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ABSTRACT 

Learning in the Context of Math Anxiety

by

Michelle Melissa Guillaume

Dr. Mark H. Ashcraft, Examination Committee Chair 
Professor of Psychology 

University o f Nevada, Las Vegas

Previous studies have examined the effects of math anxiety on working memory 

and performance. It has been shown that having a high level of math anxiety not only 

decreases performance, but also interferes with working memory such that the anxiety 

competes for working memory resources, decreasing the amount of working memory 

resources available to work on a math task. Previous research has focused on the 

semantic memory approach, i.e., testing people on what they already know. The current 

study took this research one step further and looked at learning, specifically stimulus 

learning, in the context of math anxiety. A well studied lab task, the true/false 

verification task, was adapted to study learning on the part of individuals who vary in 

their math anxiety. Some of the addition problems were shown only once to participants 

while other addition problems were shown nine times. One prediction of this study was 

that low math anxious individuals would be able to learn more mathematical information 

across blocks of trials than high math anxious individuals, and would demonstrate this on 

a recall test of incidental learning after three blocks of making true/false judgments to 

simple addition problems. Although this learning effect between high and low math
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anxious individuals was not found, another interesting effect was discovered with regard 

to the learning recall task. High math anxious participants learned more of the false 

answers with large splits than the low math anxious participants. This was an unexpected 

finding, and one inference that could be drawn from this is that low math anxious 

participants are not looking at the false problems with the large splits long enough to 

encode them, whereas the high math anxious individuals may be looking at the problem 

longer, unable to quickly judge it as false.
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CHAPTER 1 

INTRODUCTION

Over the past thirty five years, researchers have become increasingly interested in the 

topic of math anxiety. Math anxiety involves discomfort and nervousness that can result 

from a situation dealing with numbers or a situation involving simple calculations. It can 

be felt in a math classroom, in a restaurant, and even in the comfort o f one’s own home 

while trying to balance a checkbook. Having this specific type of anxiety has been found 

to correlate with students avoiding math classes as well as avoiding careers involving 

math (Hembree, 1990).

Since 2001 several studies have investigated the consequences o f math anxiety as it 

relates to gender (Miller & Bichsel, 2004), education (Chen & Geng, 2002), cognition 

(Ashcraft, 2002), and performance (Ashcraft & Kirk, 2001). With all of this research that 

has looked at math anxiety and performance and math anxiety and working memory, 

little work has been done to see what effect math anxiety may have on the learning and 

storage of math facts in memory. In this thesis, math anxiety as it relates to the learning 

and storage o f math facts was investigated.

Before discussing the thesis experiment and its results, a detailed review of the 

literature will take a comprehensive look at math cognition to show what has been found 

in terms of how children and adults comprehend numbers as well as the



different strategies they use to tackle different types o f math problems. The review will 

then cover research that has examined the relationship between math cognition and 

working memory. Once an understanding o f the theories and models behind math 

cognition and working memory has been established, the literature review will turn to 

examine the initial research on math anxiety as well as the relationship between math 

anxiety and working memory, the development o f the Math Anxiety Rating Scale, and 

the possible causes and consequences o f having math anxiety. Finally, the experiment 

for this thesis project will be explained, results will be given, and a discussion will follow



CHAPTER 2

LITERATURE REVIEW 

Math Cognition

Some of the first pioneering work involving how both children and adults thought 

about math and exactly how math problems and processes were mentally represented was 

found in the work of Parkman and Groen (1971) and Groen and Parkman (1972). In the 

1971 study, they gave college students a yes/no verification task in which the participants 

looked at simple addition problems of the form a + b = c, where c was a double digit sum, 

and pushed the yes button if the equation was correct and pushed the no button if the 

equation was incorrect. For the incorrect equations, the answers were wrong by not more 

than ±2. Results of the experiment indicated the problem size effect; reaction time 

latencies increased as both a function of minimum addend and sum (Parkman & Groen, 

1971). Reaction time latencies for tie problems (6 +6) were also found to be significantly 

faster than for nontie problems. The authors indicated that adults may be performing 

simple addition problems in the same way that children were, only the process had 

become automated and much faster; however, more reaction time data for children was 

needed before that conclusion could be confirmed (Parkman & Groen, 1971).



In 1972, Groen and Parkman set out to obtain more evidence with regard to children 

performing simple addition. They considered several counting models for first grade 

children who were attempting to solve simple addition problems (problems with single 

digit addends and sums of less than or equal to nine). The five predicted models were 

tested using data obtained with a production task. Participants had a box with the 

numbers one through nine on it. A problem was presented to them, they then had to 

calculate the answer and press the numbered button that corresponded to the correct sum. 

This was in contrast to the verification task used in the 1971 Parkman and Groen 

experiment in which the participant would be shown the problem with an answer, and 

they would simply have to verify whether the answer provided made the equation true or 

false. After testing all five predicted counting models, the results showed that, in the first 

grade, children were using what Groen and Parkman referred to as a “count by min” 

model for solving simple addition problems. According to the “count by min” model, a 

first grader would solve the problem X + Y = ? in the following manner: first, a mental 

counter would be set to the larger of the two addends (max(X,Y)). The child would then 

count up by the minimum addend (min(X,Y)) one step at a time to achieve the answer. 

For example, given a problem such as 5 + 2, the child would hold the larger addend, 5, in 

memory, and then increment by Is until the number of increments equaled the minimum 

addend, 2. One exception found in the study was in the case of tie problems. Tie 

problems all appeared to have the same reaction time latency, and the authors stated that 

children must have been using some type of retrieval system for tie problems, indicating 

that those answers were already stored in memory.



After the conclusion of the study, there were two possible ideas presented about how 

adults might have been processing simple addition problems; one idea was that the 

process for adults would be the same as that for the first graders, only faster (Parkman & 

Groen, 1971). There were some discrepencies between the data, however, that did not fit 

with that idea. Firstly, even though the minimum addend provided the best fit, for the 

adult data, the sum of the problem accounted for almost as much of the variance as the 

minimum addend. Secondly, with adults being extremely faster than children, it did not 

seem that adults were incrementing by counting to themselves, and that meant that if 

adults were incrementing, then they were doing it by some unknown mechanism (Groen 

& Parkman, 1972). Those discrepancies led to a rejection of the idea that the simple 

addition process for adults and children was the same. A second idea was that adults 

would use the same reproductive process that children used for tie problems on most 

simple addition problems; however, for an unknown proportion of simple addition 

problems, adults would revert back to the counting model used by children (Groen & 

Parkman, 1972).

Evidence pointing to a direct retrieval process in adults came from Parkman (1972). 

An experiment was conducted to try and extend the “count-by min” model to 

multiplication. In the experiment, college students were given a verification task in 

which they were given a single-digit multiplication problem with an answer (p x q = r), 

and they had to respond whether the equation presented to them was true or false. The 

latencies increased as a function o f min(p,q) and as a function o f the sum of p and q; that 

result showed the problem size effect. This was the same effect found for simple addition 

in Groen and Parkman, 1972. It seemed that simple addition and multiplication were



governed by the same underlying processes (Parkman, 1972). However, to interpret the 

new findings for multiplication in terms of the “count-by min” model, the participants 

would need to be counting-on as indicated by the larger multiplier; for example, in the 

case of 7 X 3, an individual would count-on by 7s for 3 increments (Ashcraft, 1992). In 

comparing the count-by min model for simple addition to the same model for 

multiplication, it was pointed out that the restriction of incrementing by 1 s for addition 

did not make sense if for multiplication, one could count-on by 7s (Miller, Perlmutter, & 

Keating, 1984). In the discussion section, Parkman (1972) talked about the limitations of 

the “count-by min” model and wrote that if  single-digit multiplication was assumed to be 

achieved through a process of direct retrieval, then single-digit addition would also seem 

to operate under that same process.

In 1978, the ideas given regarding adults’ processing of simple addition problems by 

Groen and Parkman (1972) were tested by Ashcraft and Bataglia in two experiments 

using college students as participants. In the first experiment, simple addition problems 

with answers were presented in a true/false verification task. For the false problems, the 

authors investigated the split effect. Originally, the term split was used to describe the 

distance between two digits presented on a mental number line. If a participant was 

presented with two digits, he/she would use a mental number line to compare the two 

digits and decide which one was larger (e.g. Moyer & Landauer, 1967). For the Ashcraft 

and Bataglia study, the split effect was manipulated in the answers of the false stimuli 

presented such that some of the false answers were different from the real answer by ± lor 

2 (termed reasonable false) and other false answers were different from the real answer 

by ±5 or 6 (termed unreasonable false).



The results o f the first experiment did not lead to evidence o f a strictly counting 

model in adults. Unlike the previous results, which indicated the minimum addend to 

account for most of the variance (Groen & Parkman, 1972), the first experiment found 

that 48% of the variance was accounted for by the square of the correct sum for true and 

reasonable false problems, indicating the problem size effect. Also found was that the 

minimum addend was only the best predictor for unreasonable false problems.

