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ABSTRACT

M onitoring and M odeling the Performance of a Solar Powered 
Hydrogen Filling Station

By

Mark R. Campbell

Dr. Robert F. Boehm, Examination Committee Chair 
Distinguished Professor, Mechanical Engineering 

University o f  Nevada Las Vegas

A hydrogen filling station (HFS) has been constructed in Las Vegas to demonstrate 

how solar energy can be used to generate and store hydrogen as an energy carrier for 

transportation. This thesis presents a description o f the station and the data acquisition 

system used to monitor its performance, Energy consumption by the hydrogen generation 

and storage equipment and energy production from a solar photovoltaic (PV) array were 

measured, and based on the characteristics o f the different system components, a 

computer model was created to predict the amount o f hydrogen that could be produced 

from the solar array. The hydrogen produced at the station is used by several converted 

vehicles, and the model is able to simulate the operation o f the station based on a given 

level o f vehicle usage.
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CHAPTER 1 

INTRODUCTION

A hydrogen filling station (HFS) has been installed in Las Vegas to demonstrate how 

solar energy can be used to generate fuel for transportation. The hydrogen is generated by 

a Proton Exchange M embrane (PEM) electrolyzer, and stored on site for use in hydrogen 

fueled vehicles converted as a part o f this project. Power for the equipment is provided by 

a solar photovoltaic (PV) array. A data acquisition system (DAS) was installed at the 

station to monitor the performance o f the equipment and also weather conditions. 

Additionally, a computer model was created to simulate the operation o f the station. The 

model is a way to predict the way the HFS uses and produces power, based on the climate 

and a specified amount o f  hydrogen usage. The experimental and theoretical results from 

this research will describe the performance o f the HFS, which can be used to identify 

areas for improvement and ongoing research within the alternative fuel arena.

Project Background  

In 2003, with funding from the Department o f Energy, the UNLV Research 

Foundation formed a research partnership between the UNLV Center for Energy 

Research (CER), the Las Vegas Valley Water District (LVVWD), K ell’s Automotive and 

Marine (KAM) and Proton Energy Systems, with the purpose o f designing and installing 

a HFS. Each o f the project partners devoted time and energy to construct the station, and 

had their own objectives for the project. The LVVWD has a goal to use only alternatively



fueled vehicles, including hydrogen powered vehicles, and they donated several o f them 

for conversion, as well as their own land as the location for the HFS. Proton Energy 

Systems designed and installed the electrolyzers (hydrogen generation equipment), and 

uses the station as a place to observe the performance and reliability o f their systems. The 

UNLV C ER’s responsibility is to monitor the performance o f each system at the HFS as 

well as maintain it, in the case o f small errors or regular maintenance procedures.

Hydrogen as a Fuel fo r  Transportation

Hydrogen has the potential to be an important fuel in the future because o f its ability 

to be produced, stored and used at one location, for a variety o f applications where fossil 

fuels are currently used. The U.S. Department o f Energy (DOE) reports that more than 

one-half o f the petroleum used in the United States is imported, and that fraction is 

expected to increase to 6 8 % by 2025 [1]. Two-thirds o f that imported oil is used by the 

U.S. transportation sector [2]. In 2003, the greenhouse gases (GHG) emitted from the 

transportation sector accounted for 27% o f the total GHG emissions in the United States, 

representing the largest percentage increase o f any economic sector over the previous 13 

year period [3].

Using hydrogen as a fuel for transportation has the potential to solve these issues 

simultaneously. The National Academ ies’ National Research Council has issued a report 

stating, “A transition to hydrogen as a major fuel in the next 50 years could 

fundamentally transform the U.S. energy system, creating opportunities to increase 

energy security through the use o f a variety o f domestic energy sources for hydrogen 

production while reducing environmental impacts, including atmospheric CO 2 emissions 

and criteria pollutants.” [4]. Hydrogen can be used as a fuel for a vehicle by burning it in



an internal combustion engine (ICE), or by mixing it with air inside a fuel cell to generate 

electricity. In the case o f an ICE, the hydrogen is burned inside the engine cylinder in the 

same manner as gasoline, but the exhaust products are water and traces o f nitrogen oxides 

[5]. A fuel cell driven vehicle relies on the fact that energy is released when hydrogen 

and the oxygen in air are reacted to form water. It has been shown that hydrogen fuel 

cells can be over 2.5 times more efficient than gasoline engines, and the exhaust product 

is only water [6 ].

Hydrogen is an energy carrier, meaning that it can deliver energy, but requires some 

form o f energy to be separated from the other molecules in its various compounds (i.e. 

CH 4 , H 2 O). Hydrogen gas can be produced from fossil fuels via a process called 

reformation, but its greatest attribute is that it can be produced from water. The process 

shown in Figure 1, called electrolysis, involves introducing an electric current through 

water in order to create a chemical reaction that results in hydrogen and oxygen gas 

production. This process is the same reaction that takes place in a fuel cell, but reversed. 

In this case a source o f electricity is required, and although hydrogen is a very clean fuel, 

there would still be GHG emissions produced by traditional electric power plants if  they 

were used as that source. Conversely, producing hydrogen from renewable energy 

sources provides a sustainable way to power hydrogen vehicles in the future [7].
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F igure 1. This figure illustrates the process o f  electrolysis, the splitting  o f  w ater.

The idea o f using hydrogen for transportation is not without its share o f issues that 

must be resolved through research and development before it becomes a large-scale 

reality. Since hydrogen gas has a low volumetric energy density, it must be compressed 

and stored in robust tanks in order to provide enough fuel for a vehicle to drive a 

reasonable distance. Compression o f the gas requires additional energy, and adding heavy 

high pressure tanks to a vehicle increases its mass and requires a more robust material to 

be used. Additionally, since hydrogen has a very high flammability range, significant 

care must be taken with respect to designing vehicle’s fuel system so that safety for all is 

ensured. The result o f these issues is that currently, creating and supporting the hydrogen 

vehicle industry is expensive. Because o f this great expense, there is a lack o f 

infrastructure to provide reliable fuel for hydrogen vehicles. Hydrogen filling stations like



the one described in this thesis can be used to address these issues by demonstrating the 

operation and performance that can be expected, and revealing the areas in which 

improvement is necessary.

Purpose o f  Study

The promise o f hydrogen as a fuel for transportation is appealing enough for research 

projects addressing all o f the issues involved with its implementation to be investigated. 

The objectives o f the research included in this thesis are to: 1) Show how a solar powered 

hydrogen production and storage system performs with respect to energy input and 

hydrogen output; 2) Describe the performance o f such a station, in terms o f the quantity 

o f hydrogen it can output and the manner in which it operates during regular hydrogen 

usage; 3) Create a computer model that can simulate the station’s operation and be 

applied to different climates and hydrogen demand scenarios.

Literature Review

The following is a review o f relevant publications that have been used for guidance 

and comparison o f the HFS project’s design, performance, and theoretical model. The 

available literature includes data relating electrolysis and renewable energy, both via 

experimental data and theoretical models. Additionally, several publications describing 

how to model the output from the solar photovoltaic (PV) array were used. Information 

relating to the conversion and performance o f several hydrogen vehicles was also 

obtained from the literature.

Renewable energy sources, including solar energy, provide an excellent source for the 

electricity required to perform electrolysis, because they produce no emissions and 

require little maintenance during operation [8 ]. Several authors have published studies to



examining how different renewable energy technologies can be used to power the 

electrolysis process. Nowotny et al. [5] provide a table summarizing the advantages and 

disadvantages o f many different types o f renewable energy technologies that could be 

used to produce hydrogen including solar PV, wind, geothermal, tidal, biomass, and 

photoelectrolytic (PE) solar to hydrogen. Ivy et al. [8 ] have reported summaries of 

renewable energy resources and energy requirements o f producing hydrogen at fueling 

stations. The assumptions made in the paper include a solar PV efficiency o f 10%, and a 

set value for the capacity factor o f wind turbines based on the class o f wind speed 

available. Additionally, it is assumed that an electrolyzer requires 53 kWh to produce one 

kilogram of hydrogen, which is basically stating that the electrolyzer is 75% efficient, 

since the higher heating value (HHV) o f hydrogen is 39 kWh/kg. The analysis resulted in 

a conclusion that a combination o f solar PV and wind power could be used to produce 8.7 

times the year 2000 gasoline consumption in the United States, not including the energy 

required for the compression or delivery o f hydrogen.

Conibeer and Richards provide an overview o f hydrogen production and storage 

using solar PV for electrolysis, and also direct PE generation o f hydrogen [9J. With 

assumed values for the electrolyzer efficiency and solar PV efficiency o f 65% and 13.5%, 

respectively, the PV electrolyzer system had an efficiency o f 8 .8 %, based on the HHV of 

hydrogen. The results for PE efficiency were based on previous research to be around 

5%. The conclusion was that currently, solar PV as a power source for electrolysis is the 

more appropriate technology o f the two.

Barbir [10] provides a description o f the electrolysis process, as well as a review of 

several different solar PV arrangements that could be used to generate hydrogen. The



possibilities o f having a grid-connected or grid-independent system, with or without on­

site storage, are also discussed in this paper. In particular, the application described in 

this thesis, a grid-connected solar PV to PEM (Proton Exchange Membrane) electrolysis 

system, is described. A PEM electrolyzer has a polymer membrane and porous 

electrodes, and the materials used are metallic, typically platinum or platinum alloys. 

Figure 2 shows how the PEM electrolysis process works. When a direct current (DC) 

voltage is applied, water is split into oxygen, protons, and electrons on the anode, the 

protons pass through a polymer electrolyte membrane, and combine with electrons at the 

cathode to form hydrogen. From Barbir's work, it was noted that increasing hydrogen 

output pressure decreases the electrolyzer efficiency.

Oxygon Pro io n  EKctianfjo MombtanE
Solid Efoctroiyto

•c —c —c

•  *

Water

f

Figure 2. This figure illustrates the process of PEM electrolysis [10].

Among several theoretical studies in the literature regarding solar PV electrolyzer 

systems, Vanhanen et al. [11] provide a detailed description o f a possible stand-alone 

solar hydrogen energy system. The model included a solar PV array, battery, electrolyzer.



fuel cell, storage tank, and electrical load. The goal o f the research was to control each 

component to optimize the system performance, as well as to show the operational 

efficiencies o f each component o f the system. It was found that the overall efficiency o f 

five system configurations was between 3.61% and 3.96%. One o f the conclusions o f the 

paper was that matching the voltages and currents in a DC-DC connection is critical to 

optimizing system performance.

Another theoretical stand-alone system was designed by Lehman and Chamberlin 

[12], composed o f a solar PV array, electrolyzer, hydrogen storage tank, oxygen storage 

tank, PEM fuel cell, inverter, and compressor. Based on assumptions o f solar PV 

efficiency o f 10% and electrolyzer efficiency o f 70%, the solar PV array area necessary 

to provide at least 75% o f the power required by a 720 W load was calculated to be at 

least 60 m^. Also, the amount o f hydrogen storage required to meet at least 80% of the 

hydrogen demand was calculated using a simulation algorithm that had the system 

temperature, solar PV current-voltage curves, electrical load, and storage level as inputs. 

Once again, it was stressed that the current-voltage characteristics o f the solar PV array 

and electrolyzer must be closely matched.

Bilgen [13] showed how a solar PV electrolysis system would be designed and how it 

would operate in several locations of the United States, and the economical feasibility o f 

such a system. The model created in this work includes a solar PV array and a model o f 

the available solar energy from hourly radiation data, electrolyzer, storage optimizer and 

solar hydrogen cost. The results o f the model show that the overall thermal performance 

of the system varies from 9.25% to 10.33% for a fixed solar PV array and from 9.85% to



10.85% for a tracking solar PV array. Additionally, the cost o f hydrogen production 

decreases as the available solar radiation increases for a given location.

Mason and Zweibel [14] performed an analysis o f the operation o f a centralized solar 

PV electrolysis system to supply one million hydrogen vehicles. This required hydrogen 

production o f 217 million kg o f hydrogen, and a solar PV array area of 260 km^ based on 

the use o f a bi-polar alkaline electrolyzer operating at 67% and a solar PV efficiency of 

10%. This paper also showed that the replacement o f one million gasoline vehicles with 

hydrogen resulted in a 90% reduction in CO 2 emissions. Additionally, the authors 

performed a cost analysis including the cost o f each system component, hydrogen 

pipelines, land, taxes, and the expected operating life o f the components to conclude that 

the levelized cost o f hydrogen was $6.48/kg.

