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ABSTRACT

Solution of Heat Transfer and Fluid Flow Problems Using Meshless Radial Basis
Function Method

by

Nagamani Devi Kalla

Dr. Darrell Pepper, Examination Committee Chair 
Professor, Department of Mechanical Engineering 

University of Nevada, Las Vegas

In the past, the world of numerical solutions for Heat Transfer and Fluid Flow 

problems has been dominated by Finite Element Method, Finite Difference Method, 

Finite Volume Method, and more recently the Boundary Element Method. These 

methods revolve around using a mesh or grid to solve problems. However, problems with 

irregular boundaries and domains can be difficult to properly discretize.

In this thesis, heat transfer and fluid flow problems are solved using Radial Basis 

Functions. This method is meshless, easy to understand, and even easier to implement. 

Radial Basis Functions are used to solve lid-driven cavity flow, natural convection in a 

square enclosure, flow with forced convection over backward facing step and flow over 

an airfoil. Codes are developed using MATLAB. The results are compared with 

COMSOL and FLUENT, two popular commercial codes widely used. COMSOL is a 

finite element model while FLUENT is a finite volume-based code.

in
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CHAPTER 1 

INTRODUCTION

1.1 Meshless Methods

The most commonly used approximate methods for solving the system of partial 

differential equations (PDEs) in fluid flow problems are the finite difference method 

(EDM), finite volume method (FVM) and the finite element method (FEM). Other 

methods also becoming more widely used include the spectral method (SM) and 

boundary element method (BEM). These methods have been used to solve numerous 

thermal related problems covering a wide range of applications.

There are some substantial difficulties in applying these techniques to realistic, 

geometrically complex three dimensional problems. The major problem is in creating a 

suitable mesh. For a complex configuration, generation of a good quality mesh can be 

very expensive in terms of human labor and CPU time. Meshing is often the most time 

consuming part of the solution process and is far from being fully automated. For 

practical problems the geometries encountered can be highly irregular. Hence it would be 

desirable to be able to solve partial differential equations (PDEs) over irregular domains 

without having to discretize the domains.

To avoid discretization, a number of numerical schemes have been proposed in the 

past two decades which are referred to as gridless or meshless schemes. They are also 

known as meshfree methods. In the sequel the terms gridless, meshless and meshfree
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will be used synonymously. These schemes completely discard the idea of a mesh for the 

spatial discretization of the governing partial differential equations. The meshfree term 

implies there is no dependence on a mesh, but such schemes can be applied to any kind of 

mesh-structured, unstructured or hybrid.

In the rapidly developing branch of meshfree numerical methods, there is no need to 

create a polygonisation, neither in the domain nor on its boundary, and represents a 

promising technique to avoid meshing problems [1,2,3]. A number of mesh reduction 

techniques such as the dual reciprocity boundary element method [4], meshfree 

techniques such as the dual reciprocity method of fundamental solutions [5], and 

meshfree local Petrov Galerkin methods (MLPG) [1,6] have been developed for transport 

phenomena and solution of the Navier-Stokes equations. This thesis focuses on the 

simplest class of mesh-free methods being employed today known as Radial Basis 

Function [7] methods.

A common feature of meshless methods is that neither domain nor surface 

polygonisation is required during the solution process. These methods are designed to 

handle problems with large deformation, moving boundaries, and complicated geometry. 

Recently, advances in the development and application of meshless techniques show they 

can be strong competitors to the more classical FDM/FVM/FEM approaches [8,9], and 

may likely become a dominant numerical method for solving science and engineering 

problems in the 2E‘ century.

Liu [10] discusses meshfree methods, implementations, algorithms, and coding issues 

for stress-strain problems. Liu [10] also includes Mfree2D, an adaptive stress analysis 

software package available for free from the web. Atluri and Shen [1] produced research



monograph that describes the meshless method in detail, including much in-depth 

mathematical basis. They also present comparison results with other schemes.

Meshless methods are an attempt to minimize mesh dependence problems in 

computational methods. The objective is to eliminate at least part of this mesh 

dependence by constructing the approximation entirely in terms of nodes. Moving 

discontinuities can usually be treated without remeshing with only a slight compromise 

with accuracy. Large scale problems can be solved using meshless methods with 

comparable accuracy and more efficiently than conventional mesh based schemes. The 

nodes can be created in a fully automated manner without any human intervention and 

hence the time spent in mesh generation is saved [10].

The origin of meshless methods can be traced back to the 1970’s, but very little 

research was done until the past decade. The starting point, which seems to have the 

longest history, is the smooth particle hydrodynamics (SPH) method (Lucy, 1977) [11], 

which was used for modeling astrophysical phenomenon. One of the common 

characteristics of all the meshfree methods is that a functional approximation or 

interpolation can be constructed from a set of scattered nodes or points. These methods 

do not require any storage of prespecified connectivity or relationship among the 

scattered nodes.

One of the main advantages of meshless methods is that they are computationally 

easy to add or remove nodes from a preexisting set of nodes. In conventional FDM, FVM, 

FEM and BEM [12] methods, addition or removal of a point or an element may lead to 

lengthy remeshing and is usually difficult to implement. Radial basis functions are the 

natural generalization of univariate polynomial splines to a multivariate setting. The main



advantage of this type of approximation is that it works for arbitrary geometry with high 

dimensions and does not require any mesh. A RBF is a function whose value depends 

only on the distance from some center point. Using distance functions, RBFs can be 

easily implemented to reconstruct a plane or surface using scattered data in 2-D, 3-D or 

higher dimensional spaces.

Meshless methods hold promising alternative approaches for problems involving 

fluid flow and heat transfer analysis. The lack of a mesh that is required in the more 

conventional numerical approaches becomes particularly advantageous in that one can 

easily refine (or adapt as a mesh-based technique) for CFD problems.