According to these results, a strictly counting model for adults did not make sense 

because the squared term accounting for most of the variance could not be made to 

correspond with a counting factor as proposed in the “count-by min” model (Ashcraft & 

Bataglia, 1978).

To test that result thoroughly, the second experiment in the study used the same 

stimuli as the first experiment with the exception of some repeated stimuli. The authors 

investigated what happened to reaction times when the stimulus was repeated in its 

entirety, when only the sum was repeated, and when either the first or the second addend 

was repeated. Results indicated that the reaction times were significantly decreased when 

the problem was repeated in its entirety, and that even when only the sum was repeated, 

reaction times were facilitated (Ashcraft & Bataglia, 1978). These repetition effects 

provided direct evidence against a strictly counting model for adults in that Groen and 

Parkman’s 1972 “count-by min” model could not explain the facilitation in reaction times 

that occurred when exactly repeated stimuli were presented. A network retrieval model 

was posited in which the network representation for addition was a square with the digits 

0-9 on two adjacent sides and the sums located at the intersection point o f any two 

numbers. Incorporating the exponential problem size effect, modifications to the square



were presented that included stretching out the distance between larger sums or making 

the distance between entry sums larger as the addends got larger (Ashcraft & Bataglia, 

1978).

To examine the various models for mental addition, a study was conducted which 

tested the strictly counting model, the direct access model with backup counting (Groen 

& Parkman, 1972), and the network retrieval model (Ashcraft & Bataglia, 1978) o f adults 

processing of mental addition (Ashcraft & Stazyk, 1981). The results showed that 

reaction times again increased with problem size and also decreased with increased split 

in the false answers. These results were consistent with the network retrieval model 

proposed by Ashcraft and Bataglia, and they did not refute the network representation 

scheme proposed in that study.

By the early 1980s, it had been shown that first graders used a “count by min” model 

(Groen & Parkman, 1972) and that adults were using a network retrieval model (Ashcraft 

& Bataglia, 1978, Ashcraft & Stazyk, 1981). Researchers were beginning to wonder 

exactly where the transition occurred from a counting model in the first grade to a 

retrieval model in adulthood. In 1982, Ashcraft and Fierman conducted a study to try and 

investigate that very question. The experiment consisted of simple addition problems 

presented to third, fourth, and sixth graders for a true/false verification task. Results 

showed that half of the third graders were using a counting process and the other half 

were using retrieval methods indicating that there may be a transition occurring from 

counting to retrieval happening in the third grade. Fourth and sixth graders were found to 

have similar reaction time profiles to adults indicating a retrieval method, and, although 

fourth graders were still slow to judge the false problems, sixth graders were found to



perform the same as adults. Analyses showed a switch from the minimum addend being 

the best predictor to the correct sum squared being the best predictor starting in the third 

grade and the correct sum squared being the best predictor from then on.

Another interesting finding arose when the math textbooks of elementary schools 

were examined to see what kinds of simple addition problems were shown most 

frequently. The results showed that small problems were presented much more 

frequently than large problems (Hamarm & Ashcraft, 1986). This result gave evidence in 

favor of the network representation scheme presented by Ashcraft and Bataglia in 1978. 

Small problems had stronger network representations due to experience and lots of 

practice, resulting in shorter reaction times. Also, longer reaction times, indicating 

weaker network representations for large problems, could be explained by a lack of 

experience and practice beginning from the initial learning of simple addition.

As more researchers became interested in math cognition and the mental processes 

involved in performing math tasks, more evidence was found confirming repetition 

effects (LeFevre, Bisanz, & Mrkonjic, 1988). Also, evidence was found that challenged 

a strictly retrieval model for adults’ processing of simple addition problems (LeFevre, 

Sadesky, & Bisanz 1996). Lefevre et al. found that the strategies used by adults 

depended on the characteristics o f the task. In fact, it was found that the size of the 

problem affected exactly which strategies adults would choose to use (LeFevre et al., 

1996). As the problems got larger (having a sum greater than 10), adults were just as 

likely to use a procedural strategy as a retrieval strategy. Reaction time data obtained by 

Lefevre et al. (1996) showed slower reaction times when participants reported using 

procedural strategies and faster reaction times when participants used retrieval strategies.



Another result showed that if  the minimum addend was 1,2, or 3, the participant was 

most likely to report using a counting strategy.

In 2001, Kirk and Ashcraft performed two experiments to further investigate the 

results obtained by Lefevre et al. (1996). The first experiment replicated the conditions 

in Lefevre et al. (1996) with the addition of two contrasting instruction conditions and a 

silent control condition. Instruction conditions consisted o f four groups: retrieval bias, 

strategy bias, replication, and silent control. The results showed a verbal report bias 

based on which instructions the participant received; those participants who had been 

biased to report direct retrieval strategies did so 90% of the time, and those participants 

who were biased toward non-retrieval strategies showed a higher increase in reporting 

non-retrieval strategies in their verbal reports as well. The second experiment replicated 

the first with the exception of using multiplication problems instead of addition problems; 

all instructions were also changed to accommodate multiplication. Once again, the 

results showed that participants’ verbal reports were biased when given demand 

instructions. Overall, demand instructions were shown to play an important role in 

participants’ verbal reports which was not an accurate reflection of their cognitive 

processes (Kirk & Ashcraft, 2001).

Summary o f  Math Cognition Research

So it has been shown that children in the first grade use a “count by min” model 

(Groen & Parkman, 1972); however, a transition occurs somewhere in the third grade 

where children are switching from the “count by min” model to a retrieval model for 

simple addition (Ashcraft & Fierman, 1982). Different results have been obtained with 

regard to the performance on simple addition problems by adults. One result indicated
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that adults used various strategies as a function of problem size (LeFevre et.al, 1996). 

Other results pointed to adults using a strietly retrieval model to perform simple addition 

tasks (Asheraft & Bataglia, 1978, Asheraft & Stazyk, 1981).

Sinee the evidence points to frequent, but not continuous use o f a direct retrieval 

strategy, it would be good to examine why adults may be choosing procedural strategies 

or why some adults may just be taking longer to retrieve the solution. One explanation 

ean be found by looking at math cognition through a model for working memory. The 

next section will give an explanation of the working memory model for which the 

framework of the eurrent study is based. Researeh examining the relationship between 

math cognition and working memory will also be discussed.

Math Cognition and Working Memory

Working memory involves the temporary storage and proeessing o f information. 

Cognitive psychologists looking at working memory typically look at it in terms of 

Baddeley’s (1986) working memory model. There are three parts to the working memory 

model: the eentral exeeutive and two storage systems (the visuospatial sketchpad and 

phonological loop). The central exeeutive acts as the supervisory system; it initiates 

retrieval from long term memory and controls the information going to and from the 

visuospatial sketchpad and the phonological loop. The phonological loop deals mainly 

with auditory verbal information such as remembering somebody’s name that you just 

met, and the visuospatial sketchpad is involved with visual and spatial information such 

as how fast an object is moving or where it is located. Recently, Baddeley (2000) has 

added a fourth component to the model, called the 'episodic buffer'. This component is a
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third storage system, dedicated to linking information across domains to form integrated 

units of visual, spatial, and verbal information.

According to Baddeley’s working memory model, working memory only has a 

limited number of resources to work with at any one time, allowing only a certain number 

of tasks to be done at the same time. Sometimes more than one task can be accomplished 

at the same time; however, it depends on which subsystems of the central executive are 

involved and if there is competition for any of the working memory resources. It is easier 

to do two tasks, each relying on a different subsystem of the central executive (i.e. a 

verbal and a spatial task), than it is to do two tasks in which each task is relying on the 

same subsystem (i.e. two spatial tasks) (Baddeley & Hitch, 1974).

By the early 1990s, questions were being asked as to the involvement of working 

memory in the process o f solving arithmetic problems. One experiment aimed at 

investigating the role o f working memory in addition was conducted by Ashcraft,

Donley, and Halas (1992). The authors used both single digit and two column addition 

problems for a true/false verification task. Three concurrent tasks (repeat, 

alphabetization, and word generation) were also presented to each participant. For the 

single digit addition problems, it was found in the word generation and the 

alphabetization tasks that the participants exhibited slower verbal performance, which 

implicated working memory in the process o f simple addition. The two column addition 

problems showed an even stronger reliance on working memory; the interference of the 

concurrent task was evident, especially when the carry operation was required (Ashcraft 

et al., 1992). Although working memory was shown to be involved in both single and
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two column addition problems, specific subsystems of the working memory model (the 

central executive, phonological loop, and visuo-spatial sketchpad) were not discussed.

Several studies provided evidence that the central executive is involved in solving 

single-digit arithmetic problems. In 1996, a study was done with the intention of finding 

out which parts o f the working memory system were active when adults performed 

simple addition problems. Lemaire, Abdi, and Fayol used college students in their 

experiment and gave them simple addition and multiplication problems in a true/false 

verification task. For a subset of the false problems, confusion problems were presented; 

confusion problems were considered those problems in which the proposed answer 

matched a correct answer to another problem or was correct under another operation (i.e. 

