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ABSTRACT

Titanium Hydride up to 90 GPa; Synchrotron X-Ray Diffraction Studies

by

Patricia E. Kalita

Dr. Andrew L. Cornelius, Examination Com m ittee Chair 
Associate Professor of Physics 

University of Nevada, Las Vegas

The structure and behavior of titanium  hydride was studied on compression to  

about a megabar. Angle-dispersive as well as energy-dispersive synchrotron X-ray 

diffraction studies w ere carried out in situ, in diamond anvil cells, in several compression 

and decompression sequences. A phase transition from a cubic to a tetragonal structure 

was observed. The pressure evolution of the diffraction patterns revealed that the cubic 

(Fm-3m) to tetragonal (14/mmm) phase transition occurs at about 0.6 GPa. The 

transition was found to  be reversible on decompression from  34 GPa but irreversible on 

decompression from 90 GPa. The influence of the pressure transmitting medium on the  

pressure-induced structural transformations of T ih 2 was also examined. An equation of 

state fit of the evolution of unit cell volume as a function of pressure, up to 90 GPa 

yielded a zero pressure bulk modulus Ko=143(7) GPa, and its pressure derivative 

Ko =3.0(0.1) for the high-pressure tetragonal phase of TiH].
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CHAPTER 1 

INTRODUCTION

Hydrogen can be used as source of clean, renewable energy in practical 

applications under rather stringent pressure and tem perature operating conditions. One 

of the key, and most challenging aspects for a practically achievable and successful 

transition to an economy based on hydrogen is on-board hydrogen storage. ^

M etal hydrides have been the subject of scientific investigations for several 

y e a r s . T h e  currently emerging picture places complex metal hydrides as the leads in 

the race for high volumetric density storage materials. Simple binary hydrides, on the  

other hand, may play an assisting role in the storage of hydrogen. According to the US 

Departm ent of Energy, basic research into the physical, chemical and mechanical 

properties of metal hydrides is indispensable for enabling potential breakthroughs 

needed to make the hydrogen economy a reality.^

The U. S. Departm ent of Energy states that by "promoting broad interdisciplinary 

efforts, strong coordination between the basic and applied sciences, (...) scientific 

breakthroughs in one area can be leveraged to advance progress in others".  ̂ The 

statem ent continues further and points out that "(b)asic research is essential for 

identifying novel materials and processes that can provide potential breakthroughs 

needed to m eet the Hydrogen Fuel Initiative goals." Also "(a) basic understanding of the



physical, chemical, and mechanical properties of metal hydrides and chemical hydrides 

is needed." In fact there exists a real need of basic and interdisciplinary research in 

order to promote the evolution of knowledge needed to make hydrogen storage 

technically and commercially viable for vehicular applications.

In the past several years it has become possible to  achieve, in the laboratory, 

extrem ely high-pressures (superior to w hat can be achieved with the tem perature  

param eter). The multimegabar pressures now achievable correspond to a volume 

compression in excess of an order of magnitude, which can reveal a wealth of 

information about molecular materials. The pressure-volume work (free energy 

change) can be of up to  10 eV which exceeds the strongest molecular bonds. Among the  

effects of such extrem e compression there are: changes in bonding patterns, phase 

transitions, chemical reactions, quantum effects, changes in chemical properties, 

changes in physical properties. Pressure also modifies chemical affinities and hence 

reactivties, and in this way new materials with unusual combination of physical and 

chemical properties can be form ed. High-pressure x-ray diffraction studies of materials 

(bulk- and nano-structures) are critical to identifying new equilibrium and metastable 

states that can be accessed, as these materials are compressed to  very small volumes.'’'^

The metal hydride selected for the presented high-pressure synchrotron 

radiation-based structural studies is titanium  hydride (TiHz). This is a simple binary 

hydride interesting not as a storage material, but as a catalyst enhancing storage 

properties of other hydrides and other materials. In fact, it was recently found that Ti 

hydrides can act as active species to catalyze the reversible dehydrogenation of carbon



nanotubes as well as other hydrides.®'® The basic science interest of this project lies in 

investigating the structure and especially the high-pressure behavior of TiHz in order to 

identify phase transitions and possibly new quenchable phases.

It should be pointed out that there is no certainty as to w hether metal hydrides, 

either simple or complex, will actually achieve the high volumetric and gravimetric 

densities required for mobile applications. W hat is certain, however, is that at the  

current state of knowledge, fundam ental research in multiple directions is still of 

primordial importance and it is in this spirit that the presented M aster o f Sciences 

research was envisioned and carried out.

The presented M aster o f Sciences Thesis is structured in five chapters as follows.

Chapter 2 introduces all the conceptual elements involved in the present 

research. Since the material investigated is TiHz, an overview of hydrides is presented, 

including fabrication, properties and applications. The issues and the advances in metal 

hydrides studies for hydrogen storage are also laid out. Subsequently the technique of 

X-ray diffraction is presented including the production of X-rays as well as elements of 

crystallography. The object of this work is the study of TiHz to extrem e pressures (up to  

90 GPa). Thus Chapter 2 also outlines the effects of high-pressures on materials, with  

specifics on how high-pressures are achieved in the laboratory and how materials under 

high-pressures are investigated. Finally, since X-ray diffraction studies at high-pressures 

require very bright and highly focused radiation, synchrotron radiation is introduced at 

the end of Chapter 2 with production of X-rays as well as the synchrotron storage ring 

where the present studies were carried out.



Chapter 3 presents the multi-technique approach used for these structural 

studies. First, the tem perature-variable conventional X-ray diffraction studies are 

described. Next, the details of the high-pressure synchrotron radiation-based X-ray 

diffraction experiments are introduced. Here the tw o experimental techniques used are 

described: energy-dispersive X-ray diffraction (EDXRD) as well as high-resolution angle- 

dispersive X-ray diffraction (ADXRD).

Chapter 4 outlines the results of the multi-technique investigations. First, results 

of the conventional x-ray diffraction at m oderately high tem peratures are outlined. 

Next, the initial high-pressure, energy-dispersive synchrotron X-ray diffraction studies 

up to 34 GPa are presented. The outline of key results continues with tw o series of high- 

resolution angle-dispersive X-ray diffraction studies of TiHz on 

compression/decompression up to  21 GPA and up to 90 GPa.

Chapter 5 contains a discussion of the results. First the observed phase 

transitions and structural refinements are presented. Next the mechanical properties of 

TiHz are analyzed using specific mathematical formalism. A comparison of the tw o  

experimental techniques -  EXRD and ADXRD -  is presented in the light of obtained 

results. Issues and limitations of the experimental techniques, such as hydrostaticity and 

texture, are discussed. Remarks are offered on the experimental challenges of attaining 

pressures in the megabar region. Finally the key conclusions of this M aster o f Sciences 

Thesis research are presented.



CHAPTER 2

LITERATURE OVERVIEW

2.1. Hydrides

2.1.1. Definition

A metal hydride consists of a metal lattice with dissolved hydrogen atoms 

located at interstitial sites. The dissolution of hydrogen in a metal lattice and the 

subsequent form ation of a metal hydride perturbs considerably the electrons and 

phonons of the host metal. The amount of hydrogen absorbed in metals is proportional 

to the square root of the external pressure of hydrogen gas. ® This indicates that the  

absorbed hydrogen is dissociated into atoms. All metals have been classified into good 

or poor absorbers of hydrogen. Metals such as Pd or Ti are good absorbers since they  

can absorb large quantities of hydrogen at relatively low tem peratures and pressures. 

W ith increasing tem perature the concentration of hydrogen will in fact decrease.  ̂ The 

concentration of saturation absorption of hydrogen in good absorbers goes as high as 

100 at. % or 200 at. % of metallic atoms and the resulting hydrides are represented by 

formulas such as PdH or TiHz-  ̂ Metals that are poor absorbers, on the other hand, 

absorb small amounts of hydrogen and need higher tem peratures to increase 

absorption. ^



2.1.2. Classification

Hydrides are classified according to the nature of their hydrogen bond into 3 

categories: covalent (volatile), saline (ionic) and metallic. Covalent or volatile 

hydrides can be solid, liquid or gaseous. The bond between the elem ent and hydrogen is 

of the non-polar electron-sharing type, w here the valence electrons are shared on a 

fairly equal basis. The absence of strong intermolecular forces results in the high degree 

of volatility and low melting point of covalent hydrides. Saline hydrides are compounds 

formed by the reaction of strongly electropositive alkali metals and alkaline-earth  

metals with hydrogen, which becomes strongly electronegative because of the transfer 

of electrons. Saline hydrides are highly polar, because the bond results from strong 

electrostatic forces of the dissimilar electric charges of the tw o ions.

Metallic hydrides are formed by the transition metals of the periodic table, and 

possess metallic properties such as high therm al conductivity and electrical resistivity. 

Because of the wide homogeneity ranges of most metallic hydrides they have been 

sometimes considered to be solid solutions of hydrogen in the metal. However such 

classification is not correct. In fact crystal structures of the hydrides are different from  

those of the parent metal. In the case of TiHz for example, titanium  and hydrogen 

atoms occupy distinct crystallographic sites in the lattice (W yckoff positions 4a and 8c, 

respectively) and titanium  hydride (fee) forms a distinct compound form  titanium  metal 

(hep).

Bonding in metal hydrides can occur following one of three models, which 

classify the hydrogen in the hydride: (1) protonic hydrogen, where the electron of H is



used to  fill the d-band of the metal -  this model assumes that the hydride is an alloy of 

hydrogen with metal; (2) covalently bound hydrogen; (3) anionic hydrogen -  a mixture 

of ionic bonds (where electrons from  the metal are transferred to the hydrogen) and 

metallic bonds. This classification however, is somewhat arbitrary since no 

compound contains purely one type of bond. In metallic hydrides such as TiHz the d- 

band is less than half-filled so following Hund's rule electrons from H atoms are added 

to  the d-band of the metal so the hydrogen is protonic in this metal hydride.

2.1.3. Diffusion

Diffusion of hydrogen in hydrides takes place by the m ovem ent of lattice defects. 

The hydrogen atom can either jum p from a normal tetrahedral site to an adjoining 

em pty tetrahedral site in the (100) direction, or it can jum p in the (111) direction 

through an octahedral position into a vacant tetrahedral site. Octahedral interstitial 

sites are vacant because of the effect of H-H blocking, where one H atom in an 

interstitial site will block all near interstitial sites from filling with hydrogen within the  

limits of a blocking radius (~2.135 Â). This radius is much greater than the shortest 

tetrahedral-to-octahedral interstitial site distance, which results in only the tetrahedral 

interstitial sites being occupied.

2.1.4. Properties of Hydrides

Two measures of capacity of a hydride are used.  ̂ One is the atomic H /M  ratio or 

weight percent, which includes both H and M in the denom inator of the calculation. 

Hydrogen content can also be expressed as the number of H atoms per unit volume (ex. 

cm®) labeled as ANh/V , where AN represents the reversible capacity. This measure



represents the volumetric density in crystal terms and hence does not include the void 

which is im portant from the point of view of a container. Activation is the procedure 

needed to hydride a metal the first tim e and bring it up to  maximum H-capacity and 

hydriding /  dehydriding kinetics. The ease of initial Hz penetration depends on surface 

structures and barriers, such as dissociation catalytic species and oxide films. A second 

stage of activation involves internal cracking of metal particles to increase reaction 

surface area. Decrepitation means the self-pulverization of large metal particles into 

powder, a common phenomenon that results from a combination of hydriding volume 

change and the brittle nature of hydriding alloys (especially when they contain some H 

in solution). Cyclic stability is im portant and widely variable from alloy to  alloy. Alloys 

and intermetallic compounds are usually metastable relative to disproportionation, the  

tendency to break up metallurgically to form stable, not easily reversed hydrides. Even if 

very pure H is used, disproportionation can occur with a resultant loss of reversible 

capacity. Safety of a hydride encompasses toxicity as well as pyrophoricity, or the  

tendency for a hydride powder to burn when suddenly exposed to air.

2.1.5. Production

Several preparation methods of metallic hydrides exist. In the direct combination 

of elements, diffusion of hydrogen occurs at the surface of a previous cleaned metal. 

Uptake of hydrogen can be improved by heating below the dissociation tem perature  

and by increasing the pressure of Hz gas. The mechanism of hydriding of a parent metal 

follows four steps. First, hydrogen is adsorbed on the surface and it is dissociated into 

adsorbed hydrogen atoms. Next, the hydrogen atoms diffuse into the bulk of the metal.



This is the step where the system metal+hydrogen can be called a 'solid solution'. 

Finally, the hydrogen-saturated metal reacts with additional adsorbed hydrogen to form  

a hydride layer. As more hydrogen diffuses through the newly form ed hydride layer it 

reacts with the parent metal thus spreading the metal hydride form ation. The newly 

formed hydride can either adhere to the metal of flake of, thus speeding the reaction of 

formation (which is then a surface process). “  Some metallic hydrides can also be 

prepared following the reduction of oxides with another hydride:

T iO z +  2 C a H z  ^  2 C a O  + T iH z  +  Hz

Titanium hydride can be fabricated in several ways. One of the simplest methods 

consists in heating to over 200°C and subsequently cooling titanium  metal in a hydrogen 

atmosphere.^®' Like for other transition metals, the initial diffusion of hydrogen into 

the metal is slow until the metal structure has been opened up by the process of lattice 

expansion. Rifts and structure defects allow hydrogen to penetrate the metal through 

first a rapid diffusion followed by slow penetration as the metal alloys with hydrogen.^®' 

Titanium will lose most of its hydrogen at about 400°C and will be completely 

outgassed 800-1000°C.

2.1.6. Applications of Hydrides

Titanium hydride can be used as a source of pure titanium  metal. It can be 

employed as a coating of corrosion resistant titanium  on the surface of another metal.^°' 

Titanium hydride can be added to powder mixtures used in the fabrication of articles 

by the powder metallurgy technique where its role is to increase the density of the  

compacted powder. It can also prevent the oxidation of the metal powder during the



sintering process.®®' ®® In the process of fabrication of electronic tubes, titanium  hydride 

is deposited on a ceramic surface and then used as a base for soldering metal parts to  

the ceramic.®®' ®®

One of the applications of hydrides consists in using therm al swings of hydride 

beds in the compression of gaseous H. Hydrides are employed in the separation of 

either Hz from other gasses or in the separation of H-isotopes. Less common  

applications comprise cryocooling, chemical catalysis (see section 2.3.1. below), 

synthesis of ammonia and methane and diamond synthesis.®

There are several further applications comprised under the name of 'closed 

therm odynam ic systems' where Hz is a "working fluid" which is contained in closed 

systems. These applications include: heat engines, where heat is converted to  

mechanical energy in an expansion engine (this category includes tem perature sensors); 

storage of heat (ex. solar); heat pumps, where low -tem perature heat is 'upgraded' to 

higher tem perature; refrigerators, where heat is converted to refrigeration. ®

M etal hydrides can also be applied in the developm ent of cheap, small, and 

reliable hydrogen detectors. They have to enable hydrogen detection well before the  

4% explosion limit if hydrogen is to become a socially acceptable energy source in the  

future. Current hydrogen detection systems are too large and too expensive, not safe 

and those that are small have too long detection times. ®'' M etal hydrides can be used as 

switchable mirrors with a very high optical contrast. ®'' In fact it was recently shown that 

a fiber optic hydrogen detector with a high optical contrast can be made using an M g-T i 

active material. ®'' The optical reflectance of the Mg-Ti film decreases by an order of

10



magnitude when hydrogen is applied (from 60% to 7%). M oreover this hydrogenated 

state is strongly absorbing over a wide spectral range. The change in reflectance is due 

to the intrinsic light absorption in the hydride. This is convenient for the design of 

hydrogen sensors, but also other applications such as solar absorbers or smart windows 

are being considered for the M g-T i active material.

2.2. Hydrogen Storage: an Application with Strategic Potential

Hydrogen would be ideal as a synthetic fuel because it is lightweight, highly 

abundant and its only byproduct in the reaction of oxidation is w ater. ® The most 

common method to  store hydrogen in gaseous form is in steel tanks, although 

lightweight composite tanks designed to  endure higher pressures are becoming more 

and more common. Cryogas, gaseous hydrogen cooled to near cryogenic tem peratures, 

is another alternative that can be used to  increase the volumetric energy density of 

gaseous hydrogen. ®'®

Another form of hydrogen storage is as solid hydride. Most of the 91 natural 

elements above H will hydride under appropriate conditions. Unfortunately, the  

pressure-composition-temperature (PCT) properties are not very convenient relative to 

the 1 -1 0  atm , 0 -100°C  range of utility required for practical applications. ® Using 

hydrides as "vessels" for storing hydrogen in a manner that does not require an 

expensive and dangerous tank is a relatively new (prospective) application for hydrides. 

If the application is in one site (a factory for example) then large amounts are not an 

issue but w hat is im portant is the cost of the hydride. Vehicular applications, on the

' 11



other hand, require high weight percent (or gravimetric density) of stored hydrogen in 

order to minimize the on board weight and the associated energy consumption. Ideally 

any application of a hydrogen storage material requires high storage capacity but at low 

system weight. This in turn entails strong chemical bonding and light and stable storage 

materials. On the other hand fast sorption/desorption of hydrogen and cycling 

capability, which are also necessary for realistic practical applications, require weak 

chemical bonding, fast kinetics, and less diffusion resistance, as might be found in 

surface adsorption. This constitutes a tradeoff between high capacity and fast kinetics.

Other sought-after properties of hydrides for either mobile or static hydrogen storage 

applications are: easy activation to minimize container pressure and tem perature  

requirements; in the case impurities such as air are introduced, a good resistance to  

gaseous impurities is desirable; PCT properties should be roughly in the am bient 

tem perature and pressure area so that waste heat from  the environm ent or vehicle 

engine (or fuel cell) can be used for endothermie H desorption. ® In summary, materials 

capable of storing hydrogen with high gravimetric and volumetric density, operating  

under am bient thermodynamic conditions, and exhibiting fast hydrogen sorption 

kinetics are essential for practical applications. ®

Hydrogen can be stored in solid materials either in atomic or molecular form. 

