Induction of Differentiation of Dental Pulp-Derived Mesenchymal Stem cells (DPSC)

Aubrey Young

University of Nevada, Las Vegas, aubreyyoungdmd@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

Part of the Biomechanical Engineering Commons, Biomedical Commons, Biomedical Devices and Instrumentation Commons, Cell and Developmental Biology Commons, Cells Commons, and the Dentistry Commons

Repository Citation

Young, Aubrey, "Induction of Differentiation of Dental Pulp-Derived Mesenchymal Stem cells (DPSC)" (2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2316.
https://digitalscholarship.unlv.edu/thesesdissertations/2316

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
INDUCTION OF DIFFERENTIATION OF DENTAL PULP-DERIVED MESENCHYMAL STEM CELLS (DPSC)

By

Aubrey Young

Bachelor of Science in Dental Hygiene
Weber State University
1999

Doctorate of Dental Medicine
University of Nevada, Las Vegas
2012

A thesis submitted in partial fulfillment of the requirements for the

Master of Science - Oral biology

School of Dental Medicine
Division of Health Sciences
The Graduate College

University of Nevada, Las Vegas
December 2014
We recommend the thesis prepared under our supervision by

Aubrey Young

entitled

Induction of Differentiation of Dental Pulp-Derived Mesenchymal Stem Cells (DPSC)

is approved in partial fulfillment of the requirements for the degree of

Master of Science - Oral Biology

School of Dental Medicine

Karl Kingsley, Ph.D., Committee Chair
James Mah, D.D.S., Committee Member
Cliff Seran, D.M.D., Committee Member
Rhonda Everett, D.D.S., Committee Member
Tim Bungum, Dr. P.H., Graduate College Representative
Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College

December 2014
ABSTRACT

Induction of Differentiation of Dental Pulp-Derived Mesenchymal Stem Cells (DPSC)

By

Aubrey Young

Dr. Karl Kingsley, Examination Committee Chair
Associate Professor of Biomedical Sciences
Director of Student Research
University of Nevada, Las Vegas
School of Dental Medicine

Mesenchymal stem cells are derived from a variety of human tissues and are being bioengineered and studied for possible uses in the advancement of medicine. Recent efforts are being focused on Dental Pulp Stem Cells (DPSC’s) due to the accessibility of this tissue. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates.

The objective of this study was to evaluate the potential to induce differentiation of DPSC isolates in vitro by the adding of exogenous growth factors (GF), and by the coating of specific extracellular matrix molecules (ECM) onto the surface of tissue-culture dishes. Photomicroscopy and mRNA analysis demonstrated the addition of TGF-β1 notably increased pluripotency biomarkers in DPSC lines. The addition of
Dexamethasone (Dex) or plating on Laminin-5 (LN5) was correlated with changes to cellular morphology and cell size in different subsets of cells. RNA isolated from these DPSCs for relative endpoint (RE) reverse transcription polymerase chain reaction (RT-PCR) revealed mRNA DPSC specific intracellular biomarkers (Klf4, Sox-2, Bin-1, Rnf12, Oct-4 and NANOG) and the cell surface marker (CD133) were enhanced following the administration of TGF-β1 and were differentially down-regulated following Dexamethasone and Laminin-5 administration. This study provides some initial evidence that randomly selected DPSC isolates may be induced by established protocols to change phenotype and expression of pluripotent biomarkers with variable susceptibility between differing types of DPSCs. More studies will be needed to determine the range of cell types that can be successfully re-engineered in laboratory settings.
ACKNOWLEDGEMENTS

I would like to thank Dr. Karl Kingsley, my committee chair, for introducing me to this topic. Thank you for your time, patience and optimism. I would also like to thank my committee members, Dr. James Mah, Dr. Cliff Seran, Dr. Rhonda Everett, and Dr. Tim Bungum for your support. Thank you for your interest and dedication to this project. I would like to thank Kelcey Loveland, Marah Culpepper, and Mehrnaz Khadiv for your time and help in the lab.
DEDICATION

To my sons Dylan and Ethan,

Thank you for supporting me throughout my education; thank you for always believing in me; thank you for allowing me to achieve my goals and dreams; thank you for sharing me and my time with the dental profession.

I appreciate you more than words can say and will love you always and forever.
TABLE OF CONTENTS

THESIS APPROVAL..ii

ABSTRACT ..iii

ACKNOWLEDGEMENTS ...v

DEDICATION ..vi

TABLE OF CONTENTS ..vii

CHAPTER 1 INTRODUCTION ..1
 Background and Significance ...1
 Statement of Purpose ..2
 Research Questions and Hypotheses ..3

CHAPTER 2 LITERATURE REVIEW ...4
 Sources ...5
 Isolation ...6
 Culture and Cryopreservation ..7
 Conclusions ..8

CHAPTER 3 METHODOLOGY ...10
 Human Subjects ...10
 DPSC Isolation and Culture ...10
 RNA Isolation and RT-PCR ...11
 Baseline Growth and Doubling Time ..12
 Experimental Assays ..12
 Materials ...13
CHAPTER 1

INTRODUCTION

Background and Significance

The isolation of mesenchymal stem cells (MSC) is an important scientific endeavor in the health sciences [1, 2]. Although much is known about embryonic stem cells and their regenerative capacity, recent efforts have focused on MSC because they are far less controversial, and more importantly, may be derived directly from children and adult patients [3, 4]. Many tissues, including bone marrow, peripheral blood, heart tissue, and lung tissue, harbor populations of viable MSCs but more recent efforts have focused on more accessible sources such as adipose tissue and dental pulp from extracted teeth [5-9].

A growing body of evidence has suggested that dental pulp-derived stem cells (DPSC) are among the most accessible of human stem cell populations [10]. DPSCs are originally formed from both epithelial and mesenchymal stem cell progenitors, the epithelial-derived ameloblasts and the mesenchymal-derived dentin and bone and soft tissues of the periodontium [11]. Although they cannot form all cells and tissues of the body, these DPSCs are capable of differentiation into more than one cell type and are therefore classified as multipotent stem cells [12]. Studies have now confirmed DPSC, under specific conditions and stimuli, may be capable of differentiating into adipocytes, neurons, osteoblasts and chondrocytes although these specific methods could vary by whether the DPSC were derived from the apical part of the papilla (AP-DPSC), the dental
follicle (DF-DPSC) surrounding third molars, or the periodontal ligament (PDL-DPSC) [13,14].

Two nation-wide commercial companies now offer a service for processing and storing DPSC from either primary teeth or extracted adult teeth, but little information is known about the differentiation potential of these DPSC isolates [15]. Hung E. et al. found that premolars and other intact teeth extracted from orthodontic patients ages 18-25 exhibited the greatest likelihood for obtaining viable DPSC isolates [16]. These studies, however, did not evaluate the potential to induce differentiation in these uncommitted DPSC lines using established methods and protocols.

Statement of Purpose

The objective of this study was to evaluate the potential to induce differentiation of DPSC isolates originally derived from extracted teeth of adult orthodontic patients. The working hypothesis for this project was that any DPSC isolate, derived from vital, intact permanent adult teeth, could be induced towards differentiation in vitro using preplated cell-matrix adhesion molecules and the administration of exogenous growth factors [17, 18].

Orthodontic patients whose treatment includes extractions of teeth should be educated about the opportunity they have to have their DPSCs banked and stored for possible use in their future. As orthodontic professionals we have an ethical responsibility to educate our patients about the benefits of stem cell banking. Understanding more about how to create usable stem cell isolates will further the progress of regenerative medicine and will better enable dental care providers to offer valuable education to our patients.
Research Questions and Hypotheses

1. Dental pulp-derived mesenchymal stem cells (DPSC) can be directed towards a differentiated phenotype in vitro.

 H_0: No, potential DPSC isolates cannot be directed towards differentiation \textit{in vitro}.

 H_A: Yes, potential DPSC isolates can be directed towards differentiation \textit{in vitro}.

2. Specific ECM and GF promote differentiation of dental pulp stem cells \textit{in vitro}.

 H_0: No, specific ECM and GF do not promote differentiation of DPSC \textit{in vitro}.

 H_A: Yes, specific ECM and GF do promote differentiation of DPSC \textit{in vitro}.
Many organs and tissues require the ability to replace cells as a normal part of the aging process, as well as in response to damage, injury or infection [19]. Research has now revealed that many of these organ and tissue systems have resident populations of somatic stem cells, which are capable of asymmetrical replication [20]. The process of asymmetric replication results in two daughter cells – one that retains the undifferentiated stem cell properties and the other that is capable of replacing dead, dying or injured cells [21].

