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ABSTRACT

Subcube Embeddability and Eault Tolerance of Augmented Hypereubes

by

Sithy Shameema Mohamed Yasim

Dr. Shahram Latifi, Examination Committee Chair 
Professor o f Electrical and Computer Engineering 

University o f Nevada, Las Vegas

Hypercube networks have received much attention from both parallel processing and 

communications areas over the years since they offer a rich interconnection structure 

with high bandwidth, logarithmic diameter, and high degree o f fault tolerance. They are 

easily partitienable and exhibit a high degree of fault tolerance. Fault-tolerance in 

hypercube and hypercube-based networks received the attention o f several researchers in 

recent years.

The primary idea of this study is to address and analyze the reliability issues in 

hypercube networks. It is well known that the hypercube can be augmented with one 

dimension to replace any of the existing dimensions should any dimension fail. In this 

research, it is shown that it is possible to add i dimensions to the standard hypereube, Q„

to tolerate (/ -1 ) dimension failures, where 0 < / < « . An augmented hypereube, 

with n additional dimensions is introduced and compared with two other hypereube 

networks with the same amount of redundancy. Reliability analysis for the three 

hypereube networks is done using the combinatorial and Markov modeling. The MTTF
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values are calculated and compared for all three networks. Comparison between similar 

size hypereube networks show that the augmented hypereube is more robust than the 

standard hypereube.

As a related problem, we also look at the subeube embeddability. Subcube 

embeddability o f the hypereube can be enhanced by introducing an additional dimension. 

A set of new dimensions, characterized by the Hamming distance between the pairs of 

nodes it connects, is introduced using a measure defined as the magnitude of a 

dimension. An enumeration o f subeubes of various sizes is presented for a dimension 

parameterized by its magnitude. It is shown that the maximum number of subeubes for a 

Q„ can only be attained when the magnitude of dimension is « - 1 or « . It is further 

shown that the latter two dimensions can optimally increase the number o f subeubes 

among all possible choices.
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CHAPTER 1 

INTRODUCTION

Computer interconnection networks came into existence due to a large demand for 

transferring information. The rapid advancement in distributed databases and distributed 

computations ensures that interconnection networks will remain a key component in the 

successful performance of any computer system. Many interconnection network 

topologies have been proposed in the literature. Among them, the hypereube is one of the 

most popular and has been studied extensively in different aspects [1-7]. It has been long 

known as an attractive topology in distributed parallel systems, since it offers a rich 

connection structure.

The hypereube possesses several attractive attributes such as a logarithmic node 

degree and diameter, a large bandwidth, a homogeneous symmetric structure, and a high 

degree of fault tolerance. Many interconnection network topologies, such as meshes, 

rings, trees, can be embedded in the hypereube [2-8]. A number of hypereube machines 

have been designed and implemented since the 1980’s; Ncube’s 10, 2, and 3 [9]; Intel’s 

iPSC series (iPSC/2 and iPSC/860) [10]; Ametek S-14/16 and 64 [11]; and JPL Mark III 

[12] are among those that have from 128 to 4096 node processors.

The hierarchical nature of the hypereube allows its partitioning into subnetworks 

(subcubes) of smaller size, but o f the same topology. Therefore, jobs o f different sizes



requiring the hypereube topology ean be easily hosted on this subnetwork 

simultaneously, provided that there are a sufficient number o f free subcubes to 

accommodate the arriving jobs. The techniques followed to host the jobs on a given 

network are referred to as Job Scheduling. Since 1985 several papers have addressed the 

problem of Job Scheduling (see [13-15] for example).

No matter how efficient and adaptive the job scheduling technique is, there will still 

be fragmentation as jobs with different execution times and deadlines arrive and leave the 

network. In many cases, a job needs to be queued due to the absence o f a free subcube of 

the required size. Furthermore, if  a higher priority job with a short deadline arrives but 

cannot be allocated, other job(s) need(s) to be pre-empted to free up a subcube of the 

desired size for the high priority job. Pre-emption of jobs requires interruption and 

migration o f the jobs out of the system and queuing them in a buffer, so they can be later 

on moved back into the system after the high priority jobs ran to completion and left the 

system.

It is clear that if  the fragmented processors (or subeubes) could be combined to 

makeup a larger subeube in more ways than what is offered in the standard hypereube, 

many benefits would result. The attained benefits include reduced overall running time 

for the jobs, number of pre-emptions, and communication overhead, and increased 

processor utilization. A natural way to achieve this is to provide more interconnections 

among the processors connected based on the hypereube than what exists in the standard 

topology.

The addition o f links to the hypereube to achieve higher subeube embeddability can 

be done in many ways. To preserve node symmetry and regularity of the network, all



new links must connect pairs o f nodes whose binary labels are different in a consistent 

way (ex. they all complement the second and third bits o f the node label). These links 

are said to be parallel and the set of new links (there are 2"“' o f them) belong to the same 

dimension. In [16], the extra links connect processors whose labels are Ts complement 

of each other (e.g. the farthest nodes from each other). The author enumerated the 

additional subcubes resulting from this augmentation and showed how additional links 

ean improve the overall network performance. In this thesis, we generalize the idea by 

adding a new dimension of arbitrary magnitude (to be defined later) to the network and, 

for each ease, enumerate the additional subeubes that will result after dimension 

enhancement.

Fault-tolerance in hypereube and hypercube-based networks received the attention of 

several researchers in recent years [16-21]. The fault tolerance of networks is generally 

measured by how much of the network structure is preserved in the presence of a given 

number of node and/or link failures. In this study, we analyze the reliability issues in a 

fault tolerant hypereube network. It is assumed that only links fail and a dimension is 

declared faulty if one or more o f its links fail. This assumption relies on the fact that in 

most applications, the communication takes place between one set of the nodes and the 

other set along parallel links that collectively belong to the same dimension. We show 

that it is possible to add n dimensions to the hypereube to replace { n - \ )  consecutive 

dimension failures. We assess the reliability o f the hypereube which is subject to 

dimension failures using the combinatorial and Markov modeling. We determine the 

reliability for three networks with the same amount of dimension redundancy, (i) a



network enhanced with additional dimensions in a straightforward manner; (ii) our 

proposed network; and (iii) an optimal network.



CHAPTER 2

AUGMENTATION OF HYPERCUBES 

In this chapter, we consider an augmented hypereube network obtained by 

introducing extra dimensions to achieve higher subcube embeddability. By adding extra 

dimension we maintain a constant number of parallel links in each dimension to preserve 

node symmetry and regularity of the hypereube network structure. We begin the chapter 

with the necessary preliminaries to this study.

