
UNLV Retrospective Theses & Dissertations

1-1-2007

Graphic frameworks for managing component oriented graphic Graphic frameworks for managing component oriented graphic

systems systems

Deepa Uppala
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Uppala, Deepa, "Graphic frameworks for managing component oriented graphic systems" (2007). UNLV
Retrospective Theses & Dissertations. 2328.
http://dx.doi.org/10.25669/vma6-n039

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/vma6-n039
mailto:digitalscholarship@unlv.edu

GRAPHIC FRAMEWORKS FOR MANAGING COMPONENT ORIENTED

GRAPHIC SYSTEMS

by

Deepa Uppala

Bachelor of Computer Science and Engineering
Jawaharlal Nehru Technological University

2002

A thesis submitted in partial fulfillment
of the requirement for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2008

UMI Number: 1456377

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1456377

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

UNiy
UNIVERSITY OF NEVADA LAS VEGAS

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

FEBRUARY 2 1 S T ________ ,2 0 0 8

The Thesis prepared by

DEEPA UPPALA

E n tit le d

GRAPHIC FRAMEWORKS FOR MANAGING COMPONENT ORIENTED GRAPHIC SYSTEMS

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

ination Committee Chair

Dean o f the Graduate College

Examination Committee M ember

E xam in/tion C om m ittee hAfimber

Graduate C o f t ^ Faculty Representative

11

ABSTRACT

Graphic Frameworks for Managing Component Oriented
Graphic Systems

by

Deepa Uppala

Dr. Yoohwan Kim, Examination Committee Chair
Assistant Professor of Computer Science

University of Nevada, Las Vegas

Computing power and network bandwidth has increased dramatically over the past

decade. However the design and implementation of complex software remain expensive

and error-prone. It is hard to build correct, portable, efficient and inexpensive

applications from scratch. Object oriented application frameworks are a promising

technology for reifying proven software design and implementation in order to reduce the

cost and improve the quality.

A framework is a reusable, semi-complete application that can be specialized to

produce custom applications. A graphic framework is a reusable, semi-completed

application useful for the development of the graphic applications such as CAD

applications. This thesis presents a model graphic framework. It uses traditional graphic

principles such as display file concepts to generate frameworks. It implements object

oriented patterns such as inheritance polymorphism etc. to reuse the graphic framework

for the object oriented graphic applications.

Ill

This thesis suggests eomponent teehnology sueh as Mierosoft COM teehnology to

make the frameworks effeetive. The thesis identifies the advantage of Component

Oriented Teehnology over Objeet Oriented Teehnology. The proeedure for development

of a Component is complex. Even the el lent proeedure for using the eomponent is also

eomplex. This thesis presents a model proeedure for the development of a simple beeper

component and its client program to demonstrate the complexity of the component

technology.

The thesis adopts some of the existing pattern frames to make the implementation

graphie eomponents simple. It also presents some techniques to make the client

procedures for using a eomponent simple.

The advantages of the model graphie frameworks presented in this thesis are as

follows:

1. The Graphic application developer ean develop Graphic Components (graphic

COM objects) like simple C++ objeets using the frameworks.

2. The elient who uses these components for the development of the graphie

applications can use these components (COM object) like simple C++ objeets.

That means the components (COM objects) behave like simple C++ objects for

development and for usage but they are COM objects.

The models presented in this thesis ean be views in two layers. The first layers foeus

on increasing the degree of reusability of graphic objects to minimize cost. In this

connection the model is tested by implementing PCB (Printed circuit board) Graphic

IV

Application for representing several graphic elements of different types minimizing

the number of component. This enables graphic applications run on lower-end systems.

The second layers try to implement graphic COM components like simple C++

objects. Abstract COM object framework is created and several graphic COM objects are

created for testing this model. Client side wrapper component is also implemented and

tested for using complex graphic COM object like simple C++ objects.

Chapter three and five will presents detailed description of these models. Output

Screen of graphic Applications is presented in Appendix B.

TABLE OF CONTENTS

ABSTRACT... iii

LIST OF FIGURES...viii

LIST OF TABLES..ix

ACKNOWLEDGEMENTS.. x

CHAPTER 1 INTRODUCTION...1
1.1 Objectives.. 1
1.2 Previous research..2
1.3 Pattern language for graphic and CAD frameworks...4
1.4 Overview and contributions of our work.. 9
1.5 Application area in the thesis.. 10
1.6 Outline of the thesis..10

CHAPTER 2 REQUIREMENTS OF IDEAL GRAPHIC FRAMEWORKS AND
FRAMEWORK SAMPLES...12

2.1 Framework samples..12
2.2 Requirements o f ideal graphic frameworks.. 16

CHAPTER 3 OBJECT ORIENTED GRAPHIC FRAMEWORKS.................................... 21
3.1 Segment tab le ... 22
3.2 Graphic instructions and vector graphic display files .. 23
3.3 Display file interpreter...24
3.4 Building graphic frameworks with vector graphic display files................................ 26
3.5 Advanced concepts in development of object oriented graphic Frameworks 26
3.6 Implementation and sample code.. 28

CHAPTER 4 PROCEDURE FOR DEVELOPING THE COM OBJECTS...................... 35
4.1 Microsoft application on COM/OLE technology.. 36
4.2 COM vs. C++ object reuse... 37
4.3 Procedures in creating and managing the COM server.. 37
4.4 Implementation issues of COM objects.. 41

VI

CHAPTER 5 FRAMEWORKS FOR GRAPHIC COMPONENTS................................... 46
5.1 Architecture of the abstract component framework..45
5.2 Implementation and code...50
5.3 Component wrapper or helper object.. 54
5.4 Architecture of a component wrapper framework... 56
5.5 Implementation of wrapper and code ..58
5.6 Observations on results of these graphic component frameworks............................64

CHAPTER 6 ARCHITECTURE OF COMPONENT-BASED GRAPHIC
FRAMEWORK FOR BUILDING GRAPHICAL APPLICATIONS................................. 66

6.1 Requirements and the development issues... 66
6.2 A brief description of software design..67

CHAPTER 7 CONCLUSION AND FUTURE W ORK.. 72
7.1 Review of the work................................... 72
7.2 Discussion and analysis of results... 73
7.3 Quality and metrics.. 75
7.4 Scope for further research... 78

APPENDIX A PROCEDURES TO CREATE A COM SERVER AND CLIENT 79
A.l Steps to create a simple beeper COM object...79
A.2 Directory structure.. 80
A.3 Creating the server application..80
A.4 Registering the server...96
A.5 Creating the client application...97
A.6 Observation...101
A.7 COM exercise to aggregate a COM object.. 104

APPENDIX B TYPICAL GRAPHIC APPLICATION SCREEN SHOTS......................107
B.l A Three dimensional graphic system..107
B.2 A COM-based graphic application to manage a P C B ..113

BIBLIOGRAPHY...119

VITA..122

VII

LIST OF FIGURES

Figure 2.1 Framework in U M L ...13
Figure 2.2 Structure o f hello-world applet with Java frameworks.......................................13
Figure 2.3 Class diagram of hello world class...14
Figure 2.4 MFC based VC++ Windows’s application...15
Figure 3.1 Typical components o f a model graphic framework with display-file concepts
 20
Figure 3.2 Model vector graphic display-file structure... 24
Figure 3.3 Structure o f flyweight object framework... 27
Figure 3.4 Declaration o f generic graphic element in C++ implementing display file

concepts.. 30
Figure 3.5 Declaration of function library to manage geometry of graphic components of

PCB board...33
Figure 3.6 Implementation of typical function to manage geometry of graphic

components of PCB board..34
Figure 5.1 Abstract component frameworks.. 45
Figure 5.2 Structure o f abstract component framework..46
Figure 5.3 C++ class describing the structure o f abstract component................................. 48
Figure 5.4 C++ class describing declaring a graphic COM object using abstract

component..53
Figure 5.5 Typical component wrapper framework...55
Figure 5.6 Structure o f component wrapper framework... 57
Figure 5.7 C++ class describing declaring a wrapper object for using abstract component

..59
Figure 5.8 C++ code segment describing the client code for wrapper class...................... 61
Figure 5.9 C++ code segment describing component wrapper passing client message to

component..63
Figure 6.1 Structure o f COM based CAD framework... 68
Figure 6.2 Structure o f a graphic component {for example Weldsymbol}........................ 69
Figure 6.3 Structure o f a wrapper component (for example Weldsymbol}........................70
Figure 6.4 Structure o f subsystems of CAD framework... 71
Figure B .l A graphic application using three dimensional object oriented graphic

framework... 107
Figure B.2 A COM based graphic application using component graphic frameworks for

managing components of a PCB board .. 113
Figure B.3 A COM based graphic application using component graphic frameworks for

editing the components of a PCB board...114

Vlll

LIST OF TABLES

Table 1.1 Object oriented pattern fram es.. 4
Table 1.2 Component oriented pattern fram es..5
Table 1.3 Distributed and web based pattern frames..6
Table 4.1 The Difference between COM component Vs C++ objects................................ 38
Table 4.2 Typical APIs of COM server... 42

IX

ACKNOWLEDGEMENTS

I would like to acknowledge the immense assistance and moral support provided by

my advisor, Dr. Yoohwan Kim during the course of my masters program at the

University of Nevada, Las Vegas. The guidance provided by him in steering this research

project from concept to completion has been invaluable.

1 would like to thank Dr. Ajoy K Datta, Dr. Taghva and Dr. Mei Yang for their direct

and indirect support throughout this investigation.

It is important to mention the moral support of my immediate family including my

parents, Mrs. Padmaja and Mr. U.D.Naidu, my sister Mrs. Divya. They were available for

me at all times. But for their constant motivation, it would have been impossible for me

to get this far in life.

I would like to acknowledge the help of my friends whose help and advice has always

been an invaluable source of motivation for me.

Finally I would like to thank the Department of Computer Science at the University

of Nevada, Las Vegas for giving me an opportunity to pursue my masters’ degree.

X

CHAPTER 1

INTRODUCTION

1.1 Objectives

Today’s trend in software industry is to release reusable components and frameworks

suiting requirements of a group of clients [10]. These components can be configured as

per the specific requirement of the client for building applications. As the software

components and frameworks are used at different levels and in different environments,

the components and frameworks should get adjusted to these requirements.

The challenge is in providing generic and high degree configurable frameworks [4].

The objective of this work is to provide solutions to recurring problems in building high

quality Graphic/CAD Frameworks [14] that increase quality, decrease cost, complexity

and development cycle time in support of objectives of software engineering. A group of

pattern-frames are suggested for building object-oriented graphic frameworks and for the

development of component-based graphic frameworks.

These techniques are adopted and typical framework models are evolved in the

present thesis. The Object-oriented programming [17] using C++ and COM/OLE

technologies [24] [12] is used to demonstrate the models evolved in this work. The

Microsoft Middleware integration frameworks [4], such as MFC and ATE [28] are also

used for the illustrations. However these models are not specific to Microsoft

technologies and can be adopted in other similar technologies.

The proposed models enable domain experts to build high quality graphic and CAD

application components for managing the behavior of graphic elements with minimal cost

suiting the requirements of any engineering applications. They provide techniques to

increase modularity, reusability, extensibility, inversion of control, and simple and easy

client procedures. Typical procedures for using these frameworks are also presented in

this thesis.

1.2 Previous research

This thesis uses the existing pattern-frames from the past work. They are divided into

three sections, namely, object-oriented pattern-frames, component-oriented pattern-

frames, and distributed and web-based pattern-frames [21]. The object-oriented

frameworks [21] address the problems and solutions for in managing behavior of graphic

elements in CAD/Graphic applications. Some o f these pattern-frames use traditional

display file concepts. The component-based pattern-frames provide suggestions for

building graphic COM objects. The third group of pattern-frames, namely, distributed

and web-based pattern-frames provide solutions for managing web-based and distributed

CAD systems. In this thesis, we use the first two types of pattern-frames. However, the

results in this thesis can be extended further using the type o f pattern-frames to provide

web based and distributed CAD/graphic solutions.

This thesis is based on the previous research work by [21]. In his thesis, “Pattern

languages for graphic and CAD frameworks”, he presented about sixteen pattern-frames

for providing solutions. Some of them are used in this thesis. This research work

identifies typical problems in evolving Graphic/CAD frameworks. In this work, the

pattern approach is adopted to provide solutions. Sixteen typical common design and

implementation issues are identified and they are classified into three groups depending

on nature of the issues. These are also referred as pattern-frames. These pattem-frames

form a pattern language, useful for the development of Graphic and CAD frameworks. A

brief description these pattern-frames are presented below.

1. Object oriented framework

These are based on simple object-oriented patterns. They make lightweight

frameworks. They provide solutions for under-engineering problems for developing

frameworks.

2. Component oriented frameworks

These frameworks are based on component technology. All are black box

frameworks. They provide solutions for building component-based application

frameworks

3. Distributed and web based frameworks

These are useful for building frameworks for supporting typical distributed and web-

based application requirements

The catalog of frameworks listed above form a pattern language for building

frameworks. Some of the frameworks are more general in the sense that they are

applicable in other domains. But a few frameworks such as Map Object frameworks are

specific to Graphic, CAD and GIS systems [8]. The pattern language presented in this

thesis will start its journey from a simple function country to a complex component

world.

Table 1.1 Object oriented pattern-frames

SNo Name Intent

1 Traditional graphic
Frameworks

This will apply traditional graphic techniques for
building frameworks

2 Function class
Frameworks

This will apply basic object-oriented patterns for
building configurable function classes

3 Foundation class
Frameworks

This will provide hot spot object libraries for
reusing most common modules of the domain

4 White -box frameworks This will generate object library for configurable
generic domain specific classes

5 Flyweight object
Frameworks

This will decrease number of classes and number
of objects in a system

6 Decision support
Frameworks

This will provide domain specific environment
which will participate in expert computation

1.3 Pattern language for graphic and CAD frameworks

The pattern language presented in “pattern language for graphic and CAD

frameworks” [21] is used as a guideline for this work. This section will present the

overview o f this work.

The main intent of this research work is to propose a pattern language for graphic and

CAD frameworks. The work presents a group of pattern-frames that form a pattern

language for evolving graphic and CAD frameworks. The following procedure is

suggested to select pattern-frames of this work. [21].

1. The patterns should be used whenever there is a need. On the other hand if the

patterns are used without the requirements, the system leads to over-engineering

problems. In this context, the pattern language presents traditional graphic

pattern-frames that use traditional graphic techniques to solve several graphic

problems without applying complex models.

