
UNLV Retrospective Theses & Dissertations

1-1-2007

Buffer allocation in message passing systems: An Buffer allocation in message passing systems: An

implementation for Mpi implementation for Mpi

Jeffrey Sampson
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Sampson, Jeffrey, "Buffer allocation in message passing systems: An implementation for Mpi" (2007).
UNLV Retrospective Theses & Dissertations. 2265.
http://dx.doi.org/10.25669/ugcx-24zg

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2265&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/ugcx-24zg
mailto:digitalscholarship@unlv.edu

BUFFER ALLOCATION IN MESSAGE PASSING SYSTEMS:

AN IMPLEMENTATION FOR MPI

by

Jeffrey Sampson

Bachelor o f Science
University o f Texas at Austin

2003

A thesis submitted in partial fulfillment
o f the requirements for the

Master of Science in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

G raduate College
University of Nevada, Las Vegas

December 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1452277

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1452277

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IINTV Thesis Approval
The Graduate College
University of Nevada, Las Vegas

NOVEMBER 16TH 20 0 7

The Thesis prepared by

JEFFREY SAMPSON

E n tit le d

BUFFER ALLOCATION IN MESSAGE PA SSIN G SYSTEMS; AN IMPLEMENTATION FOR MPT

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

LA—

Examination Committee M ember
1 X -

Exipnination Committee M ember , '

r") A. X X
Graduate College Faculty Representative

11

Examination Committee Chair

Dean o f the Graduate College

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Buffer Allocation in Message Passing Systems:
An Implementation for MPI

by

Jeffrey Sampson

Dr. Jan B. Pedersen, Examination Committee Chair
Assistant Professor o f Computer Science

University o f Nevada, Las Vegas

Message passing applications that perform asynchronous communication need

sufficient buffer space to hold all undelivered messages, or else the applications may

deadlock. Determining the minimum amount o f buffer space an application needs is

called the Buffer Allocation Problem, and has been shown to be intractable [BPW].

However, an epoch based polynomial-time algorithm that approximates the Buffer

Allocation Problem has been proposed by Pedersen et al. [PBS]. The algorithm partitions

application executions into epochs and intersperses barrier synchronizations between

them, thus limiting the number o f message buffers necessary to ensure deadlock-freedom.

In this thesis, we describe an implementation o f the epoch based algorithm. Our

implementation analyzes and performs barrier synchronizations for MPI (Message

Passing Interface) applications. We use a modified version o f MPI to gather information

about the messages sent during the execution, and then use a standalone Java program to

analyze the protocol (communication structure) and build a graph which serves as the

foundation for the computation o f barrier synchronizations. We then pass this information

to MPI, making it available for automatic barrier synchronization. Finally, we present the

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

results o f an empirical study o f various applications implemented to test our

approximation algorithm.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT iii

LIST OF FIGU RES..vii

LIST OF TABLES...viii

CHAPTER 1 INTRODUCTION... 1
Objectives and Goals o f this Thesis... 3
Organization o f this Thesis... 4

CHAPTER 2 BACKGROUND AND PREVIOUS WORK.. 5
Asynchronous Message Passing And Deadlock In M P I.. 5
Communication G raphs...7
The Buffer Allocation Problem...9
The Delay Free Buffer Allocation Algorithm...10
The Epoch Based Approach To The Buffer Allocation Problem.............................. 11
Combining Epochs Into Super Epochs..15

CHAPTER 3 THE PROTOTYPE BARRIER SYNCHRONIZATION TO O L.............. 21
Implementing Collection, Synchronization, And Partial Synchronization In MPI 23
The MPl_lnit() Function... 24
The MPI SendQ and MPI RecvQ functions...24
The M PI Finalize 0 Function...26
Java Classes Used In The Epoch, DBFA, And Super Epochs Algorithms.............. 26
The Epoch Class..28
The Interval C lass...30
The Vertex C lass...31
Implementing The Epoch, DBFA, And Super Epochs Algorithms In Jav a 31
The findEpochs() Method...34
The findSuperEpochs 0 M ethod..35
The DFBAQ M ethod.. 36
Summary of Commands Used for the Barrier Synchronization Tool....................... 37

CHAPTER 4 RESULTS.. 40
Pipe-and-roll Matrix Multiplication (M M)...41
Fast Fourier Transformation (FFT).. 41
2-D Heat Grid (H G)... 42
N-Body Problem (NBP)...42
1-D Differential Equation Solver (DES)... 43
Comparison of Buffer Allocations... 43
The number o f Super Epochs vs. the number of Epochs..44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Data Collection Overhead... 45
The Barrier Synehronization Overhead.. 48
Increasing the Per Process Buffer Allocation.. 53

CHAPTER 5 CONCLUSION AND FUTURE W O RK ..55
Future W ork... 55

REFERENCES...57

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 2-1 A communication graph for two processes.. 8
Figure 2-2 The graph G partitioned into epochs..13
Figure 2-3 A communication graph and its corresponding DAG D15
Figure 2-4 The algorithm for constructing super epochs... 18
Figure 2-5 A graph partitioned into Super Epochs... 19
Figure 3-1 Using the synchronization tool with an MPI application................................. 22
Figure 3-2 The wrapper function for MPI SendQ ..25
Figure 3-3 The graph, epoch, and vertex data structures...28
Figure 4-1 Applications with similar communication patterns... 54

Vll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 1 Buffer Allocations computed by NA and DFBA..44
Table 2 Number o f epochs and super epochs.......................... 46
Table 3 Runtime o f Applications with/without data collection..47
Table 4 Runtime for the five applications.. 49
Table 5 Full versus Partial barrier synchronization counts ... 52
Table 6 Performance of various configurations using larger buffers............................... 53

vin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

For several decades, advances in computer hardware have usually come from

improvements in the design of single processor architectures. In recent years, however,

the methods traditionally used to achieve better performance in CPUs have been yielding

diminishing returns. As a result, there has been a trend towards parallel computing. In

parallel computing, multiple processors simultaneously coordinate to solve a problem.

Distributed computing is one model of parallel computation. This model assumes

that the processors in a system do not share any memory space. Therefore, the programs

executed by the processors, called processes, cannot read each other’s data. Instead, data

is exchanged through messages sent between processes.

Unlike the shared memory model of parallel computing, which requires custom

hardware, more processors can be easily added to a distributed system. Additional

machines can be added to a cluster of computers by simply connecting them to a network.

This makes distributed computing more scalable than the shared memory model.

Distributed computing is becoming more available, thanks to the low cost o f processor

and network hardware.

In a distributed system consisting of multiple computers, processes must

communicate over the network connecting the system. Dealing with network protocols is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cumbersome and time-consuming for programmers, and protocol implementations vary

across networks and operating systems. Several popular libraries have been written that

handle process communication, as well as process creation and initialization, called

message passing libraries. Applications that use these libraries are referred to as message

passing applications. By using a standard message passing library, it is easier for

programmers to develop applications that run on multiple systems. The Message Passing

Interface (MPI) library is the most popular library for message passing applications

[BDHRS].

Although MPI makes it easier to write applications for multiple systems, it cannot

guarantee the portability of applications that use asynchronous message passing. In

synchronous message passing, the sending process must wait until the intended recipient

is ready to accept a message. Asynchronous message passing allows the sender to

proceed as soon as the message has been injected into the system by storing it in specially

allocated memory, called a buffer. If no buffers are free, the sender must wait until one

become available, causing the send operation to behave synchronously. Many MPI

applications assume communication is asynchronous in order to run faster. If there are

not enough buffers available, communication may cease to be asynchronous, and

deadlock can ensue. However, the number of buffers available is dependent on the

system hardware. Thus, an application that relies on asynchronous communication may

deadlock when ported to systems with fewer buffers than the one used for development.

In order to port an MPI application, it is necessary to determine the minimum

number of buffers needed to prevent such deadlock. Furthermore, if there are not enough

buffers on the target system, the application must be modified to compensate for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lower number of buffers. Unfortunately, determining the minimum number of buffers

needed by a message passing application (solving the Buffer Allocation Problem) has

been shown to be an intractable optimization problem [BPW]. There is a heuristic-based

approach that finds an approximation equal to or greater than the optimal solution

[BPW], but the number of buffers required by the approximation may be large.

One novel approach described by Pedersen et al. reduces the buffer requirements

by dividing an application’s execution into sequential intervals called epochs [PBS]. At

the end of an epoch, every process must wait until all other processes have completed the

epoch. This technique, called barrier synchronization, guarantees that any message

buffers will be free at the end of the epoch, and can be reused in subsequent epochs. The

new buffer requirements for each epoch and the entire application can be computed using

the previously mentioned heuristic algorithm.

Objectives and Goals of this Thesis

In this thesis, we present an implementation of the epoch based algorithm for MPI

applications. Information about an application’s communication is collected at runtime

using an addition to the MPI library, which we have written. This information is used by

a standalone Java application to create epochs and determine the buffer requirements of

the application. The output of the Java application can then be used by the MPI

application at runtime to perform barrier synchronizations at the end of epochs.