1.2 Meshless Solvers using Radial Basis Functions

In the past decade researches have been developing meshless methods based on the 

use of radial basis functions (RBFs) for solving partial differential equations (PDEs). The 

idea of using radial basis functions for solving PDEs was first proposed by Kansa (1990), 

where a global multiquadric scheme was used in conjunction with point collocation to 

discretize parabolic, hyperbolic and elliptic PDEs.

Radial basis functions have wide applications in sciences and mathematics where a 

function is to be approximated or interpolation is needed. For example, in thin plate 

splines (TPSs) RBFs are used for mapping images such as underwater sonar scans into 

other images for comparison -  in such cases interpolation comes into play. Another 

category of RBFs called multiquadrics have very good performance when dealing with 

interpolation problems like potential or temperature. Multiquadrics have been useful in



atmospheric studies where the temperature is known at scattered meteorological stations 

on the earth’s surface.

RBF methods rely on a set of random points, rather than a set of grid points defined at 

mesh intersections, to discretize the PDEs and the field variables. For certain values of 

RBF widths, the methods are capable of giving very accurate results and make them very 

attractive. RBF methods have found applications in many branches of computational 

engineering, for example, in heat transfer [13], fluid flow [14], solid mechanics, micro­

electrical-mechanical system [15] and electromagnetism. Mai-Duy and Tran-Cong [16] 

proposed an indirect RBF method, which is based on integration rather than 

differentiation for approximating functions and their derivatives and for solving elliptic 

differential equations.

In Kansa’s method [3], a function is first approximated by an RBF, and its derivatives 

are then obtained by differentiating the RBF. In the indirect RBF method, on the other 

hand, the highest order derivatives in the system under consideration are first 

decomposed into RBFs. Lower order derivatives and the function itself are then 

successfully obtained via symbolic integrations. Mai-Cao and Tran-Cong [17] extended 

the indirect RBF method for solving transient problems governed by parabolic, 

hyperbolic and convection-diffusion equations. Although RBFs were initially developed 

for multivariate data and function interpolation, their truly meshfree nature has motivated 

researchers to employ them in solving PDEs, especially for higher dimension problems.

The most credit for using RBFs to solve PDEs goes to Kansa [3], who discretized 

PDEs directly over unstructured nodes using RBFs. Though his approach was similar to 

the finite difference method (FDM), it was suitable for any scattered distribution of nodes.



He has also given a historical perspective on the development of meshfree methods and 

their application in various fields of computational science and engineering [18]. Other 

contributions in the area of RBFs comes from Fomberg [19], Chen [20] and Tanaka, 

including applications such as structures [21], fluid dynamics [22] and fluid structure 

interaction [23].

RBFs when used as basis functions for multi-variate data interpolation, show 

favorable properties like high efficiency and good quality. There are two main 

advantages of using RBFs to solve PDEs. One is that they are naturally mesh-free which 

means they have the ability to handle scattered data. The second advantage is that they 

have higher-order accuracy than typical finite difference schemes on a scattered 

distribution of nodes.

1.3 Thesis Outline

This thesis is focused on the simplest class of mesh-free methods in development 

today - the Radial Basis function methods. The fluid flow problem is generally a global 

problem. In order to solve a global problem one needs to solve a global matrix [24]. 

Solving matrices for global systems with a fine mesh grid or simulating complex 

geometries can become difficult. Therefore, a completely local scheme for solving fluid 

flow problems is proposed.

A common approach is to solve the pressure poisson equation or/and pressure 

correction Poisson equation [25]. A much simplified local pressure-velocity coupling 

(LPVC) algorithm is proposed. The proposed algorithm is tested on a set of classical 

benchmark problems analysed by Gartling [51] and De Vahl Davis [26] for heat transfer



and fluid flow problems. The method represents a local variant of an already developed 

global solution [27] for coupled heat transfer and fluid flow problems. This local variant 

was developed for diffusion problems [28], convection-diffusion solid-liquid phase 

change problems [29] and successfully applied in the industrial process of direct chill 

casting [30]. In this thesis the spectra of physics is extended to the solution of coupled 

mass, energy and momentum equations.



CHAPTER 2 

RADIAL BASIS FUNCTION

2.1 The RBF Method

Radial basis functions (RBFs) are increasingly being used as an alternative to 

traditional discretization schems employed in finite difference, finite volume, and finite 

element methods. RBF based methods have several attractive features, most notably fast 

convergence (exponential for some cases) and the flexibility in the choice of node 

location; in fact some implementations do not require an underlying grid or mesh. For 

this reason they are called meshfree numerical schemes. A major advantage with using 

RBFs is that the points on the grid do not need to be uniform in anyway. A random 

scattering of data points can be used just as easily as a uniform grid.

A radial basis function in two dimensions is defined as follows;

<j) : R- ^ R

The distance between points (x,y) and point (x,, y;) is denoted as follows:



There are many RBFs which have been suggested and applied in various numerical 

schemes. The most commonly used RBFs are

Multiquadrics (MQs): ^ (r)  = -\lr^ + c^  , c > 0,

Thin-Plate Splines (TPS): ^(r) = r̂  log(r),

Gaussians: ^ (r) = e , a >0,

Inverse MQs: (zi(r)= /  i— - , c > 0 ,
/  Vr +c

The c parameter in the multiquadric and inverse multiquadric functions is a shape 

parameter represented as a positive real number (discussed later). A way of thinking 

about RBFs is that they are an enhanced metric that describes the distances between 

points in a way that is more suitable with PDEs.

Among the above RBFs the first one, MQs are most extensively used and were 

proposed by Hardy [33]. Franke [34] studied RBFs and found that MQs generally 

perform better than others for the interpolation of 2D scattered data. The exponential 

convergence of MQ makes it superior to other RBFs such as thin plate splines (TPS). In 

the present work we will be using and presenting the MQ RBFs.