2.1 Notation and Terminology 

An n -dimensional hypereube, denoted by , can be modeled as a graph G„ (V, E)

with I U 1= A  = 2” nodes and \E\=n^2'^~^  edges. Each node represents a processor and 

each edge represents a link between a pair of processors. Let u and v be two nodes in 

G„{V,E). If an edge e = (u,v) e E , then the nodes u and v are said to be adjacent and 

the edge e is said to be incident on these nodes.

The nodes of can be uniquely labeled by binary numbers from 0 to 2 ^ - 1 .  An 

edge (link) is labeled i if  it connects two nodes whose labels differ in the i -th bit, 

0 < / < « . The set of links labeled i collectively form the dimension /. Consequently, 

there are 2"“' edges in (or along) dimension i. Figure 2.1 shows the hypereube of 

dimensions 1 ,2 ,3 , and 4.
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An 77-dimensional folded hypereube {FHC(n))  is an 77-dimensional hypereube to 

which extra links are added connecting every pair o f nodes that are bit-wise complements 

of each other [16]. A 3-dimensional folded hypereube is illustrated in Figure 2.2. Dashed 

lines represent the complementary links.

1 1( f t
Figure 2.2. Folded hypereube o f dimension 3.

Let S be the ternary set {0,1, A ] , where A  is a don't care symbol. Then, every 

subcube of a can be uniquely represented by a string of symbols in S . Such a string 

o f symbols is called the label o f the corresponding subcube. Each symbol in the label o f a 

subcube corresponds to a certain dimension, starting from the right-most symbol in the 

label as dimension 0. If dimension i in the label o f a subcube corresponds to symbol A, 

then the subcube is said to span dimension z ; otherwise dimension i is fixed to its 

corresponding symbol (i.e. 0 or 1). A contained in a spans k  dimensions (i.e. has



k X  's in its label) and has n ~ k  fixed dimensions, where Q <k < n. Note that the 

number of X 's in the label of each subcube determines its dimensionality. For instance, a 

subcube o f a labeled as OAOOA is o f dimension 2, spans dimensions 0 and 3 and has

its 1st, 2nd, and 4th dimensions set to 0. A subcube contains a node if its label matches 

the label o f the node. For example, the above subeube contains nodes with labels 00000, 

01000, 00001, and 01001.

2.2 Dimension Enhancement 

The 2" nodes can be connected in many ways to form a hypereube topology, subject 

to the constraint that the set o f links are comprised o f n dimensions, with each dimension 

containing 2""' parallel links. Conventionally, each set of n dimensions affects exactly 

one of the n bits so that each link (labeled i ) is incident on a pair o f nodes whose labels 

differ in the i -th bit, where 0 < / < « . The set of dimensions defined as such is denoted as 

{0,1,..., 77 -1}. Nonetheless, a dimension may be defined to affect more than one bit o f the 

node.

Lemma 1. There are (2” -1 ) ways to define a set o f dimensions in .

Proof. Denote a dimension as an 7 7 -bit vector ■••èjèo wherein è, =1 only if

the pair of nodes, incident on each of the parallel links in the dimension, differ in the / -th 

bit. There are 2" such vectors; and excluding the all-zero vector, the number of different 

dimensions can be easily obtained. Denote the set o f (2” -1 ) dimensions by .

Corollary 1. There are a total o f 2” - 7 7 - I  new dimensions that ean be added to the 

standard hypereube .



Denote an 77-dimensional hypereube with i additional dimensions by The

augmented hypereube contams nodits and (77 + 7) dimensions.

For convenience, we denote a dimension as 72 •••/;„ whose corresponding vector 

has non-zero bits in positions q , 72 ,•••,/;„, where /] < 7 2  < - < /^  and m < n .  For 

example, in a Q4 , A4 = (0,1,2,3,01,02,03,12,13,23,012,013,023,123,0123); the link 

labeled 012 (belonging to dimension 012) is incident on node (0000) and is also 

incident on node (0111).

Definition 1. The magnitude of a dimension is the number of differing bits in the labels 

of the nodes that parallel links in that dimension join.

For example in a Q ^, the dimension 013 is of magnitude 3 and its links connect

nodes of the form (c4 CgC2 C]CQ) to nodes of the form (C4  C3 C2 C] Cg ) .

When specifying the magnitude, we use the terms links and dimensions 

interchangeably. It is understood that a dimension consists of 2”“' links, with each link 

having the same magnitude as the dimension itself. For example, all dimensions in the 

standard hypereube have a magnitude of 1, the complementary dimension in FHC(n)

has a magnitude o f n , and a dimension labeled 7]/2 • has a magnitude of m . 

Definition 2. A k-covering  is a set of k distinct dimensions, where each dimension 

corresponds to one element in the set A„.

Note that for a k -  covering to produce a , it is necessary (but not sufficient) that 

k > n .



Definition 3. The bit-wise union (denoted by U ) of two or more dimensions is another

dimension, whose set of digits is the union of the digits of all dimensions composing the 

union.

For example, let cf, = 014 , 2 =013, and dj^=2.  Then JjU<f2 U<f3 = 01234.

Observe that the bit-wise union applies only to bit positions and not to the actual links. In 

other words, the number of links in a dimension is constant irrespective of whether the 

dimension being the union of other dimensions or not. In the preceding example, the 

number of links in ,<f 2 , 7̂ 3 , and d^ is the same and equal to 16.

A minimal k-covering is a set {d \ , d 2 ,---,d]^} consisting of k  dimensions such that 

^  dp  for every I and p,  where \ <i^ <i2  <■•■ <ii < k , p  & {\,2 ,---,k}

and l ^  p .  In other words, the union of two or more dimensions will not generate an 

existing dimension in a minimal covering set. For example, the set {0,1,2,013} is a 

minimal 4-covering, whereas the set {0,1,2,012} is not.

Corollary 2. A A: -covering can generate a only if it is minimal.

For example, the set {0,1,2,012} can only generate a even though it consists of 4 

dimensions.

Definition 4. Two subcubes are said to be node-identical if  they consist of exactly the 

same nodes, but a different covering (e.g. different set of dimensions). For example, the 

six subcubes containing the all zero node, (0 0 0 ) ,  and spanning dimensions {0 , 1, 2 }, 

{0,01,2}, {0,1,02}, {0,1,12}, {0,1,012}, and {0,01,012} are node-identical. Figure 2.3 

shows two node-identical ’s with two different coverings of {0 , 1, 2 } and {0 ,0 1 , 2 }.
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{0, 1, 2}

2 2

{0, 01, 2 }

Figure 2.3. Node-identical ’s with different coverings

The significance o f node-identical subcubes becomes clear when the number o f new 

subcubes generated as the result of adding a new dimension is determined. From the 

subcube allocation viewpoint, node-identical subcubes are equivalent and should be 

counted once. Note that node-identical subcubes may differ in one or more different 

dimensions.