3 + 4 -  12 or 3 X 4 -  7). Another subset of false problems did not contain confusion 

problems. The authors did not manipulate split for the experiment, and easy and difficult 

problems were determined using a difficulty rating scale (Ashcraft’s index; see Hamann 

& Ashcraft, 1985). One of four memory load conditions was assigned to participants: 

control, articulatory suppression, canonical letters, and random letters. In the articulatory 

suppression condition, participants were asked to repeat a word over and over to try and 

interfere with the phonological loop. The canonical letter condition involved the 

participants repeating the letters “abcdef ’ over and over. Finally, in the random letter 

condition, participants had to constantly repeat a random combination of the letters 

“abcdef.” Results showed longer latencies between easy and difficult problems in the 

random letter condition as well as higher error rates for confusion vs. nonconfusion 

problems in the random letter condition (Lemaire et.al, 1996). These findings from their
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first experiment led the authors to conclude that the central executive was indeed 

involved in adult’s solving of mental arithmetic problems.

In their second experiment, Lemaire et.al (1996) replicated the first experiment with 

the exception o f showing participants either addition problems or multiplication 

problems, but not both. Also, partieipants were randomly assigned to an operation by 

load condition. Operations consisted of addition or multiplication and loads consisted of 

artieulatory suppression, canonical letters, or random letters. Results were consistent 

with the first experiment and indieated that an overload o f one slave system, the 

phonologieal loop, implicated the eentral exeeutive as being involved in the proeess of 

mental arithmetic in adults. One weakness o f the experiment was that the role o f the 

phonological loop itself in mental arithmetic was not discussed; only its implications with 

regard to the eentral executive were mentioned.

In 2001, De Rammelaere, Stuyven, and Vandierendonek attempted to investigate the 

exact role, if  any, that the phonologieal loop was playing with regard to adult’s 

processing of mental arithmetie problems. Experiment one eonsisted o f only simple 

addition problems presented for true/false verifieation, and the split effeet was also 

examined with reference to small splits (±1) and large splits (±9) (De Rammelaere, 

Stuyven, & Vandierendonek, 2001). There were three load conditions; A control 

condition, an articulatory suppression eondition in which the partieipant had to repeat a 

word over and over (designed to overload the phonologieal loop), and a random time 

interval rhythm generation eondition (designed to overload the central exeeutive).

Results indicated that the phonologieal loop was not involved beeause the articulatory 

suppression task did not interfere with the verification task; however, the rhythm
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generation task did interfere with the verification task which confirmed that the central 

executive was highly involved in adult’s processing of mental addition problems (De 

Rammelaere et.al, 2001). Their second experiment resulted in the same conclusions for 

simple multiplication problems. Although it showed that the central executive had a 

general effect on processing, it was not clear which aspects in particular were important 

to arithmetic.

Summary

After several studies, it was clear that the central executive was involved in arithmetic 

processes. Evidence also suggested that the phonological loop was not involved in 

solving arithmetic problems. As this work was being completed, a new area of research 

was being looked into involving math anxiety. The next section will introduce the math 

anxiety rating scale as well as discuss some previous research and findings in the area of 

math anxiety.

Math Anxiety and the Math Anxiety Rating Scale 

As mentioned in the introduction, math anxiety involves discomfort and nervousness 

that can result from a situation dealing with numbers or a situation involving simple 

calculations. In 1972, Richardson and Suinn developed a scale with which to measure an 

individual’s level of math anxiety. Named the Math Anxiety Rating Scale (MARS), the 

scale contained 98 items, each describing a situation dealing with math. Some situations 

were academically oriented (e.g. taking a math test) while others referred to situations 

encountered in everyday life (e.g. making change). Using a five point Likert scale, 

participants rated the level of anxiety that they would feel in those situations.
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Due to the length of the scale and the time that it took participants to complete it, a 

shortened version o f the MARS was developed that consisted of 25 items (Alexander & 

Martray, 1989). To make sure that the newly shortened version was representative o f the 

98-item original, an experiment was conducted which found the 25-item scale to be 

highly correlated (r = .96) with the original 98-item MARS (Fleck et. al, 1998). The 

sMARS, as Fleck et. al (1998) termed the 25-item scale, is now the most widely used 

scale to measure math anxiety.

Math Anxiety Research 

Math anxiety researchers have looked at achievement tests to examine how math anxiety 

affects performance on math tasks. One such math achievement test used in math 

anxiety experiments is the Wide Range Achievement Test (WRAT), which was 

developed by Jastak and Jastak (1978). For the first three lines of the WRAT, which 

consist of whole number simple addition, subtraction, multiplication, and division 

problems, Ashcraft and Kirk (1998) found that low, medium, and high math anxiety 

groups performed equivalently. This indicated that all participants, regardless of math 

anxiety level, had the same level o f achievement when performing simple mathematical 

procedures. However, group differences did begin to appear on lines 5 and 6 where the 

problems consisted o f fractions, decimal arithmetic, and long division with a remainder. 

The largest group differences were seen on the last line, consisting o f functions and 

factoring procedures, where low math anxious participants averaged 1.9 correct out of 5, 

versus 0.5 correct out o f 5 for high math anxious participants (Ashcraft & Kirk, 1998).

Another study done in 1994 by Ashcraft and Faust investigated what level of math
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tasks was needed to start to seeing math anxiety interfere with computation of the math 

task. The results indicated that two-column addition problems involving carrying were 

sufficient to have math anxiety effects. The high math anxious groups had much slower 

reaction times to computing carry problems than the low math anxious group, indicating 

that the math anxiety experienced by the high math anxious groups was interfering with 

their ability to do the computation involved in a carrying problem. This result was the 

first o f its kind to be reported in the literature (Faust, Ashcraft, & Fleck, 1996).

A disturbing finding by Faust et al., (1996) was that individuals with high math anxiety 

experienced what the authors termed to be a speed-accuracy trade-off. According to the 

authors, the high math anxious participants exhibited faster reaction times than the 

medium math anxious participants; however, the accuracy of the high math anxious 

participants was dismal compared to the medium math anxious participants. They 

concluded that, to get through the discomfort of completing the math task, the high math 

anxious individuals were hurrying through the problems in an attempt to relieve their 

anxiety, allowing their accuracy to diminish along the way.

After seeing some o f the findings regarding math anxiety, it was logical to follow in the 

footsteps o f the math cognition research and examine what, if  any, effects math anxiety 

was having on working memory. Research examining the relationship between math 

anxiety and working memory is covered in the next section.

Math Anxiety and Working Memory 

As illustrated by Eysenck (1992), general anxiety interferes with working memory 

resources and this is reflected in the slow and/or inaccurate performance of a task. By
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that time, several researehers were already studying math anxiety; however, Eysenek 

gave them a new perspeetive about what might be going on with individuals who 

experienee math anxiety. Later, researehers applied Eysenek’s (1992) idea to math and 

discovered that anxiety and the math task were both competing for the same pool of 

working memory resources. From there, a pool of research developed examining exactly 

how the math anxiety was interfering with working memory and specifically which kinds 

of tasks caused the interference to be present.

Math anxiety can be understood in the context o f Baddeley’s (1986) working memory 

model. The math task being done is taking up working memory resources, and the 

anxiety associated with the math task is also taking up working memory resources. In 

other words, the anxiety is competing with the math task for the available working 

memory resources. Eysenek (1992) found that the higher the level of general anxiety, the 

less people were able to perform a second task requiring working memory resources. 

From that result it was deduced that the higher the level o f math anxiety, the more 

resources will be needed from working memory, leaving little or no resources left to 

solve the math task presented. With these ideas in mind, several research studies 

investigated the relationship between math anxiety and working memory.

In 1998, Hopko, Ashcraft, and Gute, conducted an experiment in which a reading task 

was used to examine whether math anxiety would disrupt normal processing with regard 

to the working memory system. Participants were assessed using the sMARS, and they 

were then categorized as low, medium, or high math anxious. They were then randomly 

assigned to one o f three reading conditions consisting of either math or non-math 

paragraphs as well as different distraeter types: control, unrelated (distraeter words that
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were unrelated to paragraph content), and related (distraeter words that were related to 

paragraph content). Results showed that high and medium math anxious participants had 

much slower reading times when there were distracters present than the low math anxious 

participants. The high math anxious participants also made more errors on the 

comprehension questions than did the low math anxious participants (Hopko et.al, 1998). 

Although it was shown that high math anxious individuals performed poorly in 

comparison to low math anxious individuals, it was not clear whether this was due to the 

math anxiety specifically or to inefficiency in inhibiting attention based on the thoughts 

provoked by other factors such as distractibility.

To examine if indeed math anxiety consumed working memory resources, Ashcraft and 

Kirk (2001) introduced a dual task paradigm in their experiment. If math anxiety and 

performance o f the math task were competing for working memory resources, the dual 

task paradigm would be sure to show it. The authors’ prediction was that there would be 

a competition for working memory resources, and, in fact, that is what was found; those 

participants with the highest levels o f math anxiety had the poorest performance on the 

math task. This was especially the case on carry problems, those previously shown to 

rely heavily on working memory. Therefore, it seems that math anxiety can consume 

working memory resources.

