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ABSTRACT

Document Type Classification from Document Images

by

Jason Montgomery Vergara

Dr. Kazem Taghva, Examination Committee Chair 
Professor of Computer Science 

University of Nevada, Las Vegas

The most common features that classification systems use is simply to 

consider all words as features and determine the probability of the document’s 

category based on these words. When given document images, sophisticated 

optical character recognizers can be used to provide more than the simple text 

that traditional classification systems use. This metadata and extracting 

additional features from the document text can improve classification of 

document images.

We have found a greater than 1 % increase in recall when looking at font 

size metadata and extracting other features such as words used in uppercased 

lines. Since our dataset can have multi-page documents taking only words on 

the first page increased recall at least 15%. Approximately 2% of recall was 

increased by ensuring that 100 words of every document was used; this can be 

explained by some documents having useless header pages that have very little 

features.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT....................................................................................................................

LIST OF TABLES.......................................................................................................... v

LIST OF FIGURES ............................................................................................. vl

ACKNOWLEDGEMENTS ....................................................................................vii

CHAPTER 1 INTRODUCTION.................................................................................. 1
Enterprise Content Management Systems.............................................................2
Document Management Systems............................................................................ 3
This Study....................................................................................................................4

CHAPTER 2 BACKGROUND....................................................................................6
Single-Label versus Multi-Label Classification....................................................... 7
Binary versus Graded Classification........................................................................7
Feature Extraction......................................................................................................8

CHAPTER 3 METHOD...............................................................................................9
Ecdysis...................................................................................................................... 10
k-Dependence Algorithm.........................................................................................10
Document Dataset....................................................................................................12
Evaluation Method....................................................................................................12

CHAPTER 4 DOCUMENT TYPE CLASSIFICATION.......................................... 14
Initial Investigations (First Pass).............................................................................14
Confirmation Investigation (Second Pass)............................................................ 16
Number of Pages and W ords.................................................................................17
Ecydsis: Feature Set Lim itations.......................................................................... 18

CHAPTER 5 CONCLUSION AND FUTURE W O R K........................................... 20
Future W ork.............................................................................................................. 22

APPENDIX A DESCRIPTION OF CLASSIFICATION RUNS..........................   24

APPENDIX B RECALL AND PRECISION RESULTS.......................................... 27

APPENDIX C SAMPLE K-DEPENDENCE CALCULATION............................... 29

REFERENCES............................................................................................................. 34

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA...............................................................................................................................37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table 1 Comparison to the First Document Management System .....................4

Table 2 Document Dataset..................................................................................... 12

Table 3 Outcomes of Classification ............................................................... 13

Table 4 Recall and Precision Varying Number of Pages.......................17

Table 5 Recall and Precision Varying Number of Pages (CR9xxx).......18

Table 6 Recall Results Varying FSIZE.................................................................. 19

Table 7 Description of Features Sets Investigated and Reported......................24

Table 8 Recall and Precision Results............................................................27

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure 1 Enterprise Content Management Systems.............................................. 3

Figure 2 Artificial Intelligence.................................................................................... 6

Figure 3 Preprocessing.............................................................................................. 9

Figure 4 Ecdysis Processing...................................................................................10

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS 

I would like to thank my colleagues at the Information Science Research 

Institute (ISRI) for their help, support, and guidance through this thesis and many 

other projects that we worked on at ISRI. Through this help and support, this 

thesis would have never come to fruition.

A special thanks to Dr. Kazem Taghva and Jeffrey Coombs who have 

helped tremendously, especially in covering difficult topics like the k-Dependence 

Algorithm and Ecdysis. Additional thanks to Steven Lumos, Allen Condit, and 

Jeffrey Coombs for the development, support, and maintenance of Ecdysis. 

Thanks to Steven Lumos and Jeffrey Coombs for pointing me in the right 

direction in learning the ruby programming language. I am grateful to Allen 

Condit and Jay Nietling for maintaining and supporting the network, workstation, 

and server resources needed to store and process documents for Ecdysis.

Thank you to Julie Borsack for her introduction to ISRI's document type project 

and Whitney Le Pore for her quick responses to direct questions I had about 

document types and specific documents in question.

Last, but not least, a special thanks to my thesis committee. Dr. Ajoy 

Datta, Ph. D., Dr. Shahram Latifi, Ph. □., Dr. Thomas Nartker, Ph. D., Dr. Kazem 

Taghva, Ph. D., and Dr. John T. Minor, Ph. D.

VIII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

Periodization divides human history into periods (Webster, 2007);

Prehistoric eras such as the Bronze Age and historical periods such as the

Renaissance in Europe or the Industrial Revolution in the United States. The last

three periods are known as the Information Age, the Knowledge Economy, and

the Intangible Economy.

The Information Age lasted approximately twenty years from 1971 through

1991 (Bunch et al., 2004). During this period information technology improved

allowing information collections to grow and propagate at higher speeds.

Personal computers became more popular in our homes and we have seen

electronic communication devices go from 300 baud modems to 10 megabit

broadband connections today. This has lead to our society’s access to

information and the Internet, at home, work, and school.

The Knowledge Economy lasted approximately ten years from 1992

through 2002 (Sipp et al., 2006). In this period businesses become more global,

computer networking improves, and 70% of workers are information technology

workers; more business transactions are done over computer networks.

