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ABSTRACT 

Detection Algorithms for the Nano Nose

by

J. M. Karthikeya Udayagiri. V. R

Dr. Biswajit Das, Examination Committee chair 
Professor o f Electrical and Computer Engineering 

University o f Nevada, Las Vegas

The Nano nose is an instrument with an array o f nano sized optical sensors that 

produces digital patterns when exposed to radiation passing through a gaseous mixture. 

The digital patterns correspond to the amount o f photocurrent registered on each o f the 

sensors. The problem is to find the gas constituents in the gaseous mixture and estimate 

their concentrations. This thesis outlines an algorithm using a combination o f a mixed gas 

detector and a gas concentration predictor. The mixed gas detector is an array o f neural 

networks corresponding to the number o f gases. There are two techniques outlined for the 

implementation o f the gas concentration predictor which are the partial least squares 

regression (FES) and the Kalman filter. The output o f the developed algorithm would not 

only show the detection o f the individual constituents in the gaseous mixture but also 

provide the prediction o f their concentrations. The algorithm designed is entirely re- 

configurable providing greater amount o f flexibility and has detected the constituents 

along with the prediction o f their concentrations o f a mixture o f three gases.
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CHAPTER 1

INTRODUCTION

1.1 The Gas detector

The gas detector is an instrument that provides information about the presence o f 

toxic gases [I]. Gas detectors have wide applications ranging from the domestic smoke 

detector to atmosphere monitoring. The rise o f computational intelligence has brought 

about a revolution in the field o f gas sensing. Recent technological developments have 

paved the way to achieve the objective o f creating an instrument called the electronic 

nose that would mimic exactly the mechanism o f human olfaction [2]. The electronic 

nose typically uses resistance based sensors and quartz crystal based sensors [3]. 

However recent developments in the field o f Nanotechnology [4] have paved way to the 

creation o f nano sized gas sensors which are far more efficient and overcome many o f the 

shortfalls faced by use o f traditional sensors used in the electronic nose.

This thesis is an attempt to develop an algorithm for a gas sensing instrument known 

as the Nano Nose that uses nano sized optical sensors for the simultaneous detection o f 

constituent gases and the prediction o f their concentrations in a gaseous mixture.



1.2 The Electronic nose

Training Set
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Figure. 1.1 The mechanism o f gas sensing in the electronic nose

An electronic nose [2] is a chemical constituent detection instrument that comprises 

an array o f electronic sensors coupled with a suitable pattern recognition system. The 

electronic nose has been inspired by the mechanism o f the human olfaction. The 

components o f the electronic nose are as shown in Figure [1.1]. The electronic sensor 

array is an array o f gas detection sensors. The function o f the sensors is to basically 

convert the odor signal in to electrical signals. The sensors used mostly in the eleetronie 

nose are resistor based sensors and quartz crystal based sensors [3] which utilize semi­

conducting oxide as the sensing material. These electrical signals in the analog form are 

digitized by the Analog to Digital convertor (A/D converter) and then the resulting digital 

signal pattern is fed to a pattern recognition algorithm that would identify the odor signal 

with the help o f a know ledge base and the chem ical constituent w ould  be detected.



1.3 The Nano Nose
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Figure. 1. Block diagram o f the Nano Nose

The nano nose takes its name from its predecessor, the Electronic nose. The sensors 

used in the Nano Nose are optical nano sensors. This optical sensor array generates an 

analog signal pattern and relays it to the Analog to Digital converter (A/D). The 

combination o f the optical sensor array and the A/D coverter is known as the Front end o f 

the Nano Nose. The output o f the A/D converter is a digitized signal. This digitized 

signal is given as input simultaneously to the mixed gas detector and the gas 

concentration predictor. The output o f the mixed gas detector is the data o f the gas 

constituents present in the sample mixture and the output o f the gas concentration 

predictor is the concentration data o f the chemical constituents present in the sample 

mixture. This Thesis is an attempt to develop an algorithm to suit the requirements o f an 

array o f these optical nano sensors to eventually detect specific gases and also predict 

their constituent concentrations. The focus o f this thesis is primarily on the back end o f 

the Nano Nose.



Chapter 2 gives a detailed description o f the Nano Nose. The description o f the 

detector is provided in Chapter 3. The details o f the concentration prediction algorithms 

along with their corresponding theoretical explanation are provided in Chapter 4. The 

results o f the experiments conducted are summarized in Chapter 5.



CHAPTER 2

DESCRIPTION OF THE NANO NOSE

2.1. Introduction

The Nano Nose is divided in to two sections, the front end and the back end. The 

front end o f the nano nose comprises o f the components which are a bank o f light 

emitting diodes (LED), the optical sensor array and an A/D convertor and may also 

contain a memory unit to serve as a buffer. The back end comprises o f an array o f neural 

networks and a concentration prediction algorithm. The section o f the front end o f the 

Nano Nose focuses on the procedure o f the generation o f digital signal patterns when the 

optical sensor array is exposed to a variety o f gaseous mixtures in a controlled 

environment. The section o f the back end o f the Nano Nose focuses primarily on the 

utilization o f the signal patterns generated by the front end o f the Nano Nose to detect the 

individual gas constituents by means o f a mixed gas detector, composed o f an array o f 

neural networks and the estimation o f their concentrations is achieved by means o f a 

concentration prediction algorithm. This algorithm is implemented by means o f a 

regression technique, the partial least squares (PLS) or by the usage o f an estimator, the 

Kalman filter. The subsequent sections give a brief introduction to the B eer’s law and 

further give a detailed description o f the construction o f the front end and the back end o f 

the Nano Nose.