Storage of hydrogen in molecular form has an advantage in that molecular hydrogen has 

fast kinetics. However, its bonding is very weak and desorption can take place at low 

tem peratures. Various simple and complex hydrides ®' ®' ®®' have been the focus of 

extensive investigations with the goal of finding one that will have high gravimetric
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density and will operated in the narrow P and T window required by practical 

applications.

The U.S. Departm ent of Energy (DOE) has established a multistage target for 

hydrogen storage capacity for fuel-cell applications for an on-board hydrogen storage 

system: 4.5 w t % by 2007, 6 w t % by 2010, and 9 w t % by 2015, at m oderate 

tem peratures and pressures (0-100° C and 1-10 atm .). ®

W ith a nominal 7.6 w t % of hydrogen MgHz as well as magnesium-based alloys 

are some of the most promising hydrides for hydrogen storage. ®®' ®®'®® In spite of 

their low cost, however magnesium-based alloys suffer from  sluggish sorption kinetics 

and so their hydrogenation and dehydrogenation require significant activation energy 

(in the form of high tem peratures). The same issue was observed for many other 

hydrides and showed the need for catalysts. In search for alternate hydrogen storage 

candidates, considerable attention has also been focused on porous materials such as 

clathrates, zeolites, carbon nanotubes, fullerenes and nanocomposites.

2.3. Titanium Hydride

2.3.1. Interaction of Ti with Hz and Properties of TiHz

Like many of the metallic hydrides, T iH z  has a dull metallic appearance. In 

stoichiometric composition of titanium  hydride the valance of Ti is less than the usual 

oxidation state (+4). T iH z  is fairly stable in air at room tem perature and will only react at 

elevated tem peratures. Like other metal hydrides T iH z displays some properties which 

are very different with respect to the parent metal. Among some general trends are the
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modification of the crystal structure from hep (for the m etal) to fee (for the hydride).

and the em brittlem ent of the ductile parent metals because of hydrogen damage. 26

The penetration of hydrogen into the metallic structure of Ti induces changes in the  

band-structure such as the appearance of a wide metal-hydrogen bonding band 

centered about 5.5 eV below the Fermi level fp, the states near Er are primarily metal d-

derived. 26

gaseous Hg

interface

Ti metal 
lattice

Figure 1. Simple model of the process of dissociation of molecular hydrogen at 

the interface with a metal such as titanium . The potential energy is characterized 

by first the shallow minimum corresponding to  physisorption (Van der Waals - 

weak intermolecular interactions) then the deepest minimum corresponding to 

chemisorption (the form ation of a chemical bond), the near surface hydrogen 

(second deep minimum) and finally H dissolved on interstitial sites of the host 

metal (periodic minima). (Drawing after Schlapbach ®®).
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How does hydrogen interact with the surfaces of solid titanium  metal? W hen the Hz 

approaches the metal surfaces, it is dissociated on and then absorbed into the surfaces. 

The process of how hydrogen gas penetrates a dissolving metal is often represented  

with the schematic of Figure 1.

The difference in energy barrier for the dissociation of Hz on the surface of a 

metal depends on the valence electron configurations of the substrate atom.®® 

Theoretical studies ®® have shown that for metals such as Ti, Ni, Pd and La, the  

dissociative energy barriers are very small. In the case of Mg, a high energy barrier 

exists, which is why a catalyst is needed to lower it. As a Hz molecule approaches the  

metal surface, its molecular orbitals begin to overlap with the surface s-electrons. ®®' ®® 

Because of the Pauli exclusion principle, if a metal atom has its valence electron states 

fully occupied, the electrons of Hz are repelled and the outcome is a high H z dissociation 

barrier. On the other hand if a metal has a partially unoccupied cf-orbital then electrons 

can be donated from the Hz s-orbital to the surface metal atoms. This process happens 

along with a back-donation from the metal d-orbitals to the Hz anti-bonding state. ®®' ®® 

The end result is that the interaction of the d-orbital valance electrons of the surface of 

the metal enhances the Hz dissociation. In the case of Ti where the valence electron 

configuration is 4s2 3d2, the d-orbital is almost empty, which results in a negligible Hz 

dissociation energy barrier. The form ation of T iH z  is exothermic like that of the other 

hydrides of the IVA group.®®

15



2.3.2. Catalytic Action of TiHz

Titanium hydride can act as a catalyst in many reactions. Some examples include 

the organic hydrogenation reactions of olefins, nitro compounds and nitriles to  

amines.®®' ®® Another potentially interesting catalytic action is in the hydrogenation of 

materials of which could be used for storing hydrogen.

An im portant issue of using metal hydrides for storing hydrogen for use in fuel 

cells is the hydrogen uptake kinetics. Hydrogen absorption in metal hydrides involves 

tw o main steps ®: dissociation of the hydrogen molecule and transport of the  

chemisorbed hydrogen toward the subsurface and adjacent diffusion in the bulk (see 

Fig. 1). According to diffusion data, hydrogen transport inside metals or metal hydrides 

is fast enough to provide high hydrogen absorption and desorption rates at room  

tem perature. However, in most systems only slow rates are observed, which is one clue 

that the surface properties of the metal grains determ ine their H sorption kinetics, that 

is, the dissociation of the hydrogen molecule.

Several empirical studies have advanced the possibility of enhancing hydrogen 

uptake kinetics by special additives (catalysts) to the metal hydride system. For instance, 

the kinetics of hydrogen sorption in Mg-based storage devices is greatly enhanced by 

such additives as transition metal oxides ® or TiHx ®® and w ithout a Ti catalyst, reversible 

hydrogen sorption is impossible in alanates. ®® A switchable m irror effect was recently 

observed in the Mg plus Ti system with reversible formation of MgHz. The observed 

decrease in reflectance was from ~65 % (between 500 and 2500 nm) for the metallic 

state down to about 10 % for the hydride state. Ti acted primarily as a catalyst for the
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form ation of M gH 2 . Catalysis is now a broadly recognized as a critical issue in 

hydrogen production, storage, and use.  ̂ Catalysts also play a critical role in improving 

the kinetics and thermodynamics in hydrogen storage systems, allowing more efficient 

uptake and release of stored hydrogen with reduced need for therm al activation.

2.4. The Structures of Crystals

A crystal is an assembly of regularly repeating atoms, molecules or groups of 

atoms. The pattern formed by points where the atoms (or molecules) are located is 

called a space lattice. In this sense the space lattice can be viewed as an abstract 

scaffolding of the crystal structure where atoms or groups of atoms are placed at the  

specific locations of the lattice points. The atoms can be placed centered on the lattice 

points or at a specific location with respect to the lattice points. The crystal is 

constructed by repeating by (3D) translation (no rotations, inversions or reflections) of 

one fundam ental region: the unit cell. The unit cell is chosen not to be the absolute 

smallest repeatable m otif in a structure, but to be the smallest m otif containing the  

most symmetry. It should be noted here that the absolute smallest m otif that can be 

repeated in order to build a structure is called an asymmetric unit.^'* The asymmetric 

unit may or may not coincide with the unit cell. The unit cell is an imaginary 

parallelepiped form ed by joining neighboring lattice points by straight lines, and its 

three dimensions are labeled a, b and c. The unit cell is chosen so that it has the shortest 

sides and most nearly perpendicular faces. There are two types of unit cells: primitive 

cells have lattice points at the corners of the unit cell while a non-primitive unit cell has
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also lattice points at either the centers of all faces or at centers of pairs of opposite 

faces or at the center of the body. Unit cells are further organized according to essential 

rotational symmetry elements which can be distinguished in them , what results in seven 

crystal systems: cubic (four C3  axis), hexagonal, tetragonal (one C4  axis), rhombohedral, 

orthorhombic, monoclinic, triclinic (no rotational symmetry). The rhombohedral system 

can be considered as part of the hexagonal system so the number may then be reduced 

to six crystal systems. Combining the seven crystal systems with the primitive and non­

primitive unit cells yields the crystal lattices. But not all combinations exist and there are 

in fact only 14 crystal lattices called Bravais lattices, named after named after Auguste 

Bravais, a French physicist who in 1845 pointed out that there were only 14 instead of 

the previously thought 15 lattices in three dimensional crystal systems. If we distinguish 

lattices further by their symmetry elements - identity, n-fold rotation, reflection m, 

inversion, n-fold im proper rotation -  then we have 34 point groups or crystal classes. By 

adding translation to the set of symmetry elements we obtain 230 space groups: 2 

triclinic structures (# l-# 2 ), 13 monoclinic structures (#3-#15), 59 orthorhombic  

structures (#16-#74), 68 tetragonal structures (#75-#142), 25 trigonal structures (#143- 

#167), 27 hexagonal structures (#168-#194), 36 cubic structures (#195-#230).

In a crystal the spacing of lattice planes, w hether of identical or of different 

atoms is an im portant quantitative aspect if the structure. A crystal lattice plane is 

labeled by three numbers, called M iller indices and denoted (hk iys ,  which are the  

reciprocals of the distances at which this plane intersects the a-, b- and c-axes, 

respectively. The M iller indices are multiplied by a common factor to elim inate fractions
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so that the {hkiys are integers, in this way when a plane lies along an axis, the  

intersection lies at infinity, its reciprocal is one over infinity or zero. Also the smaller the  

value of an index, the more parallel the plane is to the corresponding axis [h-^o, k->b, 

/->c). M iller indices are used in expressing the separation of planes d in a crystal system. 

For example in an orthorhombic crystal system the relationship between d and {hkl)s is:

1 f
+  T T  +  '

dhki  c '

2.5. Overview of X-Ray Diffraction

W ith today's state of the art high-resolution electron microscopes or a tunnel

microscope atomic structures of crystals can be imaged directly, and it appears as such

microscopes could supplant the "antiquated" idea of indirect imaging through

diffraction. In reality, however, diffraction yields more information regarding an

unknown structure or structural parameters because it is optimally sensitive to the

periodic nature of the crystal. On the other hand sophisticated direct imaging

techniques are ideally suited for the study of any disruption of periodicity such as point

defects, surfaces and interfaces. Diffraction experiments can be carried out using X-rays,

neutrons for the bulk and electrons and atoms -p rim arily  for the surface - all of which

have different (elastic or inelastic) interactions with a solid. Diffraction can be described

quasi-classically since the only quantum mechanical idea is that a beam of X-rays or

neutrons possesses the wave-particle dual nature.

Diffraction is the constructive and destructive interference of radiation caused

by an object in the path of the radiation and of size comparable to the wavelength of
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radiation. Since the intensity of electromagnetic radiation is proportional to the  

square of the amplitude of the waves, regions of constructive interference appear as 

having an enhanced intensity. The spacing of atoms in a crystal is on the order of one to  

a few  Â, therefore the appropriate wavelength to study their structure through 

diffraction falls in the X-ray region. X-rays range from "soft" just above the Carbon K 

edge to hard X-rays in the 100 keV range. These limits, however, are not very well 

defined and differ slightly depending on the scientific community. The most common  

X-ray radiation wavelengths used are those of CuKq (1.54056 Â) as well as the sub­

angstrom wavelengths of synchrotron radiation. The depth of penetration of an x-ray 

beam depends on the solid and on the photon energy but a typical depth is about 1 

c n i^ i

2.5.1 Production of X-rays

In the laboratory. X-rays are generated by accelerating electrons through a 

potential difference, and bombarding a metal target with these high-energy electrons 

(~keVs). Typical anode materials in X-ray tubes are: chromium, iron, cobalt, nickel, 

copper, molybdenum, silver and tungsten. The collision with a metal target 

decelerates the electrons and the difference in energy is em itted as a continuous range 

of wavelengths, or Bremsstrahlung radiation. If some electrons have just the right 

amount of energy for ionization, they will collide and remove an electron from the K- 

shell of the target metal. The thus created vacancy will be immediately filled by an 

electron from the L or M-shell. (It is also possible, but less probable, that the vacancy 

will be filled with an electron from outside of the atom .) As the electron falls into a
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lower energy shell it will emit the excess energy as an X-ray photon called Kq and Kp 

radiation, depending on w hether it originates from the L- or the M-shells, respectively. 

The radiation will be in the X-ray range because the energy difference between the L 

and K-shells in a high-Z metal is of several thousands of keVs. Vacancies are also 

created in higher shells (M , N and up) but the energy differences between the levels are 

much smaller and the em itted radiation appears as part of the continuous radiation 

(Bremsstrahlung).

2.5.2. The Bragg Equation

The foundation of almost all modern crystallography lies in the work of W illiam  

Henry Bragg and his son W illiam Lawrence Bragg which took place in 1913 and brought 

the pair a Nobel prize almost instantly, in 1915. Let's consider the crystal to be a set of 

parallel lattice planes separated by a distance d, and acting like a m irror for incoming X- 

rays (Figure 2). It is then straightforward to derive the condition on the angle between  

the lattice plane and the incident X-rays necessary for constructive interference. The 

difference of the length of the path of tw o X-rays diffracting from tw o planes separated 

by d must be an entire number of wavelengths A. The condition on the path difference is 

called the Bragg law and is:

nX =  2 d sinO

Here n indicated the order of the reflection (or intense beam arising from constructive 

interference). In modern X-ray diffraction n is combined with d and hence the order 

reflection is considered as originating from  the (nh nk nl) plane.
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Figure 2. Schematic illustrating the principle of Bragg's law. In order for the tw o  

waves to be in phase after they reflect from the two parallel planes, the path 

difference between the tw o waves must be equal to an integer number of 

wavelengths.

For a known angle, the d-spacing of a set of planes may be calculated. Once d is 

know then if the reflections can be indexed - that is ascribed (hkl) values - then one can 

obtain the lattice parameters a, b, and c of the unit cell. The key to solving a structure is 

then indexing. Once the crystal structure is known, the parameters describing it, such 

as atom position and unit cell dimensions are adjusted (Rietveld refinem ent) until the  

calculated pattern (from the model of the structure) matches best the experimental 

pattern. This can often be problematic for low symmetry system with a lot of 

reflections and for cases where there is more than one probable structure that differ 

very little. Finally, the next major step after refinem ent of the structure at ambient 

pressure is uncovering of possible phase transitions and the structural refinem ent when
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the pressure variable is introduced in the experiment. Such is the procedure followed in 

the presented work.

2.5.3. The Laue Method

William Bragg and his son Lawrence Bragg used a monochromatic X-ray beam  

and varied the angles of a single crystal to detect the possible reflections. Max Von Laue 

considered that for one wavelength, a single crystal may not have the right orientation.

However, if a range of wavelengths was shone through a crystal there would be at 

least one plane that would have the right orientation to  satisfy the Bragg condition. 

Hence, the Laue method employs a beam of X-rays with many wavelengths and, if the 

range of wavelengths is wide enough, then there will be an appropriate wavelength for 

each plane in the single crystal. The resulting diffraction pattern, projected on a flat 

surface (detector) is a set of geometrically spaced dots. The Laue method is used today 

at synchrotron beamlines with polychromatic beams.

2.5.4. The Debye-Scherrer M ethod

If a monochromatic beam is used with a polycrystalline sample where there are a 

lot of crystals with random orientation, then the Bragg condition will be satisfied as well. 

This technique was developed by Peter Debye and Paul Scherrer and by Albert Hull 

independently, and it is called the Debye-Scherrer method. Let's consider a given set 

of planes denoted by (hkl's) and located in crystals which have a random orientation in 

the powder sample. For a specific angle ü  there will be crystallites with the right 

orientation of that plane as to satisfy the Bragg angle all around the X-ray beam. 

Therefore, constructive interference will give rise to a reflection all around the beam in
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the form  of a cone of light of internal angle 2ü  diverging from the sample. Initially such 

cones of light were detected by placing a strip of photographic film around the sample 

so that the sample would be at the center of the circle. This detection method allowed 

to measure the angle of the reflections. One could also make qualitative and 

quantitative observations of the intensities. Nowadays detectors have various 

geometries (image plates, rotating detectors) and they can measure the intensities of 

the reflections quantitatively.

2.6. Theory of X-Ray Diffraction

W. L. Bragg's explanation for the diffracted beams from a periodic crystal 

structure assumed a mirror like behavior of the material. The Bragg equation is beautiful 

in its simplicity however it is convincing only because it reproduces the correct result. 

Below is a more rigorous derivation of the condition of diffraction.

In order to describe diffraction one must start from  a few  basic assumptions. 

One assumption is that an incoming wave of X-rays, for example, will undergo single 

scattering and thus em it spherical waves from all points of an atom. If the waves are 

being em itted from a sufficiently distant source, they can be considered as plane waves 

at the site of an atom of the considered solid. Also we need to  assume coherent 

scattering -  a fixed phase between the incoming wave and the scattered spherical 

waves. Let the scattering center be located at a point P and the observation point to be 

labeled B (see Figure 3.1). The amplitude of X-rays at point P can be expressed as:

Ap =  A„e^^o{R+r)-io)t
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After scattering occurs, spherical waves are em itted from the sample and their 

amplitude and phase relative to the incident wave are described by the complex

scattering density p(r). At the detection point B the spherical waves can be therefore

expressed as:

 ^ g i k \ R f - r \

A g i r . t )  =  A p p ( r )  — --------
R ' - r

And since the vector k  is in the direction of R '  — r  and further R '» r :

0 —  A p p Ç r ^  --------------------- ----------------— —2 . g i ( k o  R + k  R ' ) g - i ( O o t p ( y ^ ^  g i { k o - k )  r

R '  R'

In order to obtain the total scattering amplitude one must integrate over the entire  

scattering region:

oc p(r)

Since in diffraction we measure the intensity of the scattered waves and the intensity

being proportional to  the square of the amplitude we have:

7 r  — 2

/(^ ) oc oc p ( r )

W here the scattering vector is defined as: K  =  k  — k^

2.6.1. The Reciprocal Space

if we consider a crystal, which is a structure with translational symmetry, its 

electron density is periodic, so p { x )  =  p { x  +  n o )  where n=0 , 1 , 2 ... and o is the lattice 

param eter (in ID ). Expanding in a Fourier series we have:
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In 3D the position r  is described by three lattice vectors

Tn =  +  M2 Z 2  +  W3 H 3

Then the electron density in 3D is written:

P ( r )  =

where the vector G is defined with basis vectors and intereger multipliers:

G =  T ip i +  k g 2  +  lg3

In order for electron density to remain a periodic function, we need to impose a set of

conditions on the vector G:

G V n -  2 n m

For example if n2=n3=0 then ( / i p i  +  k g 2  +  l g 3 ) n i â ^  — 2 n m ,  which can be insured if 

P i  • H i =  2 n  and P 2  — 0  and P 3 • H i =  0  which is equivalent to writing:

g i  • d j  =  2n S i j

The three p ,  vectors span the reciprocal space and the three values h, k and I are the

reciprocals of points w here the plane intersects the a, b, and c axis of the unit cell,

respectively. The above equation indicates that, for example, vector p i  is perpendicular

to  0 - 2  and H 3  (and hence to the plane form ed by them ), and that its length is 2 n /

( a  costp)  where tp is the angle between p i  and H i.  This can also be expressed by;

_  H 2  X  H 3
P i  =  2 n ^  ■ ^

t t i  • (H 2  X  « 3 )

where the other vectors can be obtained by cyclic permutation.
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2.6.2. The Laue condition

Let's return to oc J p ( r )  e'(ko-k) and insert the expression for

( r ) = I . c P e e “ '-.