The Intangible Economy started approximately five years ago in 2002

(Andriessen, 2004). Today’s economy is not based on physical goods, but virtual

non-physical data. In this period business performance is based on intellectual

1
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property and knowledge, and does not depend on your location or the physical 

resources available to the business (Goldfinger, 2007).

Enterprise Content Management Systems 

Over the last three eras, since the Information Age, information, 

knowledge, and data collections have grown. Though the Information Age 

started in 1971 and we have seen technological advances that have contributed 

to the Information Age at the beginning of this period, information growth and 

rapid propagation didn’t start until the 1980s. For this reason, many companies 

have developed Enterprise Content Management Systems or simply Content 

Management Systems. Content Management Systems are used to capture, 

manage, store, preserve and deliver content (Green, 1993), see Figure 1; often 

these services also provide revision control, destruction, cataloging/indexing, 

annotating, and many other important functions needed to manage content. 

Content is often document images, but can include recorded audio or video, 

digital photographs, animations, music, web content, and many other forms of 

digital or digitized content.
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Figure 1. Enterprise Content Management Systems (Wikipedia, 2007a)
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Document Management Systems 

As mentioned earlier, the Information Age technically started in 1971, but 

information propagation and growth didn’t start until the early 1980s. At this time, 

companies started developing Document Management Systems to manage 

paper documents through document imaging. The first Document Management 

System started off with only a manually indexed storage and retrieval of 

document images, see Table 1.

Metadata is “data about the data” (Singh, 2005). It describes attributes of 

the data, in this case a document image. The user determines what Metadata he 

or she wants or needs to collect about the document image; for example, 

date/time of storage, text, title, author, date, address, company, number of 

pages, etc. Metadata can be manually entered by a user or automatically
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generated by a computer application. For example, the text of a document can 

be typed in by a user or automatically entered into the database using an OCR 

application. From a document image, a user can enter other metadata such as 

title into the database manually. Once the text is provided for the document, 

another application can extract the title automatically and enter it into the 

database.

Table 1. Comparison to the First Document Management System
First System Today’s Systems

capture document image, 
manual metadata

document image, OCR text, automatic 
metadata extraction, electronic documents 

(computer files, email, faxes)

manage index index, collaboration and workflow tools

distribute retrieval retrieval, security, auditing, distribution

This Study

This paper is about document type classification from document images. 

The Information Science Research Institute has many projects on metadata 

extraction from document images. Document images are processed through an 

OCR application to provide the document text to applications that extract 

metadata from the text. This project is a study to extract and classify document 

images to a set of pre-defined document types.

In second section, this study will give a background on classification. The 

third section will discuss more technical methods on classification for this study
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such as Naïve Bayes Classification and k-dependence. The fourth section will 

present the results of this study and the fifth section will conclude and discuss 

future work.
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CHAPTER 2 

BACKGROUND

John McCarthy in 1955 first used the phrase artificial intelligence to mean 

“the science and engineering of making intelligent machines” (McCarthy, 2004). 

There are several areas of Artificial Intelligence, see Figure 2. Conventional 

artificial intelligence uses formal and statistical methods while computational 

artificial intelligence uses informal, non-statistical, iterative methods. Machine 

learning is often associated with conventional artificial intelligence. Each area 

uses different methods for knowledge acquisition, knowledge storage, and 

knowledge retrieval. A Figure 2. Artificial Intelligence (Wikipedia, 2007b)

complete discussion of 

the entire artificial 

intelligence field is 

beyond the scope of this 

study.
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Conventional artificial intelligence methods are often used in document 

classification. Expert rule-based systems have rules that look for certain patterns 

to classify a document into the appropriate category; rules are generally in the 

form of a condition, for example, “if x and y, then z.” Though the example is 

simple, an expert system can require many complicated rules. These rule are 

typically generated by hand. Machine learning methods that use Bayesian and 

statistical algorithms are also used (Taghva, 2007).

Single-Label versus Multi-Label Classification 

When designing a text classifier, you are given a dataset of documents 

and given a task to label or classify the documents with a single category or 

multiple categories. When given M categories and |M|>1, single-label 

classification requires that the classifier associates the documents in the dataset 

to exactly one category or label. In effect, the dataset of documents are 

partitioned and clustered into different, distinct subsets.

Multi-label classification requires that the classifier allow a document to 

belong to zero, one, all, or some of the M categories. The result of multi-labeled 

classification is that each document is associated to a set of categories it belongs 

to, N, where NÇM (McCallum, 1999).

Binary versus Graded Classification 

Classification systems generally are either binary or graded (Tiantian, 

2002). Binary classifiers, when given a document, will determine if the document 

belongs to the category or not. For example, the output of a binary classifer that

7
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determines if a document belongs to the sports category will only be yes, it does 

or no, it doesn’t.

Graded classifiers (Tiantian, 2002), also known as one-of-M classifiers 

(D’Alessio et al., 2000), when given a document, will determine the rank or 

degree for the document belonging to the each of the M categories. The 

category with the larger rank is selected as the category for the document. The 

output of a graded classifier will often be probabilistic and the highest probable 

category will be selected.

When classifying documents to more than one category, |M|>1, multiple 

binary classifiers are used to independently determine each of the M categories. 

