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ABSTRACT

Investigating Shear Capacity of RC Beam-Column 
Joints Using Artificial Intelligence Techniques

By

Eslam Mohamed Alnaji Hassan Khalifa

Dr. Aly Said, Examination Committee Chair 
Assistant Professor of Civil Engineering 

University of Nevada, Las Vegas

Beam-column joints are critical zones in reinforced concrete structures. The behavior 

of joints is very complex and governed by different mechanisms such as flexure, shear, 

and bond stress between the reinforcement and the concrete. Shear transfer mechanisms 

through the joint are one of the most important factors affecting the joint performance. 

Shear failure occurring in the joint can lead to severe damage and may result in the 

collapse of the structure. This thesis presents an investigation into the shear capacity of 

reinforced concrete beam-column joints. The performance is influenced by several key 

parameters. An analysis is carried out to simulate the behavior of the exterior beam- 

column joints subjected to monotonie loading and of interior joints subjected to reverse 

cyclic loading. The main parameters considered in this study are: joint shear 

reinforcement ratio, concrete compressive strength, beam tension longitudinal 

reinforcement ratio, joint aspect ratio, and column axial stress. The analysis is conducted

111



using a database collected from different experimental programs in the literature. Based 

on this database, analytical models are created using two artificial intelligence approaches 

namely artificial neural networks (ANNs) and genetic algorithms (GAs). Evaluation of 

the existing formulae is conducted and the effect of each of the investigated parameters is 

stated and new formulae are proposed for the shear design of a reinforced concrete beam- 

column joint.
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CHAPTER 1 

INTRODUCTION

Beam-column joint mechanics is a crucial element that ensures the integrity of 

reinforced concrete structures. Shear failure in beam-column joints may trigger a total 

structural collapse. Several studies in the literature (Taylor, 1974; Hoekstra, 1977; 

Meinheit and Jirsa, 1977; Durrani and Wight, 1982; Bosshard and Menn, 1984; Kordina, 

1984; Otani et a l, 1984; Sarsam and Phipps, 1985; Park and Ruitoing, 1988; Paulay, 

1989; Joh et a l, 1991; Pantazopoulou and Bonacci, 1992; Ortiz, 1993; Pantazopoulou 

and Bonacci, 1993; Scott et a l, 1994; Teraoka et al, 1994; Parker and Bullman, 1997; 

Vollum, 1998; Hamil, 2000; Hwang and Lee, 2000; Zaid, 2001; Bakir and Boduroglu, 

2002a; Bakir and Boduroglu, 2002b; Bakir, 2003; Hegger et al, 2003) investigated the 

shear behavior and strength of beam-column joints in many cases such as exterior and 

interior joints, and monotonically loaded and cyclically loaded joints. These studies used 

experimental and analytical techniques to examine the key parameters affecting the shear 

capacity of beam-column joints. They indicated that the following parameters are the 

main ones governing the shear behavior of reinforced concrete beam-column joints;

1. Joint shear reinforcement ratio.

2. Concrete compressive strength.

3. Beam tension longitudinal reinforcement ratio.

4. Joint aspect ratio.
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5. Column axial stress.

Furthermore, the behavior of the beam-column joint is very complex due to the 

interaction between the various mechanisms that control this behavior such as shear, 

bond, flexure, and confinement of the joint.

Despite the numerous formulae proposed for calculating the shear capacity of beam- 

column joints, there is still some uncertainty in calculating the shear capacity of joints. 

Among the published formulae, the validity of using a specified formula is limited to the 

range of parameters accounted for in its derivation. This makes it difficult to specify one 

formula as a design approach for calculating the shear capacity of all beam-column joints. 

Figure 1.1 shows a typical interior beam-column joint.

The high uncertainty about the joint behavior was a motive for the current study to 

apply the Artificial Intelligence technique to investigate the shear behavior of beam- 

column joints. Artificial intelligence can be used to predict the output of a certain system 

based on the previous system’s behavior represented through available input-output data. 

Al investigates the properties of a specific system by simulating it using a known history 

of cases that have similar conditions and properties to the investigated system.

In this study, two artificial intelligence techniques were used to investigate the shear 

behavior of RC beam-column joints. These techniques are the artificial neural networks 

(ANNs) and the genetic algorithms (GAs). Two critical cases of beam-column joints 

were investigated which are the exterior monotonically loaded joints and the interior 

cyclically loaded joints. The study will enable structural engineers to more accurately 

estimate the strength of existing deficient beam-column joints and to enhance the design 

of new structures, thus avoiding undesirable modes of failure in joints. Figure 1.2



represents a schematic diagram of a typical exterior beam-column joint. Figure 1.3 shows 

a typical exterior beam-column joint specimen.

Figure 1.1. Typical interior beam-column joint 
University of Auckland in New Zealand 
Source: http://www. cee.auckland. ac. nz 

Accessed on 02/03/2008

C olum n Tie

d c in t  Z o n e /

X. Mokt Reinforcement

B e a m  S tir ru p

C olum n

Figure 1.2. Schematic diagram of typical exterior beam-column joint

http://www


Figure 1.3 Typical exterior beam-column-joint tested by Hamil (2000)



CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

Over the last few decades, several studies were conducted to investigate the shear 

behavior of reinforced concrete beam-column joints. While most of these studies focused 

on the performance of cyclically loaded joints, some of them studied joints subjected to 

monotonie loading. Different techniques were used in these studies including 

experimental programs and analytical programs. Several formulae were proposed for 

calculating the shear capacity of beam-column joints.

The monotonically loaded joints and cyclically loaded joints share some key 

influencing parameters such as the joint shear reinforcement ratio, concrete compressive 

strength, joint aspect ratio, and column axial stress. The most desired performance in the 

joint zone is when a flexure failure in the connected beams occurs before the shear failure 

in the joint. Cyclically loaded joints require more precautions in their design to overcome 

the displacement demand developed due to the cyclic loading. Furthermore, cyclic 

loading usually generates higher deformations than those generated by similar monotonie 

loading due to the strength degradation associated with repeated reversed cyclic loading 

(Chopra, 2007).



2.2 Monotonically Loaded Exterior Beam-Column Joints

Majority of the studies conducted to investigate the shear capacity of monotonically 

loaded joints investigated exterior beam-column joints. The equilibrium forces in exterior 

and interior heam-column joints are shown in Figure 2.1 and Figure 2.2 respectively. The 

joint shear force Vj is calculated from the following equations:

Exterior monotonically loaded joint: = T — Vcoi (2.1)

Interior monotonically loaded joint: — Vcoi (2.2)

where T  is the force in the beam tension reinforcement, C is the compression force on 

concrete in the beam, and Vcoi is the shear force on the column.

Vcol

Vcol

PI

_La.
Vcol

Vcol A

Figure 2.1. Equilibrium forces within an exterior monotonically loaded joint



y  Vcol

P2

Vcol A

Vcol

n

__ci

Figure 2.2. Equilibrium forces within an interior monotonically loaded joint

2.2.1 Beam-Column Joint Behavior

According to the model proposed by Paulay (1989), a beam-column joint resists joint 

shear through two mechanisms. The first mechanism is the strut mechanism that accounts 

for the contribution of concrete to joint shear strength, and the second mechanism is the 

truss mechanism, which accounts for the contribution of joint stirrups to joint shear 

strength as shown in Figure 2.3. In the truss mechanism the horizontal link represents the 

stirrups that are situated between the top of the beam compressive reinforcement and the 

beam tensile reinforcement. The vertical tie in the truss mechanism accounts for the 

intermediate column bars. Paulay (1989) also suggested that this vertical tie equilibrates 

the vertical shear in the joint. This assumption was disputed by Vollum (1998) and Fuji 

and Morita (1991) who proved that there is a considerable amount of tensile shift in the 

forces at the columns fi-om that calculated values. Thus, intermediate column bars are 

ineffective in resisting vertical shear in the joint. It should be noted that the strut 

mechanism can develop without any bond stress transfer at the beam and column



reinforcement within the joint, while the truss mechanism can exist only when a good 

bond stress transfer is maintained along the beam and column reinforcement. Thus, the 

increase of the joint shear strength by the stirraps is related to good bond conditions of 

the beam reinforcement through the joint. The relative contributions of the strut and truss 

mechanisms to joint shear strength are argued according to many studies (Sarsam and 

Phipps, 1985; Pantazopoulou and Bonacci, 1992; Pantazopoulou and Bonacci, 1993; 

Ortiz, 1993; and Bakir and Boduroglu, 2002b).

(b) Truss mechanism(a) Diagonal strut mechanism

Figure 2.3. Shear transfer mechanisms proposed by Paulay (1989) for exterior beam-
column joints

2.2.2 Modes of Failure for Monotonically Loaded Joints

A beam-column joint sub assemblage consists of three main elements: beams, 

columns, and the joint connecting them. The main modes of joint sub assemblage failure 

are categorized as follows based on the type and location of initial failure:

2.2.2.1 Flexural Bending Failure



If a joint has enough strength to resist the shear forces applied on it and the column 

has enough strength to withstand the forces on it, the failure will be formed in the beam 

due to ductile bending failure. This is the most desirable failure mode since it prevents 

sudden failure in the joint (brittle failure) and the ductility of the beam will provide high 

amount of energy dissipation before the collapse. Furthermore, repairing the flexural 

failure in the beam is much easier than repairing the shear failure in the joint. Figure 2.4 

shows a diagrammatic representation of flexural bending failure.

PLASTIC HINGE

Figure 2.4. Diagrammatic representation of beam flexural failure

2.2.2.2 Joint Shear Failure

If shear failure occurs in the joint before the flexure failure of the beam, then this 

failure is called a joint shear failure. This type of failure is not a desired mode of failure. 

Shear failure in the joint can lead to severe damage causing collapse of the structure. 

Besides, repairing a joint is much harder and more expensive than repairing either the 

beam or the column. Figure 2.5 shows diagrammatic representation of a joint subjected to 

joint shear failure.

2.2.2.S Anchorage Failure



This mode of failure occurs when the tension reinforcement in the beam is not 

anchored properly within the joint. The tension reinforcement bars are pulled out of the 

joint at a load below that which causes either beam failure or joint failure.

PLASTIC  HINGE

EXTENSIVE SHEAR

CRACKING

Figure 2.5. Diagrammatic representation of joint shear failure

2.2.3 Previous Studies on Monotonically Loaded Joints

This section summarizes some research studies conducted on monotonically loaded 

exterior beam-column joints including the experimental programs from which the 

database for this research was obtained.

2.2.3.1 Research by Taylor (1974)

In the 1970s, Taylor conducted a study to investigate the behavior of RC beam- 

column joints. This research was one of the earliest attempts to understand this behavior. 

The study investigated twenty six monotonically loaded exterior beam-column joints. 

Figure 2.6 shows the dimensions of these specimens.

Taylor grouped his specimens into seven series: P for a preliminary group that was 

used to develop the method of testing and the other six groups from A to F. His research

10



focused on the effect of the following parameters on joint shear behavior: beam 

reinforcement ratio, joint reinforcement ratio, beam reinforcement detailing, column axial 

load, and beam depth. Taylor suggested the following formula to ensure that a joint has 

enough strength at the ultimate stage to resist applied shear loads:

loop, = 100(3 + ^ ) ^ ^  (2.3)

where pb is the limiting steel ratio of the beam, Vc is the nominal shear stress for the 

column, dc is the effective depth of the column, be is the column width, db is the effective 

depth of the beam, hb is the beam width, Zb is the lever arm of the beam at the column 

face, fy is the characteristic strength of the steel, pi is the redistribution factor, equal to 

(100 - % redistribution)/100.

Based on his study, Taylor made the following conclusions:

1. Designing the columns to carry equal moment value above and below the joint 

might be unsafe. It would be safer to design for 70% of the beam moment below the joint 

and 50% above the joint.

2. The detail of bending the beam tension reinforcement up into the column was 

unsatisfactory. Bending the beam tension reinforcement down into the columns 

significantly improves the shear capacity of the joint.

3. Presence of the joint shear reinforcement (ties) did not lead to any significant 

enhancement in the joint shear capacity.

4. Increasing the column axial load could lead to improvement of the behavior of the 

joint in the case of U-bar detail (bent back to the beam) only as using a higher column 

load might anchor the bar in the joint.

2.2.3.2 Research by Kordina (1984)
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Kordina (1984) tested a program consisting of nine reinforced concrete beam-column 

joint specimens. Dimensions for these specimens are shown in Figure 2.7. In his study, 

Kordina (1984) focused on studying the following parameters; beam depth, beam 

reinforcement ratio, column axial load, joint reinforcement ratio, and anchorage method.

It was difficult for Kordina (1984) to draw clear conclusions from his study due to the 

interaction between so many parameters within small number of specimens and the novel 

joint strengthening methods tested such as diagonal ties in the joint.
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Figure 2.6. Dimensions of specimens tested by Taylor (1974)

Lood  ̂POINT

Side devotion End elevation

All dimensions in mms 
Figure 2.7 Dimensions of specimens tested by Kordina (1984)
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2.2.3.3 Research by Sarsam and Phipps (1985)

Sarsam and Phipps (1985) tested an experimental program consisting of five 

monotonically loaded exterior reinforced concrete beam-column joint specimens. The 

specimens were designed in order to investigate the effect of joint shear reinforcement, 

joint aspect ratio and column axial load on the joint shear capacity. Figure 2.8 represents 

the dimensions of specimens of the experimental program. They proposed the following 

formulae to predict the joint shear capacity:

^ud — ^cd + ^sd (2.4)

where Vud is the design ultimate shear capacity of the joint (N), Vcd is the concrete shear

force resistance in joint (N), and Vsd is the stirrups shear force resistance (N). The

concrete contribution to joint shear capacity can be calculated as follows:

0 29N
Fed = 5.08 ( ^  (d , /  db)" "" (1 + -  '  be (2.5)

/ ig

where feu is the cube strength of concrete (MPa), pc is the column longitudinal 

reinforcement ratio, Ag is the gross cross- sectional area of the column at the joint (mm^), 

Nu is the column axial compression load at ultimate joint strength (N), dc is the effective 

depth of the layer of steel furthest away fi-om the maximum compression face in a 

column (mm), db is the effective depth of beam tension reinforcement (mm), and be is the 

width of column section at the joint (mm). The stirrups contribution to joint shear 

capacity can be calculated as follows

Fsd — 9.Q7 Ajsfyy (2.6)

where Ajs is the total area of horizontal shear links crossing the diagonal plane from 

comer to comer of the joint between the beam compression and tension reinforcement 

(mm^), and fyv is the tensile yield strength of the link reinforcement (MPa).
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Based on their study, Sarsam and Phipps reported the following conclusions:

1. The presence of ties in the joint had no effect on the initial joint shear cracking, but 

had significant effect on the failure shear value for the joint.

