
UNLV Retrospective Theses & Dissertations

1-1-2008

Implementation of JPEG compression and motion estimation on Implementation of JPEG compression and motion estimation on

FPGA hardware FPGA hardware

Ramakrishna Gopalakrishnan
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Gopalakrishnan, Ramakrishna, "Implementation of JPEG compression and motion estimation on FPGA
hardware" (2008). UNLV Retrospective Theses & Dissertations. 2347.
http://dx.doi.org/10.25669/f34t-2q5g

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/f34t-2q5g
mailto:digitalscholarship@unlv.edu

IMPLEM ENTATION OE JPEG COMPRESSION AND MOTION ESTIM ATION ON

FPGA HARDW ARE

by

Ramakrishna Gopalakrishnan

Bachelor o f Engineering
Anna University, Chennai, India

2006

A thesis submitted in partial fulfillment
o f the requirement for the

Master of Science Degree in Electrical Engineering
Department of Electrical and Computer Engineering

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

August 2008

UMI Number: 1460467

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1460467

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

July 24 . 20 08

The Thesis prepared by

Ramakrishna Gopalakrishnan

Entitled

"Implementation of JPEG Compression and Motion

Estimation of FPGA Hardware"

is approved in partial fulfillment of the requirements for the degree of

_______________ M aster o f S c ie n c e In E l e c t r i c a l E n g in e e r in g

Examination Committee Member

Exartination Cimmittee Member

Graduate College Faculty Representative

Examination Committee Chairv

o

Dean of the Graduate College

11

ABSTRACT

Implementation of JPEG Compression and Motion Estimation on FPGA Hardware

by

Ramakrishna Gopalakrishnan

Dr. Henry Selvaraj, Examination Committee Chair
Professor o f Electrical Engineering
University o f Nevada, Las Vegas

A hardware implementation o f JPEG allows for real-time compression in data

intensivve apphcations, such as high speed scanning, medical imaging and satellite image

transmission. Implementation options include dedicated DSP or media processors, FPGA

boards, and ASICs. Factors that affect the choice of platform selection involve cost,

speed, memory, size,power consumption, and case o f reconfiguration. The proposed

hardware solution is based on a Very high speed integrated circuit Hardware Description

Language (VHDL) implememtation o f the codec with prefered realization using an

FPGA board due to speed, cost and flexibility factors.

The VHDL language is commonly used to model hardware im putations from a top

down perspective. The VHDL code may be simulated to correct mistakes and

subsequently synthesized into hardware using a synthesis toofsuch as the xilinx ise suite.

The same VHDL code may be synthesized into a number o f sifferent hardware

architetcures based on constraints given. For example speed was the major constraint

when synthesizing the pipeline of jpeg encoding and decoding, while chip area and power

iii

consumption were primary constraints when synthesizing the on-die memory because of

large area. Thus, there is a trade off between area and speed in logic synthesis.

IV

ACKNOW LEDGEMENTS

Active support o f a wide variety o f professors from my department has helped my

learning and research on this thesis. They are Dr. Henry Selvaraj, Dr. M uthukumar

Venkatesan, Dr. Emma Regentova and Dr. Laxmi Gewah, who are all distinguished

professors in Electrical Engineering and Computer Science department at UNLV. They

shared their insights and allowed me to explore the concepts towards comprehensive

learning while constantly guiding towards focused research. I am fortunate to have Dr.

Henry Selvaraj willing to review early drafts o f the thesis and offer very constructive

criticism for improvement.

Arun Reddy Toomu and Nachiket Jugade, both colleagues and Graduate Assistants at

Electrical Department, UNLV provided me detailed feedback and provided essential

help. This effort would have been impossible without the active support o f my parents.

Their unstinting support and willingness to take the burdens and provide support all

through made all this possible. M y deep thanks to friends and my other family members.

TABLE OF CONTENTS

ABSTRACT...iii

ACKNOW LEDGEM ENTS.. v

LIST OF F IG U R E S ...viii

CHAPTER I ... I

IN TRODUCTION... .1

I . I Introduction to JPEG Compression and M otion Estim ation... I
1.2 Why FPG A ’s? .. 2
1.3 Steps Involved in Hardware Im plem entation...4

CHAPTER 2...6

JPEG COMPRESSION M OD U LE.. 6

2.1 Block D iagram ... 6

2.1.1 Discrete cosine transform ation... 7
2.1.2 Q uantization... 8

2.1.3 Run Length E ncoder... 10
2.1.4 Entropy and Variable Length C odew ord... 10
2.1.5 Huffman Encoding...11

CHAPTER 3... 15

MOTION ESTIM ATION M ODULE.. 15

3.1 Block D iagram ... 15
3.2 W hat is Motion E stim ation?... 16

3.2.1 Reference frame storage...17
3.2.2 Current frame storage..17
3.2.3 Reference frame control.. 17
3.2.4 Current Frame C ontrol... 18
3.2.5 SAD M odule... 18

CHAPTER 4 .. 20

HARDW ARE IM PLEMENTATION SETUP.. 20

VI

4.1 Virtex-4 B o a rd ... 20
4.2 Microcontroller Frame Grabber™ (uCFG™)..27

R E SU L T S.. 56

5.1 JPEG Compres sio n ..56
5.2 M otion Estim ation ... 58

CHAPTER 6 ...60

CONCLUSION AND FUTURE RECOM M ENDATIONS.. 60

BIBLIO G RA PH Y ..62

V ITA ..65

Vll

LIST OF FIGURES

Figure I JPEG Compression M odule.. 6

Figure 2 Uniform Q uantizer.. 9
Figure 3 Illustration of codeword generation in Huffman Coding.. 12
Figure 4 MPEG M odu le ... 15
Figure 5 Motion Estimator M odule.. 17
Figure 6 Hardware Implementation Setup ..20
Figure 7 Virtex-4 FX I2 Evaluation Board Block Diagram ..20
Figure 8 Configuration Logic B lo c k ... 22
Figure 9 PowerPC Processor.. 22
Figure 10 XCITE DCI Technology Advantages... 25
Figure I I Switch Configuration.. 26
Figure 12 Pin Configuration - Switches..27
Figure 13 uCFG High Level D iagram ..28
Figure 14 FIFO Read Point B uffer... 31
Figure 15 Grabbing Uncompressed F ield ... 34
Figure 16 Downloading Decimated Field..36
Figure 17 YCbCr to RGB Conversion ..37

Vlll

CHAPTER 1

INTRODUCTION

1.1 Introduction to JPEG Compression and M otion Estimation

A digital color image is a collection o f pixels with each pixel a 3-dimensionaI (3-D)

color vector. The vector elements specify the pixel’s color with respect to a chosen color

space; for example, RGB, YCbCr, etc [I, 2]. Joint Photographic Experts Group (JPEG) is

a commonly used standard to compress digital color images [7]. JPEG is "lossy,"

meaning that the decompressed image isn't quite the same as the one you started with.

(There are lossless image compression algorithms, but JPEG achieves much greater

compression than is possible with lossless methods.) JPEG is designed to exploit known

limitations o f the human eye, notably the fact that small color changes are perceived less

accurately than small changes in brightness. Thus, JPEG is intended for compressing

images that will be looked at by humans. If you plan to machine-analyze your images,

the small errors introduced by JPEG may be a problem for you, even if they are invisible

to the eye.

The temporal prediction technique used in M PEG video is based on motion

estimation. The basic premise o f motion estimation is that in most cases, consecutive

video frames will be similar except for changes induced by objects moving within the

frames. In the trivial case o f zero motion between frames (and no other differences

caused by noise, etc.), it is easy for the encoder to efficiently predict the current frame as

a duplicate o f the prediction frame. W hen this is done, the only information necessary to

transmit to the decoder becomes the syntactic overhead necessary to reconstruct the

picture from the original reference frame. W hen there is motion in the images, the

situation is not as simple. The problem for motion estimation to solve is how to

adequately represent the changes, or differences, between these two video frames.

1.2 Why FPG A ’s?

For many years, electronic hardware used for computation could be divided into two

main types, general purpose, and apphcation specific. General-purpose hardware is

exemplified by microprocessors such as the Intel 80x86 families and the M otorola 68000

family, which serve as the main processing unit in most personal computers. The

architecture o f these devices is fixed and includes specific hardware to implement a

limited, pre-defined, set of instructions. These microprocessors run programs, which are

lists o f instructions to be executed that are stored in external memory. New programs can

be loaded into memory from disk or other storage as needed. The software program

determines the computation to be done, not the hardware. However, general-purpose

computers can be very slow at performing certain kinds o f operations, such as those

involving floating-point calculations or complex mathematical functions.