In preparation for the HFS described in this thesis, Deshmukh et al. [15] performed a 

simulation to help design the solar PV array required for the planned electrolyzer and 

compressor that were to be installed. The solar PV array was assumed to have an 

efficiency o f 12.6%, while the electrolyzer and compressor were expected to use 8.5-9 

kW during operation. The array was chosen to provide 14.35 kW, and be grid connected. 

The array was estimated to be capable o f providing enough energy to produce 285 kg of 

hydrogen. It was found that producing hydrogen during the peak sunshine hours o f the 

day minimized the need for the station to draw power from the electrical grid.

Lehman et al. [16] reported data from an operational solar PV hydrogen system, 

which was designed to store hydrogen and use a fuel cell in combination with the solar 

PV energy for an air compressor (load o f 660 W). The system operated for over 3900 

hours and resulted in an efficiency o f 6.2% based on an electrolyzer efficiency o f 76.6%



and solar PV efficiency o f 8.1%. The type o f electrolyzer used was a medium pressure, 

bipolar, alkaline unit, which was powered with direct DC electricity from the solar PV 

array.

Another solar PV electrolysis station is described by Vidueira et al. [17]. The station 

is used to produce hydrogen for two fuel cell buses, and was designed so that the station 

was energy independent (but still grid connected). The station is controlled such that 

extra power not used for DC-DC electrolysis is sent to charge batteries used for 

compression o f the hydrogen, and then to the electric grid if  the batteries are full. The 

data used for the design o f the station were the average monthly daily irradiance for 

Madrid, the number o f  buses, the average traveling distance o f the buses (120-130 

km/day), the vehicle fuel efficiency (10 km/kg), the electrolyzer output capacity (60 

NmVh), and the solar PV array tilt angle (55°). The station was designed to produce the 

required amount o f hydrogen on a day with average daily irradiance based on an entire 

year. Based on average irradiance conditions over the past 50 years in Madrid, the storage 

system was sized such that the station has 18 days o f autonomy, amounting to 517.5 kg o f 

hydrogen storage (350 bar). The reason was to be 99.5% confident that the station would 

not have a shortage o f hydrogen. Similarly, the battery had to be designed to operate on 

cloudy days, because it was used to power all equipment except for the electrolyzer. The 

value obtained for the battery system capacity was 4000 Ah at 380 V. To supply this 

equipment, based on an expected solar PV efficiency o f 13.74%, the array was rated at 

528.7 kW, requiring 3110, 170 W solar PV modules.

The results o f the research included the amount o f energy required per amount o f 

hydrogen produced, the energy consumption o f each component in the system, as well as

10



the output from the solar PV array, and the thermal efficiency o f  the station. It was found 

that the station required 73.75 kWh/kg, and an overall thermal efficiency based on the 

HHV o f hydrogen o f 9.03%. The authors conclude that the most suitable option for 

producing hydrogen with no emissions is a grid-connected electrolyzer system.

Chaparro et al. [18] presented a system composed o f a solar PV array, batteries, 

electrolyzer, metal-hydride bed for hydrogen storage, and a fuel cell. The system is 

designed so that the batteries are charged with the solar PV array and fuel cell, and 

discharged by the electrolyzer and an application load of 200 W (telecommunication 

system). The size o f  the solar PV array was 1.4 kW  and the batteries had 20 kWh of 

storage capacity. A 1 kW PEM electrolyzer was used to produce the hydrogen. In this 

case the hydrogen is produced at 30 bar and stored in a metal hydride bed, an absorption- 

desorption type o f  storage cycle. The system operates such that in the summer months, 

electricity is supplied to the load by the solar PV array, but in the winter hydrogen is used 

by the fuel cell to keep electricity going to the load. The operational efficiencies o f the 

solar PV array and electrolyzer were 9.9% and 65% respectively, resulting in overall 

conversion efficiency between 6-7%. Since this system was a stand-alone system, one 

significant issue eneountered was that when the batteries and hydrogen tanks were full, 

the energy from the solar PV array was unable to be used. This result indieated that 

energy management is a critical issue when the efficiency o f such a system is evaluated.

Kai et al. [19] have reported on a hydrogen fueling station demonstration project 

located on Yakushima Island. This station is powered with electricity from hydroelectric 

dams, and the hydrogen is used for testing fuel cell vehicles on the island. The hydrogen 

was stored as a eompressed gas, with a total storage capacity o f  11.25 kg at 351 bar. The

11



authors monitored the hydrogen storage rate in the system versus the pressure in the 

storage tanks, and found that as the pressure increased, the storage rate decreased after 

the pressure surpassed 17 bar. This result indicates that more energy is required to store 

hydrogen when the storage tanks are at higher pressures. The efficiency o f the 

electrolyzer during operation was 63%. Since hydroelectricity was used to drive the 

hydrogen generation and storage system described by the authors, the overall system 

efficiency was higher than those in which PV is the source o f electricity. Based on the 

HHV o f hydrogen, the total energy efficiency o f the process was 30%.

Table 1.

Summary o f  Research Results 

Summary of Published Results {Italics -  Assumed Value)

Author Year

Electrolyzer Power 
Production 

Requirement 
(kWh/kg)

Electrolyzer
Efficiency

(%)

Power
Source

Solar Array 
Efficiency 

(%)

Overall
Efficiency

(%)

Lehman 1991 36.3 70.0 PV 10.0 7.0
Vanhanen 1994 PV 3.61-3.96
Lehman 1997 51.4 76.6 PV 8.1 6.2
Bilgen 2000 PV P.83-/0.83
Viduera 2003 73.8 33.4 PV 13.7 P. 03
Chaparro 2005 60.6 65.0 PV 9.9 6.0-7.0
Conibeer 2006 60.6 63.0 PV 13.5 8.8
Ivy 2006 33.0 74.0 PV /O.O 7.4
Kai 2007 62.5 63.0 Hydro N/A 30.0
Mason 2007 38.8 67.0 PV 10.0 6.7
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CHAPTER 2

HYDROGEN FILLING STATION DESCRIPTION

Phase II  Station Configuration 

The original HFS installation constituted Phase II o f the project, and was installed in 

Las Vegas in January 2007. Figure 3 is a picture o f the station taken shortly after its 

construction, with the equipment labeled. This station configuration was designed to 

support two small utility vehicles that were converted to run on hydrogen [20]. The 

station is composed o f a low pressure and high pressure electrolyzer, an intermediate 

buffer tank, a compressor for each electrolyzer, and a dispensing unit for storing and 

dispensing the hydrogen to vehicles.

F igure 3. Phase II of the HFS project with equipment labeled.
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Unit 1 is a Proton Energy Systems FUELGEN HG-1® renewable PEM eleetrolyzer, 

which is capable o f producing 2.0 kg o f hydrogen per day (0.083 kg/h). The hydrogen is 

produced at 14 bar (-200  psi), and during operation it uses approximately 7.5 kW. Unit 3 

is an experimental Proton Energy Systems FUELGEN HG-2® PEM Eleetrolyzer which 

is capable o f producing 0.25 kg o f hydrogen per day (0.0104 kg/h) at a pressure o f 70 bar 

(1015 psi). Since this unit generates hydrogen at a higher pressure, it reduces the energy 

required to further compress the hydrogen to the storage pressure required for filling the 

vehicles. Unit 4 is an Air Products Hydro-Pae Compressor, which was used to compress 

and store the hydrogen from the experimental Unit 3 eleetrolyzer. The chiller at this 

station was required by the high pressure cycle to cool the compressor during operation.

It has 2 kg o f hydrogen storage capacity at 430.9 bar (-6250 psi). Unit 2 is an Air 

Products Series lOOE compression, storage, and dispensing module, with 6.5 kg 

hydrogen storage capacity. This unit compresses the hydrogen to 430.9 bar (-6250 psi) 

with a single stage Pressure Dynamic Consultants (PDC) diaphragm compressor, and 

stores it in six storage tanks, each o f which has a volume o f 0.042 m^ (1.47 ft^). The 

tanks are emptied into a vehicle with a “cascade” system using automatic hydrogen- 

operated valves, so that three banks o f two tubes are emptied sequentially to fill the 

vehicle, to maximize the utility o f the stored hydrogen. The buffer tank serves as an 

intermediate low pressure storage location between Unit 1 (generation) and Unit 2 

(compression/dispensing). This decouples the eleetrolyzer from the compressing unit, so 

that each unit can operate independently. Water and hydrogen flows for the Phase II 

station are shown in Figure 4. Assuming the station is full o f hydrogen, after hydrogen is 

dispensed into a vehicle, the compressor begins to compress hydrogen from the buffer
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tank into its storage tanks at its nominal flow rate o f 0.101 kg/h. When the level o f  the 

buffer tank drops below the set point pressure o f 13 bar (188.5 psi), the electrolyzer 

begins to input water and electricity and output hydrogen, to refill the buffer tank.

H , To V e h ic le s

H, Out

W ater  In ' Chilled W ater  Return

Chilled W ater  Supply

H; Out

Buffer
T ank

Chiller  
(Unit 4B )

D is p e n s e r  
(Unit 2)

Compressor
HP S to r a g e

L ow  P ressu re  
Electrolyzer  
(Unit 1)

Dl W ater  
S y s t e m

High P r e s s u r e  
E le c tr o ly z e r  
(Unit 3)

Dl W ater  
S y s t e m

HP S to r a g e

C o m p r e s s o r  (Unit 4)

Buffer Tank

Drain'
W a s t e  W ater  Out

Figure 4. Water and Hydrogen Flow at the HFS.

The system is powered by a grid connected photovoltaic system, which is made up o f 

four single-axis tracking units shown in Figure 5. Each tracker is tilted at 30 degrees, and 

consists o f 24 Sharp 175 Watt monocrystalline panels (Model NT-175U1). The total 

system output is 16.8 kilowatt electric (kWe) DC or 14 kWe Alternating Current (AC). 

The estimated annual energy generation is 37,000 kilowatt hours (kWh), and the 

estimated efficiency is 12.6%. A Xantrex Model PV-15208 inverter was installed to 

convert the DC power to AC, to allow grid connection o f the system.
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Figure 5. Solar PV system installed to provide power for the HFS.

The system is connected to the grid, and a net metering agreement with Nevada 

Power Company (NFC) allows excess power generated by the solar PV array to go to the 

grid when the system is not generating hydrogen. Also, the hydrogen generation and 

compression equipment can draw power from the grid when the system is generating 

hydrogen on cloudy days or at night. The meter is capable o f monitoring power flow in 

both directions, and a renewable energy meter installed at the station allows for on-site 

monitoring o f the solar PV array production. A diagram describing how electricity flows 

through the system is shown in Figure 6 .
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Figure 6 . Electricity diagram of the Phase II HFS, note the Net Meter.

Phase III Station Configuration 

In January 2008, the HFS was upgraded in order to inerease its hydrogen produetion 

eapability. The additional hydrogen will be used by a newly eonverted Ford F-150 piekup 

truek [21], which will be used as a meter-reading vehicle at the LVWWD. As shown in 

Figure 7, all o f the original units and tanks were removed, and the upgraded station is 

composed o f  a new electrolyzer, ehiller, buffer tank, and eompressor/dispenser unit.
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Unit 2 M ^ Chiller
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tank :.

F igure 7. Picture of Phase III of the HFS project with equipment labeled.

To increase the amount of hydrogen produeed at the station, Unit 1, a Proton Energy 

Systems FUELGEN 12 ® PEM Eleetrolyzer, was installed. The electrolyzer has a 12.94 

kg per day ( 6  Nm^/hr) production capacity, and an output pressure o f 30 bar (435 psi). A 

chiller (Unit la) is used to maintain the operating temperature o f  the PEM electrolyzer 

stack during hydrogen production. The capaeity o f  the chiller is 10 tons, and R-134a is 

used as its refrigerant. Unit 2 is a new Air Produets Series lOOE dispenser that ineludes a 

compressor and storage tanks. The capacity o f storage tanks is 6.5 kg o f hydrogen at 

430.9 bar (6250 bar). The Phase 111 station uses the buffer tank as the intermediate 

hydrogen storage area in the same way that the Phase III station operated. Figure 8  shows 

the updated water and hydrogen flow diagram for the Phase 111 station.
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Figure 8 . W ater and hydrogen flow at the Phase III HFS.