This would also allow documents to have zero to M category labels. Graded 

classifiers on the other hand will be assigned one category depending on which 

category has the largest rank (D’Alessio et al., 2000). So, binary classifiers seem 

more useful than graded classifiers in multi-label scenarios. It has been found 

that graded classifiers are better than binary classifiers when the dataset 

contains single-labeled documents (D’Alessio et al., 1998).

Feature Extraction

Text classifiers typically use the document words as features; the 

document is considered a “bag of words” (Tan, 2000). In terms of word phrases, 

“bag of words” is a unigram representation of features; Tan’s study also looked at 

two word phrases, bigrams. As we will see later, there are many other features 

that can be extracted from a document and used for text classification; some 

examples are symbols, numbers, margin sizes, and so on.

8
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Figure 3. Preprocessing

Scan

CHAPTER 3

METHOD 

As mentioned earlier, the Information 

Science Research Institute has many projects 

on metadata extraction from document images.

Document images are processed by an OCR 

application and from there an hybrid version of 

an application called Ecdysis extracts features 

and uses a k-dependence network to classify a 

document to a particular category.

The pre-processing process starts off with 

physical documents being scanned in and 

stored as JPG or TIFF image files. The image 

files are then processed by the OCR application 

and stored as an XML file. These XML files 

contain the words and also other information 

about the words and the document itself; for example, word position, word size, 

word style, document layout, and so on. These XML files represent the 

documents that are used by Ecdysis.

JPG or TIFF

OCR

XML
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Figure 4. Ecdysis Process
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As mentioned in the previous 

section XML files are used to 

represent documents. These 

documents are manually separated 

into two groups: training and test. 

Feature extraction is separately ran on 

each of the Training XML and Test 

XML groups to form a separate index 

for each. From here, the two indexes 

are treated separately.

First, the training index must be 

processed by the learning process to 

produce a network. After the network 

is produced, the classifier then uses 

this network to classify the documents 

found in the test index. The output of the classifier are the categories for each of 

the documents that were indexed in the Test XML group.

k-Dependence Algorithm 

As described in the previous section, Ecdysis produces and uses a 

network in its learning and classifying processes. A k-dependence algorithm is 

used to build a Bayesian network. The appendix has a simple example of using 

the k-dependence algorithm to build the Bayesian network and briefly describes

10
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how it is used in the classification process. In this section, we are going to briefly 

discuss the algorithm at an abstract level. The algorithm for generating a 

Bayesian network is (Sahami, 1996):

1. VXj, compute a<-MI(Xi,C)

2. Sort and renumber features X i...Xn  in descending order by a

3. ViH, compute Y”̂ MI(Xi,Xj|C)

4. for i=1..n do

a. r<-min(i-1,k)

b. parents(X i)^rfeatures with largest Yij where j<i.

5. compute the conditional probability tables using the network 

structure and training set

In the process of using this algorithm, we need to compute Mutual 

Information (Ml) for one and two features, MI(Xj,C) and MI(Xj,Xj|C), respectively. 

When C is the set of categories and XiG{0,1} when the feature Xi is present or 

not present, one feature mutual information can be computed with the following 

equation:

M/(X,,C) = -2 f (C ) lo g ,  P(C) + ^P (C ,X , ) \og ,  P(C IX,)
C

Similarly, two feature mutual information can be computed with the 

following equation, XjG{0,1}:

^  P(X. ,X . \C)
M/(X,,X̂ IQ= 2 f(X„X̂ ,C)log  ̂ ^

"P (X , IC )P (X JC )

11
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To avoid introducing zeros into calculations, a special case is introduced 

by Ecdysis taken from (Kohavi et al., 1997). Where n is the total number of 

documents, we replace zero probabilities with:

1/n
n + 2 /n

Document Dataset 

The Information Science Research 

Institute has a database of labeled 

documents. The original database consists 

of a multi-labeled dataset. To simplify the 

study, we narrowed the dataset to only 

include single-labeled documents, and from 

that only took ten categories, see Table 2.

Table 2. Document Dataset
Category Documents
Calibration 22652
Change 6967
Data 51877
Design 9130
Email 1229
Notebook 2875
Plan 5221
Procurement 2353
Report 32683
Requirement 2595
Total 137582

Evaluation Method 

The classification algorithm will have an output of what category it has 

computed that the document belongs to. There are four outcomes of the 

classification when comparing the output to ground truth (the actual category as 

determined by an expert), see Table 3.

• True Positive (TP): The output correctly labeled this document as being 

in this category.

• False Positive (FP): The output incorrectly labeled the document as 

being in this category.

12
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False Negative (FP): The output incorrectly labeled the document as not 

being in this category.

True Negative (TN): The output correctly labeled the document as not 

being in this category.

Table 3. Ou tcomes of Classification
Output Ground Truth -■Ground Truth Total
Category True Positive False Positive [Categoryl
-■Category False Negative True Negative [-■Category[
Total [Ground Truth| [-■Ground Truth[ N

The correct outcomes are true positive and true negative -  where the 

output has agreed with the ground truth; these are the numbers we want to 

maximize. The incorrect outcomes are false positive and false negative; these 

are the numbers we want to minimize.

Evaluation can be done through recall and precision for each classifier. 

