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ABSTACT

An Implementation of Active Objects in Java

by

George Oprean

Dr. Jan ‘Matt’ Pedersen, Examination Committee Chair 
Assistant Professor 

University of Nevada, Las Vegas

Aetive objects are a form of multitasking for computer systems. Active objects 

manipulate their own execution thread instead of using the execution thread of the object 

that created them. When a method is invoked on an active object, the call returns 

immediately and the caller continues execution. Thus, active objects can be utilized to 

develop parallel applications.

Active object model can be implemented in a number of different ways: with patterns, 

external libraries or extending the language. The solution proposed by this thesis is to 

implement active objects by extending the Java language with new keywords. We have 

modified Sun’s open-source Java Compiler to accept the added keywords and to translate 

them into regular Java syntax.

An ‘active’ modifier was introduced to mark active objects; active objects can be 

created on remote machines and communication with them is done using RMI; active 

object’s methods can be executed asynchronously and the results obtained later using a 

new ‘waitfor’ statement.

Ill
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CHAPTER 1 

INTRODUCTION

Within the last two decades object oriented programming (OOP) has become 

increasingly popular. Not least because of the introduction of the Java programming 

language by Sun in 1995. One of the basic ideas of object oriented programming is 

encapsulation of method and data; each object holds its own data as well as methods 

operating on the data.

However, objects are passive, that is, when a method is invoked on an object, the 

executing thread is that of the caller. The method is not executed by the object itself. 

Since many different threads of control can hold a reference to an object, many different 

threads can be invoking methods at the same time, possibly leaving the state of the object 

inconsistent. Using the synchronized keyword only provides a fake sense of security [18] 

as a method called from within a synchronized method can call methods in other objects 

that can cause a call back into the original object and modify the internal data.

Another problem with the synchronized keyword is the tendency to overuse it, which 

can easily lead to deadlock. The developer of a class does not know if his class will be 

used in a multi-treaded environment or in a single threaded environment. Just to be on the 

safe side, he might synchronize all the methods. The synchronized methods have a 

performance overhead, resulted from acquiring the lock for the object whose methods are
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invoked. It may happen that the methods are not synehronized and we need to use them 

in a multi-threaded environment. If we do not have access to class code, we have to 

create synchronized wrapper methods.

The heart of the problem is simply that an object is a passive structure that is being 

violated by various threads. If the object itself were in charge of executing its own 

methods in its own thread of control, then such unfortunate action can be avoided. Active 

objects are objects that control their own executing tlrread and do not reuse the thread of 

the object that created them. In order to invoke a method on an active object the object 

will have to accept the method invocation in the form of the parameters as well as the 

name of the method to be executed, and subsequently executing the code of the requested 

method in its own thread of control, thus excluding other threads from touching both its 

data and methods.

If aetive objects can execute methods asynchronously, then the active object 

paradigm can be used for parallel programming. During the time the active object 

executes a method, the caller can perform other computation in parallel.

Active Objects and the Real World

The argument that ‘objects are considered harmful’ has been borrowed from the 

process oriented design community. It is also argued that object oriented design is not a 

good reflection of how interaction between objects take place in the real world (which we 

model when creating software); the problem lies with the passiveness of the objects: If 

you are standing in front of your friend and want to borrow $20 you ask him, and he digs 

into his pocket and hands it to you. You do not ask and then reaeh into his poeket to
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retrieve the money. If that is the case, then why would we model systems this way? In 

standard 0 0 ,  if  you hold a reference to friend, and you wish to invoke the 

borrowMoney () method, then the eall friend.borrowMoney () is exeeuted in 

your own thread of control, not in a separate thread, thus breaking all similarity to the 

way the real world works. Interestingly enough, in OO, invoking a method is often 

referred to as ‘sending a message” (as in message passing, which in distributed 

eomputing means transferring data from one process to another through eommunication). 

This is actually what we want, but not what we do in a system with passive objects.

An active object receives messages (representing the requested method invocation) 

from the caller, performs the computation, and returns the result. An active object is 

comparable to the well known technique of Remote Procedure Call (RPC) or in 0 0  terms 

Remote Method Invocation, which involve transferring method parameters and result 

back and forth between the calling process (client) and the remote object (server).

An active object system can be mimiced, and ultimately is implemented using RMI; 

As a matter of fact, a synchronous active object system can be easily used to implement a 

RMI system without stub generation.

Aetive Objects

In this thesis we implemented both asynchronous and synchronous communication 

with the use of active objects. Active objects are objects that control their own executing 

context and do not reuse the context of the object that created them. This is how passive 

objects work; they reuse the context of the objects that either created them or that invoke
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methods on the object. Active objects run in their own thread, different from the caller’s 

thread.

CallerObject’s thread

CallerObject

datamethod

doSmth

public class PassiveObj { 

private Object data; 

public doSmthO {

public class CallerObject { 

public void method() {

PassiveObj po = new PassiveObjO; 

po.doSmthO;
}

Figure 1: Passive object reuse the caller’s thread.

An active object has its own execution context and can be used to model both 

synchronous and asynchronous communication. All the calls are executed on the active 

object asynchronously and the result of the invocation is obtained sometime in the future. 

The synchronous communication can be implemented by waiting for the result of method 

call right after the invocation. The client blocks immediately after the method invocation, 

thus resulting in a synchronous communication. The active object has a queue of pending 

requests and executes only one request at the time. If more clients have a reference to an 

active object and invoke methods on it, all the invocations are queued in the active object 

and it can decide what request to execute first. The active object schedules the requests 

to be executed based on: the order of arrival, the priority, or even the type of the object
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that invokes a method (for example a system object with max priority can be executed 

before a request from a regular,object with the same priority).

ActiveObject’s
thread

doSmth

data

ao

public class CallerThread {

public void methodO {
ActiveObj ao = new ActiveObjQ;

public class ActiveObj {

private Object data;

private void doSmth() {

CallerObj thread

CallerObj

method

Figure 2: Active object use its own execution thread.

By controlling its execution context, the active object will not ‘be seen’ in an 

inconsistent state, even if more than one object or thread has reference to it and access 

methods simultaneously. When programming using threads the objects that might be 

accessed simultaneously have to be written in a thread safe manner. The common way to 

do this is to use the synchronized keyword, but not even that assures that the object will 

not be seen in an inconsistent state [18]. Another problem is the tendency to overuse the 

synchronized keyword. This can lead to deadlocks because once the execution is inside a 

synchronized method or block (it acquired the lock for that object) then no other object 

can execute a method on the same object, until the lock for the object is released. The 

lock is released when leaving the synchronized block. So the following situation can
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occur. One object acquires a lock and calls a method on another object. But the lock for 

the second object is already acquired and is waiting for the first object lock to be release. 

This is a deadlock. No object can continue executing because they both are waiting for 

each other. Another problem with deadlocks is that they are difficult to discover and can 

very easily be introduced by modifying or adding code. In the example above, if  some 

code is added and the second object does not acquire the lock for the first object, then 

deadlock does not occur. But unfortunately the reverse situation can happen too. The 

code runs perfectly, then we are modifying or refactoring some part of the code and this 

deadlocks the program.

Concurrent calls are resolved by the active object itself and only one method can 

execute at one time. Thus the object can not be seen in an inconsistent state. The active 

object paradigm is an alternative to doing parallel programming and can be extended to 

work in a distributed environment. Unfortunately, deadlocks can also occur with active 

objects.

Asynchronous Active Objects

As previously stated, our active object system can be used to implement any RMI 

system; no stub generation is needed as the system uses reflection and a general server 

manager to accept requests to create remote objects on remote machines. Though RMI 

does provide a way to improve execution time by executing code on machines that are 

perhaps better suited for a specific part of the computation task, it is not considered a 

typical technique for parallel computation; recall, a remote method invocation is, as a
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local method invocation, executed synchronously. This means that the caller blocks until 

the remote method invocation returns.

A well known technique for parallelizing computations is using message passing; the 

program is decomposed into a number of processes whose only way to synchronize is 

through communication using message passing. Messages must be explicitly sent and 

received. This can be done both synchronously and asynchronously.

The idea behind our asynchronous active objects is based on a merger between RMI 

and asynchronous message passing. An active object is placed on a remote machine when 

it is created. Any method invocation is done (automatically) though RMI (using a general 

client/server system and reflection), but such calls can be declared to be asynchronous. 

This means that the caller does not block and wait until the result of the method 

invocation is returned, but can continue executing immediately after. When the return 

value is needed, a new waitfor statement is executed. If the value had arrived before 

this statement is executed, the statement does not have any effect (will not block the 

caller’s thread); if the return value is not yet present, the statement will pause the 

execution until the value is available.

This enables us to write parallel code that uses asynchronous active objects to achieve 

a speed up by using multiple processors. In a later chapter we will show an 

implementation of the Mandelbrot set computation using asynchronous active objects.

The organization of the following chapters is as follows. Chapter 2 presents other 

approaches to implement active objects and how these systems are different from or 

similar to our system. Chapter 3 gives a brief description of our system, the new 

keywords that were added, and the restriction on using them. The details of our system
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are presented in Chapter 4, including how the compiler was modified to accept the new 

key words/syntax and how objects interact with each other to implement the active object 

paradigm. In the following chapters some examples of using our system are given, the 

results obtained are presented and conclusions are drawn. The last chapter presents the 

possibilities of extending or improving our system.
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CHAPTER 2 

RELATED WORK

The first time the concept of active object (actor) was presented was in to 1973 in 

Hewitt’s actor model [6]. In his model the actor was the central entity that executes its 

actions: communicates with other actors, creates actors and changes its behavior. The 

location of the actors can be distributed and they can execute actions in parallel. This 

actor (active object) model suits perfectly for creating distributed and parallel 

applications. Even though concurrent application can be developed using this model, 

other models of programming were more popular: procedural programming or Object 

Oriented (0 0 )  programming. One reason is that during the late 80’s and early 90’s 

distributed or parallel programs were not a priority. It was enough if a program was 

running and gave the correct result. Memory space was much more important than 

execution time. Processor speed grew slower than memory space, so execution time 

became the priority. Execution time could sometime be reduced if the application were 

run on multiple computers/processors. The parallelism model offered by the procedural 

or 0 0  model was not as powerful as the actor model, so a number of ways to integrate 

active objects into the OO languages have been proposed. Not only that, the active 

objects model supports concurrency, but it also can be used to develop distributed 

applications.
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Remote Procedure Call 

Distributed applications involve a high level of complexity: heterogeneous platforms, 

various network protocols, synchronous or asynchronous communication. One of the 

earliest approaches that tried to reduce this complexity was the Remote Procedure Call 

(RPC) [9]. RPC is a paradigm that implements the client/server model for distributed 

computing. The client makes a call to a remote object and then blocks while waiting for 

the response. The client resumes the execution when it gets the response from the server. 

The idea behind RPC is that local calls and remote calls should look the same to the 

programmer and thus he does not know if the server and the client are in the same 

address space or are distributed on different machines. The same principle has to hold for 

active and passive objects, that is, the calls should look the same to the programmer no 

matter where the objects are situated, local or remote.

Java Remote Method Invocation 

Remote Method Invocation (RMI) [10] is the same as RPC for the Object Oriented 

world. There is no need to create a socket in order to communicate with a remote object 

when using RMI. All the details of communication are resolved by the RMI system. The 

location of an object is invisible to the programmer, so he interacts with remote objects 

just like with regular objects, by sending messages to them. The server (remote object) 

has methods that can be called remotely and these methods are defined in a remote 

interface. The remote class implements the remote interface and then an instance of the 

remote class is put into a registry, from where all the potential clients can access this 

instance. Using these remote methods is done just like a regular (local) object: the

10
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operator is used to access the methods. After compilation a stub and a skeleton is created. 

The stub is located on the client side and acts as a proxy for the remote object and the 

skeleton on the server. When a client calls a method on the remote object the invocation 

is sent to the stub which is responsible for marshaling the parameters. The skeleton 

unmarshals the parameters and sends the invocation to the actual remote object. Then the 

process is reversed: remote object-^ skeleton-^stub-^client and the client obtains the 

return value of the invocation. The client does not have any knowledge of the location of 

the object, as all the communication between stub and skeleton happens behind the 

scenes.

Both RPC and RMI are synchronous client/server models. The client has to wait for 

the response from the server before it can continue executing the rest of the program. 

Some applications can be improved and better performance can be obtained if we can 

take advantage of asynchronous communication and utilize the ‘waiting time’ when the 

client is blocked until the result from the server arrives. During this ‘waiting time’, the 

client can perform other operations that do not involve using the return value from the 

remote invocation. Unfortunately, there is (normally) no support for asynclironous 

communication with RPC or RMI. If we consider a real world example, when somebody 

wants to prepare breakfast for his/her family and realizes that s/he does not have milk for 

the cereal, s/he can ask somebody (remote object) to get some cereal (result of the 

method call) from the store. During the time s/he gets the cereal (waiting for the result), 

s/he does not just wait and do nothing (this is what happens with synchronous 

communication). It is much more efficient to do some other activities related to preparing 

breakfast that has nothing to do with cereal: get the milk from the refrigerator, get the

11
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cereal bowls from the cabinets, set the spoons on the table and maybe pour orange juice 

in some glasses. Once s/he gets the cereal, breakfast can be served.

Message Passing Interface 

In this thesis we implemented an active object paradigm having as a model the 

message passing model. Objects located on different machines communicate by 

exchanging messages. A well known implementation of the message passing model is the 

Message Passing Interface (MPI). MPI is a standard library used for developing parallel 

and distributed software by allowing processes to communicate with each other through 

message passing [11]. A process is started on each machine the program runs on. Before 

the processes start interacting with other processes though the MPI routines, the MPI 

environment has to be set up by calling the m p ijn it routine. Also each process has to call 

mpiJïnalîze before it exits. This call cleans up all MPI state. MPI allows both 

synchronous and asynchronous communication and lets the programmer decide the type 

of interaction appropriate for each part of his code. If the programmer uses an 

asynchronous call, the execution continues immediately without waiting for the result. 

When he wants to use the return value of an asynchronous call, he has to stop and wait 

for the result. The program resumes once the asynchronous method is finished and the 

caller has the result of the invocation.

Many similarities exist between MPI and the way we implemented the active object 

paradigm, even though we did not implement it as a separate library, but by extending the ' 

language:

12
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• There is an initialization routine that has to be run on each processor/machine 

before running the code.

• Both asynchronous and synchronous communication is possible and the 

programmer decides the type of interaction.

• Blocking the program until an asynchronous call {send or receive in MPI) 

finishes the execution.

Active Object Implementations 

A number of different implementations of the active object paradigm exist:

• Employing patterns, Active Object pattern or Proxy Pattern.

• Extending the language by adding new keywords.

• Using external libraries.

We will briefly introduce some of these in this section.

Employing Patterns

Active Object pattern can be used to simulate active objects. This pattern decouples 

method execution from the method invocation to enhance concurrency. An example of 

how this pattern can be implemented is by using concepts/classes like Proxy, Scheduler, 

Servant or Activation Queue [ 1 ] :

• Proxy represents the public interface of the active object (the methods available 

for other objects to call).

• Scheduler runs in a different thread than the client’s, receives the calls, and 

manages a queue of requests deciding the order that the requests will be executed.

• Activation Queue stores the actual requests created by the Proxy.

13
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• Servant represents the active object whose methods are available to the clients 

through the Proxy.

• MethodRequest objects are used to pass the context information ahout an 

invocation (parameters, method name). For every invocation of an active method, 

the Proxy creates a MethodRequest and sends it to the Scheduler to queue it.

• Future object used for allowing the clients to get the result of a method call after 

the Servant has finished executing the method.