The Phase III station electrical diagram is different as well. The electrolyzer requires 

480 VAC input, instead o f the 240 VAC required by the Phase II electrolyzers. 

Additionally, an auxiliary heater inside the new electrolyzer requires 240 VAC. The 

station remains grid connected, and the updated electrical diagram is shown in Figure 9.
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Figure 9. Electrical diagram o f the Phase III HFS.
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CHAPTER 3

DATA ACQUISITION SYSTEM

To monitor the performance of the equipment at the HFS, a data acquisition system 

(DAS) was installed. Sensors were placed at the station to monitor weather conditions, 

energy use by the HFS equipment, energy generated by the solar PV array, and the 

amount o f hydrogen produced at the station. For data collection, a Campbell Scientific 

Incorporated (CSI) Model CRIOX programmable data logger was installed, shown in 

Figure 10. This data logger has twelve single ended channels, two pulse counters, three 

excitation channels, eight control ports, and a 2MB extended memory. The data logger 

requires 12 V DC and a phone line for communications.

Figure 10. CSI Model CRIOX data logger.

The data logger is powered by a CSI Model PS 100 12 V power supply, with charging 

regulator and a 7 Ah backup battery connected to a CSI Model 9591 110 V AC to 18 V 

DC power supply, shown in Figure 11.
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Figure 11. PS 100 12 VDC power supply with charging regulator and battery.

For communications the data logger is connected to a CSI Model COM 210 9600 bits 

per second telephone modem (Figure 12) which is connected to a telephone line. This 

allows the data to be downloaded and monitored remotely from a computer with CSI 

Loggemet software.

R J-11C Jack  Datalogger
connection

Screw terminals

F igure 12. CSI Model COM210 telephone modem.

To add monitoring channels to the data logger, the CSI Model AM 16/32 relay 

multiplexer shown in Figure 13 was added to the data logger for an additional 32 analog 

sensor inputs. Additionally, the CSI Model SDM -SW 8 A 8  channel switch closure input 

module shown in Figure 14 was installed to add 8  channels of switch closure or voltage 

pulse inputs.
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Figure 13. CSI Model AM 16/32 16-channel or 32-channel relay multiplexer.

F igure 14. CSI Model SDM-SW8 A 8 -Channel switch closure input module.

Electrical power is measured using Continental Control Systems (CCS) WattNodes 

(model numbers are determined by voltages and phases), which are W att/W att hour 

transducers. These are connected to split core current transformers, which are installed 

around the wires located in the electrical panels. The pulse outputs from the WattNodes 

are measured in the switch closure input module. The WattNodes require connections 

into the phases that are being measured as shown in Figure 15. Electrical power to be 

measured will include power generated by the photovoltaic systems, power used by the 

electrolyzers and chiller, power used by the compressors and power from the grid. Since 

WattNodes can only measure power in one direction a second WattNode with current 

transformers is required on the mains to measure both directions o f power flow during 

periods when the photovoltaic system is supplying power to the grid.
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F igure IS. Typical CCS WattNode three phase-four wire wiring diagram 
(http://www.ccontroIsys.com/downloads/WattNodePlusDataSheet.pdt).

Based on the current rating o f each piece o f equipment, the appropriate current 

transformer that delivers the signal to each WattNode was mounted on each phase o f the 

voltage lines as shown in Figure 16.

F igure 16. Current transformers installed on voltage lines.
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The data logging equipment is installed on the electrical power rack adjacent to the 

two voltage panels, as shown in Figure 17. A CSI Model ENG 16/18-10628 weather 

resistant enclosure houses the data logger, power supplies, modem, multiplexer, switch 

closure module, and WattNodes. This enclosure is rated at NEMA 4X modified for cable 

entry.

Figure 17. Electrical rack at the HFS, with DAS in the center.

Figure 18 shows how the data logging equipment is installed in the enclosure. The 

required signal wires from the high voltage and low voltages are brought into the box for 

the WattNodes, which are mounted on the back wall o f the box and covered with a PVC 

shield to protect users from the high voltages in the enclosure. A steel sheet was mounted 

inside the door, to provide a platform for the CSI data logging equipment. The wiring 

diagram for this DAS can be found in the appendix.
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Figure 18. CSI Enclosure with data logging equipment.

To monitor the win'd speed and direction, a R.M. Young model 03001 Wind Sentry 

Set was installed. This unit has an uncertainty o f ±0.5 m/s. Ambient temperature and 

relative humidity are measured using a Vaisala Model CS500-L40 temperature and 

relative humidity probe with radiation shield. It is capable o f accuracies o f ±0.2-0 . 8  °C 

for temperatures o f 0-60 °C, and ±3% for relative humidity. The wind and temperature 

sensors were installed on a rigid pole at a height o f 4.5 m, and mounted to the electrical 

rack next to the low voltage panel (Figure 19).
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# # # #
F igure 19. Wind and Temperature Sensors Installed at the HFS.

Solar flux is measured using a LI-COR Model LI200X silicon pyranometer which 

measures wavelengths o f radiation between 400 and 1000 nm, and has an absolute error 

o f ±3% of its reading. It is mounted on and oriented in the same-plane as the tracking 

photovoltaic panels, as shown in Figure 20.

a

F igure 20. Pyranometer installed on tracking unit.
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For the Phase III HFS, a hydrogen mass flow meter was installed in order to measure 

the mass flow rate o f hydrogen generated at the station. A MicroMotion Model 

CMFOIOM, Coriolis ELITE sensor was installed directly in the product line o f the 

electrolyzer, next to the blower as shown in Figure 21. The output signal from the flow 

meter is a RS-485, four-wire signal, which runs underground and connects to a 

transmitter located on the electrical rack. The sensor is capable o f  measuring the 

hydrogen mass flow rate with an uncertainty o f ±0.03%.

Figure 21. Hydrogen mass flow meter installed on Unit 1.

The transmitter shown in Figure 22 is a Micro Motion Coriolis MVD multivariable 

flow and density transmitter. Model 2700. It receives the data signal from the flow meter, 

and outputs a 4-20 mA signal as well as pulse output for data collection. Additionally, the
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transmitter has a digital display that reports the mass flow rate in kilograms per minute in 

real time. The pulse output from the transmitter is connected to the CRIOX data logger as 

shown in the appendix. The transmitter is configured so that each pulse represents 0.0167 

kg of hydrogen generated.

F igure 22. Hydrogen mass flow transmitter mounted on electrical rack.

The data from each sensor installed at the HFS is collected and stored by the data 

logger every minute. The data logger is programmed to store each piece o f data such that 

the value is appropriate for the signal. For example, the temperature reported for each 

minute is an average reading over that minute, while the amount o f energy produced by 

the solar PV array is a total amount o f energy produced during that minute. A program 

was written to perform these operations with the CRIOX data logger, and the program 

code is available in the appendix.

The CSI Loggem et software is then used to contact the data logger via the CSI 

modem, and download the data for archiving and analysis. To provide real-time
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monitoring o f the HFS, CSI Real-Time Data Monitoring Software (RTDM) was used. 

This software allows the user to create several different types o f plots, based on the data 

collected by Loggemet from the CRIOX data logger. Lach three hours, a computer with 

the Loggem et software makes a connection to the CRIOX at the HFS, downloads the last 

three hours o f data, and the RTDM software then updates the user-created plots. An 

example o f a plot generated by RTDM  is shown in Figure 23.
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F igure 23. Sample plot generated by RTDM software.

In addition to providing real-time data to UNLV for performance monitoring, the 

RTDM software is able to generate plots like the one shown in Figure 23 for display on 

the intemet. This allows the public to view the conditions and performance o f the station 

by logging on to www.hydrogen.unlv.edu/HFS.html. A screenshot o f this website can be 

seen in Figure 24.
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Figure 24. HFS website screenshot.

To provide a daily summary o f the station’s performance to UNLV and the LVVWD, 

as well as Proton Lnergy Systems and Air Products, Inc., a computer program was 

written using MATLAB. The summary program uses Windows Task Scheduler to run 

each morning, in order to analyze the previous day’s data to provide a text file o f the 

daily performance o f the HFS. Data included in the output file includes the energy use of 

each piece o f equipment, average and maximum wind speeds and temperatures, 

maximum and total solar PV array power and energy outputs, and the total amount of 

hydrogen produced. The data is available as a comma delimited data file, and the 

program also organizes the total energy use at the HFS into a bar chart describing the net 

energy produced or used during the day. A sample month o f the daily data bar chart is 

shown in Figure 25.
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F igure 25. Sample monthly plot of net system energy.

To verify that the data collected at the HFS was accurate, each sensor was monitored 

and compared with a similar, previously verified sensor. W eather data such as ambient 

temperature, humidity, wind speed, and available solar radiation were compared to data 

from other weather stations in the Las Vegas area, and found to be in agreement. Output 

from the WattNodes was verified by monitoring each piece o f equipment as it operated 

with an Amprobe Model DM-II PRO data logger/recorder, which provided real-time 

information power use o f the equipment. This data was compared to the corresponding 

W attNode output, and it was found that the WattNodes provided the true energy use o f 

the HFS equipment.
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CHAPTER 4

EXPERIMENTAL RESULTS 

Phase II  Hydrogen Filling Station Operation 

The Phase II HFS was in operation for almost one year, o f which there were 5 months 

o f error-free continuous operation that provided valuable data regarding the performance 

o f the station. Among the important data collected were the energy output from the solar 

PV array, its efficiency, the energy used by the electrolyzer and dispensing unit during 

production and compression o f hydrogen, and net energy production at the station. Table 

2 provides a summary o f the solar PV performance over the five month period from May 

to September 2007, as well as the total amount o f energy that was exported to the grid.

Table 2. Phase II Five Month Station Performance
PV System Efficiency (After Inverter) 9.85%
Total PV Lnergy 18.64 MWh
Total Lnergy to Grid 11.13 MWh
Number o f Days Generating Hydrogen________ -1 5

As shown in Table 2, there were only about 15 days when hydrogen was generated at 

the station, due to the fact that the vehicles were still in their conversion and testing 

phase. The solar PV array produced a total o f 18.64 MWh during the five months, o f 

which 11.13 MWh went to the grid as excess energy. The solar PV array performed at an
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average effieieney o f 9.85% over the five month period, which is the based on the energy 

output from the panels divided by the total available energy incident on the panels’ 

surface, as shown the following equation:

ri
'PV 

\ j A p y
( 1 )

where Apy is the area o f one panel and I t is the incident radiation in W/m^, which is 

measured by the silicon pyranometer mounted on the tracking unit, as shown in Figure 

20. Based on the measurements o f  incident radiation from the silicon pyranometer and 

power output from the solar PV array, a plot similar to the one shown in Figure 26 was 

generated in real time. By allowing the scales o f PV output and incident radiation to 

automatically adjust on the same plot, the performance o f the array can be examined in 

detail. For example, as shading causes the reading from the pyranometer to drop, the 

power output from the solar PV array should drop in the same proportion. Figure 26 

shows that at 3 p.m. it appears some of the solar PV array is being shaded, as shown by 

the pyranometer reading’s divergence from the solar PV array power output.

Photovoltaic System

500 Ï

300 t  

200 ^

6:00 AM 8:00 AM 10:00 AM 12:00 PM 2:00 PM 4:00 PM

- PV Output [KW]

F igure 26, PV output and incident radiation with sliding scales.
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The solar PV efficiency was affected by the ambient temperature at the HFS. Figure 

27 shows how the average monthly ambient temperature adversely affected the 

performance o f the solar PV array. It is shown that an average monthly temperature 

increase o f 8.1° C from May to July decreased the solar PV efficiency by 0.365%. The 

result is a drop o f 0.045%/°C, which agrees with values obtained from literature for 

monoerystalline solar panels [2 2 ].
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F igure 27. Solar PV Efficiency and Ambient Temperature for May -Sept, 2007.

Since one o f the goals o f this research was to measure the amount o f energy required 

to produce hydrogen, testing was performed at the Phase II HFS to determine this 

parameter, A eonverted hydrogen vehicle was filled and driven several times, and the 

total amount o f hydrogen generated was calculated by measuring the temperature and
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pressure o f the vehicle’s hydrogen tank, as well as the temperatures and pressures o f the 

tanks in Unit 2 (compressor/dispenser). Testing took place from July 27 -  July 29, 2007, 

and was performed at the LVVWD. During the vehicle testing, a total o f 3.104 kg of 

hydrogen was dispensed into the vehicle, and the energy use o f the eleetrolyzer and 

compressor/dispenser was measured. As shown in Figure 28, the electrolyzer and 

compressor/dispenser operated for three days in order to refill the storage tanks. During 

operation, the eleetrolyzer used between 7 and 8  kW, and the compressor/dispenser used 

around 1 kW o f power. The solar PV power produced during the three day testing period 

is shown in Figure 29.
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F igure 28, HFS equipment power usage on July 27-29.
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F igure 29. PV array output for 3-day test.