The RBF method is an ideal tool for interpolating multidimensional scattered data. Its 

simple form, and ability to aceurately approximate an underlying funetion, have made the 

method particularly popular. The types of ^ (r) available for use in the RBF method ean 

be split into two main categories: (1) infinitely smooth and (2) piecewise smooth. The 

infinitely smooth function features a shape parameter c, such that as c —► 0 the basis 

functions become increasingly flat. When considering the accuracy of the RBF 

interpolants and the stability of the corresponding linear system, two very different



situations arise. These two situations are determined by whether the ^(r) used in the 

method is piecewise smooth or infinitely smooth.

For the piecewise smooth case, as the number of data points increases in a fixed 

domain, the RBF interpolants converge algebraically to the underlying (sufficiently 

smooth) function being interpolated. The rate of convergence is directly related to the 

smoothness of ^(r) [31], and the rate often increases as the number of space dimensions 

increases. The stability of the linear system for the piecewise smooth case is also related 

to the amount of smoothness of (z)(r) [32].

A very important feature of the RBF method is that its complexity does not increase 

as dimension of the interpolation increases (apart, of course, from the trivial change of 

computing distances in higher dimensions). Their simple form makes implementing the 

methods extremely easy (compared to, for example, a cubic spline method). However, 

three main computational challenges exist:

(a) The matrix for determining the interpolation coefficients is dense, which makes the 

computational cost of the methods high.

(b) The matrix is ill-conditioned when the number of data points is large.

(c) For the infinitely smooth RBFs and a fixed number of data points, the matrix is also 

ill-conditioned when c is small.

Most of the studies devoted to resolving (a) also provide some preconditioning 

techniques for resolving (b).

10



2.2 Development of the Multiquadric Method

The RBF method is a generalized version of the multiquadric (MQ) method 

developed in 1968 by Hardy [33]. Hardy developed the MQ method to solve a problem 

from cartography. Namely, given a set of sparse, scattered measurements from some 

source points on a topological surface (e.g. elevation measurements from Rocky 

Mountain National park), construct a “satisfactory” continuous function that represents 

the surface. Here satisfactory means a function that provides an exact fit of the data and 

provides good approximation of the features of the surface.

Hardy’s first step was to study a one dimensional version of the problem, namely 

construct a satisfactory function that represents a topographic profile (a curve) from 

scattered measurements of the profile. While studying the problem, he found that the 

profile could be represented fairly satisfactorily by a piecewise linear interpolating 

function. For a set of n distinct (scattered) source points and corresponding

measurements { / y ^ , he proposed the following form for the interpolation function:

n

.s (x )=  (2.1)
y=i

The problem with representing a topographic profile is that the function has a jump in 

the first derivative at each data point. Hardy realized that this problem could be easily 

resolved by replacing the absolute value basis function by one that is continuously 

differentiable. He proposed using the basis function (c^+x^)'^ ,̂ where c is some non-zero 

arbitrary constant, because of its similarity to the absolute value function. The new 

interpolating function thus becomes

11



+ ( x - X y ) ^  (2.2)
y=i

Hardy found that this new method not only provided an accurate representation of a 

topographic profile, but that the techniques of calculus could be easily applied to it. The 

key property with Hardy’s approach was that it carries over to more than one dimension. 

The absolute value of the difference between two one-dimensional points is simply the 

Euclidean distance between the points. The natural extension to two dimensions is to 

create an interpolating function based on translates of the Euclidean distance function in 

two dimensions. Hardy proposed interpolating the data with the function.

y + ( y - y j  Ï (2.3)
7=1

Geometrically, this method corresponds to interpolating the data by a linear 

combination of n translates of a cone (i.e. a radially symmetric function (p(r) = r, where

r = ). The vertex of each cone is centered at one of the source points. Like its

one dimensional equivalent, this new two-dimensional method suffers from the problem 

that it results in a piecewise continuous function. Also like its one-dimensional equivalent. 

Hardy was able to find a simple solution to alleviate the problem. Instead of using a 

linear combination of the Euclidean distance basis function to interpolate the data, he 

again proposed using a linear combination circular hyperboloid basis functions 

(i.e. rotated hyperbola basis functions (c^+x^)’̂ )̂, translated to be centered at each source 

point. The exact form of this new type of interpolant is given by

- i - ( x - X y ) ^  + { y- yj f  (2 .4 )
7=1

12



For this function is infinitely differentiable, thus techniques in multivariable calculus 

can be used for determining properties of the topographic surface which the function is 

approximating.

This method did not suffer from large oscillations like Fourier series methods and 

was able to account for rapid variations of the topographic surface unlike the polynomial 

series methods. Hardy named this technique the “multiquadric method” because he 

considered the principal feature of the method to be a “superpositioning of quadric 

surfaces”.

While Hardy originally developed the MQ method for solving the two-dimensional 

interpolation problem, he realized that it could be easily generalized for interpolating data 

in any dimension. A three-dimensional interpolation method is then easily created by 

having the basis function only depend on the distance of the point (x,y,z) from its center

(xi,yi,Zi).

One of the most important studies of the MQ method was done in 1979 by Franke 

[34]. This study was primarily concerned with investigating a vast number of the 

available methods for interpolating two-dimensional scattered data in order to determine 

which methods deserved further mathematical study. Although Franke provided 

empirical evidence that the MQ method deserved more attention, he also expressed some 

reservations about the method. A mathematical foundation of the MQ method was 

ultimately provided in 1986 by Micchelli [35]. Besides providing a proof of Franke’s 

conjecture, Micchelli provided sufficient conditions to guarantee the nonsingularity of the 

method when a number of other basis functions are used. The MQ method was 

recognized as only one specific example of a more general method.