Table 1.2 Component oriented pattern-frames

SNo Name Intent

1 Middleware integration
based frameworks

This will reuse middleware integration frameworks
for building Enterprise frameworks

2 Component based
frameworks

This will apply patterns defined on components for
providing black box frameworks

3 Abstract component
frameworks

This will generate black box framework
components using simple object-oriented primitive
patterns

4 Component wrapper
frameworks

This will apply simple object-oriented primitive
patterns for using black box frameworks

5 Macro and template
based frameworks

This will provide domain specific framework
which will automatically generate applications
with the help of Templates or macros or a set of
application wizards

2. In any graphic and CAD system, there are several functions to manage. The

function class framework presents a technique to adopt configurable functions.

Table 1.3 Distributed and web based pattern-frames

SNo Name Intent

1 Distributed frameworks This will provide environment for building domain
specific distributed application components

2 Web enabled frameworks This will provide environment for building web
enabled applications

3 Web based frameworks This will provide environment for building web-
based applications

4 Map object frameworks This will provide environment for building web-
based applications by minimizing data, which is
supposed to be transferred over web.

3. Identifying reusable objects decreases cost since number of lines of code will be

less. If the complex portion of the code is reused, the complexity is decreased and

quality of the system increases. Foundation class framework suggests several

reusable basic graphic tools.

4. The white-box frameworks present a model to evolve object-oriented graphic

frameworks, which decrease cost of development and increase quality and

reliability of the systems.

5. Some graphic applications such as Debugger driver tool for PCB discussed in the

thesis need to manage several graphic components. In sueh eases, the Ply-weight

pattern-frame model is applicable.

6. The graphic systems like Debugger driver tool should participate in decision

making. The domain expert provides the rules for decision making. Sueh systems

should follow decision support framework patterns.

7. To convert simple object-oriented framework into eomponent technology,

middleware integration framework pattern is useful.

8. Component based framework, presents a model pattern-frame for graphic

frameworks that use eomponent technology.

9. Abstract component framework presents a pattern-frame to simplify the

eomponent development proeedure.

10. Component wrapper pattern-frame presents a model to simplify the elient

proeedure by providing simple objeet view to a complex component.

11. The macro and template based graphic patterns are useful to create wizards that

enable client to use complex procedures in creating and managing the code.

12. The document driven pattern-frame is used to build document driven graphic

environment.

13. Distributed framework model is used to make graphic frameworks to be

distributed across the network.

14. The Web-enabled framework model is used to make graphic frameworks Web

enabled.

15. The Web-based frameworks help in building Web-based graphic systems. They

are useful for GIS applications.

16. The map-object pattern frame addresses the solutions for managing huge GIS data

over Web.

All the above sixteen pattem-frames form a pattern language for building graphic and

CAD frameworks. These pattern frames are classified into three groups as follow:

Object-oriented frameworks

1. Traditional graphic frameworks

2. Function class framework

3. Foundation class frameworks

4. White-box frameworks

5. Flyweight object framework

6. Decision support frameworks

Component-oriented frameworks

1. Middleware integration based framework

2. Component based frameworks

3. Abstract component frameworks

4. Component wrapper frameworks

5. Macros and Template based frameworks

6. Document driven frameworks

Distributed & web-based frameworks

1. Distributed frameworks

2. Web-enabled frameworks

3. Web-bàsed frameworks

4. Map-object based frameworks

This thesis used some of the object-oriented pattern frames and component-oriented

frameworks to provide the solutions.

1.4 Overview and contributions of our work

A framework is a reusable, semi-complete application that can be specialized to

produce custom applications [4]. A graphic framework is a reusable, semi-completed

application useful for the development of the graphic applications such as CAD

applications. This thesis presents a model graphic framework. It uses traditional graphic

principles such as “display file” concepts to generate frameworks. It implements object-

oriented patterns such as inheritance polymorphism etc. to reuse the graphic framework

for the object-oriented graphic applications. However the procedure for development of

a Component is complex. Even the client procedure for using the component is also

complex. This thesis presents a model procedure for the development of a simple beeper

component and its client program to demonstrate the complexity of the component

technology.

This thesis suggests using a component technology such as Microsoft COM

technology [26] to make the frameworks effective. It identifies the advantages of the

component-oriented technology over the object-oriented technology. It adopts some of

the existing pattem-frames to make the implementation of graphic components simple. It

also presents some techniques to make the client procedures for using a component

simple.

The advantages of the model graphic frameworks presented in this thesis are as

follows;

1. The graphic application developer can develop graphic components (graphic

COM objects) like simple C++ objects using the frameworks.

2. The client who uses these components for the development of the graphic

applications can use these components (COM object) like simple C++ objects.

In other words, this research enables the components (COM objects) to behave like

simple C++ objects for development and usage.

1.5 Application area in the thesis

Although we base this research on many graphic components, the objective of the

graphic frameworks presented in this thesis is not for managing GUI (graphical user

interface). Instead, we intend to use the framework for managing the behavior of graphic

elements of Graphic/CAD applications such as resistors and other electronic components

of a printed circuit board or for annotations and dimension symbols of a CAD drawing.

It can be used for managing flowchart symbols, UML components or drawing elements

such as line, rectangle etc. in their respective applications. Both two dimensional and

three dimensional graphic systems can use these frameworks with some limitations which

are discussed in the last chapter.

1.6 Outline of the thesis

This thesis presents the requirements of object-oriented graphic/CAD applications

and component technology (such as Microsoft COM technology) based graphic

frameworks. In the Chapter 2, sample graphic framework models are presented. A set of

functions used for the development of this framework are listed. Chapter 3 presents the

10

procedures required for the development of graphic frameworks and techniques for

managing behavior o f graphic elements in object-oriented technology using C++. In

Chapter 4, the problems in development of COM components and the differences

between a COM object and a C++ object are presented. A sample procedure for building

and using a Beeper COM component is presented in Appendix A. It is presented to

demonstrate the complexity of the COM component development. However, the Beeper

object is not a graphic element. Chapter 5 presents a graphic framework for the

development of graphic COM components. It also presents frameworks for making the

client procedures simple. Finally, a model graphic framework for the development of

COM-based graphic/CAD applications is presented in Chapter 6. A set of interfaces and

subsystems of the proposed system are presented. Chapter 7 presents the conclusions and

the scope for further research. Appendix B presents sample screenshots o f graphic

applications developed using our frameworks.

11

CHAPTER 2

REQUIREMENTS OF IDEAL GRAPHIC FRAMEWORKS

AND FRAMEWORK SAMPLES

This chapter presents samples of typical frameworks. One of those samples is

Mierosoft Document View Architecture that manages the GUI for the applications with

the help of a set of Wizards and MFC classes. We also present the requirements of an

ideal graphic framework. These requirements are evolved after studying several graphic

applications in the market sueh as Intergraph CAD products such as Smart sketch,

CARIS GIS graphic component for managing graphic behavior o f GIS (Geographic

Information System) applications.

2.1 Framework samples

This section will present typical framework samples starting from a simple “hello

world” application using Java frameworks. Figure 2.1 presents the UML [18] building

block for representing a framework.

Consider a hello world program in Java. An example ean be implemented using Java

Applet. The Java Applet is a part of Java framework. This in turn depends on AWT and

Java language frameworks. Figure 2.2 represents a hello world component structure in

UML using Java frameworks [16].

12

Framework name

Figure 2.1 Frameworks in UML

I Hello-World

AWT

Figure 2.2 Structure of hello-world Applet with Java frameworks

From the diagram in Figure 2.2, it can be observed that hello-world Applet depends

on Java Applet. The HTML client or Java frame which includes the hello-world Applet

gets hello-world Interface through the Java Applet. Messages from the client application

will invoke the Java Applet that in turn sends the messages to the hello-world Applet.

For displaying the “hello-world” message the hello-world Applet implementation again

13

depends on a graphic library, which is part of Java framework. The class diagram of the

hello world example is displayed in the following Figure 2.3

Granhic

Applet

hello-world

Paint ()

g.drawString(“hello-world”, 10,10)

Figure 2.3 Class diagram of hello-world class

Consider another sample of frameworks from Microsoft document view architecture

and MFC. Microsoft provides Application Wizard [13] or using the framework and class

wizard for managing the applications. A simple MFC-based application structure in

UML is presented in Figure 2.4.

It represents a logical structure of Document view architecture. The application class

of the client module is inherited from CWinApp, a class of Microsoft MFC framework.

In fact the application wizard will decide from which class o f CWinApp class group the

MyApplication class should be inherited, depending on the requirements of the client

specified through the application wizard. The user requirements are collected in six steps

at the time of creating an application framework in VC++ [13] through application

wizard. The type of project workspace also will change the aggregation-combination,

depending on how the user is exporting his functionality.

14

Windows application in
VC++

MyApplication

II MyFrame

My View

MyDocument

Visual Studio

Microsoft framework supporting
document view

CWinApp

CMainFrame

CView

CDocument

Figure 2.4 MFC based VC++ Windows’s application

The ATL technology [13] of Microsoft also provides similar frameworks for

supporting automation layer; component technology and web based computing. Some of

the frameworks presented in this thesis also depend on these Microsoft frameworks.

These frameworks are referred to as middleware integration frameworks.

The above application represented in Figure 2.4 has an application class aggregating

frame class. The frame class in turn aggregates view and document classes. The

application, frame, document and view classes are inherited from CWinApp,

CMainFrame, CDocument and CView classes as shown in Figure 2.4. The CWinApp

class manages the Windows application functionality. The CMainFrame class aggregates

15

a set of view and document objects. The view manages device context. It can also

manage GUI required functionality.

In addition to creating a Windows-based application with automatic code generation

and aggregation with MFC framework, Microsoft frameworks also support class wizard

for managing client applications [13]. The message maps are managed through this class

wizard. The resource sub-system helps user in building Menu items, Tool bars, Dialog

boxes and Accelerator keys. They also support simple graphic primitives through CDC

class, which is an abstract class. CClientDC is a sub class of CDC that can be instantiated

from any class inherited from CWin class. This rule is automatically imposed by making

CWin pointer, which is an argument for constructor of CClientDC class.

The OLE framework is also integrated to Visual studio [13] such that a simple object-

oriented programmer also can use OLE features in these applications. The requirements

for such facilities are also collected through the application wizard by asking the user,

whether the application is an OLE server or OLE container etc.

At present the Visual studio is released in the form of .NET Studio . The .NET Studio

has several additional features such as multiple language support, Web based distributed

and object management facilities using SOAP (Simple Object Access protocol). The

information about visual studio is found at http://msdn2.microsoft.com/en-

us/vstudio/default.aspx.

2.2 Requirements o f ideal graphic frameworks

The following steps are followed for extracting the requirements for graphic

frameworks.

16

http://msdn2.microsoft.com/en-

1. Requirements, design and implementation issues of graphic, CAD, and CIS

applications which are from different application domains, are studied carefully.

2. Requirements for reusable graphic modules (Graphic Frameworks) are obtained

by generalizing these graphic application requirements and design.

Requirements of graphic applications for drafting, CAD for electronics, civil and

mechanical engineering, and GIS are studied in detailed as part of this work. The pattem-

frames suggested for CAD frameworks are implemented for building graphic

frameworks. These graphic frameworks can be reused for building high quality, cost

effective and simple graphic applications for complex requirements.

These graphic frameworks are classified into two groups as per the nature of

applications. They are object-oriented and component-oriented graphic frameworks.

The object-oriented frameworks are targeted to manage and export the behavior of

reusable graphic modules. They focus on generalization o f graphic modules to increase

level o f reuse. These frameworks will decrease the complexity of the applications. They

will positively affect the cost, quality, and the schedule of implementation.

The component-oriented frameworks are targeted towards scalability and

encapsulation, and support of new features such as OLE. Some of them address

problems in the development of components and usage o f components. Main objective of

these frameworks is to develop and use complex components like simple Objects.

Requirements of object-oriented graphic /CAD frameworks;

1. Designing domain independent generic graphic sub-systems: A generic graphic

subsystem which can manage requirements of any domain is required. This will

17

enable the same graphic subsystem useful for managing graphic components of

different application domains.

2. Designing sub-systems for managing generic environment: A graphic subsystem

should support scalable and configurable graphic environment. One can identify

several reusable foundation classes to support graphic subsystems. These sub­

systems simplify the implementation of complex graphic components.

3. Designing configurable sub-systems for managing graphic component behavior:

A graphic sub-system should support configurable graphic components. They

enable reuse of the generic behavior of graphic components. They will decrease

the development cost and complexity of a graphic component.

4. Designing sub-system for managing graphic objects.' A graphic system should

provide a facility to manage a huge number of graphic objects even on a lower

end system by optimizing the storage. Such sub-systems are essential for

managing graphic objects of GIS and PCB applications [7] where the size of the

graphic objects is larger.

Requirements of component-oriented graphic frameworks: The Component

technology such as COM technology of Microsoft has several advantages over simple

object-oriented technology. But the procedure for the development of a COM object is

complex. Even the procedure followed by the client to use a COM component is also

complex. These issues are discussed in the chapter 4. The component-based graphic

framework should have the following features for building component-based graphic

applications. [22]

18

1. Support for building complex graphie components using simple object-oriented

techniques.

2. Support for building subsystems to provide simple object view for complex

graphic components. This will enable a simple object-oriented client to create and

use complex object like simple C++ objects.

3. Support for integrating graphic components with middleware frameworks like

OLE, ATL. This will facilitate features like participation in compound

documents, support for OLE operations such as Cut & Past, Drag & Drop, and In-

place Activation etc.

This thesis presents a model object-oriented framework and also component based

graphic framework to address such requirements. The main feature of the work in this

thesis is making the development procedure of a graphic COM object simple. The client

procedure to use the complex component becomes simple. This is done by encapsulating

the COM procedures and reusing the COM object management procedures using simple

object-oriented patterns such as inheritance and polymorphism. These are not supported

in Microsoft COM object.

19

CHAPTER 3

OBJECT ORIENTED GRAPHIC FRAMEWORKS

Object-oriented frameworks use simple object-oriented patterns for building

frameworks. They make lightweight frameworks. They provide solutions for under­

engineering problems for the development of frameworks. These frameworks are

developed using traditional graphic concepts [26] such as display file and segment

concepts.

