
UNLV Retrospective Theses & Dissertations

1-1-2008

Implementation of recursive queries for information systems Implementation of recursive queries for information systems

Jayalakshmi Jeyaraman
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Jeyaraman, Jayalakshmi, "Implementation of recursive queries for information systems" (2008). UNLV
Retrospective Theses & Dissertations. 2373.
http://dx.doi.org/10.25669/311a-axnf

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/311a-axnf
mailto:digitalscholarship@unlv.edu

IMPLEMENTATION OF RECURSIVE QUERIES FOR INFORMATION

SYSTEMS

by

Jayalakshmi Jeyaraman

Bachelor of Engineering in Computer Science
Sri Venkateswara College of Engineering, India

June 2006

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

August 2008

UMI Number: 1460530

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1460530

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

JULY 7TH _,200^

The Thesis prepared by

JAYALAKSHMI JEYARAMAN

Entitled

IMPLEMENTATION OF RECURSIVE QUERIES FOR INFORMATION SYSTEMS

is approved in partia l fu lfillm en t o f the requirements fo r the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Examination Committee Member

G — -

Examination Committee MÈmber

S rad^e College Faculty Representative

Examination Committee Chair

Dean o f the Graduate College

11

ABSTRACT

Implementation of Recursive Queries for Information Systems

by

Jayalakshmi Jeyaraman

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

Sophisticated information systems require a powerful query language and an

efficient implementation strategy. In practice, these information systems are either

built on the top of an existing database management system or built as an expert

system with deductive capabilities. Both of these implementations must provide a

mechanism to express recursive queries. It is therefore a necessity for the system

to have an efficient algorithm to evaluate these queries. In this thesis, we give a

detailed description of a bibliographic database, a set of recursive queries, an

overview of some standard query processing algorithms, and an implementation

of these queries in DATALOG.

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF FIGURES.. vi

ACKNOWLEDGEMENTS..vii

CHAPTER1 INTRODUCTION..1
1.1 Logic databases..2
1.2 Syntax of a logic database.. 3
1.3 Interpretation of a logic database... 3
1.4 An example ... 5
1.5 Structuring and representing the database...6
1.6 Dependency graph and recursion.. 7
1.7 Properties of queries... 9

CHAPTER 2 EVALUATION AND OPTIMIZATION OF RECURSIVE LOGIC
QUERIES.. 12
2.1 Converting an SOL query to datalog program... 12
2.2 Fixed points of datalog equations.. 13
2.3 Top down vs. bottom u p ..15
2.4 Naive evaluation...16
2.5 Semi-naive evaluation.. 19
2.6 Comparison between naive and semi-naïve.. 21
2.7 Magic s e ts .. 22

2.7.1 Sideway information passing (S IP)..23
2.7.2 Magic sets transformations.. 23

CHAPTER 3 CONCEPTBASE...26
3.1 What is conceptBase?.. 26
3.2 The telos language.. 27
3.3 Frame and network representation.................. 28

3.3.1 Naming axiom.. 29
3.3.2 Specialization axiom... .. 31
3.3.3 Instantiation axiom... 31

3.5 Query classes and constraints..34
3.6 Query evaluation strategy... 35
3.7 An example..36

iv

3.7.1 Class Level..36
3.7.2 Defining attributes of classes... 37
3.7.3 The token leve l.. 38
3.7.4 Adding deductive ru les ...42
3.7.5 Adding integrity constraints:... 44
3.7.6 Defining queries...44

CHAPTER 4 EVALUATION AND OPTIMIZATION OF LOGIC QUERIES ON
BIBTEX DATABASE USING CONCEPT BASE... 46
4.1 Tables.................. 46

4.1.2 The PARENTJD table...47
4.1.3 The RELATIONSHIP table.............................. 47

4.2 An example... 48
4.3 Queries.. 56

CHAPTER 5 CONCLUSION AND FUTURE WORK... 81
5.1 Conclusion...81
5.2 Future work..82

REFERENCES.. 83

VITA ... 84

V

LIST OF FIGURES

Figure 1. 1 Rule/goal G raph...8
Figure 1. 2 Simplified Rule/goal Graph................. 10
Figure 2. 1 Parent/Ancestor Relationships ...21
Figure 4. 1 Representation of example...48
Figure 4. 2 Representation of Example ... 73

VI

ACKNOWLEDGEMENTS

I would like to thank my committee chairman and advisor Dr. Kazem

Taghva, through whose patience, understanding, and valuable advice, this work

has been accomplished. I would also like to express my gratitude to Dr.Ajoy K

Datta who helped me in all my endeavors at UNLV and Dr. Wolfgang Bein

,with whom I have had many different interesting conversations when I served as

his TA for being my committee members. I would like to thank Dr Emma

Regentova who has accepted my request to serve as my graduate college

representative

I would like to thank my husband & my loving family for their encouragement

and motivation. I would like to thank my friends for their support. To all of them, I

dedicate this work.

VII

CHAPTER 1

INTRODUCTION

Deductive database systems are those which express queries by means of

logic rules. These database systems may be viewed as an advanced form of

relational database systems. At present most of the information systems are built

on top of these systems as they are more expressive and provide better features

that support recursive queries. Relational database systems are not that

expressive and do not have mechanisms that support recursive query

processing. Evaluating queries, in particular the recursive queries of deductive

database systems is an open challenge. Datalog is the language typically used to

specify facts, rules and queries in deductive databases. Deductive databases try

to combine logic programming with relational databases. Deductive databases

are more expressive than relational databases but less expressive than logic

programming systems. But the advantage of using Datalog over logic

programming is that it does not process one tuple at a time as logic programming

does, rather it processes a set of tuples at a time. To evaluate recursive queries

using Datalog we need to know the basics of logic databases. Most of the

examples in this chapter are from the article “An Amateur’s Introduction to

Recursive Query Processing Strategies” by Francois Bancilhon and Raghu

Ramakrishnan

1

1.1 Logic databases

Deductive or logic databases have become the main field of research in

recent times. The main features of these systems are (i) capability to express

queries by means of logical rules (ii) provide efficient algorithms to evaluate

recursive queries (iii)provide efficient optimization techniques. A database is a

set of unordered rules. Given a database we can partition it into a set of rules

and a set of facts. The set of facts are known as extensional database and a set

of rules are known as intensional database. Deductive databases also divide

their information into two categories namely, data and rules. Data or facts are

represented by a predicate with constant arguments. For example the fact

‘parent (cain, adam)’ means that Adam is the parent of Cain. Flere ‘parent’ is the

name of a predicate, and the fact ‘parent (cain, adam)’ is represented

extensionally, that is, this is a true value that is stored in the database. Rules are

generally represented as

p: -q i , P2....................qn

Here p and the qi’s are literals. A literal is of the form p (ti, tz tp) where ‘p’ is a

predicate of arity ‘n’ and each t, is a constant or a variable .Here ‘p’ is called the

head of the rule, and each of the qi’s is called a goal. The conjunction of the qi’s

is the body of the rule .For example “uncle Qohn, X) - brother(X, Y), parent (John,

r) “is a rule with head “uncle (John, X)” and body “brother(X, Y), parent (john, Y)” .

A ground clause is a rule in which the body is empty and a fact is a ground

clause with no variables. A predicate whose relation is stored in the database is

called as Extensional Database (EDB).

1.2 Syntax of a logic database

There are four types of names associated with logic database. They are the

(i) variable names (ii) constant names (iii) predicate or relation names and (iv)

evaluable predicate names. The syntax for naming these variable names is as

follows. Variable names are a string of characters starting with upper case letter

and the other characters are either upper or lower case letters. Constants are a

string of characters starting with lower case letters or integers. For example X

and Y are variables whereas abel and adam are constants. Predicate names and

relation names are denoted by identifiers starting with lower case letters. The

term relation is from database terminology and it is interpreted by a set of tuples

and predicate is from logic terminology and it is interpreted by a true/false

function. There is a fixed arity associated with each relation/predicate. An

instantiated literal is one that does not contain any variables. For example

"id (john, 25) "is an instantiated literal whereas "id Qohn, age) "is not.

If p (ti, t2 tn) is a literal, we call (ti, t2 tp) a tuple.

1.3 Interpretation of a logic database

We have till now seen the syntactical explanation of logic databases. Now

we move on to the semantic interpretation. We try to associate a set of

instantiated tuples with each relation name. We assume that with each evaluable

predicate ‘p’ is associated a set natural (p) of instantiated tuples which we call its

natural interpretation. For example, an infinite set of 3-tuple (x, y, z) of integers

can be associated with predicate ‘sum’ such that the sum m of x and y is z can

have infinite values.

A model of a database is obtained by assigning truth values to all variables

that makes all rules true. For example consider the following set of rules

p(x):- q(x)

q(x):- r(x)

Assume that r (1), q (1), p (1), p (2), q (2), p (3) are true and all others are false,

is a valid model. The assumption r (1) is true and all others are false is an invalid

model. The interpretation of this is that, in a model if the right hand side is true

then the left hand side is also true. So assume values to variables that make all

rules true. A rule can be understood as if the body of the rule is true then the

head is also true. For a given database, there may be many models, but a nice

property of Horn clause is that there is only one minimal model which we call as

the model of that database. A minimal model is a model such that none of its

subset is a model. Therefore a model or an interpretation of a database always

means the minimal model of the database. In this example r (1), q (1), p (1) is the

minimal model for r (1).

