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ABSTRACT

A Mathematical Model for Computerized Car Crash Detection using Computer
Vision Techniques

by

Dawn Marie Strianese

Dr. Evangelos Yfantis, Examination Committee Chair 
Professor of Computer Seienee 

University of Nevada, Las Vegas

My proposed approach to the automatic detection of traffic accidents in a signalized 

intersection is presented here. In this method, a digital camera is strategically placed to 

view the entire intersection. The images are captured, processed and analyzed for the 

presence of vehicles and pedestrians in the proposed detection zones. Those images are 

further processed to detect if an accident has occurred.

The mathematical model presented is a Poisson distribution that predicts the number 

of accidents in an intersection per week, which can be used as approximations for 

modeling the crash process. We believe that the crash process can be modeled by using a 

two-state method, which implies that the intersection is in one of two states: clear (no 

accident) or obstructed (accident). We can then incorporate a rule-based AI system, 

which will help us in identifying that a crash has taken or will possibly take place.

We have modeled the intersection as a service facility, which processes vehicles in a 

relatively small amount of time. A traffic accident is then perceived as an interruption of 

that service.
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CHAPTER 1 

INTRODUCTION

According to current available data, intersection aeeidents in the state of Nevada over 

the last five years comprise approximately 32% of the total number of reported accidents 

[80]. If we remove aeeidents reported by the Nevada Highway Patrol, then the number is 

almost 50%.

Despite the many advances in roadway design, traffic engineering, traffic control 

devices, automobile manufacturing and police enforcement technologies, we all still 

suffer from the ever-inereasing problem of traffic aeeidents.

What Is a Car Crash?

A ear erash is an aeeident resulting from the collision of two or more vehicles, which 

causes a disruption to the normal traffic flow.

In 1949, the United Nations set forth a protocol on road signs and signals, which 

states that Red indicates stop [81]. The Manual on Uniform Traffic Control Devices or 

MUTCD lists standards that are defined nationwide governing the installation, usage and 

maintenance of traffic control devices on all streets and highways, t his manual was 

prepared by a national committee with the National Highway Administration, and 

comprises standards that pertain to all roads and freeways. It was concluded that simply 

adding more traffic control devices would reduce traffic accidents was a myth [82].
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Disregard for the Rules of the Road 

What are the current traffic laws that apply to an intersection?

The rules of the road are traffic laws and driving practices that equate to safe driving. 

The current traffic laws for the state of Nevada are outlined in the Nevada’s Driver’s 

Handbook from the Department of Motor Vehicles (DMV) and a complete list is 

documented in the Nevada Revised Statutes which are publicly available [87].

These rules include:

• Signs and signals

• Right of way

• Controlling speed

• Stopping

• Signaling, turning, lane changes and passing

Some common traffic violations that occur in an intersection are:

• Running a red light

• Failure to yield the right-of-way

• Changing lanes in an intersection 

Illegal turns

Blocking an intersection

Stopping in an intersection

Failure to yield to an emergency vehicle

• Failure to yield for pedestrians 

Turning from the wrong lane

• Turning into the wrong lane



• Speeding

• Failure to use turn signals 

Failure to turn in a turn only lane

Potential Problems with the Crash Data 

Crashes are random events, therefore it is important to note that the number / rate of 

crashes at a location are not an accurate gauge.

Not all traffic accidents are reported to the police. Some common reasons why an 

aeeident would not be reported are:

Driving without a license, insurance, or registration 

Drunk driving

Fear of insurance rate increase

Possession of something illegal such as a firearm, drugs, etc 

The vehicle involved is stolen or not street legal 

The driver is a wanted criminal 

In the state of Nevada, all aeeidents which involve injuries or damages that exceed 

$750 must be reported. If a police officer does not look into the aeeident, all of the 

parties involved must file an accident report form (SR-1) within 10 days [87].

Crash reports may contain errors such as

• Typos

• Misspellings

• Failure to observe all circumstances due to poor lighting or weather

• Misinterpretation of the scene



Incorrect or misleading reports from those involved 

Crashes are normally the consequence of a chain of events that involve the interaction 

of three factors: the road, the vehicle, and the driver. Some of these factors are:

Weather -  rain, snow, black ice 

Road construction

The road is in need of repair (lane markings are not clear, potholes, etc) 

Foreign objects obstructing the road like animals, debris, etc 

Vehicle is in poor mechanical condition 

Tire blowout

Vehicle lights do not work 

Driver falls asleep at the wheel

Driver is distracted due to a cell phone, eating, shaving, reading a map, lost, 

etc

Inexperienced driver

Driver has a medical condition or experiences a medical problem 

Driver has a visual impairment (forgot glasses, sunglasses, etc)

Driver is unfamiliar with the vehicle (rental car, do not know how to drive a 

manual transmission, etc)

Computer Vision

As part of this thesis, 1 will present an intelligent visual surveillance system, using 

computer vision techniques, moving object detection, tracking and classification methods. 

The proposed system will operate on color video images taken from a static, stationary



camera. This approach can easily be modified to make use of one or more cameras. This 

approach can also be adapted to a non-signalized intersection, such as a four-way stop.

The objective of any computer vision system is to analyze and interpret digital, visual 

data and use that information to complete a predefined task. Object recognition or 

classification of objects into known classes, is a vital part of computer vision.

The task of object recognition is a complex one. How do we interpret information 

about two-dimensional images in a three-dimensional world? Recognition implies 

awareness and previous knowledge about something. How can someone recognize 

something unless they know what they are looking for? The human visual system can 

recognize many different kinds of objects easily; however, visual recognition is generally 

a difficult task for a computer [38].

The real world that we see and touch is composed, predominantly, of concrete three- 

dimensional objects. When someone is given an object that they have never seen before, 

they typically collect and analyze information about the object by looking at it from many 

different positions, and subsequently identify it.

“A picture is worth a thousand words ” [15] is a familiar proverb that refers to the 

idea that complex stories can be told with a single still image, or that an image may be 

more influential than a substantial amount of text. 1 believe this phrase sums up the 

importance and complexity of computer vision in general.

The creation of an elegant system requires fast, reliable and robust algorithms for 

moving object detection, classification, tracking and analysis. Automatic detection and 

recognition of moving objects is of primary importance for video surveillance 

applications. Automated systems deal with real-time observations of vehicles and people



within a busy and sometimes cluttered outdoor environment and must be able to identify 

and track objects moving in its field of vision.

My approach is based on extracting objects in the form of blobs in the scene using a 

motion segmentation method, tracking these objects while they appear in the region of 

interest and classifying these objects into pedestrians and vehicles. This approach makes 

use of a single, static camera mounted above the scene with a clear view of the region of 

interest.

Image acquisition and pre-processing are the very first steps. Image acquisition is the 

starting point because it is the reference image or video stream for the algorithm. A 

digital image is produced by one or several image capture devices, which vary by type 

and application. Depending on the type of the input device, the output image created is 

either a 2D image or an image sequence. The value of each pixel usually corresponds to 

light intensity (gray images or color images), but they can also be related to a variety of 

physical measures, such as depth, absorption or refleetanee. Prior to a computer vision 

method being applied to the image, so that specific pieee(s) of information can be 

extracted, it is usually necessary to process the image in order to confirm that it satisfies 

certain assumptions implied by the method, such as contrast enhancement and noise 

reduction. In an attempt to simplify the final classification, which is more accurate, the 

process of smoothing, enhancing, filtering and cleaning up of the digital image is 

completed.

Moving object detection or motion segmentation is the next step in the analysis of a 

video stream. During this process, a choice is made about which regions in the image are 

relevant for further processing. It handles the segmentation of moving objects from the



stationary background objects. This not only creates a focus for higher level processing, 

but also decreases the computational time significantly. Commonly used techniques for 

moving object detection are background subtraction, statistical models, temporal 

differencing and optical flow. Due to dynamic outdoor environmental conditions such as 

illumination changes, shadows and tree branches moving in the wind, object 

segmentation is a difficult problem that needs to be handled properly for a reliable and 

robust system. Even though background subtraction techniques perform well at 

extracting most of the relevant pixels of moving regions even when they stop, they can 

still be sensitive to dynamic changes; for instance, stationary objects uncovering the 

background (i.e. a parked ear moves) or sudden illumination changes.

Before blobs can be treated as objects, the blobs need to be identified from the output 

of the motion segmentation step. Blobs can be considered a spatially coherent group of 

pixels which are clustered together that represent an object. Categorizing the pixels in an 

image as belonging to one of many distinct regions is an image segmentation technique 

commonly known as blob extraction. Blob extraction is executed on the resulting binary 

image from the thresholding step.

Moving object classification is the next step in the analysis of an incoming video 

stream. In this process the applicable shape information inherent in a pattern is computed 

making it easier to classify the pattern in a later function. This process classifies all of 

the detected objects into preset classes such as pedestrian, vehicle, other, etc. It is 

necessary to differentiate objects from each ofher in order to track them reliably. 

Presently, there are two major approaches in moving object classification, the shape- 

based and motion-based methods. Motion-based techniques use the temporal features of



objects for the classification step while shape-based techniques use an object’s 2- 

dimensional spatial information. A feature is a useful and consistent eharaeteristie in an 

object or blob, such as a geometric shape.

Tracking the moving objects is the last step in the analysis of an incoming video 

stream. It can be defined as the formation of temporal correspondence between detected 

objects from frame to frame. The result of this step is commonly used to support and 

improve motion segmentation, object classification and other processing.

There are many advantages to video surveillance and detection. Installation of a 

camera would have a minimal impact on the traffic flow, since the proposed location of 

the camera is outside of the intersection.

Some of the disadvantages of using automatic video detection include improper 

segmentation due to poor weather conditions, camera vibrations from high winds and dirt 

collecting on the camera lens obstructing the photographic record.

Due to NRS regulation 484.910, which prohibits photographic devices for traffic law 

enforcement, the recording of live traffic data in the state of Nevada is prevented. As a 

result, data was simulated and used by my experimental program.

Motivation

In the dozens of science fiction movies that 1 have enjoyed over the years, 1 have 

always been curious to know exactly how a machine, or a robot, can see. That is, how 

can a computer detect and recognize objects that are unfamiliar to it? So how do you 

teach a machine how to interpret what it “sees” and / or how do you teach a machine how



to act or react on what it “sees” or thinks that it sees? These are just a few of the reasons 

why I choose Computer Seienee.

Disclaimer

Since this paper is an entire application (all encompassing), a comparison of 

individual techniques for each part is beyond the scope of this work. All processing 

algorithms, such as background subtraction, shadow detection and removal, etc, currently 

available are not included - such research is left to the reader.



CHAPTER 2

BACKGROUND / RELATED WORK

A Brief Introduction to Statistics 

With the help of the Bureau of Transportation Statistics (BTS) and UNLV 

Transportation Research Center, 1 have collected data about accidents in the state of 

Nevada taking place at intersections in the Las Vegas area. An analysis of the data has 

yielded a Poisson statistical model, when the accidents are grouped into a weekly time 

period. This will aid us in identifying intersections with a high volume of aeeidents and 

allow us to predict when the next accident will likely occur.

The Poisson distribution is a discrete probability distribution that states the 

probability of a number of events occurring in a fixed time period when these events 

occur with a known average rate and are independent of each other.

The distribution was discovered by Simeon-Denis Poisson and published in 1838 [75]. 

The work focused on random variables N that count a number of separate occurrences, or 

arrivals, that take place during an interval of a given length of time. If the expected 

number of occurrences in this interval is X ,  then the probability that there are exactly k 

occurrences, where k is a positive integer, is equal to:

p(j;, A) =  fo r X = 0 , 1 , 2 , * * *

10



Equation 1 Poisson distribution function

where e is the natural logarithm, x is the number of occurrences of an event with the 

probability which is represented by the function, X  is the parameter which indicates the 

average number of events in the given time interval. The parameter X  is not only the 

mean number of occurrences (k), but also its variance.