We also describe an empirical investigation of this implementation, using five

asynchronous MPI applications. Our investigation indicates that using epochs reduces

the buffer requirements of MPI applications, while increasing the runtime by a constant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

factor. Additionally, we show that a user can improve the runtime of an application if

extra buffers are available. By providing more buffers, the user can trade memory for

execution time, by allowing the application to use fewer epochs.

Organization of this Thesis

An overview of the Buffer Allocation Problem and the epoch based approach is

given in Chapter 2. In Chapter 3, we provide details about our implementation of the

epoch algorithm, including how to use if for MPI applications. Chapter 4 describes the

results of our experiments with the epoch algorithm on five MPI applications. Finally, in

Chapter 5 we present conclusions and recommendations for future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this chapter, we discuss previous research on preventing buffer related

deadlock. This research only involves messages sent between individual processes, not

messages that are broadcast to groups of processes. Any message passing algorithm can

be implemented using process to process communication. Although this research is

applicable to message passing programs in general and similar problems in the operations

research community [ANA] [REI] [SHE], our focus is limited to applications that use the

Message Passing Interface (MPI) standard.

Asynchronous Message Passing and Deadlock in MPI

At the start of an MPI application, n processes are created and execute

simultaneously. Each process is assigned a process id. A process i can send a message to

a process j by calling a send function with the id of j and the contents o f the message. To

receive the message from /, process j must call a receive function using the process id of

i.

When a receive function is called, the receiving process will block until the

message arrives. The send function can perform either a synchronous or asynchronous

send. In a synchronous send, the send function waits until the receive function is called

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the destination process before returning. In an asynchronous send, the message is

copied into a message buffer on the receiver’s side, after which the send function returns.

A message buffer holds the contents of a message until the receive function is called by

the destination process, at which point the message is delivered. Asynchronous sends

allow the sending process to continue execution without having to wait until the receiving

process is ready for the message.

Message buffers require memory in the system running the receiving process. If

many messages are being sent, then all available buffers may be used. When there are no

available buffers, the send function will wait until a buffer is free or the receiving process

is ready for the message. This causes the send function to behave synchronously. In MPI

applications that rely on asynchronous message passing, this can lead to deadlock.

For example, suppose two processes exchange messages. If both processes call

their send function first, followed by their receive function, then the messages must be

stored in buffers. If no buffers are available for either process, they will both block,

waiting for each other to call the receive function. Since this will never happen, both

processes cannot proceed, and the application is deadlocked.

The amount of memory available for buffers differs on every system. An MPI

application that terminates successfully on one system may deadlock on another due to

lack of memory for buffers. A user will not know if an application is portable without

manually testing it for any given system. An application would be more portable if it was

known beforehand how many buffers needed to be allocated to prevent deadlock.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Communication Graphs

In order to determine the buffer requirements of an MPI application, it is

necessary to record all communication that happens during the execution o f the program.

A program trace S' is a log of all events between the start of the program and its

termination. A send event is the completion o f a send operation, and a receive event is

the completion o f a receive event. A send completes when the sending process is no

longer blocked, not when the message is received. For a program trace to be useful, the

MPI application must have a static communication pattern. That is, the application must

produce the same trace S every time that it is run for a given problem size.

A communication graph G of a program trace S' is a directed graph G = G(S) =

(V,A) where the set of vertices V = {v,,c | I < i < n , 0 <c <ei} corresponds to events in

the trace, where e, is the number o f events performed by process i. Vertex v,,o represents

the start event of process i and vertex v,,c represents either a send or a receive event. The

former is called a start vertex and the latter are called send and receive events

respectively. For each vertex v,,c, i is called the process number and c is called the event

number.

The arc set A consists of two disjoint arc sets: the computation arc set P and the

communication arc set C. A computation arc (v,,c v,,c * ;) G P, 0 ^ c< e„ represents a

computation within process i, which is an “internal event” in the terminology of Lamport

[LAM]. A communication arc V jf E C represents a communication between

different processes, i and j , where is a send vertex and Vj,d is a receive vertex (see

figure 2-1). The vertex v, is called the parent vertex of the vertex v, ,e, and the vertex

Vî c f ; is called the child vertex of v,,c- The vertex vj,d connected to v,,c by a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication arc is called the sibling vertex o f v,;c- Note, the process arcs are drawn

without orientation for clarity; they are always oriented downwards. The process

component G[o f G is the subgraph G, = (F„ Al) where F = {v/,c E F | 0 £ c £ e,}.

The communication graph contains an ordering of all events in the trace. That is,

a path from vertex Va to vertex vj in the graph indicates that event a must occur before

event b. By transitivity, an event a must occur before an event 6 if a path exists from

vertex v^to vertex v*. Event a is said to precede event b, denoted hy a —* b. Since no

buffers are initially allocated, arcs between send and receive vertices are considered

bidirectional.

component labels

start vertex

send vertex
communication arc
computation arc
receive vertex

Figure 2-1: A communication graph for two processes.

The Buffer Allocation Problem

Determining the minimum amount o f buffers needed to avoid deadlock in a

message passing program was formally defined by Brodsky et al. as the Buffer Allocation

Problem [BPW]. To solve the Buffer Allocation Problem, an algorithm must compute

for an application consisting of n processes the n-tuple of nonnegative integers P = (hi,

\>2, ..., bn} representing the number of buffers needed by each process to avoid deadlock.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Buffer Allocation Problem was proven by Brodsky et al. to be NP-hard [BPW]. This

was done by using the communication graph framework to reduce a special case o f the

Boolean Satisfiability Problem to the Buffer Allocation Problem.

Problems that are NP-hard or NP-complete cannot be optimally solved by any

currently known algorithm in polynomial time or less. Consequently, no program can be

used to find an optimal solution for these problems because the large run time required is

impractical. Instead, a program must use efficient algorithms or heuristics that find an

approximate solution. An approximate solution may be suboptimal, but it can still be

useful if it is a certain range from the optimal solution.

To approximate a solution to the Buffer Allocation Problem, a program can use

the solution to the Delay Free Buffer Allocation Problem, which was also defined by

Brodsky et al. [BPW]. A delay is defined as the wait time that occurs when there are no

message buffers available and the sending process must block until one is available. The

Delay Free Buffer Allocation Problem is to determine the minimum amount of buffers

(3 == {bi, bz, ..., bn-i} such that there are no delays when sending messages. Unlike the

Buffer Allocation Problem, the Delay Free Buffer Allocation Problem is tractable

because there is an algorithm that solves it in polynomial time. Since a message passing

application that is delay free will also be deadlock free, the number o f buffers (3 will also

be sufficient to avoid deadlock during execution. Therefore, this algorithm provides a

suboptimal solution to the Buffer Allocation Problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Delay Free Buffer Allocation Algorithm

In the Delay Free Buffer Allocation algorithm, or DFBA, the number o f buffers

P = {bi, bz,..., bn} needed to avoid delay is determined by examining the communication

graph G of the message passing program. For each receive vertex in G, the algorithm

must find the interval, /,,,, which corresponds to the time between a message arriving at

process / and its receipt. An interval requires one buffer to ensure delay free sends. If

two intervals overlap in a process, two buffers will be required, three overlapping

intervals will require three buffers, etc. Thus, the minimum number of buffers h, needed

is the maximum overlap density over all of the intervals in process i.

Intervals are found by computing the terminal communication dependency of

each receive vertex. For two vertices v,,cand v,,, in process i, t> c, vertex v,-, is

communication dependent on vertex v,,c if v/,c is the start vertex or if there is a vertex Vĵ i

in process j , such that there is a path from v,,c to vy, j and there is an arc from vjp to v,,,.

Vertex v,,, is terminally communication dependent on if v/,/ is communication

dependent on v/,,, and not communication dependent on any vertices v/j, where c < l<t .

The terminal communication dependencies o f every vertex in G can be computed

using a dynamic programming algorithm. Each vertex vy ̂ is associated with an integer

vector Gj,d containing n entries, where aĵ d[i] ~ c means that there is a path from vertex v,,c

to vertex Vj,d- Initially, ajj{k\ - -I fox k i ^ j and ajp[k\ = d, otherwise. The entries in

vector üj,d are computed by taking the element wise maximum of the vectors in the parent

and sibling vertices of vertex vy.̂ . To do this, a depth first traversal o f G is done, starting

at the last vertex of each process component and following the arcs in the opposite

direction.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Delay Free Buffer Allocation algorithm consists of three steps. In the first

step, the terminal communication dependency of each receive vertex is computed. This

step takes O (\V\n) time, where V is the set of vertices in G and n is the number of

processes, because the number o f arcs in G is bounded by 3| F| / 2 and the pairwise

comparison takes n steps. In the second step, the interval for each receive vertex is

found. This is done by looking up the terminal communication dependency in the vector

o f the sibling vertex. Because this step requires one table lookup per receive vertex, the

run time is O (|F|). For the final step, the intervals within each process component are

sorted and a sweep is performed to find the maximum overlap density, which takes

O (|F| log |F|) time. So, the total complexity of DFBA is 0 (|F| n + |F| log |F|) time.

Since the number of processes n is usually much smaller than the size o f the set of

vertices | F|, the run time of DFBA in practice is O (| F] log | F|).