2. Increasing the column axial load reduced the initial cracking shear load of the joint, 

but had no significant effect on the ultimate shear capacity of the joint.
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Figure 2.8. Dimensions of specimens tested by Sarsam and Phipps (1985)

2.2.3.4 Research by Ortiz (1993)

In 1993 Ortiz conducted an experimental program consisting of seventeen exterior 

reinforced concrete beam-column joints. Based on the testing results of those specimens, 

he proposed a strut and tie model for the behavior of the joint. Figure 2.9 represents the 

dimensions of specimens of the program tested by Ortiz (1993). The main conclusions of 

this study are:

1. The initial joint cracking is dependent on the magnitude of the axial column load.
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2. Using smaller diameter of the bars in both beam and column would be more 

effective in transferring the force between them rather than using fewer larger bars.

2.2.3.5 Research by Scott et al. (1994)

Scott et al. (1994) conducted an experimental program consisting of fifteen exterior 

reinforced concrete beam-column joints. They investigated the effect of the beam tension 

reinforcement ratio, the beam depth and the detailing of the beam tension reinforcement 

(bent down into the beam, bent up into the column, and U-bar detail). Figure 2.10 

represents the dimensions of specimens tested by Scott et al. (1994). They used a high 

number of electric strain gauges (230 in every specimen) in order to measure the 

deformation within the main column and beam steel. They also used a prop at the end of 

the beam to match the effect of a supporting element (continuous beam) and reduce the 

side sway from happening.

The main conclusions of Scott et al. (1994) are:

1. Using the detail of U-bars or bent down bars for the beam tension reinforcement 

significantly improves the initial joint cracking strength as these two types of details 

compensate for loss of bond at the bending area by increasing the bond stress over their 

anchorage length. This improvement in the strength does not occur when using a bent up 

bar detail.

2. Using the detail of U-bars or bent down bars for the beam tension reinforcement 

significantly enhances the ultimate shear capacity of the joint. The detail of the bent up 

bar does not provide this enhancement to the joint shear capacity.
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Figure 2.9. Dimensions of specimens tested by Ortiz (1993)
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Figure 2.10. Dimensions of specimens tested by Scott et al. (1994)

2.2.3.Ô Research by Parker and Bullman (1997)

Parker and Bullman (1997) conducted an experimental program with twelve 

specimens of RC beam-column joints having dimensions shown in Figure 2.11. They 

grouped their specimens into four categories according to column axial loads and 

concrete cube compressive strengths. In their study, they investigated the effect of the 

column longitudinal reinforcement ratio, the joint reinforcement ratio (ties), and the beam
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longitudinal reinforcement ratio. Based on the results from these tests they proposed a 

strut and tie model.

Based on their study, Parker and Bullman (1997) drew the following conclusions:

1. Increasing column axial load increases the ultimate joint shear capacity.

2. Increasing joint shear reinforcement increases the ultimate joint shear capacity.

3. Increasing column reinforcement ratio increases the ultimate joint shear capacity.

4. The beam tension reinforcement has no significant effect on the ultimate joint shear 

capacity.
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Figure 2.11. Dimensions of specimens of Parker and Bullman (1997)

2.2.3.7 Research by Vollum (1998)

Vollum (1998) proposed an analytical study of a strut and tie model based on the 

results of previous studies conducted by Ortiz (1993), Kordina (1984), Taylor (1974), 

Sarsam (1985), and Scott et al. (1994). Vollum proposed two models for the joint 

depending on the presence or absence of reinforcement in the joint. Figure 2.12 

represents his model for beam-column joints with stirrups. Based on this strut and tie
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model and the calibration he conducted using the database he collected, he proposed the 

following formulae for design of exterior beam-column joint under monotonie loadings: 

V,a = 0.642/?{l H- 0.555(2 -  (h t,/h j)}b e ffh cy /^  (2.7)

Where Vcd is the concrete shear force resistance in the joint (N), j3=l.O for connection 

with L- bars tension beam reinforcement bent downward, hb is the thickness of the beam 

(mm), he is the thickness of the column (mm), be is the effective width of the joint (mm), 

and it is the smaller of 0.50(èè+6c) and (6z,+0.50/îc) if bb<hc, and the smaller of 

(&c+0.50Ac) and bb if bb >bc, and fc is the concrete cylindrical compressive strength 

(MPa).

=  Vca +  (Asjefy -  ab .hcy fn )  (2 .8)

where Asje is the cross sectional area of the joint links within the top five eighths of the 

heam depth below the main beam reinforcement (mm^), a is a coefficient that depends on 

different factors including joint aspect ratio, concrete strength, stirrup index, and the 

column axial load.

The main conclusions proposed by Vollum (1998) are:

1. Increasing joint reinforcement ratio improves the ultimate joint shear strength.

2. Using the detail of bent bars down for the beam longitudinal reinforcement ratio 

enhance the shear behavior of the joint.

Vollum limited the validity of the previous formulae by the following boundaries:

Vj < 0.97beffhcyUj ( l  + 0.555(2 -  (&&/&,))) (2.9)

Vj < 132be ffhc4n  (2-10)
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Figure 2.12 Strut and tie model proposed by Vollum (1998)

2.2.3.8 Research by Hamil (2000)

Hamil (2000) conducted his study to investigate forty nine monotonically loaded 

beam-columns. In his study, he investigated the following parameters: the joint shear 

reinforcement, the compressive strength of the concrete, the detailing arrangement of the 

beam tension reinforcement, the joint aspect ratio, the tie anchorage, the beam steel plate 

anchorage, and the joint shear plates.

Hamil divided his program into categories to provide enough specimens for every 

investigated parameter. Figure 2.13 shows the layout of Hamil’s program. The work of 

Hamil was essential in the development of this thesis due to the large number of 

specimens.

Based on his study, Hamil (2000) proposed the following conclusions:

1. The initial joint cracking load is not influenced by the quantity or positioning of 

joint ties.

2. The initial joint cracking load is not influenced by the use of high strength 

concrete.

3. The initial joint cracking strength is not influenced by the joint aspect ratio.
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4. The use of U-bars detail for beam tension reinforcement reduced the ultimate shear 

capacity by a value up to 17% due to the transferring of the entire beam’s load into the 

joint region.

5. The use of the detail of bent down bars for the beam tension reinforcement allowed 

the full capacity of the joint to be reached as the anchor leg transferred a large proportion 

of the beam’s load into the lower column region.

6. The ultimate joint capacity can be significantly improved by the use of joint ties. 

Also the placement of joint ties around the center of the joint increases the shear capacity 

of concrete.

7. The placement of joint ties around the level of the beam tension steel reduced the 

potential of anchorage-induced joint failure by giving confinement to the concrete 

beneath the top bend of this rebar.
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Figure 2.13 Dimensions of specimens tested by Hamil (2000)
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2.2.3.9 ACI-ASCE Committee 352 (2002)

Based on the loading conditions for the joint and the anticipated deformations of the 

connected frame members, ACI-ASCE Committee 352 classifies beam-column joints 

into two categories; Type 1 and Type 2. Type 1 joints are designed to satisfy ACI 318 

(2008) except for seismic provisions (gravity load case), while Type 2 joints are designed 

to have sustained strength under deformation reversals into the plastic range (seismic 

loading case).

The ACI-ASCE Committee 352 (2002) proposed the following equation to calculate 

the shear strength of exterior monotonically loaded beam-column joints;

Vn = 0 .0 S 3 y ^ b jh c  (2.11)

where V„ is the nominal shear strength of Type 1 joints (N), is the concrete cylindrical 

compressive strength (MPa), he is the depth of the column in the direction of joint shear 

being considered (mm), bj is the effective width of the joint (mm); it is defined as the 

smaller value of;

bb + be (2.12a)
2

bb + ^  ' (jnhç 4- 2) (2.12b)

be (2.12c)

where m = 0.50 for the database case, and is 15 for the case of Type 1 joints and 

planar exterior joints. Thus the formula w ill be:

= 12AByff^bjhe (2.13)

This formula neglects the steel contribution of both joint and beam reinforcement to the 

shear capacity of the joint. It also neglects the effect of the column axial stress.
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2.2.3.10 Bakir and Boduroglu (2002a)

Bakir and Boduroglu (2002a) investigated the effect of several parameters that affect 

the strength of monotonically loaded reinforced concrete beam-column joints. These 

parameters include concrete compressive strength, column reinforcement ratio, beam 

longitudinal reinforcement, beam reinforcement detailing, joint stirrups ratio, joint aspect 

ratio, column load, and the vertical anchorage length and the radius of bend. Based on 

their model they proposed the following formula:

0 . 7 1 5 V  ,

+ “A j f y  ( 2 . 1 4 )

where P = \  for joints with L- bars bent downward detail for beam tension reinforcement, 

y = 1.37 for inclined bars in the joint and y = 1.0 for others, Asb is the steel area of the 

beam, bb is the width of the beam, a is a factor depending on the joint stirrup ratio and is 

equal to 0.664 for joints with low reinforcement ratio (up to 0.003), 0.60 for joints with 

medium reinforcement ratio (between 0.003 and 0.0055), and 0.37 for joints with high 

reinforcement ratio (more than 0.0055), Ay is the cross sectional area of the joint links 

(mm^).

The main conclusions of their study are:

1. Column axial load significantly affects the failure mode.

2. Increasing the column axial load improves the ultimate joint shear capacity.

3. Joints with medium and high amounts of stirrups are unlikely to exhibit anchorage 

failure.

4. The use of low reinforcement ratio in the joint increases the risk of exhibiting a 

shear failure in the joint.
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5. For a better behavior of the joint, only L-bars bent down detail for beam tension 

reinforcement should be used.

2.3 Cyclically Loaded Interior Beam-Column Joints

Interior beam-colunm joints have a great importance in reinforced concrete structures. 

The effect of cyclic loading conditions on interior joints is much higher than the effect of 

monotonie loading. The reasons behind this are:

1. Larger forces can be generated on the joint for the case of cyclic loading depending 

on the direction of forces (the ground motion) rather than the monotonie loading case.

2. According to Chopra (2007), the amount of lateral displacement of a RC structure 

when subjected to cyclic loading is almost twice the amount of the displacement 

generated by the same force value when applied monotonically to the joint.

2.3.1 Behavior of Joints Subjected to Seismic Loading

In any reinforced concrete frame subjected to seismic loading, beams and columns 

experience flexure and shear forces. These forces are transformed into higher shear 

values acting on the joint and they might cause a shear failure in the joint. This type of 

failure has severe damaging results on the structure. Figure 2.14 represents the 

distribution of these forces within the region.

The strut and truss model proposed by Paulay (1989) can be used for both 

monotonically loaded exterior beam-column joints and cyclically loaded interior beam- 

column joints. As shown in Figure 2.15, two mechanisms are used for the transfer of 

loads through the joint. The first one is the strut mechanism which accounts for the 

concrete contribution to the shear strength of the joint. In this mechanism, a single
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concrete compression strut is used to transfer the shear forces through the joint. The 

second one is the truss mechanism which accounts for the contribution of joint shear 

reinforcement in transferring the shear forces through the joint. In this mechanism, the 

load is transferred through a steel tie represented by the joint shear stirrups. To ensure the 

presence of the tie mechanism, a strong and uniform bond stress distribution along the 

beam and column reinforcement should exist.

compression
reultantresultant

T'li

Figure 2.14. Seismic loading in a reinforced concrete beam-column joint region

Several studies were conducted to investigate the lever arm between tension and 

compression in the joint. While Paulay (1989) assumed that the arm of the tension and 

compression forces is constant, Shiohara (2001) limited this assumption to a constant 

bond stress in the beam tension reinforcement. But actually the bond stress can never be 

constant because the bond stress in the reinforcement changes with the different loading 

levels.
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Figure 2.15 Strut and truss model proposed by Paulay (1989) for interior beam-column

joints

2.3.2 Modes of Failure of Cyclically Loaded Joints

Modes of failure of interior cyclically loaded joints are very similar to that of exterior 

monotonically loaded joints previously discussed in this chapter. The possible modes of 

failure that could happen in the cyclic loading joint are either joint shear failure or bar 

slippage of the beam reinforcement or beam bending failure. In the case of cyclically 

loaded joints, an interaction could happen between the joint shear failure and the beam 

reinforcement slippage. This combined mode of failure can be divided into two 

categories; brittle failure (failure occurs before the beam tension reinforcement yield), 

and ductile failure (failure occurs after the beam tension reinforcement yield).

2.3.3 Previous Studies on Cyclically Loaded Joints

Behavior of interior cyclically loaded beam-column joints is very complicated. 

Several mechanisms control this behavior including; yielding of reinforcing steel, 

shearing across concrete crack surfaces, cracking of concrete, crushing of concrete and 

closing of concrete cracks under load reversal. Understanding these mechanisms and the 

interaction between them helps produce an accurate modeling of the joint response. Since
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these mechanisms interact with each others in a complicated way, it is very hard to 

introduce a perfect model to represent the behavior of the joint. Several studies were 

introduced to simulate this performance using finite element models including Will et al. 

(1972), Noguchi (1981), Pantazopoulou and Bonacci (1994), Hwang and Lee (2000), 

Lowes and Altoontash (2003), Elmorsi et al. (2000). Several studies also proposed 

experimental programs. The main experimental studies conducted to investigate interior 

cyclically loaded joints are summarized as follows;

2.3.3.1 Research by Higashi and Ohwada (1969)

Higashi and Ohwada (1969) conducted an experimental program consisting of 

seventeen one-third scale interior beam-column joints. Four of these specimens were 

excluded fi"om the dataset used in this study because they had transverse beams. Six other 

specimens were excluded because they suffered column reinforcement yielding. The 

results of this study showed the importance of the joint shear demand in determining the 

mode of failure especially in determining the type of failure in the joint.

2.3.3.2 Research by Durrani and Wight (1982)

Durrani and Wight (1982) proposed an experimental program consisting of six full- 

scale interior beam-column joint specimens. Three of these specimens had slabs and 

were excluded fi*om the dataset used in the artificial intelligence model. The specimens 

were designed so as to investigate the effect of the joint reinforcement on the shear 

capacity. The researchers concluded that increasing the joint shear reinforcement ratio 

and reducing spacing between the stirrups increase the shear capacity of the joint.