There are some variants that reduce the number of components that have to be 

implemented; one variant is to integrate the role of the Proxy and of the Scheduler in just 

one component; another variant is to use message passing where the Proxy and the 

Servant are removed and the client exchanges messages directly with the Scheduler. In 

order to use active objects through this pattern, one has to first understand how all these 

components communicate with each other, and then to implement them. The programmer 

does not only have to concentrate on implementing the actual active object but also to 

code the components that are dealing with the interaction between the client and the 

server.

Another possibility of implementing active objects is through Java Dynamic Proxies 

[2]. While reflection allows the programmer to generate method calls at runtime, dynamic 

proxies facilitate the creation of an interface implementation at runtime. The dynamic 

proxies work by passing a callback object that will get invoked for any methods of that 

interface. In order to using this pattern, the programmer is not exposed to, or does not 

have to program all the details of client-server interaction. Moreover, there are fewer 

classes to be created than for the Active Object pattern. Understanding a simple example

14
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implemented with this pattern might take the programmer a fair amount of time. There 

has to be a more simple way to implementing active objects, because the concept itself is 

pretty straight forward: call an object asynchronously or synchronously, and at some 

point get the result back.

Extending the Language

One attempt to simplify the process of creating and using active objects for the 

programmer was made by Claude Petitpierre [3], by trying to integrate in the Java 

language new keywords and new syntax. He modified the Java language to integrate 

synchronous interaction with active objects. An active object contains a thread that is 

started when the object is created. Then any calls to a synchronous active object A, will 

have to block until A is ready to accept a call.

public active class A { public active class B {

public void methodQ { public void run() {

} A == new A();

public void run() { a.metliod();

accept method; )

}
i

}

Figure 3: Two classes implemented using the Petitpierre’s extended Java language.

This approach uses the MPI model of sending and receiving synchronous messages. 

In the MPI model, two processes communicate by exchanging messages. The source of 

the message calls a send routine, and the receiver process calls a receive routine. If the 

communication is synchronous, the source process is blocked until the receiver process

15
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gets to the receive routine. Similar if the receiver process gets to the receive statement, 

before the source process actually sent the message, the receiver blocks. In Figure 3, 

when A gets to the accept statement, it is blocked until object B gets to call the method on 

object A. Likewise the method call on A in class B will block until object A gets to the 

rendezvous, that is to the accept statement.

Four keywords are added to the Java language: active, accept, select and 

waituntil. The active keyword is a modifier indicating an active class. The 

accept statement is used for synchronization, similar to a receive routine in MPI. The 

select statement is similar to the switch statement and gives the object the possibility 

of preparing several calls in parallel as the object does not know what event will occur 

first.

public active class A { 
public void doSmth() { 
}...

public void run() {

select( 
case

accept doSmlhO; // accepts a call to doSmthQ method 
doSomethingl; 

case
b.otherMethodO; //issues a call in another object. ’ITie call has to be accepted. 
doSomethingl; 

case
waituntil(2000);
doSomething3

}

Figure 4: An example of select statement.

In this example, what ever event occurs first only the corresponding case will be 

executed and the other case statements will be dropped. Object A prepared both an

16
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acceptance to its doSmth () method(first case) and a call to another object (second 

case). Remember that for a call in an active object to be executed it has to be accepted in 

that active object. The call and the acceptance have to reach the rendezvous point before 

they can continue with execution. In this example, either the accept statement (first case) 

or the method call (second call) can reach the rendezvous point. Which ever reaches the 

rendezvous point first, the case corresponding to that event will be executed. If none of 

the two statements get to the rendezvous point in two seconds then the third case will be 

executed.

An issue with this approach is that by the time A gets to the select statement, both first 

and second case have their rendezvous partners ready and waiting. An object called the 

doSmth ( ) method on A and now is waiting for the acceptance. Similar a B object 

executes the acceptance statement of its otherMethod (similar to receive in MPI) and 

now waits for another object to initiate this call (to execute a send routine in MPI). At 

this moment A can execute any of the first two cases. The selection decision is done 

randomly and this can lead to a nondeterministic behavior of the program.

When two objects get to the rendezvous point, that is one object invoked a method 

(similar to executing a send routine in MPI) and the object accepted the method (similar 

to executing a receive routine in MPI), the method invoked will be executed in the thread 

of the caller object. The method should be executed in the thread of the called object and 

only the result should be returned to the caller. Active object should execute the methods 

in their own execution context or thread and not in the thiead of other objects, even if 

these objects are active too.
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Java is not the only object oriented language to integrate active objects. Methods for 

expressing active objects have been developed for C++ by adding new keywords [2], 

When defining a class, the active keyword is used to flag the active objects. This 

keyword can not only used in the class definition, but also in the inheritance definition. 

For example, if class A is a regular passive class, and it is extended by the active class B, 

using the active keyword in front of class A transforms it to an active class: 

active class B : active public A { //declaration of class B }

Another keyword introduced is passive, used when an instance of an active class 

is to be utilized in a regular a conventional manner. For example, 

passive B obj_passive; 

where B is an active class, will invoke methods on ob j_passive in the caller thread. 

The implementation of active objects has a transaction service to maintain the atomicity 

of client’s invoking sequence. If a client declares a transaction for an active object, all the 

calls to that active object will be blocked until the transaction is over. The 

communication between objects is done both asynchronously and synchronously 

depending on the return type of the invoked method. The getter methods (methods that 

return data members) execute synchronously and invocations without a return value 

execute asynchronously. Invocations with return values are replaced with methods 

without return value at compile time and private data members are inserted to store the 

return value; methods to access this data (getters) are also generated.

Using External Libraries

The French National Institute for Research in Computer Science and Control has 

created a library (ProActive) for active objects [4] that can be integrated with the Java
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language (similar with the MPI library for C and Fortran). ProActive is a GRID 

middleware Java libraiy for parallel, concurrent and distributed computing. The 

programmers simply write Java code and no modifications are needed to the JVM or to 

the compiler. There are two ways of creating an active object:

ProActiveObject.newActivelnParallel(..);

ProActiveObject.newActive(..); 

as well as the possibility of transforming a regular passive object into an active one with:

ProActiveObj ect.turnActive(..);

Object type, passive or active, or object location, local or remote, are transparent to 

the programmer. When an asynchronous method is invoked, the call returns immediately 

and a future object is returned. Ihe future object is used as a placeholder for the real 

return object. When a method is invoked on the future object and the return value is not 

available, the call blocks until it becomes available.

There are several restrictions when using the ProActive library:

• No final methods can be used in active objects.

• Final classes cannot be used to instantiate active object.

• There is the possibility of turning a regular object into an active one, but the 

programmer has to make sure that there are no other references to that object, 

because when other references are used for calling methods directly on the 

passive object, the model becomes inconsistent.

• The syntax of creating an active object is cumbersome and is different than the 

syntax for creating regular passive objects (the new keyword is not used for 

creating an active object).
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• The programmer cannot control whether the calls are synchronous or

asynchronous. The system tries to invoke all the methods asynchronously and

whether a method can be invoked asynchronously is determined by the type of the 

caller or by the returning type.

• The use of future objects (that is the placeholders for the actual return objects in

case of an asynchronous call) has drawbacks in the ProActive model; for

example, not allowing the programmer to override functions like: hashCode or 

equals. Also trying to print a future object for debugging purposes using toString 

method can lead to a deadlock.

From Objects to Actors 

Several active object models have been proposed; the first was Hewitt’s actor model 

[6]. Later a mathematical definition for the behavior of an actor system was presented [7 j. 

This model adopts the theory that everything is an actor, just like the Object Oriented 

paradigm considers everything an object. An actor is a computational agent that executes 

its own actions: initiate communication with other actors, create more actors and specify 

the replacement behavior. There is no ordering sequence of these actions and they can 

happen in parallel. Each actor has a mail address (target) that is used for specifying the 

destination of a message. Actors exchange messages which are stored by the system in 

buffers until they can be delivered to the target. The actor that sent the message can 

continue his actions immediately, without waiting a notification that the message was 

received. Thus, the interaction between actors is asynchronously.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



All these characteristics from the actor system make a good concurrency model that 

can be extended to open distributed systems. The actor model is an improvement to the 

object oriented model and better suited for the development of next-generation 

distributed systems [8]. Object oriented languages, such as Java, should use objects as a 

unit of concurrency, just like actors are the unit of concurrency in the actor model. In 

Java concurrency is realized by using threads and only the low-level synchronized 

keyword is available for protecting a shared resource to be access simultaneously by 

multiple threads. Even lockes and mutexes must be implemented this way. When 

implementing an object the programmer does not know the context in which the object 

will be used, so the general tendency is to use the synchronized keyword for safe access 

to objects methods. This overuse of synchronized can easily lead to deadlocks. The actor 

model utilizes synchronizers, which are a linguistic abstraction that define the 

synchronization constraints over actors. The synchronizers allow the specification of a 

message patterns which are associated with rules to enable or disable methods on an 

actor. Synchronizer can be applied to a single actor or to a collection of actors and 

because they are not embedded in method definition they can be reused on different 

actors. Figure 5 shows a synchronizer applied to two managers, adml and adm2 that 

distribute resources to clients and there is a maximum limit of resources that can be 

allocated by both managers.
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Allocation Policy(adml ,adm2, max) {
in i t  p rev  =  0;

prev >= m ax diables (a d m l.request and adm 2.request), 
(a d m l.request xor adm 2.request) updates prev : - prev +  1, 
(a d m l.release xor  adm 2.release) updates prev: =  p r e v -1,

Figure 5: A synchronizer for allocation of resources.

When the maximum number of resources have been allocated the request method of 

both adml and adm2 objects have been disable. Otherwise, the resource is allocated and 

the number of resources already used is increased. Similarly, when a resource is released 

the total number of resources allocated is decreased.

Object Oriented languages allow only synchronous method invocations. Threads can 

be used to simulate asynchronous interaction but this requires the programmer to 

explicitly code this interaction since no support is offered by the language. In the actor 

model all the communication is done asynchronously by passing messages that are 

handled in a serialized fashion by a master thread:

al: messagel(args) 02:message2;

Actor al sends an asynchronous message to a2 and then resumes execution. Actor 

a2 will reply to al with another message, message2. Actors are thus a natural unit of 

concurrency and synchronization. In our active object system an object sends an 

asynchronous message (invokes a method) to an active object. The active object replies 

with a message (the return value) only if the method invoked does not return void. Our 

system also allows synchronous communication with the active objects. The activities 

executed by the active objects are similar to the activities of an actor: interact with other
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objects by exchanging messages, creating other objects and define a behavior (attributes 

of an object define the state and the methods define the behavior).

Our active object system implements the actor model, where messages are 

exchanged asynchronously. We chose to implement the system by extending the Java 

language with four new keywords: active, async, on and waitfor. The first 

keyword was also added by Petitpierre to his active object system. The active keyword 

can appear only in the class definition and marks all instances of that class as being active 

objects. Unlike other active object system, an active instance cannot be turn into a passive 

one or a passive object can not become active. The waitfor keyword is used as a 

barrier synchronization, where the caller thread has to wait for the result of the 

asynchronous invocation (Petitpierre uses the accept keyword for synchronization). 

The on keyword is used to extend the conventional creation of objects and not by calling 

a method that returns an active object (the Proactive way to create active instances). 

Once an active object is created, it can accept method invocations either from other active 

or passive objects. The communication between objects is realized through RMI and can 

be synchronous or asynchronous (async keyword makes an invocation asynchronous).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

ASYNCHRONOUS ACTIVE OBJCTES IN JAVA

We have implemented our asynchronous active object system in Java for a number of 

reasons:

• The language is already object oriented as we wanted to develop an active object 

system that would fit the Object Oriented model (for non-object oriented 

languages MPI can be used).

• It supports reflection. In order to create an object on another machine, we are only 

sending the name of the class and the constructor arguments to the host machine, 

and reflection is used to create the object.

• It has RMI built in. We are using RMI as the communication layer between 

objects situated on different machines. Of course at least one of the objects that 

participate in the interaction has to be active, otherwise all the communication 

happens locally and RMI is not needed. Also if a class definition is not available 

on the local machine RMI can dynamically download it.

• The Java compiler is available as open-source. Our implementation relies on 

extending the language by adding new keywords and modifying some o f the 

syntax. Instead of creating the system for a subset of the Java language, since we 

then had to build a compiler from scratch, we used Sun’s open-source Java
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compiler and adapted it to parse the new syntax and generate the appropriate 

code.

• Autoboxing is done implicitly from Java version 1.5 (Sun’s made its JDK 1.6 

open source and we modified the compiler Ifom that JDK [14]). One restriction 

with RMI is that the objects that are passed, either as an argument or as a return 

value, have to be serializable. This constraint eliminates the possibility of using 

primitive types with RMI. This is where autoboxing comes in handy. It transforms 

a primitive into its corresponding wrapper class (e.g. int to Integer).

• It is platform independent. Besides the parallelism obtained with the use of active 

object we also wanted our system to be distributed and to work on heterogeneous 

architectures without having to modify the application. Java supports this 

independency.

We define an asynchronous active Java object as an object that has the 

following characteristics:

• It must be active, that is, execute the methods in its own thread.

• It must be possible to place an active object on any machine reachable on the 

network that supports the Secure Shell (SSH) network protocol [12] and the Java 

Runtime Environment (JRE) [13]. The location of an active object is established 

when the object is created and its location can not be changed in time, so no 

mobility for the active objects. Although active objects can be passed as a 

parameter, that does not imply migrating the active object on another host. The 

active object stays on the machine where it was created and only a reference to it 

is sent as a parameter.
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• Method invocation can be synchronous or asynchronous. Regular objects 

(passive) have all their methods executed synchronously, while an active object’s 

functionality can be called either synchronously or asynchronously .

• A way to obtain the result of an asynchronous invocation must exist. When an 

active object method is called asynchronously and the method returns a value that 

is later used, the caller object/thread continues its execution immediately without 

waiting for the result. At some point, the caller’s thread has to wait for the result 

of that call before it can execute the rest of the code.

New Java Keywords

In Chapter 2 we presented several approaches to designing an active object system: 

implementing patterns, external libraries or extending the language. We developed our 

active object system by adding new keywords to Java 1.6, and then modifying the Java 

compiler to parse and compile them. This addition consists of 4 new 

keywords/constructs :

• A new modifier active, which can only be placed on a class declaration. A 

class that contains the active keyword in its list of modifiers is called an active 

class. All instances of an active class are active objects.

• An extended object creation expression:

new A c tiv e O b jO  on "m ach in e_ n am e"; 

which creates an active object instance of type ActiveObj on machine 

machine_name. This new syntax can be used only with active classes. The on
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keyword can be omitted, but then the machine___name has to be omitted to. In 

this case the active object will be created on the current machine or localhost.

• An extended method invocation expression :

activeObj.method(args) async;

The async keyword makes the method invocation asynchronous, that is, the 

control returns immediately. For safety reasons an asynchronous method 

invocation may only appear on the right hand side of an assignment, or as an 

expression statement (i.e., where there is no return value, or where the return 

value is ignored). Methods of an active object can be invoked either 

asynchronously or synchronously. If the async keyword is missing, then the 

method will be executed synchronously and the caller’s thread blocks until the 

invocation returns. The method will be executed asynchronously and a waitfor 

statement is added immediately after the invocation to get the result, thus 

obtaining a synchronous communication. The caller can continue execution only 

after he receives the result. This call will still be different than a regular, passive 

object method invocation, as the execution of the method happens in the active 

object thread and not the caller thread.

