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ABSTRACT

XML-based Implementation of a Bibliographic Database and Recursive Queries

by

Kirankumar Jayakumar

Dr. Kazem Taghva, Examination Committee Chair 
Professor of Computer Science 

University of Nevada, Las Vegas

Structured Query Language (SQL) of relational database model does not have the 

expressive power to implement recursive queries. Consequently, recursive queries are 

implemented as an application program in the host language. The newly developed XML 

schema provides a different setting for database design and query implementation.

In this thesis, we design and implement an XML schema and a set of associated 

queries for a bibliographic database. We will investigate and demonstrate the 

shortcomings of both Xpath and Xquery as standard query languages for XML-based 

databases. We then show an efficient implementation of the recursive queries in XSLT 

programming language
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CHAPTER 1 

INTRODUCTION

1.1 Relational model

Relational model is based on predicate logic and set theory. It was first introduced by 

Edgar Codd in 1969. In mathematics, the term “relation” is used to refer to a table. 

Contrary to the popular belief, the term “relation” does not refer to the idea of links 

between tables. The relational model allows the creation of a consistent, logical 

representation of information. The consistency of the data is achieved through 

constraints.

A relation (or table) consists of tuples (or rows). Each tuple is an unordered set of 

data values. A data value is associated with an attribute (or column name). A relation 

(table) with tuples of n values (n number of columns) has arity of n.

1.1.1 Data domain

The set of possible values for a given attribute is called “data domain”. In 

mathematical terms, it means that the attribute value must be an element of the specified 

set.



1.1.2 Constraints

Constraints are a way of restricting the values an attribute can take. It allows a finer 

degree of control over the attribute’s values. Using constraints it is possible to enforce 

business rules on the attribute values, whereas with the domain, it’s only possible to 

enforce set-membership. For instance, for the year field, in addition to enforcing the year 

to be a number, it’s possible to set a lower and upper limit (such as 1900 -  2100).

1.1.3 Keys

A key is an attribute value which can uniquely identify a tuple. A key can be 

composed of more than one attribute -  in which case, it is called a “compound key”.

1.1.4 Foreign key

A foreign key is a referential constraint imposed between two tables. One or more 

columns in the child table can refer to a primary key or a candidate key column(s) in the 

master table. All the values present in the foreign key column must map to a value 

present in the primary key column or can be NULL. Contrary to the primary key, which 

enforces that all the values in the column must be unique, the foreign key column can 

have more than one row having the same value. Foreign key represents the many-to-one 

relationship between tables. When a foreign key makes reference to the primary key of its 

own table, then it is called as “self-referencing” or “recursive” foreign key.

1.2 Query processing

A typical query in a relational database involves retrieving data from one or more 

tables, specifying a condition on which to limit the number of records and optionally sort 

the record set. In addition, aggregation can also be performed and additional conditions



can be applied on aggregated attributes as well. Joins can be performed using the 

conditions. Aggregate functions can be used to compute values on an aggregated set of 

data (E.g. average value for a set of records grouped by a particular column). The 

limitation with relational query processing is that complex queries, which require loops 

or recursive function calls, cannot be implemented. To achieve this, an external 

programming language such as Java or PL/SQL must be used in addition to the SQL.

1.3 Recursion

A graph or tree relationship can be established between rows of the table using the 

recursive foreign key. Typically, this can be achieved by having a “Parent Node” foreign 

key column. This value will point to the primary key value of the parent row. As this is a 

graph structure, it is only possible to query using recursive approach rather than iterative 

approach. Graph traversal algorithms such as Depth First Search or Breadth First Search 

can be used for querying. An example is shown in figure 1.1 and table 1.1

In our implementation of the database, the bibliographic reference between the 

articles is represented using recursive foreign keys. So, the problem of identifying 

whether an article A implicitly refers to another article B can be interpreted as a directed 

graph traversal problem, where the source node is A and the destination node is B. The 

presence of a path between the two nodes implies that the article A refers article B. This 

was achieved by using depth first search starting from node A, recursing until node B is 

reached. If node B is encountered, then the article A refers to article B. If all the paths are 

exhausted without success, then the article A does not refer to article B.



Figure 1.1

Node ID Node Name Parent Node ID
1 A NULL
2 B 1
3 C 1
4 D 3

Table 1.1



CHAPTER 2 

XML TECHNOLOGIES

2.1 Introduction

Extensible Markup Language (XML) is a standard for creating custom markup 

languages. Its primary purpose is for creating a standardized representation of data, which 

can be accessed across diverse platforms. XML is very flexible and allows the user to 

create custom structures. It is an open standard and can be used free of cost.

2.2 XML

An XML document is considered “well formed” when it conforms to the following 

semantic rules:

• Every tag opened must be closed.

• The elements must be properly nested -  they cannot overlap.

• A document can have only one root element.

• An optional XML declaration tag can precede the root element. It is used for 

mentioning the XML version and the character encoding.

•  Attribute values must be present within quotes



A “valid” XML document is one which conforms to the standard set by an XML 

Schema. Document Type Definition (DTD) and XML Schema Definition (XSD) are the 

popular XML schema languages. XSD is more powerful than DTD.

2.3 XML schema definition (XSD)

XML Schema is a World Wide Web Consortium (W3C) recommended standard 

schema language, which can enforce rules, in addition to the semantic rules, to an XML 

document. An instance of the XML Schema is called as XML Schema Definition. It 

usually has the file extension .xsd. An XML document can be associated with an XSD. 