Next we shall see what adornment o f a predicate is. Let p be an n-ary

predicate. An adornment of p is a sequence ‘a’ of length ‘n’ of b’s and fs . For

example bbf is an adornment of a ternary predicate. An adornment is to be

interpreted as follows, ith variable of ‘p’ is bound (respectively free) if the ith

element of ‘a’ is b (respectively f). We denote adornments by superscripts. A

query form is represented as id* *̂.

1.4 An example

To understand more let us look into a logic database. The facts and the

rules of a logic database are given as:

Facts:

parent (cain, adam)

parent (abel, adam)

parent (cain, eve)

parent (abel, eve)

Rules:

ancestor (X, Y) - ancestor(X, Z), ancestor (Z, Y)

ancestor (X, Y) - parent(X, Y)

generation (adam, 1)

generation (X, I) - generation(Y, J), parent(X, Y), J=l-1

generation (X, I) - generation (Y, J), parent(Y, X), J= 1+1

In this database, parent, ancestor and generation are the set of predicates or

relation names. J=l+1 and J=l-1 are arithmetic predicates, cain, adam, eve and

abel are constants. X, Y, Z are variables and “parent (cain, adam)” is a fact, and

“ancestor(X, Y) - parent(X, Y)” is a rule. We now try to associate meaning with

the database. We try to map the constants to a real world objects. Imagine Abel

to be the name of a person. The arithmetic predicates are mapped to their

respective arithmetic operators. We can intuitively interpret each fact and each

rule. For Instance we interpret the fact “parent (cain, adam)”, by saying that the

rule parent hold for cain and adam and we interpret the rule “ancestor (X, Y) -

ancestor(X, Z), ancestor (Z, Y)” by saying that if there are three objects X, Y and

Z such that if “ancestor(X, Z)” is true and “ancestor (Z, Y)” is true then

“ancestor(X, Z)” is true. Then we associate with each predicate a set of tuples.

Now we have to answer queries of the form ancestor (abel, X). For this we have

to know the structure and representation of the logic database and understand

what recursion is. They are explained in the next sections.

1.5 Structuring and representing the database

There are several ways of representing the logic database. A predicate that

appears only in the intensional database is referred as derived predicate. A

predicate that appears only in the extensional database or in the body of the rule

is knows as base predicate. Any given database can be modified into its

equivalent containing only base and derived predicates. Flaving done this there

are different methods of representing the set of rules, here we choose rule/goal

graphs. This graph has two set of nodes square nodes that are associated with

predicates, and oval nodes that are associated with the rules. If rule is of the form

r: p - Pi, p2 Pn

in the intensional database, then there is an arc going from node r to node p,

and for each predicate p1 there is an arc from node p1 to node r.

For example consider the rules

r1:p1 - p3, p4

r2 :p 2 -p 4 , p5

r3:p3 - p6, p4, p3

r4:p4 - p5, p3

r5 :p 3 -p 6

r6:p5 - p5, p7

The rule/goal graph is given in Figure 1.1. Flere we can clearly see that there is

an arc from r1 (p1-p3, p4) represented in an oval to p i represented in a square.

This is known as a rule/goal graph. Now we have to know what recursive

queries are in order to solve them. In the next section we will see what recursion

is and how the logic databases that involve recursive queries are represented

using rule/goal graph.

1.6 Dependency graph and recursion

It is necessary to understand how the predicates in a logic program

depend on one another. Dependency graph exhibits the dependency among the

predicates. The nodes of the graph correspond to the predicates and there is an

arc from predicate p to predicate q if there is a rule whose head is predicate p

and body is predicate q. Hence the presence of a loop in the dependency graph

suggests that the rule is recursive. For non recursive rules the graph is acyclic.

Recursive rules are those that involve recursion. We say a rule is recursive if it is

of the form,

ancestor (X, Y) - ancestor (X, Z), parent (Z, Y)

We say that a rule is linear, if it is recursive and the recursive predicate appears

only once on the right hand side. This is sometimes referred to as regularity. For

example sg (X, Y) - p(X, XP), p(Y, YP), sg(XP,YP)

is linear and

ancestor (X, Y) - ancestor (X, Z), ancestor (Z, Y)

is non-linear. Now consider another database with rules

p(X , Y)-a 1 (X , Z),q (Z, Y)

q (X, Y) - p(X, Z), a2 (Z, Y)

J L

p3 -p6p5 - p5, p7 p5 - p6 p3 -p6, p4,

p4 - p5, p3 p2 -p4, p5 p i - p3, p4

Figure 1. 1 Rule/goal Graph

According to the above discussions they are not recursive but we can clearly

see that both predicates p and q are recursive. So in a multi-rule context if p and

q are the two predicates, we say p derives q if p ^ q occurs in the body of the

8

rule whose head predicate is q. A predicate p is said to be recursive if p-^+p.

Two predicates p and q are mutually recursive if p->+q and q-^+p. Thus we say

that two predicates may be mutually recursive if and only if the predicates in

their heads are mutually recursive. So now we can modify the rule/goal graph to

describe the non-recursive part by grouping the mutually recursive predicates

and isolating the recursive parts. Now the squares will be associated with non

recursive predicates or with blocks of mutually recursive predicates and oval

nodes are associated with non-recursive rules or with blocks of mutually

recursive rules. The representation for the previous database is given in

Figure 1.2.

1.7 Properties of queries

Safety and range restriction are the two properties of queries. Given a

database and a set of queries we always want to ensure that the queries are

safe. It is undesirable to have unsafe queries. If q is a set of queries in a

database D, we say that q is safe in D if the answers to q are finite. There are

two kinds of unsafe queries

(i)The arithmetic predicates are often unsafe. Consider the query

“greater than (27, X)”, is unsafe as X can have infinite number of values as

answer.

(i)The rules with free variables in the head which do not appear in the body

are unsafe. For example a query “likes (joe, X)” is unsafe because, in the

minimal model of the database “likes (joe, X)” is true for every integer X.

9

p3 - p6, p4, p3
p4 - p5, p3p5 -p5, p7 p5 -p6 p3 -p6

p2 - p4, p5 pi - p3, p4

p3p4

Figure 1. 2 Simplified Rule/goal Graph

Next we will see what is range restricted. A rule is range restricted if every

variable of the head appears somewhere in the body. For example “likes Coe, X)”

is not range restricted. A set of rules will be range restricted if every rule in this

set is range restricted. If all the evaluable predicates have finite set of tuples

associated with it then it is guaranteed to be safe.

Hence before we try to evaluate the queries we have to ensure that they

are safe and finite. Thus we have seen the syntax and the semantics of logic

databases, their interpretation, an example to explain them in detail, the structure

and representation of these databases, what is recursion and safety of queries.

10

Given the logic database the problem now is to answer recursive queries of the

form “ancestor (cain, X)”. For this we have to know the different evaluation and

optimization techniques .The following chapter will give a detailed explanation of

the available techniques and how each one of them is better than the other.

11

CHAPTER 2

EVALUATION AND OPTIMIZATION OF RECURSIVE LOGIC QUERIES

Safe, queries are not guaranteed to be evaluable. We can in fact specify

that the user should ensure that his query is safe. There are different strategies

to deal with logic queries. Strategies are defined based on the application domain

and the algorithms that are available to reply to queries. The first class of

strategies consists of actual evaluation algorithms. Given a query it gives an

answer to the query, for example naive evaluation and semi-naive evaluation.

The second class assumes that the underlying evaluation is either naive or semi-

naive and then optimizes the rules to make their evaluation more efficient for

example, counting and reverse counting and magic sets. We know how to

evaluate SQL queries. Converting an SQL query to a datalog program will help

us to understand datalog programming better. In this chapter let us see how to

convert an SQL query to a datalog program, and then we will look into fixed point

evaluation of datalog queries and then naive, semi-naive and magic set

evaluation. Most of the examples in this chapter are from the book “Principles of

Database and Knowledge-base systems” by J.D.UIIman.

2.1 Converting an SQL query to datalog program

Consider two relations

12

(i)Beers (name, manufacturer)

(ii)Sells (bar .beer .price)

The first relation contains the name and manufacturer of beer. The second

relation details about the bars that sell beer and their corresponding prices.

Query is to find the manufacturers of the beers that Joe sells. In SQL it is

expressed as

SELECT manufacturer

FRQM Beers

WHERE name IN (

SELECT beer

FRQM Sells

WHERE bar = ‘Joe’s Bar’

):

In datalog this is expressed as

JoeSells (b) -^Sells ('Joe's Bar’, b, p)

Answer (m) JoeSells (b). Beers (b, m)

Here Beers and Sells are Extensional Database (EDB), Answer and JoeSells are

Intensional Database (IDB).

2.2 Fixed points of datalog equations

Fixed points of datalog equations are obtained when we substitute values

for the predicates such that the body and the head of the equation are equal.The

fixed points are not always unique for a given equation. We have already seen in

13

section 1.3 about model and the minimal model of a database. So the unique

minimal model that contains the EDB’s is the unique minimal fixed point with

respect to those EDB’s.

Let there exist relations R1, R2....Rk with EDB predicates r1, r2, r3....rk

and set of IDB predicates p1, p2, p3....pm with variables P1, P2, P3 ...Pm. Now

to obtain the fixed point assign the EDB relations R1, R2 Rk to the IDB

variables P1, P2, P3 Pm such that the equations are satisfied. Suppose there

are two solutions to the equations then we should be able to form some form of

logical relationship between them. If S1 and S2 are the two solutions and if S2<=

SI then S2 is a subset of S1. In general we can say SO as the minimal fixed point

if there is no other S, such that S<=SO. If there is no such SO, then the equation

does not contain least fixed point.