The Epoch Based Approach to the Buffer Allocation Problem

Since the Delay Free Buffer Allocation algorithm is not an optimal solution to the

Buffer Allocation Problem, the buffer allocation given by the DpBA algorithm for a

message passing application may greatly exceed what is necessary for the application to

stay deadlock free. In some cases, it may require more buffers than are available in

memory. This limits the utility of the algorithm to users of message passing applications.

There is another approach described by Pedersen et al. that can lower the buffer

requirements for a message passing application [PBS]. In this approach, the

communication graph G is decomposed into discrete sections called epochs.

An epoch E i s a subgraph of G, containing vertices from G and the arcs between

them. The subgraph is a maximal strongly connected component of G, meaning that for

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

every vertex in E there is a path to every other vertex in E. Since there can be no vertex

outside the subgraph that has a path to and from a vertex in the subgraph, all epochs in G

must be disjoint. That is, a vertex can belong to only one epoch. Since the arcs between

sibling vertices are considered bidirectional, every epoch E has at least one send and

receive vertex. An epoch is called simple if contains exactly one send and receive vertex.

An epoch is called complex if it contains more than two vertices.

The communication graph G can be represented as a series o f epochs Ej, E2, ...,

Em, such that for any two vertices a E E, and b E Ej, \ f a - ^ b then i < j. Two epochs, E,

and Ej, are causally ordered if there are two vertices a E E, and b E Ej such that <3 —> 6 or

b a. In the first case E, precedes Ej, while in the second case Ej precedes E,.

Otherwise, the two epochs are causally unordered, meaning they can be ordered either

way. Figure 2-2 shows a partitioning of a graph G into epochs.

The buffer requirements for a message passing program can be reduced by

requiring every process to synchronize at the end of an epoch. When a process reaches

the end of an epoch, it must wait for every other process to reach the end of the epoch

before it can proceed. This is called barrier synchronization. If a process does not have

an event in an epoch, it can simply perform a barrier synchronization event immediately

after finishing the preceding epoch. Since any receive events will have been completed

by the time each process reaches the end of an epoch, all message buffers will be free and

can be reused in subsequent epochs.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jt JÜHI

Figure 2-2: The graph G partitioned into epochs.

Because every epoch is a subgraph of G, the DFBA algorithm can be used to

determine the number o f buffers needed to avoid deadlock during the epoch. A simple

epoch does not require any buffers, because it contains only one receive event. A

complex epoch will require at least minimal buffer allocation to avoid deadlock. The

number of buffers required for the entire application is determined by taking the element

wise maximum over the delay free buffer allocations o f each epoch.

This approach is a trade-off between run time and memory requirements. Because

buffers are reused in each epoch, fewer buffers are needed during the lifetime of the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application. However, requiring every process to wait at the end of an epoch causes a

delay. The more epochs that are in the graph G, the greater the overall cost to the

application’s run time.

G can be partitioned into epochs using the standard algorithm for computing the

strongly connected components of a graph [CLR], which by definition are epochs. The

strongly connected components algorithm uses two depth first searches on G, which takes

linear time. Since the algorithm decomposes G into a smaller graph, the epochs and their

order can be represented by a directed acyclic graph (DAG) D. The arcs between two

epochs in D correspond to the arcs between the last vertices in first epoch and the first

vertices in the second epoch. An example of a graph G being decomposed into its epochs

in D is shown in figure 2-3.

9

^5

<t <
•

t «

----- *4

> e

»n--------
(1--------

«

i

(

(

X
H*---- -

1

' 4
--------(

x;
>

1--------

: .

------#41

x;
—— 4 »

< ----- --------1>

8

^ 8

3-(3>r

Figure 2-3: A communication graph and its corresponding DAG D.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Combining Epochs into Super Epochs

The drawback o f using epochs is the runtime overhead associated with the barrier

synchronization at the end of each epoch. To improve on this scheme, Pedersen et al.

also introduce an algorithm that reduces the number o f epochs in the graph, and hence

reduces the number o f barrier synchronizations required during the execution of the

application, without increasing the buffer requirements [PBS]. The algorithm is used

after the graph G has been decomposed into its strongly connected components and the

delay free buffer allocation has been computed over all epochs. This algorithm combines

epochs into larger ones called super epochs.

A super epoch is a composition of consecutive epochs Ei ° Ej i ... ° Ej, where

precedes Ei + / and ° -, i is the composition of two epochs. Like epochs, super

epochs are disjoint, meaning an epoch can belong to only one super epoch. Also like

epochs, super epochs are either simple or complex. A simple super epoch contains only

simple epochs, whereas a complex super epoch contains one or more complex epochs.

The graph G can be represented as an ordered series o f super epochs, where every epoch

in G belongs to a super epoch and G equals the composition of every super epoch.

In a super epoch, processes are required to perfonn a barrier synchronization

event at the end of the super epoch, not at the end of each epoch within. This lowers the

number of barrier synchronizations each process must perform, but it may also raise the

number of buffers required during the super epoch. The DFBA algorithm can be used to

find the necessary buffer allocation for a super epoch, since all epochs in the super epoch

are consecutive subgraphs of G. A simple super epoch requires no buffers, because it

comprises only simple epochs, making it an acyclic graph. It was proven by Brodsky et

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

al. that buffers are not needed to avoid deadlock in acyclic communication graphs

[BPW]. Complex super epochs, however, do require buffer allocation.

The algorithm described by Pedersen et al. builds super epochs by examining the

epochs in the DAG D [PBS]. Since the arcs between epochs are held in D, it can be used

to locate consecutive epochs. None of the super epochs created by the algorithm require

a greater buffer allocation than any epoch in D. This leads to fewer barrier

synchronizations without raising the buffer allocation.

Ideally, the number of super epochs should be as small as possible. To minimize

the amount of super epochs, the algorithm exploits the fact that simple epochs require no

buffers. Any number of simple super epochs can be composed together without requiring

any buffers, because the composition will remain simple. Furthermore, a simple super

epoch can be added to the beginning of a complex super epoch without increasing its

buffer requirement [PBS]. Unfortunately, a simple super epoch cannot be added to the

end of a complex super epoch, because it might require more buffers. Therefore, it is

advantageous to add as many simple super epochs as possible to the start of a complex

super epoch. To do this, super epochs are built in two parts, the head and the tail. The

head is built by composing consecutive simple epochs, until a complex epoch is reached

are there are no remaining epochs. The tail is then built by composing epochs until the

buffer limit is reached and there are no remaining epochs. Finally, the head and tail are

composed into one super epoch.

The algorithm for creating super epochs. Algorithm 1, is shown in figure 2-4.

The input to Algorithm 1 is the DAG D, which is found by running the strongly

connected components algorithm on the graph G. For output. Algorithm 1 returns a list

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of super epochs L and a Delay Free Buffer Allocation (3. L represents the partitioning of

G into a consecutive sequenee o f super epochs, and (3 is the buffer allocation necessary

for avoiding deadlock during each super epoch in f . A result o f the algorithm is shown

in figure 2-5.

A lg o r ith m 1: C o n s tr u c t in g Super Epochs
In p u t : D
O utput: L, (3
X iO C â l : Z/ X/ I lh e a d / D t a i l

Z { V I V El D h i n d e g r e e { v) = 0}
(3 ^ m a X v e D { D F B A { E v) }
W hile Z ^ 0 do

I fh e a d 0
F oreach v E Z do

I f E v i s s i m p l e th en
I l h e a d ° D h e a d E'v
X { u I (v g u) E D A i n d e g r e e { v) = 1}
Remove v from Z and D
Append X t o Z

end
end
ritail ^ 0
F oreach v E Z do

I f DFBAlDtaii ° E G ̂ (3 th en
Iltall ^ fltail ° E v
X *- { u I (v , u) E D A i n d e g r e e { v) = 1}
Remove v from Z and D
Append X t o Z

end
end
Append Ilhead ° Dtaii t o L
end

Figure 2-4: The algorithm for constructing super epochs.

The main loop of Algorithm 1 constructs one super epoch per iteration. It runs until the

list Z is empty, that is when there are no epochs in D left to process. The first inner loop

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constructs the head of the super epoch, and the second inner loop constructs the tail.

Afterwards the head and tail are composed to form a super epoch, which is added to the

list L.

w

8
CL

UJ

i
CL3C/>

(Hl-

: x ;

: x :

-m }

: x :

Epochs need
zero buffers

Epochs need
one buffer each

Required Barriers

Figure 2-5: A graph partitioned into Super Epochs.

To build the head, the first loop iterates through each epoch in Z. If an epoch is

simple, it is removed from Z and D, and composed with the head. When an epoch is

removed from the Z, all adjacent epochs are added to Z. This ensures that every epoch in

D will be processed eventually. The first loops halts when Z is empty or there are no

simple epochs left in Z.