The document must conform to the standards set by XSD to be considered “valid”. XML 

Schema has 19 built in primitive data types and 25 derived data types. They represent 

commonly used data types such as string, integer, date, boolean etc.

2.3.1 Simple type

Simple types are derived from built in types or other simple types. A simple type 

can be defined by using one of the following methods

• Restriction -  can be used to apply restrictions on a base simple type. Several types 

of rules, such as enumeration, minimum value, maximum value, length, regular 

expression etc. can be applied to narrow down the range of values of the base 

domain.

• List -  can be used to define a simple type which contains list of white space 

separated simple type values.

• Union -  can be used to define a simple type which is chosen from two or more 

simple types.



An element’s type can be mapped to a simple type. Examples of how to construct a 

simple type using different methods is shown in the figure 2.1, 2.2 and 2.3

Simple type using restriction

<xsd:simpleType name="Phone7Digits">
<xsd:restriction base="xsd:integer"> 

<xsd:minlnclusive value="1000000"/>
<xsd:maxlnclusive value="9999999"/>

</xsd: restrietion>
</xsd: simplex ype>

Figure 2.1

Simple type using list

<xsd:simpleType name="importantDates"> 
<xsd:list itemType="xsd:date"/>

</xsd:simpleType>

Figure 2.2

Simple type using Union

<xsd:simpleType name="PhoneNumber">
<xsd:union memberTypes="Phone7Digits PhonelODigits"/> 

</xsd : s impleT ype>

Figure 2.3



2.3.2 Complex type

The Simple Type is limited to applying the rules only on the content of an element. 

Using complex type, it is possible to define a nested structure and define attributes. As 

with simple type, an element can also be mapped to a complex type.

The complex type can be constructed by using one of the child elements described in the 

table 2.1. Generally, <SEQUENCE> and <ALL> are commonly used to construct the 

complex type.

<SEQUENCE> can be used to specify a sequence of elements. It also allows 

repetition of elements. It is possible to define a lower bound and an upper bound for the 

number of allowed child elements of the same type within the element.

<ALL> can be used when the order of elements is not of particular importance. No 

element within <ALL> can be repeated.

An example involving the above concepts is shown in the figure 2.4

Element Description

SimpleContent The complex type has character data or a 
SimpleType as content and contains no 
elements, but may contain attributes.

ComplexContent The complex type contains only elements or 
no element content (empty).

Group The complex type contains the elements 
defined in the referenced group.

Sequence The complex type contains the elements 
defined in the specified sequence

Choice The complex type allows one of the elements 
specified in the choice element.

All The complex type allows any or all of the 
elements specified in the all element to appear 
once.

Table 2.1[I]



Example of Complex Type involving Simple Type elements, Sequence and All

<xsd:simpleType name="ST_PublisherName">
<xsd:restriction base="xsd:string">

<xsd:pattem value="[A-Z|a-z|0-9|\.|\-| ]+"/>
</xsd:restriction>

</xsd:simpleT ype>

<!— Represents a row —>
<x sd : complexT ype name="CT_Publisher">

<xsd:all>
<xsd:element name="PublisherID" type="xsd:integer"/>
<xsd:element name="PublisherName" type="ST_PublisherName"/> 
<xsd:element name="Address" type=" xsd:string"/>

</xsd:all>
</xsd:complexType>

<!— Represents a table —>
<xsd : complexT ype name="CT_Publishers">

<xsd:sequence>
<xsd:element name="Publisher" type="CT_Publisher" maxOccurs="unbounded"/> 

</xsd:sequence>
</x sd : complexType>

Figure 2.4

2.3.3 Element

The <Element> tag in the XSD defines the actual tag which can occur within an 

XML document. It can be mapped to either a simple type, complex type or built-in data 

type. The <Element> tag can occur directly under the <Schema> tag (global scope) or 

within <ComplexType> tag.

2.3.4 Integrity constraints

Integrity constraints for an XML document can be defined within the XSD.



• Primary Key: The primary key can be defined using <Key> tag. Its scope is 

within the containing element of the instance document. <Selector> and <Field> 

tags are used to locate the particular key element.

• Candidate Key: <Unique> tag can be used to define candidate keys.

• Foreign Key: Foreign key to a primary key or a candidate key can be defined 

using the <KeyRef> tag. The name of the primary key or candidate key must be 

specified in the “refer” attribute.

2.4 XPath

XPath is a language for selecting nodes from an XML document based on certain 

condition. It can also be used for computing values from the retrieved nodes. The syntax 

is similar to file path in UNIX. In addition, XPath provides several in-built functions and 

operators.

The operators available are

• Path expressions

• Union

• Boolean

• Arithmetic

• Comparison

The functions available are

• Node set functions

• String functions

• Boolean functions
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• Number functions

2.5 XQuery

XQuery is a querying language which can be used to extract data from XML 

documents. Its semantics is similar to SQL. Most queries which can be implemented in 

SQL for a relational database can be implemented in XQuery for an equivalent XML 

database. XQuery has “FLWOR” structure, which is similar to SQL. A “FLWOR” 

expression has the following clauses

• FOR: To iterate through a set of values (can be nodes, or the result of a function)

• LET: Assignment operation

• WHERE: To specify a condition on which to execute the expression

• ORDER BY : To sort the record set

• RETURN: Output expression

2.6 XSLT

Extensible Stylesheet Language Transformation (XSLT) is a language for 

transforming XML documents from one structure into another. XSLT is Turing complete 

and hence has more capabilities than XQuery. XSLT is considered to be a template 

processor. The language structure of XSLT is influenced by functional programming 

languages. XQuery is restricted by FLWOR structure. Hence, more complex querying, 

such as recursion, cannot be achieved. Since XSLT has the full capabilities of a 

programming language, it is possible to implement complex queries which involve 

recursion.
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CHAPTER 3 

BIBLIOGRAPHIC XML DATABASE

3.1 Introduction

A bibliographic database is a database containing bibliographic records. It is designed 

with the intent of capturing all the bibliographic information. It holds information about 

the material, organized into their respective material type categories such as Articles, 

Books, Conferences, Proceedings, Journals etc. All the reference information is also 

captured.