11



Lemma 2. Two minimal coverings will generate node-identical subeubes only if  they 

contain the same number of dimensions and cover the same digits.

Proof. If  coverings with the same number of dimensions are minimal, they generate the 

same-size subeube. Furthermore, since each covering includes the same digits, the same 

bit positions will be affected as a result o f traversing the dimensions in the covering. 

Thus, the subcubes will be node-identical.

2.3 Subeubes in

We wish to add a new dimension to to increase the number of available subeubes,

since we are naturally seeking the dimension that produces the maximum number o f new 

subeubes.

Due to the link symmetry of the hypereube, all dimensions o f the same magnitude 

behave identically and would generate the same number o f new subeubes, once added to 

the existing n dimensions in Q^. For instance, in the same way the two dimensions 

0123 and 2457 will contribute to the generation of new subcubes in Q^. This claim ean 

be trivially shown true by re-labeling the dimensions.

In the following we enumerate the number of subeubes attained as a result of 

introducing a dimension of magnitude m . We will then prove that the two dimensions 

whose addition will produce the maximum number of subeubes have magnitudes of 

(« -1 ) or n .

Consider the standard hypereube with the covering {0,1,..,«-1} . We wish to 

augment the covering with an additional dimension selected from the set o f (2” -  n -1 ) 

new dimensions. Due to the edge transitivity o f the hypereube, with no loss o f generality.

12



we assume the dimension to be added is {01---W-1} with l < m < n .  We wish to 

enumerate the additional subeubes Q^, 0  <i  <n  that emerge as a result o f this 

enrichment. The new covering will be {0,1, • • • ,« - 1,01 ••• w -1} (note that this covering 

is not minimal; e.g. it produces a , even though it has (n + 1) dimensions).

Denote by (g , ) the number o f Q, ’s that exist in a augmented by a dimension 

o f magnitude m . For m < i  < n - \ , there are / dimensions to be selected from the 

available {n +1) dimensions. The remaining {n -  i) fixed positions ean take on 0 or 1. Of 

all the choices, if  the covering includes the set of dimensions {0,1, •••,w - 1,01---w -1 } , it 

will produce smaller subcubes and may not count. The remaining ( i - m - \ )  dimensions

ean be taken from the set {m,m +1,• • • ,« - 1}. There are such redundant

coverings which should be excluded from the total count. Another mutually exclusive set 

of redundant coverings occurs when they include the set 

{0,1,2,-",/7 -  l,/7 + l,---,w -  1,01 •••w -  1} , where 0< p < m - 2 .  All these coverings are

equivalent to {0,1,2, -1} and should be excluded from the count, i.e. m C 'ilff . For

7 = m , the redundant coverings include the set {0,1,2, • • •, /? -1 , /? +1, • • •, tm -1,01 • • • tm -1} , 

where 0 < p < m - 2  and there are m such coverings. For i <m , there is no possibility of

generating a redundant covering and A ^ (g ,)  = (C " ‘̂ ^)2"“ ' . For i = n - l ,  distinct 

subeubes ean be obtained by picking {n - 1 ) dimensions out o f the available {n +1) 

dimensions and excluding any possible set that cannot make ’s. It follows;

I f  77 <777 +  1,

13



I f  n ~  m + \ ,

= (C-l +C"„-2 - m ) 2  = (C5' - m ) 2

I f  n > m + 1,

N„(Q„-^ ) = (C„"_, + C"_2 -  c y z _ 2  -  mC"„ZZ-x )2 

= \C tl-C lZ 'S ,_2~ m (n-m )-\2

Summarizing the above results we have the following equations; 

For 0 < / < 77 -1  ;

A '„(6„-2) = ( C - 2  + C - 3 -C"„--m-2 -  m C t Z - l F  

= [C -2  -  C tm -2  -  '" C r » -2  ]2"

A'» (e»-3 ) = (C _ 3  + C _ 2  -  c ; X 4  -  )2^
—  rẑ 77+l f^n—m /-,72—/M -1/̂ 3

(g/Tz+l ) = [ C L l  + c  -1  -  /»(» -

= [Cm+x''^^ -1  -  777 (77 -  777)]2'"“ '” “ ’

= ( C  + C _ ,  - C _ , ) 2 " - '"  = ( C ^ '  -'77)2"-'"

^ m (g 7 7 ,- i)= (C _ i + C _ 2 ) 2 " - " '+ ' = (c ; ; t |) 2 " - " '+ i

A 'm (a) = (C7̂  + Q ^ l ) 2 ' ' - '= ( C r ) 2 '

14



W „ ( e 2 )  =  ( C 2 + C |" ) 2 " ' 2  = ( c " + ' ) 2 " - 2

A '.„(fil) = (C|'’ + ' ) 2 '’“ ‘ = ( C P ' ) 2 ’’- '

For example, consider a Q4  augmented with the dimension 012. The eovering is 

{0,1,2,3,012}. The seven non-redundant dimensions for subeube Q2 are {0,1,2}, 

{0,1,3}, {0,2,3}, {0,3,012}, {1,2,3}, {1,3,012} and {2,3,012}.

2.3.1 Data Analysis

From the equations obtained in the previous seetion, it is clear that the number of 

subcubes attained from is dependent on the parameters n, i, and m. Henee a data

analysis is neeessary.

Table 2.1 lists the subeubes {Qi ’s) attained from for different values of i and m.

15
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Table 2.2 gives the number of subcubes ( 0 / ’s) (all the values should be multiplied by 

2 ^ - ')  obtained from for different values of i and m. Figure 2.4 illustrates the

number of subeubes obtained from •

Table 2.2. Number of subcubes {Q j’s) obtained from +(1)

Dimension of the subeube (/)
1 2 3 4 5 6 7

"O 2 9 34 71 90 71 34 9

1 - 3 9 36 81 110 91 44 11
4 9 36 84 122 109 56 14

r i 5 9 36 84 126 121 68 18
"O (u

6 9 36 84 126 126 78 23

1
7 9 36 84 126 126 84 29

8 9 36 84 126 126 84 36
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Figure 2.4. Number o f subcubes obtained from + (1)

Observe that the number of subcubes of dimension / increases as the magnitude of the 

added dimension increases. For i < m The number of subcubes of dimension i are the 

same regardless of the value of m.