Let us consider an example to understand this. A graph is represented by

an EDB predicate arc(X, Y); arc(X, Y) is true if and only if there is an arc from X

to Y. We have the following set of rules

path (X, Y):- arc (X, Y)

path (X, Y):- path(X,Z), path (Z,Y)

Here the first rule states that a path can be a single arc and the second rule

states that the concatenation of two paths yields to a path. We can convert these

rules into a single equation

P(X, Y) = A(X, Y) U TT X, Y (P (X, Z) M P (Z, Y))

Now if the nodes are {1, 2, 3} and there is an arc from 1 to 2 and from 2 to 3

then A= {(1, 2), (2, 3)} .From rule 1 we can say that P = {(1, 2), (2, 3)} and from

14

the rule 2, (1, 3) Is added to P. So now P = {(1, 2), (2, 3), (1, 3)} is a solution to

the above equation. Let us consider the right hand side of the equation,

t t x , y (P (X , Z)) x i P (Z , Y))

When we substitute the values, {(1, 2), (2, 3), (1, 3)}m {(1, 2), (2, 3), (1, 3)}, the

join on the right gives a tuple (1, 2, 3) over the distribution list (X, Z, Y) and the

projection of X, Y on this yields (1, 3), and the union over A gives {(1, 2), (2, 3),

(1, 3)} which is equal to L.H.S. Thus {(1, 2), (2, 3), (1, 3)} = {(1, 2), (2, 3)} U tt x, y

({(1, 2), (2, 3), (1, 3)} {(1, 2), (2, 3), (1, 3)}).0n the other hand when P = {(1, 2),

(2, 3), (1, 3), (3,1)}, the join on the right yields a tuple (3,2) that is not there in the

left hand side so this is not a solution.

Next we will look into a model that is not a fixed point. Consider P= {(1, 2)}.

Here the two rules are true irrespective of the values substituted for them. But P

(1, 2) does not satisfy the equation. Therefore P= {(1, 2)} is not a fixed point of

the equation with respect to EDB A=null.

2.3 Top down vs. bottom up

The evaluation strategies are classified into top-down and bottom-up. The

top-down or backward chaining strategy starts with the query as a goal and

expands from the head to the body of the rule and forms more goals. The beauty

is that none of these goals formed are irrelevant to the query. However some of

the goals may lead us to a point where we cannot proceed further. This happens

because the possible solutions to the query may not be there in the database.

The bottom-up or forward chaining strategy starts from bodies of the rules to their

15

heads and continue evaluating until the required query is generated. Top-down

may be efficient as the query is known but they are very complex. Bottom-up on

the other hand are simpler, but they evaluate a lot of useless results as they do

not know what they are evaluating. The bottom-up evaluation ensures that the

set of values for body variables is finite at each step; however there may be

infinite number of steps. For recursive queries bottom-up evaluation proves to be

better since each step produces a finite answer and we can make use of already

computed values. Both these evaluation techniques in fact do the following

(i)generate the goals

(ii)while the goals are generated, evaluate them against the rules and

(iii)At each step, check for the termination conditions

Termination condition is reached when the new goal generated is empty or

it has been already evaluated. For recursive queries bottom-up approach serves

to be better. So we try to evaluate the recursive queries using bottom-up

approach (naive and seminaive) and optimize using magic sets. Now let us see

how the naive, seminaive and magic set works.

2.4 Naive evaluation

Naive evaluation is a bottom-up approach. For a given set of rules and a

query, start with a rule where the predicate of the query is the head of the rule

and the body of the rule is a base predicate i.e. an EDB relation whose value is

stored in the database. Let us see an example to understand better

16

Facts:

parent (a, aa)

parent (a, ab)

parent (aa, aaa)

parent (aa, aab)

parent (aaa, aaaa)

Rules and query:

r1:ancestor(X, Y) - parent(X, Z), ancestor (Z, Y)

r2:ancestor(X, Y) - parent (X, Y)

r3:query (X) - ancestor (aa, X)

The datalog equation for these set of rules is given as

A(X, Y) = P (X, Y) U TT X . Y {A (X, Y) M A (Z, Y))}

Here we need to evaluate the rules to find the ancestor of aa. The algorithm is

begin

initialize ancestor to the empty set,

evaluate (ancestor (X, Y) -parent (X, Y)),

insert the result in ancestor,

while “new tuples are generated” do

begin

evaluate (ancestor (X, Y)— parent(X, Z), ancestor (Z, Y))

using the current value of ancestor, insert the result in ancestor

end

evaluate (query (X) - ancestor (aa, X)) and insert the result in query

17

end

Solving using the above algorithm for the given facts and the rules:

Step 1 : Apply r1

ancestor = { (a,aa), (a,ab), (aa, aaa) ,(aa, aab),(aaa, aaaa)}

query = {}

Step 2: Apply r2

Evaluating the whole set of ancestors the following tuples are generated,

ancestor = {(a, aaa), (a, aab), (aa, aaaa)}

And the resulting state is

ancestor = {(a,aa), (a, ab), (aa, aaa),(aa, aab), (aaa, aaaa) ,(a, aaa),

(a, aab), (aa, aaaa)}

query = {}

Step 3: Apply r2

Again evaluating the whole set of ancestor the following tuples are generated {(a,

aaa), (a, aab), (aa, aaaa), (a, aaaa)}

The new state is

ancestor = { (a,aa),(a,ab),(aa, aaa), (aa, aab) ,(aaa,aaaa) ,(a, aaa),(a, aab) ,(aa,

aaaa), (a, aaaa)}

query= {}

Because (a, aaaa) is new, we continue

Step 4: Apply r2

Again evaluating the whole ancestor set the following tuples are generated

{(a, aaa), (a, aab), (aa, aaaa), (a, aaaa)}

1 8

Because there are no more new tuples the state does not change and we move

to r3.

Step 5: Apply r3

Next we evaluate the query rule and the following tuples are produced in query

{(aa, aaa), (aa, aaaa)}. Now the ancestor becomes

ancestor= {(a, aa), (a, ab), (aa, aaa), (aa, aab), (aaa, aaaa), (a, aaa), (a, aab),

(aa, aaaa),(a, aaaa)}

query = {(aa, aaa), (aa, aaaa), (aa, aab)}

the algorithm terminates.

2.5 Semi-naive evaluation

Semi-naive is very similar to the naive evaluation except that it tries to

reduce the number of duplications. At looping it tries to be smarter. The basic

mechanism is that, it tries to evaluate only new tuples that are generated rather

than evaluating the whole set of tuples. This tries to remove the disadvantage of

bottom-up approach of generating useless tuples.

Now we shall look into the optimization techniques. The main drawback of naive

evaluation method is

(i)Relevant facts are too big

(ii) A lot of duplicate computations are generated

For example consider the facts and rules used in the above section. Let us

evaluate it using semi-naive method. The main principle of this method is the

evaluation of the differential of the obtained set rather than the whole set.

19

The datalog equation of the above example is

A(X, Y) = P (X, Y) U TT X, Y {A (X, Y) join A (Z, Y))}. Semi naive is nothing but

incremental evaluation of least fixed points of this equation. Let us see how we

perform semi-naive evaluation for the above example.

Step 1 ; Apply r1

ancestor = { (a, aa), (a, ab), (aa, aaa) ,(aa, aab),(aaa, aaaa)}

query = {}

Step 2: Apply r2

Evaluating the ancestor set we have:

d_ancestor_1 = {(a, aaa), (a, aab), (aa, aaaa)}

old_ancestor_1 is

old_ancestor_1 = {(a,aa), (a,ab), (aa, aaa) ,(aa, aab), (aaa,aaaa)}

new_ancestor_1 =old_ ancestor_1 U dancestor l

new_ancestor_1 ={(a, aa), (a, ab), (aa, aaa),(aa, aab), (aaa, aaaa),(a, aaa), (a,

aab), (aa, aaaa)}

query = {}

Step 3: Apply r2

Here we no more evaluate among the old_ancestor_1 set. We evaluate

new_ancestor_1 and the dancestor l , and the tuple generated is

dancestor_2= {(a, aaaa)}

new_ancestor_2 =new_ancestor_1 U dancestor_2

new_ancestor_2 ={(a, aa),(a, ab),(aa, aaa), (aa, aab) ,(aaa, aaaa) ,(a, aaa),(a,

aab) ,(aa, aaaa), (a, aaaa)}

2 0

query= {}

Step 4; Apply r2

Now we evaluate new_ancestor_2 and dancestor_2 and we get d_ancestor_3 .It

is as an empty set.

Step 5: Apply r3

Next we evaluate the query rule and the following tuples are produced in query

{(aa, aaa), (aa, aaaa)}. Now ancestor becomes

ancestor= {(a, aa), (a, ab), (aa, aaa), (aa, aab), (aaa, aaaa), (a, aaa), (a, aab),

(aa, aaaa), (a, aaaa)}

query = {(aa, aaa), (aa, aaaa), (aa, aab)}

algorithm terminates.

2.6 Comparison between naive and semi-naïve

The above relation can be expressed

a
\

aa ab

aaa aab

aaaa

Figure 2. 1 Parent/Ancestor Relationships

2 1

Facts Rules and query

parent (a, aa)r1 : ancestor(X, Y) - parent(X, Z), ancestor (Z, Y)

parent (a, ab)r2: ancestor(X, Y) - parent (X, Y)

parent (aa, aaa)r3: query (X) - ancestor (aa, X)

parent (aa, aab)

parent (aaa, aaaa)

Let us see how naive and semi naive evaluation work on these.