Recall is the number of documents the classifier has correctly identified as being 

in that category out of the number of documents the ground truth says is in that 

category; “out of how many documents in this category did the classifier find.” 

Precision is the number of documents the classifier has correctly identified in that 

category out of the number of documents it labeled as being in the category; “out 

of all the documents the classifier labeled in this category did the classifier label 

correctly.”

„  TP TP
recall = — — precision =

TP + FN TP + FP

13
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CHAPTER 4

DOCUMENT TYPE CLASSIFICATION 

The Ecdysis Process outlined in the previous chapter has a long execution 

time that is primarily because of the indexing phase; during the indexing phase, 

XML documents are opened and features are extracted. Execution time 

depends heavily on the number of documents being processed and the size of 

the documents themselves.

To realize the execution time costs, classification runs CR1, CR13, CR25, 

and CR37 (described below) took approximately 54, 18, 21, and 33 hours to 

execute 8% of the entire set of documents. If these runs were on the entire 

137,582 documents, an estimated approximation of the execution time would 

total 57 days. Over fifty different feature set investigations were performed, so 

running the Ecdysis Process on all documents for each classification run would 

be prohibitive and impossible.

Initial Investigations (First Pass)

To reduce feature investigation and execution time, a smaller, random 

sample of documents from each category are selected for the feature 

investigation process. In the first investigation, 1000 documents were selected 

from each category; a 1-to-1 training-ratio was used where 50% of the selected 

documents were used for training and 50% were selected for testing. During this

14
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first run, only recall of all categories were used to determine which features 

remained in the next index. Appendix A, Table 7 has a description of the 

classification runs, CRs; the first run only included two-digit CRs.

The results of this first run will not be quantitatively reported here. The 

CRs in bold in Appendix A, Table 7 are classification runs that did not have a 

decrease in recall; there was an improvement or no change in recall. Here are a 

few feature sets that have had little or no improvement on recall:

• Floating point and integer feature sets (CR9, CR14, CR15, CR16, CR17)

• Looking at lines that are uppercased or capitalized (CR28)

Feature set classification runs that improved recall:

• Taking at least one page and at least 100 (CR20). There are many 

documents that only have simple pages at the beginning of the document; 

a page with a “received stamp” or a header page with a few words.

• Many requirement documents contained phrases like “requirement 

document” or “maintenance requirements” (CR32)

• Adding individual word counts as individual features (CR39)

• Font size matters: Emphasizing above average and large words (CR44)

• Using a traditional stop list (CR45)

There are also some interesting observations that can be made about 

classification runs that have decreased recall:

• Words containing non-word, decimal, or underscore characters (CR5)

• Using the entire document not only increases execution time and drive 

space to store the index, it also decreased recall (CR6, CR14)

15
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• Using n*n not only increases execution time and drive space to store the 

index, it also severely decreased recall (CR31)

Confirmation Investigation (Second Pass)

The email category is the smallest category with 1229 documents. For the 

confirmation investigation, 1229 documents are selected from each category to 

keep an equal number of documents from each category; a 3-to-1 training-testing 

ratio is used, where 75% of the selected documents are used for training and 

25% are used for testing. The resulting dataset contained 9220 training and 

3070 testing documents.

Appendix B, Table 8 contains the precision and recall values for the 

second pass; again, the second pass only includes two-digit CRs. The 

confirmation investigation confirms all the decreased recalls observed in the 

initial investigation. However, the second run only confirms the following recall 

improvements (improvement must be >1.00%):

• Taking at least one page and at least 100 (CR20). There are many 

documents that only have simple pages at the beginning of the document; 

a page with a “received stamp” or a header page with a few words.

• Font size matters: Emphasizing above average and large words (CR44) 

The second run doesn’t confirm the first run’s improvement of recall of the 

following CRs:

• Many requirement documents contained phrases like “requirement 

document” or “maintenance requirements” (CR32)

• Adding individual word counts as individual features (CR39)

16
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• Using a traditional stop list (CR45)

The second pass reveals a new feature set that has improvement (>1.00%):

• Words in uppercased lines (CR34)

Number of Pages and Words 

The same dataset from the confirmation investigation is used here. 

CRSxxx and CROxxx were classification runs to investigate the effect of limiting 

indexing on the number of pages or words. To isolate pages and words, we first 

started by limiting pages (CR9xxx) and then limiting by words (CR8xxx). These 

classification runs are based on CR32; CR32 limits the document indexing to 1 

page and 100 words.

In CR9XXX runs only the number of pages limit document indexing. 

Limiting the document indexing to 2 pages was found to be most optimal for our 

set of documents (CR9002) when compared to the other page limits. Table 4 

shows the recall and precision when varying the number of pages.

Table 4. Recall and Precision Varying Number of Pages (CR9xxx)
Pages Average Change

Recall Precision Recall Precision
1 77.39% 80.94% -1.60% -2.55%
2 77.95% 82.57% -1.04% -0.92%
3 75.67% 81.34% -3.32% -2.15%
4 74.43% 79.75% -4.56% -3.74%
8 70.33% 75.91% -8.66% -7.58%
16 65.57% 71.49% -13.42% -12.00%
32 64.01% 69.68% -14.98% -13.81%

Note: The change column is in comparison to CR32

17
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In CRSxxx runs, we keep the 2 page limit and also vary the minimum 

number of words must be used in document indexing. Limiting the document 

indexing to 50 words was found to be most optimal for our set of documents 

(CR8001 ) when compared to the other word limits. Table 5 shows the recall and 

precision when varying the number of words.