Each of the primary germ layers of the developing embryo, ectoderm (or outside layer), endoderm (or inside layer) and mesoderm (or middle layer) give rise to tissues that will ultimately host their own populations of resident stem cells [22]. These tissue-specific stem cell populations may be further classified, based upon their potential for differentiation into the various cell types found within the tissue or organ system [23]. Although totipotent stem cells from embryonic tissues are capable of differentiating into every possible cell type found within the body, these are typically harvested from developmental or fetal tissues – which may limit their availability and potential for therapeutic use [24]. Most adult tissues host other types of stem cells, including multipotent, pluripotent and oligopotent stem cells capable of differentiation into more than one cell type, as well as unipotent stem cells that produce specialized cells of only one type [25].
Although adult stem cells may be harvested and retrieved from a variety of tissues and organs, this may involve costly and invasive procedures, such as bone marrow or liposuction aspiration [26]. However, recent clinical studies have shown that dental pulp from extracted teeth may provide an abundant supply of highly proliferative, multipotent Mesenchymal Stem Cells (MSC), which are now known to be capable of regenerating a variety of human tissues including bone and other dental structures [27]. In addition, dental pulp-derived stem cells (DPSC) have also been demonstrated to be capable of differentiating into many other lineages, including osteoblasts, chondroblasts, adipocytes, as well as vascular and neural tissues [28].

Sources

Many factors are known to influence DPSC quantity and quality, although one of the most basic may be the source of the dental pulp itself [14]. For example, some evidence has recently emerged demonstrating that stem cells from human exfoliated deciduous (or primary) teeth (SHED) may exhibit faster growth and proliferation, as well as a more expansive array of potential cellular phenotypes and differentiation potentials [29]. Additionally, SHED may also exhibit slightly greater rates of survival after short-term freezing and storage than DPSCs derived from extracted, permanent (adult) teeth [30]. However, due to the recent nature of these discoveries, the vast majority of the population is not able to make use of these reservoirs as they have already developed their permanent dentition, and those currently in need of stem cell therapy are unlikely to have had an opportunity to save any viable dental pulp from exfoliated primary teeth [31]. Moreover, some studies have provided evidence that the quantity of healthy pulp
derived from primary or deciduous teeth may, in fact, be insufficient to productively harvest SHED [32].

Based upon this knowledge, many researchers are now focused on exploring the role of permanent or adult teeth as a reservoir for the acquisition of DPSCs [33]. One possible source of DPSCs from healthy, permanent, adult tooth extraction are orthodontic clinics, where extraction of premolars and molars remains common practice among the four million patients in the United States often approaching or exceeding 30% of all patients [34]. Although no comprehensive review of DPSC by tooth type has been performed, recent work by this group has revealed that tooth type did not affect either quality or quantity of DPSC isolates, however, the age of donor was found to be a significant factor [16]. In fact, the most recent study provides further evidence that permanent teeth extracted from younger donors may yield DPSCs with higher growth, proliferation and differentiation without regard to tooth type [35].

Isolation

Other factors may also influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed [16]. For example, the two most common methods used for DPSC isolation are enzymatic dissociation (DPSC-ED), where enzymes are used to digest the matrix and other biological materials comprising the dental pulp, and direct outgrowth (DPSC-OG) which allows for DPSCs to naturally dissociate from the pulp over the course of several weeks in laboratory cultures [36]. Some studies have demonstrated that DPSC-ED are more likely to give rise to heterogeneous populations of faster growing cells due to the
enzymatic activity that may facilitate release of DPSC embedded within this matrix [37]. However, other studies have suggested that cellular damage or destruction may result from using this method, suggesting that DPSC-OG may be a less a destructive alternative, although this tends to give rise to fewer and largely homogeneous DPSC populations with more limited differentiation potential [38]. Research from this group confirmed these findings and has used the direct outgrowth method for all subsequent isolation procedures [15].

Within these heterogeneous populations of DPSC derived from the pulp of permanent dentition, there are more specific sub-populations that include stem cells from the apical papilla (SCAP), dental follicle (DFSC), periodontal ligament (PDLSC), as well as non-specific DPSCs [39,40]. The dental papilla contributes to tooth formation and becomes part of the dental pulp tissue in the mature dentition. Stem cells isolated from the dental papilla (SCAP) have been demonstrated to produce dentin and cementum in animal models and have been shown to express comparatively higher levels of the survivin protein, as well as a unique cell surface marker (CD24) not found in other dental derived stem cells [41].

However, stem cells have also been isolated from the dental follicle, more specifically from the peridontium surrounding third molars prior to eruption, which are capable of differentiation into bone lineages with expression of osteocalcin and bone sialoprotein, and can be separated based upon their comparatively higher expression of insulin-like growth factor (IGF-2) [42]. Finally, stem cells derived from the periodontal ligament (PDLSC) express the biomarkers STRO-1 and CD146 and are capable of forming cementum-like cells, adipocytes and collagen forming cells [43]. Other research
from this group has confirmed these findings, suggesting that multiple sub-populations and lineages may be derived from dental pulp and the associated tissues that has distinct phenotype and differentiation capabilities and potential [44].

Culture and Cryopreservation

Finally, other research has suggested that ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates [45]. For example, there is some evidence to suggest that no serum (serum-free) media may facilitate the preferential selection and expansion of DPSC bearing specific stem cell biomarkers, while other studies found similar results using low or limited serum media [46,47]. In addition, the selection of early- versus late-passage populations may also preserve a more diverse array of potential DPSC sub-populations, which has been repeatedly confirmed in more recent studies [48-51]. Finally, some evidence suggests that cryopreservation methods and materials may also directly influence the survival rate and therapeutic potential of DPSC, suggesting more research into this area may be needed [52-54].

Conclusions

Although there are several for-profit organizations that have begun to offer services specific for the extraction, processing and long-term storage of DPSC, evidence based recommendations are limited regarding the viability and potential applications of DPSCs in order to provide patients (and parents) interested in banking these tissues for future possible usage. Due to the delicate nature of the isolation, culture and storage
process, extraction and processing fees, combined with the additional monthly long-term storage, may result in costs that exceed many thousands of dollars before (or if) these cells are needed. More research, however, will be needed for dental researchers and clinicians to more fully explore the feasibility and potential for isolating and culturing DPSCs extracted from adult human teeth in order to provide more accurate and informed advice for this newly developing field of regenerative medicine.
CHAPTER 3

METHODOLOGY

Human Subjects

This original protocol for this study titled “Isolation of Non-Embryonic Stem Cells from Dental Pulp” at the University of Nevada, Las Vegas School of Dental Medicine (UNLV-SDM) dental clinic was approved by the UNLV Office of Research Integrity Human Subjects (OPRS#0907-3148) in February 2010 [15, 16]. In brief, the samples for this study were isolated from patients that were randomly recruited by members of the UNLV-SDM clinic during their dental visits between February and June 2010. Informed Consent was required and was conducted onsite at the time of study recruitment. Inclusion criteria: All patients were required to be consenting adults (> 18 years old) who agreed to participate. In addition, all dental pulp samples were collected from subjects with sound, unrestored, vital teeth (teeth that have healthy pulp tissue), who were already scheduled to have one or more extractions that were necessary for oral health, as determined by the clinical faculty member in charge. Exclusion criteria: Any subject under eighteen (18), any subjects scheduled for dental extractions involving compromised pulp, and any subject that refused to donate their extracted teeth or participate in this study.

DPSC Isolation and Culture

The teeth included in this retrospective study were originally extracted due to impaction (e.g., third molars) or crowding (e.g., premolars extracted for orthodontic treatment). Following extraction, the teeth were sectioned at the cemento-enamel junction
(CEJ) using a diamond rotary disc and the dental pulp was removed with an endodontic broach and then immediately placed into sterile microcentrifuge tubes containing 1X phosphate buffered saline (PBS) and transferred to the laboratory for culture. Tubes were pre-assigned a unique, randomly-generated number to maintain patient confidentiality and to prevent research bias. The dental pulp samples were then transferred to a biomedical laboratory for processing and culture using the direct outgrowth (DPSC-OG) method [37, 55]. In brief, the PBS containing extracted dental pulp was centrifuged at 2.1 relative centrifugal force (RCF) and then resuspended in 1.0 mL of RPMI-1640 medium from HyClone (Logan, UT) with 2mM L-Glutamine, adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, and 1.0 mM sodium pyruvate. Media was supplemented with 1% Penicillin (10,000 units/mL), Streptomycin (10,000 mg/mL) solution and 10% fetal bovine serum (FBS), obtained from HyClone (Logan, UT). Cells were cultured in 75 cm2 BD Falcon tissue-culture treated flasks (Bedford, MA) at 37°C and 5% CO2 in humidified chambers. Media was changed every 48 hours until adherent cells reached 70% confluence. Cells were subsequently passaged at a 1:4 ratio for a minimum of ten passages.