2.3.3.3 Research by Otani et al. (1984)

They proposed a half-scale experimental program consisting of twelve interior beam-
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column joints. Six of these specimens had transverse beams and were excluded from the 

dataset. They investigated the effect of the column longitudinal reinforcement and the 

joint shear reinforcement ratio on the shear capacity of the joint. The main conclusion 

was that increasing the joint shear reinforcement ratio increases the shear capacity of the 

joint. They also concluded that the column interior longitudinal reinforcement does not 

have a significant effect on the shear capacity of the joint.

2.5.3.4 Research by Kitayama et al. (1987)

Kitayama et al. (1987) studied the effect of the beam longitudinal reinforcement 

diameter on the shear capacity of the joint. The program tested four half scale interior 

beam-column joints. They suggested some limitations on the beam longitudinal 

reinforcement diameters, and the minimum joint shear reinforcement. They also 

concluded that the effect of the column axial stress on the joint shear capacity does not 

appear before an axial stress of 0.50.

2.3.3.5 Research by Endoh et al. (1991)

This program consisted of four interior beam-column joints. The main parameter 

investigated in this study was the concrete compressive strength. The authors concluded 

that the joint shear strength of light weight concrete is less than that of normal weight 

concrete. They also concluded that the strength loss in the peak regime of the load 

deformation response is greater in the light weight concrete as opposed to the normal 

weight concrete.

2.3.3.Ô Research by Job et al. (1991)

They proposed a half-scale experimental program consisting of thirteen interior 

beam-column joints. Only six specimens were included in the dataset of this thesis. The
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others were excluded either because they were designed so that the beam yielding occurs 

away from the beam-column interface, or they were eccentric beam-column joint 

connections. Based on their program they concluded that using a large number of joint 

stirrups improves the behavior of the joint by reducing the potential for beam 

reinforcement slippage. They also concluded that beam stirrups do not significantly 

improve the slippage of beam longitudinal reinforcement from the joint.

233.1 Research by Noguchi and Kashiwazaki (1992)

Noguchi and kashiwazaki (1992) tested an experimental program of five interior 

beam-column joints. Based on the study, they concluded that the concrete compressive 

strength does not affect the maximum joint shear strength, and that the effect of the joint 

shear stirrups can only appear at large drift levels. They determined this drift level to be 

at a drift angle of 1/50 rad.

2.3.3.S Research by Oka and Shiohara (1992)

Oka and Shiohara (1992) tested an experimental program consisting of eleven 1/4 

scale interior beam-column joints. All of these specimens were included in the dataset of 

this thesis except for two specimens that had slabs attached to them. They concluded that 

there is proportional nonlinear relationship between the concrete compressive strength 

and the joint shear strength. They also concluded that increasing the beam longitudinal 

reinforcement increases the joint shear capacity.

2.3.S.9 Research by Hayashi et al. (1994)

They proposed a program of eleven half-scale interior beam-column joints. They used 

the results from this program to construct a numerical model exploring the relation 

between the bond strength and the longitudinal beam reinforcement slippage from the
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joint. The main conclusion of this study was that both beam bar bond and joint shear 

stress demand play significant roles in joint failure under earthquake loading.

2.3.3.10 Research by Teraoka et al. (1994)

This program consisted of seven half-scale interior beam-column joints. All of them 

were used in the dataset except for one specimen that had steel plates welded to the joint 

reinforcement to increase the confinement forces on the joint core. Based on the study, 

the researchers proposed an empirical formula to predict the ultimate shear strength of the 

joint panel.

2.3.3.11 Research by Walker (2001)

He proposed a half-scale experimental program consisting of twelve specimens. This 

study investigated the effect of the shear stress and the load history on the joint behavior. 

Walker concluded that to improve the performance of the joint, the drift demand should

be limited to 1.5% and the shear stress should be less than lOyffc psi where fc represents 

the compressive strength of concrete.

2.3.3.12 Research by Zaid (2001)

Zaid (2001) tested his half-scale experimental program consisting of four interior 

beam-column joints. One of these four specimens was excluded firom the dataset of this 

research because the beam longitudinal reinforcement was bent down diagonally in the 

joint. This study confirmed the results obtained fi-om the study conducted by Shiohara 

(2001); the lever arm distance between the tension and compression forces in the joint is 

not constant and changes with the change of the bond stress due to loading stages.

2.3.3.13 Research by Attaalla and Agbabian (2004)

Attaalla and Agbabian (2004) conducted their study to investigate the characteristics
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of shear deformation inside the beam-column joint core. They proposed a model to 

predict the expansions of beam-column joint core in the horizontal and the vertical 

directions. The experimental program consisted of four interior reinforced concrete 

beam-column joints. One of the specimens was excluded because it contained steel fiber 

instead of steel bars in the joint stirrups. They concluded that assuming a proportional 

relationship between joint shear capacity and the square root of the concrete compressive 

strength is not accurate for the case of high strength.

2.3.3.14 Research by ACI-ASCE Committee 352 Formula (2002)

According to the ACI-ASCE Committee 352 (2002), the cyclically loaded joints are 

categorized as Type 2. Type 2 joints are the ones designed to have sustained strength 

under deformation reversals into the plastic range (seismic loading case).

The ACI-ASCE Committee 352 (2002) proposes a general formula for the design of 

beam-column joints and bases on the type of joint the factors of the formula vary. The 

general formula can is as follows:

Vn = OmSYyfEbjhc (2.15)

where V„ is the nominal shear strength of Type 2 joints, yê' is the concrete cylinder 

strength (MPa), he is the depth of the column in the direction of joint shear being 

considered (mm), bj is the effective width of the joint (mm), it is defined as the smaller 

value of:

^b + bc (2.16a)
2

hi, 4- ^ ( m h c  + 2) (2.16b)

be (2.16c)

30



where m = 0.50 for the case of no eccentricity between the beam and column centerlines, 

7 = 15 for Type 1 exterior planar joints (database case). Accordingly the formula 

becomes:

=  1.24Byffebjhe (2.17)

2.3.3.15 Research by Architectural Institute of Japan (1998)

Most of the recommendations provided in the Japanese design guidelines for the 

cyclically loaded beam-column joints are based on studies conducted by Aoyama (1993) 

on the behavior of cyclically loaded beam-column joints. According to his study, it is 

stated that there are two earthquake design methods. The first is the strength design, in 

this method the structure is designed to sustain large lateral load resistance capacity. The

second method is the ductility design method, where the structure is designed to have a

large inelastic deformation capacity. It is very important for any structure not to suffer 

brittle failure by dissipating the energy of the earthquake through plastic hinges formed in 

the beams. This actually represents the strong column weak beam theory. This theory 

states that the structure should be designed to have a stronger column than the beam to 

increase the dissipation of energy, and to ensure the simultaneous formation of plastic 

hinges in the beams. Based on his study, the Architectural Institute of Japan (1998) 

provides the following formula for calculating of the shear capacity of cyclically loaded 

beam-colunm joints.

= k * 0 * Fj * bj * D (2.18)

where k= 1 ,0  =0.85, Fj = O.SO*(fc ') (MPa), D is the column depth, bj = effective 

column width. This leads the formula to be

Vu =  0.68 * (/c')°-7° *bj *D (2.19)
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CHAPTER 3

ARTIFICIAL INTELLIGENCE MODELING AND METHODOLOGY

3.1 Introduction

Science is built upon facts, as a house is built o f stones; but 

an accumulation of facts is no more a science than a heap of 

stones in a house (Henri Poincaré, 1905).

As humans we are always looking for a way to understand the behavior of our brains. 

We try to understand how these tiny cells in our brains can sense, understand, interact, 

and manage our survival in this complicated world. Artificial intelligence (AI) is one of 

the newer sciences created by man. Its origin is considered to be in the late forties in the 

field of molecular biology in order to improve the capability of studying specific 

properties and was later applied to the study of other sciences.

AI currently encompasses a variety of subfields, ranging firom general purpose areas 

such as learning and understanding to such specific assignments as diagnosing diseases 

proving mathematical theories, playing chess, and even writing poetry. AI systematizes 

and mechanizes intellectual tasks and is therefore potentially related to any area of human 

intellectual activity. In this sense it is truly a worldwide field.

3.2 What is Artificial Intelligence?

The expression “Artificial Intelligence” is very flexible and it can refer to several
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meanings. Therefore, it is difficult to give a precise definition of AI. Table 1 shows eight 

definitions of AI previously introduced by several studies (Haugeland, 1985; Bellman, 

1978; Chamiak and McDermott, 1985; Winston, 1992; Kurzweil, 1990; Rich and Knight, 

1991; Poole et al, 1998; and Nilson, 1998). These definitions vary along two main 

categories, the ones on the top are concerned with thought processes and reasoning, 

whereas the ones on the bottom describe behavior. The definitions on the left measure 

success in terms of accuracy of human performance, while the ones on the right measure 

an ideal concept of intelligence, which we will call rationality. These definitions can be 

the best way to describe artificial intelligence.

3.3 Artificial Intelligence and Engineering

Many engineering problems can be solved using AI techniques and the technology 

has been used successfully in several complex applications. The automotive and 

aerospace industries have extensively used both robotic technology and expert systems in 

their manufacturing processes. The potential for using artificial intelligence in civil 

engineering and the construction industry is unlimited. However, its use in such 

applications is still in the early developing stages.

For many decades, investigating the properties of concrete structures 

(material/structure) was basically a trial to study a single aspect based on the available 

notices. However, in reality several aspects and parameters mutually interact. Studying a 

single parameter without accounting for the overall context of the problem is not very 

accurate. But with the existence of AI techniques, it became very applicable to build a 

numerical system that represents the whole context of the investigated problem. This
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study explores the feasibility of using artificial intelligence in modeling properties of 

beam-column joints with the aim of a true understanding of the factors governing the 

behavior of this critical zone in any concrete structure and the share of each factor on this 

behavior. In the following sections, a brief description about the two artificial intelligence 

techniques used in this study which are the genetic algorithms (GAs) and the artificial 

neural networks (ANNs) will be given.

3.3.1 Genetic Algorithms

Genetic algorithms are search procedures that use the mechanics of natural selection 

and natural genetics. The genetic algorithm, first developed by John H. Holland in the 

1960’s, allows computers to solve difficult problems. It uses evolutionary techniques, 

based on functional optimization and artificial intelligence to develop a solution.

The sequences of operation of genetic algorithms are as follows: first a population of 

solutions to a problem is developed. Then, the better solutions are recombined with each 

other using some special procedures to form a new set of solutions. Finally the new sets 

of solutions are used to replace the tmqualified original solutions and the process is 

repeated (El-Chabib, 2006).

A genetic algorithm is used in computing to find true or approximate solutions to 

optimization and search problems. Genetic algorithms are a particular class of 

evolutionary algorithms that use techniques inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover (Russell and Norvig, 2003).

Genetic algorithms are implemented as a computer simulation in which a population 

of abstract representations (called chromosomes) of candidate solutions (called
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individuals) to an optimization problem evolves toward better solutions. Traditionally, 

solutions are represented in binary as strings of Os and Is, but other encodings are also 

possible. The evolution usually starts from a population of randomly generated 

individuals and happens in generations. In each generation, the fitness of every individual 

in the population is evaluated, multiple individuals are stochastically selected from the 

current population (hased on their fitness), and modified (recombined and possibly 

mutated) to form a new population. The new population is then used in the next 

generation of the algorithm. Commonly, the algorithm terminates when either a 

maximum number of generations has been produced, or a satisfactory fitness level has 

been reached for the population. If the algorithm has terminated due to a maximum 

number of generations, a satisfactory solution may or may not have been reached (Russell 

and Norvig, 2003). Figure 3.1 presents the steps of typical genetic algorithm model.

Assess optim ization 
criteria

Selection

Crossover

M utation

S tart

Stop

Evaluate objective 
function

G enera te  initial population

G enera te  new  p opulation

Figure 3.1. Steps of typical genetic algorithms proposed by El-
Chabib (2006).
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3.3.2 Neural networks approach

An artificial neural network (ANN) is an information processing model that is 

inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this model is the narrative structure of the information processing 

system. It is composed of a large number of highly interconnected processing elements 

(neurons) working in harmony to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition or 

data classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

ANNs as well.

3.3.2.1 Advantages of Neural Networks

Neural networks, with their remarkable ability to derive meaning fi-om complicated or 

imprecise data, can be used to extract patterns and detect trends that are too complex to 

be noticed by either humans or other computer techniques. A trained neural network can 

be thought of as an “expert” in the category of information it has been given to analyze. 

This expert can then be used to provide projections given new situations of interest and 

answer “what i f ’ questions (Russell and Norvig, 2003). Other advantages include:

• Adaptive learning: An ability to learn how to do tasks based on the data given for 

training or initial experience.

• Self-Organization: An ANN can create its own organization or representation of 

the information it receives during learning time.

• Real Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take
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advantage of this capability (Russell and Norvig, 2003).

The most important part in building an ANN-based model is the training process 

provided that reliable and comprehensive database is available. The training process 

consists of providing the network with training patterns each containing input and output 

vectors, each unit in the first hidden layer compute an output and transmitted to units in 

the second layer; and So on until the network compute an output. The computed output is 

compared with the provided one and the difference (error) is calculated. The error is than 

back propagated to the network to adjust the connection strengths between units; this 

phenomenon is repeated until the error between predicted and provided outputs reaches a 

desired assigned value.

Figure 3.2. Architecture of neural network proposed by El- 
Chabib (2006)
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Table 1. Some definitions of artificial intelligence, Russell and Norvig (2003)
Systems that think like humans Systems that think rationally

“The exciting new effort to make 

computers think.. .machines with 

minds, in the full and literal sense.” 

(Haugeland, 1985)

“ {The automation of} activities that we 

associate with human thinking, 

activities such as decision-making, 

problem solving, learning....” 

(Bellman, 1978)

“The study of mental faculties through 

the use of computational models.” 

(Chamiak and McDermott, 1985). 

“The study of the computations that 

make it possible to perceive, reason, 

and act.” (Winston, 1992).

Systems that act like humans Systems that act rationally

“The art of creating machines that pre­

form functions that require intelligence 

when performed by people.” 