NaiveEvaluation Seminaive Evaluation

Step (D S teo (1)

ancestor = { (a,aa), (a,ab), ancestor = { (a,aa), (a,ab),

(aa, aaa) ,(aa, aab),(aaa,aaaa)} (aa, aaa) ,(aa, aab),(aaa,aaaa)}

Step (2) Step (2)

Iteration T. Iteration 1:

ancestor = {(a, aaa),(a, a a b), ancestor = {(a, aaa),(a, a a b),

(aa, aaaa)} (aa, aaaa)}

Iteration 2: Iteration 2:

{(a, aaa), (a, aab), (aa, aaaa),{(a, aaaa)}

(a, aaaa)}

Iteration 3: Iteration 3;

No new tuples No new tuples

2.7 Magic sets

The main idea of magic sets is to define a filter table that computes all

2 2

relevant values and restrict the computation to infer only tuples with relevant

values in the first column. When the queries contain bound arguments, magic set

is the best optimization technique. It tries to restrict the bottom-up evaluation of a

logic program to those facts that are “potentially relevant” with respect to the

query. A magic set transformation starts with a datalog program, a query with

bound arguments, and an order to pass the query binding recursively from the

rule head to body. Within a rule body, sideway information passing will occur for

a fixed ordering of subgoals. A magic predicate is then defined for each of the

differently bound version of a subgoal predicate so that only the tuples those are

possible for the bound arguments are computed. Let us first see what is side way

information passing (SIP).

2.7.1 Sideway information passing (SIP)

It is the decision on how to pass information sideways in the body of the

rule when we are evaluating the rule. It specifies how the bindings in the head of

the rule will be used and the order in which the sub goals in the body will be

evaluated and how bindings will be passed between the predicates in the body.

2.7.2 Magic sets transformations

The idea behind the magic sets technique is to compute an auxiliary

predicate called “magic predicate” for each intensional database predicate in the

original program. The magic predicate collects the bindings from all runtime goals

for the associated predicate. The rules of the program are rewritten using the

magic predicates so that “irrelevant” tuples are not generated during a bottom-up

evaluation. A tuple is considered irrelevant if it is not an answer to any runtime

23

goal. Thus magic-sets transformation makes a bottom-up evaluation as efficient

as top-down by avoiding the generation of irrelevant tuples. The magic sets

transformation is defined on adorned programs (explained in section 1.3) and is

guided by SIPs. For a given adorned program, an adorned query goal q°, and full

SIPs for each rule the magic sets produces a magic program as follows

(i)Create a new magic predicate "magic predicate" for each derived predicate

in adorned program.

(ii) For each rule r in adorned program, add a modified version of r to magic

program. If rule r has head p (t), where t represents all arguments for the

head predicate p, then the modified version is obtained by adding

magic predicate (t^) into the body of r, where t^ denotes all bound

arguments of p (t).

(ill) For each rule r in adorned program with head p (t) and for each subgoal q,

(ti) where q is a derived predicate, add a magic rule to magic program. The

head is mqi (L^). The body contains the literal magic_predicate(t'^) and all

the subgoals preceded by q in the SIPs order associated with r.

(iv) Create a fact mq (c), where c is the set of constants equated to the set of

bounded arguments.

Let us see how to perform magic transformation for the above example

using the above mentioned steps.

The set of rules are

r1 : ancestor(X, Y) - parent(X, Z), ancestor (Z, Y)

r2: ancestor(X, Y) - parent (X, Y)

24

r3: query (X) - ancestor (aa, X)

The adorned program and the adorned query are

r1 ; ancestoi^^ (X, Y) - parent(X, Z), ancestoi^^(Z, Y)

r2: ancestor^^ (X, Y) - parent (X, Y)

adorned query is q‘̂ .̂ The magic program is

r1: ancestor*^^ (X, Y) - magic_ancestor'^^(X), parent(X, Z), ancestoi^^(Z, Y)

r2: ancestor*’ ̂ (X, Y) - magic_ancestor‘̂ ^(X), parent (X, Y)

r3: magic_ancestor'^^ (Z) - magic_ancestor'^^ (X), parent (X, Y)

r4: magic_ancestor^^(aa)

Now we try to find software that will help us to perform the evaluation and

optimization of the recursive queries for a given database. There are many

developments in the field of deductive database. The paper “A survey of

research on deductive database “by Raghu Ramakrishnan and Jeffrey D Ullman

suggests many projects that implement these techniques. Some of them are

CORAL, ADITI, XSB, and ConceptBase. Each of these was developed by

different people at different universities. Out of these ConceptBase is the one

that uses SLDNF strategy with a cache system that works similar to the bottom-

up approach for evaluation of recursive queries and magic sets for optimization.

The next chapter explains in detail about ConceptBase.

25

CHAPTER 3

CONCEPT BASE

ConceptBase started its development in 1987 at the Universities of Passau

and Aachen. Versions have been distributed for research experiments since

early 1988. The stable distribution versions are V3.3, V4.1, V5.2 and V6.1 that

have been installed in more than five hundred sites worldwide and are seriously

used by a dozen research projects in Europe and the America. Conceptbase

seeks to combine deductive rules with semantic data model based on Telos. We

saw what deductive are rules in our previous chapters. Semantic data models

are those models that describe the database in terms of the kinds of entities that

exist in the database, their grouping and structural interconnections among them.

We will see what Telos is in this chapter. Conceptbase also provides support for

integrity constraint. It has been used in a number of applications at various

universities in Europe, and now being developed commercially. This chapter

contains most of the details from the site http://dbis.rwth-aachen.de/CBdoc/.

3.1 What is ConceptBase?

ConceptBase is a deductive object base management system based on

Telos data model. Telos is a conceptual modeling language that makes it well-

26

http://dbis.rwth-aachen.de/CBdoc/

suited for design and modeling applications. The key features distinguishing

ConceptBase from other extended DBMS and expert systems shells are:

• clean formal integration of deductive and object-oriented abstraction

• client-server architecture with wide-area Internet access

• equivalent logical, semantic network, and text frame representations

ConceptBase implements a version of the knowledge representation

language Telos, which combines properties of deductive and object-oriented

languages. Let us see Telos In detail in next section.

3.2 The telos language

Telos is a formal language for representing knowledge in a wide area of

applications. It integrates object-oriented and deductive features into a logical

framework. It is an experimental deductive object base management system,

based on Telos data model. Telos is structurally object-oriented framework

generalizes earlier data models and knowledge representation formalisms, such

as entity-relationship diagrams or semantic networks, and integrates them with

predicative assertions and temporal information. This combination of features

seems to be particularly useful in software information applications such as

requirements modeling and software process control. The following example is

used throughout this section to illustrate the language:

Company has employees, some of them being managers. Employees have

a name and a salary which may change from time to time. They are assigned to

27

derived from his department and the manager of that department.Thus the

recursive queries like finding the boss of an employee can be easily done.

3.3 Frame and network representation

Telos supports three different representation formats; logical, graphical

(semantic network) and a frame representation. Graphical and semantic formats

are based on the logical one. Logical representation also forms the base for

integrating a predicative assertion language for deductive rules, queries, and

integrity constraints into the frame representation.

Telos knowledge base (KB) is a finite set of interrelated propositions or objects.

KB = {P (oid, X , I, y, tt) |oid, x, y, tt € ID, I € LABEL}

where oid has key property within the knowledge base, ID is a non-empty set of

identifiers with a non-empty subset LABEL of names. The components oid, x. I, y,

tt are called identifier, source, label (or name), destination and belief time of the

proposition.

The object x has a relationship called I to the object y. This relationship is

believed by the system for the time tt. As shown below there is a natural

interpretation of a set of propositions as a directed graph (semantic network).

They distinguish four patterns of propositions and give them the following names:

(i)lndividuals

P (oid, oid. I, oid, tt)

(“oid is an object with name I believed tt")

(ii) InstanceOf P (oid,*instanceof,y,tt)

2 8

(“x is an instance of class y believed tt")

(ii)lsA

relationships (specializations)

P(oid, x,*isa, y, tt)and

("x is a specialization of y believed tt")

(iii)Attributes

(Ail other propositions)

As a user, you don't work directly with propositions but with textual (frame)

and graphical (semantic networks) views on them. Both are not based on the

oid's of objects but on their label components. To guarantee a unique mapping

we need the following naming axiom.

3.3.1 Naming axiom

The label (“name") of an individual object must be unique. The label of an

attribute must be unique within all attributes with a common source object.

In this section we introduce it by modeling the employee example:

Individual Employee in Class with

attribute

name: String;

salary: Integer;

dept: Department;

boss: Manager

end

Individual Manager in Class isA Employee end

29

Individual Department in Class with

attribute

head: Manager

end

Individual Mary in Manager, Token with

name

hername: "Mary Smith"

salary

earns: 15000

dept

advises: PR;

currentdept: RD

end

Individual PR in Department, Token end

Individual RD in Department, Token end

The next frames establish two departments labelled PR and RD and state

that the individual object “Mary” is an instance of the class Manager. Mary has

four of attributes labelled hername, earns, advises and currentdept which are

instances respective attribute classes of Employee with labels name, salary and

dept.