RNA Isolation and RT-PCR

To determine if the cells from each dental pulp isolate (remaining after ten passages) were dental pulp stem cells (DPSC), RNA was isolated from 1.5 x 10^7 cells of each of the experimental cell lines, using ABgene Total RNA Isolation Reagent (Epsom, Surrey, UK) in accordance with the procedure recommended by the manufacturer [56]. RNA concentration and purity were calculated using UV spectroscopy. RT-PCR was then performed on total RNA using the ABgene Reverse-iT One-Step RT-PCR Kit.
(ReadyMix Version) and a Mastercycler gradient thermocycler (Eppendorf: Hamburg, Germany) using the mesenchymal stem cell (MSC) primers for CD44, CD133, NANOG, Oct4, Sox-2, Bin1, Rnf12, and Klf4 synthesized by SeqWright (Houston, TX), as previously described [15,16,57]. Reaction products were separated by gel electrophoresis using Reliant 4% NuSieveR 3:1 Plus Agarose gels (Lonza: Rockland, ME). Bands were visualized by UV illumination of ethidium-bromide-stained gels and captured using a Kodak Gel Logic 100 Imaging System and 1D Image Analysis Software (Eastman Kodak: Rochester, NY). Quantitation of RT-PCR band densitometry and relative mRNA expression levels were performed using Adobe Photoshop (San Jose, CA) imaging software, Image Analysis tools. All four (4) cell lines used in this study were found at baseline to express intracellular (NANOG, Oct4, Sox-2, Klf4, Rnf12, Bin1) and cell surface markers (CD44, CD133) that are used to identify and characterize DPSC isolates.

Baseline Growth and Doubling Time

Assays to ascertain doubling time (DT) were performed in the appropriate complete media. In brief, cells at 70% confluence were trypsinized and plated 1:4 into new 75 cm2 BD Falcon tissue-culture treated flasks (Bedford, MA) at 37°C and 5% CO2 in humidified chambers and their confluence was measured with a Zeiss Axiovert 40 inverted microscope (Gottingen, Germany). Three separate, independent replications of each experiment were performed to determine doubling time for each DPSC isolate.

Experimental Assays

Proliferation and differentiation assays were performed in the appropriate complete media, with and without the addition of exogenous growth factors (GF) or
extracellular matrix (ECM), in Corning Costar 12-well assay plates (Corning, NY) at a concentration of 1.2 x 10^6 cells per well, and proliferation was measured over twenty four (24) days. Cultured cells were fixed at five time points, at the initial plating (T1), after six (6) days (T2), after twelve (12) days (T3), after (18) days (T4) and after twenty four (24) days (T5), using 50 mL of 10% buffered formalin. For experimental plates fixed at each time point, the formalin was aspirated after twenty four (24) hours and each cell well was then stained with crystal violet 1% aqueous solution (Fisher Scientific: Fair Lawn, NJ). The stain was then aspirated and wells washed with 1X phosphate buffered saline (Fisher Scientific: Fair Lawn, NJ) and aspirated. The relative absorbance was then measured at 630 nm using a Bio-Tek ELx808 microplate reader (Winooski, VT). Data were analyzed and graphed using Microsoft Excel (Redmond, WA). Three separate, independent replications of each experiment were performed.

Materials

Two direct methods for induction of DPSC isolate differentiation in vitro were utilized: 1) the addition of exogenous growth factors (GF), and 2) the coating of specific extracellular matrix molecules (ECM) onto the surface of tissue-culture dishes, which were performed for each of the experimental assays described above. As previous research has demonstrated transforming growth factor (TGF-b1; M.W. 44.3 kDa) may, in fact, be critical to maintaining DPSC pluripotency, TGF-b1 was obtained from Calbiochem (La Jolla, CA) and the cellular media supplemented to a final concentration of 2.5 ng/mL or 0.56 μM [18]. In addition, one of the primary methods for GF induced differentiation of DPSC and MSC isolates, Dexamethasone (Dex) was obtained from Fisher Scientific (Fair Lawn, NJ) and added to cellular media for a final concentration of
10 nM [58,59]. Finally, the control for the GF experiments was the MEK1 inhibitor (40 ng/mL or 50 mM), a cell-cycle and growth factor inhibitor, obtained from Calbiochem/EMD Biosciences/Millipore, M.W. 267.3 (Darmstadt, Germany) [57]. Extracellular matrix (ECM) molecules were obtained from Fisher Scientific (Fair Lawn, NJ) and tissue culture wells were coated with purified ECM at a 20 μg/mL protein concentration for one hour (60 minutes) at room temperature (25 C), as previously described. Poly-L-lysine (34-382-0001), Collagen-1 (50-361-599) and Laminin-5 (NC9992259) [59-62]. Data were analyzed and graphed using Microsoft Excel (Redmond, WA).

Statistical Analysis

The differences between treatments were measured using a t distribution, p= 0.05. All samples were analyzed using two-tailed t-tests as departure from normality can make more of a difference in a one-tailed than in a two-tailed t-test [63]. As long as the sample size is at least moderate (>20) for each group, quite severe departures from normality make little practical difference in the conclusions reached from these analyses.
Four (4) previously characterized dental pulp stem cell lines were thawed and subsequently grown in culture to assess their baseline growth and doubling time (Figure 1) [15,16]. The average doubling time was 2.83 days, which ranged between 2.05 to 3.87 days. For the in vitro differentiation experiments, each cell line (DPSC-3882, 5653, 9765, and 11418) was then plated into 96-well tissue culture treated plates and evaluated using photomicroscopy to determine any changes to cellular morphology, as well as cellular number and doubling time. In these 24-day assays, from the initial time point (T1) to the final endpoint (T5), each of the four DPSC cell lines grew from less than 5% confluence (Figure 3) to approximately 34% confluence (Figure 1). The addition of TGF-b1, recently demonstrated to maintain or increase pluripotency in DPSC, was associated with accelerated growth of approximately 55% in these cell lines (Figure 2) [58, 59]. The average doubling time decreased by 27.3% from 2.83 to 2.2 days, ranging between 1.1 to 4.09 days. Although doubling time in one cell line (DPSC-5653) did not exhibit a significant change (3.87 to 4.09 days), doubling time in DPSC-9765 (2.18 to 1.14 days), DPSC- 3882 (3.24 to 2.22 days), and DPSC-11418 (2.05 to 1.35 days) decreased markedly (n=24, p<0.05). Although significant changes to the rates of cellular growth were observed with the addition of TGF-b1, no overt changes to cellular morphology or size were observed in any cell line (Figure 3). Following previous research that demonstrated induction of MSC and DPSC differentiation in vitro using specific extracellular matrix (ECM) molecules and growth factors, these methods were utilized to ascertain any effects on cellular phenotype or growth in these DPSC isolates (Figure 4)
The addition of growth factors to the cell culture medium induced variable responses in the DPSC isolates. As previously noted, TGF-b1 increased the doubling time and proliferation in all DPSC isolates by approximately 50% (range: 1.32 – 1.91 fold increase), although no overt changes to cellular morphology were observed. The addition of the MEK1 inhibitor PD98059 was not sufficient to induce any overt changes to any of the DPSC isolates (Figure 5). However, the addition of Dexamethasone (Dex) was sufficient to induce a differential response in DPSC-9765 and DPSC-11418, but not in DPSC-3882 or DPSC-5653 (Figure 6). More specifically, growth in DPSC-9765 was increased by 2.03 fold while proliferation of DPSC-11418 increased by 2.31 fold, which was significantly higher than the growth observed in DPSC-3882 or DPSC-5653 (p<0.05), which was also correlated with changes to cellular morphology and the formation of dense accumulations of localized, site-specific aggregations of larger cells with visibly altered morphology.