Graphic/CAD applications

Application specific graphic component libraries

r 1 r

Graphic instructions Segment table

Figure 3.1 Typical components of a model graphic framework with display-file concepts

20

Figure: 3.1 presents’ typical components of a model graphic framework using

traditional graphic display file concepts. The model has the following major core

components [21].

1. Segment table

2. Graphic instructions

3. Vector graphic display file

4. Display file interpreter

Using these one can build an application specific component library. This framework

will depend on a powerful graphic library supported by the compiler or vendor. C++

provides several graphic primitive libraries, while MFC provides powerful graphic

environment for building frameworks. JDK also provides graphic libraries for Java for

building Java-based frameworks. The quality o f the framework depends on the graphic

library support in addition to the capability o f the framework.

3.1 Segment table

The display file for general-purpose interactive graphics software is divided into a set

of segments such that each segment corresponds to a component of the overall display

file. For example, in a building-graphies information system each civil engineering

building element is treated as a segment. Windows, doors, racks etc, which are known as

civil engineering building elements, are stored in the display file as graphic-segments.

Sets o f attributes are associated with each segment. All these attributes of segments are

stored in a segment-table.

Consider the information that must be associated with each segment and how the

information might be organized. Each segment is given a unique name so that it can be

21

referred with it. Perform operations, on segments such as changing the visibility of

segment, require some way to distinguish that segment from all other segments. The

display file segment must know which display file instructions belong to it. This may be

determined by knowing where the display file instructions for that segment begin and

how many of them are there in its specific display file. Each segment needs some way of

associating its display file position information and its attribute information with its

name. The display file and its attributes can be organized in a tabular form as indicated

below:

1. Segment name

2. Segment starting address in the display file

3. Segment size i.e. number of instructions in the display file

4. Segment visibility i.e. on or off

5. Segment transformation parameters i.e. scaling, translation, rotation around x,y,z

axes

6. Segment reference point that is useful for transformations

7. Segment transparency (on or off) useful for hidden line and surface elimination

Segmentation can be achieved through a set of procedures to create, open, close and

transform a segment. This thesis implements all these required procedures for managing

a three dimensional object-oriented graphic framework.

Typical user user-routines developed to handle segments are Create-segment (n),

Close-segment (n), Append-segment (n) , Set-segment-visibility (n, I) , Rotate-segment

(n, ax, ay, az) , Translate-segment (n, tx, ty, tz), Set-segment-reference-point (n, x, y, z),

Scale-segment (n, sx, jy, sz) ,Show-segment (n), Delete-segment (n) where « is a segment

22

name, x, y, z are coordinates, I is visibility, tx, ty, tz are transformation parameters , sx, sy,

sz are scaling parameters and ax, ay, az are rotation parameters

3.2 Graphic instructions and vector graphic display files

Graphic instructions are used to define geometry of the graphic components in the

form of a set of graphic commands. All these vector graphic commands are stored in

display file. Display file interpreter will actually plot the drawing with the help of a set of

graphic primitive algorithms. There are several advantages of storing drawings in the

form of graphic instructions. This model allows performing operations on graphic

elements such as scale, reflecting, rotating, moving etc. As all the drawings are stored in

a uniform format it is easy to manage them. They will occupy less memory compared

with image formats except in GIS applications. In GIS, image format will occupy less

memory. This is discussed in Map object frameworks. Even in such cases display files

concepts are used because this alone will allow operations on images in an affective way.

This section will present a new model display file, which is useful for traditional graphic

frameworks.

Considering the structure of the display file, each display file command contains two

parts-operation code (opcode), and operands. Opcode indicates the type of command and

operands are the required arguments such as the coordinates of the point {x, y, and z). The

display file is made up of a series of these instructions. The display file must be large

enough to hold all the commands needed to create the image. One must assign meaning

to the possible operation code before proceeding to interpreting them. Suitable

geometrical elements should be provided for building a graphical information system. For

example, for graphical components of civil engineering building-graphical information

23

system, typical geometrical elements like point, line, circle, arc and polygon can be

considered. Typical general attributes of a simple display file instruction, are type of the

geometrical element, its color and y, z coordinates. The instruction is interpreted by

invoking the required vector generator. The vector generators of special geometrical

elements may need more information than what is available in the main display file. This

information is also in the form of graphic-commands, stored in a separate display file. For

example all the instructions for plotting a polygon are in the polygon display file. Each

vector generator of this type has its own interpreter for the interpretation o f these

commands. The starting-address and size of these instructions are the needed attributes,

which are stored in the main display file. Figure 3.2 presents a model display file

structure.

Vector graphic master display file

1 r

Polygon display file Ellipse display file Etc...

Figure 3.2 Model vector graphic display-file structure

3.3 Display file interpreter

The information in the display file is useful to model the object and create the

required image. The reason behind this is two-fold: some measure of device­

24

independence is achieved, and it is easy to perform image transformation by changing the

position and orientation of the required image. The display file contains the information

necessary to construct the required image. The information can be in the form of

instructions such as “move the pen”, “draw a line”, and “plot the required polygon”.

Saving instructions o f this kind usually take much less storage than saving the picture

itself. Each instruction indicates an action for the display device. A display file interpreter

is used to convert these instructions into actual images. The display file interpreter serves

as an interface between the graphics program and the display device. The display file

instruction may be actually stored in a file either for a display layer or for transfer to

another machine. Such files of imaging instruction are sometimes called “metafiles”

Typical vector-generating algorithms developed as part of this Three dimensional graphic

framework are do-line3d (Ic, be, z, y, z), do-point3d(lc x, y, z), do-sphere(lc, ex, cy, cz, r),

do-circle3d(lc, ex, cy, cz, r, ax, ay, az), doarc3d(lc, cx, cy, cz, r, sa, ea, ax, ay, az), do-

poly (Ic, sadd, size) where Ic is the line foreground color, cz,cy,cz are the coordinates,

sa,ea are the starting and the ending angles, ax, ay, az are the angles of inclination along

X, y, and z axes respectively, and r is the radius.

These functions are used by the display file interpreter while converting the display

file instructions into the required picture on the display device. This process of generating

image makes the graphics software independent of the nature of the display device and

graphic application.

Whatever may be the way of storing and plotting the required images; it requires

some tools for interaction with the graphics system. Typical graphic instructions for

building-graphies information system developed in this framework are M ove3d (x, y, z),

25

Line3d(x,y,z), Line3d(lc,x,y,z) ,Point3d (lc,x,y,z), Arc3d(lc,x,y,z,r,sa,ea,ax,ay,az),

Circle 3 d(lc, x,y, z, r, ax, ay, az)

3.4 Building graphic frameworks with vector graphic display files

It is observed that the display files enable graphic developer to generate graphic

structures that work for more than one application. Graphic user can build domain

specific libraries over the existing graphic model as shown in Figure 3.1. This will

enable commencing with building graphic frameworks. Such systems are used in GIS

(Geographical Information System) [21]. Generating images for huge graphic data

available in the display file is very common in GIS. The segment tables are known as

named layers in GIS. The GIS graphic data is divided into a set of layers. One can

perform operations such as making visibility on/off on each named layer of GIS graphic

data.

3.5 Advanced concepts in development of object oriented graphic frameworks

The graphic applications such as managing a PCB (printed circuit board) graphically

for electronic applications need to manage several graphic components. The number of

components is so large that we can not create the same number of objects as the number

o f graphic elements in the PCB. The elements of a PCB can be grouped into typically a

hundred different types. Using some pattem-frames designed for graphic applications we

can manage more number of graphic objects with less number of objects than in the

graphic applications. The following class diagram in Figure 3.3 presents the structure of

such an application. Such frameworks are referred as flyweight object frameworks.

26

Generic graphic object
interfaces

Geometric
interfaces

Client

Geometric
library

Display file
sub-system

< Geometric
implementation >

<Generic graphic object
Implementation >

Flyweight graphic object

Attributes

Figure 3.3 Structure of flyweight object framework

Collaboration and consequences:

1. Flyweight graphic object implements generic graphic object behavior.

2. Flyweight graphic object is used to manage behavior of all graphic components

with different geometry. The geometry of a graphic component is attached to this

graphic object at run time with the help of geometric interface.

3. The geometric library is a function-class which implements the geometry

interface and supply geometry to the object at run time.

4. Client module can update this geometric library frequently without disturbing the

system. This geometric library is one of the examples demonstrating the usage of

the function class.

27

3.6 Implementation and sample code:

The flyweight object model is well suited for applications like simulating a PCB. The

requirements of such applications were already presented earlier in this thesis. The PCB

will manage several graphic components with a single graphic object. The following

example is reusing the white-box frameworks for implementing the flyweight object

framework.

The components in this model are:

1. Generic graphic classes, which will implement display, file concepts for

managing any graphic element with specified behavior. This class is an abstract

class as it has some unknown requirements in it. It will support multiple

behaviors. This is weight box framework example given in previous section.

2. A class, namely, component class is designed to attach behavior of graphic

component as per its requirement. This is a flyweight graphic component.

3. A group of application specific functions support behavior of typical components.

These functions attach graphics to the component class. This can use a function

class framework.

The above model is used to change the component behavior dynamically with the

help of display files and function classes. The component class will exhibit its

behavior whenever user changes the type of the component. The component can be

changed into desired shapes using the function SetType that is implemented by

Graphic Element class. User can attach his own geometry to the framework.

All the object-oriented framework patterns discussed in earlier sections are used

in this model including the traditional graphic frameworks.

2 8

It should be noted that the interfaces are also defined inside the class. They will be

separated if the model uses component oriented technology. These concepts are

discussed in the next chapter.

The following code blocks represent three modules.

1. Graphic class to implement display files and generic graphic behavior; this is a

combination of traditional graphic frameworks and white-box Framework. This is

an abstract class

2. A component class, which is a flyweight class; this depends on white-box

frameworks and traditional graphic frameworks. This can be used to manage

several graphic objects, and depends on function class framework that manages

geometry of the functions.

3. The geometric function library; this will be managed with function class.

It can be observed that the component class implements only one method that is the

Design method. User can design typical shapes of the component using at this method

using the framework. Sample implementation for designing the shape of a PCB

component is listed. For each function Graphic Element is the argument like CDC for

OnDraw function for Microsoft Document View Architecture. This graphic element

provide framework interface for using the features of framework.

Observations:

The number of objects also can be decreased with the help o f the above model. Such

behavior is useful for managing a large number of graphic components. For example

consider a PCB that has thousands of graphic components, it is possible to manage all the

PCB components using a single object by storing additional information of PCB

29

component in a database. Such applications increase performance of the system. This

model allows graphic frameworks to run even on lower end systems.

Figure 3.4 Declaration of generic graphic elements in C++ implementing display file

concepts

class Graphic Element

{

private:

int mJNoOflnst;

int DF[8][200];

int COL[5][200];

int iPen X;

int iPen Y;

int m bTextFlag;

int mJbDetailedFlag;

int m JType;

char* m_sName;

int m JBkColor;

CRange m Window;

protected:

void Init(void);

public:

void virtual Design(void)=0;

30

void SetType(int type);

int GetType(void);

/ / Display File Functions

void MoveTo(int x,inty); / /1

voidLineTo(int x,inty); / / 2

void TextAt(int x, int y); / / 2 horizontal

void VerticalTextAt(int x,int y); / / 4 Vertical

void RectAt(int x, inty, int a, int b); / / 5 Rectangle

void ArcAt(int x,int y,in t sa,int ea,int rl,in t r2); / / 6 used even fo r circles

ellipses

void EllipseSolid(int x, int y, int a, int b); / / 7 Filled Solid Ellise

void RectSolidA tftnt x, int y, int a, int b); / / 8 Solid Rectangle

void SetLineColor(int i); / / 9 Set color o f line

void SetFillColor(int i); / / 10 Set FillColor

void TextlAt(int x,int y); / / I I

void Text2At(int x,int y); / / 12

void MoveRel(int x, int y); / / logical I

void LineRel(int x ,in ty); //log ica l 2

void TextRel(int X , in ty); //log ica l 2

void VerticalTextRel(int x, int y); / / logical 4

void virtual Display(CDC* dc);

void ShowRange(CDC* dc);

31

void SetRange(CRange Greet);

void UpDateRange(CRange rect);

int DisplayTextOK(void);

int DetailFlagOK(void);

void SetDetailFlag(int i);

voidSetName(char* text);

void SetTextFlag(int i);

void SetBkColor(int i);

int GetBkColor(void);

} ;

Each graphic object derives from component to get the specific behavior in the

PCB structure.

Following is the component derived from graphic element that contains display

file sub system.

class Component : public GraphicElement

{

public:

void virtual Design(void);

};

32

Figure 3.5 Declaration of function library to manage the geometry of graphic components

of PCB

/* Geometric function library */

void DefaultDesign(GraphicElement* ge); / / type 0

void Connector 1 Design(GraphicElement* ge); / / type 1

void ConnectorDesign(GraphicElement* ge); / / type 2 Connector J2 fo r J2

void IcCaplDesign(GraphicElement* ge); //typ e 3 Integrated C hip//U 42

void Caps!Design(GraphicEIement* ge); / / type 6 Capacitor

void CheckPointDesign(GraphicElement* ge); //type II TI and T2

void LabelDesign(GraphicElement* ge); //type 12

void Caps4Design(GraphicElement* ge); //typ e 21 Caps

void Caps6Design(GraphicElement* ge); //ty p e 23 Caps

void IcCap2Design(GraphicElement* ge); / / type 24 Integrated Chip

void RXDesign(GraphicElement* ge); / / type 25 RXI RX2 RX3 Rx4

void FRMDesign(GraphicElement* ge); / / type 26 Frame

void CRP3Design(GraphicElement* ge); / / type 45

void RP4Design(GraphicElement* ge);// type 46

void CRDesign(GraphicElement* ge);// type 51

The implementation of the one of the function is presented in the following code

segment.

33

Figure 3.6 Implementation of a typical function to manage the geometry of graphic

components of PCB

voidRPlDesign(GraphicElement* ge) //ty p e 4 Reference Pack RP15 Rpl 7 RP16 R p l8

{

ge->SetName("4:ResCap");

ge->SetLineColor(ge->GetBkColor()); / / Component color

ge->RectSolidAt(0,0,100,100);

ge->SetLineColor(YELLOW); / / Inside Area

ge->RectSolidAt(0,-30,80,25); / /

ge->SetLineColor(WHlTE) ;

ge->SetLineColor(ColOption[4]);

ge-> TextAt(0,25);

}

Consider a PCB with 2000 components on it. Each component has size, component

location, component type, and component name. This component information can be

stored as a table. Displaying a PCB, enforce to reconfigure graphic component object

with this new information, so that it will behave like specified component.