2.3.2 Special Cases

[i] m = 2 , {0,1,...,M-1,01}
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;^2 (6 2 ) = (C2"+C,''-')2 ''-'

; \^ 2 (a )= (c ;+ i)2 " - '

[ii] m - n - \ ,  {0 ,l,---,/7-l,01---n-2}

A^«_,(a) = (c r )2 " - ', 0<y<77-l.

[iii] /w = /7,

N„ (g, ) = (C,"^' )2"“' , 0 < / < 27. (in agreement with results in [9])

Summarizing the above results, we will have the following claims:

Theorem 1. Consider a with the covering {0,l,---,n-1 ,0 1 2 • • • /« -1}. The optimal

number of extra subcubes, Q- ’s (e.g. (Qj) = x 2""' ) are obtained for Q < i <m . 

proof. To have node-identical and non-minimal coverings, the covering of g , should have 

at least m number of dimensions. Since i<m it is not possible to have redundant 

coverings.

Lemma 3. Consider a with the covering { 0 ,],--- ,n -],0 ]2 ---7 w -l} . The optimal

number of extra subcubes 0 , ’s (e.g. N ^{Q i) = are obtained when

m = n ~ l  or m = n , for Q <i < n - \  .

Proof. It is impossible to have a covering of / dimensions from the sets 

{0,1,'",22-1,01 "77-2} and {0,1, ',27-1,01 -M-l} which is not minimal.

2.4. Subcubes in

In this section, we add the two dimensions 012"-27-1 and 0,1, ",27-2 to Q^. The 

reason for this selection is clear. The two dimensions should considerably improve the
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subcube embeddability of the hypercube as they both generate the maximum number of 

subcubes when individually added to the network.

The new covering for the hypercube after augmentation is 

{0,1,---27-1,01---27-2,01---27-1} . Clearly, when enumerating the subcubes, redundant 

coverings arise when both 0 1 2 ---« -la n d  0,1,• • • ,« -2  are included in the covering of 

the subcubes (e.g. each of these dimensions cannot individually produce a redundant 

covering together with the standard dimensions). It is not difficult to see that the 

subcubes, whose covering includes the set {27 -1,01 ••• 27 -  2,01 ••• 27 -1} , are redundant and 

may not be counted. Denote the number of Q fs  produced as a result of adding the said 

two dimensions by jV„_, „ (g, ). To construct a Q., 2 < / < 27 - 1 ,  / dimensions would have 

to be selected out o f the available 27 + 2  dimensions. To enumerate redundant cubes, the 

3 dimensions would have to be 2 7 -1 ,0 1 - • • 2 7 - 2,01-• • 2 7 - 1, and the remaining (7 - 3) 

dimensions can be selected from the remaining ( 2 7 - l )  standard dimensions (i.e. 

0,1, " ,2 7 -2 ). It follows that:

Next, we show that if  we were to add two dimensions to to increase its subcube

embeddability, the two said dimensions will render the maximum subcubes among all 

possibilities.
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Suppose the added dimensions are and where

l< /27< /27 '< «-l. The subcubes existing in can be classified into four categories:

(i) subcubes spanning standard dimensions only

(ii) subcubes spanning dimension Q \..m -\  but not O T -w '- l

(iii) subcubes spanning dimension O T -w '- l  but not O L .w -l

(iv) subcubes spanning both dimensions 0 \- - -m - \  and O T -w '- l

For the first case, the number o f subcubes is the same regardless of the choice of two 

additional dimensions. For the next two cases, clearly the maximum number of subcubes 

is obtained when m = n - \  and m'= n - 2  .

For case (iv), the presence of standard dimensions of 0,1,---,ot-1 or 0,1,---,ot'-1 in 

the covering will make it redundant (or non minimal). Also, the presence of standard 

dimensions m ' w i l l  result in a redundant covering. To minimize the 

redundant covering, m and m' must be as close to each other and as large as possible. 

Therefore, we establish the following;

Theorem 2. The contains the maximum number of subcubes when it is generated

by the covering {0,1, - - - , -1,01 - - -  2,0 F - /? -1} .
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CHAPTER 3

SPARE DIMENSIONS IN HYPERCUBE 

A hypercube network is said to be fault tolerant, if  its structure is preserved in the 

presence o f failures, which could be in the form of node, link, or combined node/link 

failures. In this chapter we investigate the robustness o f the hypercube under link failures 

by adding redundant dimensions called spare dimensions. The spare dimensions are 

considered to be hot spares, which are connected as part o f the hypercube network and 

active, but not become operable until a dimension fails. It is assumed that a dimension 

fails, if  one or more of its links fail.

3.1 One Dimension Fault Tolerant Covering 

In this section we consider adding one spare dimension to in order to investigate

the fault tolerance capability of under dimension failures. Naturally, we are seeking 

how many dimension failures can be tolerated by adding a spare dimension.

Let C„ denote the set of dimension in i.e. C„ = {0,1, • • •, n -1} .

Let = {0,1,• • • ,« - 1,5’/} be the augmented covering o f where Sj is itself a

set with i spare dimensions.

An immediate consequence o f Lemma 2 in Chapter 2 is that a spare dimension can 

replace any existing dimension, as long as the same digits are covered in both cases 

discussed in Chapter 2. More specifically, in the non-minimal dimension set of
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in Qfj, the spare dimension 01 -VM-l can replace any 

dimension i , Q < i< m - \  to recover the Qyi. It follows:

Theorem 3. Consider a with the non-minimal dimension set,

{0,],•••,27-1,0T--W -1} .

The minimal dimension set {0,1,-- , y - l , y  + 1, - - - , 227 - 1, 227,•••,27-1 ,0 1 2 ...227 -1} can be

used to recover Q^j, where 0 < j  <m  and 1 < 222 < 27.

In other words, the extra dimension 01-•-227 -  1 can replace any dimension 

0,1,..,227 -  1 . For example, in a with the dimension set {0,1,2,3,4,0123}, the 

dimension 0123 can replace any of the dimensions 0, 1, 2, or 3 to form a non-redundant 

05 with the dimension sets of {1,2,3,4,0123}, {0,2,3,4,0123}, {0,1,3,4,0123}, and

{0,1,2,4,0123}, respectively. Nonetheless, the dimension 0123 cannot replace dimension 

4 as this replacement results in a non-minimal dimension set o f {0,1,2,3,0123} which 

can only generate a 0 4 .

As a special case when 222 = 27, Theorem 3 reduces to the following lemma:

Lemma 4. The dimension set ={0,1, - ,27-1,01- -27-1} in 0^^'^ contains one

spare dimension and any 27 dimensions in can be used to form a 0 „ .