Like the first loop, the second loop builds the tail by iterating through Z. If an

epoch and the tail can be composed without exceeding the delay free buffer allocation (3,

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then the composition is performed and the epoch is removed from Z and D. As in the

first loop, after the epoeh is removed any epoehs it has arcs to in D are added to Z. The

second loop halts when Z is empty or when there are no epoehs in Z that ean be added to

the tail. Since |3 is sufficient for every epoch in D, and the tail is initially empty, at least

one epoch must be added to the tail during the second loop. Therefore, at least one epoeh

is removed from Z and D and added to L during an iteration of the main loop, and the

algorithm must eventually terminate. The total complexity o f Algorithm 1 is O

where V is the set of vertices in G.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

THE PROTOTYPE BARRIER SYNCHRONIZATION TOOL

Our prototype synchronization tool consists o f two parts: a C-library that is used

with MPI applications to perform the data collection and the synchronization, and a

standalone Java program which computes the synchronization points based on the data

collected during the initial run. To use the synchronization tool on the data collected

from exeeuting an MPI application, the user must recompile the application to include the

C-library. The C-library allows the user to run the application in collection or

synchronization mode. To create a log file for a given application (i.e., the input data for

the Java analysis program), the user must execute the MPI application in collection mode.

During collection mode, the C-library will record every send and receive event in

separate files for every process. These files are then concatenated into one log file with a

shell script. The log file is used as input to the Java program, which performs the off-line

analysis portion o f the process. The Java program creates the communication graph by

reading the log file, then partitions the graph into epochs using the strongly connected

components algorithm [CLR]. Next, the Java application computes the Delay Free

Buffer Allocation P over all epochs. It then uses p to run Algorithm 1 and create a list of

super epochs. Finally, it outputs a synchronization file, whieh tells each process where to

perform synchronization. This entire procedure is illustrated in Figure 3-1.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The user can now use the synchronization file to run the MPI application in

synchronization mode for problem instances of the same size and communication pattern.

Using the synchronization file for any other application or communication pattern is not

legal. There are two types of synchronization modes that the user can run the program in:

fu ll barrier synchronization and partial harrier synchronization. In full barrier

synchronization, every process will synchronize with each other at the end of a super

epoch. In partial barrier synchronization, only processes that have events in the

following super epoch will synchronize. This allows processes that do not need to

synchronize to continue computation without delay.

M P I A p p l i c a t i o n

Run with flag -BAP collect to
create

; Used to run MPI App with
flags-BAP sync or-BAP psync

Used as input to

Outputs

Figure 3-1: Using the synchronization tool with an MPI application.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementing Collection, Synchronization, and Partial Synchronization in MPI

The C-code needed for collection, full barrier synchronization, and partial barrier

synehronization is contained in our file bap.c. This file is used as an interface between

the MPI program and the standard MPI library. All o f the MPI applications that we

tested use four functions defined in the MPI library: M PlJnitQ , MPl_Send(),

MPl_Recv(), and MPI_Finalize(). In bap.c, we define our own versions of each of these

functions that act as wrappers around the original versions. C-preprocessor Mefine

macros are used to replace MPI calls with calls to the wrapper functions. Our

implementation of these functions perform the additional work for collection or

synchronization, before or after ealling the original MPI function.

To use collection or synchronization in an MPI application, the applieation must

be recompiled with the MPI compiler to inelude the code in bap.c. The application can

then be executed with special flags that enable collection or synchronization. The collect

flag is used to execute in collection mode, the. sync flag is used to execute in full barrier

synchronization mode, and the psync flag is used to execute in partial barrier

synchronization mode. We refer to these as collect, sync, and psync modes respectively.

When using the collect flag, the user must specify the name of the log file in whieh to

record sends and receives. Each process will create a file using this name and its process

id as a suffix. All of these files are combined to create the log file. For sync and psync,

the user must specify the name of the synchronization file generated by the buffer

requirements analysis program on the command line.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The M PlJnitQ Function

The M PlJnitQ function is used at the beginning of each MPI process to register

with the MPI system. Since it is used at the beginning of an MPI process, our version of

the function also performs the initialization needed for collection and synchronization

after calling the original MPI function. In collect mode, each process will open a file to

record send and receive events. In sync and psync mode, eaeh process will open and read

the synchronization file. The synchronization file lists every super epoch and the event

numbers where each super epoch ends for a process. Each process records these event

numbers in an array, and then closes the file. In psync mode, an additional array is used

to record which super epochs the process must synchronize after.

The M P IJendQ and M P IJecvQ Functions

The M P IJendQ and M P IJecvQ functions are used to send and receive

messages between processes respectively. Our implementations of these functions call

the original versions at the end, after doing any necessary work, as in Figure 3-2. In

collect mode, a process will record all the information about a send or receive event in a

file before calling the original M P IJendQ or M P IJecvQ . In sync and psync mode, a

process synchronizes with other processes if needed before calling the original function.

A process checks if synchronization is necessary using the information recorded from the

synchronization file.

To synehronize in sync mode, a process calls the M P IJarrierQ function. When

a process calls this function, it will block until every other process in the group has also

called it. This forces every process to synchronize. This function cannot be used in

psync mode, because not every process may need to synchronize. Instead, a special

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process calledpharrier is ereated through the MPI function MPl_Comm_spawn(), which

every process calls. This function creates a special process that the other processes ean

eommunicate with through the MPI system. The pbarrier process is used to perform

synehronizations in psync mode. After it is ereated, pbarrier will also read the

synehronization file so it will know where eaeh process needs to synchronize. A process

synchronizes in psync mode by sending a message to the pbarrier process and waiting for

a reply. For each super epoeh, the pbarrier process will wait for a message from eaeh

process that needs to synehronize at the end of the super epoch. After receiving a

message from every process, pbarrier will send a reply to all of them in turn. Since the

processes will not receive replies until each one has sent a message to pbarrier, this will

cause them to synchronize.

i n t _M PI_Send(char p n a m e [1 0 0] , i n t l i n e , v o id * b u f ,
i n t c o u n t , M P I _ D a t a t y p e d a t a t y p e , i n t d e s t ,
i n t t a g , MPI_Comm comm) {

i f (_ _ b a p s y n c) //if running in syne or psync mode:
_ b ap _syn c 0 ; //synchronize if neeessary

i f (_ b a p _ c o l l e c t) //if running in eolleet mode, write
//send event to file

f p r i n t f (f p, "%d: E=%d : S : %d: %d; \n" , b a p _ m y _ r a n k ,
 b a p _ e v e n t , d e s t , l i n e) ;

 b a p _ e v e n t ++ ; //increment event counter
//call original MPI Send function in MPI library and
//return its return value
r e t u r n M PI_Send(huf, c o u n t , d a t a t y p e , d e s t , t a g , c o m m) ;

}

Figure 3-2: The w rapper function for M PJ_Send().

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The MPl_Finalize() Function

The MPl_Finalize() function is called at the end of every MPI process. In collect

mode, a process will close the file that it has been recording in. In sync and psync mode,

any final synchronizations will be performed by the process. The original

M P lJinalizeQ funetion is then called.

Java Classes used in the Epoch, DBFA, and Super Epochs Algorithms

We use four data structures in our Java implementation of the strongly connected

components algorithm, the Delay Free Buffer Allocation algorithm, and Algorithm 1.

These are the BAP class, the Epoch class, the Interval class, and the Vertex class. The

Epoch and Interval classes are inner classes of the BAP class, because they are not

needed outside o f BAP.

The largest class in our Java implementation is the BAP class. Eveiy

communication graph requires a different buffer allocation. Therefore we have a class

called BAP (for Buffer Allocation Problem) where each object or instance o f the class

corresponds to a commimieation graph. A BAP object is created by giving the

constructor an ordered list of vertices from a log file. This object will contain a

representation of the communication graph as a private data member. The user ean then

call public methods in BAP that partition the graph into epochs, find the Delay Free

Buffer Allocation over those epochs, compose the epochs into super epochs, and create a

synchronization file.

To represent the communication graph G, the BAP class has a two dimensional

array called graph- It is not necessary to use a canonical graph data structure because

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication graphs have a much simpler structure. See Figure 3-3 for an example of

a graph with 5 process components. The first index for the array selects a process

component, and the second index selects an event in that component. Each event in a

eomponent is represented by a vertex object, which contains information about the event

or vertex. With a two-dimensional array the graph G can be traversed easily through the

use o f two nested loops. More importantly, an array allows for an efficient method of

representing epochs.

The Epoch class is used to represent epochs. An epoch is a sub-graph of the

entire communication graph G. Each epoch corresponds to a strongly connected

component in G and a vertex in the DAG D {D is the output o f the strongly connected

components algorithm). An epoch object is empty when first created. Vertices are added

to the epoch object through a public method. A new epoch object can also be created by

calling the composeQ method in the BAP class, which takes two epoch objects as

parameters and returns a new epoch object containing both epochs.

The Epoch Class

A naïve approach to representing an epoch would be to either use another

two-dimensional array or a list o f vertex references. But this is an inefficient use of

memory, because the number of vertices in an epoch can become quite large and results

in duplicate vertex references that are already in the graph array. Moreover, our

algorithm for creating super epochs requires an operation that composes two epochs. The

complexity of the compose operation would be 0(N), where N is the number of vertices

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in both epochs, if an array or list is used to represent an epoch. Again, the number of

compose operations that are performed in the algorithm may be large.

