA 69.847 80.01
6 IB 8T896 120.22
8 2B 36.500 9923
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Table D. AU energy resolution and yield data for washed unpolished eleetrodeposition.

sample detector FWHM (keV) yield (%)
1 lA 30258 13.79
2 IB 29.940 6.97
4 2B 63.169 97.16
5 2A 27.547 82.10
6 2B 39.072 75.71
7 IB 29.317 8520
8 IB 36274 8&67

Table E, All energy resolution and yield data for unwashed polished eleetrodeposition.

sample detector FWHM (keV) yield (%)
1 lA 55.156 49.45
2 IB 57.969 31.21
3 2A 4&628 8324
4 2B 56228 7526
5 2A 64.307 5728
6 IB 76257 79.84
8 2B 55254 40.54

Table F. All energy resolution and yield data for unwashed unpolished eleetrodeposition.

sample detector FWHM (keV) yield (%)
1 lA 70.851 89.16
2 IB 58.077 105.77
3 2A 35.670 8821
4 2B 55.665 70.65
6 IB 33234 40.82
7 2A 28221 91.51
8 2B 22225 94.12
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Table G. All liquid scintillation data for 50 \xL sample 1.

CPM Bq Total Bq Removed Fraction Bq Remaining
33 76.45 0.55 1.00
30 69.00 1.05 0.90
29 6622 1.53 027
29 65.73 202 026
25 56.25 2.43 0.74
25 5523 225 0.73
21 46.55 3.20 0.61
22 48.40 327 0.63
22 48.03 323 0.63
22 47.67 4.30 (162
20 43.00 423 0.56
18 38.40 4.93 0.50
9 19.05 528 0.25

All liquid scintillation data for 50 pL sample 2.

CPM Bq Total Bq Removed Fraction Bq Remaining
37 8522 0.62 1.00
27 62.10 1.07 0.72
19 4328 128 0.51
31 70.27 1.90 022
33 74.25 2.45 0.87
32 71.47 298 023
29 6428 3.47 0.75
24 5220 327 0.62
28 61.13 423 0.71
30 65.00 423 0.76
28 60.20 5.30 0.70
32 6827 523 0.80
14 2923 6.07 025
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Table I. All liquid scintillation data for 50 pL sample 3.

CPM Bq Total Bq Removed Fraction Bq Remaining
38 126.67 023 1.00
33 110.00 1.18 027
32 106.67 1.72 024
33 110.00 2.27 027
31 103.33 2.78 022
34 113.33 325 029
36 120.00 295 0.95
32 106.67 4.48 024
74 246.67 522 1.95
27 90.00 6.17 0.71
25 83.33 628 0.66
24 80.00 628 0.63
26 86.67 7.42 028
28 93.33 728 0.74

All liquid scintillation data for 50 pL sample 4.

CPM Bq Total Bq Removed Fraction Bq Remaining
40 13323 0.67 1.00
35 116.67 1.25 028
34 113.33 122 0.85
33 110.00 227 023
29 96.67 225 0.73
27 90.00 320 0.68
32 106.67 3.83 020
30 100.00 4.33 0.75
27 90.00 4.78 028
9 30.00 4.93 023
19 63.33 5.25 0.48
25 8323 5.67 0.63
20 66.67 6.00 0.50
31 103.33 622 028
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Table K. AU liquid scintillation data for 100 pL sample 1.

CPM Bq Total Bq Removed Fraction Bq Remaining
105.00 175.00 1.75 1.00
72.00 120.00 225 0.69
70.00 116.67 4.12 0.67
74.00 12323 525 0.70
62.00 103.33 628 0.59
75.00 125.00 723 0.71
72.00 120.00 823 0.69
64.00 106.67 9.90 0.61
65.00 10823 10.98 022
62.00 103.33 12.02 029
58.00 96.67 12.98 0.55
41.00 68.33 13.67 0.39
49.00 8127 14.48 0.47
54.00 90.00 1528 0.51

All liquid scintillation data for 100 pL sample 2.