Application-specific computing hardware performs functions very quickly, but the

price o f this speed is limited flexibility. As their name imphes, this type o f hardware can

only perform one function, or a group of closely related functions. The hardware

determines the type o f computation to be done. They cannot be reprogrammed to perform

entirely new functions that were not anticipated and included in the original design. If

application specific hardware is needed to perform a new function, then a new hardware

design will have to be created. Since this type of computation hardware is generally

implemented as carefully designed Application Specific Integrated Circuits (ASICs),

creating a new design takes a great deal of effort and knowledge. Since they are custom

ICs, they are also very expensive to fabricate, and it takes week or months to design a

new ASIC and have it fabricated.

In recent years, a new class of computing hardware has been gaining increasing

research interest. Configurable computing hardware has some o f the advantages of both

general-purpose and application-specific hardware. This type o f hardware may be based

on commercially available Field Programmable Gate Arrays (FPGAs), or on ICs

designed specifically for the purpose. In either case, this type o f hardware consists o f a

relatively large number of functional units with programmable interconnections. The

functionality o f the hardware is determined by how the interconnections between

functional units are configured, and in most, but not all, architectures, how the functional

units themselves are configured. By changing the configuration, the hardware can be

made to perform a completely different function. Since the configuration is specific to the

apphcation at hand, it is in effect a custom com puter for the particular design.

In order to map an application to this hardware, we must first design the hardware

configuration needed to perform the necessary functions. This is done with either

schematic capture or in this case with a Hardware Description Language (HDL) known

as VHDL. In either case, we must understand digital design and be able to separate an

apphcation into data processing and control elements. The design must then be

partitioned spatially, so that the design is spread across the resources available on the

FPGAs. If the design does not fit in the available FPGAs, then it must also be partitioned

temporally, by allocating functional units to different configurations o f the same FPGA.

1.3 Steps Involved in Hardware Implementation

The major components used in this implementation are

• PC for software interface (Active HDL 7.2 & Xilinx ISE 9.1)

• Virtex-4 FPGA board

• M icrocontroller Frame Grabber (uCFG)

• Camera

• RS-232 (9-pin) for serial interface between uCFG and Virtex-4 FPGA board

Firstly, an image frame is captured with the help o f a camera. The camera is

connected to a microcontroller frame grabber which calls for the image and stores it in its

EEPROM. The frame is then segregated into luminance(Y) and Chroma (Cr, Cb) signals.

The luminance and chroma values are stored in the FIFO buffer o f the frame grabber. The

Frame Grabber and the Virtex-4 FPGA board are connected serially with a 9 pin RS-232

null cable. The FPGA communicates with the Microcontroller (MCU) in the uCFG

through this serial cable with the help o f UART-Transmitter and Receiver modules.

W hen asked for, the microcontroller in the frame grabber communicates with FIFO

buffer and transmits bits (ie) the luminance or chrominance values are as requested by the

FPGA. The luminance or chrominance values are selected using a series of commands

which increase the address o f the read pointer accordingly. All the transmitted bits are

stored in a ROM which is instantiated in the FPGA. Once the MCU finishes transmitting

all the bits (8 x 8) the code developed in VHDL comes into the picture. These VHDL

modules are synthesized using XILINX ISE 9.1. All the necessary place and route

operations are done according the requirements and all the inputs and outputs are

assigned to the FPGA pins. Then the code is run on the stored pixel values and a

compressed bit stream o f 32 bits is received as the output. The outputs are seen on the

LED ’s on the FPGA board.

CHAPTER 2

JPEG COMPRESSION MODULE

The proposed JPEG standard aims to be generic and support a wide variety o f

applications for continuous-tone images [3]. To meet the differing needs o f many

apphcations, the JPEG standard includes two basic compression methods, each with

various modes o f operation. A DCT-based method is specified for “lossy” compression,

and a predictive method for “lossless” compression. JPEG features a simple lossy

technique known as the Baseline method, a subset o f the other DCT-based modes o f

operation.

2.1 Block Diagram

Input Im a g e -
RGB to
Y C bCf - Forward DCT : Q uantization ^

: Conversion :

Quantization
tab les -

: Differential i

Coder

VLC Encoder

Figure I JPEG Compression Module

Huffrnah
: Coding

Output Bitstream

Run Length :
: Encoder

Huffman
T ab les

2.1.1 Discrete cosine transformation

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N

image block is transformed from the spatial domain to the DCT domain. A related

transform, the discrete cosine transform (DCT), does not have complex values. The DCT

is a separate transform and not the real part of the DPT. It is widely used in image and

video compression applications, e.g., JPEG and MPEG. It is also possible to use DCT for

filtering using a slightly different form o f convolution called symmetric convolution.

DCT decomposes the signal into spatial frequency components called DCT coefficients

[5]. The lower frequency DCT coefficients appear toward the upper left-hand corner of

the DCT matrix, and the higher frequency coefficients are in the lower right-hand corner

o f the DCT matrix. The Human Visual System (HVS) is less sensitive to errors in high

frequency coefficients than it is to lower frequency coefficients. Because o f this, the

higher frequency components can be more finely quantized, as done by the quantization

matrix. Each value in the quantization matrix is pre-scaled by multiplying by a single

value, known as the quantizer scale code. This value can range in value from one to 112

and is modifiable on a macro block basis. Dividing each DCT coefficient by an integer

scale factor and rounding the results accomplishes quantization. This sets the higher

frequency coefficients (in the lower right comer), that are less significant to the

compressed picture, to zero by quantizing in larger steps. The low frequency coefficients

(in the upper left corner), are more significant to the compressed picture, and are

quantized in smaller steps. The goal o f quantization is to force as many o f the DCT

coefficients to zero, or near zero, as possible within the boundaries o f the prescribed bit-

rate and video quality parameters. Thus, since quantization throws away some

information, it is a lossy compression scheme.

The data compressed at the transmitter needs to be decompressed at the receiver.

IDCT is used to decompress DCT compressed data in the decoder. DCT and IDCT are

two o f the most computation intensive functions in compression. Therefore, a fast and

optimized DCT/IDCT implementation is essential in improving the performance o f the

video coder and decoder.

2.1.2 Quantization

The first processing step breaks the image into a stream of 8 x8 blocks o f pixels and

transforms these grayscale values into the frequency domain using a Forward DCT

(FDCT) [6]. Transforming the coefficients into the frequency domain causes most o f the

energy to reside in the DC and low frequency terms. This occurs because pixel values do

not vary much within such a small region and in general yields greater compression

ratios. The output o f the FDCT results in a set o f 64 basis-signal amplitudes. These

amplitudes, or coefficients, are then uniformly quantized with a 64 element quantization

table (QTABLE).

o/p

reconstruction
levels
(o/p) ^ • r̂

d ead zone
o/p zero

for i/p [-d,,di]

decision levels
(I/p levels)

- 1 -1----------------- i/p f
di d: dj

mid tread er
for ((dzda]

i
—e quantization level is r ̂

quantization is lossy

Figure 2 Uniform Quantizer

For 12-bit imagery, each element o f the QTABLE can be in the range o f 1 to 4095.

This value specifies the scale factor, or step size, that is applied to the corresponding

coefficient. Scaling the coefficients with the QTABLE results in the greatest source of

pixel reconstruction error in JPEG, but also provides the greatest amount o f compression.

After quantization, the resulting values are rounded to the nearest integer. Finally, the

coefficients are entropy encoded using either Huffman coding or arithmetic coding.

The amount o f compression is controlled by quantizing the coefficients resulting from

the FDCT. Our first attempt at finding an appropriate QTABLE for the cervical image set

looked at differences between the distribution o f the noise and signal coefficients. This

proved futile due to the high resolution o f the images relative to the 8 x8 DCT block size.

That is, since the resolution o f the image is so high, anatomical structure is spread among

many 8 x8 blocks. This results in blocks with low variance and shifts most o f the energy

into the lowest frequency component, known as the DC coefficient. This component is

labeled DC with due reference to the terminology o f direct current. The remaining

coefficients are all labeled as AC.

2.1.3 Run Length Encoder

Run-length Encoding or RLE is a technique used to reduce the size o f a repeating

string o f characters. This repeating string is called a run; typically RLE encodes a run of

symbols into two bytes, a count and a symbol. RLE can compress any type of data

regardless o f its information content, but the content of data to be compressed affects the

compression ratio. RLE cannot achieve high compression ratios compared to other

compression methods, but it is easy to implement and is quick to execute.