0.4

0.3
X =  10

0.2

0.0
205 10 150

Figure 1 An example of a Poisson distribution graph. The horizontal axis is the index x. 

The function is defined only at integer values of x.

Traffic accidents are events that are normally independent of each other. An 

intersection is where the events take place. Traffic accidents oceur every day. An 

interseetion ean be seen as the convergenee of two or more roads.

We believe that the vehicle crash process can be modeled by using a two-state 

method, which implies that the intersection exists in one of two states, clear (no accident)

11



or obstructed (accident). We will show that the Poisson discrete distribution is an 

approximation assumed for modeling the crash process.

Other event detection methods are detailed in a variety of documents. For example, a 

survey of vision based automatic incident detection methods are found in [95]. [93] 

describes a method to improve safety at intersections using a combination of 

mathematically based algorithms and data mining. Yet another paper [94] describes the 

prediction of traffic accidents using a probabilistic model. In [96], a system was 

developed to monitor intersection traffic and use the tracking results to predict collisions 

over a short time period. A pixel-based strategy for the detection of unusual activities at 

intersections is described in [103]. Finally, [97] approaches vehicle collision avoidance 

from the perspective of the vehicle itself, which is equipped with sensors.

With more recent advances, some car manufacturers have added on-board systems, 

such as OnStar by General Motors [98], which will automatically notify a central 

monitoring station to report that the vehicle has just been involved in a crash.

Ohio State University scientists have created software that can identify traffic 

accident hot spots on state roadways, using the statistical information of injuries and 

fatalities from the highway patrol and other statistics about what makes accidents happen 

[99].

A Brief Overview of a Visual Surveillance System 

Visual Surveillance is the process of monitoring an object’s (people, vehicles, etc) 

activities in a scene. The usual approach requires capturing information from video 

recording devices, such as closed-circuit television cameras.

12



Visual surveillance systems address real-time observation of objects in some 

environments, resulting in a description about the behavior of the objects within that 

environment or among the objects themselves. It is utilized for measuring traffic flow, 

detecting accidents on highways, and routine maintenance [1,2].

An intelligent visual surveillance system is the practice of monitoring and performing 

multiple surveillance tasks automatically by a computer vision system. It involves 

detecting and tracking objects, or blobs, in the video sequence and describing their 

actions. Using image analysis techniques, a visual surveillance system should be able to 

detect, identify and track objects, sense and segment motion, and record information 

captured by the surveillance cameras.

Much research has been done on traffic analysis [17-31], including vehicle 

identification, license plate detection, street crossing robots and autonomous vehicles.

All of these solutions are context / domain specific. I have not yet discovered a complete 

“one size fits all” solution. With this in mind, the feature extractor and classifier can be 

made simpler, since we already know what we are seeking. There are many applications 

that are all specific to its own category or domain. Sometimes, it is not possible to 

determine the class membership of an object without examining the context in which the 

original object is embedded. There is no “global” solution to handle all computer vision 

problems / applications [10-11]. In this application, we expect to find vehicles and 

pedestrians in the street.
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A Brief Overview of Computer Vision

Computer Vision is the essentially the seienee and teehnology of giving maehines the 

ability to “see”. Computer Vision ean be viewed as a eombination of multi-diseiplinary 

fields. Although earlier work exists, it was not until the late 1970s that an in-depth study 

of the field started as soon as computers could handle processing large data sets such as 

images. However, these studies typically began from various other fields, and as a result 

there is no standard approach for solving "the computer vision problem" [83]. 

Subsequently, there exists a large quantity of methods for solving a mixture of well- 

defined computer vision tasks, however, these methods frequently are task-speeifie and 

ean rarely be generalized.

According to some researchers, computer vision technology is a branch of Artificial 

Intelligence that focuses on providing computers with the functions of typical human 

vision [16]. Others see Computer Vision as the study of understanding image content by 

computer or extracting information from visual stimuli.

One of the fundamentals of computer vision is enabling a machine / computer to 

interpret images in order to recognize and understand interesting objects in the picture, to 

complete a predefined goal or task.

The input to a computer vision system is usually a digital video stream, gray scale or 

color image, from a camera.

As said by Faugeras in [7], computer vision tries to answer the following questions

1. What information should be extracted from the visual sensors?

2. How is this information to be extracted?

3. How should this information be represented?
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4. How must the information be used to perform the specified task?

The first three questions are mainly eoneemed with the low-level aspects of computer 

vision, such as edges, regions, blobs, etc. The fourth question deals with the high-level 

aspects of computer vision, which utilizes the low-level information obtained for 

surveillance applications or motion tracking applications.

Background

What is a digital image?

Figure 2 Pixel image array

F o r  o u r  p u r p o s e s ,  a n  im a g e  i s  a  t w o - d im e n s io n a l  array  o f  m o n o c h r o m a t ic  in t e n s it y  v a lu e s .  

The typical array sizes are 320x240, 512x512 or 640x480 (columns x rows), although 

lower and higher values are possible. Each array element is called a pixel (short for 

picture element). A typical video digitizer produces 8-bit pixels, with values in the range
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of 0 (black) to 255 (white). A pixel value represents light intensity (often called 

brightness or gray level). For color cameras, this information is usually separated into 

three image arrays, one for red, green, and blue.

Gray scale images contain less data than color images and are easier to process. 

However, the potential of color in helping with many aspects of computer vision 

processing is immense [83].

Color can be defined as the differences in the frequency of light. The wide range of 

colors that wc see results when any of the three primary colors of light; red, green and 

blue, are combined together [45].

Color models can be defined in numerous ways, each with its own advantages and 

disadvantages. The RGB space is most commonly used with computer generated images. 

RGB is an additive color model.

The HSV (hue, saturation, value) color space, also known as HSB (where “B” 

represents brightness) varies the degrees of properties of colors to create new colors, 

instead of using a mixture of the colors themselves. HSV is a non-linear transformation 

of the RGB color space.

CIELAB or CIEXYZ color spaces are formal definitions of a color space, which were 

specifically designed to encompass all colors the average human eye can visualize. This 

is the most precise color space but is too complex for use.

What docs recognition infer? Recognition is a word used to state the ability to 

identify and classify things based solely on previous stored information. What facilitates 

recognition? Most objects have explicit, distinctive, unambiguous features. These 

characteristic features can be visual, motion, shape, color, texture, or non-visual, taste.
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sound, or smell, in nature. However, in the case of computer vision, non-visual 

characteristics cannot be used.

Why is computer vision so difficult? The simple explanation is: there is too much 

information to process efficiently. Take for example, a typical monochrome video 

camera produces 320x240 pixels per image, thirty images per second, which is about two 

mega-bytes per second (Triple this value for color images -  two mega-bytes for each 

color channel). For comparison, the human retina has more than one hundred million 

photo-receptors [32]. On the other hand, there is not enough information: the world is 

three-dimensional and dynamic, but (most) images arc two-dimensional and static. How 

docs vision produce vivid impressions of depth, shape, and motion from two-dimensional 

/ flat images?

The ultimate goal of any computer vision system is to interpret the given visual data 

and to use that interpretation to complete a given task. A general scheme of a video 

surveillance system using computer vision ean be found in [2].

Intelligent video surveillance in dynamic scenes has become an active research area 

[12]. However, many existing vision based systems are limited to measuring the traffic 

flow or queue detection [3, 4], or congestion detection on highways [5]. This survey 

details the current modern development of automated visual surveillance systems [6]. An 

intelligent control of traffic lights is detailed in [91].

Today, there is a widespread use of video recording devices in both private and public 

areas. Some examples include airports, banks, casinos, shopping malls, etc [8].
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The goal of motion segmentation is to detect regions in the scene which correspond to 

moving objects like vehicles and pedestrians. It is one of the oldest computer vision 

problems and has been approached in many ways [9].

Feature recognition and / or object classification is the process for making decisions 

about the class membership of a pattern in question. Commonality among the scenes 

being portrayed is how class membership is reflected [33 - 36].

Common Problems

With any kind of visual image analysis, the following common problems occur:

• Cluttered Images - pictures which have a massive amount of content (clutter / 

noise) going on -  or those pictures where there are multiple objects 

overlapping one another

• Foreground vs. Background - how do you tell what part of the image belongs 

to the background (uninteresting objects) and which part of the image belongs 

to the foreground (objects of interest)?

• Occlusion - when two objects overlap because one is in front of the other

• Real-time Performance - how to optimize your code, without giving up 

functionality. If your algorithm takes too long to classify an object, then its 

usefulness is diminished.

Shadows - different lighting conditions and weather make this a common 

problem.

• Pose Variations- an object can look completely different if viewed from a 

different angle. This can he a problem if your algorithm matches based on
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shape (template matching), orientation and position of the object with respect 

to the camera.

Image Acquisition and Pre-Processing 

Image acquisition is the capturing of the data (images) to he analyzed. Pre-processing 

is the act of analyzing, processing and or transforming the data before it is passed on, to 

he used by the high-level segments of the system.

Histogram Equalization 

Histogram equalization is a common method for improving the appearance of images. 

Suppose we start with an image that is predominantly dark. When its histogram is 

examined, it would he skewed towards the lower end of the grey scale with all the image 

elements being compressed into the dark end of the histogram. Stretching out the grey 

levels at the dark end to produce a more uniformly distributed histogram would then 

generate an image that is much dearer and brighter.

Histogram equalization can also he utilized when comparing a specific feature such as 

texture on two or more images. The process would first normalize the histograms to a 

standard histogram before the comparison was made. This is beneficial when the images 

have been acquired under different conditions, such as lighting or capture devices.

Noise Suppression

Image degradation is caused inadvertently during the image acquisition process. This 

can be caused by inappropriate illumination, motion, out of focus blurring, camera 

mechanical problems, noise or the quality of the digitized image being inferior.
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There are several methods in which noise in an image can he reduced or eliminated. 

These include filtering, thresholding, convolution and mathematical morphology.

What is RGB color?

To understand color, you will need a brief overview of light. Visible light is made up 

of waves of varying colors, as shown below. The predominant colors of the spectrum 

are red, green and blue [14, 76].

RED GREEN BLUE

Figure 3 The color spectrum

Different levels of these colors can he combined to form other colors, since RGB is 

an additive color system.

Devices such as digital cameras, scanners and video cameras use the additive color 

system to gather information and reproduce the color image [14, 76].

With that in mind, an image is represented as an array of pixels. An RGB image 

subsequently is a compilation of the three planes that identify the amount of red, green 

and blue needed to categorize each pixel in the image and to simulate the appearance of 

color.

It can he time consuming to process color images since the three color planes (R, G, 

and B) must he processed together. To help resolve this issue and improve performance, 

images can he converted to a grayscale when necessary. Grayscale images are 

represented on one plane, where each pixel is assigned a value from 0 to 255 (for 8-hit
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images), where 0 is hlack and 255 is white, with all other values in between representing 

a shade of gray. To convert an existing RGB image to a grayscale image, the following 

formula

Y = (0.299 X R) + (0.587 X G) + (0.114 X B)

Equation 2 Standard conversion of an RGB image to grayscale

can he applied to eaeh pixel in the RGB image. Based on my researeh, there seems to he 

no one correct grayscale conversion, since it depends on the light sensitivity of the 

camera. The formula above seems to be the most eommon and works in the majority of 

cases.

Moving Object Detection (Motion Segmentation)

Onee an image sequence is obtained and filtered, during the analysis of the objects in 

the images, it is necessary that we can distinguish between the objects of interest and the 

background. The techniques that are used to find these objects of interest are generally 

referred to as segmentation techniques. The coneept of “segmentation” is generally 

known as finding the objects of interest in the image.