When the power plots shown in Figures 28 and 29 are combined, the net system 

power output or input can be observed. Figure 30 shows that when the HFS was 

generating hydrogen during the same hours that the solar PV array was producing power, 

there was a surplus o f power produced at the station. This extra power went to the grid, 

while power used by the HFS from late afternoon through the night and to the early 

morning o f each day was from the grid.
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F igure 30. Net power to/from grid during 3-Day Test,

Table 3 provides a summary o f the amount o f power consumed by the HFS 

equipment while producing the hydrogen over the three day test period.

T able 3. Phase II Three Day Test Results
Mass Generated by HFS 
Energy Consumed 
PV Energy Produced 
Production Power Requirement 
HFS Hydrogen Production Efficiency

3.104 kg 
226.85 kWh 
357.53 kWh 

73.08 kWh/kg 
53.9%

The vehicle’s tank was filled 9 times, for a total o f 3.104 kg o f hydrogen, and an 

average tank fill o f 0.388 kg o f hydrogen. The solar PV array’s energy output was 357.53 

kWh, which resulted in a net energy output o f 130.68 kWh at the HFS during the three 

day test period. From this data, it is possible to calculate the efficiency and the energy 

requirements o f the HFS. To calculate the efficiency o f the HFS, the amount o f hydrogen
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produced is multiplied by its HHV and divided by the amount o f  energy consumed during 

production. The HHV o f hydrogen is 39.38 kWh/kg, so the total amount o f  energy 

contained in the hydrogen that was produced by the station was 122.24 kWh. Therefore, 

the efficiency o f the HFS hydrogen production was found to be 53.9%. When combined 

with the calculated value of solar PV efficiency for July, this results in an overall solar 

energy conversion o f 5.17%, which compares well with the values summarized in Table 

1 o f the literature review.

By dividing the amount o f energy required to produce the hydrogen by the amount o f 

hydrogen produced, a value o f 73.08 kW h/kg hydrogen was obtained from the three day 

test. Based on this value, and the amount o f energy that was produced by the solar PV 

array over the five months o f operation described above (18.64 MWh), a total o f 255 kg 

o f hydrogen could have been produced by solar power alone during those five months. If 

the tank requires 0.388 kg o f hydrogen per fill, this is enough hydrogen to fill the 

vehicle’s tank over 657 times.

While only a small amount o f performance data from Unit 3 was collected, it was 

valuable to the manufacturer. Several design issues were recognized, including a problem 

with cooler ambient temperatures causing freezing and the production o f “wet hydrogen”, 

hydrogen with an unacceptably high water content, due to the orientation o f  the 

hydrogen/water separation tank. Due to these issues, this thesis will not present 

performance data from Unit 3 and the Unit 4 compressor.

Phase III Hydrogen Filling Station Operation 

The Phase III HFS has provided over five months o f continuous data as o f the writing 

o f this thesis. The performance o f the upgraded Phase III equipment from the months o f

38



January to May 2008 is summarized in Table 4, Solar PV array efficiency was higher 

during this five month period, compared to the months o f May to September 2007 during 

Phase II operation, although total array output was lower. Due to the fact that the 

converted hydrogen vehicles were still being completed, hydrogen was only used five 

times during this five month period.

Table 4.______ Phase III Five Month Station Performance
PV System Efficiency (After Inverter) 10.32%
Total PV Energy 16.75 MWh
Total Energy Sold to Grid 9.72 MWh
Number o f Days Generating Hydrogen_________ ~5

The solar PV efficiency was again affected by the ambient temperature during the 

five months of operation considered. Figure 31 shows how the average monthly ambient 

temperature adversely affected the performance o f the solar PV array. In this case, an 

average monthly temperature increase o f 16° C from January to May decreased the solar 

PV efficiency by 0.283%. The result is a drop o f 0.018%/°C, which compared to the drop 

o f 0.045%/°C shows that the change in temperature from January to May 2008 had less o f 

an impact on PV performance than the change in temperature from May to July 2007.
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PV Efficiency & Ambient Temperature
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F igure 31. PV efficiency and ambient temperature for Jan.-May 2008.

To show how the HFS will perform under its daily operational demands, hydrogen 

was dispensed from Unit 2 on June 20, 2008. The amount o f hydrogen dispensed was 

ehosen to simulate filling the Ford F-150 piekup truek with enough hydrogen to drive

28.5 miles. The truek will be used as a meter-reading vehiele, and is required to drive 

approximately 57 miles per day, in two four hour shifts. Therefore, the truek will fill two 

times eaeh day, and based on an expeeted fuel effieieney o f 16 miles per kilogram o f 

hydrogen [23], approximately 1.78 kg o f hydrogen must be dispensed. During the testing,

1.5 kg o f hydrogen was dispensed, and the amount o f energy required to produee that 

hydrogen was recorded. Figure 32 shows the power use o f the HFS equipment for June 

20 .
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HFS Generation and S torage Pow er Use June 20, 2008
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F igure 32. HFS equipment power usage on June 20, 2008. 

Power production from the solar PV array for June 20 is shown in Figure 33.

PV Power Output, June 20, 2008
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F igure 33. PV array output for June 20, 2008. 
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Finally, the net power flow at the HFS during testing on June 20, 2008 is shown in Figure 

34. It is noted that during hydrogen production, the electrolyzer requires much more 

power than the solar PV array is capable o f producing.

Net Power O utput

Hour

Figure 34. Net power to/from grid during June 20, 2008.

Additionally, it was important to record how quickly the HFS was able to refill its 

tanks for another fill. This measurement provided a way to determine the amount o f use 

that the station can permit daily. Table 5 shows a summary o f how the HFS performed 

during the simulated fill testing. To produce 1.5 kg o f hydrogen, the station required 

113.83 kWh. This resulted in a requirement o f 75.87 kWh/kg o f hydrogen, and an HFS 

production efficiency o f 51.9%.
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Table 5. Phase III June 20, 2008 Test Results
Mass Generated by HFS 
Energy Consumed 
PV Energy Produced 
Production Power Requirement 
HFS Hydrogen Production Efficiency

1.50 kg 
113.83 kWh 
46.09 kWh 

75.87 kW h/kg 
5E9194

Figure 35 shows the hydrogen levels in the buffer tank and the dispensing unit based 

on the maximum mass each is capable o f holding, after the 1.50 kg o f hydrogen was 

used. The buffer tank remained over 94% full for the duration o f the test, due to the fact 

that the hydrogen generation rate was similar to the flow rate o f the compressor used to 

refill the tanks in Unit 1. After the fill, the dispenser level dropped to 76%, and required 

176 minutes or 2.93 hours to completely refill the tanks on Unit 2 and the buffer tank.

Dispenser and Buffer Tank Hydrogen Levels
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Figure 35. Dispenser and buffer tank hydrogen levels during production, June 20, 2008.
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CHAPTER 5

PHASE III HFS COMPUTER MODEL 

A computer model has been created to simulate the energy production and use at the 

station, as well as how vehicle usage affects the energy and hydrogen balance at the 

station. This model is a modification o f  a previous model used in the original design of 

the HFS [15]. The m odel’s inputs include the hourly ambient temperature, wind speed, 

and solar irradiance values for a typical year in the Las Vegas region, based on the TMY2 

data base [24]. This data is used to predict the performance o f the solar PV array at the 

HFS. Additionally, manufacturers’ and measured data describing the power use o f the 

HFS equipment were used as inputs for the model. The other model input was an 

estimated amount o f hydrogen use by the vehicles at the station. The m odel’s outputs 

included the total power produced by the solar PV array, the amount o f hydrogen 

required by the vehicles, and the amount o f energy required by the HFS equipment to 

refill the tanks at the station. Also, the hydrogen level inside the storage tanks was 

modeled, in order to determine the amount o f time the station required to return to full 

capacity after a vehicle was filled. The model is used to simulate each minute o f the 

typical year, in order to accurately describe the transient behavior o f the HFS equipment. 

Since the TMY2 data is given as average hourly data, linear interpolation was used to 

estimate the values o f the desired parameters for each minute.
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Solar P V  Array Performance Modeling 

To determine the power produced by the solar PV array, the model must calculate the 

amount o f radiation from the sun that is available to the surface of the array. First, the 

values for global horizontal radiation ( I )  and diffuse horizontal radiation (Id) were used 

from the TMY2 database and interpolated for each minute o f the day. Next, a model 

developed by Braun and Mitchell was used to calculate the surface slope ( f )  o f the 

single-axis tracking units, since the surface slope varies throughout the day [25]:

^  =  ^ / -F l8 0 (T ^  (2)

Where:

^  ^  - )  (3)
c o s ( /  -  y  )

and

P \\o therw ise   ̂ '

Here, the slope o f the tracking axis is /9 -3 0 , and y and y ’ are the surface azimuth angle 

and azimuth angle o f the tracking axis (y’-O since tracker is facing south) respectively.

A model developed by Perez [26] was then used determine the total amount o f diffuse 

radiation available on the surface o f the solar PV array, using data from the TMY2 

database and the calculated surface slope o f the tracker. The total diffuse radiation is 

calculated by:

d̂.T -  Id F , ^  + F , s i n / ?  + ( l - F , ) ( — ° " ^ -)
b 2

(5)

45



Where F; and F2 are brightness coefficients calculated from a number o f  statistically 

derived coefficients for a range o f sky conditions, as shown in [26], and:

a „  m ax(0 ,cosi9 )
-  =  R  = -------------- ------------------1—
b max(cos 8 5 ,cos 6 " )̂

Here, 9 is the angle o f incidence, the angle between the beam radiation on a surface and 

the normal o f that surface, and 6  ̂ is the zenith angle, the angle o f beam radiation on a 

horizontal surface. Ry is the ratio of beam radiation on a tilted surface to that on a 

horizontal surface, and is used by the method from Duffie and Beckman, to calculate the 

total amount o f radiation on the tilted surface [27]:

I ,  (7)

where pg= 0.4 is the reflectance o f the ground and:

I b = I - I d  (8)

Once the total available solar radiation is calculated, it is necessary to accurately 

predict the performance o f the specific type o f solar PV panel installed at the HFS. This 

can be done by using the single diode model, which is described by the equivalent circuit 

given in Figure 36.
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Figure 36. Single diode model of a solar PV panel [27].

The single diode model uses data provided by the panel manufacturer such as short 

circuit current (7jc=5.4 A), open circuit voltage (f/oc=44.4 V), current at maximum power 

point (7,„y,=4.95 A), voltage at maximum power point (74^=35.4 V), as well as 

temperature coefficients, /^/ic=0.001895 and //(/oc=-0.093773, to model the PV 

performance by calculating reference parameters for the panel. This data is given for the 

standard conditions o f the panel, 1000 W/m^ and panel temperature 25°C.

To determine the power output o f each panel, the current-voltage characteristics o f 

the panel are calculated as a function o f incident solar irradiation and cell temperature 

using equation 9 [27]:

exp -  1
R (9)

W here light current (h ), diode reverse saturation current (7o), series resistance (Rs), 

shunt resistant (Rsh) and the modified ideality factor (a) are the five parameters that are 

needed to solve equation 9. Based on the given manufacturer’s data, five equations are
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solved simultaneously with the method shown in [27], to obtain the values o f these 

parameters using the given current-voltage points at the short circuit current, open circuit 

voltage, and maximum power point. These reference parameters are further used to 

calculate the operating parameters the PV panel at any the conditions at each minute of 

the typical meteorological year. The modified ideality factor is found with equation 10;

nkT V
a = (10)

with ideality factor n, Boltzmann’s constant A: (1.381x10'^^ J/K), electronic charge q 

(1.609 X 10"'^ A-s), number o f solar panel cells in series Npy, and cell temperature Tpv.

As shown by equation 10, performance o f the solar PV array is dependent on the cell 

temperature, which itself is a function o f solar irradiation, ambient temperature, wind 

speed, and other factors. Using meteorological data from the TMY2 database, the panel 

temperature can be calculated as an explicit function o f incident solar irradiation, ambient 

temperature and wind speed using equations 1 1  and 1 2  [28].