• A new blocking waitfor statement:

waitfor activeObj variable;

An asynchronous invocation on activeObj has been performed and now the 

result of this call has to be obtained. The waitfor statement causes the 

execution of the thread to be temporarily suspended until the asynchronous 

method invocation on activeObj has returned a value into the variable. If the
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method returns a value that is used later in the code, the thread must ensure that 

the return value is available. If this value is ready (the asynchronous invocation 

has finished) when the caller’s code reaches the waitfor statement, then the 

variable will be assigned this value. Otherwise the thread will suspend its 

execution until the return value is available. If the method returns void, the 

waitfor is not necessary since no result is returned. If the method is invoked 

synchronously, the waif or is added by the compiler immediately after the call. 

A synchronous call is translated to an asynchronous call, immediately followed by 

a waitfor statement.

Restrictions of Using the New Keywords/Constructs

Our design of the active object system restricts the usage of the new keywords or 

constructs. This section will list these restrictions and gives a brief description on why the 

restrictions were imposed.

• The active modifier can only be used in class definition. Though a modifier, it 

can not appear in method, attribute or interface definition.

• The extended object creation expression can only be used when creating an active 

object. Passive objects use the regular syntax of creation, thus the following is not 

allowed:

passive = new PassiveObject() on "machinel";

All passive objects are created on the local machine, so no specification of the 

location is therefore needed.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The keyword async can only be used after a method invocation and the object 

that the method is invoked on must be an active object. If method calls are 

chained one after another in the same statement and the async keyword follows, 

this only applies to the last method call;

obj.foo().bar() async;

The obj instance has a foo method that returns an active object and on that 

object the bar method is invoked asynchronously. The foo method on obj 

executes synchronously as obj is a regular passive object.

Both the extended creation and the asynchronous method invocation can only 

appear on the left hand side of an expression and can not be passed as a 

parameter. The code will not compile and the compiler crashes. The following 

statement should be avoided:

obj .methodl (activeObj . foo ( ) async); (1)

The foo method of the instance activeObj is called asynchronously and 

returns a value that is passed as a parameter to methodl. But since the foo 

method is invoked asynchronously, the result is not available at that moment. So, 

we are trying to call a method with a parameter that will be obtained sometime in 

the future. The statement can be rewritten as follows: 

activeObj.foo() async; 

waitfor activeObj varName; 

obj.methodl(varName);

When invoking an asynchronous method the caller’s thread will continue 

executing without waiting for the call to finish. If the method invoked returns a
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value, it is obtained through waitfor statement and assigned to an instance 

variable. So, when using asynchronous calls, the compiler enforces the 

programmer not to assign the return value using the ' = ' operator. The following 

statement will cause the compiler to throw an error message: 

value = activeObj. f o o () async; 

and should be replaced by:

activeObj.foo() async; 

waitfor activeObj value;

• The exact opposite happens when the method is invoked synchronously. The 

compiler enforces the programmer to have the return value assign to a variable 

using the operator:

value = activeObj.foo0 ;

Recall that if the async keyword is not used, the invocation is executed 

synchronously, even on active objects. These restrictions are enforced by the 

compiler and the code will not compile.

• Waiting for the results of asynchronous invocation on an instance is done in the 

same order as the invocations occur:

activeObj.foo() async; 

activeObj.bar() async; 

waitfor activeObj valuel; 

waitfor activeObj value2;
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valuel will have the return value of foo and value2 will have the result of 

executing bar method and if the two types are not compatible a 

ClassCastException will be tlii'own during runtime (more on this in Chapter 4).

• Passing the value null as the argument of a method (or constructor) of an active 

object is not allowed. This restriction is the cost of using reflection when invoking 

a method on an active object (more on this in Chapter 4). When reflection is used 

to create an object, the class name and the arguments are needed and the 

constructor is determined based on the type of the arguments. But since null does 

not have a type, passing it as a parameter is not allowed. The same principle 

applies when passing null as a parameter of a method. If the following methods 

are part of an active object:

public String foo (String s) {....} 

public Integer foo (Integer s) {...} 

and we invoke:

activeObj.foo(null); 

there will be ambiguity in which method to call.

These restrictions are the cost of having a concurrency model build in the language. 

The Java language followed the threading approach to build parallel applications. When 

the programmer wants to create a concurrent application he has to create threads and each 

thread executes a task. The communication between threads and the access to shared 

resources can easily lead to deadlocks. These deadlocks are really hard to find and a 

simple code refactoring can create one. We tried to adjust the Object Oriented model to 

another model that is more appropriate to develop parallel and distributed applications.
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the actor model. We saw in Chapter 2, that even the approach of creating a library to 

extend the passive object model of Java to an active object model, enforced a lot of 

restrictions. Simply by adding another modifier to the class definition, active, and all 

the instances of that class can execute methods in parallel with other objects, either 

passive or active. Extending the creation expression of an active object by specifying the 

machine where the object will be located makes developing distributed application easier.
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CHAPTER 4

IMPLEMENTATION

In this chapter we are going to present the details of our system and how we have 

implemented the active objects. The chapter is organized as follows: a general overview 

of the design is presented in the first section, and then the object/class that handles the 

communication on the client and server side will be detailed. The last part of the chapter 

shows the modifications to the Sun’s Java compiler to accept the new keywords/concepts.

Design Overview

In the actor model, communication between actors is done by exchanging messages. 

This is also true in the object oriented model where an object sends a message to another 

object by invoking a method on the object (a method invocation is sometimes said to be a 

message being passed). The major difference is that in the 0 0  model the communication 

happens synchronously. We wanted to implement active objects in Java so we followed 

the actor model: interaction between objects is done by sending messages and can be 

either synchronous or asynchronous, the active object executes the methods in its own 

thread and has a queue of pending messages that must be processed.

The program runs only on one machine and the code can create active objects on 

other machines. The machines that host the active objects don’t have to run the whole
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program. This is different than the MPI approach, where the whole program had to be run 

on all the machines that participate in the execution of the program.

Create active object

Invoke method

Send result

Create active object

Invoke method

Send result

Machine n

Machine 1
The code only runs on this 
machine and creates active 
objects on any o f  the Machine 
1 to Machine n

Machine 0

Figure 6: The execution model of our active object system.

In Figure 6, the main program runs only on one machine but it creates active objects 

on remote machines. An active object can in turn create other active object, either on the 

same or different machine.

The communication between active objects and regular objects (or between two 

active objects) is done by exchanging messages and is realized through RMI. We used 

RMI together with reflection to create an object or invoke a method on an object that 

resides on a machine different than the one where the program is running. Let us assume 

that the machine creating active objects or sending active object invocations is called 

client and the machine where the active objects are located are the servers. The client can 

send the server two kind of messages:
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• CreateMessage asking the server to create a new active object

• InvokeMessage asking the server to execute a method one of its active 

objects

Creating an Active Object

The syntax for creating an active object on server is:
activeObj = new ActiveClass (args) on "server";

Assuming that this code is running on client, the client sends a create message 

to the server. The creation of the active object happens synchronously and the server 

replies to this message with another message sending the client a reference to the active 

object.

Create Message

client
ActiveClass

client server

Instance Info

server
ActiveClass
instanceld

Creates a new instance o f  type 
ActiveClassa = new ActiveClass(arg) on “server”

Figure 7: The process of creating an active object.
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Figure 7 shows the messages exchanged by the client and the server when creating a 

new active object. The client creates a message that contains;

• The name of the machine where the call was initiated (as a String). In Figure 7 

the creation of the new object happens on client. This is used internally by the 

server to keep track of invocations from each client since active objects can be 

passed around between clients (more on this later in the chapter).

• The type of the class and is passed as a String. The example in Figure 7, we are 

creating an object of type ActiveClass. The name of the class is used by the 

reflection mechanism to load the class definition.

• The arguments of the constructor. Arg is used to determine the constructor to be 

invoked for creating the class. Arg is an array of objects (type Objeet[]) that 

contains the arguments for the constructor.

Once the server receives the create message, it creates the object and stores it 

locally so it can be used for future invocations. The creation of a new object is done 

synchronously, so the client has to wait until the server creates the object. The server 

sends the client a ‘remote reference’ to the active object. It is not the physical object 

reference (which only has meaning on the server side), since the client and the server 

have different address spaces (even if the client and the server are situated on the same 

machine). The ‘remote reference’ is represented by an Instancelnfo object that 

contains the following information:

• The name of the machine where the object lives, in Figure 7 the machine name is 

server.

• The type of the active object, ActiveClass.
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• An instance identifier to uniquely distinguish the instance from other active 

objects of the same class that reside on the same server.

The client then uses this reference every time it wants to call methods on the active 

object a (the compiler maps a to the remote reference sent by the server). The remote 

reference also contains the server name, so the client can determine the server it sends the 

request when invoking a method on a.

Invoking Methods on Active Object

Active object’s method can be either invoke asynchronously or synchronously. 

Regular passive objects are invoked synchronously. Asynchronous invocation is what 

makes the active object different. Once the client has created the active object, 

activeObj, on the server, it can call methods asynchronously: 

a c t i v e O b j . f o o ( a , b , c )  a s y n c ;

The client sends the server an invoke message, asking the server to execute the 

foo method on the activeObj and retuin the result asynchronously. Recall, that at 

creation time, the client receives a ‘remote reference’ that identifies the active object on 

the server. When invoking a method on an active object the client uses this reference and 

passes it in the message. The server then knows on which instance it has to invoke the 

method.

Figure 8 shows the interaction process between the client and the server when 

invoking an asynchronous method. The client creates an invoke message that 

contains:
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The ‘remote reference’ of the active object. It is an object of type 

Instancelnfo that contains the information necessary to identify the object on 

the server side.

The method name that has to be invoked, in this case foo, is passed as a String. 

The arguments of the method, a,b and c. The arguments are passed in an array of 

objects (e.g. new Object [] {a,b,c}).

Invoke Message

client server

returns immediately

Instancelnfo 
foo 

Args: a,b,c

activeObj.foo(a, b,c) async;

Figure 8: Invoking an asynchronous method.

The call returns immediately since the async keyword is used and the client 

continues executing the rest of the code. We have implemented this asynchronous 

invocation by creating a thread that performs the actual call. The thread gets the remote 

object for the server and invokes the method. Recall that RMI is used for interaction 

between the client and the server, so all the calls are synchronous. The thread just created 

has to wait for the RMI call to complete, but the main thread continues executing the rest 

of the code, obtaining the asynchronous behavior wanted. When the server finishes 

executing the method, the thread that initiated the call signals the main thread that the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



result is available. The main thread may be executing other methods and does not need 

the result when the thread received the result, so the result value is saved and the thread 

terminates.

If we invoke a method on an active object synchronously, the main thread has to wait 

for the result of the call unless the method returns void. In this case the invocation is sent 

to the server and the main thread continues its execution.

Waiting the Result of Asynchronous Invocation 

When asynchronous interaction between the client and the server is used, the client 

has to get the result of the method invocation at some point. The waitfor statement is 

used for that:

o / c

activeObj.foo(a,b,c) async;

 o/c

waitfor activeObj var;

....code that uses var (the return value of foo)

From the programmer’s point of view, the waitfor statement can be translated as: 

“I’m waiting for the result of an asynchronous invocation on the active object, 

activeObj, and save the return value in the variable var. ”

In the above code, the foo method on activeObj is called asynchronously. The 

main thread continues with the execution up to the point where the return value of the 

foo method is needed. The programmer uses the waitfor statement to block the 

execution until the value is available. Recall that another thread, different than the main
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thread, carries out the asynchronous invocation foo. Let us call this thread

callingThread, since it is the thread that actually does the invocation. Two situations 

can occur;

• The main thread gets to the waitfor statement before the

callingThread finishes. In this case the main thread blocks and waits for the 

callingThread to send a signal when the value is ready. When the foo 

method has finished, the callingThread has the result and saves it in a

shared resource and signals the main thread that value is available. The

waitfor is thus a blocking statement.

• The main thread gets to the waitfor statement after the callingThread 

finishes. In this case the value is already saved in the shared resource where the 

main thread can get the value from and continue executing. Here the waitfor is 

non blocking statement.

In general a waitfor would be considered a blocking statement. The waitfor 

statements have to be used only for asynchronous methods that return a value. The order 

in which the asynchronous calls with return values are invoked on the same instance of 

active object has to be the same as the order in which waiting for the result is done: 

activeObj.foo(a,b,c) async; 

activeObj.bar(d,e) async;

waitfor activeObj varFoo; //the result value of foo 

waitfor activeObj varBar; //the result value of bar 

The compiler will not throw any errors or warnings if the waiting order is reversed, 

that is, first wait for the varBar md then for varFoo. A CastClassException may be
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thrown at runtime if the return types of foo and bar are different and are not part of an 

inheritance hierarchy (i.e., the foo return type is String and bar return type is Integer).

The asynchronous invocation order on different active objects can be different than 

the order of waiting for the results;

activeObj.foo() async; 

otherObj.bar() async;

waitfor otherObj varBar; //wait for the result of bar 

waitfor activeObj varFoo; //wait for the result of foo 

The programmer may forget to wait for the results of all the asynchronous 

invocations (or choose not to if the return value is never used). In this situation, when the 

method finishes executing its body, all the asynchronous calls initiated in the method 

body and the corresponding results that were not waited for will be discarded. When the 

thread that carries out the execution of an asynchronous call gets the result, it checks if 

the method body from where it was launched is still in scope. A method is still in scope if 

the end of the body was not reached or no return statement was executed. If the method is 

still executing, only then the thread saves the return value and signals the main thread. 

Otherwise the result is simply ignored.

This implies that all the asynchronous calls that were initiated in a method have to get 

the result in the same method (execute a waitfor statement). A method can not make 

an asynchronous invocation and then pass the active object to another method and then 

wait for the result in the second method. The following code is illegal:

Public class AClass {

public void methodl() {
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ActiveObj a = new ActiveClass() on "server";

a.fooO async;

int var = metliod2 (a) ;

}'

private int m ethodZ(ActiveClass a) { 

int var; 

waitfor a var; 

return var;

}

}

Ail the asynchronous invocations have a method identifier that corresponds to the 

method where the call originated. When waiting for an asynchronous result, the system 

looks only for at the asynchronous calls that were initiated from that method. Since no 

such call has occurred in method2, the system will throw and error saying that there is 

no asynchronous invocation for that object in the current method.

Message Ordering

Active objects can accept requests from any machine that has a reference to it. Active 

objects can be passed around, so not only the computer that created the active object can 

have a reference to it. The active object will respond to requests in the order received, on 

a first come first served basis. No ordering can be imposed on invocations from different 

machines on the same active objects.
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clientl client2

call method foc call method fbo

server

active.fooO async; active.fooO async;

Tlie ‘active’ object 
resides on server and 
accepts request from any 
machine Üiat has a 
reference to it.

Figure 9: Invocations on the same object from different machines.

If clientl and client2 both have reference to the same object, active, that 

resides on the server, and invoke methods on the object no total ordering can be 

enforced. Even though clientl may invoke a call on active object before client2, 

the requests can get to the server in a different order, due to the network traffic and the 

Java thread scheduling.

Even though no total ordering can be observed, partial ordering can. Restrictions 

apply only on invocations on the same active object from the same machine. If an 

invocation, foo, on an active object happens before another invocation, bar, on the 

same object on the same machine, then foo will be executed before bar. Of course bar 

does not have to execute immediately after foo, since other invocations from other 

machines on the same active object may get to it between foo and bar, but bar will 

definitely execute after foo.
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We are simulating the asynchronous invocation by creating a thread that does the 

actual call in a synchronous manner and signals the main thread when the result is ready.

new ThreadO {
public void run() { 

active.fooO;

new ThreadO { 
public void run() { 

active.barQ;

active.fooO
async;

Figure 10: Simulating asynchronous calls.