3.3.2 Specialization axiom

The destination (“superclass") of a specialization inherits all instances of its

30

source (“subclass"). All instances of Manager including “Mary” are also instances

of Employee. Telos enforces the attribute values by the following general axiom:

3.3.3 Instantiation axiom

If ‘p’ is a proposition that is an instance of a proposition ‘P’ then the source

of ‘p’ must be an instance of the source of ‘P’, and the destination of ‘p’ must be

an instance of the destination of P'.

For example, “Mary Smith" must be an instance of String. The individual “Mary”

also shows another feature: attribute classes specified at the class level do not

need to be instantiated at the instance level. This is the case for the boss

attribute of Employee. On the other hand, they may be instantiated more than

once as e.g. dept

Telos treats all three kinds of relationships (attribute, isa, in) as objects.

Thus each attribute, instantiation or generalization link of Employee may have its

own attributes and instances. For example, each of the four Employee attributes

is an instance of an attribute class denoted by the label attribute but can also

have instances of its own. The attribute with label earns of “Mary” is an instance

of attribute salary of class Employee. Syntactically, attribute objects are denoted

by appending the attribute label with an exclamation mark to the name of some

individual. The relationship between salary and earns could be expressed as

Attribute marylearns in Employeelsalary

end

Instantiation links are denoted by and specialization links by "=>":

InstanceOf mary->Manager

31

end

IsA Manager=>Employee

end

The operators can be combined to complex expressions. The following

example shows how to reference the instantiation link between the attribute

marylearns and its attribute class Employeelsalary. The second frame shows

that arbitrarily complex expressions are possible. The parenthesis has to be used

to make the operator expressions unique. Though such complex expressions are

rare in modeling, it is good to know that any object in 0-Telos can be uniquely

referenced in the frame syntax.

InstanceOf (marylearns) -> (Employeelsalary) with

comment

com1: "This is a comment to an instantiation link between attributes"

end

Attribute ((maryl earns) -> (Employeelsalary))lcom1 with

comment

com2: "This is a comment to the previous comment attribute"

end

Individual objects are denoted as nodes of the graph, instantiation, specialization

and attribute relationships are represented as dotted, shaded, and labelled

directed arcs between their source and destination components. Telos

propositions have a temporal component: the belief time. The belief time of a

proposition is not assigned by the user but by the system at transaction time of

32

an update (TELL or UNTELL).

3.4 Query language CBQL

In ConceptBase, queries are represented as classes, whose instances are

the answer objects to the query. The system-internal object "QueryClass" may

have so-called query classes as instances, which contain necessary and

sufficient membership conditions for their instances. The syntax of query classes

is a class definition with super classes, attributes, and a membership condition.

The set of possible answers to a query is restricted to the set of common

instances of all its super classes.

The following query computes all managers, which are bosses of an employee:

QueryClass AIIBosses isA Manager with

constraint

a llb o sse s ru le :

$ exists e/Employee (e boss this) $

end

The predefined variable this in the constraint is identified with all solutions

of the query class. Enter this query into the editor-window and press Ask (not

Tell).The query will be evaluated by the server and after a few seconds the

answer will appear both in the protocol and in the editor-window. In general for a

given database each table is expressed as a class and each tuple is an instance

of this class. This object-orientation has a lot of advantages. It helps us to view

the database entries as real world objects and allows multiple values to be

33

entered for an attribute and their retrieval is also easy. There are many inbuilt

queries .This visualization of database gives a better understanding and would

be easier to provide the rules and constraints. Inheritance can be performed here

and a class can serve as the attribute type of another class.

3.5 Query classes and constraints

ConceptBase regards query classes as ordinary classes with the only

exception that class membership cannot be postulated (via a TELL) but is

derived via the class membership constraint formulated for the query class. A

consequence of this equal treatment is that a constraint formulated for an

ordinary class can refer directly or indirectly to a query class, e.g.

Unit in Class with

Attribute

sub: Unit

end

BaseUnit in QueryClass isA Unit with

constraint

c1: $ not exists s/Unitlsub From (s,~this) $

end

SimpleUnit in Class isA Unit with

constraint

c: $ fora 11 s/SimpleUnit (s in BaseUnit) $

end

34

Here, the constraint in the class SimpleUnit refers to the query class BaseUnit

3.6 Query evaluation strategy

ConceptBase employs an SLDNF-style query evaluation method, i.e. query

literals are evaluated top-down much like in standard Prolog. This is known to

cause infinite loops for certain recursive rule sets. To overcome this, the SLDNF

evaluator is augmented by a caching sub-system which detects recursive

predicate calls and answers them from the cached results of a query rather than

entering an infinite loop. This cache-based evaluation computes the fix point

(explained in section 2.2) of a query provided that the overall rule set is stratified.

Even more: also dynamically stratified rule sets are supported. Other than with

the static stratification test, a violation is detected at run time of a query rather

than at compile time. This makes it similar to the bottom-up evaluation method

where the finite result is produced.

For a precise definition of stratification, we refer you to the literature on

deductive databases. Consider the following rule:

forall p/Position (exists pi/Position (p moveTo p i) and not (p i in Win))

==> (p in Win)

ConceptBase internally compiles such rules into a representation where Position,

moveTo, and Win are predicate symbols:

forall p

(exists p i Position(p) and Position(pl) and

move To(p,p1) and not Win(p1))

35

==> Win (p).

3.7 An example

A company has employees, some of them being managers. Employees

have a name and a salary which may change from time to time. They are

assigned to departments which are headed by managers. The boss of an

employee can be derived from his department and the manager of that

department. No employee is allowed to earn more money than his boss.

The model we want to create contains two levels: the class level containing the

classes Employee, Manager and Department and the token level which contains

instances of these 3 classes.

3.7.1 Class level

The first step is to create the three classes: Employee, Manager and

Department.

Employee in Class

end

This is the declaration of the class Employee, which will contain every employee

as instance. Employee is declared as instance of the system class Class,

because it is on the class level of our example, i.e. it is intended to have

instances. To add this object to the object base we have to press the Tell button.

If no syntax error occurs and the semantic integrity of the object base isn't

violated by this new object it will be added to the object base. The next class to

36

add is the class Manager. Managers are also employees, so the class Manager

is declared as a specialization of Employee using the keyword isA:

Manager in Class isA Employee

end

The Department is defined as

Department in Class

end.

3.7.2 Defining attributes of classes

As mentioned in the description of the example-model, the employee-class

has several attributes. To add them, we need to modify the Telos frame

describing the class Employee.

Individual Employee in Class with

attribute

name; String;

salary: Integer;

dept: Department;

boss: Manager

end

Now you have added attributes to the class Employee. They are of the

category attribute and their labels are: name, salary, dept, and boss. They

establish “links” between the class Employee and the classes mentioned as

“targets'”. Department and Manager are user-defined classes, while String and

Integer are built-in classes of ConceptBase.

37

Notice that these attributes are also available for the class Manager,

because this class is a subclass of Employee (Explained in section 3.2.2

Specialization axiom). It is defined as

Individual Manager in Class isA Employee

end

Department is defined as:

Department in Class with

attribute

head: Manager

end

Here attribute “head” is of type Manager.

3.7.3 The token level

The company we model has four departments namely Production,

Marketing, Administration and Research. Every employee working in the

company belongs to a department. The employees will be listed later, apart from

the managers of the departments:

Lloyd in Manager

end

Phil in Manager

end

Eleonore in Manager

end

38

Table 3.1 Department &Head of Employee class

Department Head

Production Lloyd

Marketing Phil

Administration Eleonore

Research Albert

Albert in Manager

end

Next let us have a look at the department class,

Department in Class with

attribute

head: Manager

end

There is a link between Department and Manager of category attribute with

label head at the class-level. Now we have to establish a link between Production

and Lloyd of category head at the token-level. The label of this link must be a

unique name for all links with the source object "Production". We choose

head_of_Production as name. The resulting Telos frame is:

Production in Department with

Head

head_of_Production: Lloyd

end

39

Marketing in Department with

head

head_of_Marketing: Phil

end

Administration in Department with

head

head_of_Administration: Eleonore

end

Research in Department with

head

head of Research: Albert

end

Now the four managers have the following salaries

Lloyd in Manager with

salary

LloydsSalary: 100000

end

Table 3.2 Manager& Salary of Manager Class

Manager Salary

Lloyd 100000

Phil 120000

Eleonore 20000

Albert 110000

40

Phil in Manager with

salary

PhilsSalary; 120000

end

Eleonore in Manager with

salary

EleonoresSalary: 20000

End

Albert in Manager with

salary

AlbertsSalary: 110000

end

Add the other employees to the object base as follows:

Michael in Employee with

dept

MichaelsDepartment: Production

salary

MichaelsSalary: 30000

end

Maria in Employee with

dept

Marias Department: Administration

salary

41

MariasSalary: 10000

end

Herbert in Employee with

dept

HerbertsDepartment: Marketing

salary

HerbertsSalary: 60000

end

Edward in Employee with

dept

EdwardsDepartment: Research

Salary

EdwardsSalary: 50000

end

3.7.4 Adding deductive rules

A deductive rule is of the format:

forall x l/c l x2 /c2 xn/cn <Rule> = => lit (a 1 , am)

where <Rule> is a formula and the xi’s are variables bound to the class ci , lit is

a literal of type 1 or 3 (as given below) and the variables among ai’s are exactly

x1, xn.

The following literals may be used

1) X in c

The object x is an instance of class c.

42

2) c isA d

The object c is a specialization (subclass) of d.

3) X I y

The object x has an attribute to object y and this relationship is an instance of an

attribute category with label T. Structurally label I is an attribute of class x.