(Kurzweil, 1990)

“The study of how to make computers 

do things at which, at the moment, 

people are better.” (Rich and Knight, 

1991)

“Computational intelligence is the 

study of the design of intelligence 

agents.” (Poole et a l, 1998)

“AI.. .is concerned with intelligent 

behavior in artefacts.” (Nilson, 1998)
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CHAPTER 4

EVALUATING SHEAR CAPACITY OF RC EXTERIOR BEAM-COLUMN JOINTS 

UNDER MONOTONIC LOADING USING ARTIFICIAL NEURAL NETWORKS

4.1 Background

The shear behavior of monotonically loaded exterior beam-column joints is 

influenced by various key parameters. The effect of each of these parameters has some 

limit of uncertainty due to the complexity of the joint behavior. Consequently, existing 

shear design formulae for joints produce varying results depending on the parameters 

accounted for in each respective formula. This study utilizes artificial neural networks 

(ANNs) to investigate the effect of some of the basic parameters (joint shear 

reinforcement, concrete compressive strength, beam longitudinal reinforcement ratio, 

joint aspect ratio, and column axial stress) on the shear strength of monotonically loaded 

exterior beam-column joints. For the purpose of this study, the ANN model was 

developed and trained using an experimental database collected from published literature 

on monotonically loaded exterior beam-column joints. This database was then used by 

the ANN m odel to predict the shear capacity o f  the joint. To validate the accuracy o f  the 

proposed ANN model, a comparison was conducted between the model results and those 

obtained from other proposed design formulae: ACI-ASCE Committee 352 (2002), 

Sarsam and Phipps (1985), Vollum (1998), Bakir and Boduroglu (2002a). Results
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indicate that the ANN model provides a better prediction of the shear capacity of 

monotonically loaded exterior beam-column joint than the other previously published 

formulae. For the sake of evaluation of the existing design formulae and production of 

ANN model, a database was collected from the literature from different experimental 

programs.

4.2 Previously Proposed Formulae and Equations

In this chapter, four formulae were investigated and evaluated using the selected 

database. A detailed preview of these formulae was presented in chapter 2 of this thesis. 

These formulae are;

1- ACI-ASCE Committee 352 Formula (2002)

2- Design Equation of Sarsam and Phipps (1985)

3- Design Equation of Vollum (1998)

4- Design Equation of Bakir and Boduroglu (2002a)

4.3 Artificial Neural Network Approach

Artificial neural network is one of the most applicable artificial intelligence 

techniques used in the optimization of civil engineering problems. Multi-layer perceptron 

(MLP) networks have been known as the most widely used ANNs in these optimization 

processes. They are able to map a given input(s) into desired output(s), and they can 

detect hidden and complex behavioral trends of engineering problems by learning 

through the database used to train the system.
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The structure of MLP networks consists of an input layer which represents the 

investigated parameters in the network, an output layer which represents the final result 

of the network or the behavior under investigation, and some hidden layers that the 

operation of optimization undergoes. Each layer contains a number of processing 

elements that are fully or partially connected to the elements in successive layers. The 

strength of the bond between processing elements is a numerical value called the weight 

of the connection.

The optimization process in ANNs can be expressed as the operation of detecting the 

optimum weights such that the network can predict an accurate value for the output 

within the database range.

4.4 Experimental Database

The most important aspect in the success of a neural network is the learning database 

on which the system is trained. Therefore it is imperative to train a network model on a 

comprehensive database to capture the actual embedded relationships between the 

parameters of the input and output layers. The objective of this chapter is to detect the 

relationships between the different parameters being considered and their effect on the 

shear capacity of exterior beam-column joints under monotonie loadings.

In this study, shear capacity of this joint type is investigated using a database 

consisting of 88 concrete beam-column connections collected from published literature 

(Taylor, 1974; Hoekstra, 1977; Bosshard and Menn, 1984; Sarsam and Phipps, 1985; 

Ortiz, 1993; Scott et a l, 1994; Parker and Bullman, 1997; Kordina, 1984; Hamil, 2000; 

Hegger et a l, 2003).
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The quality of the network was improved by imposing several limitations on 

specimens in the database used by the ANN model. Only specimens failing due to joint 

shear were used, with no beams in the transverse direction. Specimens with high strength 

concrete, or reinforcement welding into the joint were omitted. The database was 

formatted into groups of input vectors, each vector representing one of the investigated 

parameters in the study. The output vector rq>resents the shear capacity of the joint. 

Table 2 represents the database range of the parameters investigated in the study.

Table 2. The parameters range for the investigated database for exterior beam-column

Parameter Minimum Maximum

Volumetric Reinforcement Ratio (%) 0 2.77

Concrete Cylindrical Compressive Strength (MPa)* 20 70

Beam Longitudinal Reinforcement Ratio (%) 0.65 3.50

Column Axial Stress (MPa) 0 16

Joint Aspect Ratio (%) 1 2

* Cylindrical compressive strength (fj)=  0.80 Cube compressive strength {feu)

4.5 ANN Model

To predict the shear strength of monotonically loaded beam-column joints, an ANN 

was constructed with the following components: an input layer, an output layer and four 

hidden layers. The input layer contains five variables representing the common shear 

design parameters of the reinforced concrete beam-column joint (volumetric 

reinforcement ratio, concrete compressive strength, beam reinforcement ratio, joint aspect 

ratio, and column axial stress). The output layer includes one unit representing the shear 

capacity, V„ and the hidden layers consist of different amounts of processing units. Full
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bonding connections were used between the processing elements and the elements in 

other consecutive layers.

The software used in this model is MATLAB (2007). This software is commonly 

used for the optimization process of engineering problems. This software was coded to 

divide the given database into training and testing groups to increase the accuracy of the 

model and give a better understanding of the effect of each parameter in the output layer. 

Figure 4.1 represents the architecture of the proposed model.

N ./A ,

Input Layer Output Layer

Hidden Layers

Figure 4.1 Architecture of artificial neural network model

4.6 Results and Discussions

4.6.1 Formulae Verification

To consider an A N N  successful, it must be able to accurately predict output values 

for input values within the range of the database used in the training and the testing 

process. To evaluate the accuracy of the proposed network, a comparison was held 

between the network predicted outputs which represent the shear capacity and those
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calculated using the formulae of ACI-ASCE 352 (2002), Sarsam and Phipps (1985), 

Vollum (1998), and Bakir and Boduroglu (2002a). The performance of each model was 

evaluated based on both the ratio of measured to predicted (or calculated) shear strength 

(Pm/Pp), and the average absolute error (AAF) calculated using the following equation;

K  -  Vp\
AAE = - Tn Lu Vm

X 100 (4.10)

The average value, the standard deviation (STDV), and coefficient of variation (COV) 

for Vm/Vp, and the average absolute error (AAE) of the ANN model and other joint shear 

calculation formulae investigated are listed in Table 3.

Table 3. Performance of different formulae for the calculation of shear strength of RC

Method Vmeasured /  Vpredicted
Average STDV COV

ACI-ASCE 352 (2002) 37 0.765 0.21 19.74
Sarsam and Phipps (1985) 26 1.13 0.37 32.50

Vollum (1998) 2g 1.43 0.25 17.50
Bakir and Boduroglu (2002a) 24 1.31 0.3208 15.85

ANN 12.25 0.975 0.167 17.152

In the following sections a detailed discussion of the result's of the different 

investigated formulae is presented;

4.6.1.1 ACI-ASCE Committee 352 Formula (2002)

Figure 4.2 represents a plot of the actual experimental shear strength values against 

the calculated ones using the ACI-ASCE Committee 352 formula. This formula neglects 

the influence of the joint aspect ratio, the column axial stress, and the contribution of both
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joint and beam reinforcements to the shear capacity of the joint. Using the selected data 

for this study and the actual capacity of the specimens obtained from the experimental 

programs results, the average absolute error AAE for this formula is 37%, which is 

significantly high, and the STDV for fVTp of this formula is 0.21. It is recommended that 

this formula should not be used to estimate the shear capacity of beam-column joints due 

to its lack of accuracy and the overestimation of the shear strength. It should rather be 

used to estimate the minimum shear strength of the joint based on concrete properties and 

joint dimensions only. As shown in Figure 4.2, the value for V„/Vp for most of the 

database lay underneath the unity line which means that the formula over estimates the 

shear capacity of the joint.

ACI-ASCE Committee 352 (2002)

10 20 30 40 50 60 70
Beam-Column Joints Speimen Number

80 90

Figure 4.2. Performance of the equation proposed by ACI-ASCE Committee 352 (2002) 
in calculating the shear capacity of beam-column joints
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4.6.1.2 Design Equation of Sarsam and Phipps (1985)

Although this formula accounts for several parameters in calculation of shear capacity 

of the joint, the AAE for this formula is still significantly high at 26%, and the STDV for 

this formula is 0.37. This is mainly due to the limited number of specimens that were 

initially used to derive the formula. Furthermore, this formula accounts for 87% of the 

joint stirrups in resisting shear forces in the joint. Results obtained fi-om Ortiz (1993) 

showed that the effective stirrups are the ones located above the beam compressive chord 

and below the beam tension reinforcement. This formula also accounts for the column 

longitudinal reinforcements; tiie effect of this parameter on shear strength of beam- 

column joints was neglected by Ortiz (1993) and Bakir and Boduroglu (2002a). Figure

4.3 represents a plot of the actual experimental shear strength values against the 

calculated ones using the formula proposed by Sarsam and Phipps (1985). The scatter of 

the database specimens is random around the unity line leading to the hi^i AAE 

mentioned above.
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Sarsam and Phipps (1985)

1 -------- 1---------1---------1---------r
20 30 40 50 60 70

Beam-Column Joints Specimen Number

Figure 4.3. Performance of the Equation proposed by Sarsam and Phipps in calculating
the shear capacity of beam-column joints

4.6.1.3 Design Equation of Vollum (1998)

In this formula Vollum (1998) accounted for the effect of joint aspect ratio and both 

concrete and steel contribution to the shear capacity of the joint. Statistical analysis 

performed on his formula indicated that the AAE for the selected data is 28% with a 

STDV of 0.25. It is estimated that the reason behind the inaccurate results obtained from 

this formula is neglecting the effect of the beam reinforcement ratio. Another reason is 

that the database used by Vollum (1998) to derive this formula had limited range of 

parameters which make it unable to predict an accurate shear capacity for wider range of 

parameters. Figure 4.4 represents a plot of the actual experimental shear strength values 

against the calculated ones using this formula. Most of the database lay above the unity
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line which means that in most of the cases the formula underestimated the shear capacity 

of the joint.

Vollum (1998)

10 20 30 40 50 60 70
Beam Column Joints Specimen Number

80 90

Figure 4.4. Performance of the equation proposed by Vollum (1998) in calculating the
shear capacity of beam-column joints

4.6.1.4 Design Equation of Bakir and Boduroglu (2002a)

Although this formula accounted for several key parameters affecting the 

performance the joint, the accuracy of formula when used to calculate the capacity of 

joints of the database is not high. The AAE for this formula was 24% which is 

significantly high and may be attributed to the formula's overestimation of beam 

longitudinal reinforcement effect on joint shear capacity. Figure 4.5 represents a plot of 

the actual experimental shear strength values against those calculated using the Bakir and
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Boduroglu (2002a) formula. Most of the database lay above the unity line which means 

that in most of the cases the formula underestimated the shear capacity of the joint.

Bakir and Boduroglu (2002a)

—I I I I I I I

10 20 30 40 50 60 70
Beam Column Joints Specimen Number

80 90

Figure 4.5. Performance of the equation proposed by Bakir and Boduroglu (2002a) in 
calculating the shear capacity of beam-column joints

4.6.1.5 Proposed ANN Model

The proposed model from the ANN analysis produced more accurate outputs for 

predicting the shear capacity of joints than the other investigated formulae. Figure 4.6 

shows that this model reduced the AAE among the actual and the predicted values to a 

small value (12%). This is the smallest value among the formulae for calculating shear 

capacity of beam-column joints. The small value of AAE ensures the accuracy of 

selecting the investigated parameters as the key factors governing the shear behavior of
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joints. Furthermore, the STDV of this formula is about 0.16 which is acceptable scatter 

for such a case. Evaluation of the effect of each of the investigated parameters is 

conducted using all proposed formulae in the following section.

ANNs

"I---------r
20 30 40 50 60 70

Beam Column Joints Specimen Number

Figure 4.6. Performance of ANNs model in calculating the shear capacity of beam-
column joints

4.6.2 Parametric Study on the Effect of Basic Shear Design Parameter

4.6.2.1 Effect of Beam Longitudinal Reinforcement Ratio

An analysis was conducted to study the effect of beam longitudinal reinforcement 

ratio on the shear strength of beam-column joints using the different proposed formulae 

and the ANN model. The specimen labeled C9 tested by Scott et al. (1994) was used to 

evaluate this parameter. Figure 4.7 represents the parametric study of this factor using
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different proposed formulae and the ANN model. The formulae proposed by ACI-ASCE 

352 (2002), Sarsam and Phipps (1985) and Vollum (1998) did not account for the beam 

longitudinal reinforcement ratio pb as an effective factor on the joint shear capacity. The 

proposed formula by Bakir and Boduroglu (2002a) and the ANN model predicted that an 

increase in the beam longitudinal reinforcement ratio increases the shear capacity. This 

result is justified because the increase the beam reinforcement ratio increases the 

confinement of the joint and improves the force transfer between the beam and the 

column leading to increase in the joint capacity.