The Java scheduling mechanism does not guarantee that the thread created first will 

be executed first. The use of priorit ies on thread would not assure the order of execution 

either. The Java scheduling mechanism pledges that every thread will be executed at 

some point, but no ordering is specified [15]. Under these circumstances we are using a 

message counter for each invocation. Recall that when a client calls an asynchronous 

method on an active object, it sends an invoke message to the server where the active 

object is located. This invoke message contains a message counter and the host name 

where the call was initiated from. This allows the server to execute the invocatinos in the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



appropriate order, even if the requests come out of order. Each active object has two 

queues:

• A queue of pending invocations, that keeps the invocations that are in the 

appropriate order and waiting to be executed

• A queue of out of order invocations, that stores the invocations are not in the 

appropriate order

pending invocations

out of order invocatinos
Active Object

Figure 11: The invocation queues of active object.

Even if the server gets the invocations on the same object from the same machine in 

the wrong order, it assures that the partial ordering still holds. Something similar happens 

with the TCP packages that can get to the destination on different routes and thus can be 

out of order. The destination makes sure to put the packages in the correct order and 

reconstruct the initial message.

Active object keeps some additional information about each machine in order to be 

able to execute the messages, in according to the partial ordering. The list of 

computer/machine names that requested its services is stored internally by the active 

object and a corresponding message counter. From the active object’s perspective this 

message counter identifies the message that has to execute for that host (to maintain the
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partial or local ordering). The active object receives an invoke message every time 

somebody requests its services. I'his message contains the method to be executed, the 

arguments, the name of the host that initiated the call and a message counter. The active 

object receives the message and looks for the host name in his list. If the host is in the 

list, it gets the message counter for that host and compares it with the message counter 

from the invoke message. If the two counters match, the request is added to the pending 

invocations queue and the message counter is incremented. If the message counter is 

greater than the expected counter then the message is put in the out of order queue, since 

other requests from that host have to be executed before this one.

The host may not be part of the active’s object list of machines/computers/hosts. This 

happens the first time a host invokes active object’s services. The host is added to the list 

of names and the message counter from the invoke message is compared with zero to 

determine if this is the message that has to be executed first. Based on this comparison, 

the message gets added either in the pending or out of order queue.

The active object executes the requests from the pending queue in order, on a first 

come first served basis. Once a message is executed, before proceeding to the next 

pending invocation, the active object checks the out of order queue. The following 

situation can occur: the active object receives two invocations from the same client. The 

expected message counter from this client is 19. The first invocation has the message 

counter 20. So, this request is placed in the out of order queue. The second invocation has 

the message counter 19 and it’s placed in the pending queue and the expected counter is 

increased to 20. At some point the invocation with message counter 19 has to be 

executed, and once the execution is finished now the message with the counter 20 is the
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next one to be executed for this client so that invocation is moved from the out of order 

queue to the pending queue.

Client Manager

The core implementation of our active object runtime system is comprised by two 

classes; ClientManager and ServerManager. The communication between the 

machine where an asynchronous call is initiated and the actual machine where the active 

object resides is realized through these classes.

Client 

active.fooO async;

Server

i
Client Manager

Remote Object 
Stub

Resolve the invocation

Server Manager

I
Remote Object 

Skeleton

Network

Figure 12: Communication between machines to fulfill the active object calls.

Figure 12 illustrates what happens behind the scenes when an asynchronous call is 

initiated. Client is the machine where the asynchronous method is invoked on object 

active and the server is where the object is located. The asynchronous call is 

translated at compile time to a ClientManager method invocation. How this translation
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happens and what is actually replaced with what will be detailed a later section of this 

chapter. The ClientManager identifies which machine it needs to communicate with and 

gets the remote object stub. It then sends the invocation to the remote stub which 

communicates with the remote skeleton (recall that RMI is used for interaction between 

machines) and finally the invocation gets to the ServerManager that resolves the call and 

sends back the result.

The core functionality of the ClientManager is implemented in two methods:

• invokeConstructor -  which gets called when a new active object is created.

• invokeMehtod -  is invoked every time an asynchronous invocation is executed 

on an active object.

Every time an active object is manipulated, either created or a method is invoked, the 

respective methods from ClientManager are invoked and the request is send to the active 

object (see Figure 12).

The ClientManager keeps track of all the active object invocations that are initiated 

from the machine that it is running on. As some of these invocations are executed 

asynchronously, the return values of these calls are also managed by the ClientManager. 

The ClientManager organizes the active object invocations based on the method where 

this calls were initiated. Recall that all methods are given a unique identifier that is used 

for organizing the active object invocations from within the method or when removing all 

the asynchronous calls that are not waited for. Inside a method more than one active 

invocation can exist. ClientManager organizes the active object invocations within a 

method based instance that is the target of the invocation. Figure 13 shows how 

ClientManager organizes the active object invocations:
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Active instances

Async invocations Tn

Threads that are currently executing the async invocation

T2

instance 2

instance n

instance 1

method id n

method id 1

method id 2

Figure 13: Maintaining asynchronous invocation on the client side.

The list of threads is composed of those threads that carry out asynchronous calls that 

return a value. Recall that whenever an asynchronous execution is invoked, a new thread 

is created and does the method call in a synchronous manner and signals the main thread 

when the result is available. While the thread executes the invocation, it remains in the 

list. Once the invocation finishes, the return value is saved and the thread is removed 

from the list.

Assume that the following code is executed and the method identifier for this 

method is five:

public void aMethod{) {

ActiveObj a = new ActiveObjO on "machinal"; 

ActiveObj b = new ActiveObjO on "machine2"; 

int val; 

a.fooO async;

a.barO async;
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b.fooO async; 

waitfor a val;

}

Figure 14 shows what the client invocations will look like when the execution gets to 

the waitfor statement, assuming that none of the asynchronous invocations finish by 

that time:

T1 foo

T3 foo

T2 bar

Figure 14: Information stored on ClientManager for the asynchronous invocations.

Besides the two core functions, invokeConstructor and invokeMethod, 

ClientManager also has some additional helper methods:

• getMethodldO -  returns a unique identifier that is associated with every 

method that is executed on the machine.

• removeUnwaitedCalls ( ) - takes a methodld as a parameter and removes 

all the asynchronous calls for which the programmer did not wait for the result. In 

the above example, once the method finishes, the manager gets all the instances 

that were used in the method body, a aiid b, and checks the list of threads. If a
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thread is still in the list when the method finished, the value for that asynchronous 

call is discarded and the thread is moved to list of unwaited threads. The reason 

for moving the threads to another list is for the thread not to save the return value 

once it has finished. It may be the case, that when the method finished, the 

asynchronous call is still executing. In the above example, when aMethod 

finished, the asynchronous call, b . foo ( ) ,  may still be executing. When the 

thread that carries out the invocation finishes, it first checks to see if itself is not 

in the list of unwaited calls, to determine if the result is saved or discarded. When 

aMethod finishes executing, both a . bar ( ) and b . foo ( ) will be dropped (we 

assume that both foo and bar return a value).

Server Manager

The ClientManager handles the invocations and initiates the communication for the 

client, where client is the machine that uses an active object. On the server side, the 

machine that holds the active object, the asynchronous or synchronous invocations are 

resolved by the ServerManager. The server managers accept create and invoke 

messages and send the requests to the corresponding active object that have to execute 

these requests. There is only one ServerManager on each machine involved in the 

execution process.

The ServerManager on each machine that participates in the execution of the program 

(will have at least one active object running on that machine) has to be started before the 

application is run. Starting the managers is done by calling a SecureShell (ssh) [12] 

script. This implies that all the machines have to support the ssh protocol. The reason
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why these managers have to be started is so they can make the remote objects that are 

used for communication available. Recall that all communication is done using RMI and 

the client has to first get the remote object for the server in order to send 

messages/invocations.

The ServerManager keeps a hash table of all the active objects that it manages (more 

than one object can be created on each machine). Each active object has a unique 

identifier that is used as a key to this hash table. The manager manipulates this hash table 

when it receives a message from the client. If it is a message to create a new active 

object, then the active object is created, associated with an identifier and added to the 

hash table. If the message is a request for a service (an invocation), the server looks up 

the active object that the request is addressed to and forwards it the message.

invoke message

lookup object

1 message received

Active Object

Server Manager

machine 1

instance 1 
foo

instance 2

instance n

instance 1

3. forward die request

Figure 15: Invocation processing on the server side.
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When the server receives the message from the client, the message contains the 

identifier of the object that was invoked, instance l in the example. The server gets 

this identifier and looks it up in its table to obtain the actual instance that has to fulfill the 

request. In the above example the foo method needs to be invoked with the arguments a 

and b and the invocation comes from machine_l. The instance gets this request from 

the server and queues it in its list of invocations and at some point in time will execute it.

Compiler Modifications 

All communication between the machine that makes the call on the active object and 

the machine that actually stores the instance that is the target of the invocation is made 

possible thi ough compiler modifications. The ClientManager and the ServerManager are 

the core implementation of the runtime system. The compiler plays an important role as it 

accepts the new syntax and during desugaring phase (desugaring will be explain later on 

in this section) it replaces the new syntax with calls to this runtime system.

We have chosen to implement our active object system by adding new keywords to 

the Java language and modifying the Sun’s open-source compiler to accept these new 

keywords and the new syntax. One other way to do it is by interface implementation or 

inheritance. For a class to be active it would have to implement a tag interface Active, 

just like Serializable interface allows objects of the class that implements it to be 

serialized and deserialized. This Active interface could have a waitfor method that 

would be called by active object when trying to get the result of an asynchronous method 

invocation. We chose to extend the language because it allowed us a much more natural 

approach. The modifiers describe the characteristics of a class, method or attributes. If the
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programmer wants to create a class that can be accessed by anybody, he simply adds the 

modifier public to the class declaration. When he wants to make a class active, he adds 

the active modifier to the class declaration. Also the creation of active objects and the 

asynchronous invocation is simpler and more natural with the extended language than it 

would have been if we would have used inheritance.

Chapter 3 explains the new keywords that were added and we will briefly present 

them again in this section:

• The active modifier can be used only in the class definition and marks all the 

instances of the classes that have this modifier in their definition as being active 

objects.

• New creation expression for active objects:

new ActiveObj() on "machine"; 

where machine is where the active object will reside.

• The async keyword can be used at the end of a method invocation on an active 

object to signal that the eall will be asynchronous.

• A new statement that waits for the result of an asynchronous call:

waitfor activelnstance variable;

The modified compiler performs two important tasks: first it checks if the syntax is 

correct and that the new keywords are used properly and in the allowed places and 

secondly, during the desugaring phase, it replaces the new syntax with calls to the 

ClientManager. The new keywords can be used only in some situations and the compiler 

guarantees that the syntax is correct. For example, the active keyword can only be 

used as part of the class definition and can not be part of an interface or method
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definition. All the methods from an active class can be called either synchronously or 

asynchronously so there is no need to use the active modifier in the declaration of a 

method. Also the methods that are part of a regular, passive class can not be invoked 

asynchronously. The compiler makes sure that the active keyword is used properly. 

The usage of the new creation statement, where the location of the object is specified, can 

only be used when instantiating active objects. Passive objects are created in the 

conventional way. The async keyword can only be used after a method invocation of an 

active object:

activeObj.foo() async; 

and the result of an asynchronous call can be obtained by using the waitfor statement, 

that is newly added and has the following syntax: 

waitfor activeObj variable;

The result of the foo invocation will be stored in the variable.

All these restrictions are verified by the compiler in the parsing and type checking 

phase and errors messages will be displayed if the syntax is not correct. The most 

important part of the compiling process happens in the desugaring phase. The developers 

of Java tried integrating new syntax/constructs to make programmer’s life easier. An 

example of this type of new constructs is the f oreach statement: 

foreach(String s : array) statement; 

where array is an array of Strings. This simplifies the way an array is traversed. The 

programmer uses this construct, but during the desugaring phase this construct is replaced 

with a regular for syntax.

for (int i=0;i<array.length;i++) {
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string s = a r r a y [ i ] ;

statement ;

}

The foreach construction only exists to simplify the iteration of an array and the 

compiler fills in the rest of the code that the programmer would normally have written. 

This happens during the desugaring phase.

The phases of the compiling process in the order they happen are: parsing, attribution, 

type checking, desugaring and generation. At the moment of desugaring, the compiler 

guarantees that the program is syntactically and semantically correct. Following the 

model of the foreach construct that is replaced with some other code during 

desugaring, we are replacing the new keywords and new syntax with regular Java code 

(actually calls to our ClientManager).

Modifying the Active Keyword

The active keyword, which is part of the class declaration, is removed during the 

desugaring phase. During the attribution phase additional information is saved in the 

node that represents a class, to identify that the class is active. The extra piece of 

information that is stored in the node that represents the class is the machineName. If 

the machineName is null, then the class represented by that node is a regular passive 

object. Otherwise, it is an active class. When we create an active object, we can still use 

the regular syntax:

activeObj = new ActiveClass();

In this case the active object is created on the current machine and the machineName 

will have the value different than null, namely localhost.
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Modifying the New Creation Expression

Active objects can be created either using the new construct where the machine that 

will hold that instance is given or the regular, conventional way:

ActiveClass obj = new ActiveClass() on "machine_l; (1) 

ActiveClassj obj = new ActiveClass(); (2)

If the regular syntax (2) is used, then during the type checking phase the compiler 

sees that an active object instance is created and the machine name is not specified. If no 

machine name is specified then localhost is used as the default location. So the regular 

syntax from above, when creating active objects, is identical to:

activeObj = new ActiveClass() on "localhost";

Then during the desugaring phase the new creational syntax is replaced by a static 

call to the ClientManager. The call above that uses the uses the new syntax (1), will be 

replaced with:

Instancelnfo obj = ClientManager.invokeConstructor(

"ActiveClass", 

new Object[]{}, 

machine_l");

The invokeConstructor method of ClientManager receives the type of the class 

that has to be created, ActiveClass, the arguments for the constructor, in this case 

none, and the machine name where it has to create the instance, machine_l. Then the 

ClientManager generates a create message and sends it to the ServerManager of 

machine_l. The invoke constructor method returns an objeet of type Instancelnfo 

and it is an object created by machine_l. This object represents a ‘remote referenee’ to

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the active object, meaning it contains infonnation necessary to access the object on 

machine_l.

Adding the Methodld

Recall that when invoking an asynchronous method of an active object, a thread is 

created and executes the call synchronously while the main thread continues the 

execution. These threads/invocations are organized on the client side based on the 

method where the call was initiated. For this to be possible, each method has a unique 

method identifier. Each method that has in its body an asynchronous invocation will have 

a special method inserted as the first statement:

Long methodld = ClientManager.getMethodId();

This statement will be inserted as the first statement of the method body. It will be 

inserted as the second statement in the constructors, since this () or super () have to 

be the first statement from the method body.

public class ActiveObj extends OtherObj { 

public ActiveObjO {

//here some code that invoke an active object

}

}

After the desugaring class the code will look this:

public class ActiveObj extends OtherObj { 

public ActiveObjO {

super 0 ; //added automatically by the compiler 

//added by our compiler

Long methodld = ClientManager.getMethodId();
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//here some code that invoke an active object

}

}

The methods that do not have any active object invocations inside their body will not 

have the variable declaration of the methodld inserted. Determining if a method has an 

active object invocation is done prior to desugaring in the attribution phase.