In other words, the failure of any one o f the dimensions in the set can be tolerated

to recover 0 „ . Lemma 4 is proven in Chapter 2.
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For example, from the covering set = {0,1,2,012} in , any 3 dimensions

can be used to form Qt, . Figure 3.1 illustrates the recovery o f Qt, upon the failure o f 

dimension 1. The links in hot spare dimension 012 are indicated by dashed lines.

012

'.012

gs'^^'^with failed dimension 1

012

012 ,012

Q] recovered

Figure 3.1. Spare dimension 012 replacing dimension 1
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3.2 Two Dimension Fault Tolerant Covering

Even though one spare dimension is suffieient to achieve one fault tolerance 

capability, we consider two spare dimensions so that we can generalize to eases where 

more dimension failures can be tolerated. Let the two spare dimensions be 12-- - « - I  

and 0.2• • •« -2 . We obtain these spares by dropping digits 0 and 1 from the dimension

01 - M -1, one at a time. Hence, we get the augmented covering set

={0,1, . ,« -1 ,1 2 ...M -1, 0 .2 -- .« -2 } .

We can see any dimension failure in can be tolerated to form Q„. For example,

consider a 4-dimensional hypereube 04  with the covering set C4 = {0,1,2,3}. The

covering of the augmented hypereube 04^^^^ is = {0,1,2,3,123, 023}. When

dimension 1 fails, the covering will reduce to {0,123,2,3,023 }, which will recover the 4- 

dimensional hypereube 0 4 .

3.3 Three Dimension Fault Tolerant Covering

In this section we consider adding three spare dimensions to 0 „ . We obtain these

distinct spares by rotating the digits of dimension 0 1 -- - « - I  and dropping digits 0 , 1 , and

2 one at a time. It follows:

={0,1, . .. ,M-1,12. . .« -1 ,  23 .M-1.0,.34 -M-l.Ol}.

Observe that at least two out o f the three spares cover the digits 0,1,- . - ,« - 1 . 

Therefore, we can tolerate any two dimension failures. In other words, the spare 

dimensions can replace any two arbitrary dimension failures.

Similarly, we can prove Lemma 5 by induction.
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Lemma 5. In 0 „ , adding ( « - / )  extra dimensions will tolerate any arbitrary ( « - / - I )  

dimension failures, where 0 < / < « -1 .

3.4 Generalization o f n Dimension Fault Tolerant Covering 

By rotating and dropping one digit at a time from dimension O L --« - l ,  we can 

generate n different dimensions shown below.

1 2 n - 3 n - 2 n - \
2 3 n - 2 n - \ 0

3 4 n ~ \ 0 1

n -1 0 1 n - A n - 3
0 1 2 n - 3 n - 2

An example for « = 8 is shown in Table 3.1.

Table 3.1. Spare Dimensions for 0g

Spare Dimensions Dropped Digit from 
Dimension 01234567

1234567 0
2345670 1
3456701 2
4567012 3
5670123 4
6701234 5
7012345 6
0123456 7

In a special case i = 0, we establish the following theorem from Lemma 5:
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Theorem 4. Let be a standard cube with dimension set {0,1, • • • ,« -]} . Consider

adding the following n extra dimensions to this network:

{ l .2 " '«  — 2.« —1, 2 . 3 ' —1.0, • • •,« — 1.0.1 • • •« — 3,0.1 • • •« — 2 }.

The resultant network (denoted by 0^^"^) will tolerate any (« -1 ) dimension failures. 

Proof. The proof follows by way o f considering all possibilities. Say a spare replaces the 

failed dimension i in such a way that the union of all new dimensions covers all digits

0.1..., « - 1 ,  yet the minimality of the new dimension set is preserved. This replacement 

recovers the original cube by Theorem 3. In the worst case, a dimension, say dimension

1, fails followed by subsequent failures of its replacing spares (e.g. dimensions 

containing the same digit are depleted first). There are ( « - l )  spares which include i in 

their labels, and therefore any (« - l )  consecutive failures can be tolerated. Q.E.D.

As an example, the 0^'^^ contains the dimension set 

{0,1,2,3,4, 1234,2340,3401,4012,0123}. Any 4 consecutive dimension failures can be 

tolerated to recover 0 j  .

A natural question arises as to why we can’t simply duplicate the dimension 01...« - 1 

n times to form the n spare dimensions. Intuitively, this makes sense as dimension 

01...M-I can replace any of the existing dimensions in a standard cube. However, this 

approach quickly results in the original cube’s failure if  the first two failed dimensions 

are among the standard dimensions (e.g. 0,1,• • • ,« - 1 ), no matter how many times we 

replicate the 01...« -1  dimension. For example, consider an augmented with the 

dimension set {0,1,2,3,4,01234,01234). If  dimension 4 fails, the dimension set will 

reduce to {0,1,2,3,01234,01234}, which is still sufficient to recover the 05 . However, if
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the second failed dimension is anything but 01234, say 3, the new dimension set will be 

{0 ,1,2 ,0 1 2 3 4 ,0 1 2 3 4 } which can only generate a 0 4 .

In our approach, by rotating the digits and dropping one digit at a time from the 

newly added dimensions, we ensure distinctiveness and, at the same time, maximum 

coverage for the spares.

3.5 Reconfiguration Algorithm 

The reconfiguration algorithm specifies which spare should replace a failed 

dimension. It is simply described as follows.

The set of n dimensions in 0„ - C„ = {0,1, 1}.

The set of n spare dimensions-

Syi — A 25‘" A/ 2—1A/7} — {1.2 ' "  « — 2 .« — 1, 2.3 - « — 1.0, —1.0 .1' " «  — 3 ,0 .1 '" «  — 2 }

Let C„' denote the covering obtained after replacing the failed dimension with a spare 

dimension.

Algorithm:

input: C„, S„; 

begin

Cn~ C„: 1=1:  counter = 0. 

i f  dimension in C„ fails

while n > counter

choose spare dimension Si from S„.

update the covering C„ by replacing Si with the failed dimension, 

counter = counter + 1
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7/’(union of all dimensions in C„=union of all dimensions in C„)

C„ = C„

output: Hypereube Q„ recovered 

exit 

else 

i = 1+1 

endif 

endwhile

output: Hypereube Q„ cannot be recovered 

exit

else

output: No dimension failure 

endif

exit

For example consider a with the covering{0,1,2,3} and = {123,230,301,012} . 

If dimension 3 fails, choose a spare dimension (say 012). The covering will reduce to 

{0 ,1,2 ,0 1 2 }. In this case the union of all dimensions with the spare dimension is 012 is 

not equal the union of the original hypereube dimensions which is 0123. So the 

hypereube cannot be recovered. Choose another spare dimension (say 013). The 

covering will then become {0,1,2,013}. In this ease the union of all dimensions is equal 

the union of the original hypereube dimensions. So the hypereube is recovered.