The wells coated with the ECM control poly (PLL) (Figure 7) and the experimental wells coated with Collagen 1 (CG1) did not induce any changes to cell number or morphology in any of the four cell lines (Figure 8). However, a differential response was noted in the wells coated with Laminin-5 (LN5) with two DPSC isolates exhibiting both an increase in cell number, as well as significant changes to the morphology of some subsets of cells. More specifically, LN5 was sufficient to induce an increase in growth in DPSC-3882 and DPSC-5653 by more than two-fold (2.24 and 2.29 respectively), which was significantly different than the growth observed in the other DPSC isolates and from the baseline measurements (p< 0.05) (Figure 9).
In order to evaluate and assess the differential phenotypic changes observed under Dexamethasone administration and Laminin-5 plating, RNA was successfully isolated from all DPSC isolates under conditions and relative endpoint (RE) reverse transcription polymerase chain reaction (RT-PCR) was performed using equal concentrations of total RNA from each isolate. These analyses revealed that mRNA specific for the intracellular biomarkers for DPSC, Klf4 and Sox well as the cell surface marker CD133, were expressed in DPSC-3882, DPSC-5653, DPSC-9765 and baseline. Additional mRNA biomarkers, including Bin Rnf12, Oct-4 and NANOg were also expressed (Figures 10-14). The relative levels of these intracellular and extracellular biomarkers were enhanced following the administration of TGF-β1. However, the differential phenotypes observed under Dexamethasone and Laminin administration were associated with differential expression of these same biomarkers.

More specifically, the altered the growth and phenotype of DPSC-9765 and DPSC-11418 following Dexamethasone administration was correlated with a loss of mRNA for the transcriptional control regulator Klf4 (as well as Bin1 and Rnf12). In addition, expression of mRNA specific for the downstream biomarkers Sox-2 (as well as Oct4 and NANOg) and CD133 was also down-regulated with previous observations of apical papilla (AP) dental follicle (DF) derived DPSCs that are responsive to GF induced methods for in vitro differentiation. However, no significant changes to these biomarkers were observed in either DPSC-3882 or DPSC-5653, the DPSC isolates non-responsive to Dexamethasone.

Conversely, the altered phenotypes observed in DPSC-3882 and DPSC-5653 following plating on Laminin-5 coated dishes were associated with a downregulation (but
not loss) of mRNA expression in both Klf4 and Sox-2 (as well as Bin1, Rnf12, Oct4, and NANOG; (Figures 10-12). Expression of mRNA for the downstream cell surface DPSC biomarker CD133, however, was only slightly reduced in the DPSC-3882 isolate, although this expression was completely lost in DPSC-5653. These results appear to be consistent with previous observations that periodontal ligament (PD)-derived DPSC isolates may be primarily responsive to ECM-mediated methods for in vitro differentiation.

CHAPTER 5
DISCUSSION AND CONCLUSIONS
Discussion
The goal of this project was to evaluate the potential to induce differentiation among DPSC isolates from four (4) orthodontic patients using established MSC and DPSC protocols and methods. These results demonstrated that all four DPSC isolates exhibited phenotypes and expressed biomarkers at baseline consistent with MSC and DPSC and also responded appropriately to the pluripotency sustaining effects of in vitro TGFβ1 administration [58, 59]. However, the two primary methods for inducing differentiation, ECM plating and GF administration [58-62], exhibited differential responses in these DPSC isolates. That these DPSC isolates were susceptible to the effects of either ECM- or GF-induced alterations to growth, proliferation, morphology and DPSC biomarker expression, suggests that these methods may be sufficient to stimulate these responses in some DPSC isolates, although not universally. More importantly, that the specific type of DPSC isolate (influenced by the method of isolation and culture) may be, in fact, a critical component for a more complete understanding of
how these methods could be employed to evaluate the potential lineages and usages for any given patient [14,37,55]. For example, these findings complement the ever expanding body of research that suggests DPSC isolates are often not heterogeneous aggregations of DPSCs but may, in fact, be clones derived from different and often very specific subsets of DPSCs, such as AP-DPSC, DF-DPSC or PDL-DPSC [37,55]. Many factors influence DPSC quality and quantity and type, including the methods used to isolate, collect, concentrate, and store these isolates [1]. For instance, isolation by enzymatic dissociation (DPSC-ED) may be more likely to produce heterogeneous populations of faster growing cells, as this process allows for dissociation of multiple cell types from the extracted dental pulp, although this process may limit viability and may also decrease overall yield [11,14]. In contrast, DPSC isolation by direct outgrowth (DPSC-OG), the method employed in this study, tends to produce largely homogenous populations of one DPSC type, with more limited differentiation potential due to their random selected clonal derivation [15, 16]. This study had several limitations that should be outlined, including a very limited sample size (n=4), which may restrict the overall ability to make inferences about these results. In addition, the DPSC isolates were derived from adult orthodontic patients, which may have different health outcomes and parameters than other dental patient populations, which could also influence the overall results and outcomes associated with this study [56]. Finally, this was a retrospective analysis of previously collected DPSC isolates, therefore, prospective studies that incorporate larger sample sizes will be needed to further elucidate the parameters that most likely influence the differentiation potential for DPSC isolates from dental patients.
Conclusions

Although some commercial enterprises now offer DPSC banking and storage services, much less is known about the viability or potential applications for DPSCs isolated from dental patients. Although many patients routinely have intact, adult teeth extracted for orthodontic and other dental-related issues, few studies have addressed the potential to characterize the potential for these isolates to be manipulated in laboratory settings. This study provides some initial evidence that randomly selected DPSC isolates from orthodontic patients may be induced by established protocols to change phenotype and expression of pluripotent biomarkers with variable susceptibility between differing types of DPSCs, although more studies will be needed to determine the range of cell types that can be successfully re-engineered in laboratory settings.
Recommendations for further research

Stem Cell therapy is being used to treat life threatening conditions around the world, and the full breath of stem cell therapy has only just begun to be discovered. In the last several years there has been a tremendous increase in our knowledge of bioengineering of DPSCs. The usefulness of these cells is being uncovered exponentially as researchers work together as a multidisciplinary team across many fields to continue progress in this work. In this study and in others across the world, we are seeing evidence that suggests that tissue regeneration is no longer an unattainable dream. The application of this knowledge in medicine and dentistry will allow practitioners to increase the quality of life for mankind.

This work is among the first to demonstrate that Dexamethasone and Laminin-5 may be sufficient to induce partial DPSC differentiation. It is also among the first to show that TGF-β1 notably increases pluripotency in DPSCs. The search for the ideal combination of cells, scaffolds, and morphogenic factors for the engineering of tissues from DPSCs is the focus of immediate future research. Using the knowledge we have gained in this study, it seems natural to move forward with the combination of the substrates we have used to see how differentiation of DPSCs occurs through these modalities. Prospective studies including multiple DPSC lines could be exposed to both Dexamethasone and TGF-β1, and Laminin-5 and TGF-β1 in combination to observe the changes in the cells. It would be interesting to observe if the increased pluripotency we noted with exposure to TGF-β1 would induce increase number of cells that differentiated or if the speed of differentiation changed when DPSCs are exposed to these proposed combinations of substrates. Once clear protocols are established that allow for predictable
differentiation of cells into specific tissue forming cells, work can begin on advances that will likely progress into the biologic regeneration of oral tissues such as producing a scaffold to induce tissue growth into a particular shape and/or laying down of patterns of homeobox genes within these scaffolds to induce formation of layers of tissues. The future of research in this discipline is exciting and the advances that will unfold in the next decade will bring much progression in medicine and dentistry.
APPENDIX A