Background Subtraction 

Background subtraction can he defined as detecting moving objects in a scene from a 

static camera. A commonly used method for detecting moving objects in a scene from 

static cameras is background subtraction [67]. Many diverse methods have been
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proposed with a variety of techniques. Generating a background image or model is a 

common principle in this approach. It is essentially detecting moving objects from the 

difference between the current frame and a reference frame, or collection of reference 

frames taken over time. The subtraction results in leaving only moving objects, which 

typically are processed at a later step. At the core, this background image must be a 

representation of the scene with no moving objects and must be frequently updated to 

adapt to the varying changes in the scene.

Developing a robust background subtraction algorithm has numerous challenges to 

overcome. One of the main challenges is that the background model must react timely to 

changes that occur in the scene, for example, starting and stopping of vehicles. The next 

challenge is that the algorithm must also adapt rapidly to changes in illumination. 

Another challenge is that the algorithm should not detect moving objects such as leaves, 

rain, snow or shadows. One of the most important problems is that it should perform 

well under real-time conditions. A good comparison and review of background 

subtraction techniques is detailed in [27] and [64].

Commonly, in an adaptive background subtraction method, a reference backgroimd 

frame is initialized at the start with the first few frames of the incoming video stream and 

then updated to adapt to dynamic scene changes over time. For each new frame, the 

foreground pixels are identified by subtracting the values from the reference background 

image frame and then filtering the absolute value of those differences with a dynamic 

threshold per pixel. The reference background and the threshold values are then updated 

by using the foreground pixel information. Some of the identified foreground pixels 

contain noise caused by errors, such as small movements from trees, etc. These isolated
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pixels can usually be filtered out by the use of morphological operations like erosion and 

dilation. Next, the individual pixels are grouped to form connected moving regions. 

These regions (which form the foreground mask) are displayed with a bounding box to be 

used in later processing steps.

Statistical Methods for Background Subtraction 

More advanced methods have been developed to overcome the limitations of basic 

background subtraction methods. These methods use the characteristics of pixels to build 

a more advanced background model. Those statistics are also dynamically updated 

during processing. To identify which pixels belong to the foreground, each pixel’s 

statistics are compared with that of the background model.

A good example is described in [65]. In their work, every pixel is separately modeled 

by a mixture of Gaussians which are updated online by incoming data. In order to detect 

whether a pixel belongs to the foreground or background, the Gaussian distributions of 

the mixture model for that pixel is evaluated.

The statistical model constructed in [71] represents each pixel as three distinct values; 

the minimum intensity value, the maximum intensity value, and the maximum intensity 

difference between consecutive frames examined throughout the training period. The 

parameters used for the model were updated periodically.

Temporal Differencing for Background Subtraction 

Temporal differencing computes the pixel-wise difference between several successive 

frames in an image sequence in order to detect moving objects. While this method is
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adaptive to dynamic environments, it commonly fails to detect whole pertinent pixels of 

some of the moving objects.

[68] is an example of this method where detected moving targets in real video 

sequences using temporal differencing are described. Their method extracted moving 

sections by thresholding the motion difference image and then applying connected 

component analysis to cluster the motion into regions.

A better version of temporal differencing is introduced in VS AM [18] where they 

used three-frame differencing instead of two-frame differencing. They have successfully 

developed a hybrid algorithm for motion segmentation by combining an adaptive 

background subtraction algorithm with a 3-frame differencing technique. According to 

VS AM [18], this hybrid algorithm is very fast and more effective for detecting moving 

objects in image sequences.

Image Segmentation

Once the background subtraction algorithm has been applied, there will ultimately he 

some pixels in the resulting image that show up as moving, hut should not be classified as 

valid moving objects. This can he due to tiny movements of the camera, image 

acquisition errors, image compression errors, etc. This is identified as noise. Even 

though the frequency of these pixels can he considerably reduced by accurate 

thresholding during the background subtraction stage, there will always he some noise 

generated. Therefore, a noise reduction algorithm is needed (noise can be reduced at both 

pre-processing and post processing).
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The purpose of a noise reduction algorithm is to eliminate the random, unwanted 

pixels from the image that are not part of a valid moving object, hut at the same time 

preserving the pixels that are part of valid moving objects.

The output image will inevitably contain small noise-generated blobs, once the 

background subtraction algorithm has been applied. So it is important that the resulting 

image he further refined. False blobs can he removed by the use of Gaussian filtering 

and simple area thresholding. The remaining blobs can then he cleaned using opening 

and closing morphological functions [77].

Thresholding

Gray level thresholding is a simple segmentation method. It is computationally 

inexpensive and fast. Thresholding creates a binary image from a gray-level one by 

changing all of the pixels below a certain threshold to 0 and all of the pixels above that 

threshold to 1 [90]. Formally, this can he represented as; If h(x,y) is the output from 

a(x,y) with some threshold T,

b(x,y) = r  1 if a(x,y) >= T

L 0 otherwise 
Equation 3 Formal definition of thresholding an image

B in a r y  I m a g e s

Binary images are images that have been transformed into to two values, denoted by 

0 and 1, hut often with pixel values of 0 and 255, representing hlack and white 

respectively. Binary images are used in numerous applications since they are simple to
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process. Additionally, they can be useful when all of the information you need can be 

provided by the silhouette of the object, and when you can acquire the silhouette of that 

object easily.

Binary images are typically achieved by thresholding a color or a gray level image. 

Those pixels with a gray level above a certain threshold are set to 1 (or 255), while the 

rest are set to 0. However, choosing a threshold can be difficult [89]. Most approaches 

make use of the histogram, to show the number of times each gray level occurs in the 

image. Note that when the object and the background are relatively close in gray levels, 

it can he difficult to automatically determine the threshold.

We define the characteristic function of an object in a binary image to be:

r =1 for points on the object
Xx, y) I

k = 0 for the background point 
Equation 4 Formal definition of a binary image

Morphology

The root of mathematical morphology is the application of set operations to images.

It helps mostly to segment images and emphasizes the role of shape. Normally, the 

image has already been thresholded to a binary image before the morphology operations 

are applied. The two most essential and fundamental operations in mathematical 

morphology are erosion and dilation. They are used to aid in the reconstruction of 

objects extracted from the background subtraction algorithm. The process of producing a 

new image from blending a function with an image is called convolution. Different 

masks can he used to obtain different images [83, 88].
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In general, dilation produees objeets that inerease in size while erosion produees 

ohjeets that reduee in size. The amount and the manner in which objects increase or 

deerease in size is eompletely dependent upon the choiee of the strueturing element. The 

4-coimected and 8-eonneeted sets are the two most eommon strueturing elements used.

1/
1" '

4-connected grid 8-eonneeted grid
Figure 4 A 4 and 8 conneeted grid example

{
( - 1, - 1), (0 , - 1), ( 1, - 1), 
(-1, 0), (0, 0), (1, 0), 
GT,1), (0,1), (1,1)

}

Set of eoordinate points

Two pixels, P and Q, are 4-adjaeent if they are 4-neighhors to eaeh other, and 8- 

adjacent if they are 8-neighbors of eaeh other.

4-adjacent 
Figure 5 A 4  and 8 adjacent example

8-adjacent

The outeome of dilation on a binary image is to gradually inerease the boundaries of 

regions of pixels. As a result, areas of pixels increase in size while holes inside those 

regions decrease. The outcome of erosion on a binary image is to erode the boundaries of
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regions of pixels. As a result, areas of pixels decrease in size, and holes inside those areas 

hecome larger.

Opening and closing are two very important operations in mathematical morphology. 

They are hoth hased on erosion and dilation. Erosion can be used to remove small 

clumps of unwanted foreground pixels quite effectively. However, it has the 

disadvantage of affecting all regions of the foreground pixels indiscriminately. Opening 

alleviates this hy performing hoth erosion and dilation on the image. Dilation can be 

used to fill in small background holes in images. However, one of the challenges 

associated with this is that the dilation will also distort all regions of the pixels 

indiscriminately [83, 88]. ‘Salt and Pepper’ noise can he removed hy using opening and 

then closing on the image.

The opening operation can split up objects or gaps that are connected in a binary 

image. The closing operation can fill in small holes. Both operations produce a certain 

amount of smoothing on an objects contour given a "smooth" structuring element. 

Opening smoothes from the inside of the objects’ contour while closing smoothes from 

the outside of the objects’ contour.

Formal definitions of the mathematical morphological operations:

Erosion A 0  B
Dilation A © B
Opening A o B  = ( A 0 B ) © B
Closing A * B  = ( A © B ) 0 B

Equation 5 Standard mathematical morphological operations where A is the image and B

is the structuring element
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The following figures are examples of the four most common mathematical 

morphological operations. The examples assume 8-connectedness.

The effect of erosion using a 3x3 square structuring element

• S '
Figure 7 The effect of dilation using a 3x3 square structuring element
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Figure 8 The effect of opening using a 3x3 square structuring element

Figure 9 The effect of closing using a 3x3 square structuring element

In general, the operations here can help eliminate noise and irrelevant parts from 

images to obtain more accurate shape recognition.

S m o o t h in g

Smoothing refers to changing the value of a pixel given the surrounding pixels. One 

way to smooth an image is to assign to each pixel the average of its neighbors. This will 

tend to cancel out extreme values.

30



Convolutions

A simple way of averaging nearby pixels is to use this convolution mask:

1/9
1 1 1 
1 1 1 
1 1 1

Blurring effect

Figure 10 Blurring convolution mask

where the number in front of the mask weights all of the coefficients in the mask and is 

introduced to make sure that applying the convolution does not alter the mean intensity in 

the image.

Convolutions are the most general spatially invariant linear operators that can be 

applied to an image [83].

Gaussian Filter

A Gaussian filter, also known as a smoothing filter, is a convolution operator that 

blurs images while removing detail and noise. The output of a Gaussian filter is the 

weighted average of the pixels contained within the neighborhood of the filter mask.

This filter acts as a low pass filter and preserves edges while eliminating noise. The 

Gaussian filter can be very useful when you need to detect edges and corners in an image. 

Applying a Gaussian filter will assure that the operator is rotationally invariant and will 

a s s u r e  th a t  th e  im a g e  n o i s e  i s  a l s o  r e d u e e d  [ 5 1 ] .

1/16
This mask 
more closely fits 
a Gaussian filter
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Figure 11 Gaussian filter

Median Filter

The idea here is to find those pixels in the image which have extreme intensities and 

to ignore their actual values and replace them with more suitable values [83]. An 

apparent way of using this method is to apply a filter that prevents any pixel from having 

an intensity outside the range of its neighbors’ intensities. This has the result of blurring 

the image and diminishing the edges in the image.

Color bleeding can occur if the three color channels, representing the red, green and 

blue channels in an RGB image, are processed independently. You can overcome this by 

using a vector median filter which processes all three color channels together.

Edge Detection

Edge detection is defined as finding those specific pixels that belong to only the 

borders of the objects. Edges can be considered as places in the image with a strong 

intensity contrast in only one direction, or where there is a sharp change in image 

brightness. Edge detection is only concerned with the image itself, and thus does not 

differentiate between different types of discontinuities in the image.

Edge detection provides a more meticulous means than thresholding for starting 

image segmentation. It is widely used and is an alternative path to image segmentation.

It aids the image segmentation process by separating the image into areas corresponding 

to different objects, since edges normally happen at locations representing object
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boundaries. Edge detection also has a significant additional advantage in that it instantly 

reduces (hy a large factor) the redundancy intrinsic in the image data.

There are many edge detection techniques available [39, 40, 52, 53, 74]. Some of the 

more common methods are described below.

Canny

The Canny Edge Detector algorithm has the following steps: [41, 42, 74]

1. Smoothes the image to eliminate the noise with a Gaussian filter

2. Computes the image gradient to highlight regions with high spatial derivatives

3. Applies non-maxima suppression to the gradient magnitude (moves along the 

regions and suppresses any pixel that is not at the maximum)

4. Reduces the gradient array by hysteresis. Hysteresis is used to track along the 

remaining pixels that have not been suppressed. Hysteresis uses two 

thresholds, if the magnitude is below the first threshold, it is set to zero (made 

a non-edge). If the magnitude is above the high threshold, it is made an edge. 