11

10

! ■

5

4

3

ACI-ASCE-352
Vollum
ANNs

Sarsam and Phipps 
Bakir and Boduroglu
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Beam Longitudinal Reinforcement Ratio
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Figure 4.7. Effect o f  beam longitudinal reinforcement ratio on joint shear capacity

4.Ô.2.2 Effect of Joint Shear Reinforcement Ratio

The model proposed by the ANN concurs with the formula proposed by Sarsam and
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Phipps (1985), Vollum (1998), and Bakir and Boduroglu (2002a) in the effect of the joint 

shear reinforcement. According to the ANN model, increasing the joint shear 

reinforcement ratio increases the shear capacity of the joint. These formulae accounted 

for the joint stirrups by different values. Sarsam and Phipps (1985) assumed that almost 

all the stirrups in the joint will yield before the joint fails and therefore they accounted for 

87% of the stirrups within the joint. Bakir and Boduroglu (2002a) specified the 

contribution of the shear stirrups to the joint shear capacity based on the value of the 

reinforcement ratio in the joint. Vollum (1998) and the ANN model predicted similar 

contribution of the stirrups to the joint capacity. Generally, the stirrups that actually resist 

the shear forces in the joint should be the ones placed between the concrete compression 

chord and the beam tension reinforcement. Figure 4.8 represents the parametric study of 

this factor related to different proposed formulae and the ANN model.
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Figure 4.8. Effect of joint shear reinforcement ratio on joint shear capacity
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4.Ô.2.3 Effect of Concrete Compressive Strength

Concrete compressive strength is an important factor in any reinforced concrete 

element. Increasing concrete strength leads to improvement in properties of all elements 

of the structure. Investigation of the effect of the concrete compressive strength with the 

studied formulae is shown in Figure 4.9. For all the formulae and also the ANN model, 

increasing the concrete compressive strength increases the shear capacity of the joint. The 

relationship between the concrete strength and the joint shear capacity is almost the same 

between the different proposed formulae except for that of Sarsam and Phipps (1985) 

which used the concrete cube strength to express the effect of concrete on shear capacity 

of the joint. All other formulae including the ANN model assumed a proportional 

relationship between the square root of the concrete compressive strength and the joint 

shear capacity.

ACl-ASCE-352
Vollum
ANNs

Sarsam and Phipps 
Bakir and Boduroglu

T T

20 25 30 35 40 45

Concrete Compressive Strength (MPa)
50 55

Figure 4.9. Effect of concrete compressive strength on joint shear capacity
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4.6.2A Effect of Column Axial Stress

The proposed ANNs model concurs with the formulae proposed by ACI-ASCE 

Committee 352 (2002), Vollum (1998), and Bakir and Boduroglu (2002a) in the effect of 

column axial stress on the joint shear capacity. They conclude that the column axial stress 

has no affect on the shear capacity of the joint as shown in Figure 4.10. Sarsam and 

Phipps (1985) gave the only formula that accounted for the effect of the column axial 

stress on the joint shear capacity and according to them increasing the axial stress 

improves the joint shear capacity.

11 Sarsam and Phipps 
Bakir and Boduroglu
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Column Axial Stress( MPa)

Figure 4.10. Effect o f  column axial stress on joint shear capacity

4.Ô.2.5 Effect of Joint Aspect Ratio

Figure 4.11 represents the parametric study of the effect of the joint aspect ratio on

54



joint shear capacity. The investigation showed that according to the ANN model, the joint 

aspect ratio had no effect on the shear capacity of the joint. ANN and the formulae 

proposed by Sarsam and Phipps (1985) and by Bakir and Boduroglu (2002a) were similar 

in this regard. The formulae proposed by the ACI-ASCE Committee 352 (2002) and by 

Vollum (1998) indicated that an increase in the joint aspect ratio leads to an increase in 

the joint shear capacity. It is recommended to further investigate the effect of the joint 

aspect ratio on the joint shear capacity to eliminate the interaction between this parameter 

and the other ones.
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Figure 4.11. Effect of joint aspect ratio on joint shear capacity
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CHAPTER 5

EVALUATING SHEAR CAPACITY OF RC EXTERIOR BEAM-COLUMN JOINTS 

UNDER MONOTONIC LOADING USING GENETIC ALGORITHMS

5.1 Background

Beam-column joint is a very important element for the integrity of frame structures. 

However, beam-column joints are prone to shear failure as a result of the straining 

actions transferring between framing beams and columns through the joint. In the last 

four decades, several studies have been conducted on the shear capacity of monotonically 

loaded beam-column joints. Different formulae have been proposed to calculate the shear 

capacity of the monotonically loaded exterior beam-column joints. Several parameters 

are known to have significant effect on the shear capacity of the joint namely: joint shear 

reinforcement ratio, concrete compressive strength, beam tension longitudinal 

reinforcement ratio, joint aspect ratio and column axial stress. The contribution of each of 

these parameters noticeably varies for each of these formulae. This chapter investigates 

the accuracy of some of the proposed formulae for calculating the shear capacity of the 

joint (ACI-ASCE Committee 352, 2002; Sarsam and Phipps, 1985; Vollum, 1998; Bakir 

and Boduroglu, 2002a). Genetic algorithms approach is used to optimize the performance 

of these formulae. An improved shear design equation is also proposed using the same 

approach.
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Results indicate that the current shear design equations are inaccurate in calculating the 

shear capacity of the exterior beam-column joints subjected to monotonie loading.

5.2 Experimental Database

The database used for this study was selected from the available experimental 

research programs in the literature. A total number of 88 specimens were selected for the 

study. The selection process was based on special criteria: concrete compressive strength 

was limited to 70 MPa, only planar specimens with no transverse beams were considered, 

and specimens with bent up L-bar tension beam reinforcement detail were excluded. The 

used database is the same one used in chapter 4 of this thesis.

As a powerful optimization tool, the G As toolbox attached in the computer software 

MATLAB (2007) was used in the error minimization process. The parameters of the tool 

box, such as mutation, crossover, victorization, and population input techniques, allow 

error reduction and improve the accuracy of the investigated design formulae.

5.3 Optimization of Formulae

To consider the optimization process successful, the modified formulae should be 

able to predict the values of beam-column joint shear capacity more accurately than the 

original formulae. The performance of the optimization process of each formula was 

evaluated based on both the ratio of measured to predicted (or calculated) shear strength 

(VJVp), and the average absolute error {AAE) calculated using the following equation:

AAE = -  > I - . :  xlOO (5.1)
%»
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The standard deviation (STDV), and coefficient of variation (COV) for yjVp, and the 

average absolute error (AAE) of the GA model and other shear calculation methods 

investigated are listed in Table 4. In the following sections, a detailed description of the 

optimization process conducted on each of the previously mentioned formulae is 

presented.

Table 4. Performance of GA model and shear design methods considered in this study in

Method
Pre-Optimized Post-Optimized

AAE Vmeasured 7 Vpredicted AAE
(%;

Vmeasured 7 Vpredicted
Average STDV COV Average STDV COV

ACI-
ASCE

352
(2002)

37 0.765 0.21 79.7'̂ 16.50 1.06 0.15 19.74

Sarsam
and

Phipps
(1985)

26 1.13 0.37 32.50 15 0.99 0.17 17.70

Vollum
(1998) 20 1.43 0.25 17.50 20 1.43 0.337 23.50

Bakir
and

Bodurog
lu

(2002)

24 1.31 0.3208 15.85 23 1.219 0.31 20.70

GA --------- ----- --- 12 1.023 0.165 16.14

5.3.1 Design Equation of ACI-ASCE Committee 352 (2002)

Based on the loading conditions for the joint and the anticipated deformations of the 

connected frame members, ACI-ASCE Committee 352 classifies beam-column joints 

into two categories: Type 1 and Type 2. Type 1, joints are designed to satisfy ACI 318
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(2008) except for seismic provisions (gravity load case); while Type 2 joints are designed 

to have sustained strength under deformation reversals into the plastic range (seismic 

loading case). In this study, only Type 1 joints were investigated.

The ACI-ASCE Committee 352 (2002) proposed the following equation to calculate 

the shear strength of monotonically loaded exterior beam-column joints:

Vn = O.Q83yyUcbjhc (5.2)

where V„ is the nominal shear strength of Type 1 joints, _/c' is the concrete cylinder 

strength (MPa), he is the depth of the column in the direction of joint shear being 

considered (mm), bj is the effective width of the joint (mm), it is defined as the smaller 

value of:

+ (5.3a)
2

bfc + ^ ( m h c  + 2) (5.3b)

be (5.3c)

where m = 0.50 for the case of no eccentricity between the beam and column centerlines, 

7 = 15 for Type 1 exterior planar joints (database case). Accordingly the formula 

becomes:

Vn = 1.245yUcbjhg (5.4)

This formula neglects the influence of the joint aspect ratio, the column axial stress, 

and the contribution of both joint and beam reinforcements to the shear capacity of the 

joint. It also neglects the effect of the column's axial stress. Using the selected data for 

this study and knowing the actual capacity of the specimens obtained fi-om the 

experimental programs results, the average absolute error AAE for this formula is 37%,
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which is significantly high, and the STDV for VJVp of this formula is 0.21. It is 

recommended that this formula should not be used to estimate the shear capacity of 

beam-column joints due to its lack of accuracy. It should rather be used to estimate the 

minimum shear strength of the joint based on concrete properties and joint dimensions.

An optimization process was conducted on this formula using the genetic algorithms 

approach. The formula was modeled in the following format and then calibrated using 

the database of the study:

=  (5.5)

The results of the optimization process indicated that the best obtained values for C/ 

and C2 are 0.852 and 0.513 respectively. The formula will then become:

Vn = 0.852/c'°-^^^hyhc (5.6)

The AAE for this formula is approximately 16.50%. Figure 5.1 represents a plot of 

calculated values versus actual experimental values for both the original and the 

optimized formulae with the optimized formula showing less scatter. This is also clear 

from the smaller value of STDV which is 0.151 for the modified formula. Although the 

optimization process reduced the AAE to almost half the value produced by the pre­

optimized formula, still the modified formula is not reliable since it does not account for 

the important parameters.
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Figure 5.1. Response of original and optimized formulae of ACI-ASCE 352 equations in
calculating the shear capacity of the joint

5.3.2 Design Equation of Sarsam and Phipps (1985)

Based on their experimental program, Sarsam and Phipps (1985) proposed the 

following equations for the shear design of monotonically loaded exterior beam-column 

joints:

Vud = Vcd + Vsd (5.7)

where Vud is the design ultimate shear capacity of the joint (N), Vcd is the design shear 

force resistance of concrete in joint (N), Vsd is the design link shear force resistance (N).

0.29N
Vad =  5 .08 (feu  (dc /  (1 +  " de be (5.8)

where feu is the cube strength of concrete (MPa), Aso is the area of the layer of steel 

furthest away from the maximum compression face in a column (mm^), Ag is the gross 

cross- sectional area of the column at the joint (mm^), N„ is the column axial compression

61



load at ultimate joint strength (N), dc is the effective depth of the layer of steel furthest 

away from the maximum compression face in a column (mm), db is the effective depth of 

beam tension reinforcement (mm), be is the width of column section at the joint (mm).

^sd — ^•^'^^jsfyv (5.9)

where Ajs is the total area of horizontal shear links crossing the diagonal plane from 

comer to comer of the joint between the beam compression and tension reinforcement 

(mm^), and fy is the tensile strength of the link reinforcement (MPa).

Although this formula accounts for several parameters in the calculation of shear 

capacity of the joint, the AAE for this formula is still significantly high at 26%, and the 

STDV for this formula is 0.37. This is mainly due to the limited number of specimens that 

were initially used to calibrate this formula. Furthermore, this formula suggests that 87% 

of the amounts of the joint stirrups are the effective ones in resisting shear forces in the 

joint, which may be higher than the actual value of the effective stirrups in the joint. 

Results obtained from Ortiz (1993) showed that the effective stirrups are the ones located 

above the beam compressive chord and below the beam reinforcement. This formula also 

accounts for the column longitudinal reinforcements; the effect of this parameter on shear 

strength of beam-column joints was neglected by Ortiz (1993) and Bakir and Boduroglu 

(2002a). For the purpose of optimization, the formula could be written as:

^ud = Cxifcu Pc)^^ (Ac /  (1 + dc be + C(,Ajsfy (5.10)

Optimizing this formula led to modify the original coefficients of Sarsam and Phipps 

(1985) equation into the following expression;

Fad = 6.28 (fa, ( d c  /  (1 + d c  be + 0.72 Ajs fy (5.11)
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The formula in its new form is more compatible with the database. An error 

percentage of 15% is significantly low taking into consideration experimental variation. 

Figure 5.2 represents a plot of calculated values versus actual experimental values for 

both the original and the optimized formulae with the optimized formula having less 

scatter. This is also clear from the smaller value of STDV which is 0.17 for the modified 

formula.
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Figure 5.2. Response of original and optimized formulae of Sarsam and Phipps (1985) 
equations in calculating the shear capacity of the joint

5.3.3 Design Equation of Vollum (1998)

Vollum (1998) conducted a study to investigate the shear behavior of the joint using a 

strut and tie model. A modified formula for calculating the shear capacity of the joint was 

developed as follows:
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cd = 0.642/?{l + 0.555(2 -  (512)

where P = 1.0 for connection with L- bars tension beam reinforcement bent 

downward, hb is the thickness of the beam (mm), he is the thickness of the column (mm), 

beff is the effective width of the joint (mm), and it is the smaller of 0.50(6&4-6c) and 

(6ÿ+0.50Ac) if bb < be, and the smaller of {bc+Q.50hc) and bb if bb > be.

Vud = Vcd + {Asjefy -  OcbeffKylJ^^ (^-^3)

where Asje is the cross sectional area of the joint links within the top five eighths of the 

beam depth below the main beam reinforcement (mm^), a is a coefficient that depends on 

different factors including joint aspect ratio, concrete strength, stirrup index, and the 

column axial load and is taken 0.20.

In this formula Vollum accounted for the effect of joint aspect ratio and both concrete 

and steel contribution to the shear capacity of the joint. Statistical analysis performed on 

his formula indicated that the AAE for the selected data is 28% with a STDV = 0.25. It is 

believed that the reason behind the inaccurate results obtained fi"om this formula is 

neglecting the effect of the beam reinforcement ratio. Another reason is that the database 

used by Vollum (1998) to derive his formula was limited which makes it unable to 

predict an accurate shear capacity for a wider range of parameters. The optimized 

formula was formatted in the following form:

Vud = Q (1 + Q (2 -  + A s j e f y  -  C ^b e ffh jf^  (5.14)

Optimizing this formula resulted into the following formula:

Vud = 0.42(1 + 0.95(2 -  + A .jJy  -  l .O l b . f f h j f  '^  ̂ (5.15)

The optimization process conducted on this formula did not lead to noticeable 

improvement in the AAE. This means that the contribution of the parameters accounted
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for in the formula is reasonably accurate yet not realistic since the AAE stands unchanged 

at 28%. Figure 5.3 represents a plot of calculated values versus actual experimental 

values for both the original and the optimized formulae with the optimized formula 

having higher scatter with STD = 0.337.
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Figure 5.3. Response of original and optimized formulae of Vollum (1998) equations in
calculating the shear capacity of the joint

5.3.4 Design Equation of Bakir and Boduroglu (2002)

Bakir and Boduroglu (2002a) investigated the effect of several parameters that affect 

the strength of monotonically loaded exterior beam-column joints. These parameters 

include concrete cylinder strength, beam longitudinal reinforcement, beam reinforcement 

detailing, joint stirrups ratio, joint aspect ratio, and joint dimensions. Based on their 

model they proposed the following formula:
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__________
u d  — , 0.61

% )

where C= 1 for joints with L- bars beam tension reinforcement detail bent downward, 

À = 1.0 (for the database case), Asb is the steel area of the beam, bb is the width of the 

beam, A is a factor depending on the joint stirrup ratio and is taken 0.664 for joints with 

low reinforcement ratio (up to 0.003), A = 0.60 for joints with medium reinforcement 

ratio (between 0.003 and 0.0055), A = 0.37 for joints with high reinforcement ratio (more 

than 0.0055), Aj is the cross sectional area of the joint links (mm^).