' ( * )  «  Z c P c I f " ' - " 'p,2

It can be shown that, in fact, the above sum is negligibly small when K  differs

significantly from G. If the integral was expressed in components then for an infinite

volume it would be a representation of respective 6 -functions. W e then have:

f  g i (G-Kyr^j :  _  (th e  s c a tte r in g  v o lu m e  V f o r  G =  K  
J i  ~ 0  o th e rw is e

The Laue condition states that scattering from periodic structures will lead to 

diffraction if the difference between the k  vectors of scattered and incident wave 

corresponds to G (Figure 3) or:

G =  K

Then the intensity that can be measured in a diffraction experiments is:
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Figure 3. Schematic of a reciprocal lattice with (hkl)'s marking some of the  

reciprocal planes. The (reciprocal) c axis points out of the page. The circle 

represents the Ewald sphere of the reciprocal lattice illustrating the Laue 

condition G =  K  =  k  — k„.  A diffracted beam will be produced whenever a 

reciprocal lattice point coincides with the surface of the sphere.

The vector G is uniquely defined in the basis g i  of the reciprocal lattice by its three  

coordinates h, k and /. These indices can also be used to label the diffraction beams or 

reflections since a specific plane has a unique set of coordinates and it gives rise to  one 

reflection which appears a peak in the diffraction pattern (Fig. 3).
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Figure 4. Set of crystal lattice plains in real space. The plane in red intersects the 

axis at (2, 2, oo) so the plane's (hkl)'s are 2 * ( l /2 ,  1/2,  0) which is (110). All planes 

parallel to this plane are equivalent, because they contain the same density of 

atoms.

Let's consider one lattice plane in a periodic crystal structure: we can label the  

three points where the plane intersects with the coordinate axis as m, n and o and call 

the reciprocals of these numbers h ' - l / m ,  k ' - l / n  and / '= l /o  (Figure 4). In order to avoid 

dealing with fractions one can multiply h', k'  and /' by and integer p and obtain a set of

three integers: h, k, I which are the coordinates of G. A given 6 ^%; is perpendicular to  

the corresponding (hkl) plane (Fig. 4).
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2.6.3. The Bragg Equation

The distance from the origin of the lattice to a (hkl) plane is:

t t i  t t i  f u i  ■ G/ifcA 1  2 n h  2 n  h  2 n

The distance to the nearest plane is then:

d'hki 27t
^hkl —

P Gfiki

The Laue condition is the condition for scattering so one should be able to obtain the  

Bragg equation from it:

|g | =  |fe -  ko\

2 n
^hki ~  “j ~  2 koSin 0  

^hkl

=  2  —— s in  6
dhkl ^

À =  2dhk is inO

In this way we obtain the Bragg equation, which says that the path difference 

between waves scattering from tw o parallel adjacent planes should be equal to the 

wavelength (or an integer of wavelengths) in order to produce constructive interference 

and hence a reflection.

2.6.4. Atomic scattering factor

How much of incoming X-rays will be scattered by an atom, that is the intensity 

of a reflection, depends on the electron density or in equation form: oc

where ( r )  =  . The coefficients of the Fourier series of the scattering density

are:
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c e l l

In an elem ent, the core electrons are concentrated in a small region around the  

atom (except for light elements, which are also ones that are least appropriate for 

investigation by X-rays). In comparison to core electrons, scattering from  valence 

electrons is negligible. So we can consider the total scattering density of a crystal lattice 

as a sum of scattering densities of component atoms. Let r „  be the origin of the n*  ̂ unit 

cell, r „  be the position of of each atom in the unit cell and r '  be a position vector 

pointing away from the center of each atom (Figure 5) so that r  =  r „  -F r „  -F r ' .

’’ “ O  r '

Figure 5. Schematic illustrating the decomposition of the position vector r into 

three vectors where r  =  r „ -F  r „ -F  r ' .  The box represents a unit cell from a 

crystal lattice.
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Then the scattering density of a single atom is;

s in g le  ^  ç.

P/Tfc"”* I P a { r ' ) e - ^ ^ ' ^ d r '

where we can define the atomic scattering factor or form factor (De):

f a ^  \  Pa  (r') e-^^-^dr '
' â

Switching from Cartesian to  polar coordinates:

f a  =  j p a  e~^^^'dr '  = — j j j  r' sin 0  d<p

f a  =  4 7 t j  P a ( r ' ) r ' ^   ̂ ^

Now since the diffraction angle between k  and k^ is 2 0 , the using Eq. 24 we have the 

final definition of atomic scattering factor or form  factor:

r sin [47rr' sin Æ )]
/ «  =  47t P a ( r ' ) r ' ^ ----------------------

47rr' sin

The maximum of the atomic scattering factor occurs for 0 = 0  where the integral 

becomes equal to the scattering density, which in turn is proportional to the total 

number of electrons per atom.

2.6.5. Structure Factor

If we consider again all the atoms of a unit cell then we arrive at the definition of 

the structure factor:

F  h k l =  ' Y j

a
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where the summation is over the atoms in the unit cell (see Fig. 5). So finally the 

scattering density is expressed as:

s in g le  c  
„  a tom  _
Phki -

c

The intensity of diffraction lines is proportional to the square of the wave amplitude or 

of the structure factor:

^ h k l ^  F  hkl  F  hkl

And if we consider for example that there are tw o different atoms in the unit cell then  

we have:

h k l  (X F l ^ i F h k i  =  +  f ^ e - ^ A K r r 2 y

=  ^^^g+iGhkl-ri _|_

— f ^ f 2  ri-'GhkfTz _|_ Q+iGhki r2-iGhki r \^  _|_ ^ 2

=  / l  + / 2 ( 2 c o s  ( 0 f t k , ) )

Finally we have a simple expression for the intensity of diffracted X-rays:

h k l  (X F*f^kiFhki =  / i  +  / i  +  2 /1 /2  cos (0 /ifci)

The intensities of reflections are altered by the presence of other atoms in the cell and 

this can sometimes lead to characteristic extinctions of certain reflections (if tw o  

different atoms have the same Z and their scattered waves are 180° out of phase).

In conclusion the Bragg reflections' positions provide information about the  

shape and the dimensions of the unit cell, whereas the intensities of those reflections 

yield insight into the type of atoms present in the unit cell.

33



W hen it is desired to investigate the structure of a solid on the atomic scale then  

the wavelength used should be at least on the order of the lattice constant. W e can only 

measure the intensity of the diffracted radiation, so we do not obtain any information  

about phases. If one could actually measure the amplitude of the scattering radiation, 

then the scattering density could be obtained by inverse Fourier transform of the 

amplitude. The lack of information about phases leads to the necessity of trying out 

different model structures (and varying their parameters which can be extrem ely tim e­

intensive) and determining which one fits the best the experimental diffraction pattern.

2.6.6. Tem perature Factor

The Debye-W aller factor (DWF), named after Peter Debye and Ivar W aller, is 

used to describe the attenuation of X-ray scattering (and also neutron) scattering 

caused by therm al motion or quenched disorder. It gives the fraction of elastic 

scattering. Assuming a solid is a classical harmonic oscillator the Debye-W aller factor is 

given by the exponential factor in the expression:

I ( h k l )
. 1 \ / kgTĜ

where (u ^ ) is the mean square displacement of an atom, M is the mass of the atom , w 

is the frequency of the oscillator.^^ This classical result approximates well experimental 

data at high tem peratures. At low tem peratures one must use quantum considerations. 

At T=0, the is the mean square displacement (u ^ )o f an atom does not vanish because of 

zero point motion, and the scattered intensity is:
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I { h k l )  =  I„e\  2^ " '  

which gives about 90% of elastic scattering when typical numbers are substituted.^®

The Debye-W aller factor was first called the tem perature factor because Peter Debye 

(1913) and Ivar W aller (1923) were the first to understand and form ulate the effect that 

therm al vibrations would have on the intensity of X-ray scattering. Since then it has 

become obvious that static displacements produce a similar effect on the scattered 

intensities of X-rays therefore the use of the term  'tem perature factor' is formally 

discouraged, as stated by the 1996 lUCR Commission on Crystallographic 

Nomenclature.®® W hat are the key components of static displacement? First is the  

displacement arising from atomic vibrations because of motion of molecules or 

molecular fragments or, in a crystal, because of internal vibrations, such as bond 

stretching and bending. All of these motions are tem perature-dependent, unless the  

tem perature is very low. Besides tem perature effects there are other effective 

displacements from the mean position which are because of a variety of possible types 

of disorder. Disorder includes small deviations from ideal periodicity, present in all real 

crystals; orientational disorder, present in many molecular crystals; density and 

displacement modulations; and short- and long-range displacive correlations. Besides 

decreasing the intensity of diffraction lines, many types of disorder also give rise to  

diffuse scattering.
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2.7. High-Pressure in Materials Science

2.7.1. Introduction

Pressure and tem perature are the key parameters in the therm odynam ic study 

of materials. Materials at high-pressures are found in nature in oceans (0.1 GPa) and 

inside the Earth (center at 360 GPa) as well as within planets, stars, and the universe. 

The static high-pressure range in nature and in the universe spans about 130 orders of 

magnitude and is hence larger than for any other physical variable. ® Nowadays, 

pressures superior to  those found at the center of the earth can be replicated in the  

laboratory environment. The pressure variable can be applied in a very controlled 

manner to  samples of the order of few  microns to a few  centimeters cubed, by using 

either a diamond anvil cell or for the latter, a large volume press.

A wealth of information can be obtained when molecular materials are subjected 

to very high-pressures. In fact, pressure allows for tuning of electronic, magnetic, 

structural and vibrational properties. Another application in fundam ental science is the  

possibility to tune interatomic bonds for the purpose of testing theories.®®

In summary, high-pressure research enables a better understanding of structural 

properties of materials, of chemical reactions, and of materials synthesis. Phase 

transitions, phase diagrams and equations of state have been determ ined for countless 

systems with the use of pressure and tem perature combined with in situ X-ray 

diffraction.
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2.7.2. The Progress and Diversification of High-Pressure Research 

High-pressure diffraction has been carried out for over 40 years now. 

Synchrotron sources, pressure cells and data acquisition and analysis systems are 

incessantly being modified and improved in the search for better, faster and more 

efficient experiments.'*® Synchrotron radiation was used for the first tim e in combination  

with X-ray diffraction 30 years ago, in 1977.^® High-pressure X-ray diffraction studies 

involving synchrotron radiation w ere first reported in 1977 as well.'** The key 

advantages of synchrotron X-rays, as applied to high-pressure studies, were the tunable 

wavelength, improved resolution, low noise and excellent statistics. On the other hand, 

high-pressure created new constraints because of the extrem ely small sample size and 

absorption and scattering due to  small angular range.

High-pressure techniques have been steadily advancing since the eighties, with  

developm ent accelerating in the past few  years. Accompanied by the parallel 

development in new synchrotron techniques (diffraction, spectroscopy, from  X-ray to 

infrared region) all these developments allowed high-pressure research to flourish into 

an interdisciplinary tool spanning geosciences, different domains of physics, materials 

science and even biology.

High-pressure research has known an unprecedented wave of growth across 

research areas in the last 20 years.®® The developments that contributed to making high- 

pressure the thriving research field it is today, are the evolution of diamond anvil cells 

and the arrival of 3'̂ ® generation synchrotron sources with the parallel advances in
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synchrotron techniques. Today the pressure limit achievable in the laboratory is ~5 

Mbars.

2.7.3. The Effect of Pressure on M atte r

W hat is the effect of pressure ®® on a solid? As interatomic distances are 

reduced under pressure, the material becomes denser. It is then relevant to examine 

w hat are the mechanisms for increasing the density of a material. As the crystal lattice is 

reduced and atoms are drawn closer, compression acts on the energetics of electrons. 

The energy of electrons is composed of kinetic, coulomb, exchange and correlation 

contributions. From the point of view of density functional theory, the kinetic energy of 

electrons is proportional to electron density to  the 5 /3  power. Therefore, the kinetic 

energy increases fast under compression. Electrons tend towards states of lower 

kinetic energy. As a consequence intramolecular bonds are destabilized. Already in the 

1930s it was postulated that at pressures sufficiently high molecular systems will 

transition to close-packed structures before, or in concert with, the formation of a fully 

metallic phase ("metallic or valence states") and ultim ately form a plasma in which 

the chemical description of bonding does not hold anymore. In fact, as atoms are 

brought together, changes in hybridization occur, because of covalent interactions. On 

compression it is possible for different types of bonds (van der Waals, ionic, covalent, 

metallic and hydrogen) to compete among each other.

Since it is possible to  achieve, in the laboratory, pressures high enough to reduce 

the unit cell volume by more than a factor of 2 , the resulting changes in inter-atomic 

bonding can be immense and hence the properties of high-pressure phases can differ
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greatly from the am bient pressure and tem perature phase. ®® As a result of compression 

the atomic arrangement can suddenly change. As the Gibbs free energy of different 

arrangements of atoms varies under pressure, it may become more energetically 

favorable for the material to change this arrangement in which case a solid-solid phase 

transition occurs. This change in atomic arrangement can either be discontinuous or 

continuous and accompanied by a change in crystal symmetry.

Under high-pressures some materials adopt high-symmetry structures of 

increasing coordination number. However, some materials can first transition into lower 

symmetry structures at interm ediate pressures and only at higher pressures they  

transform into higher-symmetry structures.

So w hat is the bottom line result of compression? Unexpected, interm ediate  

states can be form ed at high-pressures as molecular bonds evolve before being 

annihilated. Pressure can induce autoionization as well as molecular bonding. New  

materials can be produced by chemical reactions or mechanisms very different from  

those at am bient conditions and their kinetics maybe either accelerated or slowed down  

depending on the activation volume. High-pressures can be used to produce materials 

with technological implications such as super hard materials, nonlinear optical materials 

or high tem perature superconductors. Pressure can also induce loss of long-range order 

or material amorphization, where glassy materials can be obtained below their regular 

glass transition tem perature.
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2.7.4. At the Heart of High-Pressure Research: the Diamond Anvil Cell

The reliable and controlled replication of high-pressures in the laboratory begins

with "the Bridgman" era as referred to by Jayaraman.'*® From 1910 to 1950 P.W

Bridgman invented and developed the Bridgman anvil and the piston cylinder device for 

electrical resistance and compressibility measurements (up to 100 kbar = 10 GPa).

The diamond anvil cell (DAG) was first developed by Jamieson, Lawson, and

Nachtrieb '*'* and W eir et al. The principle of operation of any high-pressure device is45

based on the fact that a large force F applied to a small area A generates a large 

pressure p=F/A (Figure 6 ). The smaller the area, the large will be the pressure created  

on the sample. The limit is the deformation and eventual fracture of the diamond under 

very high loads. Diamond is ideal for high-pressure applications because it combines the  

highest bulk modulus and hardness among all known materials.

metal
gasket

diamond

-  pressure

Figure 6 . Schematic of the inside of a diamond anvil cell (DAG). Typical sizes are: 

1/3  carat for the diamond with a culet of ~300 pm; the sample chamber is

usually 1 0 0  pm or less.
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In the DAC, a small amount of material is placed between the flat faces or culets 

of tw o diamonds/®' The culets are separated by a thin metallic foil which serves as 

gasket. An initial compression of the gasket creates an indentation and a micron-size 

hole is drilled in the middle of the indentation. This hole constitutes the sample 

chamber where the desired sample is placed together with a pressure standard as well 

as a pressurizing fluid medium to insure (quasi-) hydrostaticity and homogeneous 

conditions. The diamond culets can have dimensions between 100 pm and 1000 pm, the  

metallic gasket has a thickness between 300 pm and as little as 100 pm (in the case of X- 

ray Raman) with the indented zone reduced to anywhere between 80 to 30 pm. The 

ideally circular hole centered in the indentation can have a d iam eter between 1 0  and 

200 pm. Because of to the small dimensions involved, as well as the need for perfect 

centering of various elements and high precision, all manipulations are carried out 

under a high-magnification optical microscope. The chief reason for using diamonds, 

besides their exceptional hardness, is also their wide window of optical transparency 

(except form "^5.5eV to ~15 keV), up to hard X-rays which allows for a multitude of 

scattering and diffraction techniques. Diamond anvil cells have been the key limiting 

factor in high-pressure research.