2.2 B eer’s law

The B eer’s absorption law for monochromatic radiation [5] shows the decrease o f the 

intensity o f light passed through a chemical species is a function o f the absorption 

coefficient, p  As shown in the equation (1.1)

f , :  =  (2.1)

In the equation (2.1), Z is the Length o f the absorption path; p  is the Density o f the

absorbing gas; P is the spectral intensity at wavelength as seen by the

detector. P qxz Is the spectral intensity at wavelength emitted by the source; is the 

Absorption coefficient at wavelength o f the gas to be measured.

2.2. Transmittance (T)

It is defined [6 ] as the ratio o f the received light intensity P, to the incident light 

intensity P() as shown in the equation (2 .2 ).

T  =  f  (1.2)

Equation (2.2) can be written in the form o f equation (2.3) by substitution from equation 

(2T)

The transmittance values can be obtained directly from the individual spectra o f the gas 

species. There exists a finite relationship between the transmittance values recorded at 

each wavelength and the photocurrent produced by each o f the optical sensors. This 

relationship is assumed in the Nano Nose to be linear.



2.3 Front end o f the Nano Nose 

The front end o f the Nano nose comprises o f an array o f LEDs (light emitting diodes) 

operating in the visible region to the IR region (0.6um to 4 um) range placed at one end 

o f a rectangular gas chamber and optical gas sensors placed at the other end as shown in 

the Figure 1.2.

C y lin d e r  3C y lin d e r  1 C y lin d e r  2

ZD

V a lv e s

G a s c h a m b e r

Figure 2.1 Front end o f the Nano-nose

Radiation from the light emitting diode (LED) array in the spectral range extending from 

the visible region to the IR region (0.6um to 4um) passes through the gas chamber and 

falls on the sensors producing a pattern o f photocurrents that are digitized at a later stage. 

Each sensor produces a response only when radiation o f a particular wavelength that it 

corresponds to, is intent on it. The response is measured in terms o f photocurrent (uA). 

Analog signals are generated from the sensor array based on the relationship between the 

Intensity o f radiation from the LED array and absorption by the sensor as a function o f 

wavelength based on the B eer’s law explained in Section 2.1. The analog signal is given 

as the input to the analog to digital converter (A/D). The output o f the A/D converter 

stage is a digital signal pattern .The digital signal pattern is a one dimensional matrix 

vector consisting o f elements o f eight to twelve bits wide each corresponding to the



photocurrent o f the corresponding sensors. In the calibration phase o f  the front end o f  the 

Nano Nose, the valve o f cylinder 1 is opened periodically increasing the concentration o f 

the first gas in the gas chamber in discrete time steps where the release o f the valve 

corresponds to a known concentration o f gas entering the chamber. At each step, the 

signal pattern from the sensor array is digitized and stored in a memory module. The 

process is repeated with the second and the third gases contained in the cylinder] and 

cylinders. Then the process is repeated with all possible combinations o f mixtures among 

the three gases. The signal patterns thus obtained form the knowledge base or the training 

set which would be used by the back end o f the nano nose to make a prediction o f  the 

concentrations o f constituents when the sensor array is exposed to an unknown gaseous 

mixture comprising o f these three gases.

2.4 Back end o f the Nano Nose 

The back end o f the Nano Nose comprises o f a mixed gas detector and a gas 

concentration predictor. The objective o f the back end is the utilization o f the digitized 

signal pattern corresponding to an unknown gaseous mixture, generated by the front end 

o f the nano nose to achieve the detection o f its respective constituents and the prediction 

o f  their concentrations. In order to aecomplish this task, the mixed gas detector is 

configured as an array o f neural networks. There are two teehniques presented in this 

thesis for the implementation o f the gas concentration predictor algorithm. They are the 

Partial least squares (PLS) based on the concept o f regression analysis and the Kalman 

filter based on the concept o f state estimators. The subsequent sections provide details of 

the mixed gas detector and the gas concentration predictor.
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Figures.2. Back end o f the Nano Nose

2.4.1 Mixed gas Detector 

The input signal to the mixed gas detector block is the digital signal pattern generated 

by the front end o f the Nano Nose. The mixed gas detector is composed o f an array of 

neural networks. Each neural network is trained by means o f a calibration block to detect 

a specific gas. The calibration block contains the digital signal patterns corresponding to 

the known constituent concentrations obtained in the calibration phase o f the front end. 

The output o f each neural network is a value corresponding to the interval o f (0, 1) 

showing the presence o f each gas. The algorithm is configured to quantize this output to a 

binary ‘ 1 ’ showing a presence o f the gas if  its value is greater than zero. The reason for 

choosing neural networks for the detection o f specific gases is due to the widely reported 

usage o f them in the recognition o f odors [8] [9]. The usage o f neural networks is found 

to be superior to that o f the traditional chemo metric methods because o f their capability



to handle even nonlinear signals that are mostly encountered in real time from the sensor 

array [2], The most popular artificial neural network (ANN) is the feed forward multi 

layer perceptron (MLP) trained using the back propagation algorithm [20].