Modifying the Waitfor Statement

The waitfor statement is used to suspend the main thread to obtain the result of a 

previous asynchronous invocation. The syntax of the waitfor statement is: 

waitfor activelnstance variable; 

where the activelnstance represents the instance of the asynchronous invocation, 

and the variable will hold the return result of that invocation. The initial format of the 

waitfor statement was:

variable = waitfor(activelnstance);

The problem with this format is that during the type cheeking phase, the type of the 

waitfor method could not be determined. More than one method invocation can be 

called on the activelnstance and the type of the waitfor should be the return 

type of the method invoked on the instance but that cannot be determine at the compile 

time.

That is the reason why we chose the first waitfor format. The waitfor statement 

will also be replaced at desugaring time with the following block:

{

ReturnObj ect returnObj ectO=ClientManager.waitForThread
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(methodld, 

activelnstance); 

variable = (Integer)returnObject0.getReturnValue());

}

The first statement from this block waits for the thread that carries out the execution 

to complete and returns a ReturnObj ect. The ReturnObj ect will contain the 

actual return value of the invocation and the result can be obtained by calling the 

getReturnValue on the returnObj ect. A cast is also done to the type of the 

variable. In the above case the return value of the asynchronous invocation that is 

waited for is of type Integer and the type of the variable is also Integer (or int because 

autoboxing is used).

Modifying the Invocations on Active Object

The invocations of the active object can be executed synchronously or 

asynchronously, depending if the async keyword is present at the end of the method 

call:

val = activeObj.foo(b);//sync. foo returns a value 

activeObj.bar(a) async; //async. bar returns a value

The syntax for the synehronous and asynehronous invocation is somehow different if 

the method invoked returns a value. The synchronous call has to assign the return value 

to a variable, while the asynchronous eall does not. The return value of an asynchronous 

call will be assigned using the waitfor syntax. The compiler enforces these rules and 

will complain if they are not respected.
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We will first discuss how the asynchronous calls get translated during the desugaring 

phase. The bar call from the above example, will be replaced by:

ClientManager.invokeMethod(methodld, activeObj, "bar",

new Object[]{a},true);

The new code calls the invokeMethod of ClientManager and passes the following 

parameters:

• The methodld - used for managing invocations from tliis method body.

• The ‘remote reference’ to the active object, activeObj.

• The method to be executed, bar.

• The arguments passed to the method, new Object [ ] {a }.

• A boolean value that specifies if the method has a return value or not. In our 

example, the bar method returns a value.

The synchronous call, val = activeObj . foo (b), gets translated in the 

following block:

{

ClientManager.invokeMethod(methodld, activeObj, "foo",

new Object[]{b}, true); 

ReturnObject returnObj ect=ClientManager.waitForThread(

methodld, activeObj); 

val = (Integer)returnObject.getReturnValue0 ;

}

The synchronous call is actually composed of the following: an asynchronous call 

followed immediately by a waitfor statement that gets the result. The first line of the
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translated block represents the asynchronous call and the following two lines correspond 

to the waitfor. The async keyword allows the programmer to specify when the 

waiting for the result is done and he gets the result using the waitfor statement. If the 

async keyword is missing, and the method returns a value, then the result is waited for 

immediately after the call. If the method called does not any value, then the whole block 

is replaced by the first line, since no waiting for the result is necessary.

Removing the Unwaited Asynchronous Calls

It may happen that the programmer executes an asynelrronous call and forgets to wait 

for the result of that call. When a method finishes its execution, all the results of the 

unwaited calls will be ignored and discarded. This is done by adding at the end of the 

method body or before each return statement a call to discard all the asynchronous calls 

that were initiated from this method and not waited for. This call is:

ClientManager.removeUnwaitedCalls(methodld);

This statement is only added, just like the statement creating the methodld, only for 

those methods that have at least a call on an active object.

An Example

The class Test Active creates some active objects of type ActiveClass and makes 

asynchronous and synchronous calls to those active objects.
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//the definition o f the ActiveClass 
public active class ActiveClass {

public void foo() {
System.out.println("foo was called

}

public Integer bar(Integer s){ 
Systera.out.println("bar was called "+s); 
return s*2;

}
1

Figure 16: The definition of an active class.

Ha class that shows how the new keywords are translated into regular Java syntax 
public class TestActive { 

public TestActiveO {
//create an active, object on the local machine 
ActiveClass a = new ActiveClass();

//invoke the bar method asynchronously 
a.bar(new Integer(4)) async;
System.out.println("computing'j;
Integer val=null;

//saving  the return value o f  bar in the val variable 
waitfor a val;

}

//this method does not have any active object invocations, so no modifications are done to the method 
public void noCallOnActive(){

System.out.println("no call on active");
}

.//this method has active object invocations, so the method body will be modified 
public boolean callOnActive() {

//create an active object on the local machine 
ActiveClass a = new ActiveClassQ;

//invoking the bar method asynchronously 
a.bar(new Integer(4)) async;
System.out.println("computing");

//invoking the foo  method synchronously 
a.foo();
Integer val=null;

//waitfor the result o f  the async invocation o f bar 
waitfor a val; 
if(val =  3 ) {  

return true;
} else { 

return false;

Figure 17: The definition of a class that uses an active objeet.
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The TestActive class has a constructor and Inside the constructor body an active 

object invocation is executed. The compiler adds by default the super ( ) call and this 

called is followed by a declaration of the methodld. In callOnActive this 

declaration is the first statement from the method body. If no machine name is provided 

when creating an instance of an active class, the active object is created on the local 

machine. This is how these classes will look after the code has been compiled using our 

modified compiler:

//the active keyword was removed from the class definition 
class ActiveClass {

ActiveClassQ {
SuperQ; //added by the compiler

}
public void fooQ {

System.out.prmtln("foo was called ");
}
public Integer bar(Integer s) (

System.out.println("bar was called " + s); 
return Integer.valueOf(s.intValueO * 2);

Figure 18: The new definition of ActiveClass generated by our compiler.
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public class TestActive { 
public TestActiveO {

S\xç<ixO'J/added hy default by the compiler
!/ added by the compiler due to active invocations in the method body 
Long methodld = ClientManager.getMetbodJdQ;

//the translation o f  the new creation expression
Instancelnfo a = ClientManager.invokeConstructor("ActiveClass”, new Object[]{), "localhost"); 

//the translation o f  an asynchronous invocation
ClientManager.invokeMetbod(metbodId, a, "bai", new Object[]{new Integer(4)}, true); 
System.out.printbi(" computing");
Integer val = null;

//the translation o f  the waitfor statement 
{

ReturnObject retumObjectO = ClientManager.waitForTbread(metbodId, a); 
val ^ (Integer)retumObject0.getReturnValueO;

}
//added by the compiler to remove all the unwaited calls that originated in this method
ClientManager.removeUnwaitedCalls(metbodld);

}

//no modifications on this method, since no active object invocations are executed 
public void noCallOnActiveQ { System.out.println("no call on active"); }

public boolean callOnActive() {
Long methodld = ClientManager.getMethodldO; !/added by the compiler

//the translation o f  the create expression
Instancelnfo a = ClientManager.invokeConstructorC'ActiveClassj", new Object[J{}, "localhost");

//translation o f  the async invocation
ClientManager.invokeMetbod(metbodId, a, "bar", new Object[]{new Integer(4)}, true); 
System.out.println("computing'j;

//translation o f  the synchronous invocation that returns void 
ClientManager.invokeMetbod(metbodId, a, "foo", new Object[]{}, false);
Integer val = null;

//the translation o f  the waitfor statement 
{

ReturnObject returnObjectI = ClientManager.waitForTbread(metbodId, a); 
val = (Integer)retumObjectl .ge tRetumV alueQ ;

}
if  (vakintValueQ = = 3) {{

ClientManager.removeUnwaitedCalls(metbodld); //add this statement before each return stmt 
return true;

} } else { {
ClientManager.removeUnwaitedCalls(metbodld); 
return false;

}}
}

Figure 19; The new definition of TestActive generated by our compiler.
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Problems with the Implementation

When a method is invoked asynchronously (adding the async keyword at the end of 

the method invocation), the class of the object has to contain the active keyword in its 

declaration. Only the actual type of the object is checked to be active and no checking is 

done on its supertypes. For example, if a class Shape is declared to be active and this 

class is extended by another class, Square, that is not declared to be active, when an 

asynchronous invocation is made on a Square instance, an error message will be thrown 

by the compiler. During the type checking we only check if the Square type is active and 

we don not verify its class hierarchy. The active property of a class does not propagate 

down in the class hierarchy (unlike serializable property).

The methods from an active class can throw any type of checked exception. Type 

exceptions are either caught or explicitly thrown (declared in the declaration of the 

method). If an active object method throws an exception, then all invocations of that 

method, either synchronous or asynchronous, must be surrounded by a try catch block or 

be declared in the method declaration. This is enforced by the compiler. The synchronous 

and asynchronous invocations are replaced by a call to the ClientManager’s 

invokeMethod. This method catches all the exceptions that are thrown by the active 

object invocation, but do not forward them to the thread where the invocation originated. 

Instead it prints an error message and exits the program.
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CHAPTER 5

ACTIVE OBJECTS FOR DISTRIBUTED COMPUTING 

A distributed computing system is composed of multiple software components that 

run on different computers connected by a network, but these components work together 

as a single system. The computers can be physically close together, located in the same 

room or building, or geographically distant and connected by a wide area network. Tasks 

or jobs can be distributed on different machines where they can be executed in parallel, 

thus increasing the number of tasks executed in a unit of time. A bank can be viewed as 

an example of a distributed system, where the bank tellers are the processors and the 

customers are the tasks the processors have to execute [17]. If a bank has only one teller 

(single processor), then the tasks have to be executed serially one after another (only one 

customer can be helped at any point). When more than one teller is available, the bank 

may be operated as a distributed system; tasks (customers) can be executed by the next 

available teller and a teller can execute its task in parallel with other tellers. A parallel 

system is a tightly coupled distributed system where all the resources are utilized to solve 

a single problem [17]. The distributed systems are more general and may simultaneously 

work on many problems.

Some may think that if a problem takes ten seconds to be solved on a single 

processor, then using a parallel system with ten processors it should take only one 

second. This is not always the case. A parallel system has some communication time that
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has to be taken into consideration, beside the processing time. Also not all parts of the 

program can be parallelized or parts of the problem have to be executed sequential (more 

on this in next chapter). The communication time is the time it takes for a message to get 

from one processor to another. This communication time depends on the amount of data 

that has to be transmitted (how big the message is) and the network bandwidth and 

latency. The ratio of processing time (the time it takes a processor to finish the task) to 

communication time is good to be as big as possible (that means more time is spent 

computing than communicating). This ratio also influences the speedup (the ratio of the 

execution time using 1 processor and the execution time using n processors). We will 

present more on speedup in the following chapter.

Distributed and parallel systems can be divided into two categories based on 

processors intercommunication. A shared-memory system where a global memory is 

shared by all the processors and the communication between processors is done by 

writing and reading this global memory. The second category is a message passing 

system where the communication between processors happens by explicitly exchanging 

messages. In the actor system, which was used as a model for our active object system, 

the communication between actors is done by sending and receiving messages.

The implementation of our active object system allows parallel computation, that is 

active objects can executed their methods in parallel. More over, the active objects do not 

have to be located on the same machine, but ean be distributed on different machines. 

The distributed support offered by Java is the Remote Method Invocation. When the 

programmer wants to use RMI, the following steps must be taken [10]:
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• Declare an interface with all the methods that can be accessed remotely. This 

interface has to extend the Remote interface.

• Provide implementation for all the remote methods.

• Create and install a secure manager.

• Register at least one remote object with the RMI registry (or other naming 

services) for bootstrapping purposes.

• The client has to lookup the remote object before invoking methods on it.

Our system reduces the work that a programmer has to do in order to use RMI. All 

the programmer has to do is to create an active class (that would be the remote class) and 

invoke methods on object of that class synchronously (the RMI calls are synchronous). 

The active object’s methods can be invoked asynchronously as well, but a typical RMI 

call is synchronous; the programmer gets the remote object, call a method on it and wait 

for the result. This is the exact behavior obtained when an active object’s method is 

called synchronously. The programmer can specify the remote machine that will execute 

all the invocations with the use of the new creation expression:

remoteObj = new ReraoteClass ( ) on "machine";

The programmer can create another instance of RemoteClass on a different 

machine by specifying another machine name after the on keyword. Some argue the 

programmer has to interact differently with the distributed objects compared to the non­

distributed objects [16]. When using on object that is located on a remote maehine the 

programmer has to be aware of latency and failure problems that may arise. In our system 

the method invocations of an active (distributed) object is done in the same way as the 

invocations on a regular, passive object. Our system uses RMI for the communication
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between objects situated on different machines, so a RemoteException is thrown any time 

a failure occurs. Methods on an active object can be invoked asynchronously (by adding 

the async keyword at the end of the method invocation). The caller’s thread does not 

wait for the invocation to finish and continues executing the rest of the code, while the 

method invocation executes in parallel. The overhead associated with the distribution or 

parallelization of the application or the task is reduced by using the async keyword, 

because the client can continue with some other processing during the time the 

asynchronous call is executed.

Master/Slave Model. The Mandelbrot Set Example.

One often used pattern is distributed systems is the master/slave architecture. In this 

model, the master divides the work into tasks and sends the tasks to the slave(s). The 

slaves execute the tasks and send the results back to the master. Our active object system 

extends the master/slave architecture offered by the 0 0  model by allowing the master to 

send messages to the slaves asynchronously. The master can continue executing other 

tasks while the slaves are executing their tasks. Also, a slave can execute a task in parallel 

with other slaves or witli the master. When an object M (master), creates an object S 

(slave), using the new creation expression, M can send S the task it has to execute. M does 

not have to block until S finishes; it continues executing the rest of its code.

We will now show how our active object system can be used to compute the 

Mandelbrot set utilizing a master/slave architecture. The Mandelbrot set is made up of 

complex points c, for which the complex quadratic polynomial: x„+i = %/ + c (I) 

remains bounded. The following assumption is made: xo ^  0 for every point c. For
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Mandelbrot this condition can be translated to; after applying formula (1) the absolute 

value (modulus) remains bounded (in our case bounded means less than 2). If we 

consider the following complex point, x = 1, then the first 4 iteration of formula (I) will 

look like this:

x i=xo  + l  = 0 + l ~ l ;

X2 =  x j  +  1 =  1 +  1 =  2;

xs = X2 + 1 = 4 + 1 = 5;

X4 = X3 + 1 = 25 + I = 26;

After each iteration the value of x„ grows, so it is not bounded. That means that the

complex point x = 1, does not belong to the Mandelbrot set. If compute the same four

iterations for the complex number, i, we get the following results:

xj = X() + i ~ 0 + i = i:

X2 xi + i = -I + i = i-1;

X3 -  X2 + i == -I - 2i + 1 + i = -i;

X4 = X3 + i = -I + i = i-1;

The results show that no matter how big n is (where n represents the number of 

iterations), the value of x„ remains bounded and less than two. So the complex value x = i 

belongs to the Mandelbrot set.