2.7.5. How is Pressure Measured in a Diamond Anvil Cell?

Static pressure P is the force excreted per unit area. The force applied on a DAC 

is transm itted to the sample in a very complex way (especially above 10 GPa) because of 

the friction and deformation of the materials of the cell, so the generated pressure 

depends not only on the force but also on the mechanical properties of the materials.'*®'
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47 In that case instead of modeling how pressure is transm itted to  the sample chamber, 

it is much more practical to use transferable pressure scales. Here pressure 

measurements are based on the equation of state (P(V) isotherms) reference materials.

Primary pressure scales are based on materials such as Au, Pt, Ag, Cu or NaCI, for 

which the equations of state, which were established from a combination of ultrasonic 

data and shock-wave experiments, show a good degree of consistency to 100 GPa. In a 

typical X-ray diffraction compression experim ent the lattice parameters of a primary 

pressure scale are accurately measured and the pressure is obtained through the 

corresponding equation of state.

Another possibility is the use of a secondary scale, calibrated against a primary 

pressure scale, and which may be easier to use in a high-pressure experiment. In fact, at 

very high-pressure, the accurate determ ination of the lattice parameters of a reference 

material becomes difficult. One such secondary scales is the very popular ruby 

(Al2 0 3 :Cr^ )̂ scale, which has a fluorescence line (Ri) which shifts with pressure almost 

linearly up to 10 GPa, with dp/dA=0.2746 GPa Â '\  and with a small deviation at higher 

pressures, according to the empirical equation :

.  1 9 0 4
P(GPa)  =

B

w here 6=7.665 for quasi-hydrostatic conditions and 6=5.0 for non-hydrostatic 

conditions. The Ri fluorescence line is also dependent on tem perature with dA /d I=0 .068  

Â K '\ so that an increase in tem perature of 10 K corresponds to  an increase in pressure 

of 0 .187 GPa ->0 .2  GPa.
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0.2746 GPa Â'^ *0 .068  Â K '\*1 0  K = 0.187 GPa 

In most of the presented studies in the experimental part of this Thesis both a primary 

and a secondary pressure scale was used.

2.8. Synchrotron X-Ray Diffraction

2.8.1. A Brief History of Synchrotrons

Synchrotron radiation got to a "poor" start at electron accelerators where it was 

seen as a nuisance since it represented loss of energy. Materials scientists, who saw 

potential in synchrotron radiation, were sometimes allowed by particle physicists to  tap  

into radiation that went lost otherwise and operate beam ports in "parasitic" mode. The 

first generation synchrotrons were born. From nuisance synchrotron radiation evolved 

to one of the most powerful tools for the study of m atter. The next evolutionary step 

was the construction of what became known as the second generation synchrotron 

sources, of the 1980s. These were properly dedicated facilities and not merely 

attachments to particle accelerators. The second generation synchrotron sources were  

composed of tw o straight sections with a wiggler or an undulator and connected by tw o  

semi-circular ends with bending m a g n e t s . T h i r d  generations sources, such as the  

Advanced Photon Source Argonne National Laboratory (Argonne, IL, USA), were built in 

the 1990s. They are composed of many straight sections connected in to a polygon and 

optimized to supply very bright radiation from  far UV to hard X-rays depending on the  

synchrotron.
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2.8.2. Productions of Synchrotron X-rays: Bending Magnets, Undulators

Synchrotron radiation goes from  far infrared to hard X-rays. Highly parallel 

radiation originates from a very small source (0.01-0.1 mm in cross-section). It is linearly 

polarized in the plane of the electron orbit and elliptically polarized above and below  

the plane.

Accelerated charged particles em it radiation in the well known sine squared 

angular pattern of dipole radiation. The synchrotron makes use of the fact that 

centripetal acceleration of charged particles causes transverse emission of 

electromagnetic radiation in the tangential direction of the ring where electrons 

circulate (due to  an applied magnetic field). If, in addition the particles travel at 

relativistic speeds, the radiation is em itted in a narrow cone, tangent to  the path and in

the forward direction, mimicking a sweeping searchlight or a train on a circular track.^^'

so

In a third generation synchrotron source the circular motion of a tightly confined 

beam of relativistic electrons is insured by bending magnets. End-stations that follow  

only a bending magnet are characterized by wide spectrum of radiation sometimes 

referred to as a synchrotron light bulb. Undulators can be found in straight sections 

between bending magnets and they are periodic magnetic structures with a large 

number of cycles (ex: 100). The relatively weak magnetic field of undulators causes the  

electrons to have a small harmonic oscillation which is also called undulation. The 

electrons experience additional acceleration in a direction which is perpendicular to  

their circular motion. Because of the fact that the amplitude of oscillation is small the
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resultant radiation cone is narrow. Also since the original electron beam was already 

tightly confined, the end result is highly directional radiation with small angular 

divergence, small cross-section and narrow spectral width. The undulator radiation is 

quasi-monochromatic and approximates many of the desired properties of an X-ray 

laser. Wigglers are also periodic magnetic structures that can be found between  

bending magnets, but with few er periods than undulators and with a much stronger 

magnetic field. Here the amplitude of oscillation is larger, and as the electron is jolted  

up and down, the resultant radiation cone is w ider in space and angle. Stronger 

magnetic field also translates into larger radiated power. As a result the radiation from  a 

wiggler has a wide spectrum much like for a bending magnet, but the spectrum is 

shifted towards higher energies and the photon flux is larger.^^'^°

Synchrotron radiation is the best tool for the study m atter enclosed in a high- 

pressure cell. Synchrotron radiation is characterized by a very penetrating high-energy 

beam. High-brilliance and low-em ittance of the beam permit to focus it down to micron 

sized spots, which are ideal when the sample chamber is itself a few  tens of microns in 

diam eter. The brilliance of X-rays at a third generation synchrotron source also reduces 

the data collection tim e down to a few  minutes or a few  seconds depending on the  

beamline versus hours or more for a standard X-ray diffractom eter.

2.8.3. The Advanced Photon Source at Argonne National Laboratory 

There exists today only about a dozen of synchrotron facilities in the world that 

possess high-pressure-dedicated beamlines: APS (US), ESFR (FR), Spring- 8  (JP), Soleil
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(FR), NSLS (US), ALS (US), BSRL (China), HasyLab (DE), CHESS (US), KEK-PF (JP), SERC (UK), 

ELETTRA (IT), Australia, Korea).

The experimental work presented in this Master  o f  Science Thesis was carried 

out at the U.S. Departm ent of Energy's Advanced Photon Source of Argonne National 

Laboratory (Figure 7). Electrons are first em itted from a cathode ray tube and 

accelerated by high-voltage alternating electric fields in a linear accelerator. Selective 

phasing of the electric field accelerates the electrons to 450 M eV. At 450 MeV, 

(>99.999% of the speed of light). Electrons are injected into the booster synchrotron (a 

ring of electromagnets), and accelerated from 450 M eV  to 7 GeV in one-half second 

(>99.999999%  of the speed of light).

Figure 7. Aerial view of the Advanced Photon Source (APS), a third generation 

synchrotron, at Argonne National Lab. in Chicago, IL. (Picture courtesy of the  

APS-ANL^\)
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The accelerating force is supplied by electrical fields in four radio frequency cavities. In 

order to maintain the orbital path of the electrons, bending and focusing magnets 

increase the electron field strength in synchronization with the radio frequency field. 

The 7-GeV electrons are injected into the 1104-m  (3622 ft or ~0.7 mi) circumference 

storage ring, a circle of more than 1 , 0 0 0  electromagnets and associated equipment, 

located in a concrete enclosure inside the experimental hall. A powerful 

electromagnetic field focuses the electrons into a narrow beam that is bent on a circular 

path as it orbits within aluminum-alloy vacuum chambers running through the centers 

of the electromagnets.^^

There are 40 straight sections, or sectors, in the storage ring of this 3'̂ '̂  

generation synchrotron. Five sectors are used for beam injection and radio frequency 

equipm ent. The remaining 35 are equipped with insertion devices. Each sector may 

have at least 2 beamlines which extend up to 75 meters from ring across the  

experimental hall floor. One of the beamlines begins at a bending magnet. The other 

beamline begins at an insertion device (undulator or wiggler).

The work described in the experimental part of this thesis was carried out at 

sector 16, the High-pressure Collaborative Access Team (HPCAT). HPCAT is a sector 

dedicated to high-pressure research and it has two BM (BMB, BMD) and tw o ID 

operational beamlines (IDB, IDD). The ID beamline is being extended to a third ID hutch 

(ID-E) for selected experiments. The maintenance and operations costs for an 8 -hour 

shift at a beamline amount to ~$1K. The annual budget of the APS is of about $2 billion. 

That is why experimental tim e (or beam tim e) is very valuable and experiments need to
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be carefully designed to  make the most of the allotted tim e. Hence the tim e variable has 

a crucial influence in the already challenging aspects of a high-pressure experiment.
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CHAPTER 3

EXPERIMENTAL

3.1. Ambient Pressure X-ray Diffraction

Commercially available samples of TiHz (Alfa Aesar) of stated purity 99% were  

used in the studies reported here. Conventional angle dispersive X-ray diffraction 

patterns were collected in 0 -2 0  Bragg-Brentano geometry, using a PANalytical X'Pert 

PR0 X-ray diffractom eter with Cu K„ radiation (1.54056 Â, 40 kV, 40 mA) and an 

X'Celerator solid state detector. The sample was placed in a TTK 450-Low-Tem perature  

Chamber from Anton Paar, especially designed for variable-tem perature X-ray 

diffraction studies. The patterns w ere recorded with step size of 0.008° 2 0  in the range 

30 ° to 80° 2 ©  and 24 s per step. The tem perature was varied from 0 °C up to 120 °C in 

steps from  3° to 20° C in tw o series. In the first series tem perature was gradually 

decrease dfrom 25oC down to OoC. In the second series a new sample of TiHz was 

heated from 25°C up to 120°C.

3.2. High-Pressure Synchrotron X-Ray Diffraction

Every setup for high-pressure powder X-ray diffraction consists of a synchrotron

storage ring. X-ray optics including filtering monochromation, collimating, condensating,

the high-pressure vessel (ex. DAC), detector and data-analysis software. This can be
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supplemented by a cryostat for very low-tem perature studies or laser or resistive 

heating for high-tem perature s tu d ies .H ig h -p ressu re  investigations of materials are 

usually carried out on polycrystalline powders because single crystals do not usually 

survive the abrupt volume changes which occur at discontinuous phase transitions. A 

complete experim ent includes a compression cycle and a subsequent decompression 

cycle, however in practice the decompression cycle is often left out because of 

beam tim e limitations or worse, because of anvil failure.

3.2.1. Energy-Dispersive X-Ray Diffraction (EDXRD)

In a first series of experiments the structural stability of TiH 2 under compression 

was investigated up to 34 GPa at am bient temperature.^^ For in situ energy-dispersive, 

high-pressure X-ray diffraction studies, the powdered sample was compressed in a 

Livermore M ao-Bell-type diamond anvil cell (DAC). A rhenium gasket was preindented  

to a thickness of 70 pm, using diamonds with 420 pm diam eter culets. The sample 

chamber consisted of a 130 pm diam eter hole, drilled in the preindented rhenium  

gasket. Sample loading was done in air atmosphere. A few  grains of ruby powder were  

included and used to  measure the pressure using the pressure scale of M ao. No 

pressure-transmitting medium was used in this experiment. The tim e gap between a 

pressure raise and the subsequent X-ray measurement was about 10 min in order to 

allow the pressure inside the sample chamber to equilibrate.

All energy-dispersive X-ray diffraction patterns w ere collected at beamline 

16BMD of the High-pressure Collaborative Access Team (HPCAT), Advanced Photon 

Source (APS), Argonne National Laboratory, Chicago. The energy range of the white
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beam spectrum accessible at beamline 16BMD was 5 to  75 keV. The beam was focused 

to a 10x10 pm spot using 200 mm long KB-mirrors attuned to  one millradiant and a 30  

pm diam eter M o cleanup pinhole was used to elim inate beam tails. The diffracted x-rays 

were analyzed with a liquid nitrogen-cooled germanium solid-state point detector 

placed at a 2 0  angle of 12.007(9)°. The energy spectrum of the germ anium -detector 

was calibrated with radioactive check source of ^°^Cd using Ag K ,̂ Kpi, K3 2 and Agyi decay 

radiation. The diffraction angle was confirmed by measuring the pattern of a Ce0 2  

standard from  NIST. The intensities of the patterns was subsequently scaled according 

with the energy-dependent intensity of the incident beam.

The diffraction patterns collected with both the conventional as well as the  

synchrotron X-ray diffraction techniques were analyzed with software such as Powder 

Cell and Topas 2.1 Bruker AXS was used to perform Rietveld full-profile structural 

refinements.

3.2.2. Angle-Dispersive X-Ray Diffraction (ADXRD)

In a second series of experiments high-resolution, angle-dispersive, synchrotron 

X-ray diffraction (ADXRD) experiments were carried out. The structural stability of TiH 2 

was investigated in tw o separate compression runs, first up to 21 GPa and then up to 90  

GPa and in subsequent decompression to am bient conditions. ADXRD measurements 

w ere performed at the 16-IDB beamline (Figure 8 ) of the High Pressure Collaborative 

Access Team (HPCAT) of the Advanced Photon Source, Argonne National Laboratory.
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Figure 8 . Pictures of the HPCAT at APS. Clockwise from top left: experimental 

hall, control area, DAC placed inside the ID-B hutch, image plate and CCD 

detectors.

A 320X300 pm^ monochromatic x-ray beam with a wavelength X=0.3682 Â, X=0.4136 Â, 

X=0.3931 Â (depending on the tim e of the experimental run) was focused down to a 

~ 6 x6  pm spot using Kirkpatrick-Baez (KB) 200 mm mirrors. Diffraction images were  

recorded with a MAR345 imaging plate as a detector and were integrated and corrected 

for distortion using the FIT2D^® software. The acquisition tim e was 60s, 30s, or 20s. The 

sample-detector distance (~350 mm) and geometric parameters were calibrated at the  

beginning of each run using a CeÛ2 standard from NIST. Samples of TIH2 powder (Alfa 

Aesar) of stated purity 99% were used in the studies reported here. The sample was 

compressed in a symmetric diamond anvil cell (DAC) (Figure 9). A rhenium gasket was 

preindented to  a thickness of ~50 pm, using diamonds with 320 pm diam eter culets. The
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sample chamber consisted of a 90 pm diam eter hole, drilled in the preindented rhenium  

gasket. Sample loading was done in air atmosphere.

Figure 9. Diamond anvil cells used in the high-pressure expeirments. Left: 

Livermore Mao-Bell type DAC used in the collection o f EDXRD patterns of TiHz; 

right: symmetric Japanese design symmetric DAC from Syntec used in the  

collection of ADXRD patterns of TiHi.

A few  ruby microspheres were placed in the sample chamber and used to measure 

pressure using the pressure scale of Mao.'*^' A few  grains of gold w ere also included

and used to measure pressure using the equation of state of Anderson et al.^® The first 

compression sequence was carried up to  21 GPa with an ethanol-m ethanol mixture (4:1 

by vol.) which served as a quasi-hydrostatic pressure-transmitting medium. The second 

compression run was carried out up to  ~90 GPa on neat TiHz (w ithout a pressure 

medium). The tim e gap between a pressure increase and the subsequent X-ray 

measurem ent was about 1 0  min in order to allow the pressure inside the sample
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chamber to  equilibrate. The diffraction patterns w ere indexed w ith Powder Cell^^ and 

Topas 2.1^^ was used to perform Rietveld full-profile structural refinements.
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CHAPTER 4

RESULTS

4.1. On the structure of TiHz

Figure 10 illustrates models of the crystal structures of TiHz. M etal hydrides from

the IVB group form a cubic phase which can be non-stoichiometric over a wide range as

well as a tetragonal phase, which is usually deficient in hydrogen.

# #
" x  \

Figure 10. Models of the cubic Fm"3m (left) and the tetragonal 14/mmm (right) 

crystal lattices of TiH2 . Pink and white spheres represent titanium  and hydrogen 

atoms, respectively. The tetragonal structure is found to appear at low 

tem peratures and high-pressures.

For titanium  hydride in particular the room tem perature form (25°C) is cubic 

while the tetragonal form has only been detected at near-stoichiometric compositions
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and slightly below room tem perature. Like for many other dihydrides of transition 

metals, the cubic phase of TiH; has a fluorite-type structure (CaFz) where Ti atoms form  

an fee lattice and the hydrogen atoms are situated at the tetrahedral interstitial 

positions of the metal lattice. The tetragonal phase of TiH 2 has a distorted fluorite  

structure (Fig. 10) where one crystallographic axis is shortened and tw o other are 

lengthened. In the metallic matrix of TiH2 (cubic or tetragonal) there are two

tetrahedral interstitial sites per atom Ti occupied by hydrogen. There is also one 

em pty octahedral interstitial site per atom Ti which has been experimentally shown to

be empty. 13

Table 1 Summary of the various experim ental techniques and experimental runs 

carried out on TiH2 .

Type of Experiment Radiation Pressure Range Pressure M edium Tem perature

conventional XRD CuKa atm. --- 0 ^  25°C

conventional XRD CuKa atm. --- 25 ^  120°C

EDXRD synchrotron 0 ^  34 GPa neat sample 25°C

EDXRD synchrotron 3 4 ^  0 GPa neat sample 25°C

ADXRD synchrotron atm. --- 25°C

ADXRD synchrotron 0.6 ^  21GPa m ethanol-ethanol 25°C

ADXRD synchrotron 21 ^  OGPa m ethanol-ethanol 25°C

ADXRD synchrotron 0 ^  90 GPa neat sample 25°C

ADXRD synchrotron 9 04»0 G P a neat sample 25°C
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In the next section results of the multi-technique investigations into the  

structural properties of TiH2 are presented in the following order: first conventional X- 

ray diffraction at am bient pressure combined with moderately high tem peratures; next 

energy-dispersive synchrotron X-ray diffraction up to 34 GPa; finally high resolution 

angle-dispersive synchrotron X-ray diffraction up to almost a mega bar pressure, 90 GPa. 

Table 1 summarizes the experimental techniques and the conditions of the various runs.