And if the magnitude is between the 2 thresholds, then it is set to zero unless 

there is a path from this pixel to a pixel with a gradient above T2.

Sohel

The Sohel Edge Detector uses two simple convolution kernels to create a series of 

gradient magnitudes; one to detect the changes in the vertical contrast (Sx) and the other 

is used to detect the horizontal contrast (Sy) [52, 74].
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■-1 0 r - 1  - 2

- 2 0 2 Sy -
0 0 0

- 1 0 1_ 1 2 1 _
Figure 12 Sobel convolution kernels

The outcome of each convolution is treated as a vector representing the edge through 

the current pixel. The pixel is marked as an edge if the magnitude of the sum of these 

two vectors is greater than a specific threshold.

There are a few disadvantages with the Sohel Edge detector. First, it is incredibly 

sensitive to noise in the source image. Second, resulting values from the calculation can 

easily overflow the maximum allowed pixel value [83].

Laplace

Laplacian hased edge detection is based on the fact that the edge points of an image 

can be detected by finding the zero crossings of the second derivative of the image 

intensity [92, 74]. An edge has the one-dimensional shape of a slope and calculating the 

derivative of the image can highlight the location.

For example, an edge is shown by the jump in intensity: (Usually, edges will have 

higher pixel intensity values than those surrounding it)

Figure 13 Sample edge
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Figure 14 The first derivative, which is the gradient

Figure 15 The second derivative

However, the calculations for the second derivative are very sensitive to noise. To 

rectify this, the Laplacian of Gaussian is normally used. This method combines Gaussian 

filtering with the Laplacian edge detection algorithm.

The Laplace operator can approximate the second derivative, hut this only gives the 

gradient magnitude. The following convolution is used [74, 76]:

0 1 0 1 1 1
h = 1 -4 1 h = 1 -8 1

0 1 0 1 1 1
Figure 16 The Laplace operator

For a quick summary of edge detectors, please refer to Appendix B.

Edge detection has heen an alternative path to image segmentation. It has a 

considerable additional advantage in that it immediately reduces the redundancy in the
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image data. This is useful because it drastically reduces both the space needed to store 

the information and the amount of processing later required to analyze it [83].

Cormected Components (Object Labeling)

In general, binary images will normally contain more than just one object. We need 

to first identify the connected components in the image in order to identify or classify the 

objects found in that image. Connected components are the distinctly connected blobs 

that correspond to each object in the image [89].

Connected component analysis is a method used to find homogenous sections in a 

binary image. The groups identified hy this step form a basis for object identification and 

tracking. Two pixels in a binary image are connected if and only if a path can be 

established between them. Commonly, O’s are used to identify the background of the 

image while 1 ’s are used to identify the foreground of the image.

At this proposed step, the individual pixels are grouped and labeled to create 

connected moving regions. Additional processing groups disconnected areas together 

and removes fairly small sized regions. After grouping, each detected foreground object 

is represented by a bounding box. A common approach is to use a two-pass algorithm, in 

which you scan through and detect all connected regions, if two regions are touching 

(first pass), then go through again and re-lahel all touching regions with a single identifier 

(second pass).

The convex hull of the blob may he used to simplify complex shapes to provide a 

rapid hint of the scope of an object.
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Moving Object Classification

The main goal of objeet classification is to precisely extract the region of interest 

corresponding to the type of object desired from all the moving regions detected by the 

motion segmentation step. These moving regions could relate to different objects in the 

real-world, such as vehicles, pedestrians, etc. There are several approaches toward 

moving object classification, shape and motion being the most relevant. Shape based 

methods rely on an objects’ spatial information while motion based methods rely on an 

objects’ temporal information for the classifieation.

Objeet detection methods are capable of searching for a specific class of object, like 

vehicle or pedestrian. In contrast, object recognition is the ability to identify specific 

instances of a elass, sueh as the differenee between my ear and your car, not the 

difference between cars in general or what is not a ear. These two types of techniques 

often go together, since the first step in reeognition is to locate the object of interest.

Given that we are deteeting objects in a video sequenee, we have a mueh rieher set of 

information available, specifieally the dynamic information inherent in the video 

sequence.

For example, our feature seleetion for vehiele deteetion involves a elass of vehicles, 

instead of a speeifie vehiele. We only need to deteet the vehicle, no matter its make, 

model, color, etc.
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Shape-Based Classification 

Simple shape characteristics such as the geometric appearance, area, and silhouette of 

the detected objects are utilized in shape based classification methods in order to 

distinguish those objects from one another.

For instance, the method developed in [18] classified moving objects into four classes, 

such as vehicles, single human, human groups, and clutter, using a viewpoint-specific 

neural network classifier. The neural network used the area, separation, camera zoom 

magnification and the aspect ratio of the objects region as inputs.

In another instance, [68], used the dispersedness and area of the moving objects as 

classification metrics to help classify vehicles, humans, and other. Dispersedness is 

defined in terms of the object’s area and contour length.

Another classification method proposed in [54] employs a logistic linear neural 

network with differential learning to distinguish two classes, people and vehicles.

Motion-Based Classification 

Motion segmentation methods are based on motion cues, which are used to help 

distinguish the objects from the background. For example, these methods use only the 

temporal motion features of an object in order to classify its class [9, 55, 69]. They are 

commonly used to distinguish between rigid and non-rigid objects, such as vehicles from 

humans.

For instance, [9] described a self-similarity-based technique to detect and analyze 

periodic motion, by tracking the moving objects of interest. Their method shows that as 

an object that demonstrates periodic motion progresses, its self-similarity measure also
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shows periodic motion. The method makes use of this cue to classify moving objects 

using periodicity.

Optical flow analysis is also useful to distinguish rigid and non-rigid objects. The 

method described in [69] makes use of the local optical flow analysis of the detected 

object regions. In their algorithm, it was anticipated that rigid objects such as vehicles 

will depict little residual flow while non-rigid objects such as humans will depict a high 

average of residual flow. By using this cue, humans can be distinguished from other 

objects such as vehicles.

Color-Based Classification

Color provides more information for object recognition as compared to gray scale 

images. The idea here is that for color to be useful, it must bring the right sort of 

information to light on the task at hand [83]. In this instance, color can be used to aid in 

the segmentation of vehicles that are merged together in one large blob.

Object Recognition

Object recognition can be seen as the process of converting features of the image 

(such as edges, connected blobs, etc) into models of known objects (such as vehicle, 

person, etc). An objects appearance in a two-dimensional image is based upon its shape, 

pose, reflectance and lighting conditions.

With no reference available, how does a computer / machine “recognize” an object? 

It would have to start with its physical appearance, or more precisely, its features. It
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would have to be able to separate the foreground from the background and determine the 

objeet’s dimensions relative to itself.

Humans tend to think of object recognition in terms of appearance. Therefore, 

pattern recognition features should refleet the nature of the objects that you are trying to 

classify. These features would include:

Basie shape (objects characterized by its geometrical properties)

Color

Height, width, and depth 

Size or length 

Moving or stationary

Of course, a computer cannot make use of non-visual features, since its only input is 

from digital images. Therefore, those features eannot be included.

As we know, solid assoeiations come from eommon connections. We tend to use a 

broad array of clues to recognize what is around us, even it we don't attempt to recognize 

it. Recognition itself eonsists of a set of clues, any one of which may be adequate enough 

to refine the identification process; however, it may be used to guide the eomputer to the 

correct conclusion. Motion also helps us define objects. Unique movement helps us to 

recognize particular objects. Furthermore, if any distinguishing features are missing, 

reeognition becomes very difficult or impossible.

Recognizing three-dimensional objects from two-dimensional images is an important 

part of computer vision applications [37, 76]. While humans can recognize many diverse 

objects easily, visual recognition is generally a difficult task for a computer [38].
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Shadow Detection and Suppression

Shadows can be defined as a region of darkness where light is blocked. All of the 

algorithms described above perform well on indoor and outdoor environments and have 

been used in real-time applications. Nevertheless, most of these algorithms are 

vulnerable to both local and global illumination changes. Shadows result in many motion 

detection methods failing to segment only the moving objects, given that the shadow 

moves with the object. If shadows are not eliminated during the motion detection phase, 

it could happen that two or more separate objects will be merged to together when the 

shadow is overlapping with another object.

Shadows can be grouped into two types, self-shadow and cast-shadow, according to 

[84]. An object’s self-shadow is the part of the object which is not illuminated directly 

by the light source. In our case, the only relevant light sources are the sun, street lights 

and vehicle lights. An object’s cast-shadow is the area projected onto the scene by the 

object. This area can be very large, particularly during the sunrise and sunset 

circumstances. A cast-shadow can be further divided into an umbra and penumbra [84]. 

When an object is fully opaque, that is all of the light is blocked directly by the object, 

the cast-shadow that occurs is identified as the umbra. When an object is partially 

transparent, that is only a certain amount of light is blocked, then the cast-shadow that 

occurs is identified as the penumbra. In this application, cast-shadows are the most 

important to eliminate. Self-shadows should not be removed since this could cause an 

incomplete object silhouette [72].
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Self shadow

Cast shadow

Figure 17 Shadow parts

Types of shadow elimination techniques, as stated in [73] are divided into two types, 

statistical approaches and deterministic approaches. Statistical approaches are simply a 

binary decision process where a pixel belongs to the foreground blob or its shadow [58, 

62, 72]. Deterministic approaches add uncertainty by using probabilistic functions to 

express the class membership [56, 57, 59, 60, 61].

Statistical approaches are further broken down into parametric and non-parametric 

methods. In the parametric method, often two sources of data are used to help detect 

shadows and objects, local information which is represented by the individual pixel 

values and spatial information which is represented by as compact regions in the scene.

A good example is the Anton system described in [63, 73]. In the non-parametric method, 

as described in [62], color is considered as a product of irradiance and reflectance. 

Brightness and chrominance distortion between the expected color of a pixel and its 

actual value is how the current image is computed. Shadows have similar chromaticity 

and lower brightness than the background [62, 100, 101].
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Deterministic approaches are further broken down into model and non-model based 

methods. Model based approaches rely on the perception that the luminance ratio is a 

constant [60]. The luminance ratio is the ratio of the pixel intensity when it is under 

shadow compared to its appearance when under illumination. The reduction of a pixel’s 

intensity in shadow regions is illustrated by a linear transformation. When a new image 

frame is processed, those pixels with the illumination reductions that follow the linear 

model are the marked as possible shadow pixels. The comparison between the 

background frame and the current frame is used by the non-model approach. It then sets 

a threshold to classify a pixel as shadow or non-shadow. For example is the Sakbot 

system as described in [73].

Finding Vehicles by Appearance 

One approach could be to identify a certain pattern of pixels as the representation of a 

vehicle. Ideally, a lookup table would need to be created that contains every possible 

pixel pattern representation, attached to a binary value signifying the pattern’s class as 

either “vehicle” or “non vehicle”. The characterization would be a matter of retrieving 

the binary value at the pattern’s location in the lookup table. Due to the memory 

restrictions of a computer, it would be difficult to store a lookup table with 400^^  ̂entries 

(20x20 pixel image fragment with 256 discrete levels), for the classifier [43].

A more realistic pattern classifier would need to search for simple features, which are 

specific to vehicles, since the above ideal pattern classifier is not feasible to implement.

Another approach might be to create silhouettes of the detected objects that could be 

extracted and used as the input for a template matching algorithm. Color histograms of
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detected objects could be stored and used to resolve identities during an occlusion (i.e. 

two vehicles crossing each other) [86, 78]. Different color spaces are invariant to 

different filters. For example, chromaticity spaces are invariant to intensity changes.