CPM Bq Total Bq Removed Fraction Bq Remaining
101.00 12823 1.68 1.00
63.00 105.00 223 0.62
64.00 106.67 320 0.63
62.00 12323 423 0.61
5820 96.67 520 0.57
61.00 101.67 622 0.60
62.00 103.33 725 0.61
56.00 93.33 828 0.55
53.00 88.33 927 0.52
50.00 83.33 10.50 0.50
40.00 66.67 11.17 0.40
33.00 55.00 11.72 023
3820 63.33 12.35 028
46.00 76.67 13.12 0.46
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Table M. AU liquid scintillation data for 100 pL sample 3.

CPM Bq Total Bq Removed Fraction Bq Remaining
73.00 121.67 1.22 1.00
65.00 12823 220 029
67.00 111.67 3.42 0.92
65.00 10822 4.50 029
61.00 101.67 522 0.84
58.00 96.67 &48 0.79
55.00 91.67 7.40 0.75
53.00 88.33 828 0.73
49.00 81.67 9.10 0.67
51.00 85.00 925 0.70
3820 6323 10.58 0.52
34.00 56.67 11.15 0.47
40.00 66.67 11.82 025
40.00 66.67 12.48 0.55

. All liquid scintillation data for 100 pL sample 4.

CPM Bq Total Bq Removed Fraction Bq Remaining
75.00 125.00 1.25 1.00
65.00 10823 223 0.87
65.00 108.33 3A2 0.87
64.00 106.67 4.48 0.85
6520 108.33 5.57 0.87
64.00 106.67 623 0.85
5820 9627 7.60 0.77
56.00 9323 823 0.75
52.00 86.67 9.40 0.69
42.00 70.00 10.10 0.56
40.00 66.67 10.77 023
44.00 7323 11.50 0.59
40.00 66.67 12.17 0.53
40.00 66.67 1223 0.53

Table O. AU energy resolution and yield data for current setting at 0.6 A.

detector sample FWHM (keV) yield (%)
lA 1 68.21 6 2 2 4
IB 2 76.57 54.34
2B 4 124.82 7 2 2 6
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Table P. AU energy resolution and yield data for current setting at 0.8 A.

detector sample FWHM (keV) % yield
IB 2 133.35 70.99
2A 3 68.11 96.89
2B 4 170.83 88.91

■gy resolution and yield data for current setting at 1.0 A

detector sample FWHM (keV) % yield
lA 1 8526 92.01
IB 2 87.69 8720
2A 3 8523 72.91

Table R. All energy resolution and yield data for current setting at 1.2 A.

detector sample FWHM (keV) % yield
IB 2 120.74 76.32
2A 3 132.16 89.57
2B 4 110.53 93.80

Table S. All energy resolution and yield data for current setting at 1.4 A.

detector sample FWHM (keV) % yield
lA  1 68.08 73.67
2B 4 75.52 92.77

Table T. All energy resolution and yield data points for microprecipitation time o f 10 

minutes.

Sample FWHM (keV) Yield (%)
10.1 292 112.3
10.2 692 114.3
10.3 662 101.7
10.4 562 109.4
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Table U. AU energy resolution and yield data points for micropreeipitation time o f 20

minutes.

minutes.

Sam ple FW H M  (keV) Yield (% )
20.1 25.2 101.4
20.2 64.6 1022
20.3 66.2 112.3
20.4 64.0 118.1

îsolution and yield data points for mieropreei

Sam ple FW H M  (keV) Yield (% )
30-1 33.0 8 6 2
30-2 33.4 101.6
30-3 31.2 99.4
30-4 45.6 119.8

T able W . All energy resolution and yield data points for micropreeipitation time o f 40 

minutes.

Sam ple FW H M  (keV) Yield (% )
40-1 6 3 2 852
40-2 41.8 97.4
40-3 3&4 100.7
40-4 60.6 115.4

T able X. All energy resolution and yield data points for micropreeipitation time o f 50 

minutes.