4.2. Am bient Pressure, High-Temperature X-ray Diffraction

Tem perature-dependent conventional X-ray diffraction patterns were collected 

from 25°C down to 0°C as well as from 25°C up to 120° C in variable steps (from 4 to 20° 

C). The smallest tem perature step was chosen taking into consideration the limits of the  

accuracy of the tem perature stage, which is about 3°C. Figure 11 shows the complete 

set of X-ray diffraction patterns collected in tw o experimental runs. The diffraction lines 

observed in all patterns correspond to TiH2 . At 20° C and above, TiH2 has a cubic 

structure and belongs to  space group Fm-3m (225). A Rietveld full-profile structural 

refinem ent shown in Figure 12 demonstrates an excellent match between the observed 

and the calculated x-ray pattern. The refined unit cell param eter of the cubic phase is 

a=4.4492(28) A and the refined volume and X-ray density are V=88.07(17) and 

d=3.7630(72) g/cm^, respectively (Fig 12).
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Figure 11. Conventional angle dispersive X-ray diffraction patterns of TiH 2 

collected as a function of tem perature between 0 and 120°C (a); and (b) zoom  

showing line splitting between 25°C and 0°C, which evidence the phase 

transition from the cubic to the tetragonal structure. Individual reflections are 

identified with M iller indices for the cubic structure (0°C plot) and for the  

tetragonal structure (25°C plot).
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Figure 12. Rietveld full-profile structural refinem ent of the conventional angle- 

dispersive x-ray diffraction pattern of TiHz collected at 25° C. The refinem ent was 

carried out using the cubic space group Fm-3m (225). The blue and red lines 

represent experimental and modeled patterns, respectively. The grey line at the  

bottom represents the difference between the observed and the refined profile.

Below 20° C three diffraction lines of the cubic phase (200), (220) and (311) start 

showing some profile asymmetry (Figure 11). At about 17° C each line splits into two  

new diffraction lines and cubic TiHz undergoes a phase transition to a lower symmetry, 

tetragonal structure. This structural change is attributed to a Jahn-Teller y-y' phase 

transition of the second kind, resulting in a tetragonal structure. Specifically the (200) 

cubic line splits into the tetragonal (1 1 0 ) and (0 0 2 ), the cubic (2 2 0 ) line splits into 

tetragonal (200) and (112) and the (311) cubic line splits into tetragonal (211) and (103) 

lines.
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Figure 13. Rietveld full-profile structural refinem ent of the conventional ADXRD 

pattern of TiH2 collected at 17°C, which is the tem perature at which the cubic to 

tetragonal phase transition occurs. The refinem ent was carried out using the 

group 14/mmm (139). The blue and red lines represent experimental and 

modeled patterns, respectively. The grey line at the bottom represents the  

difference between the observed and the refined profile.

The tetragonal structure is preserved down to 0° C. The new structure belongs to  

the space group 14/mmm (139). A Rietveld full-profile structural refinem ent of the 

pattern collected at 17°C, shown in Figure 13, is in excellent agreem ent with the  

observed x-ray pattern. The refined unit cell parameters of the tetragonal phase are 

8=3.1635(26) Â, c=4.4023(37) Â with a volume and density of V=44.056(8) and
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d=3.7613(7) g/cw? respectively. W hen the sample is heated back up to  20° C, it reverts 

to the original cubic structure.

It is known that group IVB metals form  stable dihydrides (ex. TiHx) over a wide 

range of concentrations, where they assume the Cap2 -type structure {fee). The 

tetragonal distortion of the lattice, which is observed for the group IVB hydrides (when 

the concentration of H approaches x=2) below a critical tem perature can be attributed  

to a Jahn-Teller effect, as was shown in theoretical studies. As shown in this and other 

works the distortion of the cubic lattice occurs for TiH2 at 17°C. The Fermi level of group 

IVB metal cubic dihydrides falls in a peak of the density of states (DOS). The maximum  

DOS value arises from a flat branch of degenerate metal d-states in the F-L direction of 

the fee Brillouin zone. The quadratic distortion lifts this degeneracy and leads to a 

lowering of the Fermi level and of the DOS at fp- The face centered cubic to face 

centered tetragonal distortion also lowers the DOS at fp-

4.3. Energy-Dispersive Synchrotron X-Ray Diffraction (EDXRD) of TiH 2 up to  34 GPa

Energy-dispersive, synchrotron X-ray diffraction (EDXRD) patterns of TiH2 w ere  

collected in the diamond anvil cell (DAC), during compression from  am bient pressure up 

to 34 GPa, and on successive decompression back to  am bient conditions. Figure 14 

shows the sequence of diffraction patterns acquired in situ in compression, at am bient 

tem perature. All the diffraction lines present belong to TiH2 . In the first pattern, 

collected in the DAC at am bient pressure, the identified crystal structure is cubic. As 

pressure is increased, all diffraction lines shift towards higher energies or lower d-
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spacings, and new lines appear as a result of splitting. Upon compression to  2.2 GPa, 

TiH2 undergoes a phase transition to a lower symmetry structure, characterized by a 

tetragonal distortion of the unit cell (Fig. 14). The observed changes in the high-pressure 

patterns indicate that the tetragonal phase of TiH 2 gradually densifies with pressure and 

compresses smoothly up the highest investigated pressure, 34 GPa (Fig. 14). After 

decompression to am bient conditions, the tetragonal TiH 2 reverts back to its initial cubic 

structure. Because no pressure-transmitting medium was used, the diffraction lines are 

broadened due to non-hydrostatic stresses. In addition some Bragg lines' intensities 

vary between patterns because of the large grain size of the sample, which resulted in a 

reduction of counting statistics (Fig. 14). In conclusion, we observe that above 2 GPa the  

cubic lattice undergoes a pressure-induced phase transformation into a lower symmetry 

structure, which remains stable to 34 GPa. The 2 GPa transition pressure is most 

probably an upper bound. The new tetragonal phase is a distorted fluorite structure 

with one crystallographic axis shortened and the tw o others lengthened. In this 

structure the H atoms are still situated in tetrahedral interstitial positions within the  

basic crystal lattice (Fig. 10).
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Figure 14. Energy-dispersive, synchrotron X -ray diffraction patterns collected in 

the diamond anvil cell, during compression from  am bient pressure up to 34 GPa; 

all patterns w ere corrected for the energy-dependent intensity profile of the  

incident x-ray beam before structural refinements w ere carried out. Individual 

reflections are identified with M iller indices for the cubic structure (0 GPa plot) 

and for the tetragonal structure (34 GPa plot). Stars mark the appearance of new  

lines that indicate the phase transition.
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4.4. Angle-Dispersive Synchrotron X-Ray Diffraction (ADXRD) of TiH2 up to  90 GPa

In order to compare conventional ahd synchrotron X-ray diffraction of TIH2 an 

ADXRD pattern was collected at am bient pressure, outside the DAC. A Rietveld full- 

profile structural refinem ent of the ADXRD pattern is shown in (Figure 15). The 

mismatch in intensities is attributed to the large grain size of the sample and the very 

small x-ray beam size. Both of these factors contribute to  reduce the image plate 

statistics. In this respect the synchrotron ADXRD pattern collected (Fig. 15) is not as 

representative of the structure of TiH 2 as the conventional pattern.

High-pressure ADXRD experiments were performed in tw o separate runs. In the  

first experimental run, high pressure patterns of TiH2 w ere collected in the DAC, on 

compression from 0.6 GPa up to  21 GPa using a m ethanol-ethanol mixture as a quasi­

hydrostatic pressure transmitting medium. Figure 16 illustrates selected x-ray diffraction 

patterns of this run together with the am bient pressure pattern collected outside the  

DAC. Diffraction lines of TiH2 are indexed by the corresponding M iller indices. In the first 

pattern, collected at ambient pressure (Fig. 15) the crystal structure identified from the  

refinem ent is cubic. As pressure is increased to  0.6 GPa new reflections appear as a 

result of splitting. TiH 2 transitions to a lower symmetry structure, which is characterized 

by a tetragonal distortion of the unit cell (Fig 16). M ore precisely, as can be seen in 

Figure 16 the cubic line {200} splits into the tetragonal lines (110) and (002), the cubic 

line (220) splits into the tetragonal lines (200) and (112), the cubic line (311) splits into 

the tetragonal lines (211) and (103), and the cubic line (331) splits into the tetragonal 

lines (301) and (213). As pressure is increased beyond 0.6 GPa all the diffraction lines
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shift towards higher 20 angles or lower cf-spacings. The observed modifications of the  

high-pressure patterns imply that the tetragonal phase o f TiH; gradually densifies, 

compressing smoothly up to 21 GPa. Decompression form  21 GPa to  am bient pressure 

showed that the phase transition is reversible.

T i H 2  F m - 3 m  1 00 . 00  %
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Figure 15. Rietveld full-profile structural refinem ent of the synchrotron ADXRD 

pattern of TiH; collected with the synchrotron beam, outside the DAC. The 

refinem ent was carried out using the cubic space group Fm-3m (225). The blue 

and red lines represent experimental and modeled patterns, respectively. The 

grey line at the bottom represents the difference between the observed and the  

calculated peak profiles.
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Figure 16. In situ, synchrotron ADXRD patterns collected in the DAC, during 

compression from ambient pressure up to 21 GPa: Individual reflections are 

identified with M iller indices for the cubic structure on the 0 GPa plot and for the  

tetragonal structure on the 0.6 GPa plot. Lines due to the gold pressure marker 

are indicated with Au. The ambient (0 GPa) pressure pattern was collected 

outside the DAC and does not display the diffuse diamond background.
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Figure 17. In situ, synchrotron ADXRD patterns collected in the DAC, during compression 

from  am bient pressure up to 90 GPa. Individual reflections are identified with M iller 

indices for the tetragonal structure of TiH; (10.5 GPa plot). Lines due to the gold 

pressure marker are indicated with Au. The higher 20 range is displayed on a different 

intensity scale in order to magnify the details of the pattern.

In a second series of high-pressure synchrotron ADXRD experiments TiH; was 

studied on compression from am bient pressure up to 90 GPa. Selected diffraction  

patterns are shown in Figure 17. M iller indices indicate reflections belonging to the
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tetragonal structure of TiH2 . Since no pressure-transmitting medium was used in this 

experimental run, the diffraction lines are broadened significantly due to  non­

hydrostatic stresses. As shown in Figure 17, TiFIz compresses smoothly up to  the highest 

pressure investigated, w ithout any further phase transitions. At 90 GPa the {111) 

reflection of gold as well as the (110) reflection of TiH 2 are overlapped. After 

decompression from 90 GPa to am bient conditions the high-pressure tetragonal 

structure of TiFIz was found to persist w hat contrasts with w hat was found on 

decompression form the first ADXRD experim ent -  21 GPa -  as well as from  the EDXRD 

decompression down from 34 GPa.

The intensity of diffraction lines is proportional to the square of the wave 

amplitude or of the structure factor:

hkl ĥkl ̂ hkl = /l + /i + 2/1/2COS (0/ifcl)
Analyzing the above formula, depending on the phase difference, which is a function of 

atom positions and of (hkl), the cosine term  will either augment or diminish the actual 

intensity of a reflection. This variation adds to the fact that the scattering factor 

diminishes with increasing angle and yields an overall decrease in the observed 

intensities of reflections with increasing angle (with some discontinuities for positive 

cosine values).

A feature proper to X-ray diffraction patterns collected with the sample placed in 

a DAC is that the inelastic scattering events occurring in the diamond add an undesirable 

diffuse background. This feature can be seen on any cascade plot of XRD patterns 

collected under pressure. This background can affect the measured intensities of
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reflections and cause a mismatch between measured and calculated intensities in a 

structural refinem ent.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS 

Selected results of experimental studies outlined in the previous chapter are 

further discussed in this chapter. First, we begin by looking into the issues of 

establishing equations of state for condensed m ater at extrem e pressures. Next an 

equation of state is determ ined for TiHz for both the EDXRD results as well as for the  

ADXRD results. In w hat follows, the discussion is extended to the type of pressure- 

induced phase transition as well as the various issues associated with achieving extrem e  

pressure (DAC preparation, preferred orientation, hydrostaticity...). Finally conclusions 

of the multi-technique investigations are presented.

5.1. Equation of State of Titanium Hydride

5.1.1. Equations of State for Solids at Extremely High-pressures 

An equation of state (EoS) is a relation describing, for a given material, the  

connection between pressure (P), volume (V) and tem perature (T). This work treats of a 

solid and for solids the tem perature has a much smaller influence on the P-V 

relationship. Tem perature can then be either om itted or factored in as a small 

correction term  to an isothermal equation of state. M oreover, for a solid we can use the
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zero tem perature equation of state and account for the effect of tem perature by using 

therm al expansion coefficients.

Bulk modulus {K) or constant incompressibility, measures a substance's response 

(strain) to a uniform compression (stress) and is defined:

change in  p ressure  dP ^  dP
f r a c t i o n a l  change in  vo lum e  dV̂  dV

V

Or in terms of density p the bulk modulus is:

dP

At low pressures, specifying the value of K (at constant tem perature) is an isothermal 

equation of state and is applicable to solids and liquids. This is a description of 

deform ation which is exceedingly small relative to the size of the material and it called 

an infinitesimal strain theory for hydrostatic compression. The bulk modulus was 

assumed constant (Ko). However if we integrate the above definition to obtain density 

we get:

This shows that of the above equation of state to hold the pressure must be very small 

(so that Ko can remain constant). “  In fact as P increases, then p would increase 

exponentially. However experimental observations on materials subjected to pressures 

found in the Earth show that the increase in density becomes more difficult as pressure 

is raised. That is why the above EoS is an infinitesimal strain theory.
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Murnaghan proposed the simplest relationship that accounts for density

increasing more slowly as pressure is raised, and this is known as the Murnaghan

equation of state ("integrated linear theory"

K  =  K„ +  K'„P

with K ' =  K'o =  (independent of pressure)\aP / p=o

and inserting the definition of K from  above:

dP
K„ +  K „ P - p  —

K'Pi
C - F  =  W i ;  w h e r e ,  =  1  +  ^

In

Finally, the above equation can be inverted to obtain an expression for the Murnaghan  

EoS ("integrated linear theory") in P as a function of V:

- I \ p j  K ’„  V irJ

The Murnaghan equation is reasonable for many materials as long as 0<P<Ko/2 .

The finite strain calculations have been further developed in order to cover a 

wider range of pressure. Nowadays, the most widely used formalism is the so called 

Birch-Murnaghan equation of state. It is founded on the theoretical treatm ent of finite 

strains carried out by A. Love, further modified by Murnaghan and adapted to

72



geosciences by Birch. According to  Love's definition of strain, in a strained body the  

change in length in any line is invariant with respect to  the choice of axes or to  

rotations.

Let's assume that a solid is undergoing hydrostatic compression. As a result of

the stress, tw o points in the material separated by a distance D in direction x, are now

separated by a smaller distance D' also in the x-direction

D' d (x  +  u)  du
—  =  —    = 1 +  —

D dx dx

where u is the displacement of any point, and it's derivative has a negative sign since for 

compression D'/D<0. So if there is no displacement then D'-D .

Strain e, is defined from  the square of the quotient of distances and the square in the  

following definition is used so that the square of displacement will give a symmetrical 

expression when three, in lieu of one, components are considered

^D'\^ (  d u \ ^  du d^u
—  j =  f 1 +  —— 1 = 1  +  2 —— h — — —  = 1  +  2

du  1 /d u \ 2-1
=  l  +  2e

dx )  dx dx"̂

As a consequence, the volume of the strained and unstrained states is expressed as a 

function of e :

V f D ' Ÿ  , 3
p r - ( c )  +

W hen a material is compressed the strain is positive, so it is then suitable to  redefine 

strain as:

IS4 ©’)
As a consequence the expression for volume becomes:
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W e can w rite now a definition of s tra in /in  terms of V\

2

/  =

Again, since mass is constant we can elim inate it so that we obtain a definition of s tra in /

in terms of density:

This formulation is of interest if the Helmholtz free energy F (F=U-TS), is a strongly 

convergent polynomial function o f / ,  w ritten as:

F  =  A 2 f ^ + A ^ P + A J ' ^  +  A ^ f^  +  -  

Then we know from thermodynamics that:

^ ” = 0 l r -

In order to  find an expression for P as a function of volume we need the derivative:

^  =  I f - l )  ( I p i .  =  - i - ( - T ) ’ ’  =  - - Î - C 1  -  2 f y i
dV 2 \  3 j \ V o )  V„ 3Vo\VoJ 3V„

Next w e have:

P  =
OF d f  d f  _  d { A 2 f ^  +  A s f ^  +  A J ^  + A ^ f^  +  - ) d f

d V  d f d V d f d V

P  = ~ ( 2 A 2 f ^  +  3 A s f ^  +  A A J ^  + -  )
3V

1  1
( 1  -  2 / ) - 2
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p -  {^A2f^ -  4:A2p + 3A^f^ -  6A^f2 + AA^f^ -  8A^f2 H— ̂

By substituting the conditions P=0, K-Kq, K'-Kq', K ''-Ko”  a t /= 0  one can elim inate the  

coefficients A and thus represent P, K, /("and K”  in terms of Ko, Ko', Ko".

Finally, we obtain the Love-Murnaghan formalism for hydrostatic compression with  

strain defined relative to  the unstrained state (or Lagrangian strain):

1
V\ ~3

2
V \ 3

2
V \ 3©

+.

F. Birch established a formalism based on that of Love and Murnaghan, but using 

Eulerian strain e* instead. Eulerian strain is strain relative to the strained state and is

expressed by:

w f - (

du  1 / d u \  

dx  21#%/

2-1

=  1  -  2 e*

dx  2 \ d x j

Hence, following the previous reasoning we have:

^  = (1 -  2e*ri = (1 + 2 r y i

And the Helmholtz free energy as a polynomial series in / *  is:

F  =  B z /'Z  +  B sf*^  +  +  B s /*5  +
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Continuing the reasoning used in the Love-Murnaghan formalism we differentiate F with  

respect to V and find the B constants by using the conditions a t /* = 0 .  Finally we obtain 

the Eulerian finite strain equation of state, commonly referred to  as the Birch- 

Murnaghan equation of state:

3

i W - i W

2
V \~ 3

^0^0  +  (^O — 4 ) (Kg — 3 ) +  — + . .