Grqph: V«rt«3i'F2:

Process; 1 2 3 4 5

/ I
/

G -/! A
/
/

/
/

—

Process inimtxT 4

Event nnmb<r: 2

Send Verte*,?: Time

Parent V erte* 4-1

O û ld V erte*; 4^3

Sibling V erte* 5-3

e tc

P i Pz P 3 P 4 P 5

Figure 3-3: The graph, epoch, and vertex data structures.

In our approach, an epoch object simply stores indices into the graph array using

two arrays called top and bottom. We make use of the following observation: If there are

one or more vertices within the process component o f an epoch, those vertiees will be

part o f a consecutive sequence. This follows from the definition of an epoch. Flence,

there are two non-negative integers x and y such that the event number of each vertex in

the component will be between x and y, or x <= Vertex Event Number < = y . So, every

process component in an epoch has an upper and lower bound. Therefore, for each

component in the epoch, we simply record the smallest and largest event numbers in top

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and bottom respectively. The arrays top and bottom will have p entries, one for eaeh

process component in the graph. If an epoch contains no vertices within a process

component, then the two entries will be -1. Since we can represent any epoch with these

two arrays, the amount of memory needed for an epoch object will always be 0(p),

regardless of the actual number o f vertices that belong to an epoeh. Furthermore, the

compose operation for two epochs can be done in 0 (p) time. To compose two epochs,

the top and bottom arrays from both epochs are compared. Each entry in the top array of

the new epoch will contain the minimum of the corresponding entries in the top arrays of

the original epochs. Likewise, each entry in the bottom array of the new epoeh will

contain the maximum of the corresponding entries in the bottom arrays of the original

epochs. Two epochs should only be composed if they are adjacent to each other in the

communication graph. Since epochs are composed after being removed from the DAG

D, it is guaranteed that only adjacent epochs will be composed. Adding a single vertex to

an epoch requires simply eomparing its event number to the entries in top and bottom for

the vertex’s process component, and recording the new minimum and maximum.

In addition to the two arrays top and bottom, the Epoch class also contains a list of

adjacent epochs in D, and an integer representing the epoch’s in-degree. The adjacency

list and in-degree are determined during the strongly conneeted eomponents algorithm,

after each epoch object is created. They are later used during Algorithm 1, when they are

needed to choose the next epoch to remove from the queue Z.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Interval Class

The Interval class is used in the code for the Delay Free Buffer Allocation

algorithm. Recall that in the DFBA algorithm we compute the interval between each

receive vertex and the vertex that it is terminally communieation dependent on. The

purpose o f the Interval class is to record the beginning and end of an interval within a

process component. An interval object is created by ealling the construetor with; the

event-number of the first vertex in the process component (the one with the lowest event

number), the event-number of the first vertex in the interval, and the event number of the

last event in the interval. For the second argument, -1 can be given if the first vertex of

the interval is equal to the first vertex of the process eomponent. The interval object

stores the offset between the start of the component and the start of the interval, and the

offset between the start of the component and the end o f the interval. I hese offsets are

accessed through the publie methods startQ and end().

The Vertex Class

The Vertex class contains all the information about a vertex within the graph G

that is needed for our algorithms. This includes the event and process numbers, whether

it is a send or receive vertex, etc. There are also references to the parent, child, and

sibling vertices, which are useful for the parts of our code that perform depth-first

searches on the graph or epochs. A depth-first search also requires a way of marking

vertices that have been visited. Therefore, the Vertex class includes a data member called

color, which is a special enumeration type. In order to rank and sort all vertices in the

epoch building algorithm, there is an integer member called finishTime, which is

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

explained in the next section. There is also a referenee to the epoeh that a vertex belongs

to called epoch, which is useful for building an epochs’ adjacency list. Finally, each

vertex object contains an array of integers ealled vector, which is used in the Delay Free

Buffer Allocation algorithm.

Implementing the Epoch, DBFA, and Super Epochs Algorithms in Java

To create a synchronization file for an MPI program, a Java application must

include our four classes. The Java application must read the log file generated when the

MPI program was executed in collection mode, and create an ordered list containing

vertex objeets for each event listed in the log file. A BAP object is created by giving the

list of vertex objects to the constructor. After the BAP object has been ereated, either the

creatSyncFileQ or createCustomSyncFileQ methods can be called. The first method will

create a synehronization file using the minimum buffer allocation for the program, while

the second method will create a synchronization file using a custom buffer allocation if it

is not less than the minimum buffer allocation. Both methods take the name of the

synchronization file to be created as an argument. The second method takes an array

representing the eustom buffer allocation as a second argument. There is also a method

ealled wholeProgramDFBAQ, which computes the Delay Free Buffer Alloeation for the

entire program. This method was used during our tests to measure the difference in

buffer requirements when using Algorithm 1.

For our prototype tool, we have written several driver files that handle user input

and the creation of a BAP object. The driver files use a parser created by the JFlex

[JFLX] and CUP [CUP] parser generating tools to read the log file and create a list of

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex objects. They then create a BAP object and call either createSyncFileQ,

createCustomSyncFileQ, or wholeProgramDFBAQ.

In the BAP constructor, we first scan the input list of vertiees to determine the

number o f process components in the graph, and the number of events in each

component. We then use this information to allocate a two-dimensional array structure to

contain each process component in the graph G. Vertiees are added to the structure by

scanning the input list again and using their proeess and event numbers to place them in

the correct position.

After the two-dimensional array has been created and all vertices have been

added, the parent, child, and sibling references in each vertex object must be initialized.

The parent and child of a vertex are found trivially, sinee they preeede and suceeed the

vertex respeetively in the process component. If a vertex does not have a parent or ehild

vertex (because it is the first or last vertex in the component), the corresponding reference

is set to null. To find a vertex’s sibling vertex we make use of the destination data

member in the Vertex class. The destination member is the process that a send or receive

event communicates with. Starting at the top of the first proeess component, we visit

each send vertex. When we visit a send vertex, we go to the process component listed in

destination and, starting at the top, find the first receive vertex where sibling is null and

destination equals the proeess o f the send vertex. This receive vertex must be the sibling

of the send vertex, otherwise the MPI applieation would have deadloeked and never

finished executing. So, the sibling references o f both vertices are set to point to each

other. We repeat this process for each process component, which matches each send

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex to its corresponding receive vertex. After this is done, the graph data structure

will be fully initialized, and the constructor will return.

The createSyncFileQ and createCustomSyncFileQ methods both call the private

method findEpochsQ in the BAP class. This method runs the strongly connected

components algorithm on the eommunication graph and returns a list of all nodes in D

(which represents the epochs of G). Both createSyncFileQ and createCustomSyncFileQ

then call the findSuperEpochsQ method, which takes the list of Epochs in D as an

argument and runs Algorithm 1. The createCustomSyncFileQ method also passes the

array holding the custom buffer allocation as a second argument. The fmdSuperEpochsQ

method returns a list o f super epochs called L. This list is used by createSyncFileQ and

createCustomSyncFileQ to make the synchi'onization file.

The findEpochsQ Method

The findEpochsQ method is our implementation of the strongly connected

components algorithm, which partitions the graph into epochs. To create the list of

epochs in D, we use the algorithm for finding a graph’s strongly connected components

from [CLR]. First, we perform a depth first search on the graph to determine the finish

time for each vertex. The finish time is the timestamp reeorded in a vertex when it and

all vertices connected to it have been visited. Before performing the search, we initialize

the color member of each vertex to white. A vertex’s color variable is used by the Depth

First Search code to mark vertices that have already been visited. Next, we visit every

vertex in the graph, and begin a DFS at each vertex whose eolor is still white. The DFS

code will mark each vertex as it is visited, and will record a finish time for a vertex after

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

visiting it and every vertex connected to it. To visit the vertices connected to a vertex,

the DFS code simply uses the child and sibling references.

When the depth first search is completed, every vertex will have a finish time

associated with it. We then reinitialize the color of every vertex to white, and place them

all in a list. The vertices are then sorted from highest finish time to lowest. Starting at

the first vertex in the list, we begin a DFS at each vertex whose color is still white.

The eode for this second depth first seareh behaves slightly differently. Before a

new DFS is begun, an epoch object is created. As new vertices are visited, they will be

added to the epoch object. When a vertex is added to the epoch, the epoch member in the

vertex object is set to point to that epoch. After a DFS is finished, the epoch will be

added to a list. The other difference is that the DFS code will follow the parent and

sibling references instead of the child and sibling references. This is equivalent to

performing a depth first search on the transpose of the communication graph, which is

what the strongly connected components algorithm calls for.

We do not use a recursive implementation of depth first search, since the number

of recursive calls can become large. Instead we use an iterative stack-based

implementation. When a vertex is first visited, it will be placed on a stack. It is later

removed from the stack when it, and all vertiees connected to it, have been visited. This

approach avoids the overhead associated with recursive calls.

After all epochs have been added to a list, the adjacency list with respect to D

must be built for each one. To create an epochs’ adjacency list, we visit the vertiees that

immediately follow the end of each process component in the epoch. When we visit each

of these vertices, we add the epoch containing it (by checking the epoch reference in the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex object) to the adjaeency list if it has not been added already. We use a hash table

to keep track of which epochs have already been added. As each epoch is added to the

list, its in-degree is incremented by one. Afterwards, the list of epochs (which holds all

the nodes in the DAG D) is returned. The total runtime of the method is O (F + £),

where V is the set of vertices and E is the set of arcs between vertices.