29



CHAPTER 4

RELIABILITY ANALYSIS IN HYPERCUBE NETWORKS 

The fault tolerance of networks is generally measured by how much of the network 

st ructure is preserved in the presence of a given number o f node and/or link failures. The 

most important requirements to achieve a fault tolerant network are reliability, 

availability, safety, performability, dependability, maintainability, and testability. As the 

size of a network grows, the probability of a fault occurring in the network increases. It is 

important to quantify the effects of the faults, so the fault-tolerant network can be 

pursued. In this chapter we analyze the reliability issues in fault tolerant hypereube 

networks.

4.1 Reliability and Evaluation 

The reliability function of a system component at tim et, R{t), is defined as the 

conditional probability that the component will perform its intended function correctly 

throughout the time interval [to, t], given that the system is operational at time to[22]. The 

unreliability function Q{t) of a component is defined as the conditional probability that 

the component will perform incorrectly throughout [to, t], given that the system is 

operational at time to. From the probability point of view R{t) + 0(t) = 1.0. The 

unreliability is often referred to as the probability o f failure. Fault tolerance is a technique
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that can improve reliability, but a fault-tolerant system does not necessarily have a high 

reliability.

The method for evaluating fault-tolerant networks can be divided into two major 

categories namely, quantitative and qualitative. Qualitative measures are typically 

subjective in nature and describe the benefits of one network over another. On the other 

hand, quantitative evaluation techniques produce numbers that can be used to compare 

two or more systems. We introduce two important quantitative evaluation parameters, 

failure rate and mean time to failure (MTTF), which we use in the reliability assessment 

o f hypereube networks.

• Failure Rate

Intuitively, the failure rate (À) is defined as the expected number o f failures of a 

device or system for a given time period. For example, if a component in a system fails 

once every 200 hours, the component has a failure rate o f 0.005 failures/ hour.

Suppose we test N  identical components. Let N ft)  be the number o f failed 

components at time t and N f t )  be the number of good components at time t. The 

reliability of the component at time t is given by,

— Ml — ,

N  Ng{ t )  + N f { t )

If we differentiate and rearrange R{t) with respect to time, we obtain 

dN f{t)  dR(t)
—  ---- = - N — — . Here the derivative of N ü )  with respective to time is the

6ft dir V K

instantaneous rate of which component are failing. By dividing the derivative of N ft)  by

Ng{t) we obtain.
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N^{t )  d!

Z{f) is called the hazard rate or failure rate function. By mathematical manipulations we 

can write Z(t) strictly in terms of the reliability function R{t) as

Z ( t )  =  -
^ ( 0

If we assume the system has a constant failure rate X, the solution to the above

differential equation is an exponential function given by R{t) -  e~^^. This exponential 

relationship between the reliability and time is known as the exponential failure law.

• Mean time to failure - MTTF

MTTF is the expected time that a system will operate before the first failure occurs. 

MTTF can be calculated by finding the expected value of the time o f failure. From the 

probability theory, we know that the expected value of a random variable X,

æ [a ]=  \ x f { x ) dx , where is the probability density function. In reliability analysis,
—  GO

CO

we are interested in the expected value of MTTF. So, MTTF = \ t f{ t)d t, where/(O is the
0

failure density function. Using integration by parts, and the fact that

/ it) = show that MTTF = j R{t)dt.
dt dt 0

Reliability Modeling Methods

Reliability modelling is the process of predicting or understanding the reliability o f a

component or system. The reliability of a system can be determined analytically and

experimentally. One problem with the experimental approach is the number o f  systems
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that would be required to achieve a level of confidence in the experimental results. This 

is particularly a problem when costs limit the number of systems that can be built. The 

second problem is the time required to run such experiments. Many systems today are 

being designed to achieve a reliability o f 0.9? or higher after ten hours o f operation. 

Using the exponential failure law, a reliability of 0.9? corresponds to a failure rate of 10'* 

failures per hour. Therefore, on average we would have to wait approximately 100 

million hours for the first failure to occur. Clearly we need alternatives to the 

experimental approach.

The most popular reliability analysis techniques are the analytical approaches. O f the 

analytical techniques, combinatorial modeling and Markov modeling are the two most 

commonly used approaches. We use these two modeling methods to evaluate the 

reliability of the hypereube networks in this study.

4.2 Combinatorial Model

Combinatorial models use probabilistic techniques that enumerate the different ways 

in which a system can remain operational. The probabilities of the events that lead to a 

system being operational are calculated to form an estimate o f the system reliability. The 

reliability of a system is generally derived in terms o f reliabilities of the individual 

component of the system. Two models that are most common in practice are the series 

and the parallel. In a series system, each element is required to operate correctly for the 

system to operate correctly. In a parallel system, on the other hand, only one o f several 

elements must be operational for the system to perform its function correctly. In practice, 

systems are typically combinations of series and parallel subsystems. These systems can 

be represented by reliability block diagrams. The reliability block diagram maps the
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operational dependency of a system on its components and not on the on the actual 

physical structure.

• Series System

The series system can be considered as a system with no redundancy. Reliability 

block diagram of a series system with N  components is shown in Figure 4.1. If any one of 

the component fails the system fails.

Component Component Component

Figure 4.1. Series system 

Let the reliability of component Q  at time t be i?,(t). The reliability o f the series system

Rseriesit) iS givCU by,

N
R s e r ie s i t )  =  FlR/(0- 

i= r

• Parallel System

In basic parallel system, only one of the N  identical components required for the 

system to function. Figure 4.2 illustrates a basic parallel system that contains N  

components.
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Component C

Component C

Component C2

Figure 4.2. Parallel system

The reliability of the parallel system Rparaiieit) is given by

N
Rparallel (0 -  1 “ fl [1 -  Ri {t)].

m-out-of-# Systems are a generalization o f the ideal parallel system. In the ideal 

parallel system only one of N  modules is required to work for the system to work. 

However, in the m-out-of-# System, at least m of the total on N  identical modules are 

required to function for the system to function properly, and the system can tolerate at 

most N-m modules failures. The expression for the reliability of an m-o\xt-N system can 

be written as (assuming each module has the same reliability R)

R
N

m - o u t - o f - N i t )  =  X where
V  t  y V t  y

4.2.1 Reliability analysis on hypereube networks

In this section we derive the reliability expression for three different hypereube 

networks with same number of redundant dimensions.