3.2 Commonly used simple types

There are many cases which require a common custom simple type. All these simple 

types were created and placed in a common name space, so that they can be consistently 

referred to by the many complex types, which represent different columns belonging to 

different tables. Further, it allows imposing global restrictions on the database. For e.g., 

by forcing all the date fields to be of the custom date type rather than the default date 

type, it is possible to set a lower and upper bound (e.g. 1900-2100)

The table 3.1 lists all the custom types used

12



Simple Type Base Type Description
ST_PKID Integer Non negative 5 digit number. Used for primary 

key fields
ST_Address String String restricted with regular expression to 

allow only valid addresses.
ST_genstring String String type for use within the database. 

Currently restricted to 20 characters
ST_gennumber Integer Number type for use within the database. 

Currently restricted to 5 digit non negative 
number.

ST_gendate Date Date type for use within the database. Can be 
restricted in future for a specific date range 
(E.g. I/I/I900-.I2/3I/2099)

Table 3.1

3.3 Elements

In XML, the database can be represented as a hierarchy of elements. The column 

can be represented by an element - lets call it “column element”. The attribute value can 

be represented as the contents of the column element. A group of related column 

elements is contained within a “row element”. A group of related “row elements” is 

contained within a “table element”. Note that we use the attribute “maxoccurs = 

unbounded” on the row element, so that we can repeat any number of row elements 

within the table element. A group of the table elements can be composed within a single 

“database element”. Here in this case, we use “maxOccurs=l” for each table element 

because of the fact that there cannot be more than one table with the same name. The 

primary key and foreign key relationships can be enforced within the “database element” . 

Thus, the whole database can be represented using this hierarchy of elements.

This concept is illustrated in the sample XML structure in figure 3.1.

13



<Database>
<Tablel>

<Tablel_Row>
<T able 1 _Col 1 x / T  able 1 _Coll > 
<Tablel_C ol2x/Tablel_C ol2> 
<Tablel_C ol3x/Tablel_C ol3> 

</Tablel_Row>
<Tablel_Row>

<T able l_Col 1 x / T  able l_Col 1 > 
<Table l_C ol2x /T able  l_Col2> 
<Tablel_C ol3x/Tablel_C ol3> 

</Tablel_Row>
</Tablel>
<Table2>

<Table2_Row>
<T able2_Col 1 x / T  able2_Col 1 > 
<Table2_Col2x/Table2_Col2> 

</Table2_Row>
<Table2_Row>

<T able2_Col 1 x / T  able2_Col 1 > 
<Table2_Col2x/Table2_Col2> 

</T able2_Row>
</Table2>

</Database>

Figure 3.1

In actual implementation, a hierarchy of simple type, complex type and element 

was used to achieve this structure.

3.3.1 Annual reports

The <AnnualReports> element represents a relation. It contains the 

<AnnualReport> recurring element, which is a tuple. The purpose of this element is to 

store the bibliographic information related to the annual reports. <AnnualReport> tuple

14



contains the following elements. The elements cannot occur more than 1 time (ie) no two 

attribute with the same name are allowed.

Element Type Description
<AnnualReportID> ST_PKID Primary key
<Editor> ST_genstring Editor name
<Title> ST_genstring
<PublisherID> ST_PKID Foreign key (referencing <Publisher>)

<OrganizationID> ST_PKID Foreign key (referencing 
<Organization>)

<Month Y ear ID> ST_PKID Foreign key (referencing 
<MonthYear>)

<Note> ST_genstring
<Pages> ST_genstring

Table 3.2

3.3.2 Articles

The bibliographic entries which are articles are stored under the <Article> element. 

<Articles> represent a relation and contain one or more <Aiticle> element. Each 

<Aiticle> element represents a tuple. It has the elements described in the table 3.3.

3.3.3 Authors

Information related to an author or a list of authors is stored in the <Author> 

element. It contains the attribute elements shown in table 3.4. It contains references to the 

material which the author(s) has written.

3.3.4 Books on CD

Bibliographic information related to a book which is in CD format is stored in the 

<BookOnCD> element. It contains the elements listed in table 3.5.