L
T = T + ----- 1-----AT

^NOCT Z'"
( 1 1 )

where I n o c t  =1000W /m is the instantaneous solar irradiation at standard rated 

conditions, and Tm,pv is the back surface temperature o f the panel, given by:

[a + b V I
T = T + ^ c w (12)

m , p v  a ‘

where Ta is the ambient temperature, Qc and be are empirical constants, and is the 

instantaneous wind speed.
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HFS Equipment Performance Modeling

Hydrogen demand o f the pickup truck is the parameter that drives the HFS 

performance model. The amount o f hydrogen required by the truck was calculated based 

on its expected daily distance traveled and expected performance, which was assumed to 

be 16 miles per kilogram of hydrogen, based on previous research [23]. Assuming the 

daily travel o f 57 miles and, that the truck would be fuelled two times a day at 8  AM and 

noon for two 4 hour shifts, the amount o f hydrogen required per fill was found to be 1.78 

kg.

Hydrogen generation, storage and utilization were modeled to predict the 

performance o f the HFS. The gas levels o f the storage tanks and flow rates were 

considered on a mass flow basis to eliminate the effects o f pressure changes throughout 

the system. The model was carried out for each month of a typical year, to predict the 

performance o f the equipment and ensure that the HFS met the hydrogen demand o f the 

vehicle.

At the beginning o f each month both the buffer tank and dispenser storage tanks were 

assumed to be 100% full. The compressor started only if the hydrogen level inside the 

dispenser fell below 90% and the hydrogen level inside the buffer tank was greater than 

40 %. From experimental data, the compressor has been shown to use 2 kW during 

operation, and that it draws hydrogen from the buffer tank at 0.045 kg per minute. The 

electrolyzer started producing hydrogen when the hydrogen level inside the buffer tank 

fell below 93 %.

Based on manufacturer’s and observed experimental data, the performance o f the 

electrolyzer was be estimated by a fairly simple conversion for this analysis. It has been
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shown that the FuelGen 12 electrolyzer uses approximately 39 kW  during hydrogen 

production, which agrees with published data regarding electrolyzer operation [29]. The 

production rate at this level o f power use is 0.009 kg o f hydrogen per minute. During 

electrolyzer operation the coolant used to maintain the PEM cell stack temperature begins 

to heat up, and triggers the auxiliary chiller to operate. From experimentally collected 

data at the station, the chiller draws between 1 and 4 kW during operation. Additionally, 

the chiller tends to run more in the summer months when ambient temperatures are high. 

Therefore, the chiller was modeled to run simultaneously with the electrolyzer, at a 

fraction o f its rated power, depending on the average temperature o f the month. Figure 37 

shows a flow chart for the simulation.
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INPUT WEATHER DATA, PANEL 
CHARACTERISTICS, VEHICLE DEMAND

FOR EVERY M IN U TE OF TH E YEAR

CA LCU LA TE SOLAR PV O UTPUT

IF BUFFER 
TAN K LEVEL < 

0.93 ^

ELECTRO LY ZER & C H ILLER  ON

IF D ISPENSER 
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0,90 /

CO M PRESSO R ON

IF TIM E = 8AM  OR 
\  12PM /

FILL TRU CK  W ITH 1,78 KG

C A LC U LA TE POW ER U SAGE

NEX T M INU TE

Figure 37. Flow diagram for HFS simulation program.

Combined, the solar PV array and HFS calculations fully describe the energy use and 

hydrogen production at the station for each minute o f one typical year. Based on current 

station characteristics, the monthly contribution o f solar energy to the total energy use o f 

the station is shown in Figure 38, The energy contribution o f the solar PV array ranges 

between a low o f 25.7% in December and a maximum of 40.8% in May.
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Solar Contribution by Month
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Figure 38. Monthly solar PV contribution to HFS power consumption.

Based on the hydrogen demand deseribed above, the station is required to produce a 

total o f 1292.1 kg o f hydrogen in one year, o f which almost 431 kg is produced by solar 

energy. The effieieney o f the hydrogen generation and storage processes was again 

calculated by dividing the energy required to produee and compress the hydrogen by the 

energy contained in that amount hydrogen, aeeording to its HHV. Therefore, the 

effieieney o f the station was dependent on the assumptions about energy usage from eaeh 

pieee of equipment, and in this ease it was caleulated to be 49.3%. Based on the expeeted 

fuel efficiency o f the truck, the 14 kW AC solar PV array is eapable o f supporting 19 o f 

the 57 miles per day required by the truek. Table 2 shows overall performanee data from 

the model. In order to fully supply the power required to produee the amount o f 

hydrogen neeessary to drive the truek 57 miles per day, the solar PV array would need to
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be increased to 50.4 kW. This could be accomplished with 8  additional single axis 

tracking units.

___________T able 6: Estimated Average Yearly Station Performance_________
Hydrogen Production 1292.1 kg
Solar Energy Production 34.39 MWh
Solar Contribution to Hydrogen Production 33.34 %
Hydrogen Produced from Solar Energy 430.87 kg
Hydrogen Generation/Compression Efficiency (HHV)_________49.3 %

The hydrogen level in the dispenser is shown for a sample day in Figure 39. The 

minimum level o f hydrogen in the unit 2 dispenser is 63% o f its capacity. Additionally, it 

took 2.83 hours for the dispenser to return to 90% of its capacity. This indicates that the 

station is capable o f  dispensing more hydrogen during each fill, which could potentially 

increase the range o f the truck. I f  the truck was filled until the dispenser level reached 

50%, its range would increase by over 80% to over 50 miles per fill (formerly 28.5 miles 

per fill). However, any extra mileage driven by the truck would decrease the percentage 

o f solar energy’s input to the total energy required by the HFS.
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Daily Hydrogen Level in Dispenser
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Figure 39. Daily hydrogen level in dispenser as predicted by HFS model.

Hydrogen level in the buffer tank is shown for a sample day in Figure 40. It is shown 

that the buffer tank level cycles up and down due to the hydrogen input from the 

electrolyzer and output into the dispenser. Again, it is noted that the minimum level o f 

the tank only drops to 45%, indicating that more hydrogen could be drawn during each 

fill. It is also important to note that this result was quite different than the result obtained 

during the experimental testing o f the Phase III HFS from June 20, 2008. Therefore, the 

model needs to be updated to more accurately depict the flow o f hydrogen into and out o f 

the buffer tank.
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Daily Hydrogen Level in Buffer Tank
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Figure 40. Daily hydrogen level in buffer tank as predicted by HFS model.

Typical daily net power curves vary based on the solar energy production at the 

station. Two different sample days are shown in Figure 41, for opposite times (summer 

(a) and winter (b)) o f the year. It is noted that although the hydrogen deficiency at 8  AM 

and noon results in the same drop in net power to the grid, the amount o f solar power 

drastically increases for the month o f June.
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Net Power for a Day in June
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Figure 41. Daily net power to grid in June (a) and December (b).

The daily net power plot for June compares well to what was observed during the June 

20, 2008 testing results, as shown in Figure 42. The net power drops to approximately -30 

kW (meaning electricity is being used from the grid) during hydrogen production, and 

slightly increases over the almost 3 hours of hydrogen production.
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Model vs. Experimental Net Power for June
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Figure 42. Modeled and experimental net power plots for a day in June.
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CHAPTER 6

SUMMARY AND CONCLUSIONS 

A hydrogen filling station has been demonstrated, and has operated successfully with 

several different types o f  equipment over one and a half years in Las Vegas. The HFS is 

unique, in that a portion o f the energy used to create hydrogen is powered by a solar PV 

array, and that the electrolysis process used to produce hydrogen is performed by a PEM 

electrolyzer. This thesis has described the data acquisition system responsible for the 

collection o f data and monitoring o f the station’s performance. Data have been collected 

to show the amount o f  energy produced and consumed at the station, and the resulting 

efficiency o f using solar PV generated electricity to produce hydrogen.

A computer model was created to simulate the operation o f the HFS, and was found 

to agree well with experimental data. The model predicted that, in its current 

configuration, 33.34 % o f the hydrogen produced at the HFS was obtained from solar 

energy, which amounted to 430.87 kg o f hydrogen for a typical year o f operation.

Because this station was originally configured to power a PEM electrolyzer that produced 

2 kg o f hydrogen per day while using 8.5-9 kW  during operation, the extra energy 

required to operate the upgraded equipment now at the station exceeds the capacity o f the 

solar PV array currently installed at the HFS. It was found that 8  additional trackers were
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required to supply enough energy to produce the 1292.1 kg o f hydrogen required by the 

vehicle for one year.

The computer model was found to agree well with experimental data collected at the 

Phase III HFS. The net power plots for June compared in Figure 42 show that the net 

power plot resulting from the model matched well with what was observed during the 

experimental fill testing on June 20, 2008. Also, the amount o f time required to refill the 

tanks in the dispensing unit after one fill was 2.83 hours for the model case, and 2.93 

hours for the experimental testing.

The model does require several modifications to accurately describe the behavior o f 

all HFS systems. First, the rates o f hydrogen flow into and out o f the buffer tank must be 

adjusted. Next, more power use observations should be incorporated into the model to 

better deseribe how the chiller operates in different climactic conditions. Then, different 

filling scenarios should be eompared to optimize the station’s usefulness. Finally, the 

model should be applied to other regions, to demonstrate how an HFS would perform in 

different areas.
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APPENDIX

Phase II HFS Data Acquisition System Wiring Diagrams

Hydrogen Filling Station Data Acquisition Wiring Schedule

CR10X Datalogger

AM 1 6 /3 2  (C O M  G N D ), AM  1 6 /3 2  (P W R  G N D | G G
G G C S 5 0 0  (H M P  5 0 ) (C le a r )

E n c l o s u r e  T h e r m o c o u p l e 1H 4H C S 5 0 0  (H M P  5 0 ) (B lu c k )

E n c l o s u r e  T h e r m o c o u p l e 1L 4L C S 5 0 0  (H M P  5 0 )  (W h ite )

AG AG C S 5 0 0  (H M P  5 0 )  (B lu e )

2H 5H 0 3 0 0 1  W in d  (R e d )  (V)

2L 5L
AG AG 0 3 0 0 1  W in d  W h ite  (V)

A M 1 6 /3 2 (C O M :O D D  H) 3H 6H Li 2 0 0 X  (R e d )

A M I6 /3 2  (C O M rO D D  L) 3L 6L Li 2 0 0 X  (B la c k )

AG AG Li 2 0 0 X  (W h ite )

0 3 0 0 1  W in d  (B la c k )  (V) E1 E3
AG AG
E2 G 0 3 0 0 1  W in d  C le a r  (V)

G G LI 2 0 0 X  ( C le a r /G r e e n )

0 3 0 0 1  W in d  (B la c k )  (A) P1 5V
0 3 0 0 1  W in d  (W h ite )  (A). 0 3 0 0 1  W in d  (C le a r )  (A) G 5V

P2 G
G SW12V
C8 SW12V
C7 G
C6

A M 1 6 /3 2  (R E S ) C5
AM  1 6 /3 2  (C L K ) C4
S D M -S W 8 A  (C 3) C3
S D M -S W 8 A  (C 2) C2
S D M -S W 8 A  ( C l  IN) C1
S D M -S W 8 A  (G N D ) G
S D M -S W 8 A (1 2 V ) 12V
A M I 6 /3 2  (12V ), C S 5 0 0  (H M P  5 0 )  (B r o w n ) 12V
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AM 16/32 Analog Multiplexer 
(Type J Thermocouples)

16L

: : r
15H

32L

r f r
31H

SHIELD SHIELD
14L

-  serr
13H

30L

serra
29H

12L

sera
11H

28L

serra -  

27H
SHIELD SHIELD
10L

r
9H

26L

serra
25H

8L

-

7H

24L

= " " "  % L
23H

SHIELD SHIELD
6L

:  - 3  

5H

22L

serrr ™

21H
COM:EVEN L 
SHIELD 
COM:EVEN H

COMiODD L 
SHIELD 

COM:ODD H

C R 1 0 X  (3L) 

C R 1 0 X  (G ) 

C R 1 0 X  (3H )

4L

-  3ET3

3H

20L

serr. %

19H
SHIELD SHIELD

P V _T em p 2 (red) 

PV _T em p 2 (white)

2L

SET1
1L
1H

18L

SET9
17L
17H

PV_Tennp 1 (red) 

PV_Tennp 1 (white)

12V
GND
RES
CLK

C R 1 0 X  (12V ) 