Tracking Moving Objects 

Tracking moving objects can be characterized by observing the positions of an object 

or objects in a time sequence of images. The purpose of object tracking is to establish an 

association of objects or parts of an object between consecutive frames in the input video 

sequence. Tracking over time usually entails matching objects in consecutive frames 

using image features such as points, lines, position, velocity, shape, texture or color. An 

in-depth study of different tracking algorithms can be found at [47].

Object tracking can be divided into various categories according to different criteria 

according to the requirements of the application.

Optical Flow / Motion Estimation 

Optical flow methods describe coherent motion between image frames over time to 

detect moving regions [85]. This segmentation is done by grouping motion vectors into 

groups having coherent motion to detect changes over time. This is a direct result of the 

relative motion of the viewer (in this case the camera) and the scene. Basically, given a 

set of points in an image, find those same points in another image. The resulting 

perceptible motion in the image is called the optical flow.
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Most of the optical flow methods are computationally intensive, complex, and 

sensitive to noise and cannot be used effectively real-time without specialized hardware 

[70].

The Continuously Adaptive Mean Shift Algorithm (Camshift)

Camshift is based on the Mean Shift algorithm [107] for object tracking. It is mainly 

intended to perform efficient head and face tracking in a perceptual user interface [104, 

105]. It is based on a variation of the Mean Shift algorithm that, given a probability 

density image, finds the mode of the distribution by iterating in the direction of maximum 

increase in probability density [106].

In order to use Camshift to track colored objects in a video scene, a probability 

distribution image of the desired color in the video scene must be created. Since vehicles 

can be any color, this method was not feasible in this application.

Kalman Filter

In computer vision applications that need to track objects, the Kalman filter can be 

used to model the behavior of each moving pixel, with predictions of its state and 

position in the next frame, given information about the pixel’s initial state, velocity and 

acceleration. A Kalman filter is used to estimate the state of a linear system where the 

state is assumed to be a Gaussian distribution [46]. It works by estimating an unknown 

vector, based on an observed data vector, by finding the mean-squared estimate, where 

the estimate is chosen to minimize the error. The Kalman filter uses a recursive least 

squares algorithm to fit the data.
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The use of this prediction of the object’s position is valuable to the tracking processes. 

Once the objects are initially identified, the Kalman filter prediction would be able to tell 

where those objects are likely to be in the next frame.

The Kalman filter has been successfully used in the tracking of an active contour [48], 

the tracking of the boundary rectangle of a vehicle [49], and to track a two-dimensional 

silhouette of an object [50].

Occlusion

Occlusion can be described as the result of an object blocking another object from 

view. Occlusion can be categorized into three groups: occlusion by the background scene, 

self-occlusion or inter-object occlusion [47]. Background occlusion arises when a static 

structure in the background blocks the tracked objects. This normally happens when the 

tracked object moves behind it. Self-occlusion occurs when one part of the object blocks 

another. Inter-object occlusion occurs when two objects being tracked block each other. 

This situation happens most frequently when tracking moving objects. For example, 

when one object moves in front of or behind another object.

Color histograms can be useful for occlusion handling [86, 78]. The Kalman filter 

would also be useful in tracking objects and resolving occlusions [102]. However, the 

parameters used for the filter are difficult to estimate.
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Challenges

There are many challenges to overcome in image segmentation, such as separating 

the foreground from the background, illumination changes (sudden or otherwise), noise, 

shadows, camouflage in color, etc [44].

A drawback of the statistical parametric approaches for shadow detection is that the 

parameters need to be selected very carefully.

Tracking can be a difficult task to apply to highly cluttered locations, due to 

inaccurate segmentation of the objects. Common segmentation problems are long 

shadows, occlusion of objects with each other or with static items in the scene. Dealing 

with these problems at the motion detection step is essential for robust tracking.

Evaluation

Classification errors should be minimized as much as possible. A classification error 

can be defined as making an error when it labels the unknown feature as class i, when its 

true class is j, and it is not part of the reject class.
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CHAPTER 3

METHODOLOGY

Modeling Traffic Flow at a Signalized Intersection 

A signalized intersection can be seen as the convergence of two or more roads, which 

is controlled by a traffic control device, commonly known as a traffic light.

Figure 18 A typical intersection model
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Traffic control signals are implemented for reducing or eliminating conflicts at 

intersections, and they also aid in controlling the flow of traffic. However, accidents still 

occur, whether it is from careless drivers, poor road or weather conditions, power outages, 

etc.

The model of intersection traffic is a somewhat simplified version of real-world 

intersection traffic, with all of the current traffic rules and regulations applied.

Simulation models provide an alternative means for transportation studies when real 

models are not available.

As previously stated, we have modeled the road and the intersection as a service 

facility, which processes vehicles in a relatively small amount of time. A traffic accident 

is perceived as an interruption of that service.

With this in mind, we believe that the crash process can be modeled by using a two- 

state method, which implies that the intersection is in one of two states: clear (no 

accident) or obstructed (accident). We can then incorporate a rule-based system, which 

will help us in identifying that a crash has taken place.

In my analysis of signalized intersections, I discovered that there are certain areas in 

the intersection where the probability of an accident occurring is very high. 1 will label 

such areas as high-risk zones. These zones will help aid in the filtering of the data to help 

in the identification of accidents at intersections.

To assist the system with accident prediction, the following methods are proposed:

First, divide the intersection into four zones that indicate the beginning or ending of 

motion in and out of the intersection. Only two of the four zones would be ‘active’ at any 

time. The four zones could be used to set a flag if it detects that there is movement in one
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of the ‘inactive’ zones. For example, traffic is currently moving north -  south (active 

zones). If any movement is detected in the zones that indicate east -  west (inactive 

zones), then the probability of an accident is increased.

Figure 19 Active / Inactive zones

Second, the use of simple counters to count the number of vehicles making a left turn, 

a right turn or continuing their forward motion. Again, zones would need to be defined at 

c e r ta in  a r e a s  in  th e  in t e r s e c t io n ,  c l o s e  to  th e  e n tr a n c e  ( in g r e s s )  a n d  e x i t  ( e g r e s s )  p o in t s .  

The counter would be incremented at the ingress point and decremented at the egress 

point. A value of zero represents all traffic exited the intersection unobstructed. A 

positive value indicates that a vehicle entered the intersection but did not leave while a

50



negative value indicates that a vehicle left the intersection from an unexpected point. The 

counters would be reset to zero in tandem with the traffic light timing.

I 1 1 I I I

Figure 20 Ingress and Egress zones

Third, using motion vectors to track the flow of traffic. Traffic normally moves in a 

forward direction only in order to clear the intersection. In the case where momentum is 

detected in a backward or sideways motion, then the probability of an accident is very 

h ig h . T h e  m o t io n  i s  r e la t iv e  to  th e  d ir e c t io n  o f  th e  tr a f f ic  f l o w .

Fourth, since tracking and predicting vehicular trajectories is an obstacle, using the 

‘most common’ path would assist in overcoming the prediction challenge. Based on 

current traffic flow and common road rules, the intersection points of these paths would
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be the high-risk locations for an accident. This event would be triggered when opposing 

vehicles are detected crossing pre-defined thresholds at the same time.

Figure 21 Common traffic paths

Fifth, with the following assumptions that vehicles follow specific geometric rules, 

and that the road surface is planar, we can use the lane markings in the road as natural 

dividers. Vehicles tend to stay parallel to each other governed by the lanes in the road. 

V e h ic l e s  a l s o  te n d  t o  b e  p a r a lle l  w i t h  th e  c e n te r  d iv id e r  o r  c e n te r  la n e  m a r k in g  a n d  th e  

sidewalk. In the case where a vehicle is not parallel to the center line and/or sidewalk, 

would indicate a convergence and the possibility of an impending accident.

To assist the system with accident detection, the following methods are proposed:
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First, once the system has identified a high probability of an accident occurring, as a 

final check, the system would compare the current image with a reference image of the 

intersection. If the difference between the current image and the reference image is 

significant, then an accident has more than likely occurred. The reference image is a 

static image of the background, in this case, the intersection clear of traffic, which is 

updated at periodic time intervals (every second or every minute), in order to stay current. 

The time interval would need to be adjusted if too many false positives are occurring 

because the reference background image is too far out of date. This would include 

illumination changes representative of the current time of day and prevailing weather 

conditions.

Second, the system could keep a history of all tracked objects in the intersection. The 

object would be added to the history once it entered the intersection and subsequently 

removed from the history when it leaves the intersection. If the tracked object stops 

moving, but has not left the intersection, it would still be in the history. This could 

indicate the presence of an accident.

One problem related to these scenarios occurs when the intersection is ‘grid locked’, 

i.e. the intersection is blocked with traffic and it is not moving. This would result in a 

false positive, since some of the above scenarios would be satisfied.

Once the system has identified the probability of an accident, this information would 

need to be sent to a central monitoring location for human verification. If an accident has 

occurred, the monitoring facility could ‘communicate’ with the intersection and then 

notify emergency response vehicles, based on the severity of the accident.
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While my approach focuses on the use of only one camera, there are two other 

scenarios that could be implemented: using two cameras on opposite comers of the 

intersection or four cameras, one on each comer of the intersection. The same processes 

would be utilized for all cameras.

Review of the Crash Statistics 

My proposed approach starts with a mathematical model that pertains to the number 

of accidents that have occurred in an intersection.

Table 1 Statewide crash statistics for the state of Nevada over the last 5 years [80]

Year Total
Crashes

Total Crashes 
reported by 
Nevada Highway 
Patrol

Total Crashes 
at Intersections

Percentage
(Intersection / 
Crashes)

Percentage
(Intersection / 
Total crashes -  
Total from 
Highway Patrol)

2002 62,237 15,973 23,694 38.07 51.21
2003 63,582 15,937 22,815 1188 47.89
2004 59,657 15,311^ 18,968 31.80 42.77
2005 61,487 15,781' 17,314 28.16 37.88
2006 61,142 15,692' 16,511 27.00 36J3

Total 308,105 78,693 99J02 32.18 43.22

The above data was extracted from two data sources. In late 2003 through 2004, the 

state was transitioning to a new data collection system with completely different data 

elements. Through 2006, not all crashes were in both systems [80].

By taking the total number of crashes, and subtracting the total number of crashes 

reported by the highway patrol, this gives us the total number of crashes that occurred on

* Actual audited data is not available as of February 2008. These represent approximately 26% of the total 
number of reported crashes. There is no facility to approximate the number of accidents that have gone 
unreported, and this number could be substantial.
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surface streets (non-highway). In using this number, we have a better idea of how many 

crashes on non-highway roads were at intersections.

The mathematical model shown is a Poisson distribution that predicts the number of 

accidents in any intersection per week, which can be used as approximations for 

modeling the crash process.

The Poisson distribution model was used as a basis for the computation of the 

probability of accidents in an intersection. The raw crash data was used to extrapolate 

those intersections with the highest probability of incidents, and to aid in the prediction of 

accidents.

Recorded data for the following intersections, on a statistical basis, fits the Poisson 

distribution model. The raw crash data was split into groups that were representative of a 

week, with 52 weeks in a year. The raw crash data spanned a 5-year period, beginning 

January 2002 and ending in December 2006.

The following formula was used for the calculation:

P(X = k) = A,’' e"̂  / k! where k = 0, 1,2... 
Equation 6 Function used to calculate the Poisson distribution

where X is the random variable that signifies the number of accidents per the unit of time. 

The unit of time used for the calculation of the Poisson distribution is 1 week. X  indicates 

the average number of accidents per the unit of time. 1 / A, signifies the time between 

accidents. The inter-arrival time is an exponential distribution of the number of accidents 

in the intersection:
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Equation 7 Inter-arrival time
f(x) = e'^* where p = 1 / A.

The varianee of the number of aeeidents should be elose to A, that is why this is a Poisson 

distribution.

For example, the following information was eolleeted for the interseetion of Ann and 

Simmons for the year 2004.