In order to avoid ambiguity, neither “ in” and “isA” nor the logical nor the

connectives “and” and “or” are allowed as attributes labels. The other set of

literals that can be used for testing are given below and in a legal formula their

parameters must be bound by one of the above mentioned literals.

4) X < y, X > y, X <= y, X >=y, x=y, x <>y

X and y must be instances of integer or real.

5) X = = y

The objects x and y are the same, “and” and “or” are allowed as infix

operators to connect sub formulas. Variables in formulas can be quantified by

“for all x/c” or “exists x/c” where ‘c’ is a class and a range of x' is the set of all

instances of the class ‘c’.

Let us look at an example of deductive rule by defining the boss of an employee:

Employee with

rule

BossRule: $ forall e/Employee m/Manager

(exists d/Department

(e dept d) and (d head m))

==> (e boss m) $

43

end

The text of the formula must be enclosed in "$" and that this deductive rule

is legal, because all variables appearing in the conclusion literal (e,m) are

universal (forall) quantified. The logically equivalent formula is:

forall e/Employee m/Manager d/Department

(e dept d) and (d head m)

==> (e boss m)

3.7.5 Adding integrity constraints:

The integrity constraint specifies that no Manager should earn less than

50000

Manager with

constraint

earnEnough: $ forall m/Manager x/lnteger

(m salary x) ==> (x >= 50000) $

end

3.7.6 Defining queries

In ConceptBase queries are represented as classes, whose instances are

the answer objects to the query. The system-internal object "QueryClass" may

have so-called ‘query classes’ as instances, which contain necessary and

sufficient membership conditions for their instances

The following query computes all managers, which are bosses of an employee:

QueryClass AIIBosses isA Manager with

constraint

44

all_bosses_srule:

$ exists e/Employee (e boss this) $

end

The predefined variable ‘this’ in the constraint is identified with all solutions of the

query class.We have seen a clear example of how to define class, attribute, and

token, deductive rules, integrity constraints and queries in Conceptbase. Let us

see in detail in fourth chapter how we perform similar things on bibtex database.

45

CHAPTER 4

EVALUATION AND OPTIMIZATION OF LOGIC QUERIES ON BIBTEX

DATABASE USING CONCEPTBASE

In bibtex database bibliographic entries are classified into various

categories: articles, book, in book, proceedings, in proceedings and so on. This

database has to be transformed to a format that is compatible with conceptbase.

In conceptbase answers are not given one tuple at a time like prolog. Third

chapter explains on how to enter data and process queries using conceptbase.

This chapter explains more on tables and queries. Tables are represented as

classes and object-orientation concept inheritance is used. Let us see the tables

we use and recursive queries that we solve in detail.

4.1 Tables

The three main tables are

(i)MASTER_ENTRY

(ii)PARENTJD

(iii)RELATIONSHIP

4.1.1 MASTER_ENTRY table

Every instance of this table has the following attributes:

46

(i)Cite_key

(ii)Entry_type

(iii)Title

(iv)Author

(v)PublisherJd

(vi)Reference

(vii)Relation

(viii)Number of pages

Cite_key is a string and it contains the cite key of that instance. It is the primary

key and it uniquely identifies each of the instances.

Entry_type is a string and it contains type details of that instance, whether it is an

article, book, inbook and so on.

Title is a string and it contains the title of that instance.

Author is a string that contains the author of that instance.

Publisher ld is a string that contains the id of its publisher.

Reference is of type PARENT ID. The value is an instance of PARENTJD that

gives all the instances of MASTER_ENTRY that refers to this particular instance.

The Relation is of type RELATIONSHIP. The value is an instance of

RELATIONSHIP that specifies the parent-id of each instance.

Number_of_pages is an integer that contains the number of pages of that

instance.

4.1.2 The PARENTJD table

PARENT ID isA MASTER ENTRY. In the sense it has the same

47

attribute as that of MASTER_ENTRY table. In other words it inherits

MASTER_ENTRY table attributes.

4.1.3 The RELATIONSHIP table

It has an attribute Parent id of type PARENT ID. It specifies the instance

that directly refers to this entry.

4.2 An example

Consider an example where entries of MASTER ENTRY table have

cite_keys 10,11,12,13,14,15,16,17,18,19,20 where each of them are of different

entry types like article, book, inbook along with the title, author and other

information. Let us see how we can define this and enter values for considering a

scenario where an article with cite key 20 refers directly to 11, 12 and 15 and 15

refers to 13 and 13 refers to 10.

Figure 4. 1 Representation of example

First we need to define the three tables as a class. This is done by

48

MASTER_ENTRY in Class

end

PARENTJD in Class isA MASTER_ENTRY

end

RELATIONSHIP in Class

end

As specified earlier PARENTJD isA MASTER ENTRY.

Now we define the attributes of MASTER ENTRY and enter values for it.

Individual MASTER ENTRY in Class with

attribute

Cite_key: String;

Entry type: String;

Title: String;

Author: String;

Publisherjd : String;

Reference: PARENTJD;

Relation: RELATIONSHIP;

Number_of_pages: Integer

end

11 in MASTER_ENTRY

end

12 in MASTER_ENTRY

end

49

13 in MASTER_ENTRY

end

14 in MASTER_ENTRY

end

15 in MASTER_ENTRY

end

16 in MASTER_ENTRY

end

17 in MASTER_ENTRY

end

18 in MASTER_ENTRY

end

19 in MASTER_ENTRY

end

20 in MASTER_ENTRY

end

The values are entered as

10 in MASTER_ENTRY with

Cite_key

itscitekey:"A01"

E ntry jype

itsentrytype:"ARTICLE"

Relation

50

Title:

itstitle: "A Comparision of Automatic Manual Zoning"

Author

itsfirstauthor: "John";

itssecondauthor: "Kim"

Publisherjd

itspubid:"1025"

Number_of_pages

itsnumofpgs: 20

end

11 in MASTER_ENTRY with

C ite ke y

itscitekey: "A02"

EntryJype

itsentrytype:"ARTICLE"

Relation

itsrelation: 11

Title

itstitle:"lnformation Processing and Management"

Author

itsauthor: "Johnson";

Publisherjd

itspubid: "1026"

51

Number_of_pages

itsnumofpgs: 25

end

12 in MASTER_ENTRY with

Cite_key

itscitekey: "A03"

E n try jype

itsentrytype: "ARTICLE"

Relation

itsrelation: 12

Title

itstitle: "Information retrieval as statistical translation"

Author

itsauthor: "Jackson"

Publisherjd

itspubid: "1027"

Number_of_pages

itsnumofpgs: 30

end

13 in MASTER_ENTRY with

Cite_key

itscitekey: "A04"

Entry Jyp e

52

itsentrytype: "ARTICLE"

Relation

itsrelation: 13

Title

itstitle: "Finding Acronyms and their Definitions"

Author

itsauthor: "David"

Publisherjd

itspubid: "1028"

Number_of_pages

itsnumofpgs: 35

end

15 in MASTER_ENTRY with

Cite_key

itscitekey: "B01"

Entry Jyp e

itsentrytype: "BOOK"

Relation

itsrelation: 15

Title

itstitle:"A Computational Morphology System'"

Author

itsauthor: "Bush"

53

Publisherjd

itspubid: "1029"

N um b ero fpa ges

itsnumofpgs: 40

end

The entries for PARENTJD

15 in PARENTJD

end

20 in PARENTJD

end

13 in PARENTJD

end

20 in PARENTJD

end

13 in PARENTJD with

Reference

itsreference: 15

end

15 in PARENTJD with

Reference

itsreference: 20

end

The relationship table and its entries are given as

54

Individual RELATIONSHIP in Class with

attribute

Parent_ld:PARENT_ID

end

11 in RELATIONSHIP with

P a ren tid

itsparentid: 20

end

12 in RELATIONSHIP with

P aren tid

itsparentid: 20

end

15 in RELATIONSHIP with

P aren tjd

itsparentid: 20

end

13 in RELATIONSHIP with

P a ren tid

itsparentid: 15

end

10 in RELATIONSHIP with

P aren tjd

itsparentid: 13

55

end

4.3 Queries

Query 1: To get the list of all instance that refer implicitly and explicitly to a

particular instance. This is a recursive query. In this example we will find the list

of all instances that refer to 10 implicitly and explicitly.

For this first we define the reference rule that will enter values for the Reference

attribute of the MASTER ENTRY table.

The rule is:

MASTER_ENTRY with

rule

Reference Rule: $ forall m/MASTER ENTRY p/PARENT_ID (exists

r/RELATIONSHIP

(m Relation r) and (r Parent id p))

==> (m Reference p) $

end

This rule states that for all ‘m’ in MASTER ENTRY and all ‘p’ in PARENTJD,

there exists a relation ‘r’ in the RELATIONSHIP and if that Y is the Relation

attribute value of m and r’s P a ren tjd is p then p refers to m.