Compression is normally measured with the compression ratio:

I Compression Ratio = original size / compressed size : 1

In run-length encoding, repetitive source such as a string o f numbers can be represented

in a compressed form, for example,

1,4,5,LA5,1,4,5 I

can be compressed to form

3 0 4 5)

Thus, giving a compression ratio o f = 9/4:1 which is almost 2: 1.

2.1.4 Entropy and Variable Length Codeword

Uniform length codeword assignment is not in general optimal in terms o f the

required average bit rate. Suppose some message probabihties are more likely to be sent

than others. Then by assigning shorter codewords to the more probable message

10

possibilities and longer codewords to the less probable message possibilities, we may be

able to reduce the average bit rate.

Codewords whose lengths are different for different message possibihties are called

variable-length codewords. When the codeword is designed based on the statistical

occurrence o f different message probabilities, the design method is called statistical

coding. To discuss the problem o f designing codewords such that the average bit rate is

minimized, we define an entropy H as:

!=1

p.
where fis the probability that the message will be ai since it can be shown that

0 < H < h g 2 L

The entropy H can be interpreted as the average amount o f information that a

message contains. Suppose L=2, if P, = 0 and ? 2 = 0, H is zero and is the minimum

possible for L = 2. In this case the message is ai with probability o f 1 ; i.e. the message

contains no new information. At the other extreme, suppose ?i = ? 2 = 1/2. The entropy H

is 1 and is the maximum possible for L = 2. In this case the two message possibilities ai

and a2 are equally likely. Receiving the message clearly adds new information.

2.1.5 Huffman Encoding

It is a lossless data compression algorithm which uses a small number o f bits to

encode common characters. Huffman coding approximates the probability for each

11

character as a power o f 1 / 2 to avoid compHcations associated with using a non-integral

number o f bits to encode characters using their actual probabilities.

Huffman coding works on a list o f weights building an extended binary tree

with minimum weighted path length and proceeds by finding the two smallest w"s, wi and

*-̂'2, viewed as external nodes, and replacing them with an internal node o f weight + ^‘2 .

The procedure is them repeated stepwise until the root node is reached. An individual

external node can then be encoded by a binary string o f Os (for left branches) and Is (for

right branches).

Messege Code Probabliry

0 p<l = —
k
J 0 0 / 1

■ ^11 (0
/

1 / /
a , 1110 y

I d /
101 p== * I / 1

* I /
1 4/

a. 1111 ^ . 7' ,*)

Figure 3 Illustration o f codeword generation in Huffman Coding

An example o f Huffman coding is shown in Figure 3. In the example L = 6 with the

probabihty for each message possibility noted at each node.

12

Message Codeword Probability

a i 0 Pi = 5/S

^ 2 1 0 0 P] = 3/32

a] 1 1 0 ? 3 = 3/32

3 4 1 1 1 0 P4 = 1/32

1 0 1 P5 = l/S

ag n i l Pg =1/32

In the step o f Huffman coding, we select the two message possibilities that have

two lowest probabilities. We combine them and form a new node with combined

probabihties. We assign 'O’ to one o f the two branches and '! ' to other. Reversing this

affects the codeword but not the average bit rate. We continue with this process until we

are left with one message with probability '!'. To determine the specific codeword

assigned to each message possibility, we begin with last node with probability 'T, follow

the branches that lead to the message possibility o f interest and combine the O's and I's on

the branches.

For example, 34 has codeword 1110. To compare performance o f Huffman coding

with the entropy H and uniform length codeword assignment for the above example, we

13

compute average bit rate achieved by uniform length codeword, Huffman coding and the

entropy respectively.

14

CHAPTER 3

M OTION ESTIM ATION MODULE

3.1 Block Diagram

SUBTRACTOR
QUANTIZED DCT

COEFFICIENTS

VIDEO
OUT

MOTION
VECTORS

IDCT

DCT

FRAMES (2)

INPUT

COLOR

MOTION
ESTIMATOR

MOTION
COMPENSATOR

HUFFMAN/RUN
LENGTH CODER

Figure 4 MPEG Module

15

3.2 W hat is M otion Estimation?

M otion estimation is the processes which generates the motion vectors that determine

how each motion compensated prediction frame is created from the previous frame.

Block M atching (BM) is the most common method o f motion estimation. Typically each

macroblock (16x16 pixels) in the new frame is compared with shifted regions o f the

same size from the previous decoded frame, and the shift which results in the minimum

error is selected as the best motion vector for that macroblock. The motion compensated

prediction frame is then formed from all the shifted regions from the previous decoded

frame.

BM can be very computationally demanding if all shifts o f each macrohlock are

analyzed. For example, to analyze shifts o f up to ±15 pixels in the horizontal and vertical

directions requires 31 x 31 = 961 shifts, each of which involves 16 x 16 = 256 pixel

difference computations for a given macroblock. This is known as exhaustive search BM.

Significant savings can be made with hierarchical BM, in which an approximate motion

estimate is obtained from exhaustive search using a low pass sub sampled pair of images,

and then the estimate is refined by a small local search using the full resolution images.

Sub sampling 2:1 in each direction reduces the number of macrohlock pixels and the

number o f shifts by 4:1, producing a computational saving o f 16:1.

16

Current Reference
frame control frame controlJ L

CufTBtlt
tam e storage

SAD

Referee
t a m e a c r ^ e

JJ
M otion vectors

Figure 5 M otion Estimator Module

3.2.1 Reference frame storage

This is the very important part o f this module. The current macroblocks are 16x16

blocks which contain the current frame information and have to be compared with the

reference macroblocks which are already stored.

3.2.2 Current frame storage

The current frame storage is done in a similar way as the reference frame storage. The

only difference is segregation has to be done for 16x16 macroblocks. It requires less

memory and is faster as each time only 256 bytes o f luminance pixels have to be read.

3.2.3 Reference frame control

This module is a sliding window controller which sweeps across the 32x32 search area

i.e. 1024 pixels. The Macroblock at each specific point in the sliding window is latched

and fed to the SAD module for further computation. The sliding window gives an

17

accurate account o f overall search area. The probability o f finding the best match

increases in this case.

3.2.4 Current Frame Control

This module is a 8 -byte Shift Register (SR) which shifts the 256 different luminance

values o f the current macroblock. As soon as all the 256 values have been clocked in the

shift register, all the values are latched into the 256in-256out structure, which then feeds

concurrently into the input o f SAD block. The synchronization is a bit complex but not as

complex as in the case o f logarithmic algorithms.

3.2.5 SAD Module

SAD module has inputs as reference and current macroblocks and outputs the motion

vectors XY-coordinates. An important metric used in motion estimation is the sum of

M-l N-\
absolute differences (SAD). { C { x + k , y + l) - R { x + i + k , y + j + l)) | . The absolute

t=0 /=0

difference operation can be implemented in several ways: serial, per column in parallel,

per row in parallel, and fully parallel. The implementation described in [5] focuses on the

SAD 16 operation that performs the SAD on one row o f a macroblock (16x1). All the

input values are 8 -bit unsigned binary numbers. By iteration or parallel execution o f the

SAD 16 operation, the complete SAD operation for the 16x16 macroblock can be

performed. First, the steps necessary to perform the 16x1 SAD operations in more detail:

• Determine the smaller o f the two operands: As suggested in [3, 4], it is only

necessary to determine whether (A' + B) produces a carry or not.

• Invert the smallest operand: If no carry was produced then B must be inverted;

otherwise, A must be inverted. This is done by utilizing an EXOR operation.
18

• Pass both operands to an adder tree: After inverting either A or B, the operands

must be passed to an adder tree. Thus, the values (A', B) or (A, B') are passed

further.

• Add a correction term to the adder tree: Also an additional correction term must

be added to the adder tree which is 16 in this case i.e. adding 1 to each o f the 16

blocks.

• Reduce the 33 addition terms to 2: All 33 addition terms must be reduced to 2

terms before the final addition can be applied. This can be done using an 8 -stage

carry save adder tree using 243 carry save adders.

• Add the remaining two terms using an adder: The final two addition terms are

added using an 8 -bit carry look ahead adder for the most significant bits. The

result is a 13-bit unsigned binary number. However, as stated in [4, 5], the most

significant bit o f this result can be disregarded resulting in a final 1 2 -bit unsigned

binary number.