Current experiment

Previous literature has mainly focused on a “declarative memory” approach (testing 

participants on what they already know) to the study of math anxiety. The literature has 

not yet examined learning in the context of math anxiety, which seems odd, given that, in
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general we believe that math anxious individuals learn less math in school. This 

inference is drawn from evidence concerning math achievement tests; math anxious 

individuals tend to score lower on these tests than non-math anxious individuals. As an 

initial attempt to examine learning in the context of math anxiety, the standard true/false 

verification task was used with college students, where the construction o f the stimulus 

set provided differential opportunities for learning to take place. In particular, one set of 

stimuli was repeated nine times throughout the experiment, providing multiple 

opportunities for learning, whereas the other set of stimuli was only shown once. 

Because adults already know the answers to simple addition facts, the learning being 

examined here involved “stimulus learning,” in other words, learning that, for example, 

the incorrect answer 17 appeared with the problem 7 + 8. Collecting RT and error data 

across three blocks o f trials afforded a substantial body o f data with which to address 

issues related to learning on the part of low vs. high math anxious participants; (e.g., 

examination of performance improvement across practice for repeated vs. non-repeated 

problems as a function of math anxiety and split). Beyond this, participants in the 

intentional learning condition were told at the outset that they would be asked to recall 

the answers they saw during the experimental trials, so they were expected to attempt to 

encode and remember these numbers. They were predicted to be more accurate in doing 

so for answers that repeat nine times. Comparing performance, both in the timed 

experimental trials and on the memory task as a function o f math anxiety, problem size, 

split, and working memory, provided new insights into the role of math anxiety as 

individuals perform a demanding and memory-dependent mathematical cognition task.
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The current study was aimed at examining math anxiety and its effects on the storage 

of arithmetic information. These effects were investigated in terms of how well 

participants would be able to remember information about simple addition problems, 

depending on their level of math anxiety. Problems were presented for true/false 

verification, with half of the problems presented with a correct answer of true and half 

with a false answer. In past research (e.g. Ashcraft & Bataglia, 1978), false problems 

have been categorized as being reasonable false or unreasonable false problems. For the 

1978 study, Ashcraft and Bataglia used splits of ±1 or 2 for reasonable false problems, 

and ±5 or 6 to designate unreasonable false problems. Reaction times were found to be 

faster for unreasonable false problems. When participants saw a false problem, they may 

or may not have remembered the wrong answer that was paired with the problem. 

Whether or not they remembered may have been due to the size of the split and/or the 

level of math anxiety. The current experiment utilized three levels of split, ±1 or 2, ±5 or 

6, and ±8 or 9, small, medium, and large, respectively.

Consistent with previous findings, one prediction was that, demographieally, high 

math anxious individuals would have taken less high school and college math courses 

and received lower grades in them on average than the low math anxious individuals.

Another result expected to be consistent with the literature was that high math 

anxious participants with high working memory capacity would still be less accurate than 

the low math anxious participants due to the math anxiety competing for working 

memory resources needed to complete the task.

A final prediction was that participants in the intentional learning condition would 

outperform those in the incidental learning condition on the memory task, regardless of
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math anxiety. The effects of repetition on stimulus learning might have revealed the 

effects of math anxiety in the incidental learning condition such that low math anxious 

participants may have shown superior memory for the answers because their working 

memory was less burdened during math performance, hence their free working memory 

resources would be better able to encode this information. Along the same lines, high 

math anxious participants would have fewer working memory resources available during 

processing, so would be expected to encode and remember less o f the information about 

the false answers. It was possible, however, that a result in the opposite direction might 

be obtained. That is, high math anxious individuals may have actually spent additional 

time in processing false problems, especially those with large splits; after all, Faust et al. 

(1996) found high math anxious individuals to make more errors, rather than fewer, when 

addition problems had larger splits. Thus, paradoxically, because of additional 

processing time, high math anxious participants might have actually demonstrated better 

memory for the false answers with large splits, due to longer exposure to those answers.

Overall the results were predicted to show that not only was the high math anxiety 

interfering with the processes of working memory and the ability to perform simple 

calculations, but that it was also interfering with the learning of basic math fact.
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CHAPTER 3

METHODOLOGY

Participants

Participants were recruited from the UNLV subject pool. 73 students participated in 

the experiment to receive course credit.

Materials

Demographic information was collected from all participants using a computer-based 

survey. Basic demographic information such as age, ethnicity, and year in school was 

obtained, and there was also information obtained that was specific to this experiment. 

This information included the number of high school math courses taken, the average 

grade they received in their high school math courses, the average grade they received in 

their college math courses, how much they enjoyed math, and how math anxious they 

considered themselves to be. There was also a checklist on the sheet so they could check 

all of the types o f math classes that they had taken either in high school or while 

attending UNLV.

Short Mathematics Anxiety Rating Scale (sMARS). The sMARS was 

administered to all participants to determine their individual level o f math anxiety. It is a 

25-item questionnaire containing items that ask about specific math situations
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encountered in the classroom (taking a pop quiz) as well as those math situations 

encountered in everyday life (calculating a tip in a restaurant). The questionnaire was 

completed on the computer. Previous research has found the grand mean on the sMARS 

to be 36 with a standard deviation of 16 (Ashcraft, et al., 2007).

Operation Span (OSPAN): Self-Paced. This task was based off of the original 

OSPAN task designed by Turner and Engle in 1989. The self paced version of the 

OSPAN was used in the current experiment to give an estimate of participants’ working 

memory spans. The OSPAN required the participant to read math equations and then 

verify whether or not the answer presented was true or false; the equation remained on 

the screen until the participant pressed one of the required mouse buttons. After each 

equation, a word was presented on the screen for 250ms (different words will follow each 

equation). Following anywhere from two to six equation-word combinations, the 

participant was asked to type in the words that were presented to them in the same order 

that they saw them; a text box appeared on the screen for the participants to type in the 

words. The task was completed on the computer; the participants used the mouse to 

verify the equations as true or false, pressing the left mouse button for true and the right 

mouse button for false, and the keyboard to type in the words. The task was completed 

once the participant was given three trials of each set size two through six, regardless of 

accuracy on the equation verification or word lists. There were two practice trials for the 

participants to get accustomed to the task.
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Experimental Stimuli 

The experimental stimuli consisted of three blocks with 48 problems in each block. 

The stimuli were constructed from the 56 possible nontie, pairwise combinations of the 

integers 2-9. One and zero were not used as addends because it is generally conceded in 

the literature that participants tend to use rules instead of direct retrieval for problems 

involving one and zero addends. The frequency and placement of all integers was 

random. Exact repetition of a problem across trials was permitted in the sense that the 

same problem could have been randomly selected two times in a row from the stimuli 

since 12 o f the stimuli repeated 3 times throughout the set. This was not deemed to pose 

a problem because the answers to the basic facts are already assumed to be stored in long 

term memory. The literature has demonstrated that retrieval of answers to these problems 

is done based on a network retrieval model; therefore, although repetition priming was 

expected to create a faster reaction time, the difference was not expected to be significant.

Procedure

Upon arrival to the laboratory, the participant completed a consent form, the 

demographic survey, and the sMARS. The experimenter went through the instructions 

thoroughly and ran the participants through the OSPAN on the computer. The participant 

was randomly pre-assigned to either an incidental or an intentional learning condition. 

Instructions were given to the participants, explaining to them the task they were about to 

perform and how to use the equipment provided to complete the task. Participants 

assigned to the intentional learning condition were also told at this time that there would 

be a later task in which they would be tested on how many answers they could remember
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from the problems given during the task. All participants were then given a practice 

block and three experimental blocks o f simple addition problems. The practice block 

contained 8 trials to get the participant accustomed to using the mouse for verification; 

the left button was pushed for true and the right button for false. Each experimental 

block contained 48 problems, with answers, and the participants had to answer true/false 

by depressing one of two buttons on the mouse to indicate their response. Half of the 

problems per experimental block were true and half false, 24 problems each. As far as 

problem size was concerned, addition problems with a sum of 10 or less were considered 

small and those with a sum of more than 10 were considered large. There were 24 large 

and 24 small problems per experimental block of trials. The problems were also evenly 

divided among split so that small, medium, and large splits were represented by 16 

problems each per block of trials. Small splits for this experiment were ±1, ±2 away 

from the correct sum, medium splits were ±5, ±6 away from the correct sum, and large 

splits were ±8, ±9 away from the correct sum. Also, half of the problems per block, 12 

problems, repeated three times each through all three experimental blocks, so over the 

three experimental blocks, the participant saw some problems only once and some 

problems nine times. After completion of the last experimental block of trials, a 

prompted recall test was given to the participants. The prompted recall test was also 

administered on the computer. A problem stem, with a blank space following the equals 

sign, was presented on the screen along with a text box for participants to enter their 

responses. Participants were asked to try and recall the false answer that was presented 

with the problem during the experiment.
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Statistical Analyses

For all problems, a 3 x 3 x 2 x 2 x 2 x 2  analysis of variance was conducted using 

SPSS software. Factors examined included math anxiety, split, problem size, incidental 

vs. intentional learning, true/false, and repeat/no repeat, respectively. Math anxiety and 

incidental vs. intentional were between subjects variables and the rest were within 

subjects variables. Three dependent variables were analyzed: errors, reaction times, and 

stimulus learning, which was calculated based on the number o f false answers correctly 

recalled on the prompted recall test.