The formalism above is most often used with truncation to 2"^ order (with K'

constrained to 4) or to 3'̂ '̂  order where the equation is reduced to:

3
P = ~ 2 K ,

The Birch Murnaghan EoS has been widely used by the scientific community for 

over 50 years now and it has become synonymous with "finite strain theory". Flowever

in high-pressure physics many researchers have expressed serious reservations 66-69

about it. The main reason is that the Love-Murnaghan-Birch approach is empirical and is 

justified by its mathematical formalism instead of a physical basis, which would be 

preferable from a physicist's point of view. The convergence of the polynomial 

expansion in strain allows to use the Birch-Murnaghan EoS on a set of data but it cannot 

be extrapolated beyond. Numerous other equations of state (40 at least) have been 

proposed for use by the high-pressure community (when compression deals with the
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GPa range) such as: the Holzapfel EoS/° the natural strain EoS/^ the Rydberg-Vinet 

EoS/^'^^ For now however, the use of the Birch-Murnaghan EoS is so widespread that it 

will probably take a long tim e for a new, better formalism to supplant it.

5.1.2. Birch-Murnaghan Equation of State of TiHz with EDXRD 

First, w e will analyze the results of energy-dispersive synchrotron X-ray 

diffraction experiments and next we will focus on the results of high-resolution angle- 

dispersive synchrotron X-ray diffraction.

Background- and intensity-corrected, high-pressure X-ray diffraction patterns for 

all the EDXRD measurements shown in Figure 14 could be reasonably well fitted . A 

Rietveld full-profile structural refinem ent of the pattern collected in situ, at 2.2 GPa, is 

shown in Figure 18.
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Figure 18. Rietveld full-profile structural refinem ent of the synchrotron X-ray 
diffraction pattern of TiHz collected at 2.2 GPa and room tem perature. The 
refinem ent was carried out using the cubic space group 14/mmm (139). The blue 
and red lines represent experimental and modeled patterns, respectively. The 
grey line at the bottom represents the difference between the observed and the  
refined profile.
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Figure 19. Rietveld full-profile structural refinem ent of the synchrotron X-ray 

diffraction pattern of TiH; collected at 34 GPa and room tem perature. The 

refinem ent was carried out using the cubic space group 14/mmm (139). The blue 

and red lines represent experimental and modeled patterns, respectively. The 

grey line at the bottom represents the difference between the observed and the  

refined profile.

The high-pressure phase of TiHz is fitted well with a tetragonal structure and 

displays preferred orientation in the (O i l )  direction as well as line broadening due to  

non-hydrostatic stresses in the DAC. This lower symmetry structure belongs to the space 

group 14/mmm (139), with the unit cell parameters: a= 3.179(2) Â, c=4.309(4) Â, 

V=43.53(7) and d=3.807 (65) g/cm^(Fig. 19)

The Rietveld refinem ent of the EDXRD diffraction pattern collected at the highest 

pressure of this experim ent, 34 GPa, is shown in Figure 19. The structure is still
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tetragonal, with the unit cell parameters: a -  3 .078(94) Â, c=3.967(12) Â, V=43.53(74) 

and d=3.8070(65) g/cm^. After decompression to am bient pressure, TiHz reverts back to  

its initial cubic structure, but with a slightly smaller unit cell: o=4.400(51) Â, V=88.0(30) 

Â^andc/=3.70(13).

0) 2.90

3  2.85

10 15 20  25 30  35

Pressure (GPa)

Figure 20. The pressure evolution of the unit cell parameters of the tetragonal 

phase of TiHz compressed from 2.2 to 34 GPa, at room tem perature, obtained 

with the energy dispersive X-ray diffraction. Open circles and the left hand y-axis 

refer to the param eter a, while the black squares and the right hand y-axis refer 

to the param eter c.

The demonstrated reversibility of the cubic tetragonal cubic phase 

transition on compression up to 34 GPa can be interpreted in terms of intrinsic high 

flexibility of the crystal lattice of TiHa. Figure 20 shows the evolution of the unit cell
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parameters, of the tetragonal phase of TiH; compressed from 2.2 to  34 GPa, at room  

tem perature obtained with the energy dispersive X-ray diffraction technique. The lattice 

compression is anisotropic, with the c-axis being clearly more compressible than the a- 

axis. The c/a ratio decreases with pressure from 1.35 at 2.2 GPa to  1.29 at 34 GPa

44

43

42

> 40

37

10 15 20 25

Pressure (GPa)
30 35 40

Figure 21. : Unit cell volume of the tetragonal TiH; phase as a function of 

pressure determined from the lattice parameters in the range from 2.2 to  34 

GPa. The calculated decrease in the unit cell volume is about 13%. The solid line 

is the Birch-Murnaghan equation of state fit to the experimental data with  

Ko=146(14) GPa, Ko'=6 ( l ) ,  Vo=43.6 (0.1) Â \

The pressure evolution of the unit cell volume of the tetragonal phase of TiH; on

compression to  34 GPa is plotted in Figure 21. The unit cell volume decreases by about

13% (V/Vo=0.87, where Vq is initial cell volume at 2.2 GPa and V is the volume at 34
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GPa). on compression up to about 34 GPa. By fitting the pressure-volume data with the  

third order Birch Murnaghan (see section 5.1.1.) equation of state:

P = - K .
y V ,

0

y V j

%
-1

we determ ined the bulk modulus Ko, its pressure derivative Kq' and the unit cell volume 

V q at ambient conditions of the tetragonal phase of TiHz. The following parameters were  

obtained from the fit: Ko=146(14) GPa, Kq'=6(1), Vo-43.6 (0.1) (Fig. 21).

5.1.3. Birch-Murnaghan Equation of State of TiH2 w ith ADXRD

The experiments performed with the high-resolution angle-dispersive 

synchrotron X-ray diffraction (ADXRD) technique show that the cubic lattice of TiH2 

undergoes a pressure-induced phase transformation into the lower symmetry structure 

at less than 0.6 GPa. TAs mentioned the 0.6 GPa pressure could also be an upper bound 

for this transition.

A Rietveld full-profile structural refinem ent of the 0.6 GPa pattern is shown in 

Figure 22. The high-pressure phase is fitted well with the tetragonal structure, space 

group 14/mmm (139). The refined unit cell parameters are: a= 3.171(3) Â, c=4.363 (7) Â, 

V = 43 .8 6 (l) and X-ray density d=3.779(9) g/cm^. The crystal lattice of the new  

tetragonal phase can be described as a distorted fluorite-type lattice with one 

crystallographic axis shortened and the tw o other lengthened. In this structure the H 

atoms are still situated in tetrahedral interstitial positions within the basic crystal lattice.
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Figure 22. Rietveld full-profile structural refinem ent of a synchrotron ADXRD 

pattern of TiH2 collected in situ, at 0.6 GPa and am bient tem perature. The 

refinem ent was carried out using the tetragonal space group 14/mmm (139). The 

blue and red lines represent experimental and modeled patterns, respectively. 

The grey line at the bottom represents the difference between the observed and 

the calculated peak profiles. The mismatch in intensities is attributed to the large 

grain size of the sample and the very small x-ray beam size, both of which 

contribute to reduce the statistics.

The results of the Rietveld refinem ent of the diffraction pattern collected at 90 GPa is

shown in (Figure 23). The structure is still tetragonal, with the unit cell parameters: a=

3.00(2) Â, c=3.40(2) Â, V=30.6(4) and X-ray density d=5.42(7) g /c m \

After decompression to am bient pressure, a full profile Rietveld structural

refinem ent showed that TiH2 remains in the tetragonal structure, with: a=3.1526(4) Â,

c=4 .342 (l) Â, V=43.16(2) and d = 3 .84 (l) g/cm^. This unit cell is slightly smaller than
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that of the tetragonal TIH2 obtained by lowering the tem perature instead of increasing 

pressure.

0

6 10 12 14 16 18 20 228 24

2Th Degrees

Figure 23. Rietveld full-profile structural refinem ent of a synchrotron ADXRD 

pattern of TiH 2 collected in situ, at 90 GPa. The refinem ent was carried out using 

the tetragonal space group 14/mmm (139). The blue and red lines represent 

experimental and modeled patterns, respectively. The grey line at the bottom  

represents the difference between the observed and the calculated peak 

profiles.
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Figure 24. The pressure evolution of the unit cell parameters of the tetragonal 

phase of TIH2 compressed from am bient to 90 GPa. Blue circles and the left hand 

y-axis refer to the param eter a, while the black squares and the right hand y-axis 

refer to the param eter c. The data between 0.6 GPa and 21 GPa were collected 

with m ethanol-ethanol as pressure transmitting medium. The data between 10 

GPa and 90 GPa were collected on neat sample. Small differences can be seen 

between the tw o datasets: they are not evidence of additional structural 

rearrangements but are due to the hydrostatic/non-hydrostatic conditions of the  

tw o experiments.

In summary, w hat is im portant here is that - in contrast to our high-pressure, 

synchrotron EDXRD investigations of TiH2 where we observed a reversibility of the cubic 

tetragonal cubic phase transition on decompression from 34 GPa -  the same 

phase transition is found to be irreversible on decompression form 90 GPa. The 

irreversibility on decompression down from 90 GPa could be explained in terms of the
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compression pressure having reached a critical point beyond which the unit cell is so 

distorted that it is energetically more favorable for TiHa to remain in the tetragonal 

structure upon decompression to am bient pressure.

In order to follow the pressure evolution of the unit cell parameters, Rietveld 

full-profile structural refinements w ere performed on all x-ray diffraction patterns 

collected. As shown in (Figure 24) the lattice compression of tetragonal TiFla is 

anisotropic, with the c-axis being clearly more compressible than the a-axis. The c/o  

ratio decreases with pressure from 1.376 at 0.6 GPa to 1.320 at 90 GPa. The pressure 

evolution of the unit cell volume of the tetragonal phase of TiH] is shown in Figure 25. 

Figure 25 clearly demonstrates that there is no large volume discontinuity as TiH] 

undergoes the cubic tetragonal phase transition. The transition is direct, w ithout any 

region where the tw o phases would co-exist. On compression between 0.6 GPa and 90 

GPa the unit cell volume decreases by about 30% (V/Vo=0.697, w here Vq is initial cell 

volume at 0.6 GPa). Using a third order Birch Murnaghan equation of state we 

determ ined the bulk modulus Kq, its pressure derivative Ko' and the unit cell volume Vq 

at am bient conditions of the tetragonal phase of TiH]. The following parameters were  

obtained: Kq=143(7) GPa, Kq'=3.1(1), Vq=44.1 (2) (also see Table 2)
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Figure 25. Unit cell volume of the tetragonal TiH; phase as a function of pressure 

on compression from am bient pressure to 90 GPa. The tw o ADXRD compression 

runs and the decompression run are combined in this plot. Triangles indicate the 

experiments preformed with m ethanol-ethanol as pressure transmitting  

medium, solid circles represent the experim ent carried out w ithout a pressure 

medium and open squares represent the decompression sequence. The star 

indicates cubic TiH; at am bient pressure. The solid line is the Birch-Murnaghan fit 

to all the experimental points with Ko=143(7) GPa, Ko'=3.05(13), Vo=44.1 (2) Â .̂ 

For comparison reasons a second fit was done for all but the 90 GPa point and 

this fit is shown with a dashed line. The inset shows the pressure evolution of the  

density of TiFlz. The decrease in the unit cell volume is about 30% at 90 GPa.
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5.1.4. Bulk Modulus of TIH 2 : a Comparison of EDXRD and ADXRD Data.

X-rays interact with the orbital electrons of an atom causing the emission of 

secondary radiation which becomes the scattered beam. Hence the X-ray scattering 

power of an atom depends upon the number of electrons of an atom. W hile the  

position of metal atoms in metal hydrides is determ ined by X-ray diffraction, the  

position of light atoms such as hydrogen cannot be found. In fact, the intensity of the  

scattered radiation is a function of the square of the scattering amplitude, so the  

contribution of hydrogen atoms in the XRD pattern of a metal hydride is minute 

(~1 /100). M oreover the electron cloud which scatters the X-rays is comparable in size to 

the wavelength of the radiation, so the scattered wavelets em itted by the electrons will 

be out of phase with one another causing partial interference thus making the intensity 

of the scattered radiation less than expected from Z times the single electron intensity.

Since T ih 2 is an interstitial alloy between hydrogen and titanium , and we can 

only observe diffraction lines due to Ti atoms in X-ray diffraction experiments, it is 

reasonable to compare our bulk modulus data with those for pure Ti. Such comparison 

is presented in Table 2. The bulk modulus value of TIH2 is greater than the bulk modulus 

of pure Ti metal. It should be mentioned that interstitial alloys of transition metals 

and hydrogen usually exhibit properties which are unlike those of elem ental metals, 

including crystal structure, mechanical properties, as well as very different electronic 

properties. In the case of T ih 2, the binding energy of Ti is greater than that of Ti in the 

elemental metal w hat could account for the higher value of bulk modulus of the
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hydride found in this experiment. In fact the experimental bulk modulus value found in 

this work for tetragonal TIH2 is greater than the bulk modulus of pure Ti metal (Table 2).

Table 2 Summary of bulk moduli, pressure derivatives and am bient pressure volumes, 

both experimental and theoretical, for TiH2 , Ti and for the super-hard TiÛ 2 for 

comparison.

Compound Experiment/Theory Ko (GPa) Ko' Vo (A')

TiH 2 EDXRD (this work) 146(14) 6 (1 ) 43.6(1)

ADXRD (this work) 143(7) 3.1(1) 44.1(2)

theoretical (this work) 142.6 3.58 -

Ti (hep) theoretical (this work) 1 1 1 3.73 -

theoretical (ref. ^̂ ) 123 - -

experimental (ref. ^̂ ) 117(9) 3.9(4) 10.66(3)

Ti0 2  rutile experimental (ref. ^̂ ) 2 1 0 - -

As a com plem ent to these experimental studies first principle calculations were  

also carried out in order to obtain a theoretical value of the bulk modulus of TiH 2 at 

300 K. The calculations yielded a value of Ko=142.6 GPa which is in very good agreem ent 

with the experimental bulk modulus reported in this study. The computations also 

confirmed that at 0.6 GPa the tetragonal structure of TiH2 is indeed energetically the  

more favorable one, although the difference in energy with the cubic structure is small. 

Table 2 illustrates the comparison of the bulk moduli of TiH2 obtained in the presented
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experiments as well as the theoretical value and values for Ti metal and TiOz for 

comparison.

The difference between the values of Kq' between the ADXRD and EDXRD 

experiments originate from the fact that Bragg reflections of TiH] from the EDXRD 

experiments are much wider, because of the intrinsically lower resolution of the solid 

state detectors used in EDXRD. This in turn renders structural refinements more 

challenging, and increases the uncertainty of the lattice parameters and hence of the  

volume. Also the determ ination of accurate pressures in the DAC is challenging, 

particularly in non-hydrostatic experiments. The DAC is an uniaxial stress device'*^ and 

w ithout a pressure transmitting medium, in the compression experiments, the pressure 

gradients in the DAC are significant. In the presented ADXRD study, gold was used as an 

internal pressure calibrant, and we w ere able to determ ine the actual pressure of the 

portion of the sample being covered by the x-rays, as opposed to reading the pressure 

of a ruby sphere located on the border of the sample chamber. However, in EDXRD 

studies we had used only ruby as a pressure indicator, hence the pressures were  

unavoidably only approximations of the actual pressures in the sample area spanned by 

the minute synchrotron beam. All the above discussed factors contribute to  explain that 

the resulting EDXRD equation of state differs somewhat from that obtained in the 

ADXRD experiments.
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5.2. Phase Transitions

5.2.1. Types of Phase Transitions

Pressure-driven, solid-solid phase transitions are distinguished as reconstructive 

or displacive transitions as well as according to their therm odynam ic order. 

Reconstructive phase transitions involve large structural changes, including breaking 

and forming of bonds. In displacive phase transitions, on the other hand, the positions 

of the atoms change by small amounts and are often accompanied by small strains. 

From the therm odynam ic point of view the order of the phase transition (first or 

second) is determ ined by the order of the derivatives of Gibbs free energy with respect 

to  pressure, which is discontinuous. If the discontinuity appears in the first order 

derivative:

dG

dp
=  V

T

which means that the volume has a discontinuity, then the phase transition is 

thermodynamically first order. If the discontinuity is in the second derivative, which is 

proportional to  the compressibility, then the phase transition is of the second order:

d^G dV
=  —  oc c o m p r e s s ib i l i t y  

dpdp^

There can occur displacive transitions of the first-order with small discontinuities in 

volume. All reconstructive phase transitions are of the first-order. In the case a 

transition is strongly of the first order the kinetic barriers which inhibit the transition 

may be quite large. The transition may then be sluggish, and hysteresis or a larger 

transition pressure range may be observed on compression than that on
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decompression. The thermodynamic equilibrium pressure will be somewhere in 

between those tw o pressures and is often arbitrarily set to the middle point. Hysteresis 

decreases at high tem peratures so the equilibrium pressure may be pinpointed in this 

way.