19

CHAPTER 4

HARDW ARE IM PLEM ENTATION SETUP

SOFTWARE
PC

VIRTEX-4

RSÔBB
uCFG

Figure 6 Hardware Implementation Setup

4.1 Virtex-4 Board

RatoFtASH Xk/FwP 11% 32) i OSRAM
I Lispla»:

4

, X llinx VIrlBX-4.
. xc4vrxiibfrMa

Ck #& MCMF; <
+ Socket :

J Swiicrw®
"-►j mP (S'!

I RB-m

Figure 7 Virtex-4 FX12 Evaluation Board Block Diagram

20

4.1.3 Virtex -4 FPGA

The FPGA used in our implementation is a Virtex^'^-4 FPGA produced hy Xilinx.

Virtex™ -4 family FPGAs offer the functionahty and performance to address the widest

range of demanding applications. It has added enhancements that accelerate productivity

hy simplifying system design and providing the margin that makes it easy to achieve

design targets. The major elements o f the Virtex™ -4 FPGA are

Configurable Logic Blocks

PowerPC® Processor

Smart RAM

The Virtex^'^-4 FPGA features arrays o f CLBs arranged in columns surrounded on all

sides hy input/output blocks (lOBs). The CLB is optimized for area and speed for

compact high performance design. There are four shces per CLB which implement any

combinatorial and sequential circuit and each slice has 4-input look-up tables (LUT), flip-

flops, multiplexors, arithmetic logic, carry logic, and dedicated internal routing

21

Figure 8 Configuration Logic Block

The Virtex^'^-4 FPGAs provides up to two PowerPC 405, 32-bit RISC processor

cores in a single device. It has flexible system partitioning into hardware and software

which supports custom hardware acceleration and co processing (Control plane

processing.)

Figure 9 PowerPC Processor

22

The Virtex^^-4 Smart RAM hierarchies not only enables us to achieve compact

utilization and highest performance but can also configure any CLB Look-Up Table

(LUT) to work as a fast, compact, 16-bit shift register and implement pipehne registers,

buffers for video and wireless.

Virtex-4 FPGAs provide up to 960 user I/Os supporting over 20 single-ended and

differential electrical I/O standards to enable several parallel system interface standards

on one device. New ChipSync^^ technology built into every I/O block makes source-

synchronous interfacing to the latest high-speed components easy. Plus, powered with

XCITE technology, each I/O block deliver on-chip active I/O termination eliminating

external termination resistors to increase signal integrity, and save board space, and

reduce system cost.

To ensure reliable data transfer between a new generation o f high-speed devices,

hardware designers are turning to source-synchronous design techniques, in which the

component sending the data generates and issues its own clock signal along with the data

that it transmits. ChipSync technology simplifies component interface design with critical

built-in circuitry that is available in every Virtex-4 I/O. /O termination is required to

maintain signal integrity. W ith hundreds of I/Os and advanced package technologies,

external termination resistors are no longer viable. All Virtex-4 I/O structures include

third-generation Xilinx Controlled Impedance Technology (XCITE) on-chip active I/O

termination. These built-in circuits dynamically eliminate drive strength variation

resulting from process, temperature, and voltage fluctuations.

23

4.1.3 Clocks

The available clock sources on the Virtex-4 FX12 Evaluation board are shown below.

• Single-ended, 100 MHz Oscillator - FPGA pin “ADI 1”

• 8 -pin DIP Clock Socket - FPGA pin “AD 12”

The on-board 100 MHz oscillator is used as the clock source for all designs. The 8 -pin

DIP clock socket allows the user to supply their oscillator o f choice.

4.1.3 M emory

The Virtex-4 FX I2 Evaluation board is populated with both high-speed RAM and

non-volatile ROM to support various types o f applications. The board has 32 Megabytes

(MB) o f DDR SDRAM and 4 MB of FLASH.

XCITE DCI TECHNOLOGY ADVANTAGES

ADVANTAGE bETA ILS

2 "̂ generation Proven in the field sand used extensively by customers

technology

Lowers cost Fewer resistors, fewer PCB traces and smaller board area.

result in lower PCB costs.

Absolute I/O Flexibility Any termination on any I/O bank. Non-XCITE technology

alternatives deliver hmited functionality.

Maximum I/O Less ringing and reflections maximize I/O bandwidth.

Bandwidth

24

Immunity to temperature

and voltage changes

Eliminates stub

reflection

Increases system

rehabihty

Temperature and voltage variations lead to significant

impedance mismatches. XCITE technology

dynamically adjusts on-chip impedance to such variations

reducing and improving reliability.

Improves discrete termination techniques by eliminating the

distance between the package pin and resistor.

Fewer components on board, deliver higher reliability

Figure 10 XCITE DCI Technology Advantages

4.1.4 DDR SDRAM

Two Micron DDR SDRAM devices make up the 32-bit data bus. Each device

provides 16 MB o f memory on a single IC and is organized as 2 M egabits x 16 x 4 banks

(128 Megabit). The Virtex-4 FX I2 Evaluation Board can support larger devices with

addressing support for up to 256 MB (two I-Gigabit devices). The device has an

operating voltage o f 2.5V and the interface is JEDEC Standard SSTL_2 (Class I for

unidirectional signals. Class II for bidirectional signals). The -75 speed grade supports

7.5 ns cycle times with a 2 Vi clock read latency (DDR266B).

4.1.5 Flash M emory

Non-volatile data storage is provided in the form o f Flash memory. A single Intel

Strata Flash® device makes up the 16-bit data bus. This device provides 4 MB of

25

memory on a single IC and is organized as 2Megabits x 16 (32 Megabit). The device has

an operating voltage o f 3.0V

4.1.6 User I/O

Basic user I/O is provided for on the Virtex-4 FX I2 Evaluation Board in the form o f

switches and LED indicators. These peripherals are used to display the compressed bit

stream which is the output of the JPEG compression module.

4.1.7 Push Buttons

Two momentary closure push buttons have been installed on the board and attached

to the FPGA. These buttons for logic reset and push functions. Pull down resistors hold

the signals low (0) until the switch closure pulls it high (I).

SW I (Pushing compressed bit stream in to led’s) SW ITCH_PBI Y I9

SW2 SWITCH PB2 Y20

Figure 11 Switch Configuration

4.1.8 DIP-switch

An eight-position DIP-switch (SPST) has been installed on the board and attached to the

FPGA. These switches provide digital inputs to user logic as shown below. The signals

are pulled low (0) by lOK ohm resistors when the switch is open and tied to 3.3V (1)

when the switch is closed.

26

Sl-1 ACDC SWITCHO AB24
S l-2 ACDCl SW ITCHl AB23
S l-3 LAST SWITCH2 AC25
S l-4 LOAD SWITCH3 AC24
S l-5 READ_EN SWITCH4 AD26
S l - 6 YCbCr 0 SWITCH5 AD25
S l-7 YCbCr 1 SW ITCH6 AC23
S l - 8 SWITCH7 GIO

Figure 12 Pin Configuration - Switches

4.2 Microcontroller Frame Grabber^*^ (uCFG™)

The uCFG system block diagram is shown in Figure 3. The uCFG provides 4 separate

analog video inputs. All inputs accept either NTSC or PAL composite color video signals

depending on the board’s configuration settings in non-volatile memory. Black & white

(RS-170) video signals are also supported. The uCFG can be setup to operate in high

quality S-Video mode where the luma and chroma components are separated out into two

discrete signals (Y and C). In this mode, two channels o f S-Video are available by using

input pairs 1 &3 and 2&4 respectively.

27

o 5 U c

CPLD

RS-232
level

shifter

Video
field

buffer
Video

decoder

Figure 13 uCFG High Level Diagram

The video inputs are fed to an internal video multiplexer used to select the active

video channel for digitization. The output o f the analog multiplexer is provided at the

uCFG’s video out terminal for live video preview. This signal is also fed to an internal

video analog-to-digital converter (ADC) and is then converted to an industry standard

1TU-BT656 4:2:2 digital video streams. The digital video stream is written to a video

field buffer under the control of an 8 -bit microcontroller (MCU) as well as a complex

programmable logic device (CPLD). Once a single field o f color video is stored into the

buffer, the 8 -bit MCU can read out the data and transmit it through its serial port

(LVTTL, +3.3V level). 4 external trigger inputs with programmable polarity are

provided to trigger acquisition o f a video field from the corresponding video channel.

Software triggering is also possible through ASCII commands. For serial interface

2 8

compatibility with RS-232 levels, an external level shifter such as the Sipex SP3232 must

be added.