15



Element Type Description
ArtielelD ST_PKID Primary key
Title ST_genstring
Journal ST_genstring
Volume ST_genstring
Number ST_gennumber
Pages ST_genstring
Edition ST._genstring
PublisherlD ST_PKID Foreign key referencing <Publisher>
Month Year ID ST_PKID Foreign key (referencing <MonthYear>)
Note ST_genstring

Table 3.3

Element Type Description
<Onl ineS oureeID> ST PKID Foreign key (referencing <OnlineSource>)
<BookOnVCDID> ST PKID Foreign key (referencing <BookOnVCD>)
<BookOnT apeID> ST PKID Foreign key (referencing <BookOnTape>)
<BookOnCDID> ST_PKID Foreign key (referencing <BookOnCD>)
<PeriodiealID> ST PKID Foreign key (referencing <Periodical>)
<AnnualReportID> ST_PKID Foreign key (referencing 

<AnnualReport>)
<ConferenceID> ST_PKID Foreign key (referencing <Conference>)
<ManualID> ST_PKID Foreign key (referencing <Manual>)
<TechReportID> ST_PKID Foreign key (referencing <TechReport>)
<MagazineID> ST_PKID Foreign key (referencing <Magazine>)
<JoumalID> ST_PKID Foreign key (referencing <Joumal>)
<InProceedingID> ST_PKID Foreign key (referencing <InProceeding>)
<InBookID> ST_PKID Foreign key (referencing <InBook>)
<ProceedingID> ST_PKID Foreign key (referencing <Proceeding>)
<BookID> ST PKID Foreign key (referencing <Book>)
<ArticleID> ST_PKID Foreign key (referencing <Article>)
<ID> ST_PKID Primary Key
<AuthorList> ST_genstring List of authors

Table 3.4

16



Element Type Description
<BookOnCDID> ST PKID Primary key
<CDName> ST_genstring
<OrganizationID> ST_PKID Foreign key (referencing <Organization> )
<MonthY earID> ST_PKID Foreign key (referencing <MonthYear>)
<Volume> ST_genstring

Table 3.5

3.3.5 Books on tape

Bibliographic information related to a book which is in tape format is stored in the 

<BookOnTape> element. It contains the elements listed in table 3.6.

Element Type Description
<B ookOnT apeID> ST PKID Primary key
<TapeName> ST_genstring
<OrganizationID> ST_PKID Foreign key (referencing <Organization>)
<Month Y earID> ST_PKID Foreign key (referencing <MonthYear>)
<Volume> ST_genstring

Table 3.6

3.3.6 Books on VCD

Bibliographic information related to a book which is in VCD format is stored in the 

<BookOnVCD> element. It contains the elements listed in table 3.7.

Element Type Description
<B ookOnV CDID> ST_PKID Primary key
<VCDName> ST_genstring
<OrganizationID> ST_PKID Foreign key (referencing <Organization>)
<Month Y earID> ST_PKID Foreign key (referencing <MonthYear>)
<Volume> ST_genstring

Table 3.7

17



3.3.7 Books

Bibliographic information related to a book which is in traditional print format is 

stored in the <Book> element. It contains the elements listed in table 3.8.

Element Type Description
<BookID> ST_PKID Primary key
<Editor> ST_genstring
<Title> ST_genstring
<PublisherID> ST_PKID Foreign key (referencing <Publisher>)
<Pages> ST_genstring
<Volume> ST_genstring
<Edition> ST_genstring
<Series> ST_genstring
<MonthY earID> ST_PKID Foreign key (referencing <MonthYear>)
<Note> ST_genstring

Table 3.8

3.3.8 Conferences

Bibliographic information related to a conference is stored in the <Conference> 

element. It contains the elements listed in table 3.9.

Element Type Description
<ConferenceID> ST_PKID Primary key
<Name> ST_genstring
<Title> ST_genstring
<OrganizationID> ST_PKID Foreign key (referencing <Organization>)
<MonthY earID> ST_PKID Foreign key (referencing <MonthYear>)

Table 3.9

1 8



3.3.9 In books

Bibliographic information which is classified as “in book” is stored in the 

<InBook> element. It contains the elements listed in table 3.10.

Element Type Description
<lnBooklD> ST_PK1D Primary key
<Editor> ST_genstring
<Title> ST_genstring
<PublisherlD> ST_PK1D Foreign key (referencing <Publisher>)
<Volume> ST_genstring
<Edition> ST_genstring
<Series> ST_genstring
<Chapter> ST^genstring
<Pages> ST_genstring
<MonthY earlD> ST_PK1D Foreign key (referencing <MonthYear>)
<Note> ST_genstring

Table 3.10

Element Type Description
<lnProceedinglD> ST_PK1D Primary key
<Editor> ST_genstring
<Title> ST_genstring
<BookTitle> ST_genstring
<PublisherlD> ST_PK1D Foreign key (referencing <Publisher>)
<Pages> ST_genstring
<MonthY earlD> ST_PK1D Foreign key (referencing <MonthYear>)
<Note> ST_genstring

Table 3.11

3.3.10 In proceedings

Bibliographic information which is classified as “in- proceeding” is stored in the 

<InProceeding> element. It contains the elements listed in table 3.11.
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3.3.11 Journals

Bibliographic information related to ajournai is stored in the <Joumal> element. 

It contains the elements listed in table 3.12.

Element Type Description
<JoumallD> ST_PKID Primary key
<Title> ST_genstring
<Volume> ST_genstring
<Number> ST_gennumber
<Pages> ST_genstring
<MonthYearlD> ST_PKID Foreign key (referencing <MonthYear>)
<Note> ST_genstring
<PublisherlD> ST_PKID Foreign key (refereneing <Publisher>)
<Edition> ST_genstring

Table 3.12

3.3.12 Magazines

Bibliographic information related to a magazine is stored in the <Magazine> 

element. It contains the elements listed in table 3.13.

3.3.13 Manuals

Bibliographic information related to a manual stored in the <Manual> element. It 

contains the elements listed in table 3.14

3.3.14 Month Year

The purpose of <MonthYear> element is to keep track of the month and year in 

which a material was published.