The findSuper Epochs () Method

The findSuper Epochs 0 method implements Algorithm 1. First, p is computed

over all epochs using the method DFBAQ in BAP. If the calling method supplied a

custom buffer allocation in the second argument, then it is compared to p. We set p equal

to the custom buffer allocation if it is greater than or equal to p for every process.

Otherwise an error message is printed and the method returns prematurely.

Next, we use p to build the list of super epochs L, as described in Algorithm 1.

Before the main loop of the algorithm, we add every epoch in D to a hash table. By

doing this, we can test if an epoch is in the set and remove it in constant time. For the list

Z, we use a linked list. This allows for epochs to be added and removed from Z in

constant time. The rest of the implementation of Algorithm 1 is a straight forward

application of the DFBAQ and composeQ methods in the BAP class. The list L o f super

epochs is returned at the end of the method. The total runtime of the method is O (| V\^).

The DFBAQ Method

The DFBAQ method implements the Delay Free Buffer Allocation algorithm. It

takes an epoch as input and returns the minimum buffer allocation for that epoch in an

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

array. To determine the minimum buffer allocation, we first find the terminal

communication dependency of each receive vertex. This is done using the dynamic

programming algorithm from DFBA, which requires another depth first search. For each

vertex in the epoch, we initialize the color and vector members. We then perform the

depth first seareh, starting at the end of each process component. This search visits the

parent and sibling vertices o f a vertex. After visiting all vertices eonnected to a vertex,

vector is eomputed by taking the element wise maximum of the vector objects in the

parent and sibling vertices.

To determine the maximum overlap density (the maximum number of buffers

required at any point) for a process component, we first allocate an array that has an entry

for each event in the component, and set each entry to zero. We then create an interval

object for each receive vertex in the component and add it to a list. An interval object is

created by giving the constructor the event number of the first vertex in the process

component, the event-number of the first vertex in the interval, and the event number of

the receive vertex. The event number of the start of the interval is found by checking the

vector object in the receive vertex’s sibling vertex.

Finally, we use the list of intervals with the array we allocated earlier. For each

interval in the list, we increment the elements in the array between the indices returned by

the interval’s start and end methods by one. The maximum overlap density can then be

found by finding the maximum element in the array. This procedure is repeated for each

process component, and the minimum buffer allocation for the epoch is returned at the

end. The total runtime of the method is O (|fT| log | Ve\), where Ve is the set of all

vertices within the epoeh.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The wholeFrogramDFBAQ method runs the Delay Free Buffer Allocation

algorithm on the entire communication graph. To do this, we place every vertex within

the graph in an epoch object. We then simply pass this epoch to the DFBAQ method, and

return the array given by the DFBAQ method.

Summary of Commands used for the Barrier Synchronization Tool

We give a brief summary of the commands used to run an MPI application in

collection mode, analyze the log file, and run in synchronization mode using the

synehronization file produced as output. First, the file bap.c must be compiled with the

MPI compiler to produce an object file called bap.o that can be linked with the

application.

$mpicc -c bap.c

The object file bap.o should be placed in the same directory as the application,

and the application should be recompiled and linked with bap.o.

$mpicc -DBAP -c mpiApp.c

$mpicc -o mpiApp mpiApp.c bap.o -DBAP

The application must be executed with the collect flag, and the name of the log

file used to record every send and receive event must be specified.

$mpirun -np 4 mplAPP [mpiApp args] -BAP collect logFile.txt

This will create a file for each process, containing that processes’ message events.

Each file will be called logFile.txt-i, where i is the process id. These files must be

combined into one log file using a shell script. The argument to the script is the filename

used with the collect flag.

$./combine logFile.txt

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There will now be one file called logFile. txt containing the communication

information for every process. This file is the first argument to the Java analysis

program. The second argument is the name of the synchronization file to that will be

created.

$./bap logFile.txt syncFile.txt

This command creates a synchronization file using the minimal buffer allocation.

To use a custom buffer allocation, a third argument is given specifying the number of

buffers to allocate to each process.

$./bap logFile.txt syncFile.txt 4

If the number of buffers supplied is less than the minimal buffer allocation

necessary, an error will be returned.

To use the synchronization file, the MPI application must be executed using the

sync or psync flags, and the name of the synchronization file must be given. The sync

flag will run the application in full barrier synchronization mode, while the psync flag

will run it in partial barrier synchronization mode. The application should only be run

with the same number o f processors and the same problem size used in collection mode.

$mpirun - n p 4 mpiApp [mpiApp args] -BAP sync syncFile.txt

$mpirun -np 4 mpiApp [mpiApp args] -BAP p s y n c syncFile.txt

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

RESULTS

The tools that we have developed and described in the previous chapter allow a

user to run an MPI application with the number o f buffers needed to avoid deadlock

capped at an upper bound, which is reported to the user by our tools. This upper bound is

potentially lower than the one given by using the Delay Free Buffer Allocation algorithm

alone. However, to use less buffer space, the MPI application must perform barrier

synchronizations, which increases the application’s run time. To show that this is an

acceptable trade off, we tested the synchronization tool on a test suite of five different

MPI applications. In this chapter, we demonstrate that our approach requires fewer

buffers than the DFBA algorithm, and that the run time cost of data collection and barrier

synchronization is not prohibitively expensive. We also show that the user can trade

memory for execution time by increasing the buffer allocation used by the

synchronization tool.

For testing, we used an 8-node Linux-based cluster with dual 3 GHz hyper­

threaded CPUs, each with 2 GB of memory, connected by a 1 GB Ethernet connection.

Clusters such as this one are commonly used along with MPI applications to achieve

parallel performance gains. All of the applications that we test utilize asynchronous

message passing to increase efficiency, and thus require message buffers. Each

application uses a different communication pattern, all of which are common to message

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

passing programs. Five applications were implemented for our test suite. These include a

pipe-and-roll matrix multiplication algorithm (MM), a fast Fourier transform computation

(FFT), a 2-D heat grid simulation (HG), an N-body problem solver (NBP), and a 1-D

differential equation solver.

Pipe-and-roll Matrix Multiplication (MM)

This algorithm comprises one coordinator process and n worker processes that are

arranged in a torus-like 2-dimensional Vn by V» grid. The comparison proceeds in

roimds. Each round consists of two parts: first, one process in each row initiates a pipe

across the row, comprising (V« - 1) messages. Second, each process sends a message to

its north neighbor, resulting in an additional V» messages per column. A total of Vn

rounds are performed and in each round the initiator is the east neighbor (with wrap

around) if the initiator in the preceding round. Our tests used 320 x 320 matrices with

floating point entries.

Fast Fourier Transformation (FFT)

Given a vector x = {xo,..., Xm-i) of size m (in our case m = 2^^), this algorithm

computes the Fast Fourier Transform of x. Namely, x ' = (xo',, Xm-i where

Xk ’ = E^=0 to m - 1) X; * e'^' . The number of processes n should also be a power of

2 (process numbers begin at 0 in FFT). Each process is assigned m ! n elements from an

array. The algorithm uses a “butterfly communication pattern”: Each process performs

log n exchanges o f its array with other processes, where the z* exchange is done with the

process whose id number differs only in the most significant bit. So, for p = 64,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process 0 exchanges data with processes 32, 16, 8, 4, 2, 1, in that order [WA], In total n

log n exehanges take plaee. After log n exchanges, eaeh process has computed the veetor

X Our tests perform the computation 2,250 times using an input vector o f size 2'^.

2-D Heat Grid (HG)

A 2-dimensional grid is divided into n row-wise slices, each o f which is assigned

to a process. Each process calculates the heat distribution within its sliee and

communieates the boundary conditions to the processes assoeiated with adjacent slices.

The algorithm executes in rounds. In each round each process sends and receives

messages from its neighbors. The first process also acts as a master and collects the

results from all the processes at the end of the computation. Our tests use a grid of size

1,000 X 1,000 and ran the simulation for 1,000 rounds.

N-Body Problem (NBP)

The N-Body problem is an instance o f the Long Range Interaction problem

[FJLOSW]. The system consists o f n processes and m elements divided equally between

the processes. The goal of the eomputation is to compute a global sum

S(i = 0 to m) E^=0 to m)Xe„ ej) by circulating chunks of size m ! n around a virtual ring

formed by the processes. The algorithm has n - 1 rounds, in which each process sends its

“visiting” m ! n elements onwards to the process to its right. Our tests use a problem

instance of 30,000 particles.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-D Differential Equation Solver (DES)

This algorithm arranges the n processes in a “string” each with west and east

neighbors (except the end points). Each process receives m ! n elements o f an m-element

array. Eaeh element represents a point of the solution to a 1-dimensional differential

equation. Over several rounds of computations, the solution is refined using the values of

the elements from the preceding round as input to the current one. In eaeh round a

process exchanges boundary values with its neighbors, and then refines the values of the

elements that it has been allocated. Further details can be found in [FJLOSW]. Our tests

use an instance size o f 1,000,000 elements that were refined over 1,000 rounds.