This chapter presents only the code segments used in minimizing the number of

objects. Appendix B presents typical screenshots of such applications.

34

CHAPTER 4

PROCEDURE FOR DEVELOPING THE COM OBJECTS

The COM object is also known as Windows object. The Windows technology of

Microsoft is developed over the COM/OLE technology. These technologies support

development o f user-friendly components. Though the development is costly, services

offered to the client are demanding such components. The revolution in the computer

hardware configuration has become an added advantage to this technology. This

technology is in use from 1995 [12] [24].

Before 1995 Microsoft Visual development environment required support tools for

the development o f the COM components. VC++ version 2.0 started supporting the

development of COM applications natively. Using this one can develop COM

components. VC++ 2.0 did not support automation layer directly. For building

automation layer developers needed to write an IDE (Interface Description Language)

and ODE (Object Description Language) script for describing the objects and interfaces,

which built automation layer. This process was very complicated. This situation has been

improved with VC++ 6.0, which has sufficient tools for building COM-based application

modules.

35

4.1 Microsoft application on COM/OLE technology

Microsoft Word, Access, Excel and PowerPoint are the best examples of applications

developed on COM /OLE technology. The Word document is known as compound

document as it contains elements, which belong to several applications. The In-place

activation o f the OLE objects in Word documents created a new revolution in the

document applications. Unlike old WordStar and PageMaker, the Microsoft word

document can contain pictures, excel sheets, etc., in its native format. These inserted

elements can be edited within the Word application itself whenever necessary. This

process is known as In-place Activation. The process of linking OLE objects into a

component document is known as Object Linking and Embedding (OLE). If the inserted

object is linked from an external file, it is known as object linking, and if it is copied on

to the compound document, this is known as embedding.

These Container server concepts were released to the developer in 1995-96. The

Visual C++ Version 2.0 allowed a developer to create an OLE Server and OLE container

applications. The OLE Server application is a server, which can be inserted in any OLE

container like Microsoft Word. The OLE container is an application, which can contain

OLE objects. The application can become both container and server at a time. The

Microsoft Word is both container and server, whereas the Paintbrush is just a server, not

a container.

All these are becoming possible because of COM/OLE technology by Microsoft.

COM is a Windows object. OLE is an environment built on COM technology. OLE

defines a set of interfaces using which a component document can communicate with an

unknown foreign object. For making our COM objects participate in OLE operation we

36

need to support required interfaces defined by OLE. Such objects which implement OLE

interfaces are known as OLE enable objects (in short ‘olable’).

All those facilities attracted the developers in 1995 - 2000 period and changed the

market trends. The cut and past, object linking and embedding, and drag and drop

operations are required even in CAD systems for offering better services. The only

problem was that the environment was costly and complex. Although Microsoft was

using the technology, the development technology was not fully available to software

development industry between 1995 and 1998. Now COM technology is providing full-

fledged technical support for the development of component-based components and

applications.

4.2 COM vs. C++ object reuse

COM components allow developing better servers than with simple C++ objects in

spite that COM is costly. Although COM is also based on object-oriented technology, the

COM is treated as a separate technology as the management of the components is entirely

different. The following table shows the difference between COM and C++ object [13]

[23].

4.3 Procedures in creating and managing the COM server

COM server implements a set of API functions for managing the COM objects. This

manages object count, which records the number of components, released from the

server. Some of the API functions will establish a session with the operating system.

Using these APIs, the operating system gets the information such as whether the server is

in use or not. One of the major API functions is to establish a session between the server

and the client using the system registry data. The server will create the COM object

37

Table 4.1 The differences between COM component and C++ objects

SNo The C++ Object Com Component

01 C++ object is a single entity
or object

COM is a group of objects but looks
like a single object for the client

02 Exported to client through
DLL

COM object also can be used
through DLL server known as
INPROC server. But the DLL does
not export the COM object.

03 The C++ server DLL need
not implement special API
functions

The COM DLL which is INPROC
server need to implement several
APIs for managing the server

04 C++ is not a registered
OBJECT

COM is a registered object and also
known as Windows object

05 The client can create the C++
object with new clause and
destroy using delete

The client cannot either create or
destroy the COM component using
new and delete

06 The class name is known to
client

The COM component name will not
be given to the client

07 The client knows the private
and protected functions and
data of the class though he
cannot use them.

The component does not allow
knowing even itself.

08 Client needs header files of
all base classes for Inheriting
a class for reuse.

The COM does not support
inheritance. Client does not know
name of component itself.

09 Reuse is through inheritance Reuse is through aggregation

10 The object hierarchy is The component hierarchy is simple

38

complex. tree of depth two.

11 Exports behavior through a
set of public functions

Exports behavior through a set of
interfaces

12 Client cannot manage
unknown object

Client can manage an unknown
component

13 No common base class
IUnknown is the common interface
of all COM objects

14 From client domain friend
functions and class can access
private and protected data and
functions also.

No friend functions from client
domain can access the component.
The Interface implementation
classes are friends of the COM
objects, which are hidden in server
not exported to the client.

15 C++ cannot implement
ownership concept.

COM can implement it

16 Server does not know
whether the Objects are in use
or not

The server has full information of
client operation on components
exported from it

17 No registration process
required

All COM objects are registered
objects

18 The DLL and the client
executable file should be in
the same directory

The client need not know where the
DLL of a COM component is
present. The system registry will
keep all such information

19 More than one class with
same name can be available
in the process or system

No two COM objects carry same
class ID but the implementation
class name can be repeated any
number of times outside the server
in the same system.

39

20 Modules are tightly coupled.
Even a simple change in class
header forces the client to
build the application

Modules are loosely coupled. Even
if the COM object name itself
changes, the client need not be
compiled. So long as interfaces are
not disturbed client application will
not get effected.

21 No version management for
object

Component can maintain a version
number

Required for the client and releases its IUnknown interface to the client. The client

communicates with the server through the interfaces of the components. The procedure of

creating a COM object is a complex cycle. The client requests the COMDLL for creation

of a COM object. The client refers the COM object with its class ID.

1. The COMDLL requests the operating system. The operating system APIs search

the registry for the server information of the COM object.

2. In case the COM is a registered object, the operating system will provide the DLL

server information, which is in the system registry.

3. The operating system loads the required DLL. The operating system

communicates with the server using an API requesting the COM object.

4. The server passes the call to the Class Factory Object. The class factory creates

the object and updates the server information.

5. The operating system APIs return the pointer to IUnknown interface of the COM

object to the client.

40

6. The client queries this required interfaces from the IUnknown interface of the

COM component.

7. The moment the client releases all the interfaces of the COM object, the COM

object will be deleted on its own.

8. The server gets unloaded if it is not in use.

9. The client locks the server to keep it available in the memory.

10. The servers need to implement the following APIs shown in the following table

for exporting the COM object.

4.4 Implementation issues of COM objects

COM object servers are o f three types.

1. INPROC SERVER

2. LOCAL SERVER

3. REMOTE SERVER

IN PR O C server is a DLL server that runs from the same processes o f the application.

LOCAL server provides proxy through which both COM server application and client

applications communicate with each other from different processes on the same system.

R EM O TE server provides a proxy to provide two processes communicate with each other

from different systems. This server is also known as D C O M server. Appendix A presents a

procedure for the implementation o f a simple beeper COM object through an INPROC

server. N ote that this object is no t an element o f a graphic framework. This example is

presented just to demonstrate the complexity o f the COM object procedures both for creating

a simple COM object and for using an existing COM object.

41

Table 4.2 Typical APIs of COM server

SNo Function Description

01

DUGetClassObject

This is a system API. Used to
communicate with Operating
system for creating COM
objects

02 DllCanUnl oadNow This is a system API. Used to
communicate with Operating
system for informing the status

03 ServerGetNumberOfObjects Returns number of COM
objects released from the
server

04 ServerGetNumberO/Locks Returns number of locks of the
server

05 ServerlncrementNumberOfObjects Increment number of objects.
This is called from class
factory of the COM objects.

06
Server IncrementNumberOfLocks This will increment the

number o f Locks

07 Server DecrementNumberOfObjects Decrements number of objects.
This is called from the COM
object destructor

08 Server DecrementNumberOfLocks This will decrease number of
locks of the server

42

Frameworks for graphic COM objects presented in this thesis simplify this procedure,

which is an important contribution of this thesis. It also encapsulates the server and client

management procedures of a COM object. This enables the graphic application developer

to develop a COM-based graphic system using object-oriented development methods

such as inheritance and polymorphism.

43

CHAPTER 5

FRAMEWORKS FOR GRAPHIC COMPONENTS

The intent of the abstract component frameworks is to generate black box framework

components using simple object-oriented primitive patterns.

The abstract component framework is also a component-based framework. However,

it enables a C++ developer to develop components without much knowledge about the

Component technology. The component pattern management procedure is reused in

abstract component frameworks. Mainly this presents a simple mechanism to generate

components by applying simple object-oriented patterns. In this model both the object-

oriented patterns as well as the component patterns are adopted for reuse. The following

Figure 5.1 shows the block diagram of an abstract component framework model.

The abstract component framework is a generic component, which will implement all

reusable component management code required along with reusable domain specific

behavior, which is common to all components of the group. This will implement all

component patterns, which can be shared by all components o f the group. This

component is named as abstract component as it is not a full-fledged component. It is an

abstract class, i.e., it cannot be instantiated. But derived classes of this abstract

component, by implementing pure virtual function, will become full-fledged components.

In other words, this abstract component will become enterprise component by

configuring it to the requirement of a specific object. As the component patterns are

44

IUnknownPure virtual functions

Pure virtual
functions
implementation

Figure 5.1 Abstract component framework

reused, the C++ programmer without having much knowledge about component

patterns can simply build components using this abstract component.

5.1 Architecture of the abstract component framework:

Name: Abstract component pattern-frame

Intent: Developing a complex graphic component using simple object-oriented

patterns.

Motivation and Applicability: As discussed above in this section, the developer

procedures for building a graphic component will become simple by supporting a

reusable module which will take care of component management functionality and

generic graphic component behavior.

45

The components can be built like simple C++ objects using these abstract pattem-

frames.

Structure: The architecture of the abstract component pattern-frame is presented in the

UML diagram presented in the following Figure 5.2

Abstract component

<Attributes >

<Methods >
< component

< Implementation of
generic interfaces >

!-(> Graphic interface 1

Graphic interface i

i>Graphic interface
N

i>Specific interface

Specific graphic
component

Specific attributes

< Specific functions >
- < Specific interface

implementation >

Figure 5.2 Structure of abstract component framework

Participants and collaboration:

1. Abstract Component: This is an abstract class which will implement all generic

interfaces and common component management procedures required for any

graphic component.

2. Generic Interfaces: These are generic interfaces representing generic behavior of a

graphic component as discussed in component based graphic pattern-frame s.

46

3. Specific Interface: An interface which is very much specific to a selected graphic

component is named as specific interface. This is implemented by the graphic

component itself.

4. Specific graphic component: A graphic component which reuses the abstract

component for generic behavior and component management procedures is

named as specific graphic component. This will implement object specific

interface.

The abstract component implements all generic behavior and the specific component

will inherit from the abstract component and reuses the generic methods. It will add the

object identity and specific interface which it wants to support. This will enable reuse of

the common graphic component management functionality.

The abstract component is a simple C++ class. This can reuse the object-oriented

graphic frameworks for managing graphic behavior, and converts object behavior into

graphic component generic-interface implementation.

5.2 Implementation and code

The following code segment demonstrates functionality of abstract component

framework. In this example, abstract graphic component framework is presented. This

implements all the interfaces required for the graphic classes, along with other

component related behavior. The line, rectangle and other graphic components are built

over this just by inheriting this abstract graphic component class and by attaching domain

specific behavior, which is specific to that object. This abstract component can be

configured to requirements like white-box frameworks.

47

Figure 5.3 C++ class describing the structure of abstract component

/* Structure of abstract component */

class CGraphElement public IUnknown

{

public:

CGraphElement(void);

CGraphElement (LPUNKNOWN);

~C GraphElementQ {} ;

CString m_sName;

protected:

CPoint m_pPointI;

CPoint m_pPoint2;

bool m_MarkFlag;

BOOL m_MoveFlag;

BOOL mJieSizeFlag;

CLineAttribs m cLineAttribs;

// Semantic Graphic Component Data

private:

int m JNoOflnst;

in tD F [8][200];

COLORREF COL[5][200];

int iPen_X;

48

int iPen Y;

int mJbTextFlag;

int m bDetailedFlag;

int m JType;

COLORRFFtnJBkColor;

CRange m_Window;

CLineAttribs m_pLineAttrib;

public:

void virtual Show(CDC*) = 0;

CLSID virtual GetClsid(void)=^0;

void GetColor(void);

void SetMove(BOOL b);

void SetReSize(BOOL b);

void SetColor(COLORRFF Rgb);

void SetStyle(int i);

void SetWidth(int i);

void Set Points(ULONG, ULONG, ULONG, ULONG);

void Mark(CDC*);

void Draw(CDC*);

void Paint (GDC*COLORRFF);

void virtual ShowKeyPts(CDC*);

void virtual Move (GDC*,CPoint);

void virtual Serialize (GAr chive & ar);

49

BOOL virtual Locate (CDC*,CP oint,COLORREF);

BOOL virtual IsLocated(CPoint);

BOOL IsInRange(CRect);

protected;

void lnit(void);

public;

void virtual Design(void){); //=0;

void SetType(int type);

int GetComponentType(void);

/ / Display File Functions

void MoveTo(int X, inty); //1

void LineTo(int x,inty); // 2

void TextAt(int x, int y); / / 3 horizontal

voidM oveRel(intX,inty); //logical 1

void Line Re I (int x, int y); // logical 2

void TextRel(int x,inty); // logical 3

void VerticalTextAt(int x,inty); // 4 Vertical

void VerticalTextRel(int x,inty); // logical 4

void RectAt(int x,inty,int a,int b); // 5 Rectangle

void ArcAt(int x, int y, int sa, int ea, int r l, int r2); // 6 used even for circles ellipses

voidFllipseSolid(int x,inty,int a,int b); II 7 Filled Solid Ellise

void RectSolidAt(int x,int y, int a, int b); // 8 Solid Rectangle

void SetLineColor(COLORRFF i); // 9 Set color of line

50

void SetFillColor(COLORREF i); H 10 Set FillColor

void Text 1 At (int X, int y); H 11

void Text2At(int x,int y); H 12

void TextBkColor(COLORREF r); //13 sets Text BkColor

void TextColor(COLORREF col); H 14 Set TextColor

void virtual Display(CDC* de);

void Show Range (CDC* de);

void SetRange(CRange Crect);

void UpDateRange(CRange rect);

int DisplayTextOK(void);

int DetailFlagOK(void) ;

void SetDetailFlag(int i);

v o id SetName(char* text);

void SetName (CString text);

void SetTextFlag(int i);

void SetBkColor(COLORREF i);

COLORREF GetBkColor(void);

CString GetName(void);

void GetName(CString * str);

void ReSetDF(void);

void Refresh(void) ;

51

//COM CODE

//interface class instances

IGPersistImp m xPersist;

IGAttributeslmp m_xAttributes;

IGDisplaylmp m_xDisplay;

IGEditlmp mjcEdit;

IGLocateImp m xLocate;

JGDisplayFilelmp m xDisplayFile;

//IUnknown functions and other com related things

ULONG m cR ef;

LPUNKNOWN m _punkOuter;

HRESULT GBaseQuery(REFIlD,LPV01D FAR *);

friend class IGPersistImp;

friend class IGAttributesImp;

friend class IGDisplaylmp;

friend class IGEditlmp;

friend class IGLocateImp;

friend class IGDisplayFileImp;

};

52

The following code segment shows how domain specific components can be built

over this abstract component framework.