Table 2 Ann and Simmons weekly total of aeeidents for 2004

Week #
# of
aeeidents

Week # 
(con’t)

# of aeeidents 
(cont)

Week # 
(eon’t)

# of aeeidents 
(eont)

1 0 19 0 36 0
2 0 20 0 37 0
3 0 21 0 38 0
4 0 22 0 39 0
5 1 23 0 40 0
6 1 24 0 41 0
7 0 25 0 42 0
8 2 26 0 43 0
9 0 27 0 44 0

10 0 28 0 45 0
11 0 29 0 46 0
12 1 30 1 47 0
13 0 31 0 48 0
14 1 32 0 49 0
15 0 33 0 50 1
16 1 34 0 51 0
17 1 35 1 52 0
18 1
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Table 3 The maximum number of accidents per week was 2 for Ann and Simmons

Observed Count Count / 52
count = 0 41 0.7885 The # of weeks with 0 accidents
count = 1 10 0.1923 The #  of weeks with 1 accident
count = 2 1 0.0192 The # of weeks with 2 accidents
T o t a l 5 2 l .O i

Table 4 There were a total of 44 weeks without an accident for Ann and Simmons

Mean Variance Lambda (mean+var/2) Count = 0 Count > 0
0.2308 0.2202 0.2255 41 11

There are 11 weeks where at least one accident occurred leaving 41 weeks without an 

accident. The mean for all 52 weeks is 0.2308. That is the sum of all aeeidents / number 

of weeks in a year which is 12/52. The varianee for all 52 week is 0.2202. The varianee 

is a common measure of describing the spread of observations in a distribution. X  is the 

average of the mean and the varianee: 0.2308 + 0.2202 /  2  =  0.2255.

To manually calculate the varianee:

1 week has (2 -  0.2308) = 1.7692 (# of aeeidents minus the mean)

10 weeks have (1 -  0.2308) = 0.7692 

41 weeks have (0 -  0.2308) = -0.2308

(1 * 1.7692^) + (10 * 0.7692^) + (41 * -0.2308^) / (52 -  1) -  3.1301 + 5.9167 + 

2.1840/51 = 11.2308/51 =0.2202
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Table 5 Poisson distribution for Ann and Simmons

Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)* 52
0 0.7981 0.7939 41.5012
1 0.1800 0.1832 9 J6
2 0.0203 0.0211 1.0556
3 0.0015 0.0016 0.078
4 0.0001 0.0001 0.0052

52.00

P(X) is always a number between zero and one with one being the highest probability
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Figure 22 Poisson chart for Ann and Simmons

For other statistical information on the twelve other intersections gathered, please see 

Appendix A.
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Implementation and Specifics 

There are a number of different approaches to vehicle classification and tracking.

The majority of tracking systems identify objects by their motion. The extent to which 

the vehicle classification and tracking depends on the background and lighting conditions 

at the time.

With so many diverse methods to choose from, it is hard to choose the right one for 

the task at hand. Part of my code development and research will be to see which method 

works the best, for the current problem that I am trying to solve.

The Intel Open Source Computer Vision Library [13] was used in the experimental 

system. It is a collection of C function and C++ classes that implement many algorithms 

of image processing and computer vision.

Moving Object Detection (Motion Segmentation)

Adaptive Background Subtraction Model 

In my experimental project, moving objects are detected and handled by use of an 

adaptive background subtraction method, like those described in [66], which works well 

for outdoor environments.

The function RunningAvg calculates the weighted sum of two images. Once a statistical 

model is available, slow updating of the value is often required to account for slowly 

changing lighting, etc. This can be done by using a simple adaptive filter:

Mr = a y + ( l  -tx)|Hj._|
Equation 8 Adaptive background subtraction function
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where M is the updated value, 0 -  Ct ^  1 is an averaging constant, typically set to a small 

value such as 0.05, and y is a new observation at time t. When the function is applied to a 

frame sequence, the result is called the running average of the sequence. The value of 0.015 

was used in this project for a (alpha).

A running average was selected, since the application cannot assume that no moving 

objects will be present in the scene when the system is started. Therefore, the 

background model is updated frequently, and a good background model is generated.

Noise Suppression

A smoothing filter based on Gaussian was used on the color image before it was 

thresholded to binary. A 5 x 5 matrix was used. This appeared to give the best results.

Thresholding, Erode, Dilation 

These operations will be used after the background subtraction step to:

• Remove objects too small to be valid trackable regions

• Connect moving objects that have been split by a noisy background

• Fill in the holes within moving objects that may appear due to the background 

subtraction technique or noise

“Normalize” the image for further processing 

One very special property of erosion is its ability to find the contour of an object by 

subtracting the original image and the result of the erosion. However, this method does 

not replace edge detection.
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Figure 23 Example of contour by erosion

Edge Detection

I will be implementing the Canny Edge Detection algorithm, since it is an optimal edge 

detector [41, 42], and works well in most cases.

Shadow Detection and Suppression

Shadows pose a problem to any surveillance system, since the shadows move with the 

object. To assist with shadow detection and removal, the following methods are 

proposed:

First, the time of day and time of year determine the location of a shadow, relative to 

the object that it is being projected from. This information would be utilized in order to 

assist the shadow removal process.

Second, using a histogram would help in determining which pixels were shadow 

pixels. A histogram with a majority of low values would indicate a dark region in the 

image. This information would be utilized to assist in the shadow removal process.
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Values less than 50 would be marked as possible shadow pixels. A potential problem 

with this is that dark colored vehicles or those with dark tinted windows could create a 

false positive.

Third, shadow regions could also be ‘trimmed’ when they are too long and cross lane 

boundaries. We can trim the detected blobs region at the lane divider.

Figure 24 Original Image

Shadows are highlighted Vehicle segmentation with shadows
"igure 25 Image with detected shadows before truncation
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Shadows are highlighted Vehicle segmentation with shadows 
trimmed at lane boundary_________

igure 26 Image with shadows truncated

An accident implies that no objects are moving, once it has occurred. Since this 

system is built around moving objects, shadows do not hinder the accident detection 

process in a significant way.

Object Classification 

In order for the classification to take place, features must be extracted that are 

common to the objects in question. Height and width are common attributes that can be 

calculated and might make good features. My goal is to find simple, specific, vehicle 

features which are invariant between different vehicle types, reflectivity, orientation and 

lighting.

Since this system is going to be used to examine traffic scenes, the two main object 

classes are vehicle and pedestrian. Other object sub-classes can be based on these two 

main ones, like car, truck, and bicycle. Objects that should be rejected from the 

classifications are trees, mailboxes, buildings, street signs and other non-moving objects.
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Searching for objects by their features is far more effieient than template matehing. 

To assist in the classification of vehicles and pedestrians, the following methods are 

proposed:

First, we know that vehicles have eertain physieal properties, such as proportional 

height and width and they must fit into the lane. Vehieles also tend to be ‘boxy’ or 

rectangular in their appearanee. Humans are taller and narrower than vehieles, while 

vehicles are shorter and wider and longer than humans.

Second, we ean use the lane markings to note the width of the vehiele. We can also 

determine the length of the vehicle as it passes by the eamera.

To find a perpendieular line from any two lines: start with a point on one of the lines 

then sweep aeross the other line. The point ehosen on the first line should be near the 

eenter of the area that will be examined. Whiehever line is the shortest is the one that is 

perpendieular (and the straightest line).

Figure 27 Illustration of finding the shortest line
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Tracking Moving Objects

Only the objects that move in the ROI (region of interest) are of significance. The 

intersection itself is the ROI.

Kalman filtering was not implemented to track moving objects due to its complexity 

and it is hard to estimate the parameters needed for accurate tracking and prediction.

Occlusion

Occlusion occurs as vehicles pass each other in the intersection, from the camera’s 

perspective. The objective of this thesis is to detect an accident. An accident implies that 

objects that were moving are no longer moving. There are times when two or more 

vehicles are detected as one due to improper segmentation due to shadows or vehicles 

moving past eaeh other, etc. However, it was not neeessary to utilize occlusion handling 

in this application as it is based on motion. As long as vehicles are in motion, occlusions 

are irrelevant.
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CHAPTER 4

RESULTS AND CONCLUSIONS

As previously stated, due to an NRS regulation, all data was simulated, given that real 

data was not available. Also, since accidents arc rare events, they are not often caught on 

tape.

The use of the statistieal models aids us in identifying interseetions that have a high 

probability for the potential for an aeeident to oeeur.

The use of eomputer vision teehniques would be benefieial in the automatie deteetion 

of aeeidents at interseetions. It eould deerease the amount of time that an interseetion 

was obstrueted sinee emergeney vehieles would be notified almost as soon as the 

aeeident happened. The monitoring loeation eould determine the severity of the aeeident 

and notify poliee to assist in the redireetion of traffie away from the seene. The potential 

to save lives is inereased due to the quieker arrival of an ambulanee and EMT personnel.

This teehnology eould be further utilized if the digital eameras were equipped with 

night vision eapabilities. Color is the only loss of information, sinee night vision would 

be inherently blaek and white.
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Future Work

It would be beneficial for the system to automatically segment the road based on the 

lane markers or other cues in the road. Historically, the Hough Transform has been the 

main method of detecting straight lines.

This process could be further extended to control the traffic flow in the intersection.

It would be simple to detect any moving objects in the intersection when the traffic light 

is changing from green to red. If there is movement, the traffic light could be delayed 

before turning green until the intersection is clear of traffic. This could prevent vehicles 

from running the red light and blocking the current right of way. My idea addresses the 

problem of traffic analysis from a different perspective that of the traffic signals, since 

the traffic signals control the traffic flow. This is my presentation of Smart Traffic Lights 

at intersections for the prevention of accidents and to assist in traffic flow, control and 

analysis.
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APPENDIX A

DATA ANALYSIS

The intersection of Las Vegas Blvd and Flamingo Road for 2005

Table 6 Total number of accidents by week for one year for Las Vegas Blvd and

Week #
# of
aeeidents

Week #  
(eon't)

# of aeeidents 
(eon't)

Week # 
(eon't)

# of accidents 
(eon't)

1 0 19 3 36 2
2 4 20 3 37 3
3 1 21 3 38 5
4 2 22 2 39 2
5 3 23 2 40 2
6 0 24 0 41 5
7 2 25 7 42 1
8 3 26 2 43 4
9 3 27 1 44 3

10 2 28 2 45 3
11 1 29 4 46 0
12 1 30 3 47 2
13 2 31 1 48 6
14 2 32 3 49 0
15 4 33 0 50 0
16 1 34 3 51 2
17 3 35 3 52 4
18 2

Table 7 There were a total of 7 weeks without an aeeident for Las Vegas Blvd and 
Flamingo Road

Lambda
Mean Variance (mean+var/2) Count = 0 Count > 0
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2.3462 2.3876 2.3669 45

Table 8 The maximum number of accidents reported in one week was 7 for Las Vegas

Observed Count Count / 52
count = 0 7 0.1346 T h e  #  o f  w e e k s  w i t h  0  a c c i d e n t s
count =1 7 0.1346 T h e  # o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 15 0.2885 T h e  # o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 14 0.2692 T h e  # o f  w e e k s  w i t h  3  a c c i d e n t s
count = 4 5 0.0962 T h e  #  o f  w e e k s  w i t h  4  a c c i d e n t s
count = 5 2 0.0385 T h e  # o f  w e e k s  w i t h  5  a c c i d e n t s
count = 6 1 0.0192 T h e  # o f  w e e k s  w i t h  6  a c c i d e n t s
count = 7 1 0.0192 T h e  #  o f  w e e k s  w i t h  7 a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 9 Poisson distribution for Las Vegas Blvd and Flamingo Road
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)*52
0 0.0938 0.0957 4.8761
1 0.2219 0.2246 11.5413
2 0.2627 0.2635 13.6585
3 0.2072 0.2061 10.7760
4 0.1226 0.1209 6.3764
5 0.0580 0.0567 3.0185
6 0.0229 0.0222 1.1907
7 0.0077 0.0074 0.4026
8 0.0023 0.0022 0.1191
9 0.0006 0.0006 0.0313
10 0.0001^ 0.0001 0.0074