The formula (I) also shows that determining whether a point is in the Mandelbrot set 

or not, is independent of the adjacent points. In order to parallelize the computation of the 

Mandelbrot set, each processor will receive a portion of the complex plane and perform 

the necessary computation for the points in the assigned section.
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//this class does the actual Mandelbrot computation. I
//It is an active class, because the active modifier is p a n  o f  the class declaration
public active class Mandelbrot {

//the maximum number o f  interations when computing the. value fo r  a  complex numer 
private static final int MAX = 256;

public MandelbrotSet compute(Integer startLine, Integer noOfI..ines, Integer width, Integer 
height, Float real min. Float real max, Float imag min, Float imag max) {

IntegerQ [] result = new Integer[width] [noOfLines] ; 10
ComplexNo c;

//compute the .scale factor
float scale real = (r max - r min) / width;
float scale imag = (i max - i min) / height;

//go through all the points, and compute the mandeIbrot 
for (int y = startLine; y < noOfLines + staidLine y++) { 

for (int X = 0; X < width; x++) {
//create the complex number 20
c = new ComplexNo(real iniri + ((fIoat)x * scale real), imag min + ((fioat)y * scale imag)); 

//compute the value fo r  the complex number 
Integer val = cal_pixel(c);
//save the value in the result matrix 
result[x][y - startLine.intValue()] = val;

}
}
return new MandelbrotSet(result);

}

//calculate the value o f  the complex number 
private Integer cal_pixel(ComplexNo c) { 

int i = 0;
float tmp, lengthsq = 0;
ComplexNo z = new ComplexNo(0, 0); 
do {

tmp = z.real * z.real - z.imag * z.imag + c.real; 
z.imag = 2 * z.real * z.imag + c.hnag; 
z.real = tmp;
lengthsq = z.real * z.real + z.imag * z.imag;

} while ((++i < MAX) && (lengthsq < 4.0)); 
return new Integer(i);

30

40

Figure 20: The implementation of the Mandelbrot algorithm.

Figure 20 shows the code for the class that implements the Mandelbrot algorithm. 

The compute method receives a portion of the complex plane; it checks the complex 

quadratic polynomial value for every point in this plane. If the value is bounded (less than
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two) than it belongs to the Mandelbrot set and the point is saved in the result. The 

cal_j>ixel method computes the quadratic polynomial value of a point from the 

complex plane.

//active objects pass it as a result o f  the compute method 
Hit is passed across the network so it has to be serializable 
public class MandelbrotSet implements Serializable {

private IntegerQ Q result;

public MandelbrotSet(Integer[][] result) { 
this.result = result;

}

public IntegerQ [] getResultQ { 
return result;

}
}

Figure 21 : The class that stores the Mandelbrot set.

//the class represents a complex number 
public class ComplexNo { 

public float real; 
public float imag;

public ComplexNo(float real, float imag) { 
this.real = real; 
this.imag = imag;

}
}

Figure 22: A Class representing a complex number.

The classes from Figures 21 and 22 are helper classes. The MandelbrotSet saves 

the result of the computation and it is used by the slave to send the result to the master. 

The Con^lexNo class represents a complex number and is passed as a parameter to the 

cal_pixel method.
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public class MandelbrotClient { 1
private static int computerNo; 
private static String}] computerNames; 
public int[][] map; 
public int disp width, disp height; 
public float real min, real max, imag min, imag max; 
public String inputFile, outputFile;

public static void main(String[] args) tlirows Exception {
MandelbrotClient mandel = new MandelbrotClient(); 10
mandel.init(args);

//nr o f  lines computed by each process 
int nrofLines = mandel.disp_height / computerNo;

Mandelbrot}] mandelbrot -  new Mandelbrot}computerNo]; 
for (int i = 0; i < computerNo; in i ) {

//create the active objects and send them the workload 
mandelbrot}i] = new Mandelbrot}) on computerNames}i];
mandelbrot}i].compute(startLine + i*nrotLines, nrofLines, 20

mandel.disp width, mandel.disp height, 
mandel.real min, mandelreal max, 
mandel.imag min. mandel.imag max) async;

}

//get the results fo r  all the active objects and write them to the output file  
MandelbrotSet mandelSet -  null; 
for (int i = 0; i < computerNo; i++) { 

waitfor mandelbrot}!] mandelSet;
Integer}]}] result = mandelSet.getResuIt(); 30
//write the result to file

}

private void init(String aigs}]) {
//initialize disp width, dispjieight. real min, real max, imag min, imag max, inputFile, outputFile

}  .

Figure 23: The master’s code that computes the Mandelbrot Set.

Figure 23 shows the code the master executes. The master computes the Mandelbrot 

set of a complex plane, by dividing the complex plane into subplanes and sending the 

subplanes to the slaves to do the actual computation. After reading all the input data (the 

left top corner and the right bottom comer of the complex plane, the slaves, and the input 

and output file) the master creates the slaves. The first for loop creates the slaves and
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sends each slave the portion of the complex plane that it has to compute. The slaves are 

computing in parallel, since the quadratic value of each point in the complex plane can be 

calculated independently of any other points in the plane. The slaves do not have to pass 

any information to each other to perform the computation. The only communication is 

between the master and the slaves. The master has to get the results from the slaves and 

this is done in the second for loop.

As stated previously, the master computes only a portion of the complex plane. The 

top left corner and the bottom right comer are passed as an argument to the main function 

as well as the name of the machines (slaves) that will participate in the computation. The 

execution time of this program (with the number of slaves and the dimensions of the 

complex plane varying) is presented in the next chapter. Also these execution times are 

compared with the execution time of the sequential algorithm.

This Mandelbrot example shows the way that our system can be used to implement 

distributed and parallel applications. The master/slave distributed model can be 

implemented with active objects. The slave is the active object (must have the active 

keyword in the class definition) and the master is the object that creates the active object. 

The master sends tasks to the slave by invoking one of the slave’s methods either 

synchronously or asynchronously (using the async keyword). The slave can in tum 

become a master for other objects (namely for those active objects that the slave creates).

Parallel applications can be developed in Java using threads. The overuse of 

synchronized (to protect the access to a shared region) keyword can some time lead to 

deadlocks that are hard to find. Our active object model is an alternative to developing 

parallel and distributed (since active objects can be created on different computers on the
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network) applications in Java. The next chapter will evaluate the performance of 

applications developed using active objects.
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CHAPTER 6 

RESULTS

In order to test our active object system and to measure its efficiency (by comparing it 

to the sequential version run time) we have implemented three programs: Mandelbrot Set 

computation, Matrix Multiplication and Pipeline processing. The results obtained are 

presented in the following subsections. The sequential versions were implemented first 

and run ten times. Out of these run times the best was selected. The parallel versions were 

implemented using active objects. When testing the parallel versions, the number of 

processors that participated in the execution was varied. For each variation, the program 

was run ten times and the best run time was selected, just like the sequential version. The 

sequential version used was not the parallel version ran only on one processor, but a 

separate, single threaded implementation. For both the sequential and the parallel 

versions, the size of the problem was also varied and tested ten times, out of which the 

best run time was selected. The execution times presented in the following tables are 

expressed in seconds.

Potential for Increased Speedup 

When evaluating the performance of a parallel application another metric is used 

beside execution time: speedup. This metric shows how much faster the parallel program 

is compared to the best solution (sequential algorithm) on one processor.
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Ts time o f best sequential program
Tp time o f parallel progi^am

The maximum speedup for p  processors is usually p  (linear speedup). This is 

achieved when the computation divides equally into p  parts without overhead. 

Superlinear speedup is sometimes obtained due to the cache effect from different memory 

hierarchies. If the processors have a big cache memory, then more or even all core data 

can fit into the cache reducing the memory access time.

one processor

multiple processor

Serial

Serial

I Parallelizable j

( l-f)*ts/p  

 ►

Figure 24: Dividing the parallelizable part of a program to p processors.

The linear speedup is not always possible to achieve due to several factors: periods of 

time exist when not all processors can perform computation, extra computation in the 

parallel version, communication time between processors. Another factor is that a
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fraction /  of the computation can not be divided into concurrent tasks as presented in 

Figure 24.

Thus the speedup factor can be expressed by the following formula, known as 

Amdahl’s law:

When dividing the program on infinite number of processors (p tends to infinity) then

the speedup tends to — . For example, if /  = — , then the maximum speedup is 20./  20

Mandelbrot Set

The Mandelbrot set computation was described in the previous chapter. More over, 

the implementation of Mandelbrot using our active objects system was also presented and 

explained (see APPENDIX A for details of the implementation). Now we present and 

compare the results of the sequential version of Mandelbrot versus the parallel and 

distributed version. Recall that the Mandelbrot set verified all the points in a complex 

plane to remain bounded when calculating the quadratic polynomial value. The bigger the 

complex plane that has to be verified is, the more complex points have to be analyzed, 

which results in longer execution time. The size of the complex plane is considered to be 

the size of the problem. In order to get a better evaluation of the performance of the 

parallel version, we vary the size of the problem. We start with a complex plane of 5,000 

X 5,000 points and increased each dimension of the complex plane by 5,000 points each 

time, up to 20,000 x 20,000 points. Additionally, the parallel versions were tested on 4, 8, 

16, 32 and 64 slaves (plus a master) for problem size.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 1 Execution time of the sequential and parallel versions of Mandelbrot Set

5000 X 5000 1 0 0 0 0  X 1 0 0 0 0 15000 X 150000 2 0 0 0 0  X 2 0 0 0 0

Sequential 18.8 74.9 169J 300
1 master+4 slaves 6.6 22.5 5T2 105
1 master+8 slaves 4.5 14.1 31.4 56
1 master+16 slaves 3.9 10.4 21.5 36.7
1 master+32 slaves 4.8 12.1 19.9 30.8
1 master+64 slaves 7.5 116 21.7 32.8

Table 1 shows the results obtained after running the sequential and the parallel 

versions and represent the best run time out of ten tries. The results demonstrate that the 

parallel versions perform better all the time, no matter how many processors (slaves) are 

used in the computation, but adding more processors does not mean that the speedup will 

grow as well (see Figure 25). Another important thing that can be noticed is that by 

increasing the processor numbers, the execution time decreases but only up to a point. 

For a complex plane of 5,000 x 5,000, when 16 processors are used, a shorted execution 

time is obtain than when using 32 processors. The number of processors that need to be 

used to solve the problem in shorter amount of time varies with the size of the problem; it 

can be seen that for a problem size of 20,000 x 20,000, 32 processors perform better than 

4 or 16 (5,000 x 5,000 gets the best execution time when 16 processors are used).

It is also important to mention that no input/ouput operations were taken into 

consideration when calculating the run time of the Mandelbrot program (the I/O is that 

fraction of the code that can not be executed in parallel).
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Speedup for Mandelbot Set Computation

■ 1 master + 4 slaves
■ 1 master + 8 slaves
■ 1 master + 16 slaves 
□ 1 master + 32 slaves 
o 1 master + 64 slaves

5000 X 5000 10000 X 

10000
15000X
150000

20000 X 

20000

complex plane size

Figure 25: Speedup for Mandelbrot Set.

Figure 25 shows that no linear speedup was obtained for our Mandelbrot parallel 

version. One reason why the linear speedup was not obtained is because of the overhead 

of the communication between the master and the slave. There is a small overhead when 

a master creates a slave, and then it is the overhead of transmitting the result back to the 

master. Even if no linear speedup was obtained, the parallel version performs better than 

the sequential version no matter of the problem size.

Matrix Multiplication 

Matrix multiplication is another problem that can be implemented in parallel. The 

matrices are divided in submatrices (similai- to a grid) and each processor gets one
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submatrix A and one submatrix B. An example of how a matrix is divided in submatrices 

is shown in Figure 26.

Al A2 A3 A4

A5 A6 A7 A8

A9 AlO A l l A12

AI3 A14 A15 A16

Processor I gets A1 
Processor 2 gets A2 
Processor 3 gets A3

Processor 16 gets A16

Figure 26: The division of a matrix in submatrices.

Before the parallel computation is started, each processor gets its corresponding

submatrix A and submatrix B. The following steps are executed (see APPENDIX B for 

details of the implementation):

• Each processor sends its A submatrix to the neighbor process from the right (with

wrapping around, A4 sends to Al). This process is called piping. The source of

piping is different at every step.

• Each processor computes matrix multiplication of its A and B submatrices.

• Each processor sends its B submatrix to the neighbor processor above (with 

wrapping around, B1 sends to B13). This process is called rolling. The source of 

the rolling is different at every step.

The results obtained after running the sequential and parallel versions of the matrix 

multiplication are shown in Table 2.
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Table 2 Execution time of the matrix multiplication

512 X 512 1024 X 1024 2048 X 2048 4096 X 4096
Sequential 2.3 28.6 283.3 6983.2

1 master+4 slaves 3.6 21.1 176.3 172&8
1 master+16 slaves 4.5 20.4 144 1355.8
1 master+64 slaves 9.6 26.2 150.9 1305.1

The results demonstrate that the parallel version does not always perform better than 

the sequential one (the parallel version of Mandelbrot always performed better than the 

sequential version). The reason why this happens is because of the overhead of starting 

each processor and of passing submatrices A and B around. Also the synchronization 

between processors will cause a slowdown for small datasets because more time is spent 

communicating then computing. Submatrix A2 has to finish its computation (from step 2) 

before being able to receive the submatrix of Al, copy it and forward it to A3. Even if A3 

has finished its computation faster than A2, it can not proceed until A2 is executing the 

piping process. As soon as the problem size is increased (the size of the matrix), the 

parallelism starts paying off: for 2,048 x 2,048 the parallel version with 16 processors 

executes the program in half of the sequential execution time (obtaining a speedup of 2). 

Figure 27 shows the speedups for the matrix multiplication.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Speedup for Matrix Multiplication

6

5

4a
3

(0

2

1

■ 1 master + 4 slaves
■ 1 master+16 slaves
■ 1 master +64 slaves

512 x 512 1024x 1024 2048 x 2048 4096 x 4096
matrix size

Figure 27: Speedup for Matrix Multiplication.

Contrary to the Mandelbrot computation, a linear speedup was obtained for a matrix 

size of 4,096 x 4,096 when using 4 processors (actually a super linear speedup of 4.089 

was obtained). The super linear speedup is sometimes obtained due to the cache effect 

from different memory hierarchies. If the processors have a big cache memory, then more 

or even all core data can fit into the cache reducing the memory access time. The benefits 

of utilizing more processors pay off as the data size grows: for a 2,048 x 2,048 matrix 

size the best speedup is obtained when using 16 slaves, but for a 4,096 x 4,096 matrix 

size using 64 slaves gives a better speedup.

Pipeline Computation 

Our active system can also be used to implement pipeline computation. The process 

of loaning a credit from a bank can be seen as an example of a pipeline computation.
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First, we have to talk to a bank employee to explain the type of credit we want and we fill 

in a credit request (stepl). Then we have to take the credit request to a financial clerk that 

would check our request, our interest and maybe credit history to determine whether we 

ean afford the credit (step2). After the financial clerk approves the request, all the credit 

loans need to be additionally approved by the bank manager (step 3). Once the manager 

approved the loan we are done. Let us assume that step 1 takes 10 minutes, step 2 takes 

20 minutes and step 3 takes 2 minutes. For one customer, it takes 32 minutes to get a loan 

from the bank. Once one customer is done with step 1 and moves to step 2, another 

customer can be helped with step 1. But still the second customer needs to wait another 

32 minutes to get a loan. That means that every 32 minutes a customer gets a loan request 

approved (we are assuming that all loans are approved). We ean improve this throughput 

by assigning 5 employees to help the customer with step 1 and 10 employees for step 2. 

This way it still takes the first customer 32 minutes to get a loan approved, but after the 

first customer, subsequent customers finish this loan process every 6 minutes, allowing 

the bank to serve more customers per day.

We have implemented this type of pipeline computation using active objects. Our 

example contains 5 processes (or 5 steps) that take 2, 6 , 6 , 8 and 2 seconds to execute 

(produce a result). Similar to the bank example, every 24 seconds a result is obtained.

Out

Figure 28: Regular pipeline computation with 5 processes.
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This regular pipeline can be optimized to get a better throughput by adding dispersers 

and collectors and replicating the processes that take more time to execute. One possible 

arrangement of these processes is shown in Figure 29:

Out
2s ►

Figure 29: Pipeline computation with dispersers and collectors.