Comparison of Buffer Allocations

To confirm that our tool requires fewer buffers, we measure the buffer allocations

for n processes given by the new epoch based approach (NA) and the by the Delay Free

Buffer Allocation algorithm (DFBA), both shown in Table 1. For every application, the

NA approach yields fewer buffers. The NA approach needs at most two buffers per

process, as opposed to the O (log n) or O in) buffers required by the DFBA approach.

This is an improvement of up to factor n in the buffer requirements for every application.

The Number of Super Epochs vs. the Number of Epochs

It is also useful to measure the number of barrier synchronizations required during

each application’s execution. A barrier synchronization must be performed at the end of

an epoch. Due to the overhead associated with barrier synchronization, we implement

the super epoehs approach in Algorithm 1, in order to minimize the number of epochs

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the attendant barrier synchronizations. Table 2 shows the number of super epochs

used by each application, and the number of original epochs. The last column shows the

improvement factor, which is the number of epochs divided by the number of super

epochs.

Table : Buffer Allocations computed by NA and DFBA approaches for n processes
App. Method Buffer Allocation (|3) Bufs. / Proc Total Buffers

MM NA (0, 1 , - , 1) 1 77 - 1
DFBA (« , o (V «) , ...,0(^7%)) n 0 (77 (V77)

EFT NA (1 , 1 , - , 1) 1 77
DFBA (0 (lo g n \ ...,0 (log72)) 0 (log 77) 0 (77 log 77)

HG NA (0, 1,2, _ . ,2 , 1) 2 2 (M - 2)

DFBA (3 (M- 1) , 6 , 7 , 7 , _ . , 7 , 6) 3 (n - l) IO77 - 9
NBP NA (1 , 1 , - , 1) 1 77

DFBA (%, .,%) 77 77

DES NA (0, 1,2, _ . ,2 , 1) 2 277 - 4
DFBA {n — 1, 2, 4, ..., 4, 2) 77 - 1 5%-9

For most cases, the number o f epochs is reduced considerably. In the case o f the

Differential Equation Solver, however, the improvement factor is negligible for every

process configuration. This is due to the fact that the communication graph consists

almost entirely of complex epochs, each of which becomes a super epoch when using the

minimal buffer allocation. The number of super epochs could be reduced in all cases by

allocating additional buffers. For example, if every process in the Differential Equation

Solver had at least b buffers, the number of super epochs would be reduced by \/b.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Data Collection Overhead

The data needed to construct a communication graph must be recorded at runtime

in a log file. Since every event must be written to a file on disk, an application may run

longer when executed in collect mode. Table 3 shows the runtimes of the applications in

the test suite with and without data collection. The runtime of an application is

considered to be the time elapsed between the start o f the application and the time when

the last process finishes executing. Runtimes in the table are taken from the minimum of

ten separate runs for each application and process configuration. The last column lists

the slowdown factor.

Table 2; Num Dcr of epochs and super epochs per execution for n processes.
App n # Epochs # Super Epochs Improvement Factor
MM 17 112 5 22.40

26 200 6 3T33
65 704 9 7&22
101 L300 11 118.18
257 4,864 17 286J8

FFT 16 105,750 9,000 11.75
32 249,750 11,250 2220
64 573,750 13,500 42J0
128 1,293,750 15,750 82.14

HG 17 2J28 :L001 1.06
33 :^256 2,001 1.13
65 :^512 2,001 1.26
129 3,024 :^ooi 1.51

NBP 16 450 151 2.98
32 930 311 299
64 E890 631 3.00
128 3,810 1,271 298

DES 17 1,016 1,001 1.01
33 E032 1,001 1.03
65 E064 1,001 1.06
129 E128 1,001 1.13

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3: Runtime in seconds of applications for n processes with and without collection
App. n Runtime with

Data Collection
Std.
Dev.

Runtime
without Data

Collection

Std.
Dev.

Slowdown
Factor

MM 17 1&62 546 17.17 536 0.97
26 11.77 343 12.05 4.20 0.98
65 11.62 1.37 11.41 0.94 E02
101 9.28 0 3 7 938 0.62 1.01
257 11.19 033 11.29 03 0 0.99

FFT 16 7.24 0.04 7.17 0.03 1.01
32 7J9 0.12 7.15 0.16 1.03
64 8.24 0.40 8.27 0.20 1.00
128 10.61 0.42 931 0.29 1.15

HG 17 18.21 0.21 11.31 3.26 1.61
33 11.30 03 9 1032 1.04 1.04
65 9.04 (182 832 1.03 1.03
129 9.09 033 831 1.03 1.03

NBP 16 47^3 10.77 7032 833 038
32 4538 638 4534 4.65 1.00
64 3932 348 36.42 1.90 1.08
128 37.12 233 3436 2.29 1.07

DES 17
33
65
129

&61
635
4.60
4.18

0.44
(124
0 3 0
0.11

830
634
^50
346

0 3 9
0.07
0 3 9
032

048
047
1.02
1.06

In every case, the slowdown caused by data collection is less than 7 seconds in all

of our examples. For some eases, runs with data collection took less time than runs

without data collection. This implies that the variance in an application’s run time is

greater than the additional time needed for collection. It is likely that the low overhead is

a result of the operating system’s buffering and caching mechanisms, which overlap disk

accesses w ith com putation. Since data collection needs to be done only once for an

application and process configuration, the runtime overhead of barrier synchronization is

more important.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Barrier Synchronization Overhead

When processes participate in a barrier synchronization, their computation and

communication is delayed, adding to the application’s total runtime. The more barriers

used during execution, the greater the overall cost. Table 4 shows the runtimes of the

applications in our test suite when using partial harrier synchronization (Phs), full barrier

synchronization (Fbs), and when using no barrier synchronization (Nbs). Again, the run

times in the table are the minimum of ten runs for an application and process

configuration. The table also lists the slowdown between the Nbs and Pbs modes, and

the speedup factor between the Fbs and Pbs modes.

It is important to note that the runtimes of an application can vary even when using the

same process configuration. This is expected due to underlying issues in the network and

processor hardware. It is also important to note that adding more processes does not

necessarily decrease an application’s runtime, since the number o f processors in the

system is fixed. The purpose of these results is to measure the cost of barrier

synchronization, not how well the applications scale or the performance of the hardware.

In some cases, there is no measured slowdown between the Nbs and Fbs modes.

These are cases where the overhead from harrier synchronization is low enough to he

within the runtime variance. Also, in the 17 process test of the Differential Equation

Solver, the Fbs configuration outperforms the Nbs configuration. This may because the

MPljbarrierÇ) function prefetches the MPI runtime system into the cache, ensuring fewer

cache misses during the communication phase of each round. This effect would only be

noticeable when the number of processes is small, since it would be swamped by the cost

o f additional barrier synchronizations when more processes are added. The fact that the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

runtime for 17 processes using the Pbs, which does not use MPIJbarrierQ, nearly

matches the one for the Nbs configuration supports this hypothesis.

able 4: Runtime in seconds otF applications for n processes wit h and without barriers
App. n Pbs

(Sec.)
Std.
Dev.

Fbs.
(See.)

Std.
Dev.

Nbs.
(See.)

Std.
Dev.

Nbs/Fbs
Factor

Fbs/Pbs
Factor

MM 17 2639 1.95 16.67 1.57 16.65 531 0.63 1.00
26 14.01 3.41 11.43 5.82 11.99 345 0 32 045
65 11.93 0.69 13.53 1.05 11.49 1.11 1.13 1.18
101 9.58 0.46 11.62 0.57 9.68 033 1.21 1.20
257 10.62 0.29 1335 0.31 11.04 0.67 T26 1.21

FFT 16 12.31 0.19 11.70 0.24 7.07 0.07 0.95 1.65
32 19.79 144 13.74 0.25 7.09 0.17 0.69 1.94
64 42.92 :E42 18.75 0.26 7.80 032 0.44 2.40
128 8130 E85 2639 0.46 933 0.21 033 233

HG 17 17.73 0.64 11.99 033 11.28 0.02 038 E06
33 14.31 1.48 I2 3 I 2.04 11.11 0.86 038 1.13
65 15.33 335 13.81 0.46 8.98 0.71 0.90 1.54
129 23.78 4.87 14.65 0.19 8.79 0.43 0.62 1.67

NBP 16 73.07 6.61 8645 2.05 63.36 7.50 1.19 1.37
32 48.45 3.71 51.44 1.43 42.49 5.49 1.06 1.21
64 5046 E86 4233 0.28 37.36 336 033 1.13
128 47.76 445 4039 0.84 36.35 2.11 035 1.12

DES 17 9.31 0.49 634 0.65 932 039 0.74 0.75
33 7.24 030 7.18 0.44 6.29 0.20 0.99 1.14
65 4.50 135 633 0.15 4.45 0 49 E52 1.54
129 9.70 1.59 7.25 0.15 3.96 0.26 0.75 1.83

In general, the slowdown factor increases with the number of processes. This is

unsurprising, since the cost of barrier synchronization grows as more processes must

participate. The magnitude of the slowdown varies between applications. As expected,

applications with a greater number of super epochs experience larger slowdown. For

example, the FFT, FIG, and DES applications have more super epochs and greater

slowdown than the MM and NBP applications.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A surprising result is that the Pbs configuration performs worse than the Nbs

configuration in the majority of eases. We believe this is a consequence of that

approach’s implementation. In partial barrier synchronization, all processes must

communicate with a single barrier process. When the number of processes participating

in a barrier is large, this can lead to a communication bottleneck. Furthermore, when the

number of processes is small, the overhead of creating and communicating with the

barrier process may be greater than the cost of a full barrier synchronization.