C R IO X (G )  

C R 1 0 X (C 5 )  

C R 1 0 X  (C 4)

A M I6/32 Mode = ”2x32"
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SDM/SMA Pulse Input Module

Power Supply (12V) 12V
CR10X(G) GND
CR10X (C3) C3
CR10X (C2) C2
CR10X (C1) Cl IN
SDM-SW8A (C1 IN) 01 OUT

Wattnode Mains IN - GND
5V SPST Mode

Wattnode Mains iN + IN 1
Wattnode Mains OUT - GND

5V SPST Mode
Wattnode Mains OUT + IN 2
Wattnode Dispenser - (Unit 2) GND

5V SPST Mode
Wattnode Dispenser + (Unit 2) IN 3
Wattnode PV OUT - GND

5V SPST Mode
Wattnode PV OUT + IN 4
Wattnode Unit 4 Compressor - GND

5V SPST Mode
Wattnode Unit 4 Compressor + IN 5
Wattnode Unit 4 Chiiler - GND

5V SPST Mode
Wattnode Unit 4 Chiller + IN 6
Wattnode Unit 1 LP Eiectrolyzer - GND

5V SPST Mode
Wattnode Unit 1 LP Eiectrolyzer + IN 7
Wattnode Unit 3 HP Electrolyzer - GND

5V SPST Mode
Wattnode Unit 3 HP Electrolyzer + IN 8
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Phase III HFS Wiring Diagrams

CR10X Datalogger

A M 1 6 /3 2  (C O M  G N D ), AM  1 6 /3 2  (P W R  G N D ) G G
G G C S 5 0 0  (H M P  5 0 )  ( C le a r )

E n c l o s u r e  T h e r m o c o u p l e 1H 4H C S 5 0 0  (H M P  5 0 ) (B  o c k )

E n c l o s u r e  T h e r m o c o u p l e 1L 4L C S 5 0 0  (H M P  5 0 ) (W h ite )

AG AG C S 5 0 0  (H M P  50) (B lu e )

2H 5H 0 3 0 0 1  W in d  ( R e d )  (V)

2L 5L
AG AG 0 3 0 0 1  W in d  W h ite  (V)

AM  1 6 /3 2  (C O M :O D D  H) 3H 6H Li 2 0 0 X  (R e d )

A M 1 6 /3 2  (C O M :O D D  L) 3L 6L Li 2 0 0 X  ( B la c k )

AG AG Li 2 0 0 X  (W h ite )

0 3 0 0 1  W i n d  ( B l a c k )  (V) El E3
AG AG
E2 G 0 3 0 0 1  W i n d  C l e a r  (V)

G G LI 2 0 0 X  ( C ie a r /G r e e n )

0 3 0 0 1  W i n d  ( B l a c k )  (A) P1 5V
0 3 0 0 1  W i n d  ( W h i t e )  (A), 0 3 0 0 1  W i n d  ( C l e a r )  (A) G 5V
F l o w m e t e r  ( p u l s e  i n p u t) P2 G
F l o w m e t e r  ( p u l s e  g n d ) G SW 12V

C8 SW 12V
C7 G
C6

A M 1 6 /3 2 (R E S ) C5
A M I 6 /3 2  (C L K ) C4
S D M - S W 8 A  (C 3) C3
S D M - S W 8 A ( C 2 ) C2
S D M - S W 8 A  (C1 IN) Cl
S D M - S W 8 A  ( G N D ) G
S D M - S W 8 A ( 1 2 V ) 12V
A M I 6 /3 2  (12V ), C S 5 0 0  (H M P  5 0 )  ( B ro w n ) 12V
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SDM-SW8A
Pulse Input Module

Power Suppl y (12V) 12V
CR10X (G) GND
CR10X (C3) C3
CR10X (C2) C2
CR10X (C1) Cl IN
S0r/-SW8A (C1 IN) 01 OUT

Wattnode Mains IN - GND
5V SRST Mode

Wattnode Mains IN + IN 1
Wattnode Mains OUT - GND

5V SRST Mode
Wattnode Mains OUT + IN 2
Wattnode Dispenser - (Unit 2) GND

5V SRST Mode
Wattnode Dispenser + (Unit 2) IN 3
Wattnode PV OUT- GND

5V SRST Mode
Wattnode PV OUT + IN 4
Wattnode Unit 1 Electrolyzer 480V - GND

5V SRST Mode
Wattnode Unit 1 Electrolyzer 480V + IN 5
Wattnode Unit 1A Ctiiller - GND

5V SRST Mode
Wattnode Unit 1A Chiller + IN 6
Wattnode Unit 1 Electrolyzer 240V - GND

5V SRST Mode
Wattnode Unit 1 Electrolyzer 240V + IN 7
Wattnode Spare - GND

5V SRST Mode
Wattnode Spare + IN 8

64



Campbell Scientific Loggemet Data Logging Program

*Table 1 Program
01: 60.0000 Execution Interval (seconds)

I : Batt Voltage (PIO)
1:1 Loc [ Batt_Volt]

2: I f  time is (P92)
1:0  Minutes (Seconds—) into a
2: 1440 Interval (same units as above)
3: 30 Then Do

3: Signature (P19)
1: 2 Loc [ Prog_Sig ]

5: Internal Temperature (PI 7) : Reference temperature 
1:3 Loc [  RefTemp ]

6: Thermocouple Temp (DIFF) (P14) .Enclosure Temperature 
1: 1 Reps
2: 1 2.5 m V Slow  Range
3: I DIFF Channel
4: 4 Type J  (Iron-Constantan)
5: 3 RefTem p (Deg. C) Loc [RefTemp ]
6 :4  Loc [  EncTemp ]
7: 1 Multiplier
8 :0  Offset

1: 1 Reps
2: 14 250 m V F ast Range
3: 2 DIFF Channel
4: 5 Loc [  OPEN ]
5: 1.0 Multiplier
6: 0.0 Offset

8: Do (P86) ; Activates the Multiplexer 
1: 44 Set Port 4 High

; Start Reading Thermocouples, PVl and PV2

9: Beginning o f  Loop (P87)
1: 0000 Delay 
2: 32 Loop Count

70. Do
1: 75 Pulse Port 5

11: Excitation with Delay (P22)
1:1 Ex Channel
2: 1 Delay W/Fx (0.01 sec units)
3:100 Delay After Ex (0.01 sec units)
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4: 0 m V  Excitation

12: Thermocouple Temp (DIFF) (P I4) ;J Type Thermocouple on Multiplexer 
1: 1 Reps
2:1  2.5 m VSlow  Range
3: 3 DIFF Channel
4 :4  Type J  (Iron-Constantan)
5: 3 RefTem p (Deg. C) Loc [  RefTemp ]
6: 6 — Loc [ PVTem pIJC ]  ;This input location is indexed (—) with the loop
7; 1 Multiplier
8 :0  Offset

73. EWTPPj;

14: Do (P86) .’Deactivating the Multiplexer 
1:54 Set Port 4 Low

; Following is the energy metering

15: SDM-SW8A (P102) ;Fnergyfor M a in s jn
1: 1 Reps
2: 0 SDM Address
3: 2 Counts function
4: 1 SDM-SW8A Starting Channel
5 :14  Loc [  MainlkWh ]
6: 0.011542 Multiplier ; WattNodeModel 3Y-480, CTSize 200A, in KWh 
7: 0 Offset

16: SDM-SW8A (P102) ; Energy fo r  Mains _Out 
1: 1 Reps
2: 00 SDM  Address
3: 2 Counts function
4: 2 SDM-SW8A Starting Channel
5: 15 Loc [  MainOkWh ]
6: .011542 Multiplier ; WattNodeModel 3Y-480, CT Size 200A, in KWh 
7:0.0 Offset

17: SDM-SW8A (PI 02) ; Energy fo r  Dispenser (new model, same parameters) 
1: 1 Reps
2: 0 SDM  Address
3: 2 Counts function
4: 3 SDM-SW8A Starting Channel
5 :1 6  Loc [  DispkWh ]
6: 0.002885 Multiplier ; WattNodeModel 3Y-480, CT Size 50A, in KWh 
7. 0

IS: SDM-SW 8A (P102) : Energy fo r  P V  generation
1: 1 Reps
2: 00 SDM  Address
3: 2 Counts function
4: 4 SDM-SW8A Starting Channel
5 :1 7  L oc[P V kW h J
6: .001 731 Multiplier ; WattNodeModel 3Y-480, CT Size 30A, in KWh 
7:0.0 Offset
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19: SDM-SW8A (P102) .Energy fo r  Unit I 480 V (formerly Unit4)
1: 1 Reps
2: 0 SD M  Address
3: 2 Counts function
4: 5 SDM-SW8A Starting Channel

6: .008656 Multiplier ; WattNodeModel 3Y-480, CT Size I50A, in KWh 
7; 0 Offset

20: SDM-SW8A (P102) : Energy fo r  Unit IA Chiller (formerly unit 4b chiller)
I: I Reps
2: 00 SD M  Address
3: 2 Counts function
4: 6 SDM-SW8A Starting Channel
5: 19 Loc [  UIAkWh ]
6: .005771 Multiplier ; WattNodeModel 3Y-480, CT Size lOOA, in KWh 
7: 0.0 Offset

21: SDM-SW8A (P102) . Energy fo r  Unit 1 240 V (formerly total Unit 1 energy) 
1: 1 Reps
2: 0 SD M  Address
3: 2 Counts function
4: 7 SDM-SW8A Starting Channel
5: 20 Loc [  U1240kWh J
6: .00075 Multiplier ; WattNodeModel lP-240. CT Size 30A. in KWh 
7: 0 Offset

22: SDM-SW8A (PI 02) ; Spare Wattnode (formerly Energy fo r  Unit3) 
1: 1 Reps
2: 00 SD M  Address 
3: 2 Counts function
4: 8 SDM-SW8A Starting Channel
5:21 Loc [  SparekWh ]
6: 0.0025 Multiplier ; WattNodeModel lP-240. CT Size lOOA, in KWh 
7: 0.0 Offset

;End o f  energy metering

23: Volt (SE) (PI) -.Ambient temperature measurement 
1: 1 Reps
2: 25 2500 m V 60 Hz Rejection Range
3: 7 SE Channel
4 :8  Loc [ A m bTjC  ]
5: 0.1 Multiplier . Probe Model CS500. Degrees Celsius 
6: -40.0 Offset -.Probe Model CS500. Degrees Celsius

24.' (SE) (PI) ; Relative Humidity measurement
1: 1 Reps
2.'23 2500 m V 60 Hz Rejection Range
3.' 8 SE Channel
4. P L oc[R H _P E R  ]
5: 0.1 Multiplier -.Probe Model CS500. Percent
6: 0 Offset
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23.-
1:9  X L o c[R H _ P E R  ]
2 - 3 > =

3: 100 F  
4: 30 Then Do

26- fP&P;
1:9  X L o c f R H J ’ER ]
2 . 4 <
3: 108 F
4: 30 Then Do

27. Z=F%7(X%(?3Q;
1: 100 F
2: 0 n, Exponent o f  10
3 :9  Z L o c[R H _ P E R  ]

2& fW(PP3;

2P. fM(7(?P3;

30: Pulse (P3) ; Wind Speed Measurement 
1: 1 Reps
2: 1 Pulse Channel 1
3: 21 Low Level AC, Output Hz
4: 10 Loc [  W S jn s ]
5: 0.75 Multiplier : Model 03001 Wind, m/s
6: 0.2 Offset ;Model 03001 Wind, m/s

3/.- 7f(% <=>79(?8P;
1: 10 X  Loc f  WS ms J
2.- 4 <
3:0.21 F
4:30  Then Do

32- Z = F x /0 ^ fP 3 0 ;
1:0  F
2: 0 n, Exponent o f  10
3 :1 0  Z Loc [  WS ms J

33. Ew/(?P3;

34: Pulse (P3) ;This is hydrogen generation 
1: 1 Reps
2: 2 Pulse Channel 2
3: 21 Low Level AC, Output Hz
4: 22 Loc f  H2Gen_kg J
5: 0.01667 Multiplier 
6:0.0 Offset

35: Excite-Delay (SE) (P4) ; Wind Direction Measurement 
1: 1 Reps
2: 5 2500 m V Slow Range
3 :9  SE Channel
4: 1 Excite all reps w/Exchan I
5 :2  Delay (0.01 sec units)
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6:2500 m V Excitation 
7: ] 1 Loc [  WindDir_D ]
8: 0.J42 Multiplier ; Model 03001 Wind, CRIOX 
9: 0 Offset ; Model 03001 Wind, CRIOX