For each process that takes 6 seconds (P2 and P3) we replaced it with 3 similar 

processes: P2 1, P2 2 and P2  3. The first process (Pi) in the pipeline takes only 2 seconds to 

execute. Once it finishes, it sends the result to P2 i. The next output of Pi is send to P2 2, 

and the next one to P2 3- By the time Pi produces the 4 output. Pa 1 finished and it can 

process this output. Likewise, the process that takes 8 seconds (P4) is replicated in 4 

similar processes. The result of our pipeline implementation is presented in Table 3.

Table 3 Results for pipeline computation

result 1 result2 result3 result4 results result6 result? result8 result9 result 10
10.78 10.105 10.064 10.06 lOTK 10.06 1&06 10.06 10.056 10.064
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The pipeline system is fed with 10 inputs every second (every second a new customer 

wants a loan) and the results show the output of each input. Every 10 seconds a new 

result is produced, instead of the initial 24 seconds. The results could have been improved 

if each process would take only 1 second to execute. That means that the process that 

takes 2 seconds would be replaced by 2 similar processes, the process that take 6 seconds 

with 6 similar processes and so on (see APPENDIX C for details of the implementation).

The three programs presented in this chapter demonstrate that developing parallel 

applications using active objects can improve the execution time of the sequential 

version. Not only that parts of the problem are executed in parallel, but also in a 

distributed manner taking advantage of the processing power of computers in the 

network.
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CHAPTER 7 

CONCLUSIONS

The Object Oriented (0 0 )  programming model has become more popular in the last 

two decades as more applications were developed and designed using this model rather 

than the procedural or functional programming model. In the 0 0  model, everything is 

considered to be an object and objects communicate with each other by sending 

messages. Some argue that this model is a good reflection of the real world and how 

objects in real world interact. Each object has state (its attributes) and behavior (its 

methods). However, all the objects are passive and all method invocations are executed in 

the caller’s thread. A passive object reuses the thread of the object that created it. 

Assume we have an object John that creates another object, woodcraf ter, that crafts 

chairs. When John, wants to get a chair from the woodcraf ter, he sends a message 

createChairO to the woodcraf ter. The woodcraf ter is using a shared 

resource, a factory, to get his supplies. When the woodcraf ter is blocked waiting 

to get the supplies from the factory, John is also blocked. Moreover the 

woodcrafter is using the John’s thread priority while waiting for the factory to 

send him the supplies he needs. The factory should execute the supply requests based 

on the woodcraf ter’s (thread) priority and not based on John’s (thread) priority.

An active object model represents a better reflection of the real world. Each object 

executes the method invocations in its own thread and only sends the result to the caller.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Moreover, communication can be done both synchronously and asynchronously (in the 

0 0  model the communication is always done synchronously). Active objects queue 

method invocations and execute them in the order of arrival.

We have modified the Java language to incorporate active objects. This could have 

been done in a number of different ways: by creating an additional library [4], by creating 

an Active interface and have the active objects inherit from this interface, or by 

implementing patterns. We have implemented our active object system by extending the 

Java language with four new keywords: active, async, on, waitfor and modifying 

the compiler to accept these new constructs. The interaction with active objects ean be 

both synchronous and asynchronous (when using the async keyword at the end of the 

method invocation). Because calls can be asynchronous (the caller continues executing 

while the active object executes the method), active objects ean be used for developing 

parallel applications. Developing parallel applications in Java can be done using threads. 

Protecting the shared resources and avoiding seeing a resource in an inconsistent state are 

done by using the synchronized keyword, but it only provides a ‘fake sense’ of 

security and its overuse ean lead to deadlocks. Active objects execute methods in their 

own thread and only one method can be executed at a time, so the object cannot ‘be seen’ 

in an inconsistent state. Unfortunately, deadlocks can still occur with active objects: i.e. 

when one active object calls a method on a second active object, which in turn calls a 

method on the first object.

Active objects do not have to reside on the same maehine, but they can be distributed 

over the network. The location of an active object is specified when the object is created 

by using the extended creation expression. Active objects represent a possible model to
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create parallel and distributed applications. The results obtained when running 

applications developed with our active object system (see Chapter 6 and Appendix) are 

encouraging. Even though in most cases no linear speedup was obtained, the fact that 

some good, decent speedups were achieved demonstrates that our proof of concept is 

feasible.

The real world has objects that are active and objects that are passive. Both of them 

can be represented in our active object model, making it a better reflection of the real 

world.
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CHAPTER 8 

FUTURE WORK

Our system demonstrates one way to implement active objects in Java by extending 

the Java language. The system that we have created has some restrictions in how it should 

be used, but can be further extended or improved to eliminate some of these restrictions. 

The following are possible extensions of our system:

• Starting and stoping the ServerManagers from the client code: Recall that the 

server managers provide the remote objects that the clients will use to create 

active objects on the server. In the current version of our active object system, all 

server managers are started through an ssh script before running the program. The 

script uses a file that contains all names of the hosts on which the server manager 

has to be started. An alternative to this approach is to start the server manager 

only when an object has to be created on that server. Each active object creation 

on a certain host should be preceded by a verification of the state of the server 

manager on that host. If the manager is not running, start it and then create the 

active object. The starting of a manager can be included in the ClientManager’s 

invokeConstructor method. Stopping/cleaning the server managers is 

currently done through an ssh script. Stopping/cleaning the server manager is a 

little more difficult, because a program stops executing in various
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ways: it reaches the end of the program, an unchecked exception like 

NullPointerException is thrown, or a System, exit method is called.

Warning the user if an asynchronous call does not have a matching waitfor : 

Once a method finishes executing its body (either reaches the end of the body or 

executes a return statement), all the asynchronous calls that returned a result that 

was not waited for are discarded (the result is ignored once it gets back to the 

client). A possible extension may be warning the user that not all asynchronous 

calls with a return value have a matching waitfor. This warning is thrown by 

the compiler during the flow phase: every time an asynchronous method with a 

return value is called an index associated with that object is incremented and 

every time a waitfor is executed for that object, the associate index is 

decremented. When the method finishes executing its body (or executes a return 

statement), all the indexes are cheek and if they are not equal to zero a warning is 

shown to the user.

Including an exception mechanism: The current version of our system does not 

forward to the client the exceptions that occurred while executing an active 

object’s method. All these exceptions are caught in the ClientManagers and cause 

the execution of a program to stop. An ActiveException base class can be created 

and all active objects’ methods should throw subtypes of this class. The 

ClientManager catches these exceptions and forwards them to the client.

Receiving out of order invocations on the same object: Let us assume that inside a 

method an active object’s method foo is called, followed by a call to the bar 

method of the same active object. Let us also assume that both foo and bar
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return a result. When waitfor statement is used for that active object, the first 

result that is obtained is the f oo return value (f oo was the first method called on 

that active object). Our system can be extended to allow receiving out of order 

invocations, that is allowing the bar result to be waited first. This can be done by 

using a future object as a placeholder for the return value of an asynchronous call 

and then simply wait for that placeholder to have its value set. Instead of waiting 

for an active instance, the waiting is done on the future object (the future object 

will know the method that was invoked and the target active object).

Keeping the active objects once they are created: Another extension could be the 

possibility of accessing from one application, the active objects that another 

application has generated, creating thus a remote object directory. In order to 

access an active object, a reference to it is needed. The sever manager can be 

modified to return a reference for a particular active object. Another possibility is 

that the server manager stores all the active objects in the remote registry.
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APENDIX

PfK)GülAA4(:CÆ)ES

A. MANDELBROT SET COMPUTATION

This section presents the parallel implementation of the Mandelbrot set computation 
using our active object system. The run time results of this parallel program were 
presented in Chapter 6. The classes used in the program are: Mandelbrot (represents the 
active object or the slave that computes the computation for a subplane), 
MandelbrotCIient (represents the master and uses the Mandelbrot class to perform the 
computation on subplanes), MandelbrotSet and CompIexNo are helper classes (first is 
used to pass the result back to the master and the second one represents a complex 
number). The details of the implementation of each class are presented below.

Mandelbrot Class

public active class Mandelbrot {
private static final int MAX = 256;
//coiig)utes the Mandelbrot set for a complex plane
public MandelbrotSet compute(Integer startLine,Integer noOfLines,

Integer disp_width,Integer disp_height. 
Float real__min, Float real_max,
Float imag_min, Float imag_max){ 

int width = disp_width.intValue(); 
int height = disp_height.intValue();

float r_min = real_min.floatValue(); 
float r_max = real__max.floatValue () ;

float i_min = imag_min.floatValue(); 
float i_max = imag__max. f loatValue () ;

// compute the scale factor 
float scale_real = (r_max-r_min)/width; 
float scale_imag = (i__max-i_min) /height;

Integer result[][] = new Integer[width] [noOfLines.intValue()] ; 
ComplexNo c;

//cojiputes the Mandelbrot value for each point
for (int y=startLine.intValue0 ;

y<noOfLines.intValue()+startLine.intValue();
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y++) (
for (int x=0;x<width;X++)(

c = new ComplexNo(r_min+((float)x*scale_real), 
i_min+((float)y*scale_imag));

result[x][y-startLine.intValue0] = cal_pixel(c);
}

}
return new MandelbrotSet(result);

}

public Integer cal_pixel(ComplexNo c) { 
int i=0;
float tmp, lengthsq=0;
ComplexNo z = new ComplexNo(0,0); 
do {

tmp = z.real*z.real-z.imag*z.imag tc.real; 
z.imag = 2*z.real*z.imag+c.imag; 
z.real = tmp;
lengthsq = z .real*z.real+z.imag*z.imag; 
i++ ;

} while ((i<MAX)&&(lengthsq<4.0));

return new Integer(i);
}

}

ComplexNo class

//the class represents a complex number 
public class ComplexNo {

public float real; 
public float imag;

public ComplexNo(float real,float imag){ 
this.real = real; 
this.imag = imag;

}

}

MandelbrotSet class

import java.io.Serializable;

public class MandelbrotSet implements Serializable{
private static final long serialVersionUID = -4704 769797805236879L;

private Integer[][] result;

public MandelbrotSet(Integer[][] result){ 
this.result = result;

}
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public Integer [][] getResultO { 
return result;

}

public void setResult(Integer[][] result) { 
this.result = result;

}
}

MandelbrotCIient class

public class MandelbrotCIient { 
private static int computerNo;
//the computers where active objects will be created 
private static String[] computerNames; 
public int map[][];

public int disp_width; 
public int disp_height;

public float real_min; 
public float real_max; 
public float imag_min; 
public float imag_max;

public String outputFile; 
public String inputFile;

static public void main(String args[]) throws Exception {
//get the available computer names 
computerNo = args.length-8 ; 
if (computerNo==0) {

System.out.println{"please specify the computers names/IPs where
the program runs");

} else {
computerNames = new String[computerNo];
for (int i=0;i<computerNo;i++){ computerNames[i] = args[8+i]; } 

//run the client code
startComputation(args);

}

}

private void init(String args[]) throws Exception! 
disp_width = Integer.parseint(args[0]); 
disp_height = Integer.parseint(args[1]);

real_min = Float.parseFloat(args[2]); 
real_max = Float.parseFloat(args[3]); 
imag_min = Float.parseFloat(args[4]); 
imag_max = Float.parseFloat(args[5]);

inputFile - args[6]; 
outputFile = args[7];

}

//load the required color map
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public void readMapFile() throws Exception{
FileReader fr = new FileReader(new File(inputFile)));
BufferedReader br = new BufferedReader(fr); 
map - new int[3][257]; 
for (int i=0;i<257;i++){

StringTokenizer st = new StringTokenizer(br.readLine()) 
map[0][i] .= Integer.parseint (st.nextToken 0) ; 
map[l][i] = Integer.parseint(St.nextToken0); 
map[2][i] = Integer.parseint(st.nextToken());

}
br.close()

}

public static void startComputation(String[] args) throws Exception] 
System.out.println("Client started!"); 
long start = System.currentTimeMillis();

MandelbrotCIient mandel = new MandelbrotCIient();
//init the varibles 
mandel.init(args);

//int how many lines of the picture should be passed to each slave 
int nrofLines = mandel.disp_height/computerNo;

int startLine = 0;

//create the active objects
Mandelbrot[] mandelbrot = new Mandelbrot[computerNo]; 
for (int i=0; KcomputerNo; i++) {

mandelbrot[i] = new Mandelbrot() on computerNames[i]; 
mandelbrot[i].compute(startLine,nrofLines,mandel.disp_width,

mandel.disp_height,mandel.real_min, 
mandel.real_max, mandel.imag_min, 
mandel.imag_max) async;

startLine+=nrofLines ;
}

//while the slaves compute, read the map file 
mandel.readMapFile();

FileWriter fw = new FileWriter(mandel.outputFile);
BufferedWriter bw = new BufferedWriter(fw);

String l="P3\n"+mandel.disp_width+"+mandel.disp_height+"\n255\n"; 
bw.write(1);

//now wait for the results 
MandelbrotSet mandelSet=null; 
for (int i=0;i<computerNo;i++){

waitfor mandelbrot[i] mandelSet;

Integer[][] result = mandelSet.getResult(); 
for (int y=0;y<nrofLines;y++)

for (int x=0;x<mandel.disp_width;X++)
bw.write(mandel.map[0][result[x][y].intValue()]+" " 

imandel.map[1][result[x][y].intValue()]+" " 
iraandel.map[2][result[x][y].intValue()]+" ");
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}

bw.write("\n"); 
bw.close 0 ;

long end = System.currentTimeMillis(); 
long duration = end-start;
System.out.println("Client finished in "+duration+" millis");

}
}

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B. Matrix Multiplication

This section presents the parallel implementation of the Matrix multiplication using 
our active object system. The run time results of this parallel program were presented in 
Chapter 6. The classes used in the program are: MatrixMultObject (represents the active 
object or the slave that computes the multiplication on submatrices), MantrixMultClient 
(represents the master and uses the MatrixMultObject class to perform the computation 
on submatrices) and Matrix (a helper class used to pass the result back to the master). 
The details of the implementation of each class are presented below.