35



• Augmented Hyper cube Network

The augmented eube as introduced in chapter 3 contains n standard

dimensions and n spare dimensions. We proved that by adding n spare dimension to the 

standard hypereube Q„, {n - 1) dimension failures can be tolerated. Hence, the 

augmented eube can be modeled as an m-out-of-jV system with 2n components and at 

least (« +1) component required functioning. We assume that all the dimension have the 

same reliability probability denoted by p. The reliability o f the augmented eube (denoted 

by R{Qn^'^^)) is equal to the probability of having at least {n +1) reliable dimensions in 

the network. Therefore:

^=«+lV k

• Optimal Hypereube Network

We introduce an optimal hypereube network (denoted by ) as a hypothetical

network with n redundant dimensions. We assume a pool o f spares is used to replace 

failed dimensions, there is no restriction for replacement and n dimension failures can be 

tolerated. This network is not feasible and we introduce it to provide a frame of reference 

for the merit of the augmented hypereube. Let the Reliability of the optimal hypereube be

R(Qn^ '̂^^) • h  follows:

2/7

^2/7^

k=n ŷ k j
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• Hypereube Network With Duplicate Dimensions

To provide a realistic reference for comparison, in the following, we present the 

reliability for a hypereube in which each dimension is duplicated, e.g. the dimension set 

is { 0 ,0 ,l ,l ,2 ,2 ,- - - ,« - l ,« - l} . Denote the hypereube network with duplicate dimension

by . This network can be modeled as parallel-series system illustrated in Figure

4.3. Hence, we can obtain the reliability of the hypereube with duplicated dimension as

n-l

n-\

Figure 4.3. Modeling of

The comparison of with is a fair comparison as both networks use the

same number of spare dimensions.

4.2.2 Results and comparison

In this section, we compare the reliability and MTTF of the hypereube networks

, and g'if of different sizes.

The dimension reliability probability p  is assumed to be homogeneous and follows an

exponential distribution with a constant failure rate X (failures/hour), i.e. p  = e~^^.

The MTTF values for the three networks are given in Table 4.1.
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Table 4.1. MTTF values.

MTTF for « = 10 MTTF for « = 20
Hypereube with duplicate 0.334 0.224
dimensions, À À

Augmented hypereube. 0.669 0.681
À À

Optimal hypereube, 0.769 0.731
_C^(«) i i

Observe that for « = 10(«  = 20) , the MTTF for the Augmented cube is better than 

the duplicate hypereube by 100% (204%) while being worse than the optimal cube by 

only 15% (7%).

Figures 4.4, 4.5, and 4.6 show how the reliability of the three networks compare for 

different values of « . Here the failure rate is 0.05 per 10000 seconds.
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-  Hypereube with Duplicate D imensiions

Optimal Hypereube

Augmented Hypereube

cd
>
a-

0.6

0,4

0.2

200 5 10 15 25 30 35 40 45 50

T im e  u n its  in 1 0 0 0 0  sec o n d s

Figure 4.4. Reliability comparison between and

33>

1.2

-  Hypereube with Duplicate Dimensiions

■ •  - Optimal Hypereube

Augmented Hypereube

0.8

0.6

0.4

0.2

n = \0
^ X- ^

0

0 10 15 20 25 30 35 40 45 505

Time units in 10000 seconds

Figure 4.5. Reliability comparison between
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-  H ypereube with D uplicate D im ensiions

■ •  • • O ptim al H ypereube

A ugm ented H ypereube

I
0.6

1
0.4

0.2

0 10 20 505 15 25 30 35 40 45

Time units in 10000 seconds 

Figure 4.6. Reliability comparison between and

Observe that the larger the network, the more appreciable will be the superiority of 

the augmented hypereube network over the duplicate dimension network.

4.3 Markov Model

The primary difficulty with the combinatorial models is that many complex systems 

cannot be modeled easily in a combinatorial fashion. The reliability block diagrams can 

be extremely difficult to construct, and the resulting reliability expressions are often very 

complex. In addition, combinatorial models cannot accurately model dynamic system 

behavior. Because of its unique ability to handle dynamic cases, Markov analysis can be 

a powerful tool in the reliability analyses of dynamic systems [23].
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The Markov model for reliability of a system is based on two concepts: the possible 

states of the system, and the transitions between states. The state o f a system represents 

all that must be known to describe the system at any given instant o f time. For reliability 

models, each state o f the Markov model represents a distinct combination o f faulty and 

fault-free modules.

The failed state is annotated as F. The reliability of the system is defined to be as the 

probability o f the system to be in any of those states except F; it is the probability of 

being in any state other than F (which is the sum of the probabilities o f each state), or (1- 

probability o f the system to be in the F state).

In this section we use the Markov model to derive and compare the reliability of the

hypereube networks, namely augmented hypereube ( ), hypereube with duplicate

dimensions and optimal hypereube ( ). For this we make the following

assumptions.

• The nodes in the network do not fail

• Spare dimensions replace the failed dimensions are hot spares, which means

that they replace immediately the failed dimension

• Spare dimensions do not fail before replacing a failed dimension

• The reliability is the same for all dimensions.

• Dimension failures occur independently

• There is no repair capability in the system

4.3.1 Modeling o f Augmented Hypereube for « = 3

For clarity, we first consider a special case of « = 3 . The system fails when a 

standard cube of size 3 cannot be recovered. In a reliability state diagram the system fail
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is indicated by circles containing F. For example, consider a standard with coverings 

{0,1,2 }. If  dimension 2 fails the system fails as shown in Figure 4.7.

, Dimension 2 fails 
0 , 1 , 2  ) --------------------------   ^

Figure 4.7. An example of system Failure

The reliability state diagram for is illustrated in Figure 4.8 in which the

available standard dimensions and spare dimensions are indicated in the upper and lower 

half of the circles, respectively. Each arrow shows a transition from one state to the other, 

and is labeled by the dimension whose failure caused the transition.
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Due to symmetry of states, the state diagram for ean be redueed. We reduee 

the state diagram to five states: states eontaining three, two, one and no spare 

dimensions and the failed state. The redueed state diagram or Markov ehain or is 

given in Figure 4.9.