52.00

This value does not show on the chart -  it is de minimis.
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Figure 28 Poisson ehart for Las Vegas Blvd and Flamingo Road
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The interseetion of Main and Charleston for 2005

Table 10 Total number of aeeidents by week for one year for Main and Charleston

Week #
# of
aeeidents

Week # 
(eon't)

# of accidents 
(eon't)

Week # 
(eon't)

# of accidents 
(eon't)

1 0 19 1 36 1
2 0 20 0 37 0
3 1 21 0 38 3
4 2 22 2 39 0
5 0 23 0 40 2
6 1 24 0 41 0
7 1 25 1 42 0
8 1 26 1 43 0
9 2 27 2 44 2

10 0 28 1 45 0
11 0 29 1 46 0
12 1 30 0 47 0
13 1 31 0 48 0
14 1 32 1 49 0
15 0 33 0 50 0
16 1 34 0 51 0
17 0 35 2 52 1
18 0

Table 11 There were a total of 28 weeks without an aeeident for N

Mean Varianee
Lambda
(mean+var/2) Count = 0 Count > 0

0.6346 0.6286 0.6316 28 24

ain & Charleston

Table 12 The maximum number of accidents reported in one week was 3 for Main and
C h a r le s t o n

Observed Count Count / 52
count = 0 28 0.5385 T h e  #  o f  w e e k s  w i t h  0  a c c i d e n t s
count = 1 16 0.3077 T h e  #  o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 7 0.1346 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 1 0.0192 T h e  #  o f  w e e k s  w i t h  3  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0
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Table 13 Poisson distribution for Main and Charleston
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)*52
0 0.5317 0.5301 27.6505
1 03358 0.3364 17.4640
2 0.1061 0.1068 5.5151
3 0.0223 0.0226 1.1611
4 0.0035 0.0036 0.1833
5 0.00043 0.0005 0.0232

52.00
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Figure 29 Poisson chart for Main and Charleston

This value does not show on the chart -  it is de minimis.
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The interseetion of Maryland and Tropieana for 2004

ble 14 Total number of aeeidents by week for 1 year for Maryland & Tropieana

Week #
# of
accidents

Week #  
(eon't)

# of aeeidents 
(eon't)

Week #  
(eon't)

# of aeeidents 
(eon't)

1 0 19 1 36 2
2 1 20 1 37 1
3 2 21 1 38 1
4 0 22 0 39 3
5 1 23 3 40 1
6 2 24 2 41 1
7 0 25 1 42 0
8 4 26 1 43 1
9 1 27 0 44 4

10 0 28 0 45 0
11 3 29 2 46 0
12 4 30 1 47 3
13 0 31 2 48 0
14 1 32 0 49 1
15 0 33 2 50 1
16 2 34 0 51 2
17 1 35 1 52 1
18 1

Table 15 There were a otal of 15 weeks without an aeeident for Maryland & Tropieana

Mean Varianee
Lambda
(mean+var/2) Count = 0 Count > 0

1.2115 1.2681 1.2398 15 37

Table 16 The maximum number of aeeidents reported in one week was 4 for Maryland

Observed Count Count / 52
count = 0 15 0.2885 T h e  # o f  w e e k s  w i t h  0  a c c i d e n t s
count = 1 21 0.4038 T h e  # o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 9 0.1731 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 4 0.0769 T h e  # o f  w e e k s  w i t h  3  a c c i d e n t s
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count = 4 3 0.0577 T h e  # o f  w e e k s  w i t h  4  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 17 Poisson (distribution br Maryland & Tropieana
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)* 52
0 0.2894 (12977 15.0507
1 0.3588 0.3607 18.6601
2 0.2225 0.2185 11.5676
3 0.0919 0.0882 4.7806
4 0.0285 0.0267 1.4818
5 0.0071 0.0065 0.3674
6 0.0015 0.0013 0.0759
7 0.0003^ 0.0002 0.0134

52.00
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Figure 30 Poisson ehart for Maryland and Tropieana

This value does not show on the chart -  it is de minimis.
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The intersection of Martin Luther King and Cheyenne for 2004

Table 18 Total number of aeeidents by week for one year for MLK and Cheyenne

Week #
# o f
accidents

Week #  
(eon't)

# of accidents 
(eon't)

Week #  
(eon't)

#  of accidents 
(eon't)

1 1 19 4 36 1
2 0 20 1 37 1
3 2 21 1 38 1
4 0 22 1 39 3
5 1 23 2 40 0
6 1 24 1 41 0
7 2 25 3 42 2
8 1 26 0 43 1
9 3 27 0 44 2

10 0 28 1 45 0
11 0 29 0 46 0
12 2 30 3 47 0
13 1 31 1 48 1
14 3 32 2 49 1
15 0 33 2 50 0
16 0 34 1 51 0
17 0 35 1 52 1
18 1

Table 19 There were a total of 17 weeks without an aeeident for M

Mean Variance
Lambda
(mean+var/2) Count == 0 Count > 0

1.0769 1.0528 1.0649 17 35

,Kand Cheyenne

Table 20 The maximum number of aeeidents reported in one week was 4 for MLK and 
Cheyenne

Observed Count Count / 52
count = 0 17 0.3269 T h e  # o f  w e e k s  w i t h  0  a c c i d e n t s
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count = 1 21 0.4038 T h e  # o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 8 0.1538 T h e  # o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 5 0.0962 T h e  # o f  w e e k s  w i t h  3  a c c i d e n t s
count = 4 1 0.0192 T h e  # o f  w e e k s  w i t h  4  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 21 Poisson distribution for MLK and Cheyenne
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X) * 52
0 0.3448 0.3406 17.9284
1 0.3671 03668 19.0912
2 0.1955 0.1975 10.1647
3 0.0694 0.0709 3.6080
4 0.0185 0.0191 0.9605
5 0.0039 0.0041 0.2046
6 0.0007 0.0007 0.0363
7 0.0001^ 0.0001 0.0055

52.00

’ This value does not show on the chart — it is de minimis.
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Figure 31 Poisson ehart for Martin Luther King and Cheyenne
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The intersection of Martin Luther King and Craig for 2002

Table 22 Total number of accidents by week for one year for MLK and Craig

Week #
#  of
aeeidents

Week #  
(eon't)

# of aeeidents 
(eon't)

Week # 
(eon't)

# of aeeidents 
(eon't)

1 3 19 1 36 3
2 2 20 1 37 1
3 1 21 1 38 0
4 1 22 4 39 0
5 2 23 1 40 1
6 1 24 1 41 1
7 2 25 0 42 0
8 0 26 2 43 1
9 0 27 1 44 0

10 1 28 5 45 0
11 1 29 1 46 1
12 3 30 0 47 1
13 1 31 0 48 1
14 0 32 1 49 0
15 1 33 2 50 0
16 2 34 1 51 1
17 0 35 2 52 1
18 1

Table 23 There were a total of 14 weeks without an aeeident for M

Mean Varianee
Lambda
(mean+var/2) Count = 0 Count > 0

1.1154 1.1237 1.1195 14 38

K  and Craig

Table 24 The maximum number of aeeidents reported in one week was 5 for MLK and 
Craig

Observed Count Count / 52
count = 0 14 (12692 T h e  #  o f  w e e k s  w i t h  0  a c c i d e n t s
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count =1 26 0.5000 T h e  # o f  w e e k s  w i t h  1 a c c i d e n t
count = 2 7 0.1346 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 3 0.0577 T h e  #  o f  w e e k s  w i t h  3  a c c i d e n t s
count = 4 1 0.0192 T h e  # o f  w e e k s  w i t h  4  a c c i d e n t s
count = 5 1 0.0192 T h e  # o f  w e e k s  w i t h  5  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 25 Poisson distribution for Martin uther King and Craig
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X) * 52
0 03264 0.3278 16.9745
1 0.3655 0.3656 19.0035
2 0.2046 0.2039 10.6375
3 0.0763 0.0758 3.9697
4 0.0214 0.0211 1.1110
5 0.0048 0.0047 0.2488
6 0.0009 0.0009 0.0464
7 (10001* 0.0001 0.0074

52.00

' This value does not show on the chart -  it is de minimis.
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Figure 32 Poisson chart for Martin Luther King and Craig
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The interseetion of Sahara and Durango for 2006

Table 26 Total number of aeeidents by week for one year for Sahara and Durango

Week #
# of
aeeidents

Week#
(eon't)

# of aeeidents 
(eon't)

Week # 
(eon't)

# of aeeidents 
(eon't)

1 1 19 1 36 3
2 0 20 0 37 2
3 2 21 1 38 2
4 4 22 2 39 2
5 4 23 1 40 3
6 1 24 1 41 4
7 0 25 2 42 2
8 2 26 2 43 2
9 0 27 1 44 2

10 0 28 1 45 1
11 1 29 2 46 3
12 0 30 2 47 0
13 2 31 2 48 0
14 3 32 0 49 0
15 1 33 1 50 0
16 4 34 2 51 0
17 0 35 2 52 0
18 0

Table 27 There were a total of 15 weeks without an aeeident for Sa lara & Durango

Mean Varianee
Lambda
(mean+var/2) Count = 0 Count > 0

1.4231 1.4646 1.4438 15 37

Table 28 The maximum number of aeeidents reported in one week was 4 for Sahara 
and Durango

Observed Count Count / 52
count = 0 15 0.2885 T h e  #  o f  w e e k s  w i t h  0  a c c i d e n t s
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count =1 12 0.2308 T h e  # o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 17 0.3269 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
count -  3 4 0.0769 T h e  # o f  w e e k s  w i t h  3  a c c i d e n t s
count = 4 4 0.0769 T h e  #  o f  w e e k s  w i t h  4  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 29 Poisson distribution for Sahara and Durango
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)* 52
0 0.2360 0.2410 12.2733
1 0.3408 0.3429 17.7204
2 0.2460 0.2440 12.7925
3 0.1184 0.1157 6.1567
4 0.0427 0.0412 2.2223
5 0.0123 0.0117 0.6417
6 0.0030 0.0028 0.1544
7 0.0006 0.0006 0.0319
8 0.0001^ 0.0001 0.0057

52.00

 ̂This value does not show on the chart -  it is de minimis.
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Figure 33 Poisson ehart for Sahara and Durango
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The interseetion of Warm Springs and Rainbow for 2006

Table 30 
Rainbow

Total number of aeeidents by week for one year for Warm Springs and

Week #
# of
aeeidents

Week # 
(eon't)

# of aeeidents 
(eon't)

Week # 
(eon't)

# of aeeidents 
(eon't)

1 0 19 1 36 1
2 2 20 0 37 2
3 0 21 1 38 0
4 1 22 2 39 3
5 2 23 1 40 0
6 3 24 1 41 0
7 1 25 0 42 1
8 0 26 0 43 1
9 0 27 0 44 0

10 0 28 0 45 0
11 1 29 0 46 0
12 0 30 0 47 1
13 0 31 0 48 1
14 1 32 1 49 0
15 0 33 0 50 0
16 1 34 1 51 0
17 0 35 1 52 0
18 1

Table 31 There were a total of 28 weeks without an aeeident for Warm Springs and 
Rainbow

Lambda
Mean Varianee (mean+var/2) Count = 0 Count > 0

0.6154 0.6335 0.6244 28 24

Table 32 The maximum number of aeeidents reported in one week was 3 for Warm 
Springs and Rainbow
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Observed Count Count / 52
count = 0 28 0.5385 T h e  #  o f  w e e k s  w i t h  0  a c c i d e n t s
count = 1 18 0.3462 T h e  #  o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 4 0.0769 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 2 0.0385 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
T o t a l 5 2 J .O O O O