Error rates o f 15% or higher indicated an unusual amount of incorrect answers to 

problems, which could mean that the participants ignored the purpose of the experiment 

and simply tried to get through as fast as they could or that the participant was 

exceptionally below average in terms of arithmetic ability. Because of this, it was 

decided that participants not achieving an accuracy rate of at least 85% on the 

experimental task would not be included in the data analyses for the study. Error rates 

were examined to see if any of the participants were not able to meet the accuracy 

criteria; all participants in the study did achieve at least 85% accuracy for the problems in 

the experimental task. Therefore, no participants were excluded from the analyses for not 

meeting the above criteria.

Also examined were math anxiety level, working memory capacity, and how those 

two related to error rates for false problems. Descriptive statistics and Chi-square were 

used to review demographics to look at the number of math classes taken and grades 

received along with self-reports o f math anxiety and math enjoyment and how those 

related to the level o f math anxiety that the participant exhibited.
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CHAPTER 4

DATA ANALYSIS AND RESULTS 

The major design used in this experiment was a repeated measures mixed model 

factorial. Within subjects factors included block, split, problem size, repeat, and 

true/false while between subjects factors consisted o f math anxiety, memory span group, 

and learning eondition. A short description of three o f the above variables will be given 

to maintain elarity with respect to the design.

Participants were randomly assigned to either o f two learning conditions. One was an 

intentional learning eondition; for this condition, the experimenter stressed to the 

participants that there would be a recall task following the experimental task, and that 

they would be asked to recall answers that had been presented with the problems when 

they saw them. The second learning condition was an incidental learning eondition in 

which the participant was told nothing regarding the recall task before beginning the 

experimental trials. For the recall task, participants were shown a problem stem and 

required to supply the false answer that was displayed with that stem when they saw it 

during the experiment; answers to true problems were not requested since these could be 

answered based on the participants’ knowledge of arithmetic.

The repeat factor consisted o f a manipulation o f problem repetition throughout the 

three blocks. The participants saw each of twelve problems repeat three times per
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block. Thus, after three blocks of trials, participants saw those twelve repeated problems 

a total of nine times. Participants were also presented in each block with twelve 

problems that were unique, that is, problems that appeared only one time. Participants 

saw unique problems only once throughout the three blocks of trials versus nine times 

each for repeated problems.

For the factor split, which only pertained to the false stimuli, there were three 

different categories: problems with answers that differed from the true answer by ±1 or 

2(small splits), ±5 or 6(medium splits), and ±8 or 9(large splits). In each o f three blocks, 

there were forty-eight trials. In a forty-eight trial block, the participants saw six repeated 

false problems and six unique false problems, with two false problems in each group 

having small, medium, or large splits.

Results on the demographic characteristics will be given in this section as well as a 

discussion of reaction time and error rate data for both the true and false problems in the 

experiment. Concerning error rate data, working memory span results will be discussed 

in relation to error rates on false problems, and finally, recall performance of the 

participants will be discussed.

Demographics

Seventy-three undergraduate students (age range: 18-67, with a mean of 20.91) 

consented to participate in the experiment for course credit. Nine participants did not 

follow instructions on the recall task. The recall task was forced, i.e. they were required 

to provide an answer for the problem stem presented regardless of whether they thought 

they knew the answer; however, nine participants left several answers blank or indicated
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“don’t know” for the answer. Data for those nine participants was excluded from 

analysis, leaving sixty-four subjeets whose data were included in the analyses. Means for 

several demographic variables are displayed in Table 1. Twenty six men and thirty eight 

women were randomly assigned to either the intentional or incidental learning eondition. 

Participants were grouped by their sMARS scores into math anxiety groups; however, 

this was not done in the usual way. In the past, participants were eliminated if they did 

not clearly fall into one o f the three math anxiety groups i.e. elimination occurred if 

partieipants fell within one standard deviation above or below the sMARS mean of 36. 

After examining the demographic data for the eurrent study, it was found that 6 

participants fell within one standard deviation below the mean and 6 partieipants fell 

within one standard deviation above the mean. Not only that, but the math anxiety 

groups were fairly uneven in terms of sample size (low math anxiety n = 13, medium 

math anxiety n = 23, and high math anxiety n = 16). Therefore, the 6 participants below 

the mean were put into the low math anxiety group and the 6 partieipants above the mean 

were put into the high math group, ereating the following: low math anxiety n = 19, 

medium math anxiety n = 23, and high math anxiety n = 22. In order to make sure the 

groups were still signifieantly separated aeeording to their sMARS seores, a one-way 

ANOVA was conducted F(2, 64) -  \ 6 5 . 1 \ % p -  .000.

In terms of math anxiety, the pereentage o f participants did not differ by gender,

X^(2,n = 64) = 3.382,/? = .184nor by ethnie group, %^(10,M = 64) = 11.586,/? = .314. 

Self-report ratings o f both math anxiety and math enjoyment were found to be signifieant 

among math anxiety groups F(2, 61) = 7.613 p  = .001, tjp  ̂= .200 and F(2, 61) = 5.895 p 

= .005, rjp̂  = .162, respeetively. High math anxious partieipants self-reported having
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higher math anxiety and lower math enjoyment, and the opposite pattern was found for 

low math anxious participants. The only significant result regarding gender was found 

with regard to self reports of math anxiety F(l, 62) = 5.143 p  = .027, rjp̂  = .077, with 

women self-reporting being more math anxious than men.

Participants did not differ significantly with respect to high school math grades, 

regardless of math anxiety group F(2, 60) = 2.306 /? = .108 pp ;̂ however for the 

participants that reported an average grade for their college math courses (n = 34), results 

yielded significantly lower grades being reported for participants with high levels of math 

anxiety compared to participants with low levels of math anxiety F(2, 31) = 4.074 p  -  

.027, pp  ̂= .208. This difference may be due to high school math standards being less 

stringent than college math standards. As a result students might have an easier time 

achieving higher grades in high school, regardless of their math anxiety level.

Reaction Time Data (Experimental Task)

A 3 x 3 x 3 x 2 x 2 x 2 x 2  repeated measures ANOVA was used for both reaction 

time data and error rate data. Within subjects factors consisted o f block, split, problem 

size, repeat, and true/false while between subjects factors consisted of math anxiety, and 

learning condition.

Outliers were defined as reaction times that fell more than two and a half standard 

deviations above or below the mean. None of the reaction time data fit the criteria of 

being an outlier. This was probably due to the simplicity of the arithmetic stimuli; 

therefore, no reaction times were removed, and no methods of outlier replacement were 

used.

31



True and False Problem Commonalities

For both true and false problems there was a significant main effect of learning 

condition (true, F (l, 58) = 18.937 p  = .000, pp  ̂= .246; false, F (l, 58) = 18.406 p  = .000, 

Pp̂  = .241) on reaction times. Participants in the intentional learning condition took an 

average of over 600 ms longer to verify the problem as true or false than participants in 

the incidental learning condition. One way to explain this difference is by looking at the 

difference in the instructions given to participants in the intentional learning condition. It 

was heavily stressed to the participants in the intentional learning condition that there 

would be a recall task following the verification task, and that they would need to 

remember some of the answers that were presented with the problems that they were 

about to see. With that in mind, the significant difference in reaction times between 

learning conditions can be accounted for.

With regard to the within subjects variables, there were significant main effects for 

block and problem size and several interaction effects. As expected, there was a 

significant speed-up in reaction times across blocks (true, F(2, 116) = 76.761 p  = .000,

Pp̂  = .570; false, F(2, 116) = 62.831 p  = .000, pp  ̂= .520). Significant reaction time 

differences were also found with regard to problem size (true, F (l, 58) = 134.111 p  = 

.000, pp  ̂= .698; false, F (l, 58) = 50.479p  = .000, pp  ̂= .465) in that large problems took 

an average o f over 500 ms longer to verify than small problems. The problem size effect 

has been explained in terms of a counting model (Groen & Parkman, 1972), a network 

retrieval model (Ashcraft & Battaglia, 1978), and also by a possible lack of experience 

with large problems from a very early grade level (Hamann & Ashcraft, 1986). For a
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thorough review of the literature on the problem size effect see Zhrodoff & Logan 

(2005y

Several significant interaction effects for reaction times were found to be consistent 

between true and false problems. There was a significant hlock x learning condition 

interaction (true, F(2, 116) = 4.937p  -  .009, Pp̂  = .078; false, F(2, 116)= 12.250 p  = 

.000, Pp̂  = .174) such that participants sped up across blocks independent o f learning 

condition; however, participants in the intentional condition were slower overall than 

participants in the incidental learning condition, especially in block 1. This interaction is 

illustrated in figures 1 & 2.