For example consider object 10 in MASTER ENTRY and RELATIONSHIP:

10 in MASTER_ENTRY with

Cite_key

itscitekey: "A01"

56

E ntry jype

itsentrytype:"ARTICLE"

Relation

itsrelation: 10

Title

itstitle:"A Comparision of Automatic Manual Zoning"

Author

itsfirstauthor:"John":

itssecondauthor:"Kim"

Publisherjd

itspubid: "1025"

Number_of_pages

itsnumofpgs: 20

end

10 in RELATIONSHIP with

P aren tjd

itsparentid: 13

end

According to the rule if r=10 and p=13 then

10 Relation 10

10 P aren tjd 13

Therefore 10 Reference 13

57

Similarly,

11 Reference 20

12 Reference 20

13 Reference 15

15 Reference 20

This rule gets all the values for the Reference attribute of the MASTER ENTRY

table.In datalog this is expressed as

Reference (m, p):- Reference (m, p)

Reference (m, p):-Reference (m, r). Reference (r, p)

We can clearly see that it involves recursion. Now we have to find out the

instances that refer to 10. The queryclass MetaReference contains all the

answers to this query. It is defined as

QueryClass MetaReference isA PARENTJD with

Constraint

References:

$ (10 Reference this) or

exists p/PARENT ID

(p in MetaReference) and

(p Reference this)$

end

Here all the instances of PARENTJD are analyzed one by one to see if they are

in 10’s Reference. For each of the value its P a ren tjd ‘p’ is found and then added

to MetaReference. Recursively check is made and all the objects that refer to 10

58

are retrieved and the stop is made when the value of Reference attribute is

empty and no more PARENTJD instances are left to be analyzed. That is

reached at 20 in this example.

Objects of PARENTJD =13, 15, 20

Start with 10

10 Reference 13 add 13 to MetaReference

13 Reference 15 add 15 to MetaReference

15 Reference 20 add 20 to MetaReference

20 Reference is emptystop the algorithm,

and no more PARENTJD objects are le f t .

Then result is printed in the order of PARENTJD instances as follows:

13 in MetaReference

end

15 in MetaReference

end

20 in MetaReference

end

Query 2: To get the list of all instances that a particular object refers to implicitly

and explicitly. This is a recursive query. In this example let us find out the list of

instances that 20 refer to.

Here we define an attribute called Ref in PARENTJD. And the rule is

PARENTJD with

Attribute

59

Ref; MASTER_ENTRY

Rule

isref: $ forall p/PARENTJD m/MASTER_ENTRY

(m Reference p)

= = >

(p Ref m) $

end

This rule states that for all ‘p’ in PARENTJD and a l l ’m’ in MASTER ENTRY, if

the value of Reference attribute of m is p then it implies that p refers m. These

values are stored in attribute Ref of PARENTJD.

From the previous query we know that

10 Reference 13

11 Reference 20

12 Reference 20

13 Reference 15

15 Reference 20

Considering the rule defined now

13 Ref 10

20 Ref 11

20 Ref 12

15 Ref 13

20 Ref 15

60

In datalog this is expressed as

Ref (p, m):- Reference (m, p)

Ref (p, m):- Ref (p, m)

Ref (p i , p2):- Ref (p i , m), Ref (m, p2)

We can clearly see that recursion is involved. Now we write the queryclass

Metaref that will contain all the objects that 20 refer to implicitly and explicitly.

QueryClass Metaref isA MASTER ENTRY with

constraint

refs;

$ (20 Ref this) or

exists m/MASTER_ENTRY

(m in Metaref) and

(m Ref this)$

end

Here all the instances of MASTER ENTRY are analyzed one by one to find if

they are in the Ref attribute of 20. If so they are added to Metaref and recursively

the search continues till Ref is empty and no more MASTER ENTRY instances

are left to analyze.

Objects of MASTER_ENTRY=10, 11,12,13,14, 15, 16, 17, 18, 19, 20

Start with 20

20 Ref 11 add 11 to Metaref

11 Ref empty stop this loop

20 Ref 12 add 12 to Metaref

61

12 Ref emptystop this loop

20 Ref 15 add 15 to Metaref

15 Ref 13 add 13 to Metaref

13 Ref lOadd 10 to MetaRef

10 Ref empty and stop the algorithm

no more objects of MASTER ENTRY are left to analyze

The answer is printed in the order of MASTER ENTRY objects as

10 in Metaref

end

11 in Metaref

end

12 in Metaref

end

13 in Metaref

end

15 in Metaref

end

Query 3: To find all the authors of a particular instance. This is not recursive.

ConceptBase allows an attribute to have more than one instance. This query

tries to get all the values of Author attribute.

find_attribute_values[MASTER_ENTRY!Author/cat, 10/objname]

In datalog it is expressed as

Author (10, John)

62

Author (10, Kim)

q: Author (10, x)

This is not a recursive query. Here all the results that match the x value from the

set of EDB’s are displayed as the answer. The two parameters to be entered are

category and object name. The category is MASTER_ENTRY!Author and the

object name is 10. The answer is displayed as

Answer:

"John" in find_attribute_values[10/objname,MASTER_ENTRY!Author/cat]

end

"Kim" in find_attribute_values [10/objname, MASTER_ENTRY!Author/cat]

end

Query 4: To find all instances to which other instances refer to. This is a non

recursive query. It gets all the instances that are being referenced by the

instances of the MASTER ENTRY table. The query may be expressed in datalog

as

For all ‘m’ of the MASTER ENTRY table

q: Reference (m, X)

Here all the values that match X from the set of EDB’s is printed as the answer.

The query class AllParentlds contains all the answers to this query. In

conceptbase it is defined as follows:

QueryClass AllParentlds isA PARENT ID with

Constraint

all_parentsrule:

63

$ exists m/MASTER ENTRY (m Reference this) $

end

Answer:

13 in AllParentlds

end

15 in AllParentlds

end

20 in AllParentlds

end

Query 5: To get all instances whose entry type is “ARTICLE” from the

MASTER_ENTRY table. This is a non-recursive query. In this query the entry

type of all instances of MASTER ENTRY table is checked .The ones that have

“ARTICLE” as their entry type is printed as the answer.

In datalog this is expressed as

q: Entry_type(X, “ARTICLE”) for all objects ‘m’ in MASTER_ENTRY the values

that match X are printed as the answer. In conceptbase it is defined as follows:

QueryClass ArQuery isA MASTER_ENTRY with

constraint

type:

$ (this E n try jype "ARTICLE") $

end

Answer:

10 in ArQuery

64

end

11 in ArQuery

end

12 in ArQuery

end

13 in ArQuery

end

Query 6: To find the number of instances of a particular class. This is a non

recursive query. Here we try to find the how many instances a particular class

contains. In datalog it is expressed as

q: count (class name)

If we want to find the number of instances of MASTER_ENTRY class then in

conceptbase it is defines as:

COUNT[MASTER_ENTRY/class]

Answer:

10 in COUNT [MASTER_ENTRY/class]

end

Query?: To find all classes the given object belongs to. This is non-recursive. In

datalog it is expressed as

q: find_classes(objectname)

To find all classes that object ‘10’ belongs to in conceptbase we do the following:

find_classes[10/objname]

65

Answer:

Proposition in find_classes[10/objname]

end

MASTER_ENTRY in find_classes[10/objname]

end

PARENTJD in find_classes[10/objname]

end

RELATIONSHIP in find_classes[10/objname]

end

Integer in find_classes[10/objname]

end

Individual in find_classes[10/objname]

end

Query 8: To retrieve a particular instance. This is a non-recursive query. It tries to

retrieve a particular object. In datalog it is expressed as

get_object(objectname)

To retrieve object 10 we do the following in conceptbase:

get_object[10/objname]

Answer:

Individual 10 in MASTER_ENTRY,PARENTJD,RELATIONSHIP,Integer with

Parent_ld,attribute

itsparentid: 13

Cite_key,attribute

6 6

itscitekey: "A01"

E n try jype ,attribute

itsentrytype: "ARTICLE"

Relation,attribute

itsrelation: 10

Reference,attribute

Itsreference: 13

Author,attribute

itsfirstauthor: "John";

itssecondauthor: "Kim"

P ublisherjd ,attribute

itspubid: "1025"

Number_of_pages,attribute

itsnumofpgs: 20

end

Query 9: To check whether a given object exists. In datalog it can be expressed

as

exists (objectname)

To find whether object 10 exists, in conceptbase we do the following:

exists [10/objname]

Answer: yes

Query 10: To find all the instances of a given class. In this query we try to find all

the instances of a given class. This is not recursive and in datalog it

67

is expressed as

find jnstances (class name)

To find all the instances of MASTER_ENTRY table we do the following in

conceptbase:

find_instances[MASTER_ENTRY/class]

Answer:

10 in findJnstances[MASTER_ENTRY/class]

end

11 in find_instances[MASTER_ENTRY/class]

end

12 in findJnstances[MASTER_ENTRY/class]

end

13 in find_instances[MASTER_ENTRY/class]

end

14 in find_instances[MASTER_ENTRY/class]

end

15 in findJnstances[MASTER_ENTRY/class]

end

16 in find_instances[MASTER_ENTRY/class]

end

17 in findJnstances[MASTER_ENTRY/class]

end

18 in findJnstances[MASTER_ENTRY/class]

6 8

end

19 in findJnstances[MASTER_ENTRY/class]

end

20 in find_instances[MASTER_ENTRY/class]

end

Query 11 : To find the number of values a given attribute has for a given object. In

this query we try to find out the number of values associated with a particular

attribute of a particular object. In datalog it is expressed as

COUNT Attribute (objectname,attributecategory).So to find the number of values

for the “Author” attribute of object 10 in conceptbase ,it is given as:

COUNT Attribute [10/objname, MASTER_ENTRY!Author/attrcat]

Answer:

2 in COUNT_Attribute[10/objname,MASTER_ENTRY!Author/attrcat]

end

Query 12: To find all the work of a given author. This query is non-recursive. It

tries to find all the articles, books, proceeding etc...of an author. In datalog it is

expressed as

Author (10, John)

q: Author(X, John)

Here we get all the articles, books etc written by John. In conceptbase it is

represented as:

QueryClass AuthQuery isA MASTER_ENTRY with

constraint

69

type:

$ (this Author “John") $

end

Answer:

10 in AuthQuery

end

Query 13: To find all the work of a given publisher. This query is non-recursive.