Sam ple FW H M  (keV) Yield (% )
50-1 9 5 2 892
50-2 40.9 9 6 2
50-3 3 5 2 101.7
50-4 54.5 108.4
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Table Y. All energy resolution and yield data points for micropreeipitation time o f  60

minutes.

Sam ple FW H M  (keV) Yield (% )
60-1 79.6 91.1
60-2 5 4 2 94.6
60-3 3 6 2 100.1
60-4 51.4 100.1

Table Z. All energy resolution and yield data for 50 pL cerium carrier, 500 pL HF 

micropreeipitation.

Sam ple FW H M  (keV) Yield (% )
1 107.0 100.1
2 7 3 2 97.7
3 92.1 102.0
4 71.9 103.7

Table AA. All energy resolution and yield data for 25 pL cerium carrier, 250 pL HF 

micropreeipitation.

Sam ple FW H M  (keV) Yield (% )
1 53.4 113.1
3 522 114.3
4 60.8 110.5

Table BB. All energy resolution and yield data for 10 pL cerium carrier, 100 pL HF 

micropreeipitation.

Sam ple FW H M  (keV) Yield (% )
1 80.0 102.0
3 4 5 2 9 8 2
4 54.2 101.8
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Table CC. All energy resolution and yield data for 5 pL cerium carrier, 50 pL HF

micropreeipitation.

Sample FWHM (keV) Yield (%)
1 40.5 110.3
2 26.8 107.2
3 47.1 104.4
4 49.3 99.5

Table DD. All energy resolution and yield data for 100 pL cerium carrier fraction o f 

carrier in total solution micropreeipitation study.

Sample FWHM (keV) Yield (%)
1 33.0 86.6
2 33.4 101.6
3 31.2 99.4
4 45.6 119.8

Table EE. All energy resolution and yield data for 50 pL cerium carrier fraction o f 

carrier in total solution micropreeipitation study.

Sample FWHM (keV) Yield (%)
1 41.9 110.2
2 48.4 103.0
3 38.1 105.0
4 34.2 101.7

Table FF. All energy resolution and yield data for 10 pL cerium carrier fraction o f 

carrier in total solution micropreeipitation study.

Sample FWHM (keV) Yield (%)
1 26.4 91.9
2 29.0 103.5
3 25.9 98.8
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Table GG. AU energy resolution and yield data for 1000 pL hydrofluoric acid fraction o f

carrier in total solution micropreeipitation study.

Sample FWHM (keV) Yield (%)
1 33.0 86.6
2 33.4 101.6
3 31.2 99.4
4 45.6 119.8

Table HH. All energy resolution and yield data for 500 pL hydrofluoric acid fraction o f 

carrier in total solution micropreeipitation study.

Sample FWHM (keV) Yield (%)
1 30.9 111.9
2 64.0 93.8
3 52.0 109.0
4 54.7 100.1

Table II. All energy resolution and yield data for 100 pL hydrofluoric acid fraction o f 

carrier in total solution micropreeipitation study.

Sample FWHM (keV) Yield (%)
1 54.5 85.8
2 51.7 91.0
3 58.1 89.6
4 64.2 94.0

Table JJ. All energy resolution, yield, time and temperature data for heat setting 3.0.

Sample Detector
FWHM

(keV)
Yield
(% )

Temperature
©

Evaporation Time 
(M:SS)

3.0.1 lA 69.012 76.193 100.2 6:22
3.0.2 IB 61.13 80.758 97.4 6:50
3.0.3 lA 66.6 128.845 103.6 7:34
3.0.4 IB 48.2 93.248 100.4 8:27
3.0.5 2A 63.7 123.235 101.6 8:02
3.0.6 2B 67.8 131.167 100.4 9:05
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Table KK. All energy resolution, yield, time and temperature data for heat setting 3.2.