2 0



Element Type Description
<MagazinelD> ST PKID Primary key
<Name> ST_genstring
<PublisherlD> ST_PK1D Foreign key (referencing <Publisher>)
<Pages> ST_genstring
<MonthY earlD> ST PKID Foreign key (referencing <MonthYear>)
<Note> ST_genstring

Table 3.13

Element Type Description
<ManuallD> ST_PK1D Primary key
<Title> ST_genstring
<PublisherlD> ST PKID Foreign key (referencing <Publisher>)
<Pages> ST_gennumber
<Volume> ST_genstring
<Edition> ST_genstring
<Series> ST_genstring
<MonthY earlD> ST_PK1D Foreign key (referencing <MonthYear>)
<Note> ST_genstring

Table 3.14

Element Type Description
<MonthY earlD> ST_PK1D Primary key
<Month> ST_Month Custom month simple type defined within the 

local namespace
<Year> ST_Year Custom year simple type defined within the 

local namespace

Table 3.15

3.3.15 Online sources

Bibliographie information related to an online source is stored in the < 

OnlineSource> element. It contains the elements listed in table 3.16
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Element Type Description
<OnlineSourcelD> ST_PK1D Primary key
<TopicName> ST_genstring
<PostedDate> ST_gendate
<RetrievedDate> ST_gendate
<URL> ST_URL Valid URL string
<OrganizationlD> ST_PK1D Foreign key (referencing <Organization>)
<EntryType> ST_genstring
<Type2> ST_genstring

Table 3.16

3.3.16 Organizations

Information related to an organization is stored in the <Organization> element. It 

contains the elements listed in table 3.17

Element Type Description
<OrganizationlD> ST_PK1D Primary key
<OrganizationName> ST_OrganizationName Valid organization name
<Address> ST_Address

Table 3.17

3.3.17 Periodicals

Bibliographic information related to a periodical is stored in the <Periodical> 

element. It contains the elements listed in table 3.1

3.3.18 Proceedings

Bibliographic information related to a proceeding is stored in the <Proceeding> 

element. It contains the elements listed in table 3.19
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Element Type Description
<PeriodicallD> ST_PK1D Primary key
<Editor> ST_genstring
<Title> ST_genstring
<PublisherlD> ST_PK1D Foreign key (referencing <Publisher>)
<OrganizationlD> ST_PK1D Foreign key (referencing 

<Organization>)
<MonthY earlD> ST_PK1D Foreign key (referencing <MonthYear>)
<Note> ST_genstring
<Pages> ST_genstring

Table 3.18

Element Type Description
<ProceedinglD> ST_PK1D Primary key
<Editor> ST_genstring
<Title> ST_genstring
<PublisherlD> ST_PK1D Foreign key (referencing <Publisher>)
<OrganizationlD> ST_PK1D Foreign key (referencing <Organization>)
<MonthY earlD> ST_PK1D Foreign key (referencing <MonthYear>)
<Note> ST_genstring

Table 3.19

3.3.19 Publishers

Information related to a publisher is stored in the <Publisher> element. It contains 

the elements listed in table 3.20

Element Type Description
<PublisherlD> ST_PK1D Primary key
<PublisherName> ST_PublisherName Valid publisher name
<Address> ST_ Address

Table 3.20
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3.3.20 Required fields

The required fields of the database can be tracked by storing in the 

<RequiredField> element. It contains the elements listed in table 3.21

Element Type Description
<Field> xsd: string XPath of the mandatory field

Table 3.21

3.3.21 Tech reports

Bibliographic information related to a tech report is stored in the <TechReport> 

element. It contains the elements listed in table 3.22

Element Type Description
<TechReportlD> ST_PK1D Primary key
<Title> ST_genstring
<MonthY earlD> ST_PK1D Foreign key (referencing 

<MonthYear>)
<Subtitle> ST_genstring
<Pages> ST_genstring
<Note> ST_genstring

Table 3.22

3.3.22 Relationships

The bibliographic reference relationship between materials can be tracked using 

<Relationship> element. The reference relationship is a graph & it can be represented
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using a self referencing foreign key. This relation is useful in determining explicit and 

implicit references between articles.

Element Type Description
<ID> ST_PKID Primary key
<NodeXPath> xsd; string XPath of a particular material
<ParentID> ST_PKID Self referencing foreign key

Table 3.23

3.3.23 BibliographicDB

The <BibliographicDB> element represents the database. It contains all other 

table elements mentioned above. One only instance of a table element can occur. The 

primary key and foreign key relationships are enforced from this context.

Element Type Description
<ID> ST_PKID Primary key
<NodeXPath> xsdistring XPath of a particular material
<ParentID> ST_PKID Self referencing foreign key

Table 3.24

3.4 Queries

The queries for the XML database range from simple value extraction from the 

Document Object Model (DOM) tree, to SQL styled non-recursive relational queries, to 

complex recursive queries.
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The following are some of the queries which typically occur in a database of this 

kind.