Table 5. Recall and Precision Varying Number of Pages (CR9xxx)
Words Average Change

Recall Precision Recall Precision
50 78.14% 82.94% -0.85% -0.55%
100 77.20% 81.07% -1.79% -2.42%
200 77.75% 82.63% -1.24% -0.86%

Note: The change column is in comparison to CR32

CR9XXX and CR8xxx conclude that 50 words and 2 pages are most 

optimal with 78.14% (CR8001). However, CR32 that uses 100 words and 1 page 

still outperforms CR8001 by 0.85%.

Ecydsis: Feature Set Limitations 

Ecydsis has several internal parameters that can be modified to change its 

behavior. One of these parameters is called FSIZE, feature size. FSIZE limits 

the number of features that can be used to generate the network used to classify 

documents. For all classification runs before this, a FSIZE of 512 was used. To 

reduce investigation time, only four feature sets are used, CR32, CR34, CR39, 

and CR44. Table 6 shows the results of varying FSIZE.

18
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Table 6 . Recall Results Varying FSIZE
ID # o f

Features
FSIZE

512 1024 2048 4096 8192
CR32 55608 78.99% 79.93% 81.53% 82.54% 83.75%
CR34 133243 80.36% 80.42% 81.66% 82.51% 83.88%
CR39 94972 78.79% 76.97% 77.88% 78.89% 80.98%
CR44 106226 80.03% 77.10% 78.40% 79.45% 81.34%

As expected, the results show that recall increases as we increase FSIZE; 

although there are five runs (in bold) that are worse than a smaller FSIZE run 

using the same feature set. In an ideal world, we could increase FSIZE to match 

the number of features available. Increasing FSIZE increases execution time; 

execution time indexing remains the same, but learning and classifying phases 

increase. Based on CR39, the approximate learning phase takes 1 hour per 

1024 features in FSIZE. The approximate classifying phase takes 1 hour per 

4096 features in FSIZE.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The most common features that classification systems use is simply to 

consider all words as features and determine the probability of the document’s 

category based on these words. When given document images, sophisticated 

optical character recognizers can be used to provide more than the simple text 

that traditional classification systems use. This metadata and extracting 

additional features from the document text can improve classification of 

document images.

After two passes looking at different feature sets, we have found a greater 

than 1% increase in recall when looking at font size metadata and extracting 

other features such as words used in uppercased lines. Since our dataset can 

have multi-page documents taking only words on the first page increased recall 

at least 15%. Approximately 2% of recall was increased by ensuring that 100 

words of every document was used; this can be explained by some documents 

having useless header pages that have very little features.

FSIZE, page limits, and word limits are closely related to the performance

of Ecydsis classification. Recall that FSIZE is an internal Ecydsis parameter that

limits the number of features that can be used to create the classification

network. Ideally, we would want to increase FSIZE to include all possible

features. Theoretically, this is also the case for page and word limits. However,
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taking all the features from all pages of every document would cause learning 

and classifying to take extremely long. The performance of Ecydsis classification 

should plateau [way] before all the features from all pages of every document -  

assuming that there are some less significant features or words.

There are finite and infinite feature sets. Finite feature sets can only add a 

finite number of features into the classification system. An example of this would 

be the email feature used in this study. As long as the indexer detects @ or © 

after “to:”, “cc:”, or “from:” one feature was added. A count of something can be 

made finite by setting some kind of limit; an example is CR16 where the number 

of floating point numbers are separated into a fixed number of groups. Infinite 

feature sets can add an infinite number of features into a classification system; 

an example is adding words or large words as features (in reality there is a fixed 

number of words in any language, but FSIZE is much smaller than the number of 

words in the English language or in the set of documents).

An argument could be made that the first two classification investigations 

were unfair comparisons because FSIZE was fixed to 512. CRx is the base of 

CRy and CRy adds at most z more features. When the features are limited to 

FSIZE additional features from CRy can displace at most z features from CRx. 

The result is an increase or decrease of recall from CRx to CRy. By running the 

classification on an FSIZE of 512+z would probably be a much better evaluation 

of increase or decrease of the new features added to the CRy feature set. 

Another side of this argument is that positive and negative changes in recall or 

precision don’t necessarily say the new features are improvements or not. A 1 %
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increase is simply better than a 1% decrease; the new features added to the 

system overpower the features lost by the displacement of features.

Future Work

There are many investigations that have been started from the main track 

of this study; all of these investigations were paused to continue other 

investigations. Here is a brief description of these investigations:

• Portable Stemming and Traditional Stop Lists. Theoretically, this should 

help improve classification; it has been used in a few other classification 

systems. Since stemming and stop lists help reduce indexes, more 

features will be used in the FSIZE limited classification networks.

• Improved Investigations on Finite and Infinite Feature Sets. Currently, we 

are starting with finite feature sets rather than including an infinite feature 

set from the beginning (as in this study). After adding an infinite feature 

set, it would be interesting to look at the effects of increasing FSIZE by the 

number features added by a finite feature set.