5.2.2. Titanium Hydride

The pressure evolution of the unit cell volume of TiH] form  am bient pressure up 

to 90 GPa is shown in Figure 25. The lone star marks the am bient pressure point, which 

is the only pressure w here the cubic phase was observed. In the entire experimental 

pressure range, only one pressure-induced phase transition is observed, at 0.6 GPa. It 

should be pointed out that the pressure evolution of the unit cell volume of TiH] for the  

experiments performed with methanol-ethanol to 21 GPa as well as for those 

performed w ithout a pressure transmitting medium up to  90 GPa does not present any 

striking differences. There is no readily apparent volume discontinuity as TiH] undergoes 

the cubic to tetragonal phase transition. Also the transition is direct, w ithout any region 

where the tw o phases would co-exist. Because of the lack of discontinuity in the  

pressure-volume plots for both the EDXRD and ADXRD we believe that the phase 

transition is of the second order. Based on these observations the author believes that 

shear stresses in the DAC do not play a significant role in driving the cubic to tetragonal 

phase transition in TiH]. M oreover the distortion of the am bient pressure, face center 

cubic crystal lattice into a face centered tetragonal lattice (which is a distorted cubic 

structure) with one axis elongated and tw o shortened also points towards a displacive 

phase transition.
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Figure 26. A simplistic model of the non-isomorphic subgroup relation of the  

tetragonal space group 139 (green) to  the cubic space group 225 (red).

Figure 26 explains how to generate the structure of the high-pressure tetragonal 

phase (SG 139, green unit cell in [001]) from the am bient pressure cubic phase (SG 225, 

red unit cell in [001]). Figure 26 provides indirect evidence for the observed phase 

transformation, since SG 139 is a non-isomorphic subgroup of SG 225. Therefore, only 

minor structural rearrangements are needed to synthesize the high-pressure phase. This 

might explain the reversible nature of the phase transformation at lower pressure (34 

GPa) since activation energy is presumably low, but somehow significantly increases 

after decompression from very high pressure (90 GPa). The irreversibility on 

decompression down from 90 GPa could be explained in terms of the compression 

pressure having reached a critical point beyond which the unit cell is so distorted that it 

is energetically more favorable for TiH2 to  remain in the tetragonal structure upon 

decompression to am bient pressure.
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5.2.3. Phase Diagram of T 1H2

Based on the results obtained in this work for both the tem perature and the  

pressure-variable data sets, a tentative phase diagram can be proposed for TiH; (Figure 

27).
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Figure 27. Phase diagram of TiH2 based on experimental results of this work. 

Black squares represent the cubic structure while red circles represent the 

tetragonal structure of TIH 2 .

5.3. ADXRD versus EDXRD

In these high-pressure investigations of TiH2 , the author carried out X-ray 

diffraction experiments in tw o different modes; the angle dispersive mode and the  

energy dispersive mode.

EDXRD uses polychromatic X-rays and a fixed detector angle. In this case the  

Bragg equation may be rewritten as:
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A  =  —  =  Zdfiiiisind

Diffraction patterns are collected at a fixed detector angle and as a function of energy. 

Progress in this technique has been linked with the developm ent of solid state 

germanium detectors. These detectors offer a wide energy range, up to several tens of 

keV. Silicon solid state detectors can be used in the range o f 20-30 keV. Solid state 

detectors offer the advantage of a fast data collection. Disadvantages are an intrinsically 

lower resolution as well as a need for frequent recalibration with fluorescence lines of 

some elements. Fluorescence of the sample being investigated can also appear on the  

diffraction patterns if the absorption edge is in the energy range used for diffractions 

studies and a Ge detector is used. They can be distinguished from  diffraction lines 

because their position is virtually independent of pressure and of the detector angle.

ADXRD uses a monochromatic beam and a two-dimensional detector: flat (or 

cylindrical) imaging-plate detectors or alternatively flat CCD detectors. The collected 

patterns are two-dimensional Debye-Scherrer images (rings), which need to be 

extracted into one-dimensional diffraction patterns in order to be analyzed. The key 

advantage of ADXRD over EDXRD can be substantially better resolution. The limitation  

on resolution for 2D detectors is the pixel size (several tens of microns) but this can be 

improved by increasing the sample to detector distance. Since the Debye-Scherrer 

diffraction cones increase in size with distance, tw o adjacent cones become more 

separated at longer distance. Data from ADXRD are suitable for Rietveld analysis. In 

addition if one uses a pressure standards, its diffraction lines will be better resolved, 

thus allowing for a better determ ination of pressure.
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The superiority of ADXRD as compared to EDXRD can be seen very well in the  

results presented in this work. The reflections due to TiH] are much better resolved with  

ADXRD and have narrower bandwidths. M oreover, the Rietveld refinements of ADXRD 

data are of better quality and with smaller uncertainties. In this work the combination of 

the ADXRD technique with a very large pressure scale (0-90 GPa) allowed the author to  

obtain a superior equation of state for TiHz as compared to  that of EDXRD data.

5.4. Issues: Texture, Pressure-Transmitting Media and Pressure.

5.4.1. Preferred Orientation

The pressure medium serves to transform uniaxial force in the DAC into a quasi­

hydrostatic pressure. Under uniaxial forces nonspherical microcrystallites have a 

tendency to align with their long axes perpendicular to the cell axis. As a result of this 

preferred orientation the intensities of diffraction lines can be considerably modified. 

Texture is a common issue in high-pressure x-ray diffraction measurements of 

powdered samples. Since the force in a DAC is essentially uniaxial, any nonspherical 

crystallites will likely align with their long axis perpendicular to the cell axis. As a 

consequence of the preferred crystallite orientation, the intensities of diffraction lines 

can sometimes be greatly altered (Figure 28). In addition, in the present experiments 

the crystallite size was relatively large as compared to  the beam size which further 

reduced the statistics of the measurem ent as well as contributed to further enhance the  

altered intensities in the diffraction peaks because of preferred orientation effects.

95



Figure 28. ADXRD patterns collected with the image plate detector. Ambient 

pressure, 90 GPa and after decompression, from left to right, respectively. 

Texture due to preferred orientation is clearly visible on the leftmost picture. 

Texturing was eliminated to  some extent by moving over a small sample area 

during collection (center and right).

In the high-pressure experiments carried out by the author preferred orientation  

and/or crystallite size is very apparent (Fig. 28). In the Debye-Scherrer configuration the  

diffraction pattern should consist of uniform rings since the crystallites are randomly 

dispersed in the powdered sample. Instead the rings appear very spotty. An additional 

reason, besides preferred orientation, is the poor statistics due to the fact that in the  

very small sample chamber only a small number of crystallites can be placed. Therefore, 

there is only a small number of crystallites in the path of the X-rays and as they assume 

a preferred orientation under pressure this results in a spotty diffraction pattern. In the  

presented experiments, the image plate statistics was improved by scanning over the  

sample in the vertical and horizontal directions while the patterns w ere being acquired. 

This resulted in a decrease of spottiness of the diffraction rings. Concluding, in the
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presented investigations texture contributes to explain the som ewhat altered intensity 

profiles of the diffraction patterns as they appear in the Rietveld structural refinements.

5.4.2. On Successfully Achieving Extreme Pressures

It has to be pointed out that beyond about 20 GPa high-pressure studies become 

much more difficult to carry out successfully, and exponentially more difficult past ~50 

GPa. W hen pressures of the order of a mega bar are desired, the careful and extrem ely  

precise preparation of the DAC becomes crucial because of the brittleness of diamond. 

This includes the need for achieving a perfect parallelism of the tw o diamond culets, 

which should also have equal coincident diameters, perfect vertical alignment of the  

culets, combined with a specific thickness of the gasket and a circular (as opposed to 

oval) sample chamber. At pressures of the order ~80 GPa, anvil failure is a distinct 

possib ility .^® 'If the sample chamber is not perfectly spherical and diamond parallelism  

is not insured, then as soon as the pressure is applied, the sample chamber will move 

and flow  to  one side, pushed by the diamonds, resulting in gasket rupture followed by 

anvil failure as the tw o diamonds come into sudden contact. If signs of gasket flow  are 

detected (such as change in the shape of sample chamber or loss of pressure indicating 

that the pressure medium escaped) it is usually better to halt the experim ent to  

preserve diamonds.

In a DAC pressure is increased by tightening screws between tw o parts of the cell 

in order to apply load to the washers. Pressure increase in the sample chamber is 

usually not a linear process: it is slow at lower pressure and becoming faster as pressure 

is increased. The experim enter has to decide how much to turn the screws (1 /8 , 1 /16  of
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a turn etc) and turn screws at the same tim e and at an identical rate in order to insure 

that pressure increases as uniformly as possible so that the sample chamber will remain 

stable. At the same tim e, however, turning of the screws becomes more and more 

difficult as pressure increases and greater manual force has to be exerted. In summary, 

at pressures above 30 GPa or so increasing pressure to a desired value becomes 

something between art and exercise in manual skill.

In the presented series of high-pressure experiments, compression of TiH 2 was 

successfully achieved up to 90 GPa with only a minor impact to one of the anvils, and a 

decompression run to  ambient pressure was carried out as well. The advantage of 

carrying out structural studies up to almost a mega bar lies in the fact that the equation  

of state of TiH2 can be determ ined with much more confidence when such an extensive 

pressure range is available for the fit of the equation of state.

5.4.3. The Quest for Hydrostatic Conditions and Measuring Accurate Pressures.

The diamond anvil cell is basically an uniaxial stress device and truly hydrostatic 

conditions are only obtained when the sample is contained within a fluid pressure 

medium. The pressure-transmitting medium serves to transmit a uniform pressure to 

the sample and to  the pressure indicator. A commonly used medium is a 4:1 mixture of 

methanol-ethanol. As long as the medium remains fluid, the pressure conditions will be 

hydrostatic. As pressure increases however all media undergo solidification and the  

stress in the pressure chamber induces strong nonhydrostatic components and some 

inhomogeneity. This can affect the behavior of the studied material and impact the 

diffraction patterns. Known pressure media, such as N2 , He or Ar increase the pressure
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range where conditions remain quasi-hydrostatic.'*®' At am bient tem perature, a 

completely hydrostatic environment cannot be sustained above 13 GPa due to  

solidification and/or stress in all known pressure m edia/^' Recently however it was 

found that solidified helium maintains a good degree of hydrostaticity up to at least 50 

GPa.

The ruby pressure scale, is based on a fluorescence line (Ri) which shifts with 

pressure almost linearly up to 10 GPa, with dp/dA=0.2746 GPa Â-1, and with a small 

deviation at higher pressures, according to the empirical equation :

1 9 0 4
P(GPa) =

B

where 6=7.665 for quasi-hydrostatic conditions and 6=5.0 for non-hydrostatic 

conditions.

W hat is the accuracy in pressure measurements when using the ruby scale? The 

accuracy changes depending on how high-pressure is considered: acceptable accuracy is 

~0.1 GPa up to  ~10 GPa, then between 0.5 and 1 GPa at pressures of a few  tens of GPa. 

The actual accuracy is not only limited by the accuracy of the primary pressure scale but 

also by the spectral resolution of the Ri ruby line. At about 100 GPa the diamond 

fluorescence contributes and also the intensity of the Ri line is reduced which decreases 

the resolution significantly. Also below 1 GPa the sensitivity of the ruby scale is poor. 

According to Holzapfel et o/.®° accounting for all the factors the accuracy of the 

measurement of pressure with the secondary ruby scale is ~1% up to  ~10 GPa and ~3%  

at around 100 GPa.
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Non-hydrostatic stresses do not have to be seen as a weakness, since they can 

also be used in exploring the elastic properties of media. The effect of nonhydrostatic 

stress on the structural stability of high-pressure phases is a relatively unexplored 

f ie ld .N o n -h y d ro s ta tic  conditions can favor some transitions and transition pressures 

can be influenced by the degree of hydrostaticity.

W ith the absence of a pressure transmitting medium, in the compression 

experiments the pressure gradients in the DAC are significant. All components and 

contents of a pressure cell are strained and peaks from a strained sample or pressure 

indicator exhibit line broadening which also depends on tem perature.

W ith the use of gold as an internal pressure calibrant, dispersed within the  

sample, we w ere able to determ ine the actual pressure of that portion of the sample 

which was directly in the path of the X-rays, as opposed to the pressure experienced by 

a ruby microsphere placed more radially outward with respect to the sample. It is 

customary to spread the ruby pressure marker in the sample chamber so that its 

reflections will not contribute to the XRD pattern of the investigated sample, since that 

would make the structural refinem ent more complex. In the EDXRD studies we 

used only ruby as pressure indicator hence the pressures w ere unavoidably only 

approximates of the actual pressures and therefore the resulting equation of state 

differs som ewhat from that obtained in this work.

The accuracy of pressure measurements when using the equation of state of a 

metal depends on how well the reflections corresponding to the metal can be fitted.
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Also, the width of the reflections, which is influenced by non-hydrostaticity in the DAC 

will in turn influence how good a pressure reading can be made.

At the highest pressure achieved in this work, 90 GPa, it is estimated that the 

accuracy in the measurement of pressure is of about ±2 GPa only due to  the non­

hydrostatic conditions of the experiment, which caused considerable line broadening.

5.5. Conclusions

Tem perature-dependent, conventional, angle-dispersive x-ray diffraction studies, 

as well as pressure-dependent, synchrotron radiation-based, energy-dispersive and 

high-resolution angle-dispersive x-ray diffraction studies of TiHz w ere performed. The 

endeavor was to probe the effect of tem perature on one side, and the effect of high- 

pressure compression on the other side, on the compound's structure. The goal was to  

reveal any pressure-induced structural transformations that may occur in the cubic 

lattice of TiHz.

The tem perature evolution of the x-ray diffraction patterns was followed in the 

range from 0°C to 120°C at am bient pressure. A cubic tetragonal phase Jahn-Teller 

phase transition in TiH^ was observed at about 17°C. It was also found that cubic TiH 2 

does not undergo any phase transition up to at least 120°C.

In the first series of high-pressure studies, the structure of TÜ-I2 was followed in 

situ (diamond anvil cell), with EDXRD on compression from am bient pressure up to 34 

GPa and on consecutive decompression. W ith pressure increase to 2.2 GPa a phase 

transition from cubic to tetragonal structure was observed. M oreover, compression
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above 2.2 GPa of the tetragonal phase of TiHz revealed anisotropic lattice compression, 

with the c-axis being more compressible than the o-axis. The pattern of TiHz quenched 

from 34 GPa to am bient conditions indicated that the pressure-induced reconstructive 

modification was completely reversible upon decompression. The structure of the  

pressure-quenched material was identical to that of the initial cubic TiHz, but with a 

slightly smaller unit cell. The pressure-volume data of the tetragonal phase of TiHz were  

analyzed using the third order Birch-Murnaghan equation of state and yielded a zero 

pressure bulk modulus Ko = 146(14) GPa and a pressure derivative of Kc'=6 ( l ) .

In the second series of high-pressure studies, the structure of TiHz was followed  

in situ (diamond anvil cell), w ith high-resolution ADXRD on compression from ambient 

pressure up to 90 GPa and on consecutive decompression. The endeavor was to  

pinpoint the phase transition pressure observed with the low resolution EDXRD 

technique. The goal was also to  probe the effect of high-pressure compression on the  

compound's structure and to study the equation of state of TiHz into the megabar 

region. The cubic (fee) to tetragonal (fct) phase transition was observed at 0.6 GPa in 

quasi-hydrostatic conditions. In analogy to w hat was observed with EDXRD, the lattice 

compression was anisotropic with the c param eter being clearly more compressible 

than the a param eter. The tetragonal structure persisted up to the highest investigated 

pressure, 90 GPa. TiHz quenched from 90 GPa to am bient pressure conditions indicated 

that the pressure-induced, displacive modifications, corresponding to  a phase transition, 

w ere irreversible and upon decompression, the high-pressure tetragonal phase was 

preserved. The pressure-volume data of the tetragonal phase of TiHz analyzed using the
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third order Birch-Murnaghan equation of state, yielded a zero pressure bulk modulus Kq 

= 143 (7) GPa and a pressure derivative of Kq'=3.0 (1), confirmed by first-principle 

calculations which yielded Ko = 142.6 GPa.

There is no readily apparent volume discontinuity as TiH] undergoes the cubic 

tetragonal phase transition. Also the transition is direct, w ithout any region where the 

tw o phases would co-exist. Due to the lack of discontinuity in the pressure-volume data 

for both the EDXRD and ADXRD, it is believed that the observed phase transition is of 

the second order. Based on these arguments the author believes that shear stresses in 

the DAC do not play a significant role in driving the cubic to tetragonal phase transition 

in TiH].

In fact, in order to generate the high-pressure tetragonal phase of TiH; from its 

am bient pressure cubic phase, only minor structural rearrangements are needed, 

because the space group of the tetragonal phase is a non-isomorphic subgroup of the  

space group of the cubic phase. This also contributes to explain the reversible nature of 

the phase transformation on compression to 34 GPa, since the activation energy for this 

transition is presumably low. The irreversibility of the phase transition upon 

decompression down from 90 GPa could be explained in terms of the compression 

pressure having reached a critical point beyond which the unit cell is distorted to such 

extent that it is energetically more favorable for TIH 2 to remain in the tetragonal 

structure.