• All papers referred to by X explicitly

• All papers referred to by X implicitly

• To get the title of the material written by a particular Author

• To list the number of books written by each Author

• To get the list of organizations along with the address of Proceedings

• To get the list of all the Publications published by X

• To get the lists of proceedings based on Title and Book Title based on a particular 

organization

• To get the pairs of organization ids who have the same organization name

• To get the number of entry types (like books, articles etc) a publisher 'A' 

published in a particular month-year

• To get the total number of publications for each publisher for all the entry types

• To get the highest number of publications for all the entry types
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CHAPTER 4 

IMPLEMENTATION OF QUERIES

4.1 Introduction

Querying in an XML database environment can range from extracting the content or 

attribute value of a particular node, to conditional comparison & selection of a set of 

nodes, to recursive operation of nodes based on a certain condition. In this research, the 

following approach was adopted.

• XPath will be used for locating a particular node or a set of nodes 

satisfying a common criteria within the XML tree

• XQuery will be used in conjunction with XPath for relational non 

recursive queries

• XSLT will be used in conjunction with XPath for recursive queries

4.2 XPath queries

XPath is a language for selecting nodes in an XML document. The querying 

capabilities of XPath, used as such, are very limited. XPath is usually used in conjunction 

with XQuery or XSLT for more complex queries. The following are simple queries 

where XPath can be used
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• “What is the Organization ID o f the organization whose name is ‘X ’?”

For this query, we have to locate the <Organization> node, where its child element 

<OrganizationName> has the content value “X” and return the child element 

<OrganizationID>. In XPath it can be framed as follows

/ BibliographicDB/Organizations/Organization[OrganizationName=”X”]/OrganizationID

• “Get all the articles published by a given publisher in a particular month year? ” 

This query carmot be achieved in a single step, as it is a JOIN operation, which

involves pulling up the data from multiple relations. This query can only be solved using 

multiple steps. We have to first determine the publisher ID for the given publisher name 

(E.g.: “ABC Publisher”) using the following query. Let’s call this result as X.

/ BibliographicDB/Publishers/Publisher[PublisherName=”ABC publisher”]/ Publisher ID 

The next step is to determine the MonthYearlD for the given the given month 

year, for e.g april 2008. Let’s call this result as Y 

/ BibliographicDB/MonthYears/MonthYear[Month=”4” and 

Year=”2008”]/MonthYearID

Using the above two sub results X and Y, we can now determine the given query 

using the following XPath query

/ BibliographicDB/Articles/Article[PublisherID=X and MonthYearID=Y]

As shown from the above queries, XPath is very useful for locating a particular 

node or a set of nodes for a given condition. However complex queries such as JOINS or 

recursive queries cannot be achieved through XPath.
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4.3 Non recursive relation query implementation using XQuery

XQuery is an XML query language whose semantics is very similar to SQL. In 

general, any query which can be implemented in SQL can be implemented in XQuery. 

XQuery has more capabilities than XPath. XQuery is a good choice for queries which 

involve joins & aggregation. The following queries were implemented in XSLT 

• “Get the list o f all the Publications published by X ”

Algorithm:

Step 1: Determine the PublisherlD of X by using an appropriate XPath expression.

Assign it to the variable $ PublisherlD 

Step 2: Use XPath to select any relation node, any tuple node, which has <PublisherID> 

node whose value is $PublisherID 

The XQuery implementation is shown in the figure 4.1

declare namespace p i = "http://drtaghva.edu/XML/BibliographicDB"; 
let $src := doc("file:///C:/Thesis/code/test/test_instancel.xml") 
let $db := $src/pl:BibliographicDB
let $PublisherID := $src/pl:BibliographicDB/Publishers/Publisher[PublisherName =
"ABC Publisher"]/PublisherID
return
<Result>

{$db/node()/node() [Publisher ID=$Publisher ID]}
</Result>

Figure 4.1
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• “Get the list o f organizations along with the address o f proceedings”

Algorithm;

Step 1 : FOR each <Organization> node in the path 

/BibliographicDB/Organizations/Organization 

Step 2: FOR each <Proceeding> node in the path 

/B ibl iographicDB/Proceedings/Proceeding

Step 3: If OrganizationID of the <Organization> node matches the

OrganizationID of the <Proceeding> node then output the Proceeding title. 

Organization name and the address 

Step 4: End FOR 

Step 5: End FOR

The XQuery implementation is shown in the figure 4.2

• “Get the pairs o f organization ids who have the same organization name” 

Algorithm:

Step 1: FOR $ol in each distinct organization name

Step 2: If the count of nodes which have the organization name $ol under

<Organizations> element is more than 1, then output the organization 

name and all the <OrganizationID> elements which match the criteria 

Step 3: End FOR

The XQuery implementation is shown in the figure 4.3
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declare namespace p i = "http://drtaghva.edu/XML/BibliographicDB";
let $src := doc("file:///C:/Thesis/code/test/test_instancel.xml")
for $Organization in ($src/pl:BibliographicDB/Organizations/Organization)
for $Proceeding in ($src/pl:BibliographicDB/Proceedings/Proceeding)
where $Organization/OrganizationID = $Proceeding/OrganizationID
return
<Result>

<Proceeding>
{$Proceeding/Title/text()}

</Proceeding>
<Organization>

{$Organization/OrganizationName/text()}
</Organization>
<Address>

{$Organization/Address/text()}
</Address>

</Result>

Figure 4.2

declare namespace p i = "http://drtaghva.edu/XML/BibliographicDB"; 
let $src := doc("file:///C:/Thesis/code/test/test_instancel.xml") 
for $ol in distinct-values(
$src/pl:BibliographicDB/Organizations/Organization/OrganizationName) 
where count(
$src/pl:BibliographicDB/Organizations/Organization[OrganizationName = $ol] ) > 1
return
<Result>