• n-Grams. Other studies have done this for at least 2-grams or bi-grams; 

rather than looking at only words, two words in sequence are used. There 

were three investigations started, each with different levels of manual 

intervention. The first study involved manually opening document images 

and pulling phrases a human felt were common in that document 

category. The second study ran tools to look at frequencies of 1- to 5- 

grams. The third study simply added 1- to 5- grams as features into 

Ecydsis.
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There are several other internal Ecydsis parameters that can be 

investigated; for example, all classification runs use k=2 k-dependence. There 

are two other large scale investigations or improvements. The first is to 

parallelize Ecydsis to make investigations more feasible on multiprocessor 

servers. All phases, indexing, learning, and classifying can be parallelized. This 

would help directed feature set investigations with large values of FSIZE.

The second large scale investigation can be to use multiple classification 

networks, in different typologies. The categories for this dataset are natively 

multi-labeled. Several studies have claimed that using separate classifiers for 

each category is the only way to classify multi-labeled documents. For example, 

if there are m categories, there would be m distinct classifiers, one for each 

category; each classifier will say whether the document is or isn’t a member of 

that category. These separate classifiers form a compound classifier that will 

output zero to m categories. There can be many other typologies combining 

compound classifiers and even using a single-label classifier to ensure there is at 

least one most probable category.
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APPENDIX A

DESCRIPTION OF CLASSIFICATION RUNS

Table 7. Description of Features Sets Investigated and Reported
ID Base Description
CR2 N.A. Entire document. Email-header feature is added if @ or 

© are found with “to”, “cc”, or “from”. All words are added 
if it does not contain non-word, decimal, or underscore 
character.

CR3 N A Entire document. Email features are added if @ or © are 
found after “to:” , “cc:” , or “from:” on the same line. All 
words are added if it does not contain a non-word, 
decimal, or underscore character.

CR4 CR3 Only the first page.
CR5 CR4 All words (even if the word contains a non-word, decimal, 

or underscore character)
CR6 CR5 Entire Document. Every feature is expanded to include 

its page. For example, originally “scope” would be a 
feature. But now, “scope-3” and “scope-10” would be 
two distinct features for scope appearing on page 3 and 
10.

CR7 N A Baseline: Only the first page. “Actual Words” are used; 
cs.unlv.edu is considered a word in the XML documents. 
At this point we transition to “cs”, “unlv” , “edu”. There are 
no e-mail features.

CR8 CR7 Email features are added if @ of © are found after “to:”, 
“cc:” , or “from:” on the same line.

CR9 CRB Float count and integer count features are added.
CR14 CR9 All pages.
CR15 CR9 Rather than count, existence is used; 1 if there was a 

float or integer.
CR16 CR15 Float and integer features are added by power of 2 

weight; if there are more than 32 integers, integer-32 is 
added as a feature, if there are 12 integers, integer-8 is 
added; similarly with floats
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Table 7. Description of Features Sets Investigated and Reported (continued)
ID Base Description
CR17 CR16 If there are more 64 floats, float-2, float-4, ..., float-64 

are added; similarly with integers.
CR18 CR17 Not based on the power of 2 weight; if there are 11 

floats, float-1, float-2, ..., float-11 are added; similarly 
with integers.

CR19 CR17 The highest power of 2 weight is 128 for floats and 
integers.

CR20 CR17 At least one page and at least 100 words
CR21 CR20 Number of lines uppercased, weighted like float and 

integer
CR22 CR20 Number of lines all_capitalized, weighted like float and 

integer
CR23 CR20 Number of lines capitalized, weighted like float and 

integer
CR24 CR23 Number of lines starting with a number, weighted like 

float and integer
CR25 CR23 Number of words starting with a number, weighted like 

float and integer
CR26 CR23 Number of lines centered, weighted like float and integer
CR27 CR20 Everything from 21-26
CR28 CR20 Only 21 and 22
CR29 CR20 Punctuation Classes. Number of lines with punctuations 

classi (0-2 punctuations), class2 (3-5), class3 (6- 
10), class4 (>10), number of lines also weighted like 
float and integer at the end.

CR30 CR28 Useless; added an additional feature if “requirement” 
was present in the word.

CR31 CR28 Very Costly: n*n. For all words i and j, where iŝ j, add 
“i-j” as a feature and not “j-i” .

CR32 CR28 Add features for “requirements document”,
“requirements matrix”, “assurance requirements”, 
“equipment requirements”, “installation requirements” , 
“operational requirements”, “maintenance requirements” , 
“utility requirements”, “system requirements”

CR33 CR28 Not specific phrases, “anyword requirements” and 
“requirements anyword” are added as features

CR34 CR32 Words that are in uppercased lines are added as special 
features
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Table 7. Description of Features Sets Investigated and Reported (continued)
ID Base Description
CR35 CR32 Words that are in all_capitalized lines are added as 

special features
CR36 CR32 Words that are in capitalized lines are added as special 

features
CR37 CR35 The special features are also numbered sequentially to 

give order
CR38 CR32 Using word count rather than existence for the feature’s 

value
CR39 CR32 Using word-count as a feature; if there are 12 “scope” 

words, “scope-12” is added as a feature
CR40 CR39 If the first page is less than 100 words, 100 words is 

used. Now we use the entire last page that the 100‘  ̂
word lies on.