103



10

11

12

13

14

15

REFERENCES

United States Departnnent of Energy, Office of Basic Energy Sciences DDE 
Hydrogen Program: Science http://www.hydrogen.energy.gov/science.htm l
(2007)
G. Sandrock, A panoramic overview of hydrogen storage alloys from  a gas 
reaction point of view, J. Alloys Compd. 293-295, 877 (1999).
L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications.. 
Nature 414, (2001).
R. J. Hemley, Effects of High Pressure on Molecules, Annual Review of Physical 
Chemistry 51, 763 (2000).
R. J. Hemley and N. Ashcroft, The revealing role of pressure in the condensed 
m atter sciences. Physics Today 51 /8 , 26 (1998).
G. Sandrock, K. Gross, and G. Thomas, Effect of Ti-catalyst content on the  
reversible hydrogen storage properties of the sodium alanates, J. Alloys Compd. 
339, 299 (2002).
P. Wang, X. D. Kang, and H. M . Cheng, Exploration of the Nature of Active Ti 
Species in M etallic Ti-Doped NaAlH<sub>4</sub>, J. Phys. Chem. B 109, 20131
(2005).
A. Borgschulte, R. J. W esterwaal, J. H. Rector, H. Schreuders, B. Dam, and R. 
Griessen, Catalytic activity of noble metals promoting hydrogen uptake. Journal 
of Catalysis 239, 263 (2006 ).
T. Tanaka, M . Keita, and D. E. Azofeifa, Theory of hydrogen absorption in metal 
hydrides, Phys. Rev., B, Condens, M atte r M ater. Phys. 24, (1981).
G. G. Libowitz, The Solid-State Chemistry o f Binary M e ta l Hydrides (W . A. 
Benjamin, Inc., New York, NY, 1965).
W . M . M ueller, J. P. Blackledge, and G. G. Libowitz, M e ta l Hydrides (Academic 
Press, Inc., New York, NY, 1968).
L. Schlapbach ed.. Hydrogen in Interm etallic Compounds (Springer-Verlag, Berlin 
Heidelberg, 1988).
L. N. Padurets, Z. V. Dobrokhotova, and A. L. Shilov, Transformations in titanium  
dihydride phase. Int. J. Hydrog. Energy 2 4 ,1 5 3  (1999).
M . Slaman, B. Dam, M . Pasture!, D. M . Borsa, H. Schreuders, J. H. Rector, and R. 
Griessen, Fiber optic hydrogen detectors containing Mg-based metal hydrides. 
Sensors and Actuators B 123, 538 (2007).
X. Yao, C. W u, A. Du, G. Q. Lu, H. Cheng, S. C. Smith, J. Zou, and Y. He, Mg-Based 
Nanocomposites with High Capacity and Fast Kinetics for Hydrogen Storage, J. 
Phys. Chem. B 110, 11697 (2006).

104

http://www.hydrogen.energy.gov/science.html


16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

G. Sandrock, J. Reilly, J. Graetz, W ei-M in  Zhou, J. Johnson, and J. Wegrzyn, Alkali 
metal hydride doping of a-AlH3 for enhanced H: desorption kinetics, J. Alloys 
Compd. 421, 185 (2006).
D. Kyoi, et al., A new ternary m agnesium -titanium  hydride Mg7TiHx with  
hydrogen desorption properties better than both binary magnesium and 
titanium  hydrides., J. Alloys Compd. 372 213 (2004).
H. Leng, T. Ichikawa, and H. Fujii, Hydrogen storage properties of Li-Mg-N-H  
systems with different ratios of LiH /M g(NH2)(2), J. Phys. Chem. B 110, 12964
(2006).
Z. Lodziana and T. Vegge, Structural stability of complex hydrides: LiBH4 
revisited, Phys. Rev. Lett. 93, 4 (2004).
S. Shi and J.-Y. Hwang, Research frontier on new materials and concepts for 
hydrogen storage, Int. J. Hydrog. Energy 32, 224.
T. Ichikawa, N. Hanada, S. Hino, and H. Fujii, Remarkable im provem ent of 
hydrogen sorption kinetics in magnesium catalyzed with Nb/sub 2 /0 /s u b  5, J. 
Alloys Compd. 420, 46 (2006).
P. Vajeeston, P. Ravindran, B. C. Hauback, H. Fjellvag, A. Kjekshus, S. Furuseth, 
and M . Hanfland, Structural stability and pressure-induced phase transitions in 
MgH /sub 2, Phys. Rev., B, Condens, M a tte r M ater. Phys. 73, 224102 (2006).
L. Zaluski, A. Zaluska, and J. 0 . Strom-Olsen, Nanocrystalline magnesium for 
hydrogen storage J. Alloys Compd. 288, 217 (1999).
T. Yildirim, J. fniguez, and S. Ciraci, Molecular and dissociative adsorption of 
multiple hydrogen molecules on transition metal decorated C60, Phys. Rev., B, 
Condens, M atte r M ater. Phys. 72, 153403 (2005).
R. Strobel, J. Garche, P. T. Moseley, L. Jorissen, and G. W olfd, Review: Hydrogen 
storage by carbon materials. Journal of Power Sources 159, 781 (2006).
J. H. W eaver, D. J. Peterman, D. T. Peterson, and A. Franciosi, Electronic structure 
of metal hydrides. IV. TiH/sub x/, ZrH /sub x/, HfH/sub x/, and the FCC-FCT lattice 
distortion, Phys. Rev. B, Condens. M a tte r 2 3 ,1 6 9 2  (1981).
K. Nobuhara, H. Kasai, W . A. Dino, and H. Nakanishi, H2 dissociative adsorption 
on Mg, Ti, Ni, Pd and La Surfaces, Surface Science 566-568, 703 (2004).
B. Bogdanovic and M . Schwickardi, J. Alloys Compd. 253-254, 1 (1997).
B. Farangis, P. Nachimuthua, T. J. Richardson, J. L. Slack, B. K. M eyer, R. C. C. 
Perera, and M . D. Rubin, Structural and electronic properties of m agnesium -3D  
transition metal switchable mirrors. Solid State Ionics 165 309 (2003).
J. Iniguez, T. Yildirim, T. J. Udovic, M . Sulic, and C. M . Jensen, Structure and 
hydrogen dynamics of pure and Ti-doped sodium alanate, Phys. Rev., B, 
Condens, M atte r M ater. Phys. 70, 60101 (2004).
C. Kittel, Intorduction to Solid State Physics (John W iley & Sons, New York, 1996).
H. Ibach and H. Luth, Solid State Physics (Springer-Verlag Berlin Heidelberg, 
1996).
P. Atkins, Physical Chemistry (Oxford University Press, 1998).
T. Hartmann (private communication).

105



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University 
Press, New York, NY, 2000).
M . R. W ehr, J. A. Richards, and T. W . Adair, Physics o f the Atom  (Addison-Wesley 
Publishing Company, Reading, MA, 1978).
K. Kirschner, Einfuhrung in die Rontgenfeinstrukturanalyse (Veiweg, 
Braunschweig/Wiesbaden, 1987).
K. N. Trueblood, H.-B. Burgi, H. Burzlaff, D. Dunitz, C. M . Gramaccioli, H. H. 
Schulz, U. Shmueli, and S. C. Abrahams, Atomic Displacement Parameter 
Nomenclature: Report of a Subcommittee on Atomic Displacement Parameter 
Nomenclature., Acta Crystallographica A52, 770 (1996).
A. Mujica, A. Rubio, A. Munoz, and R. J. Needs, High-pressure phases of group-IV, 
lll-V, and ll-VI compounds. Reviews of Modern Physics 75, 863 (2003).
W . Paszkowicz, X-Ray Diffraction at the Turn of the Century, (2002).
B. Buras, J. S. Olsen, L. Gerward, G. Will, and E. Hinze, X-ray energy-dispersive 
diffractom etry using synchrotron radiation Journal of Applied Crystallography 10, 
431 (1 9 7 7 ).
E. W igner and H. B. Huntington, J. Chem. Phys., 764 (1935).
A. Jayaraman, Diamond anvil cell and high-pressure physical investigations. 
Reviews of Modern Physics 55, 65 (1983).
J. C. Jamieson, A. W . Lawson, and N. D. Nachtrieb,, Rev. Sci. Instrum. 30, 1016  
(1959).
C. E. W eir, E. R. Lippincott, A. van Valkenburg, and E. N. Bunting, J. Res. Natl. Bur. 
Stand. 63, 55 (1959).
M . I. Eremets, High-Pressure Experimental Methods (Oxford University Press, 
Oxford, 1996).
W . B. Holzapfel, Isaacs N. 5 . ,  High-Pressure Techniques in Chemistry and Physics 
(Oxford University Press, O xford/New  York/Tokyo, 1997).
H. K. Mao, in Simple Molecular Systems a t Very High Density, edited by A. Polian, 
P. Loubeyre and N. Boccara (Plenum, New York, 1989), p. 221.
R. J. Hemley ed., Ultrahigh-Pressure Mineralogy: Physics and Chemistry o f the 
Earth Deep Interior (The Mineralogical Society of America, Washington, DC, 
1998).
G. Margaritondo, Introduction to synchrotron radiation  (Oxford University Press, 
New York, 1988).
U.S. Departm ent of Energy, Office of Science, Office of Basic Energy Sciences, 
National Synchrotron X-ray Research Facility, Advanced Photon Source 
http ://w w w .aps.anl.gov/ (2008)
P. E. Kalita, A. L. Cornelius, K. E. Lipinska-Kalita, C. L. Gobin, and H. P. Liermann, In 
situ Observations of Tem perature- and Pressure-Induced Phase Transitions in 
TiH2: Angle-Dispersive and Synchrotron Energy-Dispersive X-ray Diffraction 
Studies, Journal of Physics and Chemistry of Solids, (to be published).
H. K. M ao, P. M . Bell, J. W . Shaner, and e. al., J. Appl. Phys. 49, 3276 (1978).
W . Kraus and G. Nolze, Powder Cell 2.4 (Federal Institute for Materials Research 
and Testing, 12489, Berlin, Germany.

106

http://www.aps.anl.gov/


55

56

57

58

59

60 

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Bruker-AXS, Topas.
A. Hammersley, F/t2D V12.077 (ESRF, Grenoble, France, 1987-2005).
H. K. Mao, P. M . Bell, J. W . Shaner, and D. J. Steinberg, Specific volume 
measurements of Cu, M o, Pd, and Ag and calibration of the ruby R/sub 1 /  
fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 49, 3276 (1978). 
0 . L. Anderson, D. G. Isaak, and S. Yamamoto, Anharmonicity and the Equation 
of State for Gold, J. Appl. Phys. 65, 1534 (1989).
Bruker-AXS, Topas 3.2 (Bruker, Karlsruhe, Germany, 2006).
Patricia-FIGURE.
A. San-Martin and F. D. Manchester, The H-Ti (hydrogen-titanium) system. 
Bulletin of Alloy Phase Diagrams 8, 30 (1987).
F. D. Murnaghan, The Compressibility of Media Under Extreme Pressures, 
Proceedings of the National Academy of Sciences of the United States 30, 244 
(1944).
F. D. Murnaghan, Finite Deformation o f an Elastic Solid (Wiley, New York, 1951). 
A. E. H. Love, A Treatise on the M athem atical Theory o f Elasticity (Cambridge 
University Press, Cambridge, 1927).
F. D. Stacey, B. J. Brennan, and R. D. Irvine, Finite strain theoried and 
comparisons with seismological d a ta ., Geophysical Surveys 4 ,1 8 9  (1981).
J. Hama and K. Suito, J. Phys.: Condens. M atte r 8, 67 (1996).
A. M . Hofmeister, Geophys. Res. Lett. 20, 635 (1993).
W . B. Holzapfel, Rep. Prog. Phys. 59 29 (1996).
J.-P. Poirier and A. Tarantola, A logarithmic equation of state. Physics of Earth 
and Planetary Interiors 109, 1 (1998).
W . B. Holzapfel, Equations of State for solids under strong compression. High 
Pressure Research 16, 81 (1998).
R. Rydberg, Graphische Darstellung einiger bandenspektroskopischer 
Ergebnisse., Z. Phys. 73, 376 (1932).
P. Vinet, J. Ferrante, J. Smith, and J. Rose, A universal equation of state for solids, 
Phys C: Solid State 19, L467 (1986).
D. Errandonea, Y. Meng, M . Somayazulu, and D. Hausermann, Pressure-induced 
alpha rarr omega transition in titanium  metal: a systematic study of the effects 
of uniaxial stress, Physica B 355, 116 (2005).
Y. Z. Nie and Y. Q. Xie, Ab initio thermodynamics of the hep metals Mg, Ti, and Zr, 
Phys. Rev. B 75, 7 (2007).
E. Francisco, Spinodal equation of state for rutile Ti02, Phys. Rev., B, Condens, 
M atte r M ater. Phys. 67, (2003).
P. E. Kalita, S. V. Sinogelkin, K. E. Lipinska-Kalita, T. Hartmann, X. Ke, C. Chen, and 
A. L. Cornelius, Equation of State of TiH2 up to 90 GPa: a High-Resolution 
Synchrotron X-Ray Diffraction Study., Physical Reviev B, (submitted).
T. S. Duffy, S. Guoyin, D. L. Heinz, S. Jinfu, M . Yanzhang, M . Ho-Kwang, R. J. 
Hemley, and A. K. Singh, Lattice strains in gold and rhenium under 
nonhydrostatic compression to 37 GPa, Phys. Rev. B, Condens. M atte r 60, 15063 
(1999).

107



78

79

80

81

P. Loubeyre, R. LeToullec, D. Hausermann, M . Hanfland, R. J. Hemley, H. K. Mao, 
and L. W . Finger, X-ray diffraction and equation of state of hydrogen at megabar 
pressures. Nature 383, 702 (1996).
K. Takemura, Evaluation of the hydrostaticity of a helium-pressure medium with  
powder x-ray diffraction techniques, J. Appl. Phys. 89, 662 (2001).
W . B. Holzapfel, M . Hartwig, and W . Sievers, Equations of State for Cu, Ag, and 
Au for W ide Ranges in Tem perature and Pressure up to 500 GPa and Above, J. 
Phys. Chem. Ref. Data 30, 515 (2001).
P. E. Kalita, A. L. Cornelius, H. P. Liermann, and W . Yang, in Fifth International 
Conference on Synchrotron Radiation in M aterials Science, SRMS-5, Chicago, II, 
USA, 2006).

108



VITA

Graduate College 
University of Nevada Las Vegas

Patricia E. Kalita

Home Address:
2180 E. W arm  Springs Rd.
Las Vegas, Nevada, 89119

Degrees:
Bachelor of Sciences, Physics, 2005 
University of Nevada Las Vegas

Baccalauréat Scientifique, 1999 
Lycée Louis le Grand, Paris, France

Publications:
P. E. Kalita, S. Sinogeikin, K. Lipinska-Kalita, T. Hartmann, X. Ke, C. Chen and A.

Cornelius: Equation of State of TiHz to 90 GPA, Phys. Rev. B, submitted
(2008)

P. E. Kalita, A. Cornelius, K. Lipinska-Kalita, C. L .Gobin and H. P. Liermann: EDXRD 
investigation of TiH] to 34 GPa, J. Phys. Chem. Solids, submitted (2008)

K. E. Lipinska-Kalita, P. E. Kalita, 0 . A. Hemmers, R. J. Hemley and G. M ariotto ,
Structural Transformations and Equation of State of a Nanocrystalline 
Gallium Oxide in a Vitroceramic Composite: a Synchrotron X-Ray 
Diffraction Study, Phys. Rev. B, submitted (2008)

K. E. Lipinska-Kalita, P. E. Kalita, 0 . A. Hemmers, T. Hartmann: Equation of State 
of Gallium Oxide to  70 GPA: Comparison of Quasihydrosatic and 
Nonhydrostatic Compression, Phys. Rev. B 77, 094123 (2008)

K. E. Lipinska-Kalita, P. E. Kalita, C. Gobin, 0 . A. Hemmers, T. Hartmann, and G.
M ariotto , Stability and equation of state of a nanocrystalline Ga-Ge 
mullite in a vitroceramic composite: A synchrotron x-ray diffraction study, 
Phys. Rev. B 77, 134107 (2008)

K. E. Lipinska-Kalita, 0 . A. Hemmers, P. E. Kalita, G. M ariotto , S. Gramsch, R. J.
Hemley, T. Hartmann: High-Pressure Structural Integrity and Structural 
Transformations of Glass-Derived Nanocomposites: a Review, J. Phys. 
Chem. Solids, 34, 8762 (2008)

P. E. Kalita, A. L. Cornelius, H. P. Liermann, W . Yang, SRMS 5 - Rapid 
Communication, 221 (2006)

K. E. Lipinska-Kalita, P. E. Kalita, D. M . Krol, R. J. Hemley, C. L. Gobin and Y. Ohki: 
Spectroscopic Properties of Cr3+ Ions in Nanocrystalline Glass-Ceramic 
Composites J. Non-Cryst. Solids 352, 524 (2006)

109



K. E. Lipinska-Kalita, M . Pravica, G. M ariotto , P. E. Kalita and Y. Ohki: Core/Shell
Z rT i04 / LiAlSi206 Nanocrystals: a Synchrotron X-Ray Diffraction Study of 
High-Pressure Compression, J. Phys. Chem. Solids, 67, 2072 (2006)

K. E. Lipinska-Kalita, D. M . Krol, R. J. Hemley, P. E. Kalita and Y. Ohki:
Tem perature Effects on Luminescence Properties of Cr3+ Ions in 
Heterophased Oxide Glass Based Nanostructured Media, J. Applied 
Physics 98, 543021 (2005)

K. E. Lipinska-Kalita, G. M ariotto , P. E. Kalita and Y. Ohki: Effects of High Pressure 
on Stability of the Nanocrystalline LiAlSi206 Phase of a Glass-Ceramic 
Composite: a Synchrotron X-Ray Diffraction Study, Physica B: Condensed 
M atte r 3 6 5 ,1 5 5  (2005)

K. E. Lipinska-Kalita, D. M . Krol, R. J. Hemley, G. M ariotto , P. E. Kalita and Y. Ohki: 
Synthesis and Characterization of M etal-Dielectric Composites with  
Copper Nanoparticles Embedded in a Glass Matrix: a M ulti Technique 
Approach, J. Applied Physics 98, 543011 (2005)

K. E. Lipinska-Kalita, S. A. Gramsch, P. E. Kalita and R. J. Hemley: In situ Raman
Scattering Studies of High-Pressure Stability and Transformations in the  
M atrix of a Nanostructured Glass-Ceramic Composite, J. Raman 
Spectroscopy 36, 938 (2005)

Thesis Title: Titanium Hydride up to 90 GPa: Synchrotron X-Ray Diffraction Studies

Thesis Committee:
Chairperson, Prof. A. Cornelius, Ph. D.
Com m ittee M em ber, Prof. M . Nicol, Ph. D.
Com m ittee M em ber, Prof. L. Zane, Ph. D.
Graduate Faculty Representative, Prof. D. Lindle, Ph. D.

110


	Titanium hydride up to 90 GPA: Synchrotron X-ray diffraction studies
	Repository Citation

	ProQuest Dissertations