A significant block x problem size interaction was also found for both true and false 

problems (true, F(2, 116) = 15.105 p  = .000, pp  ̂= .207; false, F(2, 116) = 4.739/? = .011, 

Pp̂  = .076). There was a general decrease in reaction times across blocks; however, large 

problems took significantly longer across all three blocks. In block one, participants took 

an average of 700 ms longer to verify large problems than small problems; however, by 

block three, this average went down so that participants were only taking an average of 

300 ms longer to verify large problems than small problems. This interaction provides 

further illustration o f the problem size effect as well as practice and priming effects that 

have heen found throughout the literature (Ashcraft & Bataglia, 1978; Ashcraft & Stazyk, 

1981).

Although there was no main effect for math anxiety, both true and false problems 

showed a significant or nearly significant problem size x math anxiety interaction (true, 

F(2, 58) = 3.041 p  =  .055, Pp̂  = .095; false, F(2, 58) = 3.430p  = .039, Pp̂  = .106). In 

figures 3 & 4, the medium and high math anxious groups showed the general pattern of
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slower reaction times for larger problems; however, both groups were significantly 

slower than the low math anxious group for both small and large problems. Even though 

the high math anxious group was slower than the medium math anxious group overall, 

the difference was not significant, and the two groups really appeared to cluster together 

and separate from the low anxiety group. This is something to consider in terms of how 

math anxiety groups are determined, and will be examined further in the discussion 

section.

True Problems

One interaction effect that was not found with false problems regarding reaction time was 

that even though there was no main effect o f repeat, there was a significant block x repeat 

interaction F(2, 116) = 12.127/? = .000, Pp̂  = .173. As figure 5 illustrates, repeated 

problems sped up across blocks faster than no-repeat problems. This was also not 

surprising because as participants were going through the verification task, they saw the 

same repeated problems three times in each block. By the end o f the third block, 

participants had seen repeated problems nine times.

False Problems

The false problems contained the extra factor of split, which resulted in several 

significant interaction effects that differed from the true problems. There were 

significant effects of split F(2, 116) = 23.563 p  = .000, pp  ̂= .289 and repeat F(l, 58) =

31.103 p  = .000, pp  ̂= .349. Displayed in figure 6 are the average reaction times per split 

group. Reaction time was the slowest for splits o f ±1,2 , continuously sped up through 

splits of ±5, 6, and reached the fastest verification times for splits o f ±8, 9. False 

problems were harder to verify as false when the answer given differed by a small
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amount. This result is consistent with past literature (e.g., Ashcraft & Bataglia, 1978, 

Ashcraft & Stazyk, 1981). It seems that when the false answer is close to the true 

answer, more second-guessing takes place whereas when the answer provided is very 

different from the true answer, it is easier to disregard it as false. Ashcraft and Stazyk 

(1981) discussed this in terms of a “ballpark” decision process i.e. if  the split is large, the 

value is so unreasonable, so “out of the ballpark,” that participants can reject the problem 

quickly, an explanation that seems to capture the pattern shown here.

Error Rate Data (Experimental Task)

For this experiment, an error was considered to be incorrectly verifying either a false 

problem as true or a true problem as false during the experimental trials. Error rates were 

computed for each participant in each condition.

True Problems

There was only one significant finding with regard to true problems and error rates, and 

that was a significant main effect of problem size F(l, 58) = 8.854 p  = .004, pp  ̂= .132. 

On average, participants made 2% errors on small problems and 4% errors on large 

problems. This finding is once again consistent with the problem size effect observed in 

the literature as well as a possible lower degree of practice with large problems overall. 

None of the other within subjects factors or interactions were significant and neither of 

the between subjects factors, learning condition or math anxiety, approached significance 

F(l, 58) = .004 p  = .949, F(2, 58) = .203 p  = .817, respectively.
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False Problems

False problems provided several signifieant effects worth noting. There were found to be 

significant main effects for problem size, split, and repeat; F (l, 58) = 8.178/? = .006, r\^

= .124, F(2, 116)= 19.803 p  = .000, Pp̂  = .255, and F (l, 116) = 11.079p  = .002, Pp̂  = 

.160, respectively. Participants made five percent errors on false problems with small 

splits compared with only one percent errors for false problems with medium or large 

splits. Once again, this illustrates that it is more difficult for participants to judge 

problems with small splits as incorrect than to judge problems with large splits as 

incorrect. Errors made on large false problems were similar to errors made for large true 

problems and were one percent higher than the error rate for small false problems. The 

signifieant main effect of repeat was not unexpected; however, prior to conducting the 

experiment, it was thought that more errors would be made on no-repeat problems. 

Exactly the opposite effect was found; the percentage of errors made for repeated 

problems was twice that of unique problems for high math anxious partieipants, F(1, 58)

= 11.079 p  = .002, tjp̂  = . 160.

Along with the main effects mentioned above, all two and three-way interaction 

combinations of split, repeat, and problem size were significant. The trend for each 

followed the same patterns as the main effects with more errors being made on large, 

repeated problems with small splits. The three-way interaction is displayed in figures 7 

and 8, F(3, 116) = 7.356p  = .001, = .113.

Another significant three-way interaction was found that included math anxiety. 

Shown in figures 9 and 10 is the significant split x repeat x math anxiety interaction F(3, 

116) = 2.945 p  = .023, Pp̂  = .092. For the unique problems, all three math anxiety groups
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performed similarly in terms of error percentages, ranging from zero to four percent, with 

the four percent error rate being found for high math anxious individuals verifying unique 

problems with small splits. The much more interesting finding comes from looking at the 

repeated problems. Again, for the medium and high splits, the math anxiety groups 

pretty much cluster together with respect to percent errors; however, error rates jump 

dramatically among the groups when it comes to repeated problems with small splits.

The low math anxious group made four percent errors, the medium math anxious group 

made twelve percent errors (three times that of the low math anxious group), and the high 

math anxious group made seven percent errors. The medium and high math anxious 

individuals really seemed to be Second-guessing themselves after seeing a false problem 

with a small split several times.

The above results provide the opportunity for some investigative applications of previous 

theories. For example, the results may be due to a familiarity effect (Atkinson & Juola, 

1973) for simple addition problems that changes for high math anxious individuals. The 

more times the problem is shown, the more familiar the false answer becomes. As a 

result, high math anxious participants become less sure that they are verifying correctly, 

and therefore are likely to make errors. This explanation will be considered in greater 

detail in the discussion section.

Operation Span (OSPAN): Reaction Times and Error Rates 

The OSPAN was given to participants to measure their working memory capacities. 

Participants were separated into high and low span by performing a median split on 

participants’ raw scores obtained by the OSPAN. The distribution of high and low span
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participants among the math anxiety groups can he seen in tahle 1. To he thorough, a 

Chi-square test was performed to make sure the percentages of high and low span 

partieipants were not significantly different among the math anxiety 

groups, = 64) = 1.110,/? = .574. To investigate any effects o f working memory

span on the data, span group was inserted as a between subjeets variable into the repeated 

measures ANOVA to examine reaction times and error rates. Even though true and false 

problems were analyzed, false problems were o f special interest, since recall results 

consisting of only false problems were used to measure stimulus learning in the eurrent 

study.

Reaction Times (true and false problems)

Reaction time analysis for true problems showed two signifieant three-way interactions 

involving working memory span. The first was a repeat x span group x math anxiety 

group interaction, F(2, 58) = 3.422p  = .039. Shown in figures 11 & 12, reaction times 

were pretty stable across repeat condition except for in the high span group, figure 12, 

where the medium and high math anxious partieipants switched places from the repeated 

to the unique eondition. Overall, low math anxious participants took less time to verify 

answers to true problems regardless of span group; however, low math anxious 

partieipants with low working memory spans took an average o f around 250 ms longer to 

verify than low math anxious partieipants with high working memory spans. This seems 

to indicate a general slowing down of reaction times due solely to working memory span 

differences; low working memory span may result in being more easily distracted from 

the task (mind wandering from the task at hand resulting in longer reaction times). Also 

significant, displayed in figures 13 & 14, was the block x problem size x span group
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interaction F(2, 116) = 3.526p  = .033. This result was not surprising: reaction times to 

true problems were longer for large problems (problem-size effect), longer for low span 

participants, and shorter across blocks (practice effect). No Significant results were 

obtained regarding working memory span and reaction times to false problems.