<OrganizationName>{ $ol }</OrganizationName>
{$src/pl :BibliographicDB/Organizations/Organization[OrganizationName =

$0 1 ]/OrganizationID}
</Result>

Figure 4.3
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• “Get the number o f entry types (like books, articles etc) a publisher 'A' published 

in a particular month-year”

Algorithm:

Step 1: Determine the PublisherlD and MonthYearlD for the given input data using 

XPath

Step 2: FOR $db in each relation node under the database node

Step 3: If the count of tuple nodes which has both matching PublisherlD and

Month Year ID, then output the relation node name (which gives the entry 

type) and the count 

Step 4: End FOR

The XQuery implementation is shown in the figure 4.4

• “Get the total number o f publications fo r  each publisher fo r  all the entry types” 

Algorithm:

Step 1 : FOR $ Publisher in each <Publisher> node 

Step 2: Print the name of the publisher

Step 3: Print the count of nodes of any tuple, under any relation, whose

PublisherlD matches the current node’s PublisherlD 

Step 4: End FOR

The XQuery implementation is shown in the figure 4.5
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declare namespace p i = "http://drtaghva.edu/XML/BibliographicDB"; 
let $src := doc("file:///C:/Thesis/code/test/test_instanceLxml")

let $ PublisherlD := $src/pl:BibliographicDB/Publishers/Publisher[PublisherName = 
"ABC Publishers"]/PublisherID

let $MonthYearID := $src/pl:BibliographicDB/MonthYears/MonthYear[Month2 =
"4" and Year2 = 2008]/MonthY ear ID

for $db in ($src/p 1 :BibliographicDB/node()) 
where
count($db/node()[PublisherID=$PublisherID and MonthYearID=$MonthYearlD]) > 0
return
<Result>

<EntryType>
{node-name($db)}

</EntryType>
<Count>
{count($db/node()[PublisherID=$PublisherID and MonthYearID=$MonthYearID])} 
</Count>

</Result>

Figure 4.4

declare namespace p i = "http://drtaghva.edu/XML/BibliographicDB"; 
let Ssrc := doc("file:///C:/Thesis/code/test/test_instancel.xml")

for $Publisher in ($src/pl:BibliographicDB/Publishers/Publisher)
return
<Result>

<Publisher>
{$Publisher/PublisherName/text()}

</Publisher>
<Total>

{
count($src/pl:BibliographicDB/node()/node()[PublisherID=$Publisher/PublisherID])
}

</Total>
</Result>

Figure 4.5
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• “List the number o f books written by each Author”

Algorithm:

Step 1: FOR each distinct value of Author names

Step 2: Print the count of <Author> nodes whose author matches the current

author 

Step 3: End FOR

The XQuery implementation is shown in the figure 4.6

declare nam espace p i =  "http://drtaghva.edu/X M L /B ibliographicD B "; 
let $src := doc("file :///C :/T h esis /cod e/test/test_ in stan cel.xm l")
for $uniqueA uthors in d istin ct-values($src/p l:B ib liograph icD B /A uthors/A uthor/A uthorL ist)
return
<R esult>

<A uthor>
{$uniqueA uthors)

</A uthor>
<B ooksW ritten>

lcou n t($src/p l:B ib liographicD B /A uthors/A uthor[A uthorL ist=$un iqueA uthors])}
< /B ooksW ritten>

</R esult>

Figure 4.6

4.4 Recursive query implementation using XSLT

XSLT is a Turing complete language. XSLT is not limited by the “FLWOR” structure 

of XQuery and is a good choice for the implementation of recursive queries.

• “Find all the materials which are both explicitly and implicitly referenced by X ” 

The references are stored in the <Relationships> element with recursive foreign key. 

When X references Y, then X explicitly references Y. When X references Y and Y 

references Z, then X implicitly references Z. This query can be interpreted as a directed
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graph traversal problem where each material is a vertex and the relationship is a directed 

edge. The following algorithm uses Depth First Search.

Algorithm:

Function: DFS(Node, Path)

Step 1: Display the current node, which is an XPath to the material (books, articles, 

journals etc.)

Step 2: Find all the materials which refer the current node (children).

Step 3: If there are more than one material then 

Step 4: FOR each child node

Step 5: If child node is not already in the path, then add child node to the

Path variable and call DFS with the child node and the new Path 

variable 

Step 6: End FOR

Step 7: End IF

The DFS() function must be invoked with start node and no value should be passed to the 

path parameter.

The XSLT implementation is shown in the figure 4.7 

•  “Find if  the material X  implicitly references Y”

In this query, if a path from X to Y exists, then X implicitly references Y.

Algorithm:

Function: DFS (Source node, target node. Path)

Step 1: If the current node equals target node then the implict reference exists. Display 

the path
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Step 2: Find all the materials which refer the current node (children).

Step 3: If there are more than one material then 

Step 4: FOR each child node

Step 5: If child node equals target node then the implict reference exists.