The mixed gas detector in the Nano Nose is a multi layer perceptron trained using the 

back propagation algorithm. I f  the performance o f the network is found to be satisfactory 

in the training phase, it is tested later to identify unknown gaseous mixtures [2]. A 

greater number o f gases can be identified by adding entries to the training set and the 

design o f the neural network can be changed if  it does not conform to the required 

performance metrics such as convergence time and accuracy.

2.4.2 Gas concentration predictor

The input signals to the gas concentration predictor are the digital signal pattern 

generated by the front end o f the Nano nose and the outputs o f the neural networks o f the 

mixed gas detector. The concentration predictor has its own calibration block which 

contains a similar training set to that o f  the mixed gas detector with digital signal patterns 

corresponding to known concentrations. The concentration predictor is a vital component 

o f the Nano Nose. The algorithms used for the prediction o f concentration are based on a 

modified form o f B eer’s law [10] that is explained in Chapter4. The two algorithms that 

are found to be compatible with the requirements o f the Nano Nose are the Partial Least 

squares (PLS) regression technique and the Kalman filter estimator teehnique. The partial 

least squares technique is superior to other techniques such as Classical least squares 

(CLS) and the Principal components analysis. These techniques though widely in use for 

odor detection [2] have some limitations which are discussed in Chapter4. The usage o f

10



the Partial least squares (PLS) in spectrographic analysis has been reported by Geladi 

[11]. The combination o f the PLS algorithm and the mixed gas detector shows a modest 

increase in the prediction accuracy o f the concentration predictor when a prediction 

accuracy o f not less than lOppm is required. The usage o f the Kalman filter is found in 

applications as diverse as gyroscopes and image processing techniques [17] along with 

system control applications where the future state o f the system is predicted and validated 

with successive measurements.

The Kalman filter has been reported to be applicable to concentration detection o f 

chemical constituents by Arribbas [16] with an approximation o f the measurement 

equation to the B eer’s law. The Kalman filter used in the gas concentration predictor 

incorporates the reported technique however this thesis explains the improvement in the 

prediction accuracy when used with the mixed gas detector.

The Chapter 3 gives a detailed explanation o f the implementation o f the mixed gas 

detector while Chapter4 gives the details o f the implementation o f the concentration 

predictor with the Partial least squares(PLS) and the Kalman filter.

11



CHAPTER 3

MIXED GAS DETECTOR

3.1 Introduction

The mixed gas detector in the Nano Nose is an array o f neural networks each 

designed to detect a single gas. The training set for each neural network is provided by 

the calibration o f the front end o f the Nano Nose where digital signal patterns are 

obtained by the bank o f optical sensors with varying concentrations o f individual gases in 

the chamber. These patterns are stored in a memory module made available to each 

neural network in the detector. The concept o f using separate neural networks for 

individual gases stems from the need for the decrease in the convergence time o f the 

system [21]. An introduction to the neural networks and the back propagation algorithm 

is given in the subsequent sections.

3.2 Structure o f the neural network 

Each neural network in the mixed gas detector consists o f three layers, the input 

layer, the hidden layer and the output layer. The training set consists o f the digital 

patterns obtained during the calibration phase o f the front end which are vectors with the 

number o f elements corresponding to the number o f sensors in the sensor array and a 

scalar indicating the presence or absence o f the gas with a binary one or zero. The 

number o f nodes in the input layer corresponds to the number o f sensors. The assumption 

o f  the optimum number o f sensors in the mixed gas detector was found as nine. This is 

explained in Chapters where the results are described.

12
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Figure.3.1 Block diagram of the mixed gas detector

Each neuron in the network is a node that receives inputs from many interconnections 

called synapses which are the outputs o f other neurons [20]. Each interconnection carries 

a certain weight that is multiplied to the signal passing through it.

The resultant signal from the i"' neuron received at the input o f the neuron is 

represented by equation (4.1)

«y

In the equation (4.1), the function w . is known as the activation function [2]. The 

result o f the activation function is then passed as an input to the transfer function o f the 

y'* neuron. The term 6. represents a bias term. The transfer function mostly used is the 

sigmoid function as shown in equation (4.2).

13



-  (1 +  e

The most important property o f the sigmoid function is that it accepts inputs over an 

infinite range and produces outputs in a finite range [20]. The structure o f each neural 

network in the mixed gas detector is as shown in Figure [2].

3.3 Training o f the mixed gas detector 

Each neural network o f the mixed gas detector is trained with the responses o f the 

sensors in the calibration phase. The training set consists o f  31 rows and 10 columns. The 

first nine elements o f each vector correspond to the photocurrents generated by the 

sensors. The tenth element corresponds to a binary ‘1’ or ‘0 ’ stating the respective 

presence or absence o f the gas. The training o f each neural network is the mapping o f a 

set o f input photocurrent vectors to a set o f output scalars [2 0 ] stating the presence or 

absence o f the gas . In the beginning o f the training a set o f arbitrary weights are present 

on the synapses. The calculation o f the output o f the network is completed in the first 

iteration using these weight values and the output y{t) is compared with that o f the 

desired output, d { t) . The resulting error d { t) -y { t) \? ,  fed back to the network. In the 

second iteration the weights are incremented and after calculation o f the output ,the error 

is fed back to the network. Thus this procedure o f the increment o f the weights is 

repeated in a sequential manner until a tolerant value o f the difference in the value o f 

d { t ) -  y{t)  is found. This procedure is known as the delta rule [20] and is shown in the

equation (4.4). The equation (4.3) shows the sequential increase o f the weight in each 

iteration.