Error Rates (true and false problems)

Error rate analysis for true problems resulted in one main effect approaching significance, 

span group F (l, 58) = 3.766p  -  .057, figure 15, and one significant interaction, repeat x 

span group F (l, 58) = 5.672p  =.021, figure 16. Even though these effects were 

significant, the error rates were very small. For example, the low span participants had a 

3% error rate while the high span participants had a 1% error rate, see figure 15. For true 

problems, high span participants still made more errors on repeated trials. Low span 

participants made more errors on unique trials, which is opposite of the general trend for 

error rates mentioned above; however, the difference in error rates from repeated to 

unique trials was not even 2%. Several significant results were also obtained when 

working memory span and error rates to false problems were studied. Low span 

participants made more than twice as many errors, 5% compared to 2% for high span 

participants, on false problems, especially large problems. Figure 17 displays the 

significant problem size x span group interaction, F(l, 58) = 4.520p  = .038, r\p = .072. 

Seyler, Kirk, and Ashcraft (2003) found a similar interaction effect with regard to 

subtraction problems. In their subtraction only condition; low span participants were 

found to have made 12.5% and 16.2% errors on small and large problems, respectively. 

According to the results of the current study, that pattern continues across simple addition
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problems as well, giving further evidence to the idea that large problems depend more 

heavily on working memory resources.

Furthermore, when split was taken into consideration, a significant split x problem 

size X span group interaction was found, F (2 ,116) = 4.534 /? = .013, = .072), such that

low span participants, compared to high span participants, made more errors on large 

problems with small splits, 12% and 6%, respectively. This interaction effect was 

consistent with literature regarding the split effect; the closer the split answer is to the 

true answer, the harder it is for participants to verify the problem as false, an effect that is 

especially true for low span participants. Less than 2% errors were made by either high 

or low span participants on false problems having medium or large splits, see figures 18 

& 19.

High span participants made fewer errors on false problems regardless of math 

anxiety group; however, low span participants, especially those with medium and high 

math anxiety, made significantly more errors, 12% and 6%, respectively, than those low 

span participants with low math anxiety, 2%, figure 18. The three-way interaction of 

split X math anxiety x span group, figures 20 & 21, was highly significant, F(4, 116) = 

3.805 p  = .006, T|p̂  = . 116. This result lends further support to the theory that math 

anxiety takes up valuable working memory resources needed to correctly complete a 

math task (Ashcraft & Faust, 1994; Ashcraft & Kirk, 2001).

Consistent with error rate results above for false problems, more errors were made on 

false problems that repeated than false problems that were unique, especially for those 

participants who were higher in math anxiety and classified as low span. Significant 

results were found for the following two- and three-way interactions: repeat x span group
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F(l, 58) = 6.873 p  = .011, rip̂  = .106 and repeat x math anxiety group x span group F(2, 

58) = 5.360p  = .007, Pp  ̂= .156. The highest error percentage, 9%, was made by those 

individuals who were low span and had a medium level of math anxiety. Figures 22 &

23 illustrate this result nicely.

Other significant interaction effects found for false problems and error rates that 

further illustrate the above points included the following:, split x repeat x span group F(2, 

116) = 3.069p  = .05, Pp̂  = .050, block x split x math anxiety group x span group F(8, 

232) = 2.033 p  = .044, pp  ̂= .065, split x problem size x math anxiety group x span group 

F(4, 116) = 3.415/7 = .011, Pp̂  = .105, split x repeat x math anxiety group x span group 

F(4, 116) = 5.104/? = .001, Pp̂  = .150, and problem size x repeat x math anxiety group x 

span group F(2, 58) = 4.563 p  = .014, pp  ̂= .136. In general, these results are indicative 

of the problem size and split effects. More errors were typically made when verifying 

large problems and problems with small splits. Also, with exception to true stimuli, 

which were not as highly considered as the false stimuli due to the nature of the 

experiment and the forced recall task, more errors were made when verifying repeated 

stimuli than unique stimuli. This particular pattern provides for some interesting 

theoretical implications that will be examined in the discussion section. All o f the above 

significant interactions illustrated that low span individuals spent more time on and made 

more errors when verifying answers to simple addition stimuli. The results also indicate 

a tendency for math anxiety to have more of an effect on low working memory span 

individuals than high working memory span individuals. A possible theoretical 

connection between math anxiety and working memory span will also be examined in the 

discussion section.
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Forced Recall Task

Learning, as measured by recall accuracy, was examined using a 3 x 3 x 2 x 2 x 2  mixed 

model ANOVA examining the factors of split, math anxiety, problem size, repeat, and 

learning condition respectively. There were significant main effects of split F(2, 116) = 

47.205 p = .000, pp  ̂= .449 and repeat F (l, 59) = 83.398 p = .000, pp  ̂= .590. There was 

also a signifieant split by repeat interaction, F(2, 116) = 28.461, p = .000, Pp  ̂= .329. As 

shown in figure 24 (split x repeat), significant recall differences were found for repeated 

problems with either low or medium size splits; however, whether the problem was 

repeated or not, recall efforts were poor for problems with large splits. Note that this is 

not a simple function of how long the problems were processed during the verification 

phase of the experiment. Small split problems took longer to reject, to be sure, and 

therefore might be expected to be recalled better, and likewise, large split problems took 

less time to reject, hence might be expected to be recalled more poorly. But medium split 

problems were also rejected fairly rapidly (Figure 6), yet were recalled nearly as well as 

small split answers; at least that was the ease for high and medium math anxious 

partieipants. The resolution of this paradox is found in Figures 25 & 26, depicting the 

significant interaction of repeat x split x math anxiety.

Although there was no main effect for math anxiety F (l, 58) = 2.136 p = .127, there 

was a signifieant repeat x split x math anxiety interaction F(4, 116) = 3.298 p = .013,

= .102. The interaction can be seen in figures 25 & 26, with figure 25 displaying the 

problems that did repeat and figure 26 displaying the problems that did not repeat. As 

shown in figure 26, unique problems showed little difference among math anxiety groups 

with regard to recall accuracy, except for the general trend of recalling more answers
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with small splits than with medium or large splits. However, for the repeated problems, 

there were differences among the math anxiety groups and their recall of false answers 

such that low math anxious participants recalled less than the high math anxious 

participants for repeated problems with small splits. Also, for repeated problems with 

medium splits, the low math anxious group recalled less than both the medium and the 

high math anxious groups. This finding could possibly be the result of the low math 

anxious participants spending less time looking at the problems. It may have been easier 

for the low math anxious group to reject a problem as false, whereas a medium or high 

math anxious participant might have spent longer looking at the problem, figuring out 

what the answer was, deciding if the answer provided with the problem matched and then 

possibly even double checking to make sure.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS 

Hypotheses

The first hypothesis of the current study involved the demographic information. It 

was expected that high math anxious participants would have taken fewer high school 

and college math courses and received lower grades in the math classes that they had 

taken. Analyses did not indicate any significant differences among the math anxiety 

groups and how many math classes they had taken in high school or college or the 

average grades received in high school math courses. This simply could have been a 

result of having too small a sample size. Another possibility that might be specific to the 

school district in which the study took place, is that local high school requirements and 

grading standards may be more lenient in terms o f achieving grades. It may have also 

been helpful to collect data concerning specific college major requirements for how many 

math courses individual participants needed for graduation. The demographic sheet used 

in the current study did not include a place for participants to indicate their current 

college majors. Significant differences were found, however, with regard to the average 

grades received in participants’ college math courses. As mentioned in the results 

section, low math anxious participants did report earning significantly higher grades in 

their college math courses than high
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math anxious participants. What could account for there being no significant differences 

among math anxiety groups and high school math grades, but then there being a 

significant difference with regard to their college math grades? It is certainly a 

possibility that high math anxious students may not be ready, in general, for the demands 

of college math courses, especially if the standards for high school grading were not as 

stringent; in fact, the high math anxiety may even interfere with their ability to adapt to 

learning new math tasks which are possibly being taught at a faster and more demanding 

rate than before. On the other hand low math anxious students may have a greater ability 

to adapt to increasing standards because they would have little, if any, anxiety about the 

new math tasks at hand.

A second hypothesis of the current study was that participants in the intentional 

learning condition would have higher recall accuracy than those participants in the 

incidental learning condition, and that this result would occur regardless o f math anxiety. 

This hypothesis was not confirmed. Even though participants in the intentional learning 

condition spent significantly longer looking at the simple addition stimuli (refer back to 

figures 1 & 2), learning condition was not found to have any significant effects on recall 

accuracy. However, math anxiety was found to be a significant factor affecting recall 

accuracy, but not in the way that the current study would have predicted prior to running 

participants. These results will be discussed in detail in the next section along with 

results concerning the final hypothesis of the experiment, which posited that participants 

with high math anxiety and high working memory capacity would still be less accurate on 

the recall task than the low math anxious participants with either high or low working 

memory capacities.
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Added Findings and Possible Explanations 

Two unexpected findings occurred during this experiment in that the high math anxious 

participants both made more errors on repeated problems and yet correctly recalled more 

false answers with both small and medium splits than did low math anxious participants. 