FIGURES RELATED TO THE RESEARCH QUESTIONS

Figure 1/ Figure 2. Base line DPSC proliferation is enhanced in vitro by the addition of TGF B1. Initial plating of cells (T1) revealed an average confluence of approximately 5%. Baseline growth (without the addition of growth factors) demonstrated an average doubling time of 2.83 days (DPSC-5633: 3.87d; DPSC-3882: 3.24 d; DPSC-11418: 2.05d) for a final confluence at the final time point (T5) of approximately 34%. (Figure 1) The addition of TGF-B1 increased growth at T5 to approximately 53% and decreased average doubling time to 2.21 days (DPSC-9765: 1.14d; DPSC-5653; 4.09 d; DPSC-3882: 2.22d; DPSC-11418: 1.35 d). (Figure 2).
Figure 3. The addition of TGF-β1 was associated with accelerated growth of approximately 55% in all four cell lines. Although significant changes to the rates of cellular growth were observed with the addition of TGF-β1, no overt changes to cellular morphology or size were observed in any cell line.
Figure 4. DPSC cellular phenotypes altered by exogenous factors. The addition of extracellular matrix coated wells or growth factor was sufficient to induce changes to some DpSC isolates. As previously noted, TGF-β1 increased growth in all four isolates with no changes observed in cellular morphology.
Figure 5. Base line DPSC plated with MEK 1 Inhibitor (T1). No change seen in cell morphology over time points (T3) and (T5).
Figure 6. Base line DPSC plated with Dexamethasone (T1). Significant changes to cellular morphology and increased growth over time points (T3) and (T5) was seen in cell lines DPSC 9765 and DPSC 11418.
Figure 7. Base line DPSC plated with Poly-L-lysine (T1). No change seen in cell morphology over time points (T3) and (T5).
Figure 8. Base line DPSC plated with Collagen and Vitronectin (T1). No change seen in cell morphology over time points (T3) and (T5).
Figure 9. Base line DPSC plated with Laminin 5 (T1). Significant changes to cellular morphology and increased growth over time points (T3) and (T5) was seen in cell lines DPSC 3882 and DPSC 5653.
Figure 10. The addition of extracellular matrix Laminin-5 coated wells was sufficient to inhibit Cox-4 and Sox-2 intracellular mRNA expression in DPSC-3882 and DPSC-5653 cell lines.
Figure 11. The addition of extracellular matrix Laminin-5 coated wells was sufficient to inhibit Rnf, Bin, and Klf intracellular mRNA expression in DPSC-3882 and DPSC-5653 cell lines.
Figure 12. The addition of extracellular matrix Laminin-5 coated wells was sufficient to inhibit CD133 cell surface marker expression in DPSC-3882 and DPSC-5653 cell lines. CD44 (Control) cell surface marker was maintained.
Figure 13. The addition of growth factor Dexamethasone was sufficient to inhibit Sox-2 intracellular mRNA expression in DPSC-9765 and DPSC-11418 cell lines. Oct-4 expression was altered with an alternative (shorter) transcript expressed and at significantly higher levels.
Figure 14. The addition of growth factor Dexamethasone was sufficient to inhibit Rnf, Bin, and Klf intracellular mRNA expression in DPSC-9765 and DPSC-11418 cell lines.
Dental pulp stem cell (DPSC) pluripotency enhanced by transforming growth factor (TGF-β1) in vitro may be inhibited by differentiation-inducing factors Laminin-5 and Dexamethasone

Kelcey Loveland1, Aubrey Young2, Mehrnaz Khadiv1, Marah Culpepper1, Karl Kingsley3

1Department of Clinical Sciences, University of Nevada, Las Vegas – School of Dental Medicine
2Department of Orthodontic and Dentofacial Orthopedics, University of Nevada, Las Vegas – School of Dental Medicine
3Department of Biomedical Sciences, University of Nevada, Las Vegas – School of Dental Medicine

Email address
Kelcey.Loveland@sdm.unlv.edu (K. Loveland), Aubrey.Young@sdm.unlv.edu (A. Young), Mehrnaz.Khadiv@sdm.unlv.edu (M. Khadiv), Marah.Culpepper@sdm.unlv.edu (M. Culpepper), Karl.Kingsley@unlv.edu (K. Kingsley)

Citation

Abstract
Mesenchymal stem cells are derived from a variety of human tissues and are being bioengineered and studied for possible uses in the advancement of medicine. Recent efforts are being focused on dental pulp stem cells (DPSCs) due to the accessibility of this tissue. The objective of this study was to evaluate the potential to induce differentiation of DPSC isolates in vitro by the addition of exogenous growth factors (GF), and by the coating of specific extracellular matrix molecules (ECM) onto the surface of tissue culture dishes. Photomicroscopy and mRNA analysis demonstrated the addition of TGF-β1 notably increased pluripotency biomarkers in DPSC lines. The addition of Dexamethasone (Dec) or plating on Laminin-5 (LNS) was correlated with changes to cellular morphology and cell size in different subsets of cells. RNA isolated from these DPSCs for relative endpoint (RE) reverse transcription polymerase chain reaction (RT-PCR) revealed mRNA DPSC specific intracellular biomarkers (Klf4, Sox-2, Bin-1, Runx2, Oct-4 and Nanog) and the cell surface marker (CD133) were enhanced following the administration of TGF-β1 and were differentially down-regulated following Dexamethasone and Laminin-5 administration. This study provides some initial evidence that randomly selected DPSC isolates may be induced by established protocols to change phenotype and expression of pluripotent biomarkers with variable susceptibility between differing types of DPSCs. More studies will be needed to determine the range of cell types that can be successfully re-engineered in laboratory settings.
1. Background

The isolation of mesenchymal stem cells (MSC) is an important scientific endeavor in the health sciences. Although much is known about embryonic stem cells and their regenerative capacity, recent efforts have focused on MSC because they are far less controversial, and more importantly, may be derived directly from children and adult patients. Many tissues, including bone marrow, peripheral blood, heart tissue, and lung tissue, harbor populations of viable MSCs but more recent efforts have focused on more accessible sources—such as adipose tissue and dental pulp from extracted teeth.

A growing body of evidence has suggested that dental pulp-derived stem cells (DPSCs) are among the most accessible of human stem cell populations. DPSCs are originally formed from both epithelial and mesenchymal stem cell progenitors, the epithelial-derived ameloblasts and the mesenchymal-derived dentin and bone and soft tissues of the periodontium. Although they cannot form all cells and tissues of the body, these DPSCs are capable of differentiation into more than one cell type and are therefore classified as multipotent stem cells. Studies have now confirmed DPSC, under specific conditions and stimuli, may be capable of differentiating into adipocytes, neurons, osteoblasts, and chondrocytes—although these specific methods could vary by whether the DPSC were derived from the apical part of the papilla (AP-DPSC), the dental follicle (DF-DPSC) surrounding third molars, or the periodontal ligament (PDL-DPSC).

Two nation-wide commercial companies now offer a service for processing and storing DPSC from either primary teeth or extracted adult teeth, but little information is known about the differentiation potential of these DPSC isolates. Hung et al. found that premolars and other intact teeth extracted from orthodontic patients ages 18-25 exhibited the greatest likelihood for obtaining viable DPSC isolates. These studies, however, did not evaluate the potential to induce differentiation in these uncommitted DPSC lines using established methods and protocols.

The objective of this study was to evaluate the potential to induce differentiation of DPSC isolates originally derived from extracted teeth of adult orthodontic patients. The working hypothesis for this project was that any DPSC isolate, derived from vital, intact permanent adult teeth, could be induced towards differentiation in vitro using pre-plated cell-matrix adhesion molecules and the administration of exogenous growth factors.

2. Methods

2.1. Human Subjects

This original protocol for this study titled "Isolation of Non-Embryonic Stem Cells from Dental Pulp" at the University of Nevada, Las Vegas - School of Dental Medicine (UNLV-SDM) dental clinic was approved by the UNLV Office of Research Integrity – Human Subjects (OPRS#0907-3148) in February 2010. In brief, the samples for this study were isolated from patients that were randomly recruited by members of the UNLV-SDM clinic during their dental visits between February and June 2010. Informed Consent was required and was conducted onsite at the time of study recruitment. Inclusion criteria: All patients were required to be consenting adults (> 18 years old) who agreed to participate. In addition, all dental pulp samples were collected from subjects with sound, unrestored, vital teeth (teeth that have healthy pulp tissue), who were already scheduled to have one or more extractions that were necessary for oral health, as determined by the clinical faculty member in charge. Exclusion criteria: Any subject under eighteen (18), any subjects scheduled for dental extractions involving compromised pulp, and any subject that refused to donate their extracted teeth or participate in this study.

2.2. DPSC Isolation and Culture

The teeth included in this retrospective study were originally extracted due to impaction (e.g., third molars) or crowding (e.g., premolars extracted for orthodontic treatment). Following extraction, the teeth were sectioned at the cemento-enamel junction (CEJ) using a diamond rotary disc and the dental pulp was removed with an endodontic broach and then immediately placed into sterile microcentrifuge tubes containing 1X phosphate buffered saline (PBS) and transferred to the laboratory for culture. Tubes were pre-assigned a unique, randomly-generated number to maintain patient confidentiality and to prevent research bias.

The dental pulp samples were then transferred to a biomedical laboratory for processing and culture using the direct outgrowth (DPSC-O) method. In brief, the PBS containing extracted dental pulp was centrifuged at 2,100 x g for 5 min and resuspended in 1 mL of RPMI-1640 medium from HyClone (Logan, UT) with 2% FBS, 2% L-Glutamine, and 10% Penicillin (10,000 units/mL)-Streptomycin (10,000 μg/mL) solution and 1% fetal bovine serum (FBS), obtained from HyClone (Logan, UT). Cells were cultured in 75 cm² BD Falcon tissue-culture treated flasks (Bedford, MA) at 37°C and 5% CO₂ in humidified chambers. Media was changed every 48 hours until adherent cells reached 70% confluence. Cells were subsequently passaged at a 1:4 ratio for a minimum of ten passages.