Table 33 Poisson distribution for Warm Springs and Rainbow
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)* 52
0 0.5356 0.5404 27.8493
1 0.3344 0.3326 17.3901
2 0.1044 0.1023 5.4295
3 0.0217 0.0210 1.1301
4 0.0034 0.0032 0.1764
5 0.00048 0.0004 0.0220

52.00

This value does not show on the chart -  it is de minimis.
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Figure 34 Poisson chart for Warm Springs and Rainbow
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The interseetion of Jones and Sahara for 2002

Table 34 Total number of aeeidents by week for one year for Jones and Sahara

Week #
#  of
accidents

Week # 
(eon't)

# of accidents 
(eon't)

Week # 
(eon't)

# of aeeidents 
(eon't)

1 0 19 1 36 0
2 1 20 0 37 2
3 0 21 1 38 0
4 0 22 0 39 0
5 3 23 1 40 1
6 1 24 0 41 0
7 3 25 2 42 1
8 3 26 0 43 2
9 2 27 1 44 0

10 2 28 1 45 2
11 1 29 1 46 4
12 2 30 0 47 0
13 0 31 2 48 3
14 1 32 1 49 1
15 3 33 2 50 2
16 3 34 3 51 2
17 1 35 0 52 4
18 2

Table 35 There were a total of 16 weeks without an accident for Jones and Sahara

Mean Variance
Lambda
(mean+var/2) Count = 0 Count > 0

1.3077 1.3544 1.3311 16 36

Table 36 The maximum number of aeeidents reported in one week was four for Jones 
and Sahara

Observed Count Count / 52
count = 0 16 0.3077 T h e  # o f  w e e k s  w i t h  0  a c c i d e n t s
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count = 1 15 (12885 T h e  # o f  w e e k s  w i t h  I  a c c i d e n t
count = 2 12 0.2308 T h e  # o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 7 0.1346 T h e  # o f  w e e k s  w i t h  3  a c c i d e n t s
count = 4 2 0.0385 T h e  # o f  w e e k s  w i t h  4  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 37 Poisson distribution for Jones and Sahara
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)* 52
0 0.2642 0.2704 13.7381
1 0.3517 0.3537 18.2864
2 0.2340 0.2312 12.1702
3 0.1038 0.1008 5.3998
4 0.0346 0.0330 1.7969
5 0.0092 0.0086 0.4784
6 0.0020 0.0019 0.1061
7 0.0004^ 0.0004 0.0202

52.00

This value does not show on the chart -  it is de minimis.
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Figure 35 Poisson chart for Jones and Sahara
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The intersection of Flamingo and Maryland for 2002

Table 38 Total number of accidents by week for one year for Flamingo & Maryland

Week #
# of
accidents

Week #  
(con't)

# of accidents 
(con't)

Week # 
(con't)

# of accidents 
(con't)

1 1 19 1 36 5
2 3 20 3 37 3
3 2 21 3 38 6
4 3 22 4 39 2
5 5 23 1 40 2
6 3 24 5 41 2
7 0 25 3 42 4
8 3 26 2 43 2
9 4 27 0 44 6

10 1 28 1 45 0
11 7 29 3 46 2
12 2 30 3 47 4
13 2 31 4 48 2
14 4 32 7 49 1
15 7 33 0 50 1
16 3 34 0 51 4
17 5 35 6 52 7
18 4

Table 39 There were a total of five weeks without an accident for Flamingo and 
Marylanc

Mean Variance
Lambda
(mean+var/2) Count = 0 Count > 0

3.0385 3.8808 3.4597 5 47

Table 40 The maximum number of accidents reported in one week was 7 for Flamingo 
and Maryland

Observed Count Count / 52
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count = 0 5 0.0962 T h e  # o f  w e e k s  w i t h  0  a c c i d e n t s
count = 1 7 0.1346 T h e  # o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 10 0.1923 T h e  # o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 11 0.2115 T h e  # o f  w e e k s  w i t h  3  a c c i d e n t s
count = 4 8 0.1538 T h e  # o f  w e e k s  w i t h  4  a c c i d e n t s
count = 5 4 0.0769 T h e  # o f  w e e k s  w i t h  5  a c c i d e n t s
count = 6 3 0.0577 T h e  # o f  w e e k s  w i t h  6  a c c i d e n t s
count = 7 4 0.0769 T h e  # o f  w e e k s  w i t h  7 a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 41 Poisson distribution for Flamingo and Maryland
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)*52
0 0.0314 0.0479 1.6349
1 0.1088 0.1456 5.6562
2 0.1882 0.2212 9.7843
3 0.2170 0.2240 11.2834
4 0.1877 0.1701 9.7592
5 0.1299 0.1034 6.7527
6 0.0749 0.0524 3.8937
7 0.0370 0.0227 1.9244
8 0.0160 0.0086 0.8322
9 0.0062 0.0029 0.3199
10 0.0021 0.0009 0.1107
11 0.0007 0.0002 0.0348
12 0.0002*° 0.0001 0.0100

52.00

' This value does not show on the chart -  it is de minimis.
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Figure 36 Poisson chart for Flamingo and Maryland

92



The interseetion of Cheyenne and Raneho for 2004

Table 42 Total number of aeeidents by week for one year for Cheyenne and Rancho

Week #
#  of
accidents

Week # 
(eon't)

# of aeeidents 
(eon't)

Week # 
(eon't)

# of aeeidents 
(eon't)

1 0 19 1 36 0
2 1 20 0 37 0
3 1 21 0 38 1
4 0 22 0 39 0
5 0 23 0 40 2
6 0 24 0 41 2
7 1 25 0 42 1
8 2 26 0 43 0
9 0 27 3 44 0

10 1 28 2 45 1
11 0 29 0 46 0
12 2 30 1 47 1
13 1 31 1 48 0
14 2 32 0 49 0
15 2 33 0 50 0
16 1 34 0 51 0
17 1 35 2 52 0
18 1

Table 43 There were a total of 28 weeks without an accident for C leyenne and Rancho

Mean Varianee
Lambda
(mean+var/2) Count = 0 Count > 0

0.6539 0.6621 0.6580 28 24

Table 44 The maximum number of aeeidents reported in 1 week was three for 
Cheyenne and Raneho

Observed Count Count / 52
count = 0 28 0.5385 T h e  #  o f  w e e k s  w i t h  0  a c c i d e n t s
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count = 1 15 02885 The # o f weeks with I accident
count = 2 8 0.1538 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 1 0.0192 T h e  #  o f  w e e k s  w i t h  3  a c c i d e n t s
T o t a l 5 2 1.0000

Table 45 Poisson distribution for Cheyenne and Rancho
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X) * 52
0 0.5179 0.5200 26.9302
1 0.3408 0.3400 17.7199
2 0.1121 0.1112 5.8298
3 0.0246 0.0242 1.2787
4 0.0040 0.0040 0.2103
5 0.0005** 0.0005 0.0277

52.00

This value does not show on the chart -  it is de minimis.
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Figure 37 Poisson chart for Cheyenne and Rancho
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The intersection of Buffalo and Lone Mountain for 2006

Table 46 Total number of accidents by week for one year for Buffalo and Lone 
Mountain

Week #
# of
accidents

Week # 
(con't)

# of accidents 
(con't)

Week#
(con't)

# of accidents 
(con't)

1 0 19 1 36 1
2 0 20 0 37 0
3 0 21 0 38 0
4 0 22 0 39 0
5 1 23 0 40 0
6 1 24 0 41 1
7 0 25 0 42 0
8 0 26 0 43 0
9 0 27 0 44 0

10 0 28 0 45 0
11 0 29 0 46 0
12 0 30 0 47 2
13 0 31 1 48 0
14 0 32 0 49 0
15 0 33 0 50 0
16 1 34 0 51 0
17 0 35 0 52 0
18 0

Table 47 There were a total of 44 weeks without an accident for Buffalo and Lone 
Mountain

Mean Variance
Lambda
(mean+var/2) Count = 0 Count > 0

0.1731 0.1851 0.1791 44 8

Table 48 The maximum number of accidents reported in one week was 2 for Buffalo 
and Lone Mountain
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Observed Count Count / 52
count = 0 44 0.8462 T h e  # o f  w e e k s  w i t h  0  a c c i d e n t s
count = 1 7 0.1346 T h e  #  o f  w e e k s  w i t h  1  a c c i d e n t
count = 2 1 0.0192 T h e  # o f  w e e k s  w i t h  2  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 49 Poisson distribution for Buffalo and Lone Mountain
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X)*52
0 0.8360 0.8411 43.4727
1 0.1497 0.1456 7.7864
2 0.0134 0.0126 0.6973
3 0.0008*^ 0.0007 0.0416

52.00

This value does not show on the chart — it is de minimis.
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Figure 38 Poisson chart for Buffalo and Lone Mountain
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The intersection of Lamb and Craig for 2005

Table 50 Total number of accidents by week for one year for Lamb and Craig

Week #
#  of
accidents

Week#
(con't)

# of accidents 
(con't)

Week # 
(con't)

# of accidents 
(con't)

1 0 19 3 36 0
2 0 20 0 37 1
3 1 21 0 38 0
4 0 22 0 39 0
5 1 23 0 40 0
6 0 24 0 41 0
7 0 25 0 42 0
8 0 26 1 43 2
9 0 27 2 44 0

10 2 28 0 45 1
11 2 29 1 46 0
12 0 30 1 47 0
13 1 31 2 48 0
14 2 32 0 49 0
15 1 33 0 50 1
16 1 34 0 51 0
17 0 35 0 52 0
18 0

Table 51 There were a total of 34 weeks without an accident for Lamb and Craig

Mean Variance
Lambda
(mean+var/2) Count = 0 Count > 0

0.5000 0.6078 0.5539 34 18

Table 52 The maximum number of accidents reported in one week was three for Lamb 
and Craig

Observed Count Count / 52
count = 0 34 0.6538 T h e  # o f  w e e k s  w i t h  0  a c c i d e n t s
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count = 1 11 0.2115 T h e  #  o f  w e e k s  w i t h  I  a c c i d e n t
count = 2 6 0.1154 T h e  #  o f  w e e k s  w i t h  2  a c c i d e n t s
count = 3 1 0.0192 T h e  #  o f  w e e k s  w i t h  3  a c c i d e n t s
T o t a l 5 2 1 . 0 0 0 0

Table 53 Poisson distribution for Lamb and Craig
Theoretical Poisson
X P(X) /Lambda P(X) /Mean P(X) * 52
0 0.5747 0.6065 29.8840
1 0.3183 0.3033 16.5534
2 0.0882 0.0758 4.5846
3 0.0163 0.0126 0.8465
4 0.0023 0.0016 0.1172
5 0.0002*^ 0.0002 0.0130

52.00

This value does not show on the chart -  it is de minimis.
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Figure 39 Poisson chart for Lamb and Craig

10 1



APPENDIX B

SUMMARY OF EDGE DETECTORS

Table 54 Summary of Edge Detectors
Edge Detector Short Description
Canny uses smoothing before edge detection and thresholding
Frei calculates the Frei-Chen edge operator using only the row and 

column filters
Krish[52] performs convolution with 8 masks calculating gradients
Laplace finds zero crossings of the second derivative of the image 

intensity
Marr-
Hildreth[52]

performs two convolutions with Laplacian of Gaussian and then 
detects the zero crossings

Prewitt calculates the Prewitt compass gradient filters and returns the 
largest filter response

Roberts calculates the square root of the magnitude squared of the 
convolution with the Robert’s row and column edge detectors

Sobel uses convolutions with row and column edge gradient masks

1 0 2



APPENDIX C

EXPERIMENTAL PROGRAM RESULTS
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Figure 40 Example of using Optieal Flow to deteet ‘baekward’ movement in the 
interseetion

Interseetion after aeeident has oeeurred ‘Referenee frame’ of the background

Difference image Objects deteeted in the interseetion

Figure 41 Example of using ‘referenee frame’ to detect objects that have not left the 
interseetion and have stopped moving
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