CR41 CR39 nwords/4 added as a feature
CR42 CR39 number of words uppercased, weighted like float and 

integer
CR43 CR39 number of words capitalized, weighted like float and 

integer
CR44 CR43 Font size. Features are added for large words. Large 

words are defined as words above the average of the 
above average words.

CR45 CR44 Using a traditional stoplist of common words.
CR46 CR34 Font size. Features are added for large words. Large 

words are defined as words above the average of the 
above average words.

CR8001 CR9002 At least two pages and at least 50 words
CR8002 CR9002 At least two pages and at least 100 words
CR8003 CR9002 At least two pages and at least 200 words
CR9001 CR32 First page only
CR9002 CR32 First two pages
CR9004 CR32 First four pages
CR9008 CR32 First eight pages
CR9016 CR32 First sixteen pages
CR9032 CR32 First thirty-two pages
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APPENDIX B

RECALL AND PRECISION RESULTS

Table 3. Recall and Precision Results
ID Base Average Change

Recall Precision Recall Precision
CR2 N A 58.21% 64.47% N.A. N.A.
CR3 N A 61.89% 66.83% N.A. N.A.
CR4 CR3 77.20% 80.95% 15.31% 14.12%
CR5 CR4 75.86% 79.63% -1.34% -1.32%
CR6 CR5 64.56% 67.54% -11.30% -12.09%
CR7 N A 77.10% 80.99% N.A. N.A.
CR8 CR7 77.10% 80.96% 0 .00% -0.03%
CR9 CR8 77.20% 81.07% 0.10% 0 .11%
CR14 CR9 64.40% 68.27% -12.80% -12.80%
CR15 CR9 77.20% 81.07% 0.00% 0.00%
CR16 CR15 77.10% 80.96% -0.10% -0.11%
CR17 CR16 77.17% 80.98% 0.07% 0.02%
CR18 CR17 76.38% 79.75% -0.79% -1.23%
CR19 CR17 77.17% 80.98% 0.00% 0 .00%
CR20 CR17 79.06% 83.54% 1.89% 2.56%
CR22 CR20 78.96% 83.45% -0.10% -0.09%
CR23 CR20 79.02% 83.60% -0.04% 0.06%
CR24 CR20 78.86% 83.31% -0.20% -0.23%
CR25 CR20 78.40% 83.12% -0.66% -0.42%
CR26 CR20 78.76% 83.30% -0.30% -0.24%
CR27 CR20 77.75% 82.32% -1.31% -1.22%
CR28 CR20 78.76% 83.40% -0.30% -0.14%
CR29 CR20 78.53% 82.91% -0.53% -0.63%
CR30 CR28 78.86% 83.41% 0.10% 0 .01%
CR31 CR28 52.02% 56.03% -26.74% -27.37%
CR32 CR28 78.99% 83.49% 0.23% 0.09%
CR33 CR28 78.76% 83.41% 0 .00% 0.01%
CR34 CR32 80.36% 83.69% 1.37% 0.20%
CR35 CR32 78.86% 83.32% -0.13% -0.17%
CR36 CR32 79.15% 83.66% 0.16% 0.17%
CR37 CR32 79.32% 83.41% 0.33% -0.08%
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Table 3. Recall and Precision Results (continued)
ID Base Average Change

Recall Precision Recall Precision
CR38 CR32 78.99% 83.49% 0.00% 0 .00%
CR39 CR32 78.79% 83.16% -0.20% -0.33%
CR40 CR39 74.92% 80.68% -3.87% -2.48%
CR41 CR39 74.92% 80.68% -3.87% -2.48%
CR42 CR39 78.86% 83.04% 0.07% -0 .12%
CR43 CR39 79.02% 83.28% 0.23% 0 .12%
CR44 CR43 80.03% 83.51% 1.01% 0.23%
CR45 CR44 79.09% 84.29% -0.94% 0.78%
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APPENDIX C

SAMPLE K-DEPENDENCE CALCULATION 

In these sample calculations, we will set k=2, use two categories 

C={Ci,C2>, four features X={Xi,X2,X3,X4>, and five training documents:

Doc Category Xi Xz X 3 X 4

1 Ci 1 0 1 1
2 Ci 1 0 1 0
3 Ci 1 0 0 0
4 C2 1 1 1 1
5 C2 0 1 0 1

Mutual Information calculation for one feature:

(C)log2 f  (C) + (C,X,)log2 f  (CI %,)
C

First Term of MI(Xj,C):

- 2 / ’(C )log,i’(C)
c

.  -(/>(C,)log, P(C,) + f(C ,)lo g , P(C, ) ) .  - ( | lo g , I + jlo g , | )

= -(-0.4422 -  0.5288) = 0.9710

Special Case Calculation (we use this value to avoid zero calculations):

1/n 1/5 1/5 1
n + 2 / n ~  5 + 2 / 5 ~  27/5 ~ 27

Second Term of MI(X,C), where i=1 :
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^ f(C ,X ,) lo g ,f(C I% ,)
c,Xie{0,i}

= P{C„X, = 0)log2P{C, l% i-0 )  + P{C„X, = l)log2f(C , IX ,-1 )
+ f(Q ,X , = O)log, f ( Q  IX, = 0) + f(Q ,X , = l)log2 f ( Q  1X̂  = 1) 
1 , 1/27 3, 3/5 1, 1/5 1, 1/5

-  1 7 ^  *  i ' ” * ’ i7 5  *  Ï7? "  i T i
= -0.0901 -  0.2490 + 0.0000 -  0.4000 = -0.7391 

Finally, summing the two intermediate values results in MI(Xi,C):

M/(Xi,C) = 0.9710-0.7391 = 0.2318 

->This calculation is performed for all features in X, Xi to X 4 .