Display the path and quit the loop 

Step 6: If child node is not already in the path, then add child node to the

Path variable and call DFS with the child node as source node, 

target node and the new Path variable 

Step 7; End FOR

Step 8: End IF

The DFS() function must be invoked with start node, target node and no value should be 

passed to the path parameter. The XSLT implementation is shown in the figure 4.8
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<xsl:stylesheet version="1.0"
xmlns;xsl="http;//www.w3.org/1999/XSL/Transform" 
xmlns:pl="http://drtaghva.edu/XML/BibliographicDB ">

<xsl:template name="search">
<xsl:param name="node"/>
<xsl:param name="table "/>
<!— add path variable to keep track of cycles —>
<xsl:param name="path" select="concat('->',concat($node,'->'))"/>
<!— Display the current node - >
<xsl;text> </xsl:text>
<xsl:value-of select="$table/Relationship[ID=$node]/NodeXPath"/>
<!— depth first graph algorithm (eliminates cycles) —>
<!— recurse if the current node has children —>
<xsl:if test="count($table/Relationship[ParentID=$node]) > 0">

<xsl:for-each select="$table/Relationship[ParentID=$node]/ID">
<!— make sure that current text() is not already present in the path 
(eliminate cycles) —>
<xsl:if test="not(contains($path,concat(concat('->',text()),'->')))"> 

<xsl:call-template name="search">
<xsl;with-param name="node" select="text()"/>
<xsl:with-param name="table" select="$table"/>
<xsl:with-param name="path" select="concat(concat($path,text()),'->')"/> 

</xs 1 : call-template>
</xsl:if>

</xsl:for-each>
</xsl:if>

</xsl;template>

<xsl:template match="/">
<xsl;call-template name="search">

<xsl:with-param name="node" 
select="pl:BibliographicDB/Relationships/Relationship[NodeXPath='X']/ID"/> 

<xsl:with-param name="table" select="pl:BibliographicDB/Relationships"/> 
</xsl:call-template>
<xsl:text> Completed</xsl;text>

</xsl:template>
</xsl;stylesheet>

Figure 4.7
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<xsl:stylesheet version="1.0"
xm lns:xsl="http://w w w . w 3.org/1999/XSL/Transform "  
xm lns:p l="http://drtaghva.edu/X M L/BibliographicDB">

<xsl:tem plate name="search">
<xsl:param name="node"/>
<xsl:param name="table"/>
< ! -  add path variable to keep track o f  cycles >
<xsl :param name="path" select="concat('->',concat($node,'->'))"/>
<xsl:param name="displayPath" select=:"$table/Relationship[ID=$node]/NodeXPath"/>  
<xsl;param name="target"/>
< !— depth first graph algorithm (elim inates cycles) —>
< !— recurse if  the current node has children —>
< x sl:if test="count($table/Relationship[ParentID=$node]) > 0">

<xsl:for-each select="$table/R elationship[ParentID =$node]/ID">
< ! -  assign current loop value to $id (else displayPath not working properly) - >
<xsl:variable name="id" select="text()"/>
<xsl;choose>

<xsl:w hen test="text()=$target">
<xsl:text>Found </xsl:text>
<xsl:va lue-of select="concat(concat($displayPath,'- 

>'),$table/R elationship[ID =$id]/N odeX Path)"/>
</xsl:w hen>
<xsl:otherw ise>

< ! -  make sure that current text() is not already present in the path (elim inate cycles) -->  
< xsl:if test="not(contains($path,concat(concat('->',text()),'->')))">

<xsl:call-tem plate name="search">
<xsl:with-param name="node" select="text()"/>
<xsl:with-param name="table" select="$table"/>
<xsl:with-param name="path" select="concat(concat($path,text()),'->')"/>  
<xsl:with-param name="displayPath" select="concat(concat($displayPath,'- 

>'),$table/R elationship[ID =$id]/N odeX Path)"/>
<xsl:with-param name="target" select="$target"/>

</xsl;call-tem plate>
</xsl:if>

</xsl:otherw ise>
</xsl;choose>

</xsl:for-each>
</xsl:ift>

</xsl:tem plate>

<xsl tem plate match="/">
<xsl:call-tem plate name="search">

<xsl:with-param name="node" 
select="pl:B ibliographicD B /R elationships/R elationship[N odeX Path='A ']/ID "/>

<xsl:with-param name="target" 
select="pl:B ibliographicD B /R elationships/R elationship[N odeX Path=’G’]/ID"/>

<xsl:with-param name="table" select="pl :BibliographicDB/Relationships"/>  
</xsl:call-tem plate>
<xsl:text> C om pleted</xsl:text>

</xsl:tem plate>
</xsl:stylesheet>

Figure 4.8
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CHAPTER 5 

CONCLUSION AND FUTURE WORK

5.1 Conclusion

It is demonstrated that for a relational database, an equivalent XML database can be 

created. Complex recursive queries cannot be implemented in SQL. XML querying 

technologies such as XPath and XQuery are limited in their querying capabilities. XSLT 

being “Turing complete” language is an ideal choice for the implementation of complex 

queries.

Specific scenarios pertaining to the Bibliographic database were identified.

• “Find all the materials which are both explicitly and implicitly referenced by X ”

• “Find i f  the material X  implicitly references Y ”

The above two scenarios are examples where neither XPath nor XQuery can be used. 

XSLT was successfully used to solve the above two problems.

5.2 Future work

The XML technologies are evolving. More capabilities are being added with each 

release. It is expected that XQuery will have more querying capability. Currently, 

XQuery does not include “Group By” or “Having” clauses in its structure. It is expected 

that these features will be present in the newer version. Though XQuery has the ability to
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define functions, it does not have the power of a complete programming language. 

Hence, it is not possible to implement graph traversal & searching algorithms. XSLT 

despite having the ability to define custom templates, which can be used as substitute for 

functions, cannot accurately simulate the functions. It is not possible to return a value 

from the template. If these features are available in the future versions, the current 

algorithms can be refined to be more elegant.
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