4.1.5 FIFO Read Pointer Control

When a video field grab, is commanded either through the software GRAB/TRIG or a

hardware trigger, the uCFG board digitizes the very next video field (odd or even

depending on request) in the ITU-R BT656 4:2:2 digital video format. This data stream is

stored into a long First-In/First-Out (FIFO) memory field buffer. A FIFO is simply a

memory storage element which is linearly accessible through a read pointer. This

operation essentially freezes the digital data stream for the entire field as-is into the FIFO.

Once the capture is complete, the MCU can read out the contents of the FIFO one byte at

a time starting from the beginning o f the stored digital stream. The linearly accessible

FIFO allows the MCU to read out one byte o f data at a time and then increments the read

pointer to the next data byte in the stored data stream. It is also possible to directly

increment the read pointer in the FIFO by an arbitrary amount without reading the data.

This is useful to skip some data samples for horizontal decimation, or even skip an entire

row ’s worth of data for vertical decimation. The read pointer can also be reset to point

back to the beginning o f the stream with the RRST command. The only restriction is that

the pointer cannot be decremented directly. Figure below shows the physical layout of

the uCFG’s internal FIFO buffer. As shown, the FIFO is a byte wide uninterrupted

memory buffer accessible with the help o f a read pointer (used to index the memory

location to read). For simplicity, the FIFO in Figure has been split up into separate video

lines even though all the data is actually continuous inside the FIFO. As can be seen, one

29

line (720 pixels wide) o f video data actually occupies 1440 bytes o f physical FIFO space.

Note that every second luma (Y) sample is surrounded by its chroma (Cb and Cr) color

components which are co sited in space (i.e. belong to the same pixel). Every other luma

sample is alone (due to the 4:2:2 chroma decimation).

The host controller is in full control o f the FIFO access operations and readout. In

fact, the host is responsible for issuing the appropriate commands to skip data samples

when it requires image decimation. A number o f example commands are illustrated in

Figure as well as their effect on the read pointer, (a) Different commands increment the

read pointer directly. RRST resets the pointer to 0, the start o f the FIFO. SEND 111

simply reads the current byte and increments the pointer by 1. RING with no parameters

assumes 1 by default and increments the pointer. RING with parameters increments the

pointer by the specified amount, (b) To download a black & white image only (the luma

component o f the color image) at the full 720 resolution, simply position the read pointer

on the first luma sample o f interest with RING and issue a SEND 2 n 1 where n is the

number o f bytes to read. Here the command will read and return every 2nd sample until a

total o f n bytes have been returned on the serial port. To read a Vi decimated version, use

the SEND 4 n 1 which skips every 2nd luma (i.e. return every 4th sample). The

possibihties are quite numerous, (c) & (d) Illustrates color component download. Simply

position the pointer to the appropriate starting position and issue a SEND 4 n 1 to read

out every 4th sample.

30

LME, t 1 O f t 1 Y1 C ^t Y2 C W Y3 1 CT3 Y4. CC6 Y5 CfS Y6 CU7

___1___
0& 719 Y719 Y72Dj ^

1437 143ft 143ft

W \A3fiouB conifiiandB mcmmmmÈ lf% R F O re a d p o in te r

L NE 2 Y4 I C M Y718 Y7M V 720Î -

144C 1441 1442 1443 1 4 4 4 144S 144ft 1 4 4 7

|b) maca:&wNte (Y luma] c ^ x rp cn en t r&ad no com pression

LINE 3

• FIFO ADDRESS

GUI Y1 Ori Y2 I C53 Y 3 I cr3 Y4 VS CIS 'fS Cb7 Y 718 CD71SY 719 0719 Y730:

ZftS@ 2661 2862 2663 2664 2336 2 6 iS 2 ^ 7 2633 2669 2696 2691 2692 4917 4 3 1 6 4919

'T-
@
w

(D) Œ ct¥cma compDmnt wAi #o comfresslKi

LINE4

FIFO
AOOREftS

GÈ1 1 Yt Cr1 1 Y2 1 CÎJ3 Y3 Ct3 V4 C&5 V5
j

GrS I V6

---------M M
0 , 7 j,"!

if
YF1@ 0>71'S Y719 CT71S Y72Ü

4920 4921 4922 4 3 2 9 4924 4925 432ft 4927 4928 4 9 2 9 499 9 5757 5 7 5 6 575ft

fNO 0) O ' c n rcm a co m p o n en t re a d i« th i>d œ m p e e s s 'a i

#
#
#

(
CU1 Y l C ft Y2 1 Cb3

1
Y3 I Ct3 Y4 C t6 Y5

1 1
a s I YE CUT I n

AD DRESS 3441SB S441S2 3 4 4 1 M

M S M 1 Ï4 4 1 6 3

YTaOt

345S97 3455SS34SSSB

Figure 14 FIFO Read Point Buffer

To read a full color image, first read all the luma values (Y), then issue a read pointer

reset command RRST. Then, read all the Cb components and issue another read pointer

reset. Finally, read out all the Cr components.

31

Hopefully, it now becomes clear how powerful the different FIFO commands are.

They give full control over the position o f the read pointer, the skip factor, and the

amount o f data to be downloaded. As an example, reading out a sub image (region o f

interest) would be quite simple to do by directing the read pointer to the correct locations

and selectively downloading the data. This feature could be used to perform a quick

coarse thumbnail image preview, then a high resolution area of interest download.

Another example could be downloading a black and white image only, but with color

info only for a small region o f interest within the master im age...all these techniques

reduce the downloaded image data size. To use the compression feature, simply set the

3rd param eter o f the SEND command (compression ratio) to 2, 4 or 8 and a compressed

image data stream is returned instead of the raw sample values. For example, SEND 2 3 2

would return 3 compressed bytes at 2:1 compression. This means that 3 compressed bytes

* 2 compressed pixels / byte = 6 image samples in total skipping every 2nd sample in the

FIFO (i.e. Y samples only). The number o f bytes returned from this call would be 1

integrator reset byte (for decompression) as header + 3 compressed data bytes = 4 bytes.

Simply feed this compressed data vector o f 4 bytes into the decompression routine, and

the original vector o f 6 raw image samples will be regenerated. Please note that the

compression is done on-the-Hy as data is returned on the serial port. The original raw

image data in the FIFO remains unaltered regardless o f the way in which the data is read

out (i.e. decimated, compressed or not). The only time the data is altered is when the next

field grab is commanded (or when the power is removed). It is therefore possible to read

32

out the data multiple times with different settings. This can be useful to first obtain a

thumbnail, followed by a full download.

4.1.5 Grabbing and Downloading an Uncompressed Field

A very common operation to be performed with the uCFG is to grab a field o f video

and download it. Figure below demonstrates one possible sequence o f commands to grab

and downloading a full resolution field o f NTSC color video (720x240).

First the video channel select command CSEL is issued (this is optional, otherwise the

last selected channel will be used). The GRAB command with the odd (O) field

param eter is then specified (use E for even field). After execution o f the GRAB

command, the return value is verified. If an error occurred, then either the selected

channel has no valid video signal connected, or the signal is o f the wrong standard

(PAL/NTSC). Upon a successful field grab, the triggers are temporarily disabled with the

TREN 0 command. This will prevent (in the event of a trigger) any new images from

overwriting the FIFO data while downloading. Next, three passes are performed through

the FIFO. The first pass will read out all the Y luma samples. The second pass will read

out the Cb chroma samples, and the third, the Cr chroma samples. O f course, the samples

could all be read in one pass, but it is simpler on the host side to spht into three passes.

As well, to read black & white data only, a single pass would be performed to collect the

luma samples.

On the first pass, the FIFO read pointer is reset (RRST). As seen in Figure 9, FIFO

address 0 actually points to the C bl sample (Cb value o f first pixel o f line 1). The read

pointer therefore needs to be shifted by 1 to point to the first Y1 sample. This is done

33

with the RING 1 command. Next, for each line, a SEND 2 720 1 command is issued to

send out every 2nd sample in the FIFO from the start position with no compression. This

actually reads out all the Y samples of the first hue. The process is then repeated for all

the 240 hnes o f the image.

Dsvmtoad Y
oonponenî

Etoïmioad Cîj
cornponent

CcAnlcad Cr
component

BRSr RHSr
CSEL 1

t m c i RINC2

GRAB O

SEND 43W fSEND 2 7201 SEND 4 3691

R ead bytes Read 360 tatesRead ,'20 bytesTRENP

240 ines 240 lines read?