Mutual Information calculation for two features:

m ( x „ x / c ) -  ^  f ( x „x ^ ,c ) io g 2
' ' f ( X , I C ) f ( X J Q

We also use 1/27 to prevent calculations with zero, here is a sample calculation 

for i=1 and j=2.

+ f(x ,-o ,x ,- i ,q ) io g , = M ^ =  i J Q _
P(X, = 0 ICi)/’ (X2 = llC ,) 

P (X i=l,X ,=O IC i)
+P{X ,  1,%2 0, Q) l og2  ̂I C J f  (%2 - Q IC , )

+p{x, = i,x , = i,Q)iog, f ( x , - i .X 2 - i iQ ) ----
P(X, =1IC,)P(X2=1IC,) 

+P{X^ = 0,%2 = O.Cjllogj f (X i= 0,X, = 0 IQ)
f(X ,= 0 IQ )f(% 2=0 IQ)

+P {X ,  = 0 ,X ,  = l , C, ) l og,  —  ̂ ^
P{X^=0\C^)P{X^=l\C^)

P(Xi=l,A'^=OIC,)
+P (X ,  l , X ,  0,CJlog2  ̂  ̂ -  0 IQ )

+P (X ,  = l , X ,  = l , Q ) l o g ,  f ( x , - i . X 2 - i i Q ) —
P (X , = l l Q ) f ( X 2  = I I Q )
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27 X(l/27)/(3/5))(3/3)

+ ± lo  (l/27)/(3/5)
"̂27 ((l/27)/(3/5))((l/27)/(3/5))
3, (3/5)/(3/5)

+ —lo g ,-----------------
5 " (3/3X3/3)

(l/27)/(3/5)
27 (3/3)((l/27)/(3/5))

27 \l/2)((l/27)/(2/5))
4  (l/5)/(2/5)
5 " (l/2)(2/2)

(l/27)/(2/5)
"̂27 °̂ '(l/2)((l/27)/(2/5))

(l/5)/(2/5)
5 (l/2)(2/2)

1 81 1 1
= 0 + — log, —  + 0 + 0 + —  log, 2 + 0 + — log, 2 + 0 

27  ̂5 27 27 ^
= 0.1488 + 0.0370 + 0.0370 = 0.2229 

^T h is  calculation is performed for all pairs of features in X.

The following table lists all the mutual information values for one and two 

features:

M(Xi,Xi|C)
M (Xi,C ) Xi X2 X3 X4

Xi 0.2318 0.4427 0.2229 0.3742 0.1544
X2 0.6950 0.2229 0.2760 0.1544 0.2075
X3 0.1370 0.3742 0.1544 0.7079 0.1936
X4 0.2928 0.1544 0.2075 0.1936 0.5412
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The algorithm sorts the features by one feature mutual information, 

M(Xi,C):

M(Xi,Xi|C)
M (Xi,C ) X2 X4 Xi X3

X2 0 .6950 0 .2760 0 .2075 0 .2229 0 .1544
X4 0 .2928 0 .2 0 75 0 .5412 0 .1544 0 .1936
X1 0 .2318 0 .2 2 29 0 .1544 0 .4427 0 .3742
X3 0 .1370 0 .1544 0 .1936 0 .3742 0 .7079

Looking closer at the algorithm, you can see that after sorting based on 

M (Xi,C), r parents are selected by the following two criteria:

(1) the parent must have been already added to the graph, and

(2) which features the term has the greatest two feature mutual information 

values

i r term possible parents selected parents
1 0 X2 none none
2 1 X4 X2 X2
3 2 Xi X2X4 X2X4
4 2 X3 X2 X4 Xi X1X4

The graph is generated:
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Each node in the network will contain a table of probabilities for all the categories 

with respect to its parent nodes. For example, X3 could have the following 

probabilities:

P(X3| X i, X 4 )
X 3 X i X 4 Ci C 2

0 0 0 0.0 0.0
0 0 1 1.0 1.0
0 1 0 0 .0 0.0
0 1 1 0.0 0.3
1 0 0 0.0 0.0
1 0 1 0.0 0.7
1 1 0 0.0 0.6
1 1 1 0.0 0.0

After the learning process is complete, the network is formed and all the

probabilities for each node’s table is calculated. A new document is classified

using this network. If a new document is to be classified that has the feature

vector of (1,0,1,1), the category with the largest probability of the following

equation will be selected during classification:

P ( X , = 1 ,X ,= 0 , X ,= 1 ,X , = 1 )

=  f % = 0 ) " f ( % 4  = 11^ 2 = 0 )

•P(X, = l l% 2= = 1) • P(X,  =11%!= 1,̂ 4 = 1)
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