2.3. RNA Isolation and RT-PCR

To determine if the cells from each dental pulp isolate (remaining after ten passages) were dental pulp stem cells
(DPSC), RNA was isolated from 1.5 x 10^6 cells of each of the experimental cell lines, using ABgene Total RNA Isolation Reagent (Epsom, Surrey, UK) in accordance with the procedure recommended by the manufacturer. RNA concentration and purity were calculated using UV spectrophotometry. RT-PCR was then performed on total RNA using the ABgene Reverse-IT One-Step RT-PCR Kit (ReadyMix Version) and a Mastercycler gradient thermocycler (Eppendorf, Hamburg, Germany) using the mesenchymal stem cell (MSC) primers for CD44, CD133, NANOG, Oct4, Sox2, Runx1, Runx2, and Klf4 synthesized by SeqWright (Houston, TX), as previously described. Reaction products were separated by gel electrophoresis using a 3% NuSieve® 3:1 Plus Agarose gel (Lonza, Rockland, ME). Bands were visualized by UV illumination of ethidium-bromide-stained gels and captured using a Kodak Gel Logic 100 Imaging System and 1D Image Analysis Software (Eastman Kodak, Rochester, NY). Quantitation of RT-PCR band densitometry and relative mRNA expression levels were performed using Adobe Photoshop (San Jose, CA) imaging software. Image Analysis tools. All four (4) cell lines used in this study were found at baseline to express intracellular (NANOG, Oct4, Sox2, Klf4, Runx2, Runx1) and cell surface markers (CD44, CD133) that are used to identify and characterize DPSC isolates.

2.4. Baseline Growth and Doubling Time

Assays to ascertain doubling time (DT) were performed in the appropriate complete media. In brief, cells at 70% confluence were trypsinized and plated 1:4 into new 75 cm² BD Falcon tissue-culture treated flasks (Bedford, MA) at 37°C and 5% CO₂ in humidified chambers and their confluence was measured with a Zeiss Axiovert 40 inverted microscope (Göttingen, Germany). Three separate, independent replications of each experiment were performed to determine doubling time for each DPSC isolate.

2.5. Experimental Assays

Proliferation and differentiation assays were performed in the appropriate complete media, with and without the addition of exogenous growth factors (GF) or extracellular matrix (ECM), in Corning Costar 12-well assay plates (Corning, NY) at a concentration of 1.2 x 10^4 cells per well, and proliferation was measured over twenty-four (24) days. Cultured cells were fixed at five time points, at the initial plating (T1), after six (6) days (T2), after twelve (12) days (T3), after eighteen (18) days (T4) and after twenty-four (24) days (T5), using 50 µL of 10% buffered formalin. For experimental plates fixed at each time point, the formalin was aspirated after twenty-four (24) hours and each cell well was then stained with crystal violet 1% aqueous solution (Fisher Scientific: Fair Lawn, NJ). The stain was then aspirated and wells washed with 1X phosphate buffered saline (Fisher Scientific: Fair Lawn, NJ) and aspirated. The relative absorbance was then measured at 630 nm using a Bio-Tek ELx808 microplate reader (Winooski, VT). Data were analyzed and graphed using Microsoft Excel (Redmond, WA). Three separate, independent replications of each experiment were performed.

2.6. Materials

Two direct methods for induction of DPSC isolate differentiation in vitro were utilized: 1) the addition of exogenous growth factors (GF), and 2) the coating of specific extracellular matrix molecules (ECM) onto the surface of tissue-culture dishes, which were performed for each of the experimental assays described above. As previous research has demonstrated transforming growth factor (TGF-β1; M.W. 44.3 kDa) may, in fact, be critical to maintaining DPSC pluripotency, TGF-β1 was obtained from Calbiochem (La Jolla, CA) and the cellular media supplemented to a final concentration of 2.5 ng/mL or 0.56 uM. In addition, one of the primary methods for GF-induced differentiation of DPSC and MSC isolates, Dexamethasone (Dex.) was obtained from Fisher Scientific (Fair Lawn, NJ) and added to cellular media for a final concentration of 10 nM. Finally, the control for the GF experiments was the MEK1 inhibitor (40 ng/mL or 50 µM), a cell-cycle and growth factor inhibitor, obtained from Calbiochem/EMD Biosciences/Millipore, M.W. 267.3 (Darmstadt, Germany). Extracellular matrix (ECM) molecules were obtained from Fisher Scientific (Fair Lawn, NJ) and tissue culture wells were coated with purified ECM at a 20 µg/mL concentration for one hour (60 minutes) at room temperature (25°C), as previously described. Poly-L-lysine (34-382-0001), Collagen-1 (50-361-599) and Laminin-5 (NC9992259). Data were analyzed and graphed using Microsoft Excel (Redmond, WA).

2.7. Statistical Analysis

The differences between treatments were measured using a t distribution, α = 0.05. All samples were analyzed using two-tailed t-tests as departure from normality can make more of a difference in a one-tailed than in a two-tailed t-test. As long as the sample size is at least moderate (~20) for each group, quite severe departures from normality make little practical difference in the conclusions reached from these analyses.

3. Results

Four (4) previously characterized dental pulp stem cell lines were thawed and subsequently grown in culture to assess their baseline growth and doubling time (Figure 1). The average doubling time was 2.83 days, which ranged between 2.05 - 3.87 days. For the in vitro differentiation experiments, each cell line (DPSC-3882, 5653, 9765, and 11418) was then plated into 96-well tissue culture treated plates and evaluated using photomicroscopy to determine
any changes to cellular morphology, as well as cellular number and doubling time. In these 24-day assays, from the initial time point (T1) to the final endpoint (T5), each of the four DPSC cell lines grew from less than 5% confluence (Fig. 1A-D) to approximately 34% confluence (Fig. 1I).

The addition of TGF-β1, recently demonstrated to maintain or increase pluripotency in DPSC, was associated with accelerated growth of approximately 55% in these cell lines (Fig. 1J).23,24 The average doubling time decreased by 27.3% from 2.83 days to 2.2, ranging between 1.1 – 4.09 days. Although doubling time in one cell line (DPSC-5653) did not exhibit a significant change (3.87 to 4.09 days), doubling time in DPSC-9765 (2.18 to 1.14 days), DPSC-3882 (3.24 to 2.22 days), and DPSC-11418 (2.05 to 1.35 days) decreased markedly (n=24, p<0.05). Although significant changes to the rates of cellular growth were observed with the addition of TGF-β1, no overt changes to cellular morphology or size were observed in any cell line (Fig. 1A-H).

Following previous research that demonstrated induction of MSC and DPSC differentiation in vitro using specific extracellular matrix (ECM) molecules and growth factors, these methods were utilized to ascertain any effects on cellular phenotype or growth in these DPSC isolates (Figure 2).23-27 The addition of growth factors to the cell culture medium induced variable responses in the DPSC isolates (Fig. 2A). As previously noted, TGF-β1 increased the doubling time and proliferation in all DPSC isolates by approximately 50% (range: 1.32 – 1.91 fold increase), although no overt changes to cellular morphology were observed. The addition of the MEK1 inhibitor PD98059 was not sufficient to induce any overt changes to any of the DPSC isolates. However, the addition of Dexamethasone (Dex) was sufficient to induce a differential response in DPSC-9765 (Fig. 2B) and DPSC-11418 (Fig. 2C), but not in DPSC-3882 or DPSC-5653 (data not shown). More specifically, growth in DPSC-9765 was increased by 2.03-fold while proliferation of DPSC-11418 increased by 2.31-fold – significantly higher than the growth observed in DPSC-3882 or DPSC-5653 (p<0.05) – which was also correlated with changes to cellular morphology and the formation of dense accumulations of localized, site-specific aggregations of larger cells with visibly altered morphology.

Figure 1. Baseline DPSC proliferation is enhanced in vitro by the addition of TGF-β1. A-D. Initial plating of cells (T1) revealed an average confluence of approximately 5%. Baseline growth (without the addition of growth factors) demonstrated an average doubling time of 2.83 days (DPSC-9765: 2.18a; DPSC-5653: 3.87d; DPSC-3882: 3.24d; DPSC-11418: 2.05d) for a final confluence at the final time point (T5) of approximately 34% (I). The addition of TGF-β1 increased growth at T5 to approximately 33% (J) and decreased average doubling time to 2.21 days (DPSC-9765: 1.14d; DPSC-5653: 4.09d; DPSC-3882: 2.22d; DPSC-11418: 1.33d).
Figure 2. DPSC cellular phenotypes altered by exogenous factors. A. The addition of extracellular matrix (ECM) coated wells or growth factor (GF) was sufficient to induce changes to some DPSC isolates. As previously noted, TGF-β1 increased growth in all four isolates with no changes observed in cellular morphology (A). The addition of the MEK1 cell-cycle inhibitor PD98059 was not sufficient to induce any phenotypic changes, although Dexamethasone (Dex) was sufficient to increase both growth and to alter cellular morphology in DPSC-9765 (B) and DPSC-11418 (C). Wells coated with Laminin-5 (LN5) but not poly-L-lysine or Collagen 1 (CG1), were sufficient to induce significant changes to cellular morphology and increased growth in only two DPSC isolates, DPSC-3882 (D) and DPSC-5653 (E).