Figure 5.4 C++ class describing declaring a graphic COM object using abstract

component

Class CLine .public CGraphElement

{ public:

CLine(void);

-CLineQ;

UIOVG/mVWizeO,

void Show (GDC*);

CLSID virtual GetClsid(void) ;

void virtual Design(void){};

STDMETHODIMP QueryInterface(REFIID, LPVOID FAR *);

STDMETHODIMP (ULONG) AddRef(void);

STDMETHODIMP JU LO N G) Release (void);

}:

Class CLineClassFactory ; public IClassFactory

{

protected:

ULONG m cR ef;

public:

53

STDMETHODIMP QueryInterface(REFIID, LPVOID FAR *);

STDMETHODIMP JU LO N G) AddReJvoid);

STDMETHODIMP (ULONG) Release (void);

STDMETHODIMP Createlnstance(LPUNKNOWN, REFIID, LPVOID FAR *);

STDMETHODIMP LockServer(BOOL);

CLineClassFactory (void);

-CLineClassFactory (void);

}:

The CLine component is a COM object, which is implementing only line specific

configuration methods. This will also implement some of the specific component

procedures. Class factory is also implemented separately as it is specific to component.

All other common code is reused from the abstract component that includes generic

interface implementation. Even the class Factory and other component specific methods

can be reused using Macros and Templates.

5.3 Component wrapper or helper object

This section presents a framework to provide simple C++ object view to a graphic

COM component. This framework is referred as Wrapper or Helper .The Component

wrapper will apply simple object-oriented primitive patterns for using black-box

frameworks. The abstract frameworks simplify the procedure to implement a component,

but the client procedure is not simplified. The client of component framework needs to

follow several procedures for creating and using the component. These procedures

54

increase cost of the client application compared with a simple object-oriented framework.

The component wrapper frameworks solve this problem by providing the components in

the same way as simple objects to the client, thus components can be used like simple

objects by the client of component frameworks.

The component wrappers are simple objects, which will implement client procedures

for using a component, which are reused in these component wrapper frameworks. These

component wrappers can be exported like simple C++ objects. The difference between a

component wrappers and a white-box framework object is wrapper hide total

implementation as well as design but the white-box framework objects encapsulate only

design as they are based on simple object oriented patterns. Figure 5.5 presents a block

diagram of a model component wrapper framework.

iv L _ -_ tiipL
IDisplay

lAttribute \
t

/ /
i-

Unknown

IDisplay ^

lAttribute A

CT Unknown

Figure 5.5 Typical component wrapper frameworks

55

As shown in Figure 5.5 the eomponent wrapper objeet can be used to manage

eomponents. The component wrapper does not earry any data exeept IUnknown pointer

of the eomponent to whieh it is eurrently attaehed. Another interesting feature o f this

model is that the same eomponent wrapper ean manage any eomponent of the domain.

For example the same objeet is used to manage CLine eomponent as well as CReet

eomponent. This will provide two advantages to the elient:

1. The same objeet ean be used to manage a group of components

2. Client can use components in the same manner as a simple C++ object

5.4 Architecture o f a eomponent wrapper framework

Name: Component wrapper pattern-frame

Intent: To provide a simple objeet view to a eomplex eomponent

Motivation and Applieability: As diseussed above in this seetion, the eomplex graphie

components can be made available to simple objeet-oriented modules. This will enable

reuse of the same GUI whieh is designed for simple objeet-oriented modules. A user of a

simple objeet-oriented program ean use eomplex graphie components. This is the main

motivation of this component wrapper pattern-frame. The methodology can be applied in

the development o f any graphie applieations that need to use eomplex eomponents like

simple objects. This patter-frame is not speeifie to graphie domain, that it can be

generalized to any domain with similar requirements.

Participants and collaboration:

The main participants of this are:

1. Objeet behavior: This Abstraet elass defines the behavior of a graphie eomponent.

56

Figure 5.6 presents a UML diagram presenting the structure of Component Wrapper

pattem-frames.

■T̂ -------- ">
I

Client

Object behavior

 1 ----------
Helper class

- Object identity ^

< ConstrdCt5r'> '
<Mapping of
object behavior >

Component
creation sub
svstem

 > Component
oriented
frameworks

Figure 5.6 Structure of component wrapper framework

2. The Helper class: This is the wrapper implementing all the client procedures for

creating and using a component. It has a constructor which accepts as the formal

argument.

3. The Component creation subsystem: This is a middleware framework supported

by the operating system and is used to create register components. COMDLL.dll

in Microsoft supports a set of Windows API functions for creating a registered

component in Microsoft windows environment.

4. Graphic component: This is a graphic component based framework supporting

typical graphic components. The major feature o f wrapper object frameworks is

57

that it does not support graphic components; it gives object view to a given set of

graphic components.

The client uses the helper object which is a simple C++ object for creating a

component of his choice. He will pass the class ID of the component to the constructor.

The component creation and destruction is taken care of by the helper object itself. Client

uses the methods defined by helper object; the helper object will take care of querying the

interfaces on components and releasing them. Several graphic components can be used

with a single helper class. This helper object can be exported using simple class exporting

techniques through DLL. The wrapper object pattern-frame encapsulates components and

component procedures.

5.5 Implementation of wrapper and code

The following code presents a helper object of a Component Wrapper object

framework.

The component wrapper object framework does not carry any data except IUnknown

interface to the component that it manages. Sometimes it can also keep some other

interface pointers for improving the performance of the system. This wrapper object

provides several procedures that will manage client procedures of a component. It

redirects all messages to the domain specific components, and can manage any domain

component, and is loosely coupled with the domain component. It makes the frameworks

scalable. The client o f the object is a simple C++ client. One can use this as simple C++

object though it is based on component technology. The following code segment in

Figure 5.8 demonstrates the client procedure to manage the components through

component wrappers.

58

Figure 5.7 C++ class describing declaring a wrapper object for using abstract component

/* Wrapper class */

#ifndef HGraphicElement

Mefine HGraphicElement 0

#include <objbase.h>

#include "IGraph.h"

#include "Guid.h"

mfdefHGraphicSER VER

class declspec(dllexport) HGraphic

#else

class declspec(dllim port) HGraphic

#endif

{

private:

LPUNKNOWN mJUnknown;

LPIGPersist m lP ersist;

LPIGAttributes mJAttributes;

LPIGDisplay m ID isplay;

LPIGEdit m IE dit;

LPIGLocate m ILocate;

public:

HGraphic (CLSID) ;

-HGraphicQ;

59

HRESULT Serialize (CArchive &ar);

GefC/jzWfvozX);

HRESULT SetPoints(ULONG, ULONG, ULONG, ULONG);

HRESULT GetColor(void);

HRESULT SetName (CString) ;

CString GetName (void);

GefA/aTMe/Œ/rmg*;,

HRESULT SetType (ULONG);

ULONG GetType(void);

HRESULT Mark(C DC*);

HRESUL T Draw (CDC *);

HRESULT Paint(CDC *, COLORREF);

HRESULT M ove(CDC* CPoint);

HRESULT ShowKeyPts(CDC*);

HRESULT SetMove(BOOL);

HRESULT SetReSize(BOOL);

BOOL Locate(CDC* CPoint,COLORREF);

BOOL IsLocated(CPoint);

BOOL IsInRange(CRect);

COLORREF GetBkColor(void);

HRESULT SetBkColor (COLORREF);

HRESULT SetColor(COLORREF i);

HRESULT SetStyle(int i);

60

Figure 5.8 C++ code segment describing the client code for wrapper class

/* Instantiation of component wrapper in Constructor class */

class CHGPClientView : public CView

{

HGraphic* m Graph;

I* Constructor and destructor of client */

CHGPClientView; .CHGPClientViewQ

{

m Graph = new HGraphic (CLSIDjCComp);

}

CHGPClientView; ;~CHGPClientView()

{

delete mjGraph;

}

I* Using component through component wrapper from client */

void CHGPClientView::OnDraw(CDC*pDC)

61

{

CHGPClientDoc* pD oc = Get Document ();

ASSERT_VALID(pDoc);

// TODO; add draw code for native data here

HRESULT hr;

hr = m_Graph->SetPoints(l50,150,300,300);

m_Graph->Draw (pDC);

}

In this sample, the client class is instantiating, creating and using a component

wrapper similar to a simple C++ class. The constructor specifies CLSID (class id) of the

domain component. By passing different class identifiers (class IDs), the wrapper will be

configuring to that component. This makes client procedures simple and effective.

Typical procedure o f the component wrapper for managing components is presented in

the following code segment.

The constructor of the component wrapper will query required interfaces during run

time. The client messages will be passed to respective interfaces. The component wrapper

will also solve several component management problems such as memory leaks, which

occur when the client does not release the component interface properly.

62

Figure 5.9 C++ Code segment describing component wrapper passing client message to

component

/* Component wrapper passing client message to component */

HRESULT HGraphic:: Draw (CDC* dc)

(

m IDisplay-> Draw(dc) ;

return NOERROR;

}

!* The constructor of the component wrapper object *!

HGraphic:; HGraphic (CLSID els)

(

MessageBox(NULL, "Failed to Init

OLE", "HGraphic::HGraphic(CLSlD) ",MB_OK);

// Get the class factory fo r CPoint

LPCLASSFACTORY pClassFactory = 0;

HRESULT hr = CoGetClassObject(cls, CLSCTX INPROC SERVER, NULL,

IlD IClassFactory, (LPVOID*)&pClassFactory);

if(SUCCEEDED(hr))

{

hr = pClassFactory->CreateInstance(NULL, IID IUnknown,

i f (SUCCEEDED(hr))

63

{

m_IUnknown->Querylnterface(IlD_IGPersist,(LPVOID*)&mjlPersist);

m_IUnknown-> Querylnterface(llD_lGAttributes,

(LP VOID *)&m_IA ttributes);

mJUnknown->QueryInterface(IID IGDisplay, (LPVOID*)&m IDisplay);

m_IUnknown->QueryInterface(IID_IGEdit, (LPVOID*) &m_IEdit);

m_IUnknown->QueryInterface(IID IGLocate,(LPVOID*)&m_ILocate);

}

else

MessageBox(NULL, "Failed to Create HGraphic COM

}

else

MessageBox(NULL, "Failed to connect to HGraphic COM

Server", "HGraphic;;HGraphic(CLSID)",MB_OK);

}

The destructor of the component wrapper releases all the interfaces whenever the

client releases the component wrapper.

5.6 Observations on results of these graphic component frameworks

The code segments presented in this cheaper demonstrates the simplicity of client

procedure for development of graphic COM objects and also client procedure to use these

64

objects. As a client uses simple C++ object to mange complex COM objects the

applications complexity can be decreased substantially. Although client is using simple

C++ object in reality he is creating a complex COM object and also managing all COM

client procedures by using these component graphic frameworks presented in this

chapter. These frameworks are developed using the pattem-frames suggested by “pattern

language for CAD/graphic frameworks” [21]. The design and implementation of the

frameworks is the contribution of this thesis. Appendix B presents the screenshots to

demonstrate the output o f the applications developed using these frameworks.

65

CHAPTER 6

ARCHITECTURE OF COMPONENT-BASED GRAPHIC FRAMEWORKS FOR

BUILDING GRAPHIC APPLICATIONS

This chapter presents a Component-based graphic application structure. Typical

interfaces and sub-systems are also identified and presented in this chapter. While chapter

five presented the frameworks and procedures for managing graphic COM objects, this

chapter presents the model graphic framework architecture for building component-based

graphic applications.

6.1. Requirements and the development issues

1. The framework should implement all supporting subsystems such as:

• A Persistence subsystem, for saving all the components

• A Display subsystem, for displaying all the components

• A Translation subsystem, for translating the components into other formats

• A Command subsystem, for placing the components on the screen

• An Editing subsystem for editing the components

• An automation subsystem for exporting functionality to other applications like

VB

• Association subsystem

• Dimension subsystem

2. The framework should support generic behavior of a component

66

3. The framework should define a mechanism for attaching CAD components and

their specific behavior

4. The framework should provide support for enabling a simple object oriented user

to create and manage components

5. The framework should support mechanism to use components like simple objects

6 . The framework should support the automation layer to export functionality to VB

client

The framework should allow Document driven programming such that the CAD

drawings can be placed in Microsoft word like application. The framework should

support a set o f Macros and Templates to support developing typical procedures for the

creation of components.

6.2 A brief description of software design

This software uses required component-oriented frameworks for building a COM-

based CAD framework.

1. The structure of the COM-based CAD framework is shown in the UML

diagram in Figure 6.1.