Based on our results, barrier synchronization may decrease performance by up to

a factor of 3. However, the buffer requirements are small, making this approach safer

than using no barrier synchronization. Application slowdown in acceptable if the

alternative is deadlock. The cost of barrier synchronization can also be mitigated by

allocating more buffers when creating super epochs. Improving the implementation of

the partial barrier synchronization may also help. However, there are some cases where

partial barrier synchronization cannot improve on full barrier synchronization.

The purpose o f partial barrier synchronization is to decrease the overall number of

synchronizations performed during an application. The synchronization count for a

process is the number o f barrier synchronizations that it participates in. The

synchronization count for the entire application is the sum of the synchronization count

for each process. An application using full barrier synchronization will have a

synchronization count of {b - 1) n, where b is the number of super epochs and n is the

number of processes. For an application that uses partial barrier synchronization, the

synchronization count will be at most equal to the one for full barrier synchronization.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

although it is typically less. Table 5 shows the synchronization count for each

configuration in the test suite.

Table 5: Full versus Partial barrier synchronization counts.
App n Syne.

Count
(Pbs)

Syne.
Count
(FbO

Improvement Factor

MM 17 65 68 0.96
26 126 130 0.97
65 513 520 0.99
101 1,001 1,010 0.99
257 4,097 4,112 1.00

FFT 16 143,984 143,984 1.00
32 359,968 359,968 1.00
64 863,936 863,936 1.00
128 2,015,872 2,015,872 1.00

HG 17 32,001 34,000 0.94
33 64,001 66,000 0.97
65 128,001 130,000 0.98
129 256,001 258,000 0.99

NBP 16 2,400 2,400 1.00
32 9,920 9,920 1.00
64 40,320 40J20 1.00
128 162,560 162,560 1.00

DES 17 16,001 17,000 04 4
33 32,001 33,000 0.97
65 64,001 65400 0.99
129 128,001 129,000 0.99

Increasing the Per Process Buffer Allocation

Super epochs are constructed in Algorithm 1 by finding a minimal buffer

allocation that guarantees deadlock-free execution. However, an application may have

more buffers available per process than the minimal buffer allocation. If these extra

buffers were utilized, the number of super epochs could be reduced. This would reduce

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the number of barrier synchronizations and improve the application’s runtime

performance.

To verify this, we experimented with three of our applications by increasing the

buffer allocation used to create super epochs. For each application we used the

configuration with the highest number o f processes, and hence the largest number of

barrier synchronizations. Table 6 shows the results of using more buffers for the MM,

FFT, and HG applications. The buffer allocations used are listed, along with the resulting

number of super epochs and the run time.

Table 6: Performance of various configurations using larger bu:
App. Buffer Allocation Super Epochs

(number of)
Pbs time
(seconds)

Fbs time
(seconds)

MM (0, 1, 1, ..., 1) 17 10.62 13.35
(257) (5, 5, 5, ..., 5) 7 10.91 12.37

(10, 10, 10, ..., 10) 5 10.84 12.21
FFT (1,1, ! , - , !) 15,750 81.20 2639
(128) (5 , 5 , 5 , . . , 5) 3475 20.88 13.22
HG (0, 1,2, _ . ,2 , I) 2,001 23.78 14.65
(129) (4, 4,4, ..., 4) 2 838 834

Ter allocations.

Our results confirm that allocating more buffers reduces the number of super

epochs in an application, and thus improves the runtime performance. For the Heat Grid

(HG) simulation, a small increase in the number of buffers dramatically reduced the

number of super epochs, leading to a lower run time also. This is because the

communication pattern of HG resembles the one in Figure 4-1. If the minimal number of

buffers is allocated, each complex epoch becomes a single super epoch. However, if the

number of buffers is slightly increased, each complex epoch can be composed into a

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

single super epoch. This is an example of a small additional allocation resulting in a

significant performance improvement.

Figure 4-1 : Applications with similar communication patterns benefit from additional

buffers.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we presented a tool that limits the number o f message buffers

needed to avoid deadlock in MPI applications. This tool separates the execution of an

MPI application into separate periods called epochs, by recording and analyzing the

communication pattern of the application. Available buffers are reusable during each

epoch. Our tests confirm that using this tool decreases the buffer requirements of MPI

applications, at the cost of a constant increase at most in runtime. We also confirmed that

additional message buffers can he traded for faster execution time. Limiting the buffer

requirements of an MPI application makes it easier to port it between systems.

Future Work

The complexity of the analysis phase is dominated by the Delay Free Buffer

Allocation (DFBA) algorithm, which is run many times, proportionate to the number of

epochs in the communication graph. Every time the algorithm executes, data structures

used in the previous execution have to be rebuilt. This work is redundant if the same

epochs were present in the last execution. It may be possible to improve the run time of

the DFBA algorithm by using auxiliary data structures to record previous computations.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We also believe that it is possible to improve the runtime of MPI applications that

use epochs. This can be done by improving the implementation o f the barrier

synchronization used at the end of each epoch. The partial barrier synchronization

scheme currently uses one process to coordinate the synchronization with other

processes, leading to a communication bottleneck. A distributed implementation of the

partial barrier can alleviate this problem.

Finally, the MPI tools from this thesis can be integrated into sophisticated

debugging programs for message passing applications. The debugging program can

automate the data collection and analysis, which presently must be done via several steps

on the command line. The code for analysis is in our object-oriented Java classes, and is

available for future programs. Our work is also applicable to other message passing

libraries and languages that rely on asynchronous communication.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[ANA] V. Anantharam. The optimal buffer allocation problem.

IEEE Transactions on Information Theoiy 35 (4), pages 721-725,

July 1989.

[BDHRS] J. Bruek, D. Dolev, C. Ho, M. Rosu, and R. Strong. Efficient

Message Passing Interface (MPI) for Parallel Computing on

Clusters of Workstations. Proceedings o f the Annual

ACM Symposium on Parallel Algorithms and Architectures,

pages 64-73, July 1995.

[BPW] A. Brodsky, J. Pedersen, and A. Wagner. On the complexity of

buffer allocation in message passing systems. Journal o f

Parallel and Distributed Computing 65, pages 692-713, March 2005.

[CLR] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to

algorithms. MIT Press and McGraw-Hill Book Company, 1991.

[CUP] CUP LALR Parser Generator for Java.

http://www2. cs. tum. edu/projects/cup/

[FJLOSW] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D.

Walker. Solving Problems on Concurrent Processors-General

Techniques and Regular Problems, volume 1. Prentice-Hall,

1988.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www2

[JFLX] JFlex - The Fast Scanner Generator for Java.

http://jflex.de

[LAM] L. Lamport. Time, clocks and the orderings o f events in a

distributed system. Communications o f the ACM 21 (7), pages 558-565,

July 1978.

[FBS] J. Pedersen, A. Brodsky, J. Sampson. Approximating the Buffer

Allocation Problem Using Epoehs. Under review for the

Journal o f Parallel and Distributed Computing, submitted October 2007.

[REl] M. Reiman. The optimal buffer allocation problem in light traffic.

Proceedings o f the 26'^ IEEE Conference on Decision and Control, pages

1499-1503, December 1987.

[SHE] T. Sheskin. Allocation o f interstage storage along an automatic

production line. American Institute o f Industrial Engineers Transactions 8

(1), pages 146-152, March 1976.

[WA] B. Wilkinson and M. Allen. Parallel Programming, Techniques

and Applications Using Networked Workstations and Parallel

Computers. Prentice-Hall, 2" ̂edition, 2005.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://jflex.de

VITA

Graduate College
University o f Nevada, Las Vegas

Jeffrey Sampson

Home Address
4910 Von Leidner Street
Las Vegas, Nevada 89149

Degrees:
Bachelor of Science, Computer Science, 2003
University of Texas, Austin, Texas

Publications:
Ju-Yeon Jo, Yoohwan Kim, and Jeffrey Sampson. A Spam Mail blocking scheme with
puzzles and tokens. Network/Computer Security Workshop, Bethlehem, PA, August
2005.

Thesis Title: Buffer Allocation in Message Passing Systems: An Implementation for MPI

Thesis Examination Committee:
Chairperson, Dr. Jan B. Pedersen, Ph. D.
Committee Member, Dr. Evangelos Yfantis, Ph. D.
Committee Member, Dr. Renee Bryce, Ph. D.
Graduate Faculty Representative, Dr. Jacimaria Batista, Ph. D.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Buffer allocation in message passing systems: An implementation for Mpi
	Repository Citation

	tmp.1534530611.pdf.KPD8q