The wells coated with the ECM control poly-L-lysine (PLL) and the experimental wells coated with Collagen 1 (CG1) did not induce any changes to cell number or morphology in any of the four cell lines (Fig. 2A). However, a differential response was noted in the wells coated with Laminin-5 (LN5) with two DPSC isolates exhibiting both an increase in cell number, as well as significant changes to the morphology of some subsets of cells. More specifically, LN5 was sufficient to induce an increase in growth in DPSC-3882 (Fig. 2D) and DPSC-5653 (Fig. 2E) by more than two-fold (2.24 and 2.29, respectively), which was significantly different than the growth observed in the other DPSC isolates (data not shown) and from the baseline measurements (p < 0.05).

In order to evaluate and assess the differential phenotypic changes observed under Dexamethasone administration and Laminin-5 plating, RNA was successfully isolated from all DPSC isolates under these conditions and relative endpoint (RE) reverse transcription polymerase chain reaction (RT-PCR) was performed using equal concentrations of total RNA from each isolate (Figure 3). These analyses revealed that mRNA specific for the extracellular biomarkers for DPSC, Klf4 and Sox-2 – as well as the cell surface marker CD133, were expressed in DPSC-3882, DPSC-5653, DPSC-9765 and DPSC-11418 at baseline. Additional mRNA biomarkers, including Bm1, Rnf12, Otx-4 and NANOG were also expressed (data not shown). The relative levels of these intracellular and extracellular biomarkers were enhanced following the administration of TGF-β1. However, the differential phenotypes observed under Dexamethasone and Laminin-5 administration were associated with differential expression of these same biomarkers.

More specifically, the altered the growth and phenotype of DPSC-9765 and DPSC-11418 following Dexamethasone administration was correlated with a loss of mRNA specific for the transcriptional control regulator Klf4 (as well as Bm1 and Rnf12). In addition, expression of mRNA specific for the downstream biomarkers Sox-2 (as well as Otx4 and NANOG) and CD133 was also down-regulated – consistent with previous observations of apical papilla (AP) - and dental follicle (DF)-derived DPSCs that are responsive to GF-induced methods for in vitro differentiation. However, no significant changes to these biomarkers were observed in either DPSC-3882 or DPSC-5653 – the DPSC isolates non-responsive to Dexamethasone.

Figure 3. DPSC intracellular and extracellular biomarkers differentially altered by exogenous factors. The addition of extracellular matrix (ECM) Laminin-5 coated wells was sufficient to inhibit E44 and Sox-2 intracellular mRNA expression, as well as the cell-surface marker CD133 in dpsc-3882 and dpsc-5653 cell lines; these data may be consistent with the PDL-DPSC phenotype. Dexamethasone was sufficient to induce similar changes in dpsc-9765 and dpsc-11418 isolates; these data may be consistent with AP-DPSC, DF-DPSC or PP-DPSC phenotypes.
well as Bmi1, Runx2, Oct4, and NANOG; data not shown). Expression of mRNA for the downstream cell surface DPSC biomarker CD133, however, was only slightly reduced in the DPSC-3882 isolate - although this expression was completely lost in DPSC-5653. These results appear to be consistent with previous observations that periodontal ligament (PD)-derived DPSC isolates may be primarily responsive to ECM-mediated methods for in vitro differentiation.

4. Discussion

The goal of this project was to evaluate the potential to induce differentiation among DPSC isolates from four (4) orthodontic patients using established MSC and DPSC protocols and methods. These results demonstrated that all four DPSC isolates exhibited phenotypes and expressed biomarkers at baseline consistent with MSC and DPSC and also responded appropriately to the pluripotency sustaining effects of in vitro TGFβ1 administration.22,23 However, the two primary methods for inducing differentiation, ECM-plating and GF administration,24,25 exhibited differential responses in these DPSC isolates.

That these DPSC isolates were susceptible to the effects of either ECM- or GF-induced alterations to growth, proliferation, morphology and DPSC biomarker expression suggests that these methods may be sufficient to stimulate these responses in some DPSC isolates, although not universally. More importantly, that the specific type of DPSC isolate (influenced by the method of isolation and culture) may be, in fact, a critical component for a more complete understanding of how these methods could be employed to evaluate the potential lineages and usages for any given patient.18,19,20

For example, these findings complement the ever-expanding body of research that suggests DPSC isolates are often not heterogeneous aggregations of DPSCs but may, in fact, be clones derived from different and often very specific subsets of DPSCs, such as AP-DPSC, DF-DPSC or PDL-DPSC.19,20 Many factors influence DPSC quality and quantity and type, including the methods used to isolate, collect, concentrate, and store these isolates.1 For instance, isolation by enzymatic dissociation (DPSC-ED) may be more likely to produce heterogeneous populations of faster growing cells, as this process allows for dissociation of multiple cell types from the extracted dental pulp—although this process may limit viability and may also decrease overall yield.11,13 In contrast, DPSC isolation by direct outgrowth (DPSC-Os), the method employed in this study, tends to produce a large homogenous populations of one DPSC type, with more limited differentiation potential due to their random-selected clonal derivation.11,16

This study had several limitations that should be outlined, including a very limited sample size (n=4), which may restrict the overall ability to make inferences about these results. In addition, the DPSC isolates were derived from adult orthodontic patients, which may have different health outcomes and parameters than other dental patient populations, which could also influence the overall results and outcomes associated with this study.13 Finally, this was a retrospective analysis of previously collected DPSC isolates—therefore, prospective studies that incorporate larger sample sizes will be needed to further elucidate the parameters that most likely influence the differentiation potential for DPSC isolates from dental patients.

5. Conclusions

Although some commercial enterprises now offer DPSC banking and storage services, much less is known about the viability or potential applications for DPSCs isolated from dental patients. Although many patients routinely have intact, adult teeth extracted for orthodontic and other dental-related issues, few studies have addressed the potential to characterize the potential for these isolates to be manipulated in laboratory settings. This study provides some initial evidence that randomly selected DPSC isolates from orthodontic patients may be induced by established protocols to change phenotype and expression of pluripotent biomarkers with variable susceptibility between different types of DPSCs, although more studies will be needed to determine the range of cell types that can be successfully re-engineered in laboratory settings.

References

Dear Dr. Aubrey Young

Your paper (BME46561C) was recently reviewed by Biomaterials and Biomedical Engineering. We made a decision regarding the paper, suitable for publication after revision.

We would like to invite the paper for the 3rd issue of 2014. If possible, please let us know for your earliest convenience whether your revised paper submit to our journal or not. And, if you want to submit for our journal, we would be much pleased the submission of your paper as soon as possible.

With best wishes,

Dr. Seong-Min Jo
Assistant Editor in Biomaterials and Biomedical Engineering
Dental Pulp Stem Cell: A review of factors that influence the therapeutic potential of stem cell isolates.

Aubrey Young*1a and Karl Kingsley*2b

1Orthodontics and Dentofacial Orthopedics, UNLV School of Dental Medicine. UNLV School of Dental Medicine, 1001 Shadow Lane, Las Vegas, Nevada 89106-4124.

2Associate Professor of Biomedical Sciences, Director of Student Research, UNLV School of Dental Medicine, 1001 Shadow Lane, MS 7412, Las Vegas, Nevada 89106-4124.

(Received , Revised , Accepted)

Abstract: Undifferentiated stem cells are being studied to obtain information on the therapeutic potential of isolates that are produced. Dental Pulp Stem Cell (DPSC) may provide an abundant supply of highly proliferative, multipotent Mesenchymal Stem Cells (MSC), which are now known to be capable of regenerating a variety of human tissues including bone and other dental structures. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates. This literature review concludes that due to the delicate nature of DPSC, more research is needed for dental researchers and clinicians to more fully explore the feasibility and potential for isolating and culturing DPSCs extracted from adult human teeth in order to provide more accurate and informed advice for this newly developing field of regenerative medicine.

Keywords: Dental Pulp Stem Cell (DPSC); isolation; culture; cryopreservation; media; differentiation; biomarkers.