1 — 3ÀAt 1 — 3ÀAt 1 — 3ÀAt

Figure 4.9. Reduced state diagram for

Let p i(t)  denote the probability that the system is in state / at time t. Initially, 

/>3(o) = l,/>2(o) = / ’l(o) = / ’o(o) = / ’f'(o) = 0- By writing the expressions for 

probabilities associated with each state and letting Æ —>0 , one ean derive a set of 

differential equations for each state probability. The method for solving the Markov 

ehain with known transition probabilities is straightforward and ean be found in any 

classical reliability books [22-23]. Therefore, details are omitted here. The transition 

matrix is given by:
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•
'- 3 1 0 0 0 O'

•
;?2(0

31 - 3 1 0 0 0
;^2(0

• 0 31 - 3 1 0 0
P] ( 0 0 0 81

- 3 1 0 .p ,(0
• 3

0 0
1

31 0
_Pf (X)_ - 3 -

where pi{t) denote is derivative o f pi{t)  with respect to t. It follows: 

-3kf
P3, =

-3kf

Observe that p 2 (t)  + P 2 (0 + P \ ( 0  + P o ( 0  + P f ( 0  =  l ■

The system is reliable as long as it is not in the failed state. Therefore the reliability o f 

is given by,

) = P3 ( 0  + P2 ( 0  + P] ( 0  + Po ( 0  =
-3A^

We can obtain the MTTF for as a function of failure rate X using the equation,

MTTF
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It follows:

4.3.2 Modeling of Hypercube with Duplicate Dimensions for n = 3>

Now, we proceed to derive the reliability expression for using the same method

in the previous section. The state diagram and the reduced Markov chain are given in 

Figures 4.10 and 4.11, respectively.
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1 — 3A.A/ 1 — 3XAt l - 3 X A t

XAt 3XAt

XAt

Figure 4.11. Reduced state diagram for

The procedure for deriving the state probabilities is the same as in the previous 

case. For brevity, only the results are presented below.

Initially, p j  (o) = 1, P 2 (o) = /?, (o) = /pq (o) = (o) = 0.

P 2 (0  = 3Xte

( 0  = 1 -  -  3 i^ f

It follows that.

) = (l + 3^t + 3X^t^ + 2A. r̂  ̂ and MTTF 
 ̂  ̂ 27A. A.

Comparing these two networks and in terms o f MTTF, the

augmented cube has the highest value independent of the value of À .
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4.3.3 Generalization to n dimensional networks

In this section we generalize the results for « = 3 to « for networks introduced in

section 4.2.1 namely • We follow the same procedure

used in section 4.3.1 to derive the reliability equations for the three networks. Hence, 

for brevity only the results are given.

Modeling o f

For the hypercube network with duplicate dimension we can obtain the reduced 

state diagram as illustrated in Figure 4.12.
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It follows that:

] + «!/ + — —— +.. .+
2! 2!

-nXt

n I n
I -nkt , where ) is the reliability of .

v ' = O V V

Modeling o f  Augmented Hyper cube

Figure 4.13 shows the redueed state diagram fo r g ^ " '.

1 -  nXM
nXAt 

n j  — K n-

1 -  nXAt 1 -  nXAt 

nXAt

1 -  nXAt 1 -  nXAt

-M n
X A t

Figure 4.13. Redueed state diagram for +(«)

It follows that the expression for reliability is given by:

,2
\ + nXt+ n^X ^—  + •■• + n ‘X '— + ■•■ + n'^ 'X  

2!

i=0 '! n!

i t '
V.

, \
n\

- n k t

Modeling o f  Optimal Hypercube

In this section we derive the reliability function for the optimal hypereube 

in whieh n dimension failures can be handled. Redueed state diagram for an optimal 

hypereube network is illustrated in Figure 4.14.

51



1 -  nXAt
1 -  nkAt 1 -  nkAt 1 -  nXAt 1 — nXAt

nXAt nXAt
n I ►(«- ] ) ---------- H  n

nXAt nXAt
-M 0

Figure 4.14. Reduced state diagram for with n spares

It follows that the expression for reliability is given by:

i\ (»-!)! n\
-n k t

or = Z —
/=0 d

- n k t

4.3.4 Reliability Comparison

In Figure 4.15, 4.16, and 4.17 the reliability of , and are

compared for different values of n . Here the failure rate is 0.05 per 10000 seconds.
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1.2

-  H ypereube w ith  D uplicate D im ensions

- ■ O ptim al H ypereube 

—  A ugm ented  H ypereube

1,0

0.8

0.6

0 .4

0.2

0.0

0 10 20 25 30 35 4 0 45 505 15

T im e, un its  in 10 ,000  sec

Figure 4.15. Reliability values for « = 3

53



î
Pi

-  ■* -  H ypereube w ith D uplicate  D im ensions 

■ - *  ■ ■ O ptim al H ypereube 

— Û— A ugm ented  H ypereube

0.6

0 .4

0.2

0.0

30 35 40 450 5 10 15 20 25 50

T im e, un its  in 10 ,000  sec

Figure 4.16. Reliability values for « = 10
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g

a. 0.6

0.4

0.2

0.0
0 5 10 35 40 45 5015 20 25 30

Time, units in 10,000 sec

Figure 4.17. Reliability values for « = 20

Observe that the larger the network, the more appreciable will he the superiority of 

the augmented hypereube network over the duplicate dimension network.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION 

In the first part of the research, we enumerated the newly generated subcubes in a 

standard hypereube when it is augmented by an extra dimension whieh would connect 

pairs of nodes whose Hamming distance is greater than one. Depending on this distance, 

dimensions were characterized by the notion of the magnitude. It was shown a total of

(2” -  « -1 ) new dimensions ean be added to the standard hypereube network. This 

approach could be regarded as a generalization of the concept of folded hypereube 

wherein the Hamming distance of nodes connected through the extra dimension is « . It 

was shown that the optimal number of subcubes is attainable when the magnitude of the 

new dimension is « -1 or « . As the magnitude of the new dimension decreases, so does 

the number of subcubes produced due to the added dimension. Having a maximum 

number o f subeubes is important as it results in a higher utilization o f nodes, lower 

completion times for jobs, less communication overhead due to job migration, and fewer 

jobs preemption to accommodate higher priority jobs.

In the second part, we investigated the robustness of the hypereube under dimension 

failures. It was shown that up to {n - 1) dimension failures ean be tolerated by adding a 

near-optimal number of spare dimensions to standard hypereube. We proposed a new 

hypereube network with n spare dimensions called the augmented hypereube. To show
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the superiority of our new network we introduced two other alternate hypereube networks 

with the same redundant dimensions. We presented the reliability of the three networks 

using the combinatorial and Markov modeling methods. The network reliability functions 

were obtained and plotted for different value of n. The reliability and the Mean-Time-To- 

Failure (MTTF) of the new network were compared to the alternative networks with the 

same redundancy. The comparison results indicate the superiority of the new network.

Future Research work includes:

• Simulation Program for identifying the subcubes in an augmented cube with extra 

dimensions when applications such as job scheduling are considered.

• Enumerating subcubes in an augmented cube after link failures

• The reliability analysis of augmented hypereube when considering link failure 

rather than dimension failures. Simulation results are necessary to further verify 

the numerical results.
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