TREN 1

Figure 15 Grabbing Uncompressed Field

34

In this example, the host computer has enough buffer space to buffer 720 bytes of

downloaded data. However, in the case o f a resource-hmited host (8-bit MCU), it may be

desirable to instead download a few bytes at a time only. This is easy to do by changing

the parameters o f the SEND command. O f course, the increased protocol overhead cost

will result in a longer download time. The process is repeated for the 2nd and 3rd pass

by first positioning the read pointer on the first Cb or Cr sample and then downloading

every 4th data sample for a total o f 360 per hne (remembering that the chroma

information is sub-sampled by a factor 2 in the 4:2:2 standard). Finally, once done the

triggers are re-enabled with TREN I .

4 .1.5 Downloading a Decimated Field

Figure below shows a possible sequence o f command to download an uncompressed

color decimated field o f half the full NTSC resolution (360x120). As before, most o f the

steps are the same. The main differences are that the SEND command now skips every 4

samples (i.e. every 2nd Y) only. This results in a horizontally decimated image by a

factor 2. The second difference is that following the download o f the decimated data for a

full line, a RINC 1440 command is introduced. This command effectively skips an entire

row (or hne) o f raw video data in the FIFO. This vertically decimates the number o f hnes

in the downloaded field by a factor 2.

35

DortTsSoad Y D o w n le a d C b
csMTipDnen!

D o w n lo ac ' C r
c o m p o n e n t

Î2 0 lines re ad ? 1 2 0 L n es r e a d ?

YES YEI.

jRJWC 1

R e a d 1 SO P y le s

SE N D 8 180 1

Figure 16 Downloading Decimated Field

4.2.4 Converting 4:2:2 YCbCr to RGB for PC Display

The ultimate goal o f the image downloading is to display the images to the user on a

PC monitor. To perform this operation correctly, a few things must be explained. First

off, PC monitors work in the RGB color space. This means that every pixel has an 8 bit

red, green and a blue component. The downloaded data from the uCFG is in the YCbCr

color space and, as well, the color components are decimated by a factor 2 (4:2:2). Before

displaying an image on a PC, this data must therefore be up sampled and converted to the

RGB domain.

36

:CL

H
P-

‘ r Y 2 Y 3 V 4 Y S Y S T T Y ê y & Y 1 3 V 1 1 n] Y 1 3 Y 7 1 € Y 7 1 7 ¥ 7 1 8 ¥ 7 1 9 ¥ 7 2 0

G Ü 1

C M

C P 2

C r 3 1

C M

C r S

C C T C D Q C C 4 1

y %
C b l 3

C M 3

0 3 7 1 7

0 7 1 7 IC b ^ l i

C 7 " 9

(a] Ohgmial 4 :2 :2 d a ta s # e a m ev e ry 2nd ch rm n a sa m p le

o
p
#

¥ ' ¥2 ¥3 V4 Y. V , Y~ YS YS ¥10 ¥11 ; ¥12 Y13 Y71S ¥717 m s ¥719 ¥720

Cbl Cb2 Cb3 CW Gfô Cb6 1 0 7 C£^ Cb9 CblQ G bii ■Cbl 2
i

C bl3 Cb716 0 7 ^ 8 CÜT19 Gb72C

CM CT2 0 3 Cr4 cfs c m j C r 7 CrE C rî c n o c m
1

0 1 3 C r7t6 r Cf719 a ? 2 S

(b) AJt m issing c& 'oma s a n p le s have been interpolamd frcm their respectve left aiid ^ h t n e i ^ to r s

V fM m

a. & 0. Î&

Hi R 2 R 3 R 4 f ? 5 R 6 M 7 : R 8 R9 R I O

1

R S I I R . 1 2 R I 3 R 7 t 6 R 7 1 7
'

a 7 i a j R 7 i 9

G 1 G 2 0 3 G 4 Qf: G 6 G 7 G a Q3 G 1 D G I 1 j G 1 2 G 1 Î 1
f

G 7 1 6 G 7 1 7 G 7 T 8 G 7 1 9 G 7 2 0

8 2 ■ B 3 5 4 as B 6

_ ! L

a s 8 9 5 1 0 3 1 ’ B - 2 3 * 3
i

B 7 1 E B 7 * 7 E 7 1 6 5 ? 1 9 B 7 2 0

(c) Finally, a YGbCr to; RGB ifafisiorrr*alb? h as b ^ n applied to each pixel. The dala s ready for cispiay on a PC screen

Figure 17 YCbCr to RGB Conversion

Figure illustrates the different steps required to convert a 4:2:2 YCbCr data stream

into a non-decimated RGB stream suitable for display on the PC monitor. Step 1 shows a

single line o f downloaded 4:2:2 YCbCr color data samples shown overlaid over a row o f

the 720 pixels forming the image line. It can be seen that some o f the decimated chroma

samples are missing.

37

In Step 2, all the missing chroma values are filled in with a simple linear interpolation

performed by taking the average o f the previous and next respective samples. For

example, Cr2 = (C rl + Cr3)/2. After this step, each pixel has a Y, a Cb, and a Cr value.

Step 3 performs a color space conversion from YCbCr to RGB. Each pixel’s YCbCr

values a fed through equation 1 and the resulting RGB output vector is obtained, ready

for display on a PC monitor.

4.1.9 RS-232 Interface

An RS-232 Interface is used for communication between the FPGA board and the

M icrocontroller Frame Grabber (uCFG).

An RS-232 interface has the following characteristics;

• Uses a 9 pins connector "DB-9" (older PCs use 25 pins "DB-25").

• Allows bidirectional full-duplex communication (the PC can send and receive

data at the same time).

• Can communicate at a maximum speed o f roughly lOKBytes/s.

It has 9 pins, but the 3 important ones are:

• pin 2: RxD (receive data).

• pin 3: TxD (transmit data).

• pin 5: GND (ground).

Using just 3 wires, you can send and receive data.

4.1.9.1 Serial communication

Data is sent one bit at a time; one wire is used for each direction. Since computers

usually need at least several bits o f data, the data is "serialized" before being sent. Data is

38

commonly sent by chunks o f 8 bits. The LSB (data bit 0) is sent first, the MSB (bit 7)

last.

4.1.9.2 Asynchronous communication

This interface uses an "asynchronous" protocol. That means that no clock signal is

transmitted along the data. The receiver has to have a way to "time" it to the incoming

data bits.

In the case o f RS-232, that's done this way:

• Both side o f the cable agree in advance on the communication parameters (speed,

format...). That's done manually before communication starts.

• The transmitter sends a " 1 " when and as long as the hne is idle.

• The transmitter sends a "start" (a "0") before each byte transmitted, so that the

receiver can figure out that data is coming.

• After the "start", data comes in the agreed speed and format, so the receiver can

interpret it.

• The transmitter sends a "stop" (a "1") after each data byte.

The speed is specified in baud, i.e. how many bits-per-seconds can be sent. For

example, 1000 bauds would mean 1000 bits-per-seconds, or that each bit lasts one

m illisecond. C om m on im plem entations o f the R S -232 interface (like the one used in PCs)

don't allow just any speed to be used. If you want to use 123456 bauds, you're out o f luck.

You have to settle to some "standard" speed. Common values are:

39

• 1200 bauds.

• 9600 bauds.

• 38400 bauds.

• 115200 bauds (usually the fastest you can go).

At 115200 bauds, each bit lasts (1/115200) = 8.7|as. If you transmit 8-bits data, that

lasts 8 X 8.7ps = 69ps. But each byte requires an extra start and stop bit, so you actually

need 10 x 8.7ps = 87ps. That translates to a maximum speed o f 11.5KBytes per second.

At 115200 bauds, some PCs with buggy chips require a "long" stop bit (1.5 or 2 bits

long...) which make the maximum speed drop to around 10.5KBytes per second.

4.1.9.3 Physical layer

The signals on the wires use a positive/negative voltage scheme.

• "1" is sent using -lOV (or between -5V and -15V).

• "0" is sent using 4-lOV (or between 5V and 15V).a

So an idle line carries something like -lOV.

A VHDL UART is used to communicate between the FPGA and the FIFO Buffer o f the

Frame Grabber.

4.1.10 VHDL-UART

The VHDL-UART used to transfer bits from the FIFO buffer o f the uCFG to the

ROM of the FPGA is given below.