In order to make sense o f these results, it may be possible to apply an established model 

for recognition, with a few minor changes. In a 1973 chapter, Atkinson and Juola refer to 

a specific model of recognition for well-learned lists of words. According to the model, 

as soon as participants see the test stimulus, they do one of two things: they can make a 

judgment based on their already existing familiarity value for the word, or they can delay 

their response until after an extensive memory search has been made.

The model predicts a “fast yes” or a “fast no” response if the participant’s familiarity 

value exceeds or is below certain thresholds; however, if  the familiarity value is in 

between those two thresholds, then an extensive search of memory takes place, and the 

latencies get longer as a result (Atkinson & Juola, 1973). This model can readily be 

applied to the simple addition verification task used in this experiment. For college 

students, simple addition facts could be likened to a well-learned list where the answers 

are already in long term memory and are pulled out using a network retrieval model 

(Ashcraft & Battaglia, 1978). Applying the Atkinson and Juola model, if  the test 

stimulus presented was a true problem, the participant’s familiarity value would have 

been expected to be very high, resulting in a “fast yes” response. On the other hand, if 

the test stimulus presented was a false problem, the participant’s familiarity value would 

be very low, resulting in a “fast no” response. The second part o f the model did not hold 

true for participants with varying levels o f math anxiety. Although both high and low
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math anxious participants were faster overall for repeated problems than for unique 

problems, the high math anxious participants were much slower than the low math 

anxious participants to verify both repeated and unique false problems across all levels of 

split. It is possible that the familiarity value of high math anxious participants for false 

problems started to fall in between the two thresholds as the problem repeated, resulting 

in a more extensive memory search to double check the answer. In other words, the high 

math anxious participants possibly began to second guess themselves as the false problem 

repeated i.e. the false problem actually developed its own familiarity value with repeated 

viewings, but only for high math anxious participants who may have not been as 

confident in their retrieved answer in the first place. This could explain the higher error 

rate exhibited by high math anxious participants for false repeated problems; as the 

familiarity value increased, high math anxious individuals were more likely to verify the 

false problem as true. Also, since high math anxious participants spent more time overall 

looking at repeated problems at all levels of split, it was more likely that the false answer 

paired with a particular problem would be encoded into short term memory and 

remembered during the recall task, especially for small and medium splits.

These results also lend further support to the network-interference model of retrieval 

(Campbell, 1987a; Campbell, 1987b). Assumptions of this model are that arithmetic 

problems access a shared network of possible answers, and that related problems activate 

overlapping areas o f the network. According to the model, an encoded problem has a set 

of potential responses activated in memory, and the speed and probability o f retrieval is a 

function o f activation level of the correct answer, relative to competing answers in the 

overlapping area (Campbell, 1990). Results from the current experiment supporting this
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model were that all partieipants, regardless o f math anxiety level, were slower and made 

more errors on false problems with small splits; these results illustrate that answers that 

are elose to the eorreet answer overlap with the correct answer in the network, and that 

both speed and accuracy depend on the activation level of the correct answer relative to 

other answers in the network.

It is possible to tie in the network-interferenee model with the above idea of high math 

anxious individuals developing an increased familiarity value for repeated false 

problems. Results for the current experiment pointed to an increasing familiarity value 

for repeated false problems, especially for high math anxious partieipants. Drawing from 

the network-interferenee model, it can also be concluded that the false answer was 

gaining a higher level of activation with each repetition. As the false problems repeated 

throughout the experiment, assume that both the familiarity level and the level of 

activation became higher for the presented false answer than for the true answer. The 

previously presented false answer was not only more familiar, but also was activated 

first, interfering with the activation level of and the ability to retrieve the true answer. 

Therefore a greater likelihood was that partieipants, especially those with higher levels of 

math anxiety, would answer true instead of false to the repeated false problems. On the 

other hand, the results suggest that low math anxious individuals have such a high level 

of activation for the true answer already, possibly resulting from a combination of more 

practice, more confidence, and less anxiety, that, even with increased activation and 

familiarity for the answers to repeated false problems, it was still easier for them to reject 

the answer presented and correctly verify the problem as false.
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The working memory data collected from the current study also produced results 

worth discussing. Recall from above, that the final hypothesis of the current experiment 

was that high math anxious participants with high working memory spans would be less 

accurate on the verification task than low math anxious participants. This hypothesis was 

derived from previous evidence that math anxiety interferes with working memory 

resources needed to complete a math task (Ashcraft & Kirk, 2001). Results from the 

current experiment did not confirm this hypothesis, although one reason for this could 

have been the stimuli used for the study. College students, who can be expected to be 

heavily practiced on simple addition problems, are unlikely to make many verification 

errors on simple addition stimuli. Significant error rate results in Ashcraft and Kirk 

(2001) were found for large problems involving a carrying operation. Results from the 

current experiment might have been consistent with Ashcraft and Kirk (2002) had the 

stimuli been more challenging for the participants. Even though the hypothesis was 

unconfirmed, there were other working memory span results o f interest. In particular, 

low span participants with higher levels of math anxiety made more errors on repeated 

false problems with small splits, see figures 14 and 15. Familiarity effects have already 

been discussed with regard to higher levels of math anxiety, but it is also possible that 

having a low working memory span, i.e. not being able to sufficiently hold and process a 

lot of information at once, creates susceptibility to developing an increased familiarity to 

repeated problems. As mentioned above, this increased familiarity effect could account 

for participants, especially those with low working memory spans and high math anxiety, 

more likely verifying a false problems as true the more times that they see it.
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General Conclusions

In the past, it has been shown that math anxiety interferes not only with performing 

math tasks (Asheraft & Faust, 1994; Asheraft & Kirk, 1998; Faust, Asheraft, & Fleek, 

1996), but also with working memory resourees (Asheraft & Kirk, 2001; Hopko, 

Asheraft, & Gute, 1998). The current study examined both math anxiety and working 

memory eapaeity in the eontext of stimulus learning. High math anxious participants 

were found to be able to learn more o f the stimuli; however, this was not due to 

efficiency in verification. Results indicated that higher stimulus learning rates from high 

math anxious partieipants were more likely due to more time spent looking at the 

problems before verifieation. It has been theorized above that high math anxious 

partieipants may have more interferenee and aetivation for several answers surrounding 

the correct answer. This was indicated in results showing high math anxious partieipants 

making more verifieation errors, espeeially to repeated problems, but still being able to 

eorreetly reeall signifieantly more false answers eorreetly, espeeially for false problems 

with small splits, where the false answer was only one or two away from the true answer. 

Higher stimulus learning rates in the eurrent study aetually indieated that high math 

anxious individuals may have a less effieient network retrieval model eonsisting o f more 

interferenee along with a suseeptibility to develop an inereased familiarity rate to 

repeated false stimuli.

In general, it seems that high math anxious individuals with low working memory 

spans are more suseeptible to making errors. In the ease o f the eurrent experiment, 

higher reeall meant more acceptanee of wrong answers, whieh possibly broadened the 

overlapping network areas, ereating more interferenee. It may be possible that having
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low working memory span could create a long-term lowering of good number sense by 

allowing the network to create higher familiarity values for wrong answers. Once the 

familiarity is increased, more network interferenee would be created. This would result 

in more errors being made as low span individuals, especially those with higher levels of 

math anxiety, tried to retrieve answers to simple addition stimuli.

51



APPENDIX 

TABLES AND FIGURES

Table 1

The means and standard deviations of the findings from the baekground information 

sheet.

Math Anxiety G roups fSD in P aren theses)
DemoaraDhic Variable Low (n = 19) Medium (n = 23) High (n = 22)

Low Span n= 9 n = 10 n = 13
High Span n = 10 n = 13 n = 9

Gender (M/F) 11/8 8/15 7/15
Sig.
ns

Age 23.42(11.38) 19.04(1.33) 20.68(3.05) ns
Class Year 2.42(1.305) 1.7(1.06) 2.23(1.23) ns
Number of M.S. math courses taken 4.22(1.215) 3.65(.573) 3.70(.70) ns
M.S. math grade 3.39(.698) 3.09(.66) 2.91(.75) ns
Number of college math courses taken 1.26(1.19) 1.00(1.08) 1.45(1.01) ns
College math grade 3.25(.75) 3.11 (.92) 2.38(.76) p < .05
Rated math anxiety 4.21(2.72) 4.83(1.89) 6.68(1.78) p < .01
Rated math enjoyment 8.05(2.43) 4.91(2.13) 3.64(2.21) p < .01
sMARS score 17.95(6.03) 36.78(5.12) 57.23(8.93) p < .01
Ethnic Group % of total

African-American 10.5 8.7 27.3
ns

Hispanic/Latino 5.3 4.3 4.5
Native American 5.3 N/A N/A
Asian/Pacific Islander 31.6 47.8 22.7
Caucasuan 47.4 39.1 36.4
Other N/A N/A 9.1
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Average Reaction Time Across Splits
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Error Rates for Repeated False Problems 
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Error Rates for Repeated False Problems
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Error Rates for Unique False Problems
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Error Rates for True Problems by Span Group
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Error Rates for False Problems 
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Error Rates for False Problems
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