14



A w .  =  w .{t  +  1 )  -  w . { t )  (3 .3)

Aw,.  = 77 [ J  ( 0  -  y { t y \ x . { t )  (3.4)

In the equation (4.4) ,the term 77 is the learning rate constant; the term x,.(t) represents 

the input to the i ‘̂  neuron.

3.4 Levenberg-Marquardt training o f the mixed gas detector 

The neural networks used in the gas concentration predictor are feed forward multi 

layer perceptron(MLP) based networks. They are trained using the Levenberg-Marquardt 

algorithm known as the back propagation algorithm [18] that is a supervised form o f 

learning similar to the delta rule as described in section 2.1. The least permissible error is 

always a tradeoff between accuracy o f the system and the number o f iterations. Each 

iteration is known as an epoch. The neurons in each layer are connected through synapses 

to each neuron in the previous layer as shown in figure l.The state o f the network is 

represented by a vector representing the set o f weights in the network at any time instant.

The neural network in the case o f the gas detection converges very fast because o f the

reduced training set used as well as the lower number o f neurons which are forty, used in 

the hidden layer. The back propagation algorithm uses a procedure called gradient 

descent where the algorithm moves from one state to another in the direction o f minimum 

error. A low tolerance value o f the error between the desired output and the network 

output usually requires a greater number o f hidden layers, number o f neurons in each 

layer and number o f epochs. This tolerance value in the mixed gas detector was fixed as 

0.01. The optimum values for all these parameters are a trade o ff between the accuracy o f 

the prediction and the convergence time.

15



Output Layer 1 neuron)

Input Layer (9 nodes)

Hidden Layer (40 neurons)

Input vectors from the A/D converter, x

Output vector, y

Figures .2.The structure o f the neural network in the mixed gas detector

The delta rule o f the back propagation network is written in a slightly modified form 

as shown in the equation (3.5) the term represents the desired output and the

term y  represents the output o f the k'* neuron.

16



The back propagation algorithm is found to be very efficient and suited to the re- 

configurable requirement o f the mixed gas detector as number o f  nodes in the input layer 

and the number o f hidden layers as well as the number o f neurons in each hidden layer is 

re-configurable. The usage o f an array o f neural networks in conjunction separately with 

the concentration prediction methods namely, the Kalman filter and the Partial least 

squares technique significantly decreased the number o f training vectors used to make a 

prediction o f the constituent concentrations. This decrease in the number o f training 

vectors led to an increase in the accuracy o f  the prediction results as shown in Chapters.

17



CHAPTER 4

GAS CONCENTRATION PREDICTOR

4.1 Introduction

The gas concentration predictor comprises an algorithm capable o f the utilization o f a 

training set and the output signals o f the mixed gas detector to compute the probable 

concentrations o f  an unknown sample o f gaseous mixture. The training set is the set o f 

the digital vectors containing the sensor responses to known gas constituent 

concentrations obtained in the calibration phase o f the front end o f the nano nose. The 

output signals o f the detector are invaluable to the gas concentration predictor as it 

utilizes them to assign a specific portion o f the training set corresponding to the gas 

constituents present in the unknown sample. The advantage o f the usage this mechanism 

is the decrease in the convergence time o f the algorithm as well increased prediction 

accuracy. There are two alternatives to the choice o f the algorithm to be used in this 

module which is the Partial least squares algorithm (PLS) and the Kalman filter 

algorithm. These algorithms are consistent with the B eer’s law. The subsequent sections 

provide details o f the modified form o f the Beer’s law on which the concentration 

prediction techniques are based Partial least squares (PLS) technique and the Kalman 

filter.

18



Decision

Front end 
o f  the Nano 
Nose

Mixed
Gas
Detector

PLS/Kalman
filter

Figure 4.1 the block diagram of the gas concentration predictor

4.2 M odified form o f B eer’s law 

The B eer’s law states that at each wavelength there is a linear relation between the 

concentration (c) o f the absorbing species and its spectral absorbance (A). In the case o f a 

gaseous mixture the B eer’s law can be written in the following form [10] as shown in 

equation (4.1)

p
4  = A  (4.1)

, /= i

In the equation (4.1), is the absorbance o f a multi component sample, â j Is the 

absorptive o f component j at w aveleng th ,i. b Is the path length , c .  is the concentration 

o f the j '^ component in a mixture containing p  components. The product o f a^jh could 

be written as A:, as 6 is a constant as shown in the equation(4.2).

(4.2)

19



The equation (4.1) could be written as shown in equation (4.3) with the substitution 

o f the term, from the equation (4.2).

p

The term e^in the equation (4.3) is the residual term which has a normal distribution

and its variance proportional to 7  -  2 where T  is the transmittance value o f the spectrum 

at each wavelength.