2. The structure o f the Graphic component is presented in Figure 6.2.

3. Structure of a Wrapper object is shown in the UML Diagram in Figure 6.3

4. Structure of subsystems of CAD framework is shown in Figure 6.4.

67

Typical
Graphic sub

systems

- >

r>
I----------Middleware

components
frameworks

Graphic
component

VB
client OOP

client

Componen
t client

Specific

Generic graphic

Components
wrapper

Abstract
component
framework Object oriented

graphic
frameworks

Figure 6.1 Structure of COM based CAD framework

68

IDisplay

IGraphic

IGeometric

IPersistence

ITranslate

lAssociative

IDimension

IWeldSymbol

0 4" '

o4 "'
o<l—
0

0<j—

0<j—
o<]—

4 -

Abstract component

Graphic component
{Eg. Weld symbol}

Figure 6.2 Structure of a graphic component {for example weldsymbol}

69

OOP
client

HWeldSymbol

ClassID of weld
Symbol

Weld symbol
behavior _

I— > IDisplay
I
I
I
I— > IGraphie

“ Xjeometrie

!— ^Persistence
I
I

I— >ITranslate
I
I

r ̂ Associative
I
I
I
I— ^Dimension

IWeldSymbol
— '— >

o4

o4

o f
o f
o f

0 <J

jraphiccom ponent
Eg. Weld symbol}

_ _ _ _ _ _ _ _ _ I

Figure 6.3 Structure of a wrapper component {for example Weldsymbol}

70

Display subsystem

Graphie subsystem

------------ > IDisplay

 IGraphie

__ _ ;^eom etrie

Geometric
subsystem

Persistence
subsystem

Translation
subsystem

Association
subsystem

Dimension
subsystem

/////
/ /

/
/

^^Persistence

-7 ITranslate

■ÿjlAssoeiative

/ ^ im ension
/

/

/^Specific interface

o4
o4
0 4

0 4

0 4

0 4

0 4

o4

- , -t I Graphic
component

_ _ _ _ _ _ _ _ _ I

Figure 6.4 Structure of subsystems of CAD framework

71

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Review of the work

The thesis presents models for building Component-based graphic frameworks. These

are used for building graphic applications such a three dimensional graphic system or a

printed circuit board (PCB) simulator. The pattern language presented in the thesis

namely “Patter language for graphic/CAD frameworks “is used for providing some of the

solutions. This work starts its journey from a simple objeet-oriented technology using

C++ to complex component world.

The objeet-oriented frameworks build lightweight frameworks. They are used to

convert existing object oriented models into frameworks. Some of the objeet-oriented

frameworks are using domain specific functionality to build frameworks. These

frameworks provide techniques for increasing modularity. Typical applications are

developed and presented to prove the models.

The Debug driver board is an application, which is used for finding faulty component

of a Printed Circuit Board (PCB). A graphic framework using object oriented framework

concepts is developed for providing solutions for Debug driver board application. This

framework enables users to manage hundreds of electronic components. This application

runs on lower end system.

72

This thesis identifies the differences between the object-oriented graphic frameworks

and Component-based graphic frameworks. The procedure for developing a simple

beeper component is presented to demonstrate the complexity of the COM technology.

This thesis presents solutions for managing components in an effective way. Abstract

component frameworks and Component Wrapper frameworks are presented in this

connection. These models enable a simple C++ developer to build complex graphic

COM objects using proposed frameworks. It also enables the client to use the complex

graphic COM objects like simple C++ objects without disturbing the nature of the COM

objects and supporting all COM object rules and procedures.

Finally the thesis presents screenshots of typical graphic applications developed using

these frameworks.

7.2 Discussion and analysis of results

It was observed that these frameworks decrease the cost and complexity of the

applications.

The pattern-frames can be viewed in three major layers. The first layer mainly

focuses on solutions for managing and reusing behavior of graphic objects and systems.

These models support common reusable classes and function library. Unlike the MFC

and Java, The presented models focus on configurable models. This model enables huge

applications to run on low-end systems.

The second layer focuses mainly on porting object-oriented graphic frameworks into

new technology. Solutions for the problems pertaining to development and managements

of graphic components are provided. Techniques for providing component technology to

simple object-oriented user are evolved. In this connection a model namely the object-

73

wrapper, which provides a simple object views to complex components by encapsulating

the component patterns, is presented. Similarly an abstract-component allows creation of

complex components like simple C++ objects. These Models enable a simple object-

oriented programmer to develop and use complex components. Such models provide a

new solution to solve under engineering and over engineering problems like Extreme-

Programming (XP) [21]. The XP approach recommend taking up the first possible

solution and then refactor for optimization. Similarly the patterns-frames presented in this

connection, present complex patterns as simple ones, by hiding the complexity. This will

enable a novice developer to use complex structures without much knowledge of them in

an easy and safe way.

The third layer focuses on managing frameworks for distributed and Web-based CAD

and CIS applications. This is not covered in this thesis and left for the future study.

The frameworks presented in this thesis exhibit modularity, reusability, expendability

and inversion o f control like any other object-oriented framework. Like IBM San

Francisco frameworks [2] these frameworks are focused on objectives such as:

1. Easy entry into object-oriented technology

2. Enabling applications that allow companies to be more competitive

3. Providing an open solution, allowing trade-offs in cost, performance, and

skill.

Further, they fulfill additional objectives like Easy entry into component technology

and facilitating new companies to work in graphic, CAD and CIS domains.

74

The Microsoft Active Template Library (referred as ATT) provides frameworks for

development of components, using set of wizards and macros. In comparison with ATT

the component-oriented patterns presented in this thesis are lightweight frameworks.

Unlike ATT, they are more easily configurable, and designed to suite graphic and CAD

application domains. In some of the models of this thesis, ATT is used to make the

design more efficient by porting the functionality to VB Client.

The ESRI frameworks focus on CAD and CIS applications. The thesis suggests

further research and development in managing huge graphic data over Web. ESRI CIS

Mapping Software information is found at http://www.esri.com.

7.3 Quality and metrics

This section presents the operational definitions and some measurements for the

quality of the frameworks proposed in this thesis. Quality is not a single idea, but rather a

multidimensional concept. The dimensions of quality include the entity of interest, the

viewpoint on that entity, and the quality attributes of that entity. Crosby (1979) [19]

defines quality as “conformance to requirements “and Juran and Gryna [9] defines it as

“Fitness for use”. Conformance to requirements must be clearly stated such that they

cannot be misunderstood. The “fitness for use” definition takes customers’ requirements

and expectations into account, and this involves examination of whether the products or

services fit their use or not. Different customers may use a product in different ways.

Hence products must possess multiple elements of fitness for use. The above statement is

more applicable to frameworks, as they are used by several developers and different

domains of interest.

75

http://www.esri.com

The parameters for fitness for use ean be elassified into “Quality of Design” and

“Quality of Conformanee”. The quality of design in popular teehnology is known as

grades or models, which are related to the speetrum of purehasing power. The differenees

between grades are the result of intended or designed differences. In contrast, the quality

o f conformance is the extent to which the product conforms to the intent of the design.

Consider, for example, an automobile. The quality of conformance here is the extent to

which the transportation requirement is met. On the other hand, quality of design

indicates the size, comfort, performance, style, economy, and status as provided by

different models.

The term “Total Quality Management” (TQM) was originally coined in 1985 by the

Naval Air Systems Command [11] to describe its Japanese-style of management

approach to quality improvement. The term has subsequently taken on a number of

meanings, depending on who is interpreting it and how they are applying it. The key

elements o f TQM system can be summarized as follows [11]:

Customer Focus: The objective is to achieve total customer satisfaction.

Process: The objective is to reduce process variation and to achieve continuous process

improvement.

Human side of Quality: The objective is to create a company wide quality culture. Focus

areas include leadership, management commitment, total participation, employee

empowerment and other social, psychological, and human factors.

Measurement and Analysis: The objective is to drive continuous improvement in all

quality parameters by the goal-oriented measurement system.

76

The frameworks presented in this thesis can adopt this TQM model to describe its

quality. The objectives of these frameworks are to improve the total quality, not just

decreasing complexity or cost.

The object-oriented frameworks decreases application development cost and

complexity as code is reused. The cost of development of an object is more compared

with non- object-oriented code. But the increased reuse o f the objects decreases the total

cost. Generally frameworks are developed when the number of users is more, and hence

the overall development cost of object-oriented frameworks is less. This will be

applicable even to the graphic frameworks as they are also object-oriented frameworks.

The customer focus depends on facilities and degree o f configuration o f reusable

code. The object-oriented frameworks increase customer focus. Steps are taken to

improve the degree of configuration.

The component-based frameworks provide more facilities and customer satisfaction

as they are built on a new technology. But the complexity of the code results in an

increased cost. Graphic frameworks models presented in this thesis attempt to solve this

problem as follows;

1. Providing pattem-frames to convert simple object-oriented frameworks into a new

technology.

2. Providing pattern-frames to support a new technology with a simple design.

The component patterns presented in this thesis adopt these techniques to decrease

cost. The abstract component enables users to create components, just like simple objects.

The component wrapper framework models provide simple object view to complex

components to provide high technology available to novice object-oriented developer.

77

These concepts will improve the quality of the graphic applications developed on these

frameworks.

7.4 Scope for further research

This work can be extended to providing solutions for the distributed and web based

graphic applications. Some of the concepts used to improve the frameworks such as

abstract component and wrapper object (or helper object) can be applied in different

domains for producing new design patterns for managing the components.

78

APPENDIX A

PROCEDURES TO CREATE A COM SERVER AND CLIENT

This appendix presents a procedure to create a simple COM object, Beeper. It uses all

component patterns and COM object concepts. It uses the DLL (Dynamic Link Library)

concepts. This server is known as INPROC server. It uses VC++ console application for

building client.

This example is presented to demonstrate the COM object management procedures.

The Beeper is not a graphic component. But the same procedures are required for

building a graphic COM object. The frameworks presented in this thesis simplify these

procedures by reusing the COM procedures used in the graphic COM objects. The

framework presented in this thesis is useful only for the graphic COM object. But

development of the similar frameworks to manage COM objects of respective domains is

possible [29] [12].

A. I Steps to create a simple beeper COM object

The following procedures and rules are required to generate a simple Beeper COM

object in VC++.

1. Create a directory structure

79

2. Create the server applieation and implement all COM proeedures required for

building a COM objeet.

3. Register the server. In this eonneetion we need to generate the GUID (globally

Unique ID) for the Beeper COM objeet.

4. Create the elient applieation and implement all COM proeedures required for

using COM objeet

A.2 Direetory strueture:

Create the following direetories under C:\MYCOM\

1. SERVER: This earries the implementation of our COM objeet.

2. CLIENT: This earries a simple client applieation where our COM objeet is

ealled.

3. DOCUMENT : All the doeuments related to the implementation will go into this.

4. BIN: All outputs of both server and client sueh as *.exe , server.dll ete. should go

into this.

5. INCLUDE: Entire eommon include files that are shard between the client and the

server should go into this.

6. REGISTER: The MyCom.reg file that will register our COM objeet and all its

interfaces into the registry should go into this directory.

A.3. Creating the server applieation:

The following steps ereate COM object server

1. Create a new projeet workspace as Dynamie Link Library

2. Create the following files in the SERVER direetory and inelude in the project.

3. BEEP.CPP, SERVER.CPP, GUID.CPP and SERVER.DEF

8 0

4. Create the following header files (in the SERVER directory).

5. BEEP. H (included in BEEP. CPP), SER VER. H (included in SER VER. CPP)

6. Create GUID.E[and IBEEP.El header files and save into INCLUDE directory.

7. These two files are shared by both the client and the server

8. Copy the contents of the codes into respective directories

IBEEP.H Contents

Objectives

1. To define the IBeep Interface; it has one method called “Beep”.

2. To define the GUID for IID IBeep for IBeep Interface (using GUIDGEN.EXE).

mfndef H JBEEP

Mefine _H IBEEP 1

Minclude <windows.h>

#include <objbase.h>

DEFlNE_GUlD(IlDJBeep. 0x765bfjf31, 0xc207, OxJJdO, Oxbc, 0x7b, 0x8,

0x0, 0x36, 0x60, 0x30, 0x3);

#undef INTERFACE

Mefine INTERFACE IBeep

DECLARE INTERFA CE (IBeep, IUnknown)

{

STDMETHOD(Querylnterface) (THIS REFIID riid, I P VOID FAR

*ppvObj) PURE;

81

STDMETHODJULONG, AddReJ)(THlS) PURE;

STDMETHODJULONG, Release)(PHIS) PURE;

}:

typedef IBeep FAR * LPIBEEP;

Uendif / / H IBEEP____________________________

BEEP.H CONTENTS

Objectives

1. To define the CBeeper class. This is our COM Object.

2. To define the CBeeperClassFactory. This is the class factory for our COM class.

m fndefH _B E E P

Mefine H BEEP I

^include <objbase.h>

^include <graphic.h>

#include <guid.h>

class CBeeper : public IUnknown

{

protected:

ULONG mjcRef;

public:

8 2

LPUNKNOWN m _punkOuter;

STDMETHODIMP Querylnterface(REFllD, LPVOID FAR *);

//nested implementation of IBeep.

class CBeepImp : public IBeep

{

STDMETHODIMP QueryInterface(REFIID, LPVOID

} m IBeep;

public:

-CBeeperQ;

ULONG InitializeQ;

} ;

class CBeeperClassFactory : public IClassFactory

{

protected:

ULONG m e Ref;

public:

83

//IUnknown members

STDMETHODIMP QueryInterface(REFIID, LPVOID FAR*);

STDMETHODIMPJULONG) AddRef(void);

STDMETHODIMP JU LO N G) Release (void);

STDMETHODIMP Createlnstance(LPUNKNOWN, REFIID,

LPVOID FAR *);

STDMETHODIMP LockServer(BOOL);

CBeeper Class Factory (void);

~CBeeperClassFactory(void);

};

Mefine GET_THIS(classname, x) classname* This = (classname*) ((int)this

- (int) &(((classname*) 0)->x))

#endif// H BEEP___________________________________

84

GUID.H CONTENTS

Objectives

1. To define the GUID for CLSID CBeeper for CBeeper COM object.

2. The client class will be referred with this GUID, namely, CLSID CBeeper.

#include <objbase.h>

th;76J2^2, (kc207, tk/falO, 0x76,

0x8, 0x0, 0x36, 0x60, 0x30, 0x3);

#endif// H GUID__

SERVER.H CONTENTS

1. Defines all the APIs o f this Server.dll

2. The first two STD API functions are used for creating our COM object from the

client and for unloading the DLL.

3. Other functions are for managing the COM object. They are used to know how

many COM objects are created and for the managing the same.