13



2.3 Shape parameter c in MQ-RBF method

The shape parameter c strongly influences the accuracy of the MQ-RBF method. The 

key factor in obtaining accurate results by RBF method is the MQ matrix. The choice of 

the shape parameter c has been a topic of discussion in the community of RBF 

researchers. Franke [36] evaluated a large number of interpolation schemes in two 

dimensions and found that the most accurate schemes were MQ and TPS. He suggested a 

formula to find the optimum shape parameter c as

\ 2 5 * D

where D is the radius of the smallest circle and Nj is the number of nodes in the support 

domain.

Hardy [33] suggested another formula for evaluating the shape parameter c.

Hardy: c=0.815d

N ,1 f  ,
where, a = 2^  " /

A /  , = i

di is the distance between the i'’’ data point and its nearest neighbor.

The behavior of the function to be interpolated has an important role in determining 

the optimal value of the shape parameter. A small value of c can be used if the function is 

rapidly varying and a large value if the function is smooth (has large curvature). The root 

mean squared errors of many of the bivariate functions were reduced when the optimal 

shape parameter was used [37]. The method of cross validation can be used to estimate 

the optimal shape parameter of elliptic PDF problems in two and three dimensions and 

observed exponential convergence.

14



A general theoretical analysis of how the shape parameter c is associated with the 

accuracy of approximation is difficult. In this work utilizing numerical experimentation 

on functions of two variables, it was found there is an optimum value of c at which the 

accuracy of the scheme is a maximum and remains constant over a range of c. But after a 

critical value of c is reached, the error increases infinitely. The choice of c within a 

domain ensures best approximation. A similar trend is observed for both the first and 

higher order derivatives.
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CHAPTER 3

INTERPOLATION AND APPROXIMATION 

RBFs work by interpolating a known function/from a set of n data points. These data 

points are known as interpolation points. Given a 2D finite set of scattered n data points 

(xi,Yi), often known as centers (or interpolation points), it is assumed that some function 

valuesy(xi,yi) are known. Based on this known data, the task is to approximate a function 

that will fit the function values. Using RBFs, one can find a linear combination that 

closely approximates the function f.

/=1

(3.2)

^(x,y) = ^(r),r  = 

where {Ui} are unknown coefficients that are to be determined.

(3.1)

(13)

Figure 3.1. 2D representation of distances among n centers (n=3)
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These distances are then applied to a selected radial basis function and written as n 

linear combination equations. The resulting system is

/fee ==jr, (3.4)

where A is the n x n symmetric coefficient matrix of the linear equations, a  is the vector

of corresponding unknown coefficients, and /  is a vector of the associated function 

values. Provided matrix A is nonsingular, the unknown coefficients {ui} are uniquely 

solvable:

<2 = 'jf (3.5)

3.1 Positive Definite vs. Conditionally Positive Definite

The nonsingular condition of the interpolation matrix A is a critical issue when 

attempting to solve for the unknown coefficients {a,}. If the matrix is positive definite, 

then it is non singular and invertible. Selecting RBFs denoted with a conditionally 

positive definite (CPD) order of zero will ensure that the matrix is positive definite. 

Hence, RBFs with CPD order of zero are called symmetric positive definite (SPD).

For RBFs with a CPD order of m (e.g., the TPS or cubic spline), the nonsingular 

condition of matrix A is not met. Fortunately, this can be overcome by the addition of 

polynomial terms. In this case, such RBFs are called conditionally positive definite (CPD) 

with order m. The approximation o f  funetion f  then becom es

;=l 7 = 1
/ ( ^ ,  t ) = S  (^) + S  (^)’ (3.6)

along with the constraints
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Y,a,Pj(x,) = 0, ISjSM, (3.7)
;=i

For example, if <p(r) = r^log r were chosen as the RBF, then M=3, and the function/  

would be approximated by n+3 equations;

A n

f ( x ,y )  = '^ogr + + cc„̂ 3y, (3.8)
i= \

with the constraints

n n n

^<2,. = ^or,x , = = 0
1=1 i= i  1=1

The eigenvalues and condition number of matrix A are also significant issues in the 

RBF approximation. If A is an n x n matrix, then any scalar X satisfying the equation

Ax = Xx, (3.9)

for some m x 1 vector x ^ 0, is called an eigenvalue of A. The matrix A can have many 

eigenvalues. The condition number of A is given by

cond(A) = XmJXmm, (3.10)

where Xmax and Xmin are the maximum and minimum eigen values of A.

The condition number indicates the sensitivity of the solution. Very large condition 

numbers indicate an ill-conditioned problem and unreliable solution, while small

condition numbers point toward solution stability. The accuracy of the RBF is inversely

related to the condition number of the interpolation matrix.

3.2 General Methods for Interpolation and Approximation

The most frequently employed techniques for multivariate approximation, other than 

radial basis functions, are straight polynomial interpolation, and piecewise polynomial
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splines. There are various highly speeifie techniques for forming polynomial interpolants. 

Very special considerations are needed because as long as a finite generic set of data sites 

from an open set in more than one dimension, and if we are interpolating from a 

polynomial space independent of finite generic set of data sites, there can always be 

singularity of the interpolation problem.

A completely different approach for polynomial interpolation in several unknowns is 

divided differences represented in terms of simplex splines and directional derivatives to 

express the polynomials. The representations of the approximants are usually ill- 

conditioned and therefore not too useful in practical applications.

Spline, i.e. piecewise polynomial, methods usually require a triangulation of the set of 

data sites in order to define the space from which we approximate, unless the data sites 

are in very special positions, e.g. gridded or otherwise highly regularly distributed. The 

reason for this is that it has to be decided where the pieces of the piecewise polynomials 

lie and where they are joined together. Moreover, it then has to be decided with that 

smoothness they are joined together at common vertices, edges etc. and how that is done. 