A set o f simultaneous equations can be used to describe equation (4.3) and it can be 

written in a matrix form as shown in equation (4.4).

A  = C K  + E{AA)

In the equation(4.4), A is the absorbance matrix o f dimensions m x n , where m  is the 

number o f mixtures and#  is the number o f considered wavelengths in the spectrum, p  is 

the number o f components in the mixture. C is the concentration matrix o f 

dim ensionsm x  p  , X T s a  matrix o f dimensions p x n  containing the information o f the 

pure spectra o f each component.

4.3 Introduction to Partial least squares regression (PLS)

The Beer’s law shows a linear relationship between the absorbance o f a gas measured 

at a particular wavelength and the concentration o f the gas measured at the same 

w avelength  [13]. The m ethod o f  regression analysis is u sed  to m odel this relationship  

between the absorbance variable deemed to be the response variable and concentration 

variable deemed to be the regressor variable.
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There are various techniques o f regression such as simple linear regression, Classical 

least squares and partial least squares regression. The reason for choosing partial least 

squares (PLS) as the algorithm for the concentration predictor is explained in this section. 

The simple linear regression technique, [19] is a least squares param eter estimation 

technique. It is used to model the relationship between regressor variable C and the 

response variable A . It finds a solution based on a linear relationship between the 

absorption variable o f a gas constituent and its respective concentration based on the 

method o f least squares. The limitation with this technique is that it cannot be utilized for 

the analysis o f gaseous mixtures involving more than one constituent. The method o f 

classical least squares [10] overcomes this limitation as it has two phases the calibration 

phase and the prediction phase. The objective o f the calibration is to estimate the 

K  matrix using the solution obtained by the application o f the method o f least squares [3] 

as shown in the equation (4.5).

A: = (C'^C)-'C^^(4.5)

Using the value o f K  obtained in the equation (4.5), a prediction can be made for an 

unknown sample as shown in equations (4.6),(4.7).

a = cK + e (4 6)

In the equation (4.6) a  denotes the absorption matrix for an unknown sample, a l x »  

row vector, c denotes the unknown concentration o f the p  components to be found, e Is 

t he l x  M row vector representing the residual. The value o f c is obtained by the usage o f 

the least squares method as shown in equation (3.37).

c = a7^^(7Œ'')-'(4.7)
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The limitation with this solution is that the matrix K  has the possibility to be singular 

in which case the solution would be invalid.

The method o f Principal component analysis [12] is a coordinate transformation 

method that forms the basis for the Partial least squares technique. The absorption 

matrix A o f dimensions m x n  matrix can be written as the products o f two vectors, a 

score vector and a loading vector, p \  as shown in equation (4.8).

+..... + (4.8)

vf = 7P'(4.9)

The equation (4.8) can be written in the matrix form as shown in the equation (4.9). 

The solution to equation (4.10) is given by the NIPALS [12] (non linear iterative partial 

least squares) algorithm. The scores represent the nature o f the relativity between the 

successive observations o f the absorbance values and the loadings represent the 

projections o f a unit vector on the principal component line. However the solution will 

not be complete [10] as scores and vectors for the absorption matrix would be calculated 

without any consideration o f the C , concentration matrix as shown in equation(4.9).

= + 7 (4 .9 )

The Partial least squares method, explained in the subsequent section takes 

consideration o f the A matrix as well as the C matrix for the calculation o f the K  matrix. 

Hence PCA and the NIPALS algorithm are considered to be the building blocks o f the 

Partial least squares algorithm.
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4.4 Partial least squares regression (PLS) for concentration prediction

The Partial least squares regression is a technique that is utilized in the concentration 

prediction part o f the Nano Nose. The Partial least squares could be regarded as an 

extension o f the NIPALS algorithm. The training set utilized for this algorithm is 

different to that o f the training set utilized in the mixed gas detector. The training set 

consists o f 1660 rows and 12 columns. The first nine elements o f  each row correspond to 

the calibrated digital signal pattern from the front end and the last three colum ns 

correspond to the known gas concentrations. The reason as to why this particular 

configuration with regard to the training set has been selected is the assumption o f nine 

sensors in the sensor array and the assumption o f the number o f gas constituents to be 

therein the mixture. The B eer’s law for multi component samples [10] is given by the 

following equation as mentioned in the equation (4.10).

A = CK + E  (4.10)

Calibration:

In the calibration step, the absorption matrix A and the concentration matrix C could 

be decomposed in terms o f their respective score vectors T, U  and loading vectors P, Q 

as shown in equation(4.1 l),(4.12).The absorption matrix A and the concentration matrix 

C are mean centered in the S tepl. The procedure o f mean centering improves the 

centering o f  the data [12].

A = TP'+E (4.11)

C = [ /g '+ 7  (4.12)

The following algorithm [12] gives the description o f the calculation o f the score and 

the loading vectors.
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Stepl : M ean center the matrices A and C as shown.

A = A - a m e a n  (4,13)

C = C - c m e a n  (4.14)

In equations (4.13), {4AA) ,amean , cmeanave  the vectors containing the mean o f 

matrices A , C respectively.