4.1.10.1 U ART-Receiver

library ieee;

use ieee.std_logic_l 164.all;

40

use ieee.std_logic_arith.all;

entity UARTReceiver is

generic

(

frequency

baud

oversampling

);

(

elk

rxd

rxd_data

rxd_data_ready

);

; integer;

: integer;

: integer

: in std_logic;

: in std_logic;

: out std_logic_vector(7 downto 0);

: out std_logic

end entity UARTReceiver;

architecture UARTReceiver Arch o f UARTReceiver is

— defining constant

constant BIT_SPACE : integer := 10; - 8 to 11 are common

constant DIVISOR : integer := 1600;

constant FREQ_INC : integer ;= (oversampling + 1) * baud / DIVISOR;

constant FREQ_DIV : integer := frequency / DIVISOR;

constant FREQ_MAX : integer := FREQ_DIV + FREQ_INC -1 ;

41

— defining types

type state_type is (idle, bitO, b itl, bit2, bitS, bit4, bit5, bit6, bit?, stop);

— defining signals

signal state : state_type := idle; — receiver's state

signal rxd_sync_inv : std_logic_vector(l downto 0);

signal rxd_cnt_inv ; std_logic_vector(l downto 0);

signal rxd_bit_inv : std_logic;

signal baud_divider : integer range 0 to FREQ_M AX := 0;

signal data : std_logic_vector(7 downto 0);

signal baudover_tick : std_logic ;= 'O';

signal bit_spacing ; integer range 0 to 15;

signal next_bit : std_logic := 'O';

begin

— assignments

next_bit <= when bit_spacing = BIT_SPACE else 'O';

— processes

baud_gen : process(clk)

begin

if clk'event and elk = T then

baud_divider <= baud_divider + FREQ_INC;

if baud_divider >= EREQ_DIV then

baud_divider <= 0;

42

baudover_tick <=

else

baudover_tick <= 'O';

end if;

end if;

end process baud_gen;

rxd_sync_inverted ; process(clk) — inverted to suppress phantom character

begin

if clk'event and elk = '1' then

if baudover_tick = '1' then

rxd_sync_inv <= rxd_sync_inv(0) & not rxd;

end if;

end if;

end process rxd_sync_inverted;

rxd_counter_inverted : process(clk)

begin

if clk'event and elk = '1' then

if baudover_tick = '1' then

if rxd_sync_inv(l) = '1' and rxd_cnt_inv /= "11" then

rxd_cnt_inv <= unsigned(rxd_cnt_inv) + 1 ;

elsif rxd_sync_inv(l) = O' and rxd_cnt_inv /= "00" then

43

r x d _ c n t _ i n v < = u n s i g n e d (r x d _ c n t _ i n v) - 1;

end if;

if rxd_cnt_inv = "00" then

rxd_bit_inv <= 'O';

elsif rxd_cnt_inv = "11" then

rxd_bit_inv <= T ;

end if;

end if;

end if;

end process rxd_counter_inverted;

state_proc : process(clk)

begin

if clk'event and elk = '1' then

if baudover_tick = T then

case state is

when idle =>

if rxd_bit_inv = '1' then

state <= bitO;

end if;

when bitO =>

if next_bit = '1' then

state <= b itl;

44

end if;

when b itl =>

if next_bit = T then

state <= bit2;

end if;

when bit2 =>

if next_bit = '1' then

state <= bit3;

end if;

when bit3 =>

if next_bit = T then

state <= bit4;

end if;

when bit4 =>

if next_bit = '! ' then

state <= bit5;

end if;

when bits =>

if next_bit = '1' then

state <= bit6;

end if;

when bit6 =>

45

if next_bit = '! ' then

state <= bit?;

end if;

when bit? =>

if next_bit = T then

state <= stop;

end if;

when stop =>

if next_bit = '! ' then

state <= idle;

end if;

end case;

end if;

end if;

end process state_proc;

bit_spacing_proc : process(clk)

begin

if clk'event and elk = '1' then

if state = idle then

bit_spacing <= 0;

elsif baudover_tick = T then

if bit_spacing < 1 5 then

46

b i t _ s p a c i n g < = b i t _ s p a c i n g + 1 ;

else

bit_spacing <= 8;

end if;

end if;

end if;

end process bit_spacing_proc;

shift_data_proc : process(clk)

begin

if clk'event and elk = '1' then

if baudover_tick = '1' and next_bit = '1' and

state /= idle and state /= stop then

data <= not rxd_bit_inv & data(7 downto 1);

end if;

end if;

end process shift_data_proc;

output_data_proc : process(clk)

begin

if clk'event and elk = '! ' then

if baudover_tick = '1' and next_bit = '1' and

state = stop and rxd_bit_inv = 'O' then

47

rxd_data <= data;

rxd_data_ready <=

else

rxd_data_ready <= 'O';

end if;

end if;

end process output_data_proc;

end UARTReceiverArch;

4.2.6.2 UART-Transmitter

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity UARTTransmitter is

generic

(

frequency

baud

);

port

(

elk

integer;

integer

in std_logic;

48

txd

txd_data

txd_start

txd_busy

: out std_logic;

: in std_logic_vector(7 downto 0);

: in std_logic;

: out std_logic

);

end entity UARTTransmitter;

architecture UARTTransmitter Arch o f UARTTransmitter is

— defining types

type state_type is (idle, start, bitO, b itl, bit2, bit3, bit4, bit5, bit6, bit7, s top l, stop2);

— defining signals

signal state : state_type := idle; — transmitter's state

signal data : std_logic_vector(7 downto 0);

signal baud_tick : std_logic;

signal busy : std_logic := 'O';

signal baud_divider : integer range 0 to (frequency/100 + baud/100 - 1) := 0;

begin

— assignments

txd_busy <= busy; busy <= 'O' when state = idle else 'T;

— processes

baud_gen : process(clk)

begin

if clk'event and elk = 'T then

49

if busy = '! ' then

baud_divider <= baud_divider + (baud/100);

if baud_divider > (frequency/100) then

baud_tick <= T';

baud_divider <= 0;

else

baud_tick <= 'O';

end if;

end if;

end if;

end process baud_gen;

state_proc : process(clk)

begin

if clk'event and elk = '1' then

case state is

when idle =>

if txd_start = T then

state <= start;

end if;

when start =>

if baud_tick = '1' then

50

S ta te < = bitO;

end if;

when bitO =>

if baud_tick = '1' then

State <= bitl;

end if;

when bitl =>

if baud_tick = T' then

State <= bit2;

end if;

when bit2 ->

if baud_tick = T' then

State <= bitS;

end if;

when bits =>

if baud_tick = T ' then

State <= bit4;

end if;

when bit4 =>

if baud_tick = T' then

State <= bit5;

end if ;

51

when bits =>

if baud_tick = T then

state <= bit6;

end if;

when bit6 =>

if baud_tick = T ' then

State <= bit? ;

end if;

when bit? =>

if baud_tick = T ' then

state <= stopl;

end if;

when stopl =>

if baud_tick = T' then

state <= stop2;

end if;

when stop2 =>

if baud_tick = T' then

state <= idle;

end if;

end case;

end if;

52

end process state_proc;

data_load_proc : process(clk)

begin

if clk'event and elk = '1' then

if txd_start = '1' then

data <= txd_data;

end if;

end if;

end process data_load_proc;

txd_proc : process(clk)

begin

if clk'event and elk = '1' then

case state is

when idle => txd <= '1';

when start => txd <= 'O';

when bitO => txd <= data(O);

when b itl => txd <= data(l);

when bit2 => txd <= data(2);

when bits => txd <= data(3);

when bit4 => txd <= data(4);

when bits => txd <= data(5);

53

when bit6 => txd <= data(6);

when bit? => txd <= data(?);

when stopl => txd <= T ;

when stop? => txd <= T ;

end case;

end if;

end process txd_proc;

busy_proc : process(clk)

begin

if clk'event and elk = T then

if state = idle then

busy <= 'O'; txd_busy <= 'O';

else

busy < = '1 '; txd_busy < = '1 ';

end if;

end if;

end process busy_proc;

end UARTTransmitter Arch;

The other alternative approach is to use MATLAB to capture the frames directly from

the frame grabber and to convert the information into RGB values so that the VHDL code

for Jpeg compression could use those vales to give the compressed bit stream. The

compressed bit stream is displayed using the 8 led’s on the Vitex-4 FPGA board. The hst

54

o f inputs is as mentioned earlier. Since the output is a compressed bit stream o f 32 bits

and we have only 8 led’s on the board we use SW l as a push button to push all the bits

serially seven bits at a time into the led’s.