This is not at all trivial in more than one dimension and it is highly relevant in connection 

with the dimension of the space.

Triangulations or similar structures (such as quadrangulations) are very difficult to 

provide in more than two dimensions. This is one of the severest disadvantages of 

piecewise polynomial techniques and a good reason for using radial basis functions (in 

three or more dimensions) where no triangulations are required. Moreover, the quality of 

the spline approximation depends severely on the triangulation itself - long and thin
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triangles, for instance, often being responsible for the deterioration of the accuracy of 

approximation.

In summary, there are many approximation methods in several dimensions other than 

radial basis functions, the most attractive being usually ones that generate piecewise 

polynomials. However, these methods require much set-up work, especially in more than 

two dimensions, and is a strong argument in favor of radial basis functions.
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CHAPTER 4 

SOLUTION PROCEDURE

4.1 Governing Equations

Assuming incompressible laminar flow with convective heat transfer effects, the 

following scaling relations are used in the governing equations of momentum and energy

* represents the dimensional variables which are non dimensionalised using scaling 

relations.

with the Reynolds number, Rayleigh number, Prandtl number and Peclet number 

defined as

Re = ̂ ,  = (4.2)
fi av

Pr = - , P e - —  (4.3)
a a

The non-dimensional forms of the governing equations become 

Conservation of Mass:

V - E = 0  (4.4)

Conservation of Momentum:

+ (4.5)
at
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where the body force is defined as B = PrRaT in the y-direction for natural convection 

problems. For all the other cases, B = 0.

Conservation of Energy (neglecting source term):

— + = (4.6)

Table 4.1: Coefficients in the governing equations

Case Cvisc Ct

2-D lid driven cavity 1/Re N/A

Natural convection in a differentially heated enclosure Pr 1

Flow with forced convection over backward facing step 1/Re 1/Pe

Flow over an air foil 1/Re N/A

4.2 Numerical Examples

4.2.1 Lid-Driven Square Cavity flow

The lid-driven cavity is one of the most frequently employed benchmark cases to 

evaluate accuracy and feasibility of numerical algorithms and commercial CED software. 

The problem looks simple in many ways, but the flow in a cavity retains all the flow 

physics with counter rotating vortices appearing in the comers of the cavity as Re 

increases. Many papers are available in the literature. Several studies employed 

systematic experiments [38-40], others employed various numerical schemes, such as 

vorticity-stream function FDM [41], least-square FEM [42], and projection FEM [43].
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Problem definition

The boundary conditions for flow in a lid-driven cavity ( 0 < x <  l , 0 < y <  1) with the 

top lid moving at a unit velocity are described as 

On the top wall:

u = 1, V = 0

On all the other walls:

u = V = 0

u =1. V = 0

u = V = 0

/ /  y// / /  / /  / /  / /  / / / I /  / /  y/" / /  / /  / /  / /

u = V = 0

u = V = 0

Figure 4.1. Lid driven flow in a square cavity

4.2.2 Natural Convection in a Square Enclosure

Natural convection in a square enclosure is another very popular benchmark problem 

which has been studied extensively over the past 30 years. Many papers continue to 

appear in the literature utilizing various numerical techniques [44-47]. Researchers
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usually compare their simulation results with the benchmark solutions obtained by De 

Vahl Davis [48], who employed a finite difference scheme with a stream 

function/vorticity formulation.

Problem Definition

The boundary conditions for natural convection in a differentially heated square 

enclosure (0 < x < 1, 0 < y < 1) can be described as 

On the hot left wall:

u = V = 0, T = 1

On the cold right wall:

u = v = 0, T = 0 

On the adiabatic top and bottom wall:

u = V = 0, dJIdy = 0

u = V = 0, dlldy  = 0

u = V = 0, dJIdy = 0 ^

Figure 4.2. Natural convection in a square enclosure
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4.2.3 Flow with forced convection over a backward facing step

Two-dimensional flow over a backward facing step is also a well known benchmark 

case that has been studied extensively over many years -  the problem is easy to set up 

with known (expected) results at various Reynolds numbers. Early research work for this 

problem focused on the fluid pattern, and many numerical simulations for this case can 

be found in the literature. Gartling [51] examined this problem for assessing outflow 

boundary conditions. In 1992, Blackwell and Pepper [52] suggested flow over the 

backward facing step with heat transfer as an ASME benchmark test problem. Twelve 

numerical simulations were presented.

Problem definition

Figure 4.3 shows the configuration of forced convection in the 2-D backward facing 

step. The boundary conditions for this problem are described as 

For inlet flow:

0, for 0 < y <
u(y)= i

^ 8y(l-2y), for 14 < y < 1

T(y) = [l-(4y-l)^][l-l/5(4y-l)^] for 'A < y < 1 

v(y) = 0

ôT(y)/ôx = 0 for 0 < y < 14 

On upper and lower walls:

u(y) = v(y) = 0 

V T . n -  32/5

where n is the outward unit vector normal to the domain boundary.
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For outlet Flow:

p = 0

u = v = o q = qw

H /2

U =  V =  0, q  =  0

Figure 4.3. Problem configuration for forced convection in a backward facing step

4.2.4 Flow over an airfoil

Flow over an airfoil is another very popular problem which has been studied. Several 

studies employed systematic experiments and others employed various numerical 

schemes [49-50]. In this thesis, flow over a Selig 81210 which is a high lift, low 

Reynolds number airfoil with zero attack angle, is examined. Figure 4.4 shows the 

configuration of the flow over the airfoil.

Problem definition

Boundary conditions for flow over an air foil can be described as 

On the left wall: u = 1, v=0 

On upper and lower walls: u = 1, v=0 

On right wall: p = 0
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u = 1, V = 0

1
0

u =1, V = 0

Figure 4.4. Problem eonfiguration for flow over an airfoil

p = 0

4.2 Methodology

Instead of solving a pressure Poisson equation as typieally done in most numerieal 

approaehes, a simplified loeal pressure-veloeity eoupling (LPVC) algorithm is proposed. 