Step2: Initialize Uj = C^., any column o f the concentration matrix, C  and tp  = A j , 

any column o f the absorption matrix, A and 7 = 1 .

The steps 3 through step 19 involve the calculation o f the matrices W, T, P, Q, U and B 

from the variables w, t , p , q , u , b  as shown in equations (4.15) through ((3.67).

Step3: Wj ^ A ' u .  (4.15)

Step4: Wj = /|| Wj || (4.16)

Step5: t j = t r j { A A l )

Step6 : t j =Awj {AA%)

Step7: q . = C ' t . { A A 9 )

Steps: q j = q j l \ q j  || (4.20)

Step9: Uj = Cqj{A.2\)

I f  tj = tVj continue with Step 12 else re-iterate from Step 3.

S tep l2: = try(4.22)

Stepl3: p j  = A' t j  / 1'j ty (4.23)

Step 14: p „ - - P j l \ p j  II (4.24)

Stepl 5: t . = t j p^{A25)
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S tep l6 : w. = w . p ^ { A2 6 )

Step 17: bj = t.  I f  J tj (4.27)

Step 18: A = A - t j p ' j ( 4 2 S )

Stepl9: C = C -  (4.29)

Stop if  j  = r (where r is number o f rows o f the absorption matrix, H) else j  = j  + l and 

re-iterate from Step2. The values o f w , t  , p  ,q ,u ,b are saved for each iteration and make 

up the matrices W ,T,P,Q,U and B respectively.

Prediction:

The prediction o f the unknown concentration o f the constituents [21] from the test 

vector, V  which denotes the unknown mixture, is made from following equations (4.30) 

and (4.31).

Stepl: R = W i B W y ' P Q '  (430)

Step2: Cp = cmean + (V -  amean)R (4.31)

c Is the unknown concentration to be estimated, cmean is the mean o f the C block

previously calculated. F  Is the I x « sample vector for which concentration is to be 

determined.

4.5 Introduction to the Kalman filter 

The Kalman filter is a technique for the estimation o f the instantaneous

state Xj  ̂ G R  o f a linear dynamic system perturbed by white noise by using

measurements linearly related to the state [14]. The Kalman filter has been reported to be 

much superior to the classical least squares technique [16] and is an alternative procedure
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to the Partial least squares regression (PLS) which can be used in the gas concentration 

predictor. The most important advantage o f the usage o f the Kalman filter in gas 

concentration prediction is the non necessity o f  the calculation o f the inverse o f a matrix 

in the course o f computation. The equation (4.32) represents the measurement equation

[15] used to determine the state o f a linear dynamic system.

^  t  ^  t  ^  t  t  (4.32)

In the equation (5.2), the term H   ̂ represents a m  x n matrix that relates the state to 

the measurement . The term is the measurement noise also assumed to be a zero 

mean Gaussian process, « A  ( 0 , 7^  ) .

The objective o f the Kalman filter algorithm [15] is to find an estimate o f the state 

vector %  ̂ represented by x   ̂ , a linear function o f the measurements z , z  ̂ which 

would minimize the mean square error as shown in equation (4.33).

P k  = E  [ x  -  x ^ ] ^ 7 [ x ^  -  X  ̂ ] (4.33)

In the equation (5.3) the term P  ̂ represents the error covariance.

4.6 The Kalman filter in the concentration predictor

The measurement equation as shown in the equation (4.34) is comparable to B eer’s 

law [16]. The equation (4.35) shows the similarity o f the two equations.

^  k ^  P  k ^  k ^  k (4.35)

^  t  ^  t  t  ^  t  (4.36)
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The measurement vector z  ̂ is the system absorbance a  at the k  wavelength; the 

state o f the system x   ̂ is the concentration vector c . The  ̂ is the functional

relationship between the absorption and concentration, K   ̂ .The equation (4.36) is the

matrix expression o f  the Beer’s law only for a single gas constituent. This can be seen in 

the equation (5.17).

^ , 1

A ,
=

K 2, C 2

+
^ 2

(4.37)

k \  E  k 2 E  kn _
J k ,

The A . is the measured absorbance at the i wavelength, each row o f the 

matrix C is the concentration o f the i component, K .. the proportional constant, and 

e , is the measurement noise at each wavelength.

The elements o f the K matrix can be calculated by the measurement o f the spectra o f 

individual components. W hen mixtures o f  standards are used the equation (4.37) is 

modified as the equation (4.38).

An An A \ k C ,2 c , „ - ■
A , , A i k = C 2 , ^ 2 „ 7  2 , (4.38)

A m i A mk  _ C „ , 2 - C ,,, K , i E k . _

In the equation (5.18) the matrix C in the equation (5.18) is the matrix o f 

m standard m ixtures o f  n com ponents each. In the matrix A each row represents the 

absorbance spectrum from each mixture for k selected wavelengths. The matrix K is 

the transpose o f the K matrix in the equation(5.17).

The equation (5.19) shows the equivalent matrix equation.
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 ̂ (4.39)

In the equation (5.19) the subscript term c denotes calibration.

Calibration:

The measurement equations shown in the previous section are modified as shown in 

equation (5.17), (5.18), (5.19) and (5.20). Each vector k^can be calculated by means o f 

the Kalman filter [13] as described by the following three equations.