I: I I  X L o c  [  WindDir D J
2 .3  > =
3. 360 F
4 :30  Then Do

37.- Z=F% yO' :̂ (P3Q;
1 :0  F
2: 0 n, Exponent o f  10
3:11  Z Loc [  WindDir_D J

3&

39: Volt (Diff) (P2) , Incident Solar Radiation measurement 
1: I Reps
2 :2 2  7.5 m V 60 Hz Rejection Range
3: 6 DIFF Channel
4: 12 Loc [ IncRad_W ]
5: 1 Multiplier : Model LI200X pyranometer, no multiplier
6: 0 Offset

40- (P8PV
1: 12 X L o c  [ IncRad_W ]
2. 4 <
3.- 0 F
4: 30 Then Do

41: Z= F x lO^n (P30)
1: 0 F
2: 0 n. Exponent o f  10
3:12  Z  Loc [  IncRad W ]

42: End (P95)

43: Z=X*F (P37) . Convert raw incident radiation to M J  
1:12 X  Loc [  IncR adfW  ]
2: 0.012 F  ; Model LI200X, MJ/m'^2, scan interval(60s)*0.0002 
3: 13 Z L oc [ IncRad_MJ]

44: Z=X*F (P37) . Convert raw incident radiation to W 
1:12 X  Loc [  IncR adJV  ]
2.200 F,AWg/l/200A:ff%M''2
3: 12 Z  Loc [  IncRad_W ]

; This section converts our energy readings to instantaneous power
;and stores it in a new output location, multiply by 60 to get kW from  kWh/min

43- Z=T*FfP37;
1:14  X L o c  [ MainlkWh ]
2. 60 F
3: 23 Z L oc [ M ainlkW  ]
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46: Z^X *F (P 37)
1:15 X L o c  [  MainOkWh J
2. 60 F
3: 24 Z  Loc [  MainOkW J

47.- Z=%*F(F37;
1:16  X L o c  [DispkW h ]
2 - 60 F
3: 25 Z  Loc [ DispkW  J

48. Z=%*F(F37)
1:17 X L o c[P V kW h  J
2. 60 F
3.26 ZAoc/^FMtfF y

4P- Z=%*F(?37;
7.78 %7,oc/^[77480tfM;y
2. 60 F
3.-27 ZAoc/^[77480t^ 7

50: Z=X*F(P37)
1:19  X  Loc [U IA kW h J
2 - 60 F
3.28 ZAoc/^[77,4t^ 7

51: Z=X*F(P37)
7.-20 %Aoc/^[77240tfM; 7
2 - 60 F
3. 2P Z7,oc/^[77240tiy y

32. Z=%*F(F37)
1:21 X L o c  [  SparekWh J
2. 60 F
3: 30 Z  Loc [  SparekW J

;End o f  energy to power conversions

53: I f  time is (P92)
1: 0 Minutes (Seconds —) into a
2: 1 Interval (same units as above)
3: 10 Set Output Flag High (Flag 0)

54: Set Active Storage Area (P80)'^15853:Now start writing data to output locations 
1: 1 Final Storage Area 1 
2: 101 Array ID

55: Real Time (P77)M 812
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

56: Sample (P70)^28896 
1: 1 Reps
2 :5  Loc [O P E N  J

57: Average (P71)^19346 
1: 1 Reps
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2: 6 Loc [ PVTem pI_C]

58: Average (P71)^31813 
1: 1 Reps
2: 7 Loc [ PVTemp2j C J

59: Average (P71)^18495 
1: 1 Reps
2 :8  Loc [  Am bTjO  ]

60: Sample (P70)^l 7501 
1: 1 Reps
2 :9  Loc[R H _P E R  ]

61: Average (P71)^14120 
1: 1 Reps
2: 10 Loc [  W S jns ]

62: Sample (P70)^19815 
1: 1 Reps
2: 11 Loc [  WindDir_D ]

63: Average (P71)^l3251 
1: 1 Reps
2: 12 Loc [  Inc Rad_W  J

64: Resolution (P78) ;Set to high resolution fo r  radiation and energy output 
1: 1 High Resolution

1: 1 Reps
2: 13 Loc [  IncRad M J]

66: Totalize (P72)^16263 
1:8  Reps
2: 14 Loc [  MainlkWh J

67.- 7'oWize(F72;^24387
1: 1 Reps
2: 22 Loc [ H2Gen_kg ]

68: Resolution (P78) ;Set back to low resolution 
1 :0  Low Resolution

6P. &mp/g(P7C9^/P082
1 :8  Reps
2:23  Loc [  M ainlkW  ]

70.
1: 0 Minutes (Seconds —) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High (Flag 0)

71 : Set Active Storage Area (P80)^1261 
1: 1 Final Storage Area 1 
2: 102 Array ID
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72. Dme (f77;/\30382
I: 1220 Year,Day,Hour/Minute (midnight = 2400)

73: Minimum (P74)'^6336 
1: 1 Reps
2: 0 Value Only
3: 1 Loc [ Batt_Volt]

74: Sample (P70)^14555
1: 1 Reps
2: 2 Loc [ Prog_Sig ]

*Table 2 Program
01: 10.0000 Execution Interval (seconds)

1: Serial Out (P96)
1:71 Storage Module

*Table 3 Subroutines

End Program
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Matlab Data Daily Summary Computer Code

function datatodata

%this program will take the fin a l storage .dat file  and
%output fo r  each day the same daily data from  the split program such as the
%average/max temperature, wind speed, and power usage numbers....
%reading the comma data from  the data logger
datalogger = csvreadfHydrogen StationJinal_storage_5.dat',0,0);

day = datalogger(:,3); 
lo f=  length(day);

%ohere is how to get the correct day to collect and output to the filename

todaynow = now; 
yesterday = todaynow -1 ; 
gooday = datestr (yesterday);

%need to get realgoodday as the day o f  the year 1-365, not between 1-30 or 
yo31 because the program is running at 5am, the round will be sure to be 
%yesterday

yestrnd  = round(yesterday);
realgoodday = yestrnd - 733408; % it must actually be the number o f  the day

mymonthstr = datestr (yesterday, 'mmmm '); 
myyearstr = datestr(yesterday, 'yyyy'); 
mydaystr = datestr(yesterday, 'dd); 
myfilestr = [mymonthstr, myyearstr,'.dat];

%here going to decrease the value o f  x in datalogger(x,3) until its value 
%is equal to the value o f  the daytocollect the do until it is not equal

i=lof; %length o f  file 
while datalogger(i,3) ~= realgoodday 

i = i-1; 
end

i = i-1; %here have to get rid o f  the first line which is from array 
%102 in the data file  

index = 1;

while datalogger(i,3) ==  realgoodday
%output each desired column to its new array here fo r  each day.
%output array is actually in decending order starting at the end o f  the 
%day and going until the beginning - doesn't matter fo r  sums and 
%averages.
desireddatafile(index, 1) = datalogger(i,3); %day 
desireddatafile(index,2) = datalogger(i,4); %time 
desireddatafile(index,3) = datalogger(i,8); %temperature 
desireddatafile(index,4) = datalogger(i,10); %wind speed 
desireddatafile(index,5) = datalogger(i,12); %available energy 
desireddatafile(index,6) = datalogger(i,14); %mains in kWh 
desireddatafile(index,7) = datalogger(i,15); %mains out kWh
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desireddatafile(index,8) = datalogger(i,16); %dispenser kWh 
desireddatafile(index,9) = datalogger(i,26); %pv kW  
desireddatafile(index,10) = datalogger(iJ 7); %pv kWh 
desireddatafile(index,l 1) = datalogger(i,18); %Unit 1 480 kWh 
desireddatafile(index, 12) = datalogger(i,19); %Unit lA kWh 
desireddatafile(index,13) = datalogger(i,20); %Unit I 240 kWh 
desireddatafile(index, 14) = datalogger(i,21); %spare kWh 
desireddatafile(index, 15) = datalogger(i,22): %hydrogen produced 
i = i-1;
index = index + 1; 

end
%need lenght o f  the file  to get all the data from  the one day. 

lof2 = length(desireddatafile(;,l));

%this looks at the data fo r  one day to get the values want to output
averagetemp = mean(desireddatafiile([l :lof2],3));
maxtemp = max(desireddatafile([l :loJ2],3));
averagews = mean(desireddatafile([ 1 :loJ2] ,4)) ;
maxws = max(desireddatafile([l :loJ2],4));
totenergyav = sum(desireddatafile([l:lof2],5))/1000.0/60.0 ;
mainincol = desireddatafile/:, 6);
mainsin = sum(desireddatafile([l ;loJ2],6));
mainsout = sum(desireddatafile([l :lof2],7));
dispenser = sum(desireddatafile([l ;loJ2] ,8));
pvmax = max(desireddatafile([l ;lof2],9));
pvpower = sum(desireddatafile([l:lof2],10));
unitl480  = sum(desireddatafile([l;lof2],l 1));
unit la  = sum(desireddatafile([l:lof2],12));
unitl240  = sum(desireddatafile([l dof2],l 3));
Spare = sum(desireddatafile([ 1 :lof2] ,14));
H2Gen = sum(desireddatafile([ 1 :lof2], 15));

%this makes one row o f  the data to output fo r  the day

rightnow = now; % this part gets the date
y  est = rightnow -1 ; % this way i f  day you are collecting is first o f  
mynewvector = datevec(yest); %month, then it won't show 0 as the day 
dailydata(l,1) = mynewvector(3); % it will show 30 or 31

dailydata(l ,2) = maxtemp; 
dailydata(l ,3) = averagetemp; 
dailydata(l ,4) = maxws; 
daily data (1,5) = averagews; 
dailydata(l,6) = totenergyav; 
dailydata(l ,7) == mainsin; 
dailydata(l ,8) = mainsout; 
dailydata(l ,9) = dispenser; 
dailydata(l,10) = pvmax; 
dailydata(1,11) = pvpower; 
dailydata( 1,12) = unitl480; 
dailydata(l,13) = unitla; 
dailydata(l,14) = unitl240; 
dailydata(l,15) = Spare;
dailydata(l ,16) = dailydata(l,12) + dailydata(l,14); 
dailydata(l,17) = H2Gen;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Creating the data file  and bar chart

% if myfilestr exists, then append the file  with the row o f  data from  
%dailydata, i f  not, then create a new file  fo r  the next month 

fiid=0;
%fopen(['N:\htdocs\wwwhydrogen\dataV,myfilestr], 'w'); 

f id  = fo p e n ffN:\htdocs\wwwhydrogen\data\',myfilestr], 'r');

i f  f id  == -1
%create the file  here because it doesn't exist
pleasework =fopen(['N:\htdocs\wwwhydrogen\dataV,myfilestr], 'w');

fprintf(pleasework, '%s\r', 'Day,MaxTemp.,Avg. Temp.,MaxWindSpeed,Avg. WindSpeed, TotalAvailEnergy,Ma 
inslN,MainsOUT,Dispenser,MaxPVOut,PVOUT, Unit!480, Unit 1 A, Unit!240,Spare, Unit] Tot');

%fprintf(pleasework,); 
fprintf(pleasework, '%s\r', 'of 

Month, Deg. C, Deg. C, m/s, m/s, k Wh/m^2, kWh,k Wh, k Wh, kW,k Wh, k Wh, kWh, k Wh, kWh, kg') ; 
fprintf(pleasework, '%O.Of%s',dailydata(l,I), ', ');
%loop to print out the firs t day's data 
m=2;
fo r  m = 2:16

fprintf(pleasework, '%0.2f%s',dailydata(l,m), ', '); 
m = m + J; 

end
%get rid o f  last comma and add a return 

fp r in tf (pleasework, '%0.3fir', dailydata(1, m)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else i f  f id  >=I

% if the loop goes here then we are ju st adding a line o f  text to an 
%existing file, and hopefully the bar plot will update as well.
%need to append the file
pleasework! = fopen(]'N:\htdocs\wwwhydrogen\data\',myfilestr], 'a'); 
fprintf(pleaseworkI, " k o .  Of %s ', dailydata(1,1), ', ');
%loop to print out the additional day's data 
m=2;
fo r  m = 2:16

fprintf(pleaseworkl, '%0.2f%s',dailydata(l,m), ', '); 
m = m+1; 

end
%get rid o f  last comma and add a return 
fprintf(pleaseworkl, '%0.3fr',dailydata(l,m)); 

end

end
% reading fro m  the data fi le  to make the bar charts 

fclose('aH'):

data! =cswead(['N: \htdocs\wwwhydrogen\data I myfilestr], 2,0); 
dayl= datal(:,l);
Powerln^^datal(:, 7);
PowerOut=datal(:, 8);
NetPower=PowerOut-PowerIn; 
s=]PowerIn,PowerOut,NetPower] ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%BARCH ART making

BarChart =figure('Position’,[I50 150 480 360], 'PaperPosition',]!50 150 4.8 3.6]);
%% Create axes
axes! = axes('FontSize',8, Position',[0.1308 0.146 0.7092 0.766], 'XGrid', 'on',...