The method represents a loeal variant of already developed global solution, for eoupled 

heat transfer and fluid flow problems. This loeal variant was already developed for 

diffusion problems, eonveetion-diffusion solid-liquid phase ehange problems and 

subsequently sueeessfully applied in industrial proeess of direet ehill easting [28,29]. In 

this thesis, the speetra of physies is extended to the solution of eoupled mass, energy and 

momentum equations. In order to solve sueh problems, the time dependent variant of 

equations are employed. An explieit time seheme using a simple finite differenee 

approximation is adopted to ealeulate the time derivative. The Navier-Stokes equations 

are solved iteratively. The LPVC algorithm, where pressure eorreetion is estimated from 

loeal mass eontinuity violation, is used to drive the intermediate veloeity towards a 

divergenee-ffee veloeity.
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In the first step the veloeity is estimated from the discretized form of momentum 

equation. The calculated veloeity v does not satisfy the mass continuity equation. In 

order to couple mass continuity equation and momentum equation, an iteration is used 

where the first iteration velocity and pressure are set to

v ™ =  V,

m = 1
P“ - Po

where m denotes iteration index and Po denotes pressure at time to.

To project the velocity into the divergence free space, a correction term is added

V.(v'"+F) = 0->V-v ' ” = - V - v  (4.7)

where v stands for veloeity correction.

Velocity correction is affected only by the effect of pressure correction, i.e..

At -
v =  VP (4.8)

P

where P  stands for pressure correction. The pressure correction Poisson equation is 

constructed by applying the divergence to the equation (4.8)

V"P = - ^ V . r  (4.9)
At

Instead of solving equation (4.9) with the proper pressure correction boundary conditions, 

the pressure correction is assumed to be linearly related to the Laplacian for pressure 

correction. Therefore, in the second step, the pressure correction is calculated as

P » r V " P  = r ^ V v ' "  (4.10)

where L stands for characteristic length.
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Equation (4.10) enables solving the problem locally. In the third step, the intermediate 

pressure and veloeity are corrected as

P-+1 = p -  +

- v "  -J3— VP

(4.11)

VP
P

where P stands for relaxation parameter.

If the criteria

(4.12)

is not met, than the iteration returns to equation (4.10), else the pressure-veloeity iteration 

is completed. The calculation proceeds to the next step in the ease of natural convection 

in a square enclosure and flow over a backward facing step.

In the fourth step the temperature is estimated from the discretized form of energy 

equation. Steady-state is achieved when the criteria (4.13) is met at all nodes. If criteria 

(4.8) is not met, calculation returns back to the first step.

| T - P |
<Ej ; To 7^0

(4.13)

T <£j  ; To = 0

where To and T denote temperature at time to and to+At.

Discretized equations using RBFs

Since multiquadries (MQ) are infinitely smooth functions, they are often chosen as 

the trial funetion for ^ (some form of RBF), i.e.,

^{r. ) = ^rj +c^ = ^ ( x - x . y  + ( y - y j y  +c^ (4.14)

where e is a shape parameter provided by the user.
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Momentum equation discretized using a linear combination of RBFs and is given by 

equation 4.15.

y=i y=i 7=1 7=1 7=1 7=1 7=1

(4.15)

i = 1,2, ,Ni

Discretized form for pressure eorreetion and veloeity eorreetion equations given by 

equations 4.16 and 4.17 respectively.

1= 1.2,......,N|
y=i 7=1

Z T ' * ( 4 . 7 , ) = — 1=1. 2, ......,N,
7 = 1  P 7 = 1

(4.16)

(4.17)

Intermediate pressure and velocity correction equations discretized and given by 

equations 4.18 and 4.19 respectively.

Z  T V ,  k . y, ) = Z  P"'f, k  . y , ) + / i Z % k . 7 , ) .
7 = 1  7 = 1  7 = 1

i — 1,2,........,N] (4.18)

N N \ f  ^
 ,N, (4.19)

P 7 = 17 = 1 y=i

Energy equation also discretized using a linear combination of RBFs and is given by 

equation 4.20.

7=1 7=1 7=1 7=1

, (4.20)

i = 1,2,........,N|

where Ni denotes the total number of interior points and N denotes total number of points. 

At denotes the time step, superscript n+1 is the unknown value to be solved, and 

superscript n is the current known value.
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The simulation flow chart is presented in the Figure 4.5. IP and BP in the flow chart 

represent interior points and boundary points respectively. NC and BFS in the flow chart 

represent natural convection in a square enclosure and flow over backward facing step.

START

INIT (To, Vo, Po, c, BC)

I
Generate IP. BP

Solve momentum equation

calculate pressure correction

............. ....... r ......................
Applv pressure & velocitv correction

1

No Cheek
Convergenee

If NC / BFS

Solve Energy EquationOut put

STOP Check 
Convergenee

/ Out Put

1

STOP

Figure 4.5 Calculation Flow Chart
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CHAPTER 5

RESULTS AND DISCUSSION 

This thesis explores the use of a simplified RBF approach to calculate coupled heat 

transfer and fluid flow problems utilizing local pressure correction. The problems 

addressed include viscous flow in a driven cavity, natural convection in a square 

enclosure, flow with forced convection over a backward facing step and flow over an 

airfoil. Results obtained with the present method are compared with results from 

COMSOL and FLUENT methods. Excellent agreement is achieved compared with 

results from these two commercial codes.