Stepl: InitializationÆ(0) = 0,7(0) = 1007,7 = IXIO"^ (4.40)

Step2: g ( i  + 1) = 7 ( i ) C / (; + 1) /[7  + C / i  + l ) 7 ( i ) C / ( i  + 1)] (4.41)

S t e p 3 : 7 ( /+ l) = [ / - g ( '+ #  + g (;+ l)7 g " (/+ l) (4.42)

Step4: k(i  +1) = A:(;) + g (/ + \)\a^ {i + 1) -  (/ + l)A:(i) (4.43)

Step 2 through Step 4 is iterated from i = I through i = m  where m  is the number o f

mixtures. The objective o f the calibration step is the calculation o f k  matrix which is 

the pure component spectra.

The term Æ ( i ) is a » x 1 matrix containing the proportionality constant estimates at 

each iteration , 7  ( / ) is the u x « variance-covariance matrix, c ( / ) is a 1 x « matrix 

o f  the concentrations o f the n standards in the mixture / ; /  is the « x « identity 

matrix. 7  Is a scalar representing the predicted variance o f white noise.

Prediction

The unknown concentration vector C can be calculated by equations (5.21) through 

(5.24) utilizing the value o f  k  calculated in the calibration step.

S tepl: Initialization c ( 0 )  = 0,  7 ( 0 )  = 100 7 , 7  = 1 x 1 0 ”  ̂ (4.44)
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Step2: g(z +1) = +1) /[7  + (i + l)7(0i^(f +1) (4.45)

S tep 3 :7 (,+ l)= [7 -g (,+ # " (/+ l)]7 (,)[7 -g (f+ # ' (y+ l)f+ g(/+ l)7 f(y+ l) (4.46)

Step4: c{i +1) = c(l) + g{i + l)[a(/ +1) -  c{i)k^ {i +1)] (4.47)

Step2 through Step4 are iterated for / = 1 through i = n  where n  is the considered 

number o f wavelengths in the gas spectrum.

The results o f the Kalman filter as a gas concentration predictor are presented in 

Chapter 5. Though the number o f training vectors is 1660 for the Kalman filter due to the 

utilization o f the mixed gas detector this number is decreased to 400 or less. This 

decrease in the training vectors has significantly improved the prediction accuracy.
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CHAPTER 5

EXPERIM ENTAL RESULTS AND ANALYSIS

5.1 Introduction

The mixed gas detector and the concentration predictor were implemented using 

Matlab. The algorithms were tested using spectrographic data o f a mixture o f three gases. 

The three gases are Oxygen, Carbon-Dioxide and Ammonia. M ixed in the following 

conditions; Pressure =1013.23 bar, Temperature =296K.

5.2 Sensor array assumptions 

The optical sensor array described in Chapters 1 and 2 is still in research with only a 

few o f its transfer characteristics o f each sensor available which leads to the assumption 

o f  the approximate transfer characteristics o f each sensor for the irriplementation o f the 

compatible algorithm for implementation o f the mixed gas detector and the gas 

concentration predictor. After the precise transfer characteristics are established the 

algorithm would be fine tuned to suit the requirements o f the sensors. The details o f the 

assumed sensors and their corresponding wavelengths are given in Table. 1. The 

assumption o f  the wavelengths was based on the analysis o f individual spectra [6 ] o f the 

three gases, Oxygen, Carbon dioxide and Ammonia. One o f the objectives o f the research 

was to find an optimum number o f sensors in the sensor array as the manufacture o f each 

optical sensor are time consuming. This number was found to be nine.
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Table 5.1.Assumed sensors along with the corresponding wavelengths

Sensor
Number

W avelength(um)

1 0.68
2 0.76
3 0.86
4 1
5 1.6
6 2.1
7 2.8
8 3.4
9 4

5.3 Variation o f the photocurrent and transmittance 

The Table 2 shows the assumption o f the variation o f the photo current with the mean 

transmittance. These have also been obtained from the spectra o f the three gases under 

consideration [6 ]. The test pattern is generated by the simulator that is currently in place 

o f  the sensor array. The pattern as shown in Table.2 shows the twenty values o f photo 

currents, corresponding to the transmittance (T) values. Each sensor produces a photo­

current in the range o f OuA to lOuA depending on the transmittance (T) value. The 

detectors were trained using training sets o f 31 rows each and 9 columns. The training set 

for the concentration predictor contained 1660 rows and 9 columns. There exists a finite 

relationship between the transmittance values recorded at each wavelength and the 

photocurrent produced by each o f the optical sensors. This relationship is assumed in the 

Nano Nose to be linear.
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Table 5.2. Assumption o f the variation o f transmittance (T) with Photocurrent (uA)

T ransmittance(T) Photocurrent
(uA)

0.1 1

0.15 1.5
0.2 2

0.25 2.5
0.3 3

0.35 3.5
0.4 4

0.45 4.5
0.5 5

0.55 5.5
0.6 6

0.65 6.5
0.7 7

0.75 7.5

0.8 8

0.85 8.5
0.9 9

0.95 9.5
1 10

Noise is added to the test pattern to show the resilience o f the detector-predictor 

algorithm. The characteristics o f the noise are as given in the equation (5.1).

z  =  0.08 /  0 < / < 8 (5.1)
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Table.5.3.Test patterns applied to the back end o f the Nano Nose

Sensor
Number

Test 
Vector 1

Test
V ector!