85

Mfndef J IJ E R V E R

Mefine _H_SERVER 1

STDAPlDllGetClassObject(REFCLSlD rclsid, REFIID riid, LPVOID

FAR* ppv);

STDAPl DllCanUnloadNow(void)

ULONG ServerGetNumberOfObjects(void);

ULONG ServerGetNumberOfLocks(void);

void ServerIncrementNumberOfObjects(void);

void ServerDecrementNumberOfObjects(void);

void ServerIncrementNumberOfLocks(void);

void Server Deer ementNumberOfLocks (void);

SERVER.CPP CONTENTS

1. This file implements all the APIs which are defined in the server.h

#include "beep.h"

#include "server.h"

static ULONG nObjects = 0; / / Count o f objects instantiated by this dll.

static ULONG nLocks = 0; / / Count o f locks on this dll. Prevents dll

// unloading.

86

ULONG ServerGetNumberOfObjects(void)

{

return nObjects;

}

ULONG ServerGetNumberOjLocks(void)

{

return nLocks;

}

void Server IncrementNumberOfObjects (void)

{

nObjects++;

}

void ServerDecrementNumberOfObjects(void)

{

nObjects—;

}

void ServerlncrementNumberOfLocks(void)

{

nLocks++;

}

void ServerDecrementNumberOfLocks(void)

{

nLocks—;

87

}

STDAPl DllCanUnloadNow(void)

{

/ / Unload if no locks and no objects.

SCODE sc = (OL == ServerGetNumberOfObjectsQ &&

OL == ServerGetNumberOfLocksQ) ? S_OK : S_EALSE;

return ResultEromScode(sc);

}

STDAPl

DllGetClassObject(REFCLSlD rclsid, REFIID riid, LPVOID FAR*ppv)

{

HRESULT hr = NOERROR;

i f (!IsEqualIID(riid, IID IUnknown) c&cè

UsEqualllD(riid, IID IClassFactory))

hr = ResultEromScode(E_NOINTEREACE);

else

{

/ / Return the class factory fo r the requested class

*ppv = NULL;

if (IsEqualCLSID(rclsid, CLSID CBeeper))

*ppv = new CBeeperClassFactoryO;

else

hr = ResultFromScode(E FAIL);

88

i f (NULL == *ppv && SUCCEEDED(hr))

hr = ResultFromScode(E_OUTOFMEMORY);

else

}

return hr;

BEEP.CPP CONTENTS

1. This file implements CBeeperClassFactory and CBeeper.

#include <stdio.h>

Mnclude "beeper.h”

^include "server.h"

STDMETHODIMP

CBeeperClassFactory::QueryInterface(REFIID riid, LPVOID FAR *ppv)

(

i f (IsEqualIID(riid, IID IUnknown) \ |

IsEqualIID(riid, IID IClassFactory))

(

*ppv = (LPVOID) this;

89

AddRefO;

return NOERROR;

}

return ResultFromScode(E_N01NTERFACE);

}

STDMETHODIMPJULONG) CBeeperClassFactory::AddRef(void)

{

return ++m_cRef;

}

STDMETHODIMP (ULONG) CBeeperClassFactory::Release(void)

{

ULONG cRefP;

cRefP = —m cR ef;

i f (0 == m cReJ)

delete this;

return cRefP;

}

CBeeperClassFactory::CBeeperClassFactory()

{

m _cRef= OL;

}

CBeeperClassFactory::~CBeeperClassFactory()

{

90

}

STDMETHODIMPJULONG) CBeeper::AddRef(void)

{

return ++m_cRef;

}

STDMETHODIMP

CBeeperClassFactory: :CreateInstance(LPUNKNOWN punkOuter,

REFIIDriid, LPVOID FAR *ppvObj)

{

CBeeper* pObj;

HRESULT hr;

*ppvObj = NULL;

hr=Resul tFromScode(E_0 UTOFMEMOR Y) ;

i f (NULL != punkOuter && !IsEqualIID(riid, IIDJUnknown))

return ResultFromScode(E NOINTERFACE);

pO bj = new CBeeper (punkOuter);

i f (NULL = = pO bj)

return hr;

if (pObj-> InitializeQ)

hr = pO bj-> QueryInt e rf ace (r ad, ppvObj);

if (FAILED(hr))

delete pO bj;

else

91

ServerlncrementNumberOfObjectsQ;

return hr;

}

STDMETHODIMP CBeeperClassFactory::LockServer(BOOL fLock)

{

if (fLock)

ServerIncrementNumberOfLocks();

else

ServerDecrementNumberOfLocks() ;

return NOERROR;

}

STDMETHODIMP (ULONG) CBeeper::Release(void)

{

cRefT = —m cR ef;

i f (Im cR ef)

{

delete this;

ServerDecrementNumberOfObjects();

}

return cRefT;

}

STDMETHODIMP CBeeper: : QueryInterface(REFIID riid, LPVOID FAR

92

*ppv)

{

*ppv = NULL;

if (IsEqualIID(riid, IIDJUnknown))

*ppv = (LPVOID) this;

else if (IsEqualIID(riid, IID IBeep))

*ppv = (LPVOID) &m IBeep;

i/TTwy)

{

return NO ERROR;

}

else

return ResultFromScode(E NOINTERFACE);

}

STDMETHODIMP

CBeeper::CBeepImp::QueryInterface(REFIID riid, LPVOID FAR *ppv)

{

GET_THIS(CBeeper, m IBeep);

return This->m _punkOuter-> Query Interface (riid, ppv);

}

STDMETHODIMPJULONG)

CBeeper : :CBeepImp: :AddRef(void)

93

{

GET_THlS(CBeeper, m lBeep);

return This->m_punkOuter->AddRef();

}

STDMETHODIMPJULONG)

CBeeper; .CBeepImp: :Release(void)

(

GET_THIS(CBeeper, m IBeep);

return This->m_punkOuter->Release();

}

STDMETHODIMP (void) CBeeper: . CBeepImp::Beep(void)

{

printfC'W):

}

CBeeper: : CBeeper(LP UNKNO WN unknown)

{

m_punkOuter = unknown? unknown : (IUnknown*) (void*) this;

m _cRef= 0;}

CBeeper : :~CBeeper()

ULONG CBeeper::Initialize(){

/ / Return 0 fo r failure, nonzero fo r success,

return 1;

}

94

GUID.CPP CONTENTS

1. This file will instantiates the GUIDs

/ / This file instantiates the GUIDs

#include <windows.h>

Uinclude <objbase.h>

#include <initguid.h>

Uinclude “guid.h”______________

SERVER.DEF CONTENTS

1. This is for exporting the functions to the client. This will allow the client to create

the COM object.

LIBRARY SERVER

CODE PRELOAD MOVEABLE DISCARDABLE

DA TA PRELOAD MOVEABLE SINGLE

HEAP SIZE 1024

EXPORTS

DllGetClassObject @7

DllCanUnloadNow (%2

95

The Server code is complete. Now build server.dll

A.4 Registering the server

1. Any COM object needs to be registered in the Registry. Following is a template

for any object registration.

REGEDIT

H K E Y C LA SSE SR O O T

\lnterface\{ <<Your Interface GUID I D » }

= < < Interface Name > >

<< Object Name >> = << Object Description »

HKEY_CLASSES_ROOD

« Object Name » \ C l s i d =

7 D » ;

HKEY CLASSES_ROODClsid\

{ « Y o u r Interface GUID I D » }

= << Object Description »

HKEY_CLASSES_ROODClsid\

{ « Y o u r Interface GUID I D »

}

MNPROCSERVER32 = << DLL P A T H »

96

REGEDIT

HKEY CLASSES ROOTMnterface\(765BFF31 -C207-11dO-BC7B-

0,̂0036603003; =
HKEY_CLASSES_ROODCBeeper = Beeper Object

HKEY_CLASSES_ROOT\CBeeper\Clsid = {765BFF32-C207-IId0-BC7B-

0&0036603003;

HKEY_CLASSES_ROODClsid\(765BFF32-C207-IIdO-BC7B-

080036603003} = Beeper Object

HKEY_CLASSES_ROOT\Clsid\{765BFF32-C207-lldO-BC7B-

080036603003}\1NPROCSERVER32 = C:\MYCOM\BIN\SERVER.DLL

The registration detail for beeper object is as above.

1. Create SERVER.REG file and add the above lines.

2. Double click on this file to register the object. You can also open the registry and

view the newly register entries by using REGEDT32.EXE

A.5 Creating the client application

1. The following steps create our client application

2. Create a new project (client.mak) as Console application.

3. Create the following files and include in the project.

• CLIENT.CPP, GUID.CPP

97

GUID.CPP

1. It also defines the GUIDs like the server

//T h is file ju st instantiates the GUIDs

Hinclude <windows.h>

Hinclude <objbase.h>

Uinclude <initguid.h>

mnclude “IBEEP.H” //Interface definitions

Mnclude “GUID.H” //Implementation classids

CLIENT.CPP

I . It calls our server and beep COM Object and uses it.

#include <windows.h>

Mnclude <objbase.h>

Mnclude <ole2ver.h>

Mnclude “IBEEP.H” //Interface definitions

Mnclude “GUID.H” / / Implementation classids

int main(int argc, char* argv[])

{

98

/% 06/ecr.y /zve m <7//

/ / Compare runtime OLE version to compiled OLE version

DWORD dwVer = CoBuildVersionQ;

i f (rmm == HlWORD(dwVer))

{

i f (rup > LOWORD(dwVer))

{

/ / OLE library is older than the one this

/ / code was compiled against

return -1;

}

}

else

return -1; //M ajor version out o f sync; fa ta l error

/ / Initialize COM runtime

i f (FA lLED(Coln itialize (NULL)))

return -1;

/ / Get the class factory fo r CPoint

LPCLASSFACTORY pClass Factory = 0;

HRESULT hr = CoGetClassObject(CLSlD_CBeeper, dwClsCtx, NULL,

llD lClassFactory, (LPVOID *)&pClassFactory);

{

99

LPIBEEP plBeep = 0;

hr = pClassFactory->Createlnstance(NULL, llDJfBeep,

(LPVOID*) &plBeep);

if(SUCCEEDED(hr))

{

/ / ignoring return codes here

pIBeep->Beep();

pIBeep-> Release ();

pIBeep = 0;

}

pClassFactory-> Release ();

pClassFactory = 0;

}

//E x it COM runtime

Co Uninitialize();

return SUCCEEDED(hr)?0:-l;

I____________

1. Client code is complete. Build the project to create client.exe.

2. Run the CLIENT.EXE

3. See that the *.lib and *.dll and *.exe are in the c:\bin\ directory

4. Run the server.reg file

5. Run the client.exe

100

6 . You will hear a beep sound. Your Beeper Component is working file

A .6 Observation

It is observed that the procedure to manage a COM object is complex and also costly

as number of lines of code is also more. In graphic applications graphic for managing

drawing elements we need to build COM object for each graphic element. This will

increase cost o f the application. A framework that helps in reuse of these COM

procedures will affect the cost of the application substantially. Steps involved in creating

the COM server and Client is summarized in the following tables.

Summary of the steps involved in building a simple Server DLL to manage a

COM object

1. Map out the COM objects and their interfaces.

The layout of the COM objects defined by the server is determined

here. That is, how the various interfaces are supported (nesting or

aggregation or containment etc).

2. Create a file called GUID.CPP with the following lines in it

#include <windows.h>

#include <compobj.h>

#include <initguid.h>

3. In one source file, define a global reference counter and implement

the DllGetClassObjectO and DllCanUnloadNow() functions. These

are used to initiate and unload the DLL respectively.

101

4. Create a definition file (.del) that exports the 2 functions mentioned

in step 3.

5. Build the interface class definitions your COM objects will need.

You must also define the IID’s.

6 . If aggregation or containment is being used by a COM object to

support interfaces then build the interface implementation classes that

derive from the corresponding interface definition class.

7. Build the COM object definitions. Derive all COM objects from

IUnknown. Include any nested “interface implementation”

definitions. You must also define the CLSID’s.

8 . Build the class-factory definition for each COM object.

9. Implement the interfaces o f the COM objects and their Class Factory

objects.

10. Build a registration file and run regedit on it to include the CLSID’s

in the registry.

102

Summary of the steps involved in building a client for COM object

1. Create a file called GUID.CPP with the following lines in it

Mnclude <windows.h>

Mnclude <compobj.h>

Mnclude <initguid.h>

Also include here all the declarations of the IID’s and CLSID’s of

interfaces and objects your client is interested in.

2. Check the runtime version of OLE using CoBuildVersionQ.

3. Initialize the OLE COM DDLs using ColnitializeQ.

• Create instances of the COM object either by:

Creating a Class Factory for the object using COGetClassObjectQ

that will return a pointer to the Class Factory’s interface.

• Then creating an instance of the object by invoking the Class

Factory’s CreatelnstanceQ method.

• Finally release the Class Factory.

OR

• Creating the object directly using CoCreatelnstanceQ.

• You now have a pointer to the requested interface on the object.

4. Request desired interfaces on the object using QueryInterfaceQ.

5. Perform the required operations on the object by invoking methods

on the requested interfaces.

103

Release the initial interface received when the object was created

(step 4).

6 . Release all the requested interfaces.

7. Uninitialize OLE’s COM DLL’s using CoUninitialize() which

unloads any unused DLL.___________________________________

A.7 COM exercise to aggregate a COM object

Inheritance is not possible in COM as the name of the object itself is not known to the

client. Aggregation is used for reuse of a COM object. Even this procedure is complex

compared with the reuse of a C++ object. Steps involved in the COM aggregation for

reuse are listed in the following table.

COM Exercise to aggregate a COM object

Step: I

Creating a COM Line object. The specification of the Line object is as follows.

1. Line object could be aggregatable

2. Line object implements a ILine interface and it should support the following

methods

• SetStartPoint(double X, double Y)

• GetStartPoint(double*X, double* YJ

• SetEndPoint(double X, double Y)

• GetEndPoint(double*X, double* Y)

3. Follow the Beeper example steps to complete this exercise.

104

Step: 2

This step is to create the COM Aggregation Model. To do that, we will implement

the following Pipe object, which aggregates above step! Line COM object.

Pipe object will aggregate the Line object (Created in Step 1)

Pipe object implements a IPipe interface and it should support the following methods

1. SetWidth(double width)

2. GetWidth(double * width)

Follow the same steps as the previous exercise to create the basic pipe COM

object. To make the Pipe object Aggregate the Line object, we need to do the

following steps.