Sample Detector
FWHM

(keV)
Yield
(% )

Temperature
©

Evaporation Time 
(M:SS)

3.2.1 lA 81.569 80.852 106.5 6:01
3.2.2 IB 62.025 80.010 103.6 6:25
3.2.3 3A 46.000 87.487 101.6 5:49
3.2.4 3B 49.300 87.487 105.8 6:05
3.2.5 4A 34.600 84.182 106.1 6:04
3.2.6 4B 47.900 82.287 104.4 6:09

Table LL. All energy resolution, yield, time and temperature data for heat setting 3.4.

Sample Detector
FWHM

(keV)
Yield
(% )

Temperature
©

Evaporation 
Time (M:SS)

3.4.1 lA 93.81 76.71 114.2 5:54
3.4.2 IB 79.19 84.08 112.3 6:06
3.4.3 lA 68.90 80.59 108.4 7:07
3.4.4 IB 67.60 73.16 108.2 8:26
3.4.5 2A 72.40 82.36 107 7:45
3.4.6 2B 81.80 82.08 108.9 7:02

Table MM. All energy resolution, yield, time and temperature data for heat setting 3.6.

Sample Detector
FWHM

(keV)
Yield
(% )

Temperature
©

Evaporation Time 
(M:SS)

3.6.1 lA 63.91 73.88 116.6 5:00
3.6.2 IB 67.17 77.91 115.8 5:15
3.6.3 3A 81.80 95.81 113.7 6:06
3.6.4 3B 73.80 85.49 115.6 6:40
3.6.5 4A 67.20 69.10 114.9 7:36
3.6.6 4B 61.50 89.95 113.9 6:14
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Table NN. AU energy resolution, yield, time and temperature data for heat setting 3.8.

Sample Detector
FWHM

(keV)
Yield
(% )

Temperature
©

Evaporation Time 
(M:SS)

3.8.1 lA 56.47 71.78 122.3 4:49
3.8.2 IB 62.85 76.91 126.1 5:06
3.8.3 lA 93.70 91.25 121.8 4:55
3.8.4 IB 84.10 88.06 126.1 5:04
3.8.5 2A 83.00 87.07 126 5:09
3.8.6 2B 93.70 86.84 120.9 5:07

Table OO. All energy resolution, yield, time and temperature data for heat setting 4.0.

Sample Detector
FWHM
(keV)

Yield
(% )

Temperature
©

Evaporation Time 
(M:SS)

4.0.1 lA 67.19 83.13 124.7 4:45
4.0.2 IB 85.35 93.49 132.4 5:07
4.0.3 3A 103.60 99.06 125.3 4:47
4.0.4 3B 82.30 98.48 129.2 4:32
4.0.5 4A 103.80 93.91 133.2 4:37
4.0.6 4B 74.60 96.47 125.3 5:33

Table PP. All energy resolution, yield, time and temperature data for heat setting 4.2.

Sample Detector
FWHM

(keV)
Yield Temperature

©
Evaporation Time 

(M:SS)
4.2.1 lA 79.06 74.94 128 5:35
4.2.2 2B 69.86 87.68 134.9 5:20
4.2.3 lA 78.30 91.79 133.1 4:25
4.2.4 IB 107.40 81.39 136.1 4:22
4.2.5 2A 70.40 82.30 138 3:49
4.2.6 2B 71.20 83.75 133.6 4:27
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Table QQ. AU energy resolution, yield, time and temperature data for heat setting 4.4.

Sample Detector
FWHM
(keV)

Yield
(% )

Temperature
©

Evaporation Time 
(M:SS)

4.4.1 lA 71.12 84.44 134.4 3:58
4.4.2 IB 58.17 84.35 140 4:31
4.4.3 3A 85.20 96.79 138 3:47
4.4.4 3B 96.30 93.09 140.5 4:16
4.4.5 4A 68.60 98.64 139.4 4:02
4.4.6 4B 64.70 95.31 135.1 4:13
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