Although this formula accounted for several key parameters affecting the 

performance the joint, the application of the formula within the database was not 

accurate. The AAE for this formula was 24% which is significantly high. It is believed 

that this formula overestimates the effect of the beam longitudinal reinforcement effect to 

the joint shear capacity. Also the factor A that determines the contribution of the joint 

shear strength is not adequate. Larger number of specimens in the database should have 

been used to specify a different value for A based on the joint reinforcement ratio. The 

formula was put in the following form for the purpose of optimization:

Vu^ + W ) '  (5.17)

Optim izing this formula resulted in  the following equation:

0.15

Vui =  r S -  + 0-50 4 4  (518)

f e )
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The optimized formula managed to reduce the error percentage into about 23%. But 

the accuracy of the formula is still questionable. Designers can't count on such error 

values to produce adequate designs. Figure 5.4 represents a plot of calculated values 

versus actual experimental values for both the original and the optimized formulae with 

the optimized formula having less scatter.
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Figure 5.4. Response of original and optimized formulae of Bakir and Boduroglu 
(2002a) equations in calculating the shear capacity of the joint

5.3.5 Proposed Formula

Based on the conducted studies using the genetic algorithms approach for optimizing 

the previously mentioned formulae, the following formula is proposed:

rlOO/lsi,r
V ^  = C ,* h ,b c * 4 I c * [ - g ^ ]  +CiA,jfy  

Optimizing this formula lead to the following form

(5.19)
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( “LOOA
= 0 . 7 5 * M c * Æ * [ - ^ ^ j  + 0 . 6 0 A , j f y  (5.20)ud

The use of the formula is limited to the monotonically loaded beam-column joints 

with the following criteria: concrete compressive strength up to 70 MPa, planar 

specimens with no transverse beams, and specimens with L-bars beam tension beam 

reinforcement detail. This formula accounted for the beam tension reinforcement, the 

joint transverse reinforcement, the joint dimensions and the concrete compressive 

strength. Based on the genetic algorithms model, it was concluded that the effect of the 

column axial stress is insignificant and can be neglected. This is because most of these 

columns in the sub assemblages of the database are loaded with significantly small value 

of the axial stress which prevents any effect of this parameter to appear.

It should be noted that this formula accounted for only 60% of the joint 

reinforcement. This is in agreement with Vollum (1998) where he accounted for the 

contribution of 62.50% of the joint stirrups. The contribution of beam reinforcement ratio 

in the concrete resistance term was found to be limited and lower than what Bakir and 

Boduroglu (2002a) included in their formula. It is believed that 60% of the joint stirrups 

are engaged in resisting shear within the actual lever arm between the compression and 

tension forces in the joint. This formula managed to reduce the error percentage to 12% 

which is significantly small. Among all the GA optimization processes, the proposed 

formula resulted in the lowest A A E .  The formula also resulted in a scatter (0.165) which 

is less than other formulae. Accordingly, this formula can be used in the evaluation of 

shear strength of exterior beam-column joints subjected to monotonie loading. Figure 5.5 

represents a plot for the predicted versus the actual shear strength for the proposed 

formula.
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Figure 5.5. Response of the proposed formula in calculating the shear capacity of the
joint

5.4 Parametric Study on the Effect of Basic Shear Design Parameter

5.4.1 Effect of Beam Longitudinal Reinforcement Ratio

An analysis was conducted to study the effect of beam longitudinal reinforcement 

ratio on the shear strength of beam-column joints using the different proposed formulae 

and the genetic algorithm model. The specimen labeled Cg proposed by Scott et al. 

(1994) was used to evaluate this parameter. Figure 5.6 represents the parametric study of 

this factor using different proposed formulae and the GA model. Formulae proposed by 

ACI-ASCE 352 (2002), Sarsam and Phipps (1985), and Vollum (1998) did not account 

for the beam longitudinal reinforcement ratio pb as an effective factor on the joint shear 

capacity. The proposed formula by Bakir and Boduroglu (2002a) and the GA model 

predict that the increase in beam longitudinal reinforcement ratio increases the shear 

capacity; however the contribution of this parameter to joint shear capacity is higher for
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the formula proposed by Bakir and Boduroglu (2002a). This result is justified because the 

increase the beam reinforcement ratio increases the confinement of the joint and 

improves the bond between the beam and the column leading to increase in the joint 

capacity.
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Figure 5.6. Effect of beam longitudinal reinforcement ratio on joint shear capacity

5.4.2 Effect of Joint Shear Reinforcement Ratio

While the ACI-ASCE Committee 352 (2002) formula neglects the effect of shear 

stirrups on joint shear capacity, the model proposed by the GA concurs with the formula 

proposed b y  Sarsam and Phipps (1985), Vollum  (1998), Bakir and Boduroglu (2002a) in 

the effect of the joint shear reinforcement. According to the GA model, increasing the 

joint stirrups ratio increases the shear capacity of the joint. These formulae accounted for 

the joint stirrups by different values. Sarsam and Phipps (1985) assumed that all the
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stirrups in the joint will yield before the joint failure and therefore they counted for all the 

stirrups within the joint. Bakir and Boduroglu (2002a) specified the contribution of the 

shear stirrups to the joint shear capacity based on the value of the reinforcement ratio in 

the joint. Both Vollum (1998) and the proposed model predicted very similar values for 

the contribution of the stirrups to the joint capacity. Generally, the effective stirrups that 

actually resist the shear forces in the joint should be the ones placed between the concrete 

compression chord and the beam tension reinforcement. Paulay (1989) proved in his strut 

and truss model that the shear stirrups resist the majority of the shear forces in the joint 

afl;er the cracking stage starts. Special precautions should be given to the joint 

reinforcement ratio and detailing. The contribution of this factor to the investigated 

formulae is shown in Figure 5.7.
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Figure 5.7. Effect of joint shear reinforcement ratio on joint shear capacity
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5.4.3 Effect of Concrete Compressive Strength

Concrete compressive strength is an important factor in any reinforced concrete 

element. Increasing concrete strength leads to improvement in properties of all elements 

of the structure. Investigation of the effect of the concrete compressive strength with the 

studied formulae is shown in Figure 5.8. For all the formulae and also the GA derived 

equation, increasing the concrete compressive strength increases the shear capacity of the 

joint. The relationship between the concrete strength and the joint shear capacity varies 

between the different proposed formulae. Except for Sarsam and Phipps (1985) that used 

the concrete cube strength to express the effect of concrete on shear capacity of the joint, 

all other formula including the genetic algorithm model assumed a proportional 

relationship between square root of the concrete compressive strength and the joint shear 

capacity. This research was limited to specimens up to 70MPa due to lack of high 

strength concrete specimens. However the effect of high strength concrete compressive 

strength on the joint shear capacity is expected to be similar to the results of this research.
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Figure 5.8. Effect of concrete compressive strength on joint shear capacity
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5.4.4 Effect of Column Axial Stress

The proposed GA model concurs with the formulae proposed by ACI-ASCE 

Committee 352 (2002), Vollum (1998), and Bakir and Boduroglu (2002a) in the effect of 

column axial stress on the joint shear capacity. They conclude that the column axial stress 

has no affect on the shear capacity of the joint as shown in Figure 5.9. The formula of 

Sarsam and Phipps (1985) was the only one that accounted for the effect of the column 

axial stress on the joint shear capacity and according to them increasing the axial stress 

improves the joint shear capacity.
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Figure 5.9. Effect of column axial stress on joint shear capacity

5.4.5 Effect of Joint Aspect Ratio

In order to eliminate any interaction between the different parameters when studying 

the joint aspect ratio (hb /  he), this parameter was studied for two cases. The first involved
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an increase in the joint aspect ratio by increasing the height of the beam with fixed 

column height, and the other case was by changing the column height with the same 

beam height. The values for all other parameters were fixed by changing the values of the 

area of steel in columns or beams or the axial force on the column. In both cases there 

was no effect on the joint capacity with a change in the joint aspect ratio. This is shown 

in Figure 5.10.

On the other hand, application of the parametric study of this parameter with other 

proposed formulae is not clear due to the interaction in these formulae as a result of the 

modification in the values of beam and joint and axial stress on the column to maintain 

the genetic algorithms application correct.

I

I■Q

11
ACI-ASCE 352 Sarsam and Phipps Vollum

10

Bakir and Boduroglu GA
9

8

7

6

5

4

3

1.45 1.5 1.55 1.6 1.65 1.71.35 1.4 1.75
Joint Aspect Ratio

Figure 5.10. Effect of joint aspect ratio on joint shear capacity
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CHAPTER 6

EVALUATING SHEAR CAPACITY OF RC INTERIOR BEAM-COLUMN JOINTS 

UNDER CYCLIC LOADING USING ARTIFICIAL NEURAL NETWORKS

6.1 Background

For the last few decades, many RC structures collapsed during earthquakes. Several 

studies have investigated the reasons behind this failure (Moehle and Mahin, 1991; Park 

et a l, 1995; EERI, 1999a; EERI, 1999b; EERI, 1999c; Uang et a l, 1999; Sezen et a l, 

2000). Observation of damages indicated the reason of collapse for most of the 

investigated cases was the lack of the shear capacity of beam-column joints due to 

inadequate design approach and inappropriate detailing of the joint reinforcement. Figure

6.1 shows a damaged joint in RC structure in the earthquake in Tehuacan-Mexico (1999) 

and it is noticeable that the joint did not have any shear stirrups. In the earthquake in 

Izmit, Turkey (1999) many RC structures experienced severe collapse in beam-column 

joints for the same reason (lack of transverse reinforcement) as shown in Figure 6.2. For 

these two cases, failure happened in the beam-column joint due to in adequate detailing 

and insufficient shear capacity of the joint.

This study investigates the shear behavior of interior beam-column joints subjected to 

cyclic loading using artificial neural networks (ANNs) and experimental testing results 

collected fi*om the literature. The study aims to clarify the effect of some of the key 

parameters affecting the shear capacity of the cyclically loaded interior joint including
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joint shear reinforcement, concrete compressive strength, column axial stress, and joint 

aspect ratio. The study also evaluates the accuracy of current shear design formulae of the 

ACI-ASCE Committees 52 (2002) and Architectural Institute of Japan (1998) using the 

experimental testing results.

m .  ■

Figure 6.1. Inadequate detailing of joint in the Tehuacan, Mexico, earthquake, 1999
(EERI 1999a)

Figure 6.2. Inadequate detailing of joint in the Izmit, Turkey, earthquake, 1999
(Sezen et al., 2000)

6.2 Previously Proposed Formulae and Equations

In this chapter, two formulae were investigated and evaluated using the selected 

database, detailed preview of these formulae was proposed in the chapter 2 of this thesis, 

these formulae are:

1-ACI-ASCE Committee 352 Formula (2002)

2-Architectural Institute of Japan (1998)
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6.3 Artificial Neural Network Approach

The most common and applicable type of networks used in engineering program is 

the Multi-layer perceptron networks (MLP). This type of network is capable of solving 

complicated regression cases which is the case of most of the engineering areas. You can 

easily use the network to predict the output using the input data or parameters given to 

the network. The network train itself to capture the complex behavior using the data set, 

by dividing the data set into training, selection, and testing sets. And calibrate the 

accuracy of the result.

The main structure of the multiple layers is an input layer containing the input 

parameters or data (an input layer, an output layer and one or more hidden layers). Each 

layer contains a number of processing elements (units) partially or fully connected to 

units in the consecutive layer. Connections between processing units are initially assigned 

random numerical values (weights) representing their strength. The main objective in 

building an artificial neural network-based model is to train specific network architecture 

to search for an optimum set of weights, for which the trained ANN can predict accurate 

values of outputs for a given set of inputs fi’om within the range of the training data.

6.4 Experimental Database

The most important aspect in the success of a neural network is the learning database 

on which the system is trained. Therefore it is imperative to train a network model on a 

comprehensive database to capture the actual embedded relationships between the 

parameters of the input and output layers. In this study our aim is to detect the 

relationships between the different parameters being considered and their effect on the
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shear capacity of interior beam-column joints under cyclic loadings.

In this study, shear capacity of this joint type is investigated using a database 

consisting of 58 concrete beam-column connections collected from published literature 

(Otani et a l, 1984; Meinheit and Jirsa, 1977; Walker, 2001; Alire, 2002 Park and 

Ruitoing, 1998; Kitayama et a l, 1987; Higashi and Ohwada, 1969; Attaalla and 

Agababian, 2004; Hayashi et a l, 1994; Zaid, 2001; Fujii and Morita, 1991; Goto and 

Shibata, 1991; Teraoka et a l, 1997).

The quality of the network was improved by imposing several limitations on 

specimens in the database used by the ANN model. Specimens failing due to joint shear 

were strictly used, with no beams in the transverse direction. Specimens with high 

strength concrete, and reinforcement welding into the joint were omitted. The database 

was formatted into groups of input vectors, each vector representing one of the 

investigated parameters in the study and the output vector represents the shear capacity of 

the joint. Table 5 represents the database range of the parameters investigated in the 

study.

Table 5. The parameters range for the investigated database for interior beam-column

Parameter Minimum Maximum

Joint Aspect Ratio 1 1.3

Concrete Compressive Strength MPa 21.2 70

Volumetric Reinforcement Ratio (%) 0 3.15

Column Axial Stress (MPa) 0 17.8

78



6.5 ANN Model

To predict the shear strength of cyclically loaded beam-column joints, an ANN was 

constructed with the following components: an input layer, an output layer and two 

hidden layers. The input layer contains four variables representing the common shear 

design parameters of reinforced concrete beam-column joint (volumetric reinforcement 

ratio, concrete compressive strength, joint aspect ratio, and column axial stress). The 

output layer includes one unit representing the shear capacity, and the hidden layers 

consisted of eight and four processing units consecutively. Full bonding cormections were 

used between the processing elements and the elements in other consecutive layers.