'Box ', 'on ', 'Parent ', BarChart); 
axis(axes 1, [0 32 0 134.6]); 
xlim(axesl,[0 32]);
set(axes 1 ,'xtick',[0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30]); 
set(axesl,'YLimMode', 'auto');
%need to put the month's name in the title here
title(axesI,[mymonthstr, '', myyearstr, ' Net System Power']);
%need add the month's name in the x label date 
xlabel(axesl,['Day o f ,  mymonthstr, ' ', myyearstr]); 
ylabel(axesI, 'Power (kWh)'); 
hold(axesl ,'alT);
%% Create bar 
bar(s, 'group')
%% Create legend 
legend I = legend(... 

axesl, ('Equipment Power Use', 'PVPower Output', 'Net Power to Grid'},...
'FontSize',5,...
'Position',[0.1233 0.006025 0.7215 0.04167],...
'Orientation', 'horizontal');

%naw want to add cade that saves the file  as a picture with the same 
%filename as a .png
saveas(BarChart, ]'N:\htdocs\wwwhydrogen\data\',mymonthstr, myyearstr, '.png'],'png'); 
close(BarChart);

END OF PROGRAM
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Matlab HFS Simulation Code

This program is the simulation o f  the HFS, it has inputs from  the TMY2 weather data and hydrogen 
equipment performance

clear all 
close all 
clc 
tic

% This program gives input fo r  each time step to different components and 
% received output

% POWER CONDITIONING ( CONVERTER AND INVERTER )
%
% ELECTROLYZER

% FUEL CELL 
% hydext=0;
hydext=0.0667 + 0.1886;
%— ................size o f  tank.........................................
tksiz= 2.4; % Volume o f  storage vessel [cu.m] 
ratedJc=1000; % Watts 
ncells _fc=24;
%----------------------------------------------------------
arpvp= 4; % Number o f  PV-modules in parallel in PV-Array [-] 
arpvs= 24; % Number o f  PV-modules in series in PV-Array [-]
%    .........
glevnext=0.6; minlev=0.05; maxlev=0.95;

hrelec=0;
hrfc=0;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% subroutine perez calculates solar radiation on tilted surface and ambient 
% temperature data 
delt=l; % min
parsim (l) = 745; % Tstart [> = l]  
parsim(2)=1417; VoTstop [<=8759] 
parsim(3)=delt; % delta t(min) 
parsim(4)=4; % tracking type 
parsim(5)=0; % slope; slope o f  the collector
parsim(6)=0; % azm: surface azimuth angle due south=0, east -ve, west -tvej 
parsim(7)=30; % betad: slope o f  tracking axis
parsim (8)-0; % tazm: tracking axis angle due south=0, east -ve, west +vej

[n,LTgt,Tambin, loadsys, wspeed]= perez(parsim); 
tt= [l:l:n]';

, loadsys=loadsys;
%   ......................
%--------  Array parameters...................................... —
parpv(l)=  arpvp; % Number o f  PV-modules in parallel in PV-Array [-] 
parpv(2)= arpvs; % Number o f  PV-modules in series in PV-Array [-]
%  - --------------------------
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% Sharp 175 Watt
%— ....................Manufacturer's data-----------------------------
parpv(3)= 72; % Number o f  cells in series
parpv(4)= 5.55; % Isc Short circuit current at reference conditions [Amps]
parpv(5)= 4.95;% Imp Current at maximum power point — " [Amps]
parpv(6) = 44.4;% Voc Open circuit voltage  ...................[Volts]
parpv(7)= 35.4;% Vmp Voltage st maximum power point — "------[Volts]
parpv(8)= 0.00035l*parpv(4);
%> uisc Temp, coefficient o f  short circuit current [Amps/K]
parpv(9)= -0.093775;% uVoc Temp, coefficient o f  open circuit voltage [Amps/K]
parpv(10)= 1.3009; % Area (Single P V  panel) [m^2]
% Based on material from  which pv  panels are made 
p a rpv(ll)=  1.12; %o egap 
parpv(12)= 153.7; %o Rsh shunt resistance 
% Conditions at noct
parpv(13)= 298; % Tanoct Ambient Temp at noct [K]
parpv(14)= 320; %o Tnoct cell temp at noct [K]
parpv(15)= 1000; %o gnoct [W/m2]
%> Calculation o f  cell temperature parameters 
parpv(16)= -3.5588; % a Constant from  P V  design pro  
parpv(l 7)= -0.0752;% b Constant from  PV  design pro  
parpv(18)= 2; % dt Tc-Tm evaluated at 1000 w/m2

ratedpv= parpv(l) *parpv(2) *parpv(5) *parpv(7); 
rati= parpv(5)*parpv(l); 
ratv= parpv(7)*parpv(2);

0/̂  *************** y **************
% *************** Power conditioning (Inverter) ****************
%) Parameters
parpc(l)=  1 ; % 1 ̂ connected to power source/ 2=connected to load
parpc(2)= 1500; % Nominal power [W] (approx. 20 %o less than rated power)
parpc(3)= 5.846e-3;% Idling constant (popn= po/pn) 
parpc(4)= 2.06; %> set point voltage [V]
parpc(5)= 138.42; %> Internal resistance cons tant (ripn= ri*pn) [v^2] 
parpc(6)= 1; %o Number power conditioner modules connected in parallel
parpc(7)= 0; %o Auxiliary power needed to operate power connditioner [W]

0/̂  *********************** g*************************

%> hydrogen vehicle characteristics 
mileage = 16; %omiles/kg
dailydistance = 57; %omiles driven per day with two fills
hperday = dailydistance/mileage; % total hydrogen needed per day
hperfdl = hperday/2; %> iffd l vehicle twice need ha lf daily hydrogen
numtanks = hperfdl/2.233133; %2.233133 kg per tank at 350 bar
%3 buffer and dispenser tank initial levels
glevbuf= I;
glevdis = l;

***********^^^^***************

inpv(l) = l;
Tnow=75;
nini=l; %> fo r  storage tank 
Toldfc=70;
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fo r  i=l:n
dayhour(i)=LT(i)-((ceil(LT(i)/24)-])*24);
% Inputs fo r  P V  panels 
inpv(2)=i; 
inpv(3)=gt(i): 
inpv(4)= Tambin(i): 
inpv(5)= wspeed(i);

%outa=pv_perf(inpv,parpv): % PV  Calculations 
outa=pvperf5p(inpv,parpv): % PV  Calculations 
outpv(:,i)=outa;
outp=outpv'; % output from  Photovoltaic panels

% Output from  p v  panels 
pvi=outp(:,l); % Current [Amps] 
pvv=outp(:,2); % Voltage [Volts]
pvp=outp(:,3); % Power [Watts]
pveta=outp(:,4); % Efficiency
pvT=outp(:,5); % Temperature o f  PV-Cell (and PV  Array) [K]
pvisc=outp(:, 6): % Short circuit current [Amps]
pwoc=outp(:, 7); % Open circuit voltage [Volts]

% Inverter

pwcv=208; % Voltage fo r  inverter
pwcp(i)=0.92*pvp(i); % At rated conditions (pv output 16.8 kw after inverter 14 kw) 
pwci=pwcp(i)/pwcv;

% Transformer

pwcv=480; % Voltage fo r  inverter
pwct(i)=0.92*pwcp(i): % At rated conditions (pv output 16.8 kw after inverter 14 kw) 
pwci=pwct(i)/pwcv;

% Equipment Power usage (2 units o f  electrolyzer, Chiller, heater)

0/̂  gyid  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Parameters 
parbb(l)=  480; % Voltage on mini grid
% Inputs
inpbb(l)= pwct(i); % Power from  photovoltaics (PV) system [W] 
inpbb(2)= loadsys(i);

% Note
% (0-off, 1-on) Electrolyzer operating switch 
% (0-off, 1-on) Compressor

cfrac=l;
oplev=0.9; % Operating level o f  dispenser tank 

i f  g levbuf >= 0.95 % Buffer Storage tank is fu ll
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pelec(i,])=0; % all power goes to grid 
hyprod(i,])=0; % kg/hour o f  hydrogen

i f  glevdis > = oplev
cctrl=0; % compressor o ff  
pcomp(i, l)=0; % all power goes to grid 

else
cctrl=l: % compressor on
pcomp(i,I)=2000*cfrac/(delt/60); % compressor on 
%check above statement placing 

end
%pgrid(i)=pwct(i)-pelec(i)-pcomp(i): % +ve goes to the grid  

else % Buffer Storage tank is empty
pelec(i,l)=39000; % pgridm=39 kW
hyprod(i, l)=0.5392/(60/delt); % kg/hour o f  hydrogen into buffertank 
btcap=0.702; % Kg o f  hydrogen 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i f  hyprod(i, 1 ) > btcap*(I-glevbuf) 
hyprod(i,l) = (l-glevbuJ)*btcap/(60/delt); 
pelec(i, I)=39000*(l-glevbuf); 

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
i f  glevdis > = oplev

cctrl=0; % compressor o ff 
pcomp(i,I)=0; 

else
cctrl =1; % compressor on 
pcomp(i,l)=2000*cfrac; 

end
end

^  * * * * * * * * * * * * *  fQ y jJç  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

btcap=0.702; % Kg o f  hydrogen 
i f  g levbuf > = 0.5 & cctrl==l 

mcompin(iJ)= 2.67*cfrac/(60/delt); % mass flow  rate out o f  tank fo r  compressor [kg/hr]

i f  mcompin(i)>btcap*glevbuf
m com pin(ij) = glevbuf*btcap/(60/delt); 
pcom p(i.l) = 2000*glevbuf;

end
else

mcompin(i,l) = 0 ; % Volumetric flow  rate out o f  tank fo r  dispenser fNm'^3/hr]
end
glevbuf= g levbuf + (hyprod(i)/btcap)-(mcompin(i)/btcap); 
glevelb(i, l)=glevbuf;

% ******* Dispenser storage tank ******************
dtcap=6.6; % (kg) o f  hydrogen in dispenser tank
i f  dayhour(i) = =  8 | dayhour(i) == 12 % time is 8 am and 12 pm  fi l l  the tanks according to shift times 

i f  glevdis > 0 .6
hydisp(i)= hperfill; % kg o f  hydrogen used by vehicles 

else
hydisp(i)=0; % no dispensing 

end 
else

hydisp(i)=0; % no dispensing
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end
i f  cctrl= = I % compressor is on

glevdis = glevdis + (mcompin(i)/dtcap)-(hydisp(i)/dtcap); 
else

glevdis= glevdis -(hydisp(i)/dtcap);
end
gleveld(i) =glevdis;
0/ /  * * * * * * * * * * * * * * * * * * * * * * *  ’H’H’H®H’H 4 < * * * * * * * * * * * * * s )

% calculate power usage
pgrid(i)=pwct(i)-pelec(i)-pcomp(i); % +ve goes to the grid

toe
i
end

subplot(331);plot(LT, pgrid) 
grid on
legendC Power from  PV  Panels )

xlabel('Time (M onths)),ylabel(Power W)
% xlim([0 8760]); set(gca,'XTick', mytick)
% feffgco, TTicAEote/', '2'. '3'. '4'. '3', '6', 7', '8', 'P', VO: V/ : '72^;
subplot(332);plot(LT, glevelb) 
grid on
legend]' buffer tank level ') 
title(")
xlabelfTim e (Months) ),ylabel('0-l ) 
subplot(333);plot(LT, gleveld) 
grid on
legend]' dispenser tank level )

xlabelfTim e (Months) ),ylabel('0-l ') 
subplot(334);plot(LT, hyprod) 
grid on
legend]' hydrogen production ') 

xlabelfTim e (Months) '),ylabelfkg')
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