1 3.07 1.5
2 3.01 1.5
3 3.04 1.5
4 10.03 3.02
5 7.07 1.53
6 7.06 10.04
7 7.03 10.04
8 0 10.05
9 7.06 10.06

5.4 Details o f the applied test patterns and results

The test vector 1 and test vector! are shown in Table.3. Is the concentration o f

oxygen; is the concentration o f  carbon dioxide; is the concentration o f

amm onia. The presence o f a gas is indicated by an equal response o f the sensors 

(generation o f photo current) in a distinct wavelength range. Ammonia is active from 

2um though 4um (Sensor No 6 through 9), while carbon dioxide is active from lum  

though 4um exception being that is inactive at 3.4um (Sensor No 5 through 9 inactive at 

No 8) and oxygen is active from 0.68um through lum  (Sensor No 1 through 4).

33



1 r

0.9 - 

, 0.8  - 

0.7 - 

0.6  - 

0.5 - 

0.4 - 

0.3 - 

0.2  - 

0.1 - 

0  -

R e su lt o f th e  d e te c to r  

G— 6 - 0 - 0 —e - @ - e —A -

-* * * * * * *  * * * * * * * * * * *—
I — Ammo n i a  

I  — e —  C arbond iox lde 
I __q,—  O x y g en

>>[>[>>[>[>[>>[>[>[>[>(>[>>>[>>>
0 1 2 3 4 5 6 7 8 9  10

P h o tocu rren t(uA )

Figure 5.1 Result o f the detector for Test Vector 1

Table 5.4.Predicted constituent concentration for Test Vector 1

Concentration 

(in ppm)

^  a m

Measured 30 70 0

PLS 30.08 70.46 0

Kalman filter 33.9 76.8 0
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Figure 5.2 Result o f the detector for Test Vector 2

Table 5.5 Predicted constituent concentration for Test Vector 2

Concentration (in ppm) Cox Cam

M easured 15 15 100

PLS 15.14 15.14 100.5

Kalman filter 14.22 14.22 106

5.5 Performance o f the Kalman filter and the PLS algorithm

The performance o f the Kalman filter and the PLS algorithm is measured in terms o f 

the mean square error o f the concentration prediction. Fig.5.3 and Fig.5.4 show the 

variation o f the mean square error in prediction, given by equation (6.1), o f the Kalman 

filter and the PLS algorithms when operated over different size o f training sets. It is very 

much evident that mean square error, increases with increasing sizes o f  the training sets.
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MSE = -^J{AC )" -  {PC ) '  (6.1) 

M S E  Is the mean square error in the gas concentration prediction. 

A C  Is the actual value o f the concentration.

P C  Is the predicted value o f the concentration.

P e r f o r m a n c e  o f  t h e  K a l m a n  f i l te r

0  50  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0  3 5 0  4 0 0  4 5 0  5 0 0
N u m b e r  o f  t r a in in g  v e c t o r s

Figure 5.3 Performance o f the Kalman filter
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Performance of the PLS algorithm
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Figure 5.4 Performance o f the PLS algorithm
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CHAPTER 6 

CONCLUSION

This thesis focuses on the development o f a reconfigurable algorithm, compatible 

with the specifications o f the transfer characteristics o f an optical sensor array to achieve 

gas constituent detection and gas concentration prediction. The mixed gas detector has 

been implemented by an array o f neural networks, each o f which is trained to detect 

specific constituents. The advantage with using individual neural network for gas 

constituent detection is the decrease in the convergence time however the limitation with 

this model is that in the VLSI implementation an architecture supporting a greater 

number o f neural networks would have to be developed.

There are two approaches presented for the implementation o f  the concentration 

predictor which are the, Partial least squares regression and the Kalman filter. The Partial 

least squares regression has been found to be more resilient to the Kalman filter in terms 

o f prediction accuracy. However the Partial least squares regression method depending 

on the quality o f the data has a tendency to generate nearly singular matrices in course o f 

calculation, a tendency absent in the Kalman filter. The two combinations which are the 

neural-network. Partial least squares algorithm and the neural-network and the Kalman 

filter in this particular application is found to improve the concentration prediction 

accuracy in this particular application. The re-configurability o f the algorithm can be 

seen in the variable number o f nodes which can be used in the input layer o f the neural

38



network corresponding to the number o f sensors in the sensor array and similarly the 

variable size o f the input vector given as input to the concentration predictor.

This thesis is a proposal o f a solution to the problem o f the selection o f a suitable 

algorithm to fulfill the needs o f a relatively new strategy to simultaneously detect and 

predict gas constituents under scoring the method o f designing ahead in time.

6.1 Future W ork

The long term objective o f  this thesis is to develop a hardware implementation using 

VHDL for each o f the blocks described in the mixed gas detector and the gas 

concentration predictor. This would help in the development o f a commercially viable 

battery powered gas detector-gas concentrator predictor or a hand held spectrometer. A 

variant o f the mixed gas detector and the concentration predictor could pave way for 

them to be extended to serve a variety o f electronic recognition applications particularly 

in the fields o f signal and image processing.
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