*Corresponding author, Aubrey Young, DMD, Email: aubreyyoungdmd@gmail.com

*a Aubrey Young, DMD; Aubrey Young, DMD, Email: aubreyyoungdmd@gmail.com

*b Karl Kingsley, PhD, MPH; Email: Karl.Kingsley@unlv.edu
1. Introduction

Many organs and tissues require the ability to replace cells as a normal part of the aging process, as well as in response to damage, injury or infection Ennis et al. (2013). Research has now revealed that many of these organ and tissue systems have resident populations of somatic stem cells, which are capable of asymmetrical replication Raveh-Amit et al. (2013). The process of asymmetric replication results in two daughter cells – one that retains the undifferentiated stem cell properties and the other that is capable of replacing dead, dying or injured cells Jones and Klein (2013).

Each of the primary germ layers of the developing embryo, ectoderm (or outside layer), endoderm (or inside layer) and mesoderm (or middle layer) give rise to tissues that will ultimately host their own populations of resident stem cells Rinaldi and Benitah (2014). These tissue-specific stem cell populations maybe further classified, based upon their potential for differentiation into the various cell types found within the tissue or organ system Shilpa et al. (2013). Although totipotent stem cells from embryonic tissues are capable of differentiating into every possible cell type found within the body, these are typically harvested from developmental or fetal tissues – which may limit their availability and potential for therapeutic use King and Perrin (2014). Most adult tissues host other types of stem cells, including multipotent, pluripotent and oligopotent stem cells capable of differentiation into more than one cell type, as well as unipotent stem cells that produce specialized cells of only one type Kolios and Moodley (2012).

Although adult stem cells may be harvested and retrieved from a variety of tissues and organs, this may involve costly and invasive procedures, such as bone marrow or liposuction aspiration Liao and Chen (2014). However, recent clinical studies have shown that dental pulp from extracted teeth may provide an abundant supply of highly proliferative, multipotent Mesenchymal Stem Cells (MSC), which are now known to be capable of regenerating a variety of human tissues including bone and other dental structures Verma et al. (2014). In addition, dental pulp-derived stem cells (DPSC) have also been
demonstrated to be capable of differentiating into many other lineages, including osteoblasts, chondroblasts, adipocytes, as well as vascular and neural tissues Tatullo et al. (2014).

2. Sources

Many factors are known to influence DPSC quantity and quality, although one of the most basic may be the source of the dental pulp itself Sedgley and Botero (2012). For example, some evidence has recently emerged demonstrating that stem cells from human exfoliated deciduous (or primary) teeth (SHED) may exhibit faster growth and proliferation, as well as a more expansive array of potential cellular phenotypes and differentiation potentials Daltoë et al. (2014). Additionally, SHED may also exhibit slightly greater rates of survival after short-term freezing and storage than DPSCs derived from extracted, permanent (adult) teeth Dziubińska et al. (2013). However, due to the recent nature of these discoveries, the vast majority of the population is not able to make use of these reservoirs as they have already developed their permanent dentition, and those currently in need of stem cell therapy are unlikely to have had an opportunity to save any viable dental pulp from exfoliated primary teeth Tirino et al. (2011). Moreover, some studies have provided evidence that the quantity of healthy pulp derived from primary or deciduous teeth may, in fact, be insufficient to productively harvest SHED Tandon et al. (2010).

Based upon this knowledge, many researchers are now focused on exploring the role of permanent or adult teeth as a reservoir for the acquisition of DPSCs Vishwanath et al. (2013). One possible source of DPSCs from healthy, permanent, adult tooth extraction are orthodontic clinics, where extraction of premolars and molars remains common practice among the four million patients in the United States—often approaching or exceeding 30% of all patients Lee et al. (2008). Although no comprehensive review of DPSC by tooth type has been performed, recent work by this group has revealed that tooth type did not affect either quality or quantity of DPSC isolates—however, the age of donor was found to be a significant factor Hung et al. (2013). In fact, the most recent study provides further evidence that
permanent teeth extracted from younger donors may yield DPSCs with higher growth, proliferation and differentiation without regard to tooth type Kellner et al. (2014).

3. Isolation

Other factors may also influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed Hung et al. (2013). For example, the two most common methods used for DPSC isolation are enzymatic dissociation (DPSC-ED), where enzymes are used to digest the matrix and other biological materials comprising the dental pulp, and direct outgrowth (DPSC-OG) which allows for DPSCs to naturally dissociate from the pulp over the course of several weeks in laboratory cultures Karamazadeh et al. (2012). Some studies have demonstrated that DPSC-ED are more likely to give rise to heterogeneous populations of faster growing cells due to the enzymatic activity that may facilitate release of DPSC embedded within this matrix Huang et al. (2006). However, other studies have suggested that cellular damage or destruction may result from using this method, suggesting that DPSC-OG may be a less a destructive alternative – although this tends to give rise to fewer and largely homogeneous DPSC populations with more limited differentiation potential Jeon et al. (2014). Research from this group confirmed these findings and has used the direct outgrowth method for all subsequent isolation procedures Alleman et al. (2013).

Within these heterogeneous populations of DPSC derived from the pulp of permanent dentition, there are more specific sub-populations that include stem cells from the apical papilla (SCAP), dental follicle (DFSC), periodontal ligament (PDLSC), as well as non-specific DPSCs Sonoyama et al. (2008); Ponnaiaian (2014). The dental papilla contributes to tooth formation and becomes part of the dental pulp tissue in the mature dentition. Stem cells isolated from the dental papilla (SCAP) have been demonstrated to produce dentin and cementum in animal models and have been shown to express comparatively higher levels of the survivin protein, as well as a unique cell surface marker (CD24) not found in other dental derived stem cells DPSCs Sonoyama et al. (2006).
However, stem cells have also been isolated from the dental follicle, more specifically from the peridontium surrounding third molars prior to eruption, which are capable of differentiation into bone lineages with expression of osteocalcin and bone sialoprotein - and can be separated based upon their comparatively higher expression of insulin-like growth factor (IGF-2) Viale-Bouroncle et al. (2014). Finally, stem cells derived from the periodontal ligament (PDLSC) express the biomarkers STRO-1 and CD146 and are capable of forming cementum-like cells, adipocytes and collagen forming cells Seo et al. (2004). Other research from this group has confirmed these findings, suggesting that multiple sub-populations and lineages may be derived from dental pulp and the associated tissues that has distinct phenotype and differentiation capabilities and potential. Loveland et al. (2014).

4. Culture and Cryopreservation

Finally, other research has suggested that ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates Perry et al. (2008). For example, there is some evidence to suggest that no serum (serum-free) media may facilitate the preferential selection and expansion of DPSC bearing specific stem cell biomarkers, while other studies found similar results using low or limited serum media Hirata et al. (2010); Ferro et al. (2014). In addition, the selection of early-versus late-passage populations may also preserve a more diverse array of potential DPSC sub-populations, which has been repeatedly confirmed in more recent studies Suchanek et al. (2009); Coppe et al. (2009); Govindasamy et al. (2010); Ferro et al. (2012). Finally, some evidence suggests that cryopreservation methods and materials may also directly influence the survival rate and therapeutic potential of DPSC, suggesting more research into this area may be needed Woods et al. (2009); Lindemann et al. (2014); Davies et al. (2014).
5. Conclusions

Although there are several for-profit organizations that have begun to offer services specific for the extraction, processing and long-term storage of DPSC, evidence-based recommendations are limited regarding the viability and potential applications of DPSCs in order to provide patients (and parents) interested in banking these tissues for future possible usage. Due to the delicate nature of the isolation, culture and storage process, extraction and processing fees, combined with the additional monthly long-term storage, may result in costs that exceed many thousands of dollars before (or if) these cells are needed. More research, however, will be needed for dental researchers and clinicians to more fully explore the feasibility and potential for isolating and culturing DPSCs extracted from adult human teeth in order to provide more accurate and informed advice for this newly developing field of regenerative medicine.
References

REFERENCES

54. Davies OG, Smith AJ, Cooper PR, Shelton RM, Scheven BA. The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues.

CURRICULUM VITAE

Graduate College
University of Nevada, Las Vegas

Aubrey Young

Degrees:
Bachelor of Science, Dental Hygiene, 1999
Weber State University

Doctor of Dental Medicine, 2012
University of Nevada, Las Vegas

Thesis Title:
Induction of differentiation of dental pulp-derived mesenchymal stem cells (DPSC).

Thesis Examination Committee:
Chairperson, Karl Kingsley, Ph.D, M.P.H.
Committee Member, Clifford Seran, D.M.D.
Committee Member, Rhonda Everett, D.D.S., M.P.H.
Graduate Faculty Representative, Timothy Bungum, Dr. P.H.
Graduate Coordinator, James Mah, D.D.S., M.S., D.M.Sc.