Matrix class

import java.io.Serializable;
public class Matrix implements Serializable {

private static final long serialVersionUID = -4476439962181063471L; 
int[][] matrix;

public Matrix]){}

public Matrix(int[][] matrix)] 
this.matrix = matrix;

}

public int[][] getMatrix(){ 
return matrix;

}
}

MatrixMultObject class

public active class MatrixMultObject {

//the neighbour form the right (with wrap around)
MatrixMultObject right;

//the neighbour from above (with wrap around)
MatrixMultObject up;

int [ ] [] a; //the initial A submatrix for this process
int[] [] b; //the initial B submatrix for this process
int [ ] [] t; //submatrix A received from the neighbor after pipeing
int[] [] c; //partial sum
int [ ] [] newB; //submatrix B received from the neighbor after rolling 
int n; //nr of rows 
int m; //nr of columns 
Integer rank;

int rolling = 0;

public MatrixMultObject(int[][] a, int[][] b,Integer rank)]
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this.a = a; 
this.b =b; 
this.rank = rank;

//.init c 
n = a.length; 
m = a [0].length; 
c = new int [n] [m] ; 
this.newB = b; 
this.t = a;

}

public void setNeighbours(MatrixMultObject right,
MatrixMultObject up){

this.right = right; 
this.up = up;

}

private boolean amlSource(int procNr, int rank,int i){ 
int sqrtProc = (int) Math.sqrt(procNr); 
int row = rank/sqrtProc; 
int col = rank%sqrtProc;

if (col==(row+i)%sqrtProc){ 
return true;

}

return false;
}

private boolean amILast(int procNr, int rank, int i) { 
int sqrtProc = (int) Math.sqrt(procNr);

int previousStep = (i-l+sqrtProc)%sqrtProc; 
if (amlSource(procNr, rank, previousStep)) { 

return true;
} else {

return false;
}

}

public boolean startPipeing(Integer i, Integer procNr) { 
t= -copyMatrix(a); 
sendRight(i,procNr); 

return true;
}

public boolean pipe_A(Integer i,Integer procNr){ 
sendRight(i,procNr); 

return true;
}

public void compute(Integer step. Integer procNr){ 
b = newB;

/ / m u l t i p l y  a n d  a d d :
int i, j, k;

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for (i = 0;i < n;i++) {
for (j = 0;j < m;j++) {

for ( k=0 ; k<iti; k++) {
c[i][j] += t[i][k]*b[k][j];

}
}

}
}

public boolean startRolling(Integer i. Integer procNr){ 
sendUp(i,procNr); 

return true;
}

public boolean roll_B{Integer i. Integer procNr){ 
sendUp(i,procNr) ; 

return true;
}

public Matrix getResult(){ 
return new Matrix(c);

}

public void receiveFromLeft(int[][] t){ 
this.t = t;

}

public void receiveFromBelow(int[][] matrix){ 
this.newB = matrix;

}

public void sendRight(Integer i, Integer procNr){
if (!amlLast(procNr.intValue0, rank.intValue(), i .intValue())){ 

right.receiveFromLeft(t) async; 
boolean finished = right.pipe_A(i,procNr);

}
}

public void sendUp(Integer i, Integer procNr){ 
up.receiveFromBelow(b) async;
boolean lastRolling = amlLast(procNr,rank.intValue(),i); 
if (!lastRolling) {

boolean finished = up.roll_B(i,procNr);
}

}

private int[][] copyMatrix(int[][] matrix){
int[][] newMatrix = new int[matrix.length][];

for (int 1=0;i<matrix.length;i++){
newMatrix[i] = new int[matrix[i].length];
System.arraycopY(matrix[i],0,newMatrix[i],0,matrix[i].length);

}
return newMatrix;
}

public Integer getRank{){
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return rank;
}

MatrixMultClient class

public class MatrixMultClient { 
public static int computerNo; 
private static String[] computerNames;

public static int[][] readMatrix(String fileName) throws E x c e p t i o n ]  

int[][] matrix=null;
BufferedReader br = new BufferedReader(new FileReader(fileName)); 
String str = b r . r e a d L i n e ] ) ;
StringTokenizer st = new StringTokenizer(str); 
int n = Integer.parseint(st.nextToken ());

matrix = new int[n][n];

for (int i=0;i<n;i++)] 
str=br.readLine(); 
st = new StringTokenizer (str); 
for (int j=0;j<n;j++){

matrix[i][j] = Integer.parseint(st.nextToken());
}

}

return matrix;
}

//gets the sub matrix that is going to be send to the process number 
/ / s e n d  a s  a p a r a m e t e r
private static int[][] getSubMatrix(int matrix[][],int matrixSize,

int rank, int nrOfProcs )] 
int newSize = matrixSize/(int)Math.sqrt(nrOfProcs) ; 
int[][] subMatrix = new int[newSize][newSize]; 
int row, col;
for (int i=0 ; KnewSize; i++) { 

for (int j=0;j<newSize;j++)]
row = i+newSize*(rank/(int)Math.sqrt(nrOfProcs)); 
col = j+newSize*(ranfc%(int)Math.sqrt(nrOfProcs)) ; 
subMatrix[i][j] = matrix[row][col];

}
}

return subMatrix;
}

private static String[] readCoraputerNames(String file,int computerNo)
throws lOException]

File f = new File(file);
FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(fr);
String[] computers = new String[computerNo]; 
for (int i=0;i<computerNo;i++) ]
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computers[i] = br.readLine();
}

return computers;
}

public static void main(String args[]) throws Exception]

if (args.length<4) ]
System.out.println("Usage : MatrixMultClient fileMatrixA

fileMatrixB fileMatrixC n computerNames ");
System.exit(1);

}

int n = Integer.parseint(args[3]);

int[][] a = readMatrix(args[0]);
int[][] b = readMatrix(args[1]);
computerNo = Integer.parseint(args[5]);
computerNames = readComputerNames(args[4],computerNo);

long start = System.currentTimeMillis();
System.out.println("starting the computation");

start(a,b,n,args[2]);

long duration = System.currentTimeMillis() - start;

System.out.println("Client finished in :"+duration+ " millis");
}

public static void start(int[][] a, int[][] b, int n,String fileC)
throws Exception]

int[][][] subMatrixA = new int[computerNo][][]; 
for(int i=0;i<computerNo;i++)]

subMatrixA[i] = getSubMatrix(a, n, i, computerNo);
}

int[][][] subMatrixB = new int[computerNo][][]; 
for(int i=0;i<computerNo;i++)]

subMatrixB[i] = getSubMatrix(b, n, i, computerNo);
}

MatrixMultObject]] instances = new MatrixMultObject[computerNo]; 
for(int i=0;i<computerNo;i++)]

instances[i] = new MatrixMultObject(subMatrixA[i],subMatrixB[i]
,new Integer(i)) 
on computerNames[i] ;

}

setNeighbours(instances) ;

for (int i=0;i<Math.sqrt(computerNo);i++)] 
for (int j=0;j<computerNo;j++) ]

if (amlPipeSource(computerNo,j+1, i)) ] 
instances[j].startPipeing(new Integer (i),

new Integer (computerNo)) async;
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boolean finished = false; 
waitfor instances[j] finished;

}
}

for(int j=0;j<computerNo;j++){
instances[j].compute(new Integer(i),

new Integer(computerNo)) async;
}

//only roll if it’s not the last iteration 
if (i<Math.sqrt(computerNo)-1) {

for(int j=0;j<compUterNo;j++){
if (amlPipeSource(computerNo,j+1, i)) {

boolean ready = instances[j].startRolling(new Integer(i),
new Integer(computerNo));

}
}

}

}

//get the results 
for(int j=0;j<computerNo;j++){ 

instances[j].getResult() async;
}

Matrix[] results = new Matrix[computerNo]; 
for (int i=0;i<computerNo;i++) { 

results[i] = new Matrix]);
}

Matrix tmp=null;
//wait for the results 
for(int j=0;j<computerNo;j++){ 

waitfor instances[j] tmp; 
results[j] = tmp;

}

int sqrtCompNo = (int)Math.sqrt{computerNo); 
int subMatrixSize = n/sqrtCompNo;

//System.out.println("PRINTING THE RESULTS!!!!"); 
printResult(results, subMatrixSize, n,fileC);

}

private static void printResult(Matrix[] results,int subMatrixSize,
int matrixSize,String fileName) 

throws Exception] 
int sqrtCompNo = (int)Math.sqrt(computerNo);

//create matrix
int[][] c = new int[matrixSize][matrixSize];

for (int i=0;i<results.length;i++)] 
int row = i/sqrtCompNo;
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int col = i%sqrtCompNo;

for (int j=0;j<subMatrixSize;j++) 
for (int k=0;k<subMatrixSize;k++)

c[row*subMatrixSize+j] [col*subMatrixSize+k]=
(results[i].getMatrix())[j][k];

}

BufferedWriter bw = new BufferedWriter(new FileWriter(fileName)); 
String str;
bw.write(matrixSize+"\n"); 
for(int i=0;i<matrixSize;i++){ 

str="";
for (int j=0;j<matrixSize;j++){ 

str+=c[i][j]+" ";
}
str+="\n"; 
bw.write(str);

}
bw.close 0 ;

}

/ / s e t  t h e  n e i g r h b o r s  f o r  e a c h  p r o c e s s
private static void setNeighbours(MatrixMultObject[] i n s t a n c e s ) ]  

for (int i=0;i<computerNo;i++)]
int right = getRight{i, computerNo);
int up = getUp(i, computerNo);
instances[i].setNeighbours(instances[right],

instances[up]) async;
}

}

private static int getRight(int rank, int procNr){ 
int sqrtProc = (int)Math.sqrt(procNr); 
int row = rank/ s q r t P r o c ;
int col = rank% sqrtProc;
int newCol = (col+l)% sqrtProc; 

return row*sqrtProc+newCol;
}

private static int getUp(int rank,int p r o c N r ) ]  

int sqrtProc = (int)Math.sqrt(procNr); 
int row = rank/ sqrtProc;
int col = rank% sqrtProc;
int newRow = (row-l+sqrtProc)%sqrtProc; 

return newRow*sqrtProc+col;
}

private static boolean amlPipeSource{int procNr, int rank,int i)] 
int j ;
int sqrtProc = (int)Math.sqrt(procNr); 
int mod = i % sqrtProc;
int div = i / sqrtProc;

int rankMod = (rank - 1) % sqrtProc;
int rankDiv = (rank - 1) / sqrtProc;
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for (j = 0;j < sqrtProc;j++) {
if (rankMod == mod && rankDiv == div) { 

return true;
} else {
mod = (mod + sqrtProc + 1) % sqrtProc; 
div = (div + sqrtProc + 1) % sqrtProc;

}
}

return false;
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c. Pipeline Computation

This section presents the parallel implementation of the Pipeline computation using 
our active object system. The run time results of this parallel program were presented in 
Chapter 6. The classes used in the program are: Process (represents an abstract concept 
of process), Disperser (extends Process and distributes the input to the available 
processes). Collector (extends Process and collects the output from different proceses 
and send them to one process), WorkingProcess (extends Process and represents the 
process that actually does some computation) and Pipeline (represents the class that feeds 
the pipeline with input). The details of the implementation of each class are presented 
below.

Process class

public active class Process {
public String doProcessing(Integer packageNr){ 

return
}

}

Disperser class

public active class Disperser extends Process] 

private Integer nrOfProcesses;
private ArrayList processes = new ArrayListO; 
private int index=0; 
private String computerName;

public Disperser(Integer nrOfProcesses,Integer timeOelay,
Process nextProcess,String computerName)] 

this.nrOfProcesses = nrOfProcesses; 
this.computerName = computerName;
//create the collector
Collector collector = new Collector(nextProcess) on computerName; 

//create the Instances
for(int i=0;i<nrOfProcesses.intValue();i++)]

WorkingProcess wp = new WorkingProcess(timeDelay,collector,
new Boolean(false), 
computerName) 

on computerName;
processes.add(wp);

}
}

public Disperser(Integer nrOfProcesses,Integer timeDelay,
String computerName)] 

this.nrOfProcesses = nrOfProcesses; 
this.computerName = computerName;

/ / c r e a t e  t h e  c o l l e c t o r
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Collector collector = new Collector{) on computerName;

//create the instances
for(int i=0;i<nrOfProcesses.intValue();i++){

WorkingProcess wp = new WorkingProcess(timeDelay,collector,
new Boolean (false), 
computerName) 

on computerName;
processes.add(wp);

public String doProcessing(Integer packageNr) {

//send the request to the appropiate working process
int i=index%nrOfProcesses.intValue();
index++;

WorkingProcess wp = (WorkingProcess)processes.get (i); 
wp.doProcessing(packageNr,time) async;
String result=""; 
waitfor wp result;
result="WP"+i+" from "+computerNâme+" --- "tresult;

return result;
}

Collector class

public active class Collector extends Process{

private Process nextProcess;
private int waitingForPackageNr = 0;
private ArrayList pendingList = new ArrayList();

private long timer;

public Collector(Process nextProcess){ 
this.nextProcess = nextProcess; 
timer = System.currentTimeMillis();

}

public Collector(){
this.nextProcess = null;
timer = System.currentTimeMillis();

}

public String doProcessing{Integer packageNr) { 
String result=""; 
if (nextProcess!=null){

/ / c h e c k  i f  i t ' s  t h e  r i g h t  p a c k a g e
if (packageNr.intValue0 ==waitingForPackageNr) { 

waitingForPackageNr++;
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//send the packageNr to the next process 
nextProcess.doProcessing(packageNr) async; 
waitfor nextProcess result;

result = " collector "+result;
//check if the next package is in the pending list 
checkPending();

} else {
pendingList.add(packageNr);

}
} else {

long endtime = System.currentTimeMillis();
System.out.println("S E N D I N G  O U T  T H E  P A C K A G E : "  

tpackageNrt" in "+ (timer -endtime)+" milllis" ); 
result = " collector "; 
timer = System.currentTimeMillis();

}
return result;

}

private void checkPending(){
for (int i=0;i<pendingList.size();i++){

Integer packageNr = (Integer) pendingList.get(i); 
if (packageNr.intValue0 ==waitingForPackageNr){ 

doProcessing(packageNr); 
waitingForPackageNr++;

}
}

}
}

Pipeline class

public class Pipeline {

private ArrayList processList = new ArrayList(); 
private ArrayList computerNames = new ArrayList(); 
private int smallestDelay = 100000;

public static void main(String args[]) throws E x c e p t i o n ]  

if (args .length !=1) {
System.out.println("Usage: java Pipeline inputfile"), 
System.exit(1);

}
Pipeline pipeline = new Pipeline(); 
pipeline.start(args[0]);

}

private void start(String inputFile) throws Exception] 
System.out.println{"Client started");
//read the nr of processes
FileReader fr = new FileReader(inputFile); 
BufferedReader br = new BufferedReader(fr);
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string processes = br.readLine(); 
getProcesses(processes);

String computers = br.readLine(); 
getComputerNames(computers);

int n= processList.size{);

Process lastlnstance=null;
Integer processDelay = ( Integer)processList.get(n-1);
String computerName = (String)computerNames.get(n-1);

if (processDelay.intValue0 /smallestDelay>l) {
//create a disperser
lastlnstance = new Disperser(

new Integer(processDelay.intValue()/smallestDelay), 
new Integer(smallestDelay), 
computerName) on computerName;

} else {
(String)computerNames.get(n-1));

//create a working process
lastlnstance = new WorkingProcess(

(Integer)processList.get(n-1), 
new Boolean(true), 
computerName) on computerName;

}

for (int i=n-2;i>=0;i--) (
processDelay = (Integer)processList.get(i); 
computerName = (String)computerNames.get(i); 
if (processDelay.intValue0 /smallestDelay>l) {

//create a disperser 
lastlnstance = new Disperser]

new Integer(processDelay.intValue()/smallestDelay) 
new Integer(smallestDelay),
lastlnstance, computerName) on computerName;

} else {
//create a working process
lastlnstance = new WorkingProcess(

(Integer)processList.get(n-1),lastlnstance, 
new Boolean(false),computerName) on computerName;

}
}

System.out.println("starting the computation:"); 
long startTime = System.currentTimeMillis();

//start feeding the pipeline 
for (int i=0;i<10;i++){

lastlnstance.doProcessing(new Integer(i)) async;
Thread.sleep(100);

}

//now get the resuits
String result =
for (int i=0;i<10;i++){

waitfor lastlnstance result;
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System. out.println ( "H’or package : "+i + " : : : "+result+
(endTime-startTime)) ;

}

System.eut.println("Client finished");

}

private void getProcesses(String processes)]
StringTokenizer st = new StringTokenizer(processes); 
while (st.hasMoreTokens()) {

String token = st.nextToken();
Integer delay = new Integer(token); 
processList.add(delay); 
if (smallestDelay>delay.intValue0) {

smallestDelay = delay.intValue();
}

}
}

private void getComputerNames(String computerString){
StringTokenizer st = new StringTokenizer(computerString); 
while (st.hasMoreTokens()) ]
String token = st.nextToken(); 
computerNames.add(token);

}
}

1 1 1
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