5.1 Lid-Driven Cavity Flow

u =1, v=0

u = V = 0

/  /  /  /  7  /" 7  7  / 7

u = V = 0

u = V = 0
Figure 5.1. Lid driven flow in a square cavity
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This is a classical benchmark problem which is suitably used here to demonstrate the 

capability of the present method to simulate recirculating fluid flows. The computational 

results for various Reynolds numbers for the lid-driven flow in a square cavity are 

compared with those obtained by COMSOL and FLULNT. The configuration for this 

ease is shown in Figure 5.1. Uniform point distribution of 31 X 31 is used for RBF 

approximations. Random point distribution set is also considered to check the accuracy of 

the method for randomly spaced points. Results obtained are in good agreement with 

those obtained by uniform point distribution results. Point distributions for 31 X 31 are 

shown in Figure 5.2.

(a) (b)

Figure 5.2. Nodal distributions for lid driven flow (a) Uniform distribution (b) Random

distribution
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Figure 5.3 compares the velocity profiles at mid-sections of the cavity for 31 X 31 

uniform point distribution set and 3 1 X 3 1  random point distribution set for Re = 400. 

Results are in good agreement.

0.9

0.8

UFO0.7
- - R D P

0.6

>. 0.5

0.4

0.3

0.2

0.1

0

-0.5 - 0.1 0.1 0.5 0.9-0.3 0.3 0.7

0.4

0.3
UFO

--RPD0.2

0.2 0.4
- 0.1

- 0.2

-0.3

-0.4

-0.5

X

Figure 5.3. velocity profiles for different nodal distributions (Re = 400)

Figure 5.4 shows the meshes used for solving viseous driven flow with COMSOL and 

FLUENT. Figure 5.5 shows the comparison of velocity vectors in the square eavity for 

Re = 100 using the meshless method with veloeity veetors using COMSOL and FLUENT. 

The meshless results are in exeellent agreement with the two commercial packages.
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■
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(a) (b)

Figure 5.4. Meshes for lid driven flow (a) COMSOL mesh (1596 nodes)
(b) FLUENT31 XSlmesh

(a) (b) (c)

Figure 5.5. Velocity vectors for flow in a driven cavity using (a) Meshless

(b) COMSOL (c) FLUENT

For the case of Re = 100, velocity profiles on the vertical and horizontal lines through 

the cavity geometric center are plotted in figure 5.6, and compare well with the 

corresponding results from COMSOL and FLUENT.
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Figure 5.6. Velocity profiles along vertical and horizontal central lines (Re = 100)

For the case of Re = 400, velocity profiles on the vertical and horizontal lines through 

the cavity geometric center are plotted in figure 5.7.
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Figure 5.7. Velocity profiles along vertical and horizontal central lines (Re = 400)

For the case of Re = 1000, velocity profiles on the vertical and horizontal lines 

through the cavity geometric center are plotted in figure 5.8.
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Figure 5.8. Velocity profiles along vertical and horizontal central lines (Re = 1000) 

5.2 Natural Convection in a Square Enclosure

u = V = 0 
ôT/ôy = 0

u = V = 0 
T =  1

u = V = 0
ôT/ôy = 0

Figure 5.9. Natural convection in a square enclosure
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The domain of the problem is a closed square entity filled with air (Prandtl number = 

0.71) with differentially heated walls and isolated horizontal walls. With constant initial 

temperature, pressure and velocity set to zero, steady-state is achieved through time 

transient. Results for various Rayleigh numbers for the natural convection in a square 

cavity are compared with those of COMSOL and FLUENT. The configuration of this 

case is shown in figure 5.9. Distribution of interior nodes and boundary nodes are shown 

in figure 5.10.

C:j u a

Figure 5.10. Nodal distribution for Natural convection in a square cavity

Figure 5.11 shows the meshes used for solving flow with COMSOL and FLULNT. 

Figure 5.12 shows the comparison of velocity vectors in the square cavity for Ra = 1000 

using the meshless method with velocity vectors using COMSOL and FLULNT. 

Meshless results are in excellent agreement.
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(a) (b)

Figure 5.11. Meshes for Natural Convection (a) COMSOL mesh (1596 nodes)

(b) FLULNT 31X31 mesh

(a) (b) (c)

Figure 5.12. Velocity vectors using (a) Meshless (b) COMSOL (e) FLULNT (Ra = 10 )

For the ease of Ra = 10 ,̂ veloeity profiles on the vertieal and horizontal lines through 

the eavity geometrie eentre are plotted in Figure 5.13 and eompare elosely with the 

eorresponding results from COMSOL and FLULNT.
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Figure 5.13. Velocity profiles along vertieal and horizontal central lines (Ra = ICP)

For the ease of Ra = 10"̂ , veloeity profiles on the vertieal and horizontal fines through 

the cavity geometric center are shown in figure 5.14.
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Figure 5.14. Velocity profiles along vertical and horizontal central fines (Ra -  10"̂ )

For the case of Ra = 10 ,̂ velocity profiles on the vertical and horizontal fines through 

the cavity geometric center are shown in figure 5.15.
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Figure 5.15. Veloeity profiles along vertical and horizontal central lines (Ra = 10 )̂

In figure 5.16 simulation results of the temperature contours ranging from 0 to 1 with 

0.1 as the interval for Ra = lO'* are compared with results of COMSOL and FLUENT. 

Meshless results are again in excellent agreement.

(a)

7/
. .y  /  /

(b) (c)

Figure 5.16. Isotherms for Natural convection in a square cavity for Ra = 10 using
(a) Meshless (b) COMSOL (c) FLUENT
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Simulation results of the temperature contours from 0 to 1 with 0.1 as interval for 

Ra = lO"* are compared with results of COMSOL and Fluent In Fig. 5.16.