The software used in this model is MATLAB (2007). This software is commonly 

used for the simulation process of engineering problems. This software divides the given 

database into training and testing groups to increase the accuracy of the model and give a 

better understanding of the effect of each parameter in the output layer. Figure 6.3 

represents the architecture of the proposed model.

N ./A

Input Layer
i

Output Layer

Hidden Layers

Figure 6.3. Architecture of artificial neural network model
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6.6 Results and Discussions

6.6.1 Formulae Evaluation

To consider an ANN successful, it must be able to accurately predict output values 

for input values within the range of the database used in the training and the testing 

process. To evaluate the accuracy of the proposed network, a comparison was held 

between the network predicted outputs which represent the shear capacity and those 

calculated using the formulae by ACI-ASCE 352 (2002) Architectural Institute of Japan 

(1998) The performance of each model was evaluated based on both the ratio of 

measured to predicted (or calculated) shear strength iY JV ^, and the average absolute 

error (AAEl) calculated using the following equation;

AAE
- Ï 1

^  X 100 (6.6)

The average value, the standard deviation (STDV), and coefficient of variation (COV) 

for Vm/Vp, and the average absolute error (AAE) of the ANN model and ACI-ASCE 352 

(2002) are listed in Table 6.

Table 6. Performance of different formulae for the calculation of shear strength of RC
interior beam-co umn joints under cyclic loading.

Method ALE (9^ Vtneasured /  Vpredicted
Average STDV COV

ACI-ASCE Committee 352 
(2002) 63 0.77 0.29 38.7

Architectural Institute of 
Japan (1998) 90 0.651 0.297 48.00

ANN 8.15 0.99 0.0988 10
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In the following sections a detailed discussion of the results of the different 

investigated formulae is presented:

6.6.1.1 ACI-ASCE Committee 352 Formula (2002)

Figure 6.4 represents a plot of the actual experimental shear strength values versus the 

calculated ones using the ACI-ASCE Committee 352 formula. This formula neglects the 

influence of the joint aspect ratio, the column axial stress, and the contribution of both 

joint and beam reinforcements to the shear capacity of the joint. It also neglects the effect 

of the column axial stress. Using the selected data for this study and knowing the actual 

capacity of the specimens obtained from the experimental programs results, the average 

absolute error AAE for this formula is 63%, which is significantly high, and the STDV for 

Vm/Vp of this formula is 0.29. It is recommended that this formula should not be used to 

estimate the shear capacity of beam-column joints due to its lack of accuracy and the over 

estimation of the shear strength. It should rather be used to estimate the minimum shear 

strength of the joint based on concrete properties and joint dimensions.
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Figure 6.4. Performance of the equation proposed by ACI-ASCE 352 (2002) in 
calculating the shear capacity of beam-column joints

6.6.1.2 Architectural Institute of Japan (1998)

Figure 6.5 represents a plot of the actual experimental shear strength values versus the 

calculated ones using the formula proposed by the Architectural Institute of Japan (1998). 

This formula neglects the influence of the joint aspect ratio, the column axial stress, and 

the contribution of both joint and beam reinforcements to the shear capacity of the joint. 

Using the selected data for this study and knowing the actual capacity of the specimens 

obtained from the experimental programs results, the average absolute error AAE for this 

formula is 90%, which is extremely high, and the STDV for Vm/Vp of this formula is 

0.297. It is recommended that this formula should not be used to estimate the shear 

capacity of beam-column joints due to its lack of accuracy and the over estimation of the 

shear strength. Neglecting several major factors governing the behavior of the joint refute 

the accuracy and the validity of this formula.
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Figure 6.5. Performance of the equation proposed by Architectural Institute of Japan 
(1998) in calculating the shear capacity of beam-column joints

6.6.1.3 Proposed ANN

The proposed model for the ANNs produced much more accurate outputs for 

predicting the shear capacity of joints than the formula proposed by ACI-ASCE 352. 

Figure 6.6 shows that this model reduced the AAE between the actual and the predicted 

values to a very small value (8.15 %). The model also resulted in a smaller scatter for the 

data with STDV of 0.0988. The small value of AAE ensures the accuracy of selecting the 

investigated parameters as the key factors governing the shear behavior of joints.
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Figure 6.6. Performance of ANN model in calculating the shear capacity of beam-column
joints

6.6.2 Parametric Study on Effect of Basic Shear Design Parameter

6.6.2.1 Effect of Joint Shear Reinforcement Ratio

An analysis was conducted to study the effect of joint shear reinforcement ratio on the 

shear strength of cyclically loaded beam-column joint using the proposed ANN model 

and the investigated formulae. The specimen labeled J4 proposed by Noguchi and 

Kashiwazaki (1992) was used to evaluate the effect of this parameter. Figure 6.7 

represents the parametric study of this parameter. The ACI-ASCE Committee 352 (2002) 

formula and the Architectural Institute of Japan (1998) formula neglect the effect of shear 

stirrups on joint shear capacity. The model proposed by the ANNs as shown in the figure 

account for this parameter, increasing the joint shear reinforcement increases the joint 

shear capacity. The current study suggests that this parameter is one of the major
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parameter governing the shear capacity of the joint especially at advanced loading levels 

when the cracks begin spreading in concrete and the effect of concrete compressive 

strength to joint shear capacity reduces.
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Figure 6.7. Effect of joint reinforcement ratio on joint shear capacity

6.6.2.2 Effect of Concrete Compressive Strength

Concrete compressive strength is an important factor in any reinforced concrete 

element. Increasing concrete strength leads to improvement in properties of all elements 

of the structure. Investigation of the effect of the concrete compressive strength with the 

studied formulae is shown in Figure 6.8. The ANN resulted in similar trend for the effect 

of concrete compressive strength to the results of the formulae proposed by ACI-ASCE 

Committee 352 (2002) and the Architectural Institute of Japan (1998), increasing the
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concrete compressive strength increases the shear capacity of the joint. The formula 

proposed by the Architectural Institute of Japan gives higher contribution of the concrete 

compressive strength to joint shear capacity than the other two methods.
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Figure 6.8. Effect of concrete compressive strength on joint shear capacity

6.6.2.B Effect of Column Axial Stress

The proposed ANNs model concurs with the formulae proposed by ACI-ASCE 

Committee 352 (2002) and the Architectural Institute of Japan (1998) in the effect of 

column axial stress on the joint shear capacity. All of these formulae conclude that the 

column axial stress has no affect on the shear capacity of the joint as shown in Figure 6.9. 

This result also concurs with the art of the study on the shear capacity of monotonically 

loaded beam-column joints.
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Figure 6.9. Effect of column axial stress on joint shear capacity

6.6.2.4 Effect of Joint Aspect Ratio

Figure 6.10 represents the parametric study for the effect of the joint aspect ratio on 

the joint shear capacity. Both the ANN model and the Formula proposed by the 

Architectural Institute of Japan assume no affect for the joint aspect ratio on the capacity 

of the joint. The ACI-ASCE 352 (2002) assumes a proportional relationship between the 

aspect ratio and the capacity of the joint. Investigation of this parameter is not very clear 

due to the changing of the parameters of the aspect ratio (which are the beam height and 

the column height) on other major parameters like the axial stress and the joint 

reinforcement ratio.
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CHAPTER 7

EVALUATING SHEAR CAPACITY OF RC INTERIOR BEAM-COLUMN JOINTS 

UNDER CYCLIC LOADING USING GENETIC ALGORITHMS

7.1 Background

One of the major problems that face designers of RC structures is the design of the 

beam-column joint especially the cyclic loading condition. The reason is because there is 

no clear formula that they can rely on during the design phase. Behavior of the cyclically 

loaded beam-column joints is very complicated and several mechanisms control it. This 

study aims to evaluate some of the existing shear design formulae of cyclically loaded 

beam-column joints namely: ACI-ASCE Committee 352 (2002) and Architectural 

Institute of Japan (1998), and to optimize these formulae using the genetic algorithms 

technique (GAs). The study also is proposing a new design formula for calculating the 

shear capacity of RC cyclically loaded beam-column joints. For the sake of the 

optimization process, a database was collected from the literature from different 

experimental programs.

7.2 Experimental Database

The database used for this study was selected from the available experimental 

research programs in the literature. A total number of 58 specimens were selected for the

89



study. The selection process was based on special criteria: concrete compressive strength 

was limited to 70 MPa, planar specimens with no transverse beams were only considered, 

and specimens with bent up L-bar tension beam reinforcement detail were excluded.

In the optimization process of the formulae, the genetic algorithms tool box attached 

in the computer software MATLAB (2007) was used.

7.3 Optimization of Formulae

To consider the optimization process successful, the modified formulae should be 

able to predict the values of beam-column joint shear capacity more accurately than the 

original formulae. The performance of the optimization process of each formula was 

evaluated based on both the ratio of measured to predicted (or calculated) shear strength 

(VJVp), and the average absolute error (AAE) calculated using the following equation:

AAE =  -  y  %100 (7.1)
n  Z -i Kn

The standard deviation (STDV), and coefficient of variation (COV) for Vm/Vp, and the 

average absolute error (AAE) of the GA model and other shear calculation methods 

investigated are listed in Table 7. In the following sections, a detailed description of the 

optimization process conducted on each of the previously mentioned formulae is 

presented.
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Table 7. Performance of GA model and shear design methods considered in this study in
predicting the shear strength of interior cyclically loaded beam-column joints

Method
Pre-Optimized Post-Optimized

AAE
(9^

Vmeasured /  p̂redicted AAE
(9^

m̂easured • p̂redicted
Average STDV c o r Average STDV COV

ACI-ASCE 
552 (2002; 63 0.77 0.29 5&ao 36 1.223 0.47̂ ^ 5&7&

Architectural 
Institute o f 

Japan 
(7P9&;

90 0.651 A297 48.00 36 1.223 0.474 5&7g

GA --------- 21 1.07585 0.307 28.609

7.3.1 Design Equation of ACI-ASCE Committee 352 (2002)

Based on the loading conditions for the joint and the anticipated deformations of the 

connected frame members, ACI-ASCE Committee 352 classifies beam-column joints 

into two categories: Type 1 and Type 2. Type 1, joints are designed to satisfy ACI 318 

(2008) except for seismic provisions (gravity load case); while Type 2 joints are designed 

to have sustained strength under deformation reversals into the plastic range (seismic 

loading case). In this study, only Type 2 joints were investigated.

The ACI-ASCE Committee 352 (2002) proposed the following equation to calculate 

the shear strength of monotonically loaded exterior beam-column joints:

= O m S Y ^ b jh c  (7.2)

where V„ is the nominal shear strength of Type 1 joints, fc ' is the concrete cylinder 

strength (MPa), he is the depth of the column in the direction of joint shear being
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considered (mm), bj is the effective width of the joint (mm), it is defined as the smaller 

value of

+ (7.3a)
2

bb + y  (mhc + 2) (7.3b)

be (7.3c)

where m = 0.50 for the case of no eccentricity between the beam and column centerlines, 

Y = 15 for Type 1 exterior planar joints (database case). Accordingly the formula 

becomes:

= 124S/f;b jhe  (7.4)

This formula neglects the influence of the joint aspect ratio, the column axial stress, 

and the contribution of both joint and beam reinforcements to the shear capacity of the 

joint. Using the selected data for this study and knowing the actual capacity of the 

specimens obtained from the experimental programs results, the average absolute error 

AAE for this formula is 63%, which is significantly high, and the STDV for Vm/Vp of this 

formula is 0.29. It is recommended that with such a high percentage error and big scatter 

this formula should not be used to estimate the shear capacity of beam-column joints due 

to its lack of accuracy.

An optimization process was conducted on this formula using genetic algorithms 

approach. The formula was modeled in the following format and then calibrated using 

the database of the study:
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The results of the optimization process indicated that the best obtained values for Q  

and C2 are 0.78 and 0.50 respectively. The formula will then become:

(7 6)

The AAE for this formula is approximately 36%. Although the optimization process 

significantly reduced the AAE value produced by the pre-optimized formula, still the 

modified formula is not reliable since it does not account for important parameters. 

Figure 7.1 represents a plot of calculated values versus actual experimental values for 

both the original and the optimized formulae with the optimized formula showing less 

scatter. This is also clear from the smaller value of STDV which is 0.47 for the modified 

formula.
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Figure 7.1. Response o f  original and optimized formulae o f  ACI-ASCE 352 equations in
calculating the shear capacity of the joint

7.3.2 Design Equation of Architectural Institute of Japan (1998)

The architectural Institute of Japan proposed the following formula for ealculating the
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shear capacity of cyclically loaded RC beam-column joints:

Vn = k * 0 * Fj * bj * D (7.7)

where A: = 1, 9  =0.85, Fj = 0.80*(_/ '̂) (MPa), D is the column depth, bj = effective 

column width. This leads the formula to be

K, = 0.68 * (/,')°-7° *bj *D (7.8)

Results obtained from application of this formula to the experimental database used in 

this study indicated that this formula is extremely inadequate. The AAE of this formula is 

about 90%. It is highly recommended not to use this formula in design of beam-eolumn 

joints, furthermore, the STDV of this formula is significantly high (0.29). It is believed 

that the reason behind this is that the formula does not represent the actual parameters 

governing the capacity of beam-column joints. The formula neglects the effect of the 

joint shear reinforcement and the joint aspect ratio.

An optimization process was conducted on this formula using genetic algorithms 

approach. The formula was modeled in the following format and then calibrated using 

the database of the study:

V̂  = C ^ f f ‘b,D (7.9)

The results of the optimization process indicated that the best obtained values for C; 

and C2 are 0.81 and 0.50 respectively, the resulted formula is almost the same one 

obtained from optimizing the fo9rmula proposed by the ACI-ASCE Committee 352 

(2002) as the parameters are the same in both formula. The formula will then become:

K, = 0 . 8 0 1 ( 7 . 1 0 )  

The AAE for this formula is approximately 36%. Although the optimization process 

significantly reduced the AAE value produced by the pre-optimized formula, still the
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modified formula is not reliable since it does not account for important parameters. 