1. Add the instance data in the Pipe COM object to hold the IUnknown pointer of the

Line object.

2. In the initializeQ method o f the Pipe Object, CoCreatelnstanceQ the Line object.

3. Pass m_punkOuter as an argument to CoCrga/g/«Va«ce(9 not “this” in place of

OuterObject.

4. Call initializeQ method after instantiation of CPipe in CreatelnstanceQ of CPipe

classfactory.

5. In Pipe Objects Querylnterface will delegate to Line Querylnterface for all non­

pipe interfaces.

The Querylnterface o f Pipe COM object is as follows

STDMETHODIMP CPipe::QueryInterface(REFIID riid, LPVOID FAR *ppv)

{

105

*ppv = NULL;

if (lsEqualllD(riid, IID IUnknown))

*ppv = (LPVOID) this;

else if (IsEqualIID(riid, IID IPipe))

*ppv = (LPVOID) &m IPipe;

H Delegating the Query to the Aggregatee

else if (mjpLineUnknown)

return m _pLineUnknown-> Querylnterface (riid, ppv);

{

("(If LWÆV0IFA9

return NOERROR;

}

else

return ResultFromScode(E_NOINTERFACE);

}

6 . From your Client, you could query ILine from IPipe or vice-versa and see the

control flow.

106

APPENDIX B

TYPICAL GRAPHIC APPLICATION SCREEN SHOTS

B.l A Three dimensional graphic system

A Three dimensional graphic application to manage three dimensional Graphic elements

and operations on it in VB using simple object-oriented graphic frameworks developed in

this thesis.

A Model RAD based Three Dimensional Graphics Application dal xj
File Primitives S egm en ts Segm entTransForm atlons DisplayFllePrimltlves PolyDlsplayFlle TyplcalShapes Help

■ |5 (ÔIÔ

S N a m e [J "

(so [s o (s o
z A x / L A y / M A z / N

S V is ib le [ï R a (5 0 R b [2 5 S a [q E a (270

jo
T x

fo
T y

(To (To
Sx Sy

Figure B.l A graphic application using three dimensional object-oriented graphic

framework.

107

This application will provide a simple GUI to create and manage graphic segments

and perform operation on it. This will use all traditional graphic concepts presented in

this thesis. The VB code for this application is presented in the following table. This will

demonstrate the simplicity of the client procedure.

‘ VB code for managing GUI for a three dimensional graphic application using the

framework of this thesis

Private Sub Command 1 _Click()

H GP3Dl.Sp3dTextl.Text, Text2.Text, Text3.Text, Text4.Text

End Sub

Private Sub Commandl 0_Click()

HGP3D1.S1

End Sub

Private Sub Commandl 1 ClickQ

HGP3D1.S2

End Sub

Private Sub Commandl 2 ClickQ

HGP3D1.S3

End Sub

Private Sub Command2 ClickQ

HGP3Dl.ShowAll

End Sub

108

Private Sub Commands ClickQ

77Gf3D7.C%yZTe%r7.% 7e%r2Te%r, 7g%r3.Tg%f TgxrJ.% Texr6.Tg%r

End Sub

Private Sub Command4 ClickQ

HGP3Dl.RoteteSegmentAbsText7.Text, Text4.Text, Text5.Text, Textô.Text

HGPSDl.ShowAll

End Sub

Private Sub CommandsjClickQ

HGP3D1. ReSetTrans

End Sub

Private Sub Commandé ClickQ

HGPSDl.SetSV Text7. Text, TextS. Text

End Sub

Private Sub Command7 ClickQ

HGPSDl.OpenSegment Text7.Text

End Sub

Private Sub Commands JClickQ

HGP3D1 .CloseSegment Text7.Text

End Sub

Private Sub Command9 ClickQ

HGPSDl.RotateSegRel Text7.Text, Text4.Text, TextS.Text, Textô.Text

HGPSDl.ShowAll

End Sub

109

Private Sub Arc3D_Click(lndex As Integer)

H GP3Dl.Arc3D 1, Text 1.Text, Text2.Text, Text3.Text, Text4.Text, TextS.Text,

Textô.Text, TextM.Text, Textlô.Text, Text 17.Text

End Sub

Private Sub Circle3d_Click(Index As Integer)

H G P3D l.C ircle3d 1, Textl.Text, Text2.Text, Text3.Text, Text4.Text, TextS.Text,

Textô. Text, Textl 4. Text

End Sub

Private Sub ClearScrean_Click(Index As Integer)

HGP3D1. ClearScreen

End Sub

Private Sub CloseSegment_Click(Index As Integer)

HGP3D1.CloseSegment Text7.Text

End Sub

Private Sub CXYZ_Click(Index As Integer)

HGP3D1.CXYZ Textl.Text, Text2.Text, TextS.Text, Text4.Text, TextS.Text, Textô.Text

End Sub

Private Sub Exit_Click(Index As Integer)

End

End Sub

Private Sub Form ResizeQ

HGP3D1.Height = Forml.Height

HGP3D1. Width = Forml. Width

110

End Sub

Private Sub OpenSegment_Click(lndex As Integer)

HGP3D1 .OpenSegment Textl.Text

End Sub

Private Sub RotateAx_Click(Index As Integer)

HGP3DI.RoteteSegmentAbs I, Text4.Text, TextS.Text, Textô.Text

HGPSDI.RoteteSegmentAbs 2, Text4.Text, TextS.Text, Textô.Text

HGPSDl.RoteteSegmentAbs 3, Text4.Text, TextS.Text, Textô.Text

HGPSDI.SetSV I, I

HGPSDI.SetSV 3, I

HGP3DI.ShowSegment I

HGP 3D I .ShowSegment 2

HGP 3D I .ShowSegment 3

End Sub

Private Sub SetSegmentVisibility_Click(Index As Integer)

HGP3DI.SetSV Text?. Text, TextS. Text

End Sub

Private Sub ShapeOI_Click(Index As Integer)

HGP3DI.SI

End Sub

Private Sub Shape02_Click(Index As Integer)

HGP3DI.S2

111

End Sub

Private Sub Shape3_Click(lndex As Integer)

HGP3D1.S3

End Sub

Private Sub Show Axes _Click(lndex As Integer)

HGP 3D I.Show Ax

End Sub

Private Sub ShowSegment_Click(Index As Integer)

HGP 3D I .ShowSegment Textl.Text

End Sub

Private Sub Spear_Click(Index As Integer)

HGP3Dl.Spear3D I, Textl.Text, Text2.Text, Textl.Text, TextM.Text

End Sub

Private Sub SRotateAbs_Click(Index As Integer)

HGP3DI.RoteteSegmentAbs Textl.Text, Text4.Text, TextS.Text, Textô.Text

HGPSDI.Show

End Sub

Private Sub SRotateRel_Click(Index As Integer)

HGPSDI.RotateSegRel Textl.Text, TextQ.Text, Text 10.Text, Text 11 .Text

HGP 3 Dl.Show

End Sub

112

B.2 A COM-based graphic application to manage a PCB

The following VB application screenshot presents a PCB (Printed circuit Board)

using the two dimensional COM-based graphic framework developed in this thesis.

File Pages Search

049-Ubl

t is: n U47U 5 2 u ^ a r r - U 4 b

f USB 1V - Ü 5 7
U f i S ' V U 6 3ÜB6

U 5 4U S b

ii . U G 2 ^ # = . .U 61 U 5 9 r r u e ?

Figure B.2 A COM based graphic application using component graphic frameworks for

managing components of a PCB.

In this application thousands of the components on the PCB can be represented with a

single object. They can be searched as a single unit. The module J1 in red color in Figure

B.2. is a component displayed as the search result for J1 in this application.

It is also possible to write a PCB components Editor in VB using the same

framework. The following figure B.3 represents the VB editor for PCB components.

113

Line
Ellipse

R ectangle
Component

Locate
G pLoeate

Move
ReSize

SetColot

R eS et

Zoom In
ZoomOut

Delete

SetTextFlag

,ii,!i.w,iii m

I U01
TiiiTiTiTfrrn

i.l 1,11,1,1.111,U.I I,

U04

U02

III i III r

i
I i.i I I I I I I I I I

U05

T r r ^

Figure B.3 A COM based graphic application using component graphic frameworks for

editing the components of a PCB

114

The VB code for this application is presented in the following code segment.

‘ PCB Editor Application

Dim textflag As Boolean

Private Sub Commandl ClickQ

End

End Sub

Private Sub Command2 jClickQ

G1 LSetCompType TextLText

End Sub

Private Sub Commands ClickQ

G1 LSetColor

End Sub

Private Sub Command4 ClickQ 'Line

C l l.DoCpCom m and 3

End Sub

Private Sub Commands JClickQ ' Circle

C l l.DoCpCommand 4

End Sub

Private Sub Commandô ClickQ ' Rect

C l 1 .DoCpCommand 5

End Sub

115

Private Sub Commandl_Click() ' Edit

C l 1 .DoCpCommand 1

C ll.SetM ove True

End Sub

Private Sub Commands ClickQ ' Cplocate

C l 1 .DoCpCommand 6

End Sub

Private Sub Command9 ClickQ ' locate

C l 1 .DoCpCommand 2

End Sub

Private Sub Commandl 0 ClickQ

C l 1 .DoCpCommand 7

End Sub

Private Sub Commandl 1 jClickQ

C l 1. Delete

End Sub

Private Sub Commandl 2 ClickQ

C l 1 .DoCpCommand 1

C l l.SetReSize True

End Sub

Private Sub Commandl 2 ClickQ

C l 1. Reset

End Sub

116

Private Sub Commandl 4 ClickQ

I f textflag Then

C l l.SetNameFlag False

textflag = False

Else

C l l.SetNameFlag True

textflag = True

End If

End Sub

Private Sub Commandl 5 ClickQ

C lI.SetN am e Text2.Text

End Sub

Private Sub Commandl 6 ClickQ

C l I.Locate Text2.Text

End Sub

Private Sub Commandl? ClickQ

C ll.SetB kC olor Text4.Text, TextS.Text, Textô.Text

End Sub

Private Sub Commandl 8_ClickQ

ClI.AddCom ponent Textl.Text, TextS.Text, TextP.Text, TextlO.Text, Text 11.Text,

Text 12.Text

End Sub

Private Sub Commandl 9 ClickQ

117

G ll.Z oom ln 5, 7

End Sub

Private Sub Command20 ClickQ

G ll.Zoom O ut 5, 7

End Sub

118

BIBLIOGRAPHY

[1] Geographic Information Systems, An introduction, 3/E by Bernhardsen.

[2] K.A.Bohrer “Architecture of the San Francisco Frameworks”, 1998.

[3] Johnson, R. E. and B. Foote “Designing Reusable Classes”, 1998

[4] Mohamed Fay ad and Douglas C Schmidt “Special Issue on Object-Oriented

Application Frameworks”, Vol. 40, No. 10, October 1997.

[5] Doreen L. Galli, Distributed Operating Systems, Prentice Hall, 2000.

[6] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides “Elements of

Reusable object oriented software”, 1994.

[7] Hari “COM Applications for Real time Electrical Engineering Applications”,

International Conference at IEEE Bangalore.

[8] Ian Heywood, Steve Carver “Introduction to Geographical Information Systems, a

2/E”.

[9] Juran, Joseph M.; Frank M. Gryna “Jurans Quality Control Handbook. Mcgraw-

Hill”, 1955.

[10] E-A Karisson (ed): Software reuse - A Holistic Approach, John Wiley & Sons,

1995.

[11] Stepen H.Khan “Metrix and Models in software Quality Engineering”, Pearson

Education India, 1995.

[12] Brockschmidt, Kraig. Inside OLE, 2nd edition, Microsoft Press, 1995

119

[13] D, Krug]inski: “Inside Visual C++, Microsoft Press 1995.

[14] Graphic Concepts for Computer Aided Design (2nd Edition) by Richard M

Lueptow, 2007.

[15] S. Meyers: Effective C++ - 50 Specific Ways to improve Your Programs and

Design, Addison-Wesley 1992.

[16] Patrick Naughton and Herbert Schildt “Complete Reference”.

[17] O. Nierstrasz (ed.) European Conference on “Object Oriented Programming”

Proceedings of 7th European Conference July 1993 Germany.

[18] James J Odell, Martin Fowler “Advanced 0 0 Analysis and Design Using UML”.

[19] Crosby, Philip “Quality is Free. New York: McGraw-Hill”, 1979.

[20] Jason Pritchard, PH.D., COM and CORBA Side by Side, Addison-Wesley

Longman, Inc., 1999.

[21] Hari Ramakrishna “Pattern languages for Graphic/CAD frameworks”, A Ph.D

Thesis, Osmania University.2003-2006.

[22] Hari Ramakrishna, “COM based CAD” Proceedings o f International AMSE

Conference on Moduling, Simmulation and communication, July 1999 at Jaipure,

India.

[23] Hari RamaKrishna “COM as new Object Oriented Technology”, Proceedings of

CSI conference, 2000.

[24] Rogerson “Inside COM Microsoft Press”, 1997.

[25] Paul Visokey, Comparison of COM and COBRA, 2000.

120

[26] Newman,W.S and Sproul, R.S (1981), “Principles of interactive computer

graphics”, McGraw-Hill International, Second edition.

[27] Douglas C. Schmidt, "Applying Design Patterns and Frameworks to Develop

Object-Oriented Communication Software," Handbook of Programming

Languages}, Volume I, edited by Peter Salus, MacMillan Computer Publishing,

1997.

[28] Fach, P.W. “Design reuse through frameworks and patterns”.

[29] COM Specifications Microsoft 1995.

[30] Microsoft Visual C++ Programming with MFC, 1995.

[31] Douglas C Schmidt “Special Issue on Patterns and Pattern Languages, Vol. 39”

1996.

121

VITA

Graduate College
University of Nevada, Las Vegas

Deepa Uppala

Home Address
2000 Walnut Ave #H108
Fremont, CA 94538

Degrees:
Baehelor of Computer Science and Engineering, 2002
Jawaharlal Nehru Technological University, India

Thesis Title: Graphical Frameworks for Managing Component Oriented
Graphic Systems.

Thesis Examination Committee:
Chairperson, Dr. Yoohwan Kim, Ph.D.
Committee Member, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Mei Yang, Ph.D.
Graduate Faculty Representative, Dr. Ajoy K Datta, Ph.D.

122

	Graphic frameworks for managing component oriented graphic systems
	Repository Citation

	ProQuest Dissertations