5.3 Flow with Forced Convection over Backward Facing Step

/ / / / / / / / / ,

Figure 5.17. Problem configuration for flow over backward facing step

Figure 5.17 shows the configuration of forced convection over the 2-D backward 

facing step. A constant heat flux is introduced into the upper and lower channel walls 

immediately downstream of the step. The purpose of this particular set of conditions is to 

evaluate the change in temperature along the upper and lower surfaces as initially heated 

flow proceeds down the channel. Ideally, the temperature gradient approaches a constant 

value with increasing horizontal distance from the step. Flow over the two-dimensional 

backward facing step is simulated for Re=800 and Pi=0.71. Distribution of interior nodes 

and boundary nodes are shown in Fig. 5.18.
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Figure 5.18. Distribution of 284 nodes for flow over backward facing step

Figure 5.19 shows the meshes obtained using COMSOL and FLUENT. 

Figure 5.20 shows the comparison of velocity vectors over the backward facing step for 

Re = 800. The meshless results again are in excellent agreement.

(a)

(b)

Figure 5.19. Meshes for backward facing step solution (a) COMSOL mesh of 388
elements (b) FLUENT mesh of 284 nodes
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4-4.

E g i-y-yy-y--

(a)

(b)

(c)

Figure 5.20. Velocity vectors for backward facing step using (a) Meshless

(b) COMSOL (c) FLUENT

Velocity profiles at x = 7 and at x = 15 are shown in Fig. 5.21 and Fig. 5.22. Present 

results compare closely with those obtained by COMSOL and FLUENT.
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Figure 5.21. Velocity profile for Re = 800 at x = 7
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Figure 5.22. Velocity profile for Re = 800 at x == 15

Temperature profiles at x = 7 and at x = 15 are shown in figure 5.23 and figure 5.24, 

respectively. A comparison of temperature show excellent agreement.
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Figure 5.23. Temperature profile for Re = 800 at x = 7
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Figure 5.24. Temperature profile for Re = 800 at x = 15

Temperature contours for Re = 800 are shown in figure 5.25. The isotherms are 

nearly identical for all three models.
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(a)

(b)

(C )

Figure 5.25. Isotherms for backward step flow using (a) Meshless (b) COMSOL

(c) FLUENT

5.4 Flow over an airfoil

Figure 5.26 shows the configuration of flow over an airfoil in a rectangular domain. A 

Selig S1210 which is a high lift, low Reynolds number airfoil with zero attack angle is 

examined.
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u =1, V = 0

u = 1
V =  0 p = 0

u =1, V = 0

Figure 5.26. Problem eonfiguration for flow over an airfoil

Figure 5.26 shows the eonfiguration of flow over an airfoil in a reetangular domain. A 

Selig S1210 whieh is a high lift, low Reynolds number airfoil with zero attaek angle is 

examined. Several studies employed systematie experiments and others employed various 

numerieal sehemes [49-50]. Distribution of interior nodes and boundary nodes are shown 

in figure 5.27.

Figure 5.27. Distribution of 236 nodes in a reetangular domain

Figure 5.28 shows the meshes used for solving the flow with COMSOL and FLUENT. 

Figure 5.29 shows the eomparison of veloeity veetors for Re = 300.
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(a) (b)

Figure 5.28. Meshes for flow over an airfoil (a) COMSOL mesh of 2535 elements

(b) FLUENT mesh of 1893 nodes

(a)

(b) (c)

Figure 5.29. Velocity vectors for flow over an airfoil using (a) Meshless
(b) COMSOL (c) FLUENT
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

For complex geometries the process of grid generation can be quite time consuming 

and cumbersome. Researchers have shown interest in a class of methods known as 

meshless methods which do not require any kind of mesh to be generated to solve the 

governing equations. In the present work an attempt has been made to develop a 

computational technique based on meshless methods. The present scheme can work on a 

random or uniformly distributed set of nodes. These nodes do not need to be related, nor 

does connectivity information need to be stored.

Radial basis functions (RBFs) are used as basis functions to approximate a function 

and its derivatives. In this study, lid-driven cavity flow, natural convection in a square 

enclosure, flow with forced convection over a backward facing step and flow over an 

airfoil were solved. Results are compared with the benchmark solutions. From the 

comparisons made, it can be seen that the meshless method is effective in solving the 

incompressible Navier-Stokes equations. The number of points required to obtain 

comparable accuracy is much less than mesh-based methods, and appears to be a viable 

alternative method for solving fluid flow and heat transfer problems.
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This thesis explores the simplified RBF approach for the calculation of the coupled 

heat transfer and fluid flow using a local pressure correction scheme. The algorithm is 

very simple to numerically implement, fast and robust.

Numerical implementation was done in MATLAB. Using only a one step pressure 

correction, the algorithm needs only a small number of calculations per iteration cycle. 

The combined procedure makes the algorithm fast and robust. Excellent agreement was 

achieved using model results obtained by COMSOL and FLUENT.

6.1 Future work

Meshless methods are still an area where much research is required to standardize the 

methods, improve their accuracy and efficiency. Most meshless methods suffer from 

common problems such as low order accuracy, ill-conditioned matrices, and slow 

computational speed when compared to conventional methods. Few researchers have 

attempted to address the aforementioned problems.

One of the important factors which determine the accuracy in any node based 

meshless solver is the node distribution. Node generation techniques in meshless methods 

vary from problem to problem. Some research has been devoted to algorithms for node 

generation with optimum node density for meshless solvers. These node generation 

techniques can generate appropriate node density depending on the problem under 

consideration.

There are numerous algorithms for choosing the right shape parameter c for best 

approximation using RBFs. However, there is no theoretical study that has addressed the 

influence of shape parameter on accuracy. Many meshless methods are computationally
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inefficient when compared to present day FDM/FVM/FEM techniques. Better search 

algorithms can be used to improve the computational speed and efficiency of meshless 

methods in general and radial basis function based meshless methods in particular.

Further work should be focused on more complex geometric situations and more 

complex physical models (porous media, solidification,....). These problems should be 

relatively easy to numerically implement in the present context.
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