Figure 7.2 represents a plot of calculated values versus actual experimental values for 

both the original and the optimized formulae with the optimized formula showing less 

scatter. This is also clear from the smaller value of STDV which is 0.47 for the modified 

formula.

i
f
I
1
a

Original Formula 

Optimized Formula
12

11

10

9
A M

8

7

6 A X
X m5

4

3

2
1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13
MeasuredShearStrength(MPa)

Figure 7.2. Response of original and optimized formulae of Architectural Institute of 
Japan (1998) equation in calculating the shear capacity of the joint

7.3.3 Proposed Formula

Based on the conducted studies using the genetic algorithms approach for optimizing 

the previously mentioned formulae, the following formula is proposed:

^Ud = Cl * hcbj * y [fi+  C2Âsjfy (7.11)

Optimizing this formula lead to the following form

Vud =  0.615 * hcbj *411 + 0-65Asjfy (7.12)
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The formula use is limited to the cyclically loaded interior beam-column joints with 

the following criteria: concrete compressive strength up to 70 MPa, planar specimens 

with no transverse beams, and specimens with L-bars beam tension beam reinforcement 

detail. This formula accounted for the joint transverse reinforcement, the joint 

dimensions, and the concrete compressive strength. Based on the genetic algorithms 

model, it is concluded that the effect of the axial stress of the column is insignificant and 

can be neglected. The reason behind this is because the value of column axial stress in 

most of the specimens is small which makes the contribution of this parameter to joint 

shear strength significantly small.

As noticed fi’om this formula, the formula accounted for only 70% of the joint 

reinforcement. This result is justified because the actual lever arm between the 

compression and tension forces in the joint can never be the hall depth of the beam. This 

formula managed to reduce the error percentage to 18% which is significantly small. 

Among all the GAs optimization processes, the proposed formula resulted in the lowest 

AAE. The formula also resulted in a small scatter (0.165) which is less than other 

formulae. This formula can be used in the evaluation of shear strength of exterior beam- 

column joints subjected to monotonie loading. Figure 5.5 represents a plot for the 

predicted versus the actual shear strength for the proposed formula.
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CHAPTER 8 

CONCLUSIONS

The aim of this thesis was to investigate the shear behavior of beam-column joints 

including the basic parameters controlling this behavior and the existing design formulae 

for the shear capacity. New formulae were also proposed for the sake of appropriate 

design of beam-column joints in two major cases namely; exterior monotonically loaded 

joints and interior cyclically loaded joints. Based on this study the following conclusions 

are provided;

1- Increasing joint shear reinforcement ratio improves the shear capacity of a beam- 

column joint, and the amount of effective joint stirrups to shear capacity is between 60% 

and 70% of the total amount of stirrups in the joint.

2- Concrete compressive is an important factor to the shear capacity of beam-column 

joints.

3-No significant effect was noticed for the column axial stress on the shear capacity 

of the joint. It is suggested that since all the specimens used in the database were 

designed to test the shear capacity of the joint, the axial loading level on the column was 

relatively small. The effect of higher column axial loading level could be more 

significant.

4- Two artificial neural networks were proposed for the two investigated cases. The 

models succeeded to realistically simulate the behavior of beam-column joint and capture
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the hidden relationships between the shear capacity and the investigated parameters.

5- A new formula is proposed using the genetic algorithm technique and the selected 

database for calculating shear capacity of exterior monotonically loaded beam-column 

joints. The formula is as follows:

.0.02

=  +0-60A,jfy (8.1)

The formula gave significantly small error and less scatter than other existing 

formulae. The AAE of the new formula is 12% and the STDV is 0.165.

6- A new formula is proposed using the genetic algorithm technique and the selected 

database for calculating shear capacity of interior cyclically loaded beam-column joints. 

The formula is as follows:

Vud = 0.615 * hcbj * 4 J I  + 0.6SAsjfy (8.2

The AAE of the new formula is 21%. This percentage is significantly smaller than the 

ones obtained by different design equations.

7-Increasing the beam longitudinal reinforcement ratio improves the shear capacity of 

beam-column joints due to its confinement effect on the concrete core of the joint. 

Enou^ embedment should be given to the beam tension longitudinal bars into the 

column to ensure the confinement action for the case of exterior joints.
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APPENDIX A 

Beam-Column Joints Database

Table 8. Database for monotonically loaded exterior beam-column joints

Nr Author Label
bb

(cm)
hb

(cm)
be

(cm)
he

(cm)
fc

(MPa)
Vj

(KN)

1 Kordina
(1984) RE4

20 30 20 20 30.6 195.136478

2 Sarsam and 
Phipps (1985) EX2

15.2 30.5 15.7 20.4 53.9 188.63268
3

Bosshard and 
Menn (1984)

R2 24 20 30 20 33 257.280952
4 R3 24 20 30 20 28.2 234.519048
5 R4 24 20 30 20 26.8 217.515873
6

Hoekstra
(1977)

1402 15 30 15 20 19.3 109.137359
7 1404 15 30 15 20 24.6 125.966184
8 1408 15 30 15 20 24.9 114.176006
9 1410 15 30 15 20 23.4 129.291948
10 1615 15 30 15 20 21.5 125.890151
11 1616 15 30 15 20 21.5 134.465161
12

Nilsson (1972)
T1 20 20 20 20 24.3 83.4510313

13 TI5 20 20 20 20 30.1 55.902682
14 TI4 20 20 20 20 25.2 79.7840358
15

Taylor (1974)

Pl/41/24 10 20 14 14 33 92.2895425
16 P2/41/24 10 20 14 14 29 96.0895425
17 P2/41/24A 10 20 14 14 46.5 135.89085
18 A3/41/24 10 20 14 14 27 95.4359477
19 B3/41/24 10 20 14 14 22 82.4104575
20 C3/41/24BY 10 20 14 14 31.7 77.5352941

105



21 C3/41/13Y 10 20 14 14 28.2 72.6825947
22 C3/41/24Y 10 20 14 14 59.5 126.208497
23 D3/41/24 10 20 14 14 53 139.794771
24 E3/41/24A 10 20 14 14 42.8 73.0993464
25 E3/41/24B 10 20 14 14 44.5 81.8640523
26 E3/41/24C 10 20 14 14 41.6 114.929412
27 4b 25 50 30 30 39.5 223.883895
28 4c 25 50 30 30 36.9 275.799001
29 Parker and 4d 25 50 30 30 39.5 243.35206
30 Bullman

(1997)
4e 25 50 30 30 40.3 259.575531

31 4f 25 50 30 30 37.8 297.014357
32 5b 25 50 30 30 43.8 382.873908
33 5f 25 50 30 30 43.8 522.395755
34 CIAL 11 21 15 15 30.2 103.432099
35 C3L 11 21 15 15 32.2 101.780247
36 C4 11 21 15 15 37.9 139.355556
37

Scott et al 
(1994)

C4A 11 21 15 15 40.6 149.366667
38 C4AL 11 21 15 15 32.4 133.365432
39 C6 11 21 15 15 36.3 102.297531
40 C6L 21 15 15 42.1 122.319753
41 Cl 11 30 15 15 31.9 94.5341564
42 C9 11 30 15 15 32.6 82.3308642
43 C6LN0 11 21 15 15 47.4 99.5111111
44 C6LN1 11 21 15 15 47.4 103.949383
45 C6LN3 11 21 15 15 45 120.467901
46 C6LN5 11 21 15 15 33.4 140.907407
47 Hamil (2000) C6LN1B 11 21 15 15 35.7 95.5901235
48 C6LN1T 11 21 15 15 36.5 112.208642
49 C6LN1TA 11 21 15 15 45 116.02963
50 C6LN2A 11 21 15 15 47.4 124.288889
51 C6LN2B 11 21 15 15 47.4 149.166667
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52 C6LN3A 11 21 15 15 42.7 132.648148
53 C6LN3B 11 21 15 15 48.2 157.525926
54 C6LN3C 11 21 15 15 44.2 145.345679
55 C4ALN0 11 21 15 15 38.8 112.208642
56 C4ALN1 11 21 15 15 41.9 140.907407
57 C4ALN3 11 21 15 15 38 145.345679
58 C4ALN5 11 21 15 15 46.6 165.785185
59 C4ALN1T 11 21 15 15 36.5 128.82716
60 C6L04SF 11 21 15 15 39.6 99.5111111
61 C6L04LF 11 21 15 15 30.4 95.5901235
62 C4AL04SF 11 21 15 15 32.7 128.82716
63 C4AL15SF 11 21 15 15 34.2 137.08642
64 C4AL04LF 11 21 15 15 30.4 145.345679
65 C4AL15LF 11 21 15 15 36.5 149.166667
66 C6LH0 11 21 15 15 99.1 149.166667
67 C6LH1 11 21 15 15 100 153.704938
68 C6LH3 11 21 15 15 94.7 170.223457
69 C7LN0 11 30 15 15 35 92.9880658
70 C7LN1 11 30 15 15 34.2 103.333745
71 C7LN3 11 30 15 15 36.5 123.402058
72 C7LN5 11 30 15 15 36.5 140.466667
73 C9LN0 11 30 15 15 37.3 86.6806584
74 C9LN1 11 30 15 15 35 86.3691358
75 C9LN3 11 30 15 15 33.4 98.472428
76 C9LN5 11 30 15 15 31.9 119.263786
77 C6LN1R 11 21 15 15 45 114.377778
78 C6LN1E 11 21 15 15 40.3 119.333333
79 BCJl 20 40 20 30 34 297292.69
80

Ortiz (1993) BCJ2 20 40 20 30 38 330396.73
81 BCJ3 20 40 20 30 33 344500.65
82 BCJ4 20 40 20 30 34 343536.6
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83 BCJ5 20 40 20 30 38 339516.99
84 BCJ6 20 40 20 30 35 339116.99
85

Hegger et al 
(2003)

RK4 15 30 15 20 51.7 346686.17
86 RK7 15 40 15 20 54.7 384729.42
87 RK8 15 30 15 20 38.6 422472.88
88 RK9 15 30 15 20 42.8 254241.19

Table 9. Database for cyclically loaded interior beam-column joints

Nr Author Label
bb

(cm)
hb

(cm)
be

(cm)
he

(cm)
fc

(MPa)
Vj

(KN)

1
Durrani and 

Wight (1982) XI 42 36.2 36.2 36.2 34.34 783.0134

2
Otani et al 

(1984)

J4 30 30 30 30 25.7 353.2385
3 J5 30 30 30 30 28.74 421.4073
4 J6 30 30 30 30 28.74 309.6821
5

Meinheit and 
Jirsa (1977)

U1 45.8 33.1 33.1 33.1 26.21 762.6102
6 U2 45.8 33.1 33.1 33.1 41.79 1115.585
7 U3 45.8 33.1 33.1 33.1 26.62 854.1221
8 U5 45.8 33.1 33.1 33.1 35.86 1072.012
9 U6 45.8 33.1 33.1 33.1 36.76 1154.809
10 U12 45.8 33.1 33.1 33.1 35.17 1357.441
11 U13 45.8 33.1 33.1 33.1 41.31 1085.084
12

Walker (2001)

PEER# 50.9 40.7 40.7 40.7 31.77 858.2053
13 PEER22 50.9 40.7 40.7 40.7 38.41 1154.882
14 PEER0995 50.9 40.7 40.7 40.7 60.46 1335.351
15 PEER4150 50.9 40.7 40.7 40.7 32.99 1800.7

16 Park and 
Ruitiong (1998) U4 45.7 30.5 30.5 30.5 40.1 472.5013

17 Nouguchi and J1 30 30 30 30 70 907.928
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18 Kashiwazaki
(1992)

J4 30 30 30 30 70 958.7247
19 J5 30 30 30 30 70 943.3283
20 J6 30 30 30 30 53.5 836.0909
21 Oka and 

Shiohara (1992)
JIO 30 30 30 30 39.2 739.683

22 J ll 30 30 30 30 39.2 875.5431

23 Kitayama et al 
(1987) J6 30 30 30 30 25.69 314.8395

24 Park and 
Milbum(1983) U2 45.7 30.5 30.5 30.5 46.9 877.9709

25
Endoh et al 

(1991)

HLC 30 30 30 30 40.6 486.4731
26 LAI 30 30 30 30 34.81 613.7374
27 A1 30 30 30 30 30.6 576.0872
28

Higashi and 
Ohwada (1969)

SD35Aa-4 30 20 20 20 30.3 118.986
29 SD35Aa-7 30 20 20 20 38.05 114.87
30 SD35Aa-8 30 20 20 20 38.05 118.986

31 LSD35Aa-
1 30 20 20 20 41.09 115.7847

32 LSD35Aa-
2 30 20 20 20 41.09 110.7493

33 LSD35Ab-
1 30 20 20 20 41.09 114.184

34 LSD35Ab-
2 30 20 20 20 41.09 106.4

35 Atalla and 
Agababian 

(2004)

SHCl 20.3 12.7 12.7 12.7 56.54 53.8608
36 SHC2 20.3 12.7 12.7 12.7 59.55 53.22714
37 S0C3 20.3 12.7 12.7 12.7 47.2 50.69252
38 Teraoka et al 

(1997)
HJ4 40 40 40 40 53.98 965.1939

39 HJ6 40 40 40 40 53.98 1092.387
40

Hayashi et al 
(1994)

N044 40 40 40 40 54.27 838.9312
41 N045 40 40 40 40 54.27 998.8635
42 N047 40 40 40 40 54.27 965.1939
43 N048 40 40 40 40 54.27 1127.93
44 N049 40 40 40 40 54.27 1425.341
45 NO50 40 40 40 40 54.27 1091.453
46 Zaid (2001) SI 30 30 30 30 24.02 168.1613
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47 S2 30 30 30 30 24.02 181.9828
48 S3 30 30 30 30 24.02 301.7689
49

Joh Goto and 
Shibata (1991)

B1 35' 30 30 30 21.2 242.3053
50 B2 35 30 30 30 22.54 262.1649
51 B8HH 35 30 30 30 25.61 263.2828
52 B8HL 35 30 30 30 27.41 275.4343
53 B8LH 35 30 30 30 26.9 275.4343
54 B8MHY 35 30 30 30 28.11 263.2828
55

Fujii and Morita 
(1991)

A1 25 22 22 22 40.22 237.1404
56 A2 25 22 22 22 40.22 220.2043
57 A3 25 22 22 22 40.22 237.1404
58 A4 25 22 22 22 40.22 241.98
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