55

CHAPTER 5

RESULTS

The process was implemented on a Vrtex-4 FPGA board. An image containing (8x8)

pixels was segregated into RGB and given as input. The implementation results are as

follows

5.1 JPEG Compression

Map Report

Target Device :

Target Package :

Target Speed :

M apper Version ;

Mapped Date :

Design Summary

Number o f warnings :

Logic Utilization;

Total Number Slice Registers :

Number used as Flip Flops :

Number used as Latches :

xc4vfxl2

ff668

-10

virtex4 — $Revision: 1.34 $

Sat Jul 12 16:05:03 2008

Number o f 4 input LUTs

3,265 out o f 10,944 29%

3,241

24

3,272 out o f 10,944 29%

56

Logic Distribution:

Number o f occupied Slices : 2,984 out o f 5,472 54%

Number o f Slices containing only related logic : 2,984 out o f 2,984 100%

Number o f Slices containing unrelated logic : 0 out o f 2,984 0%

*See Notes below for an explanation o f the effects o f unrelated logic

Total Number 4 input LUTs : 3,323 out o f 10,944 30%

Number used as logic : 3,272

Number used as a route-thru : 50

Number used as Shift registers : 1

Number o f bonded JOBs : 42 out o f 320 13%

Number o f BUFG/BUFGCTRLs : 2 out o f 32 6%

Number used as BUFGs : 2

Number used as BUFGCTRLs : 0

Number o f DSP48s : 4 out o f 32 12%

Total equivalent gate count for design : 52,278

Additional JTAG gate count for lOBs : 2,016

Notes:

Related logic is defined as being logic that shares connectivity - e.g. two LUTs are

"related" if they share common inputs. W hen assembling slices. Map gives priority to

combine logic that is related. Doing so, results in the best timing performance.

Unrelated logic shares no connectivity. Map will only begin packing unrelated logic into

a slice once 99% of the shces are occupied through related logic packing.

57

Note that once logic distribution reaches the 99% level through related logic packing,

this does not mean the device is completely utilized. Unrelated logic packing will then

begin, continuing until all usable LUTs and FFs are occupied. Depending on your timing

budget, increased levels o f unrelated logic packing may adversely affect the overall

timing performance o f your design.

Delay Summary Report

The Number O f Signals Not Completely Routed For This Design Is : 0

The Average Connection Delay For This Design Is : 1.279

The M aximum Pin Delay Is : 4.318

The Average Connection Delay On The 10 W orst Nets Is : 3.580

Listing Pin Delays by value; (nsec)

5.2 M otion Fstim ation

Map Report

Target Device :

Target Package :

Target Speed :

Mapper Version :

M apped Date :

Design Summary

Number o f Slices :

Number o f Slice Fhp Flops

Number o f 4 input LUTs

xc4vfx20

ff672

-12

virtex4 — $Revision: 1.34 $

Sat Jul 12 13:02:03 2008

5313 out o f 8544 62%

6378 out of 17088 37%

10162 out of 17088 59%

58

Number used as logic : 10034

Number as Shift registers ; 128

Number o f lO s : 24

Number o f FIFO 16/RAMB 16s ; 2 out o f 68 2%

Number used as RAM B16s : 2

Number o f GCLKs : I out o f 32 3%

59

CHAPTER 6

CONCLUSION AND FUTURE RECOMMENDATIONS

This paper presented the implementation o f JPEG compression and motion estimation

on Virtex-4 FPGA hardware. The modules o f the jpeg architecture were designed and

synthesized. The control block hardware design is also completed. The detailed pipeline

design, operators, and the final results o f the synthesis o f the modules were also

presented, resulting in an architecture containing 3,272 logic cells, including the control

block with device utilization o f 29% and average timing delay o f 9.821 ns. The designed

architecture performs the JPEG compression o f a 640 x 480 pixels gray level image in

23.8ms, allowing its use in a JPEG compressor in hardware.

In future this implementation can be extended to Microblaze technology. The

MicroBlaze soft processor includes several configurable interfaces that allow us to

connect our own custom peripherals and coprocessors, as well as Xilinx provided

peripherals. The M icroBlaze Debug Module (MDM) allows debugging o f eight

MicroBlazes at a time. An automated partitioning system is under development. The aim

is to provide an automated system which can take advantage of processor

parameterization with custom instructions, variable width registers, and multiple

execution units, as well as assigning operations to hardware or software. FPGA-based

codesigns allow a very large design space to be explored, and the opportunity to provide

60

a very high communication bandwidth between the processors and the hardware will

mean that co-design solutions have a good chance o f producing more efficient designs.

61

BIBLIOGRAPHY

1. A Technical Introduction to Digital Video, C. Poynton. New York; Wiley, 1996.

2. “Digital color imaging IEEE Trans. Image Processing, vol. 6, pp. 901-932, July

1997”, by G. Sharma and H. Trussell.

3. “The JPEG Still Picture Compression Standard”, by Gregory K. Wallace, M ultimedia

Engineering, Digital Equipment Corporation, Maynard, M assachusetts page 1 jpeg

comp.

4. “A System for the Implementation o f Image Processing Algorithms On Configurable

Computing Hardware” by Benjamin Alexander Levine

5. Wong, S.; Vassiliadis, S.; Cotofana, S., "A sum o f absolute differences

implementation in FPGA hardware," Euromicro Conference, 2002. Proceedings.

28th, vol., no., pp. 183-188, 2002

6 . “Distributions o f the Two-Dimensional DCT coefficients for Images”, IEEE Trans.

Commun, vol. 31, pp. 835-839, 1983, by J. D. Gibson and R. C. Reininger.

7. “JPEG, StiU Image Data Compression Standard” Van No strand Reinhold, 1993.

8. “Effects o f Quantization Table M anipulation on JPEG Compression o f Cervical

adiographs” by L. E. Berman, R. Long, S. R. Pillemer Society for Information

Display International Symposium M ay 18-20, 1993.

9. http://www.cs.cf.ac.uk/Dave/M ultimedia/node259.html.

62

http://www.cs.cf.ac.uk/Dave/Multimedia/node259.html

10. Weisstein, Eric W. "Huffman Coding." From M athW orld-A W olfram W eb Resource,

http ;//mathwor Id. wolfram. com/HuffmanCoding. html

11. D. Buell, J. Arnold, and W. Kleinfelder, Splash 2: FPGAs in a Custom Computing

Machine. Los Alamitos, CA: IEEE Computer Society Press, 1996.

12. “Programmable Active memories: Reconfigurable Systems Come o f Age,” IEEE

Trans. On VLSI Systems, vol. 4, no. 1, pp. 56-69, M arch 1996 by J. Vuillemin, P.

Berlin, D. Roncin, M. Shand, H. Touati, and P. Boucard.

13. “JPEG Compression History Estimation for Color Images”, Ramesh Neelamani,

Ricardo de Queiroz, Zhigang Fan, Sanjeeb Dash, and Richard G. Baraniuk

14. http://www.eee.bham.ac.uk/W oolleySI

15. “Integrated Digital Architecture for JPEG Image Compression” by Luciano Agostini

and Sergio Bampi.

16. “Image and video comoression standards - Second Edition, Kluwer Academic

Publishers, USA, 1999 by vasudev bhaskaran, Konstantinos Konstantinides.

17. The International Telegraph and Telephone Consultative Committee (CCITT),

“Information Technology - Digital Compression and Coding o f Continuous-Tone

Still Images - Requirements and Guidelines” . Rec. T.81, 1992.

18. V. Bhaskaran, K. Konstantinides. Image and Video Compression Standards

Algorithms and Architectures - Second Edition, Kluwer Academic Publishers, USA,

1999.

19. J.M. Saul. Hardware/Software Codesign for EPGA-Based Systems. In proceedings

o f the 32nd Hawaii International Conference on System Sciences - 1999

63

http://www.eee.bham.ac.uk/WoolleySI

20. http://www.xilinx.com/support/documentation/application_notes/xapp61G.pdf.

64

http://www.xilinx.com/support/documentation/application_notes/xapp61G.pdf

VITA

Graduate College
University o f Nevada Las Vegas

Ramakrishna Gopalakrishnan

Address;
1555 E Rochelle Ave Apt 268
Las Vegas, NV 89119

Degree:
• Bachelor o f Engineering, Electronics and Communication Engineering, 2006

Anna University, India

Thesis Title:
Implementation o f JPEG Compression and M otion Estimation on FPGA Hardware

Thesis Examination Committee:
Chairperson, Dr. Henry Selvaraj, Ph.D.
Committee Member, Dr. Emma Regentova, Ph.D.
Committee Member, Dr. Muthukumar Venkatesan, Ph.D.
Graduate College Representative, Dr. Laxmi Gewali, Ph.D.

65

	Implementation of JPEG compression and motion estimation on FPGA hardware
	Repository Citation

	ProQuest Dissertations