Here we try to find all the articles, books, etc...of a given publisher. In datalog it

is expressed as

Publisherjd (10, 1025)

q: Publisher_ld(X,1025)

Here we get all the articles, books etc published by a publisher with publisherjd

1025. In conceptbase it is represented as:

QueryClass PubQuery isA MASTER ENTRY with

constraint type:

$ (this Publisherjd “1025")$

end

Answer:

10 in PubQuery

end

Query 14: To find all works published by a particular author and publisher. This is

non-recursive and here we have two constraints the article, books etc should

have the given author and publisher. In datalog it is expressed as

70

Author (10, John)

Publisherjd (10, 1025)

q; Author(X, Joh n), Publisherjd (X,1025)

In conceptbase to get the answer to this query we do the following:

QueryClass PubAuthQuery isA MASTER_ENTRY with

constraint

type:

$ (this Author "John") and (this Publisherjd “1025") $

end

Answer:

10 in PubAuthQuery

end.

Query 15: To find the number of pages of a given article, book, proceedings etc.

This is non-recursive. In datalog it is expressed as

find_attribute_values (objectname, category)

In conceptbase we define it as:

find_attribute_values [10/objname, MASTER_ENTRY!Number_of_pages/cat]

Answer

20 in find_attribute_values[10/objname,MASTER_ENTRY!Number_of_pages/cat]

end

Query 16: To find the publisherjd of a particular object. This query is non

recursive. In datalog it is expressed as:

find_attribute_values (category, object name)

71

In conceptbase it is defined as:

find_attribute_values[MASTER_ENTRY!Publisher_ld/cat, 10/objname]

Answer:

"1025" in find_attribute_values[MASTER_ENTRY!Publisher_ld/cat, 10/objname]

end

Query 17: To find the title of a given object. It is non-recursive. In datalog it is

expressed as

find attribute values (object name, category). In conceptbase it is defined as:

find_attribute_values[10/objname,MASTER_ENTRY!Title/cat]

Answer

"A Comparision of Automatic Manual Zoning" in

find_attribute_values[10/objname,MASTER_ENTRY!Title/cat]

end

Now consider the following example

1)Kazem Taghva, Julie Borsack, Steven Lumos, and Allen Condit. A

Comparison of Automatic and Manual Zoning: An Information

Retrieval Prospective. Int. Journal on Document Analysis and

Recognition, 6(4):230-235, April 2004.

2)W. B. Croft, S. Harding, K. Taghva, and J. Borsack. An evaluation of

information retrieval accuracy with simulated OCR output. In Proc.

3rd Symposium on Document Analysis and Information Retrieval, pages

115-126, Las Vegas, NV, April 1994.

72

3)D. Harman. Information Retrieval, Data Structures and Algorithms,

chapter Ranking Algorithms, pages 363-392.Prentice Hall, Englewood

Cli®s, NJ 07632, 1992.

4)Kazem Taghva, Julie Borsack, and Allen Condit. Effects of OCR Errors on

Ranking and Feedback Using the Vector Space Model. Inf. Proc. and

Management, 32(3);317-327, 1996.

5)Kazem Taghva, Julie Borsack, and Allen Condit. An Expert System for

Automatically Correcting OCR Output. In Proc. IS&T/SPIE 1994 Intl.

Symp. on Electronic Imaging Science and Technology, pages 270-278,

San Jose, CA, February 1994.

6)Kazem Taghva, Julie Borsack, Allen Condit, and Srinivas Erva. The Effects

of Noisy Data on Text Retrieval. J. American Soc. for Inf. Sc/., 45(1):50-

58, January 1994.

Here paper 1 refers to 2, 3, 4, 5 and 6. Paper 2 refers to 3 and 4. Paper 3 refers

to paper 4. This expresses the same relation as

11 12 15
i

13
I

10

Figure 4. 2 Representation of Example

73

Where

20 - A Comparison of Automatic and Manual Zoning: An Information Retrieval

Prospective

11 - An evaluation of information retrieval accuracy with simulated OCR output

12- Information Retrieval, Data Structures and Algorithms

15- Effects of OCR Errors on Ranking and Feedback Using the Vector Space

Model

13- An Expert System for Automatically Correcting OCR Output

10- The Effects of Noisy Data on Text Retrieval

With this relationship let us now enter the details in the MASTER ENTRY table,

PARENTJD table and RELATIONSHIP table

10 in MASTER_ENTRY with

Cite_key

itscitekey: "A01"

Entry_type

itsentrytype:"ARTICLE"

Relation

itsrelation: 10

Title

itstitle:" The Effects of Noisy Data on Text Retrieval "

Author

itsfirstauthor:"Kazem Taghva

itssecondauthor:"Julie Borsack":

74

itsthirdauthor;”Allen Condit”:

itsfourthauthor:”Srinivas Erva”

Number_of_pages

itsnumofpgs: 8

end

11 in MASTER_ENTRY with

C ite ke y

itscitekey: "A02"

Entrytype

itsentrytype:"ARTICLE"

Relation

itsrelation: 11

Title

itstitle:" An evaluation of information retrieval accuracy with simulated

OCR output."

Author

itsfirstauthor:"W.B.Croft";

itssecondauthor:"S.Harding";

itsthirdauthor:”K.T aghva”;

itsfourthauthor:”J.Borsack”

Number_of_pages

itsnumofpgs: 11

end

75

12 in MASTER_ENTRY with

C ite ke y

itscitekey: "B01"

E n try jype

itsentrytype : "BOOK"

Relation

itsrelation: 12

Title

itstitle:" Information Retrieval, Data Structures and Algorithms "

Author

itsauthor:"D.Harman

N um bero fpages

itsnumofpgs: 29

end

13 in MASTER_ENTRY with

C i tekey

itscitekey: "A03"

Entry_type

itsentrytype:"ARTICLE"

Relation

itsrelation: 13

Title

itstitle:" An Expert System for Automatically Correcting OCR Output "

76

Author

itsfirstauthor:” Kazem Taghva”:

itssecondauthor:" Julie Borsack ":

itsthirdauthor:” Allen Condit”

Number_of_pages

itsnumofpgs: 11

end

15 in MASTER_ENTRY with

Cite_key

itscitekey: "A04"

Entry_type

itsentrytype:"ARTICLE"

Relation

itsrelation: 15

Title

itstitle:" An Expert System for Automatically Correcting OCR Output "

Author

itsfirstauthor:” Kazem Taghva”:

itssecondauthor:" Julie Borsack ":

itsthirdauthor:” Allen Condit”

N um bero fpa ges

itsnumofpgs: 8

end

77

20 in MASTER_ENTRY with

Cite_key

itscitekey:"A05"

E ntry jype

itsentrytype:"ARTICLE"

Relation

itsrelation: 20

Title

itstitle:" A Comparison of Automatic and Manual Zoning: An Information

Retrieval Prospective "

Author

itsfirstauthor:” Kazem Taghva”;

itssecondauthor:” Julie Borsack

itsthirdauthor:” Steven Lumos” ;

itsfourthauthor: "Allen Condit”

N um bero fpa ges

itsnumofpgs: 5

end

The PARENTJD entries are

20 in PARENTJD

end

13 in PARENTJD with

Reference

78

itsreference: 15

end

15 in PARENTJD with

Reference

itsreference; 20

end

The RELATIONSHIP entries are

10 in RELATIONSHIP with

Parent_ld

itsparentid; 13

end

11 in RELATIONSHIP with

P aren tjd

itsparentid: 20

end

12 in RELATIONSHIP with

Parent_ld

itsparentid: 20

end

13 in RELATIONSHIP with

P a ren tjd

itsparentid: 15

end

79

15 in RELATIONSHIP with

Parent_ld

itsparentid: 20

end

8 0

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Recursive queries are processed and implemented in Datalog fashion

using ConceptBase. Answers to these queries are not got one-tuple at a time

and standard query processing strategies are involved. A detailed description of

bibliographic database is provided. Three tables (i) MASTER_ENTRY (ii)

PARENTJD (iii) RELATIONSHIP are defined. ConceptBase is object oriented

and so relationships between these tables are defined carefully to be compatible

with it. An example that shows in reality the same relationship defined between

these tables is explained and how data has to be entered in ConceptBase for this

example is shown for clear understanding.

Deductive databases are analyzed in chapter 1 and general evaluation and

optimization techniques for recursive queries are explained in chapter 2. All

basics of ConceptBase are explained in chapter 3 and how to handle recursive

queries using ConceptBase is given in detail. Recursive queries and scenarios

where recursion occurs are dealt in chapter 4. A set of queries and their

equivalent datalog expressions and the rules to define them are given. Object

oriented concept inheritance is used; PARENTJD table is inherited from

81

MASTER ENTRY table. ConceptBase allows a particular attribute to take more

than one instance. Thus if an instance has more than one author we can enter in

the values and retrieve all of them unlike general databases ,where we have to

create a separate field if a particular attribute takes more than one value. This

feature is depicted in Query 3, section 4.3. In contrast to this, given a particular

author or publisher all their works are displayed in Query 12 & Query 13, section

4.3. Thus processing of recursive and other queries in an object-oriented

environment is studied and implemented.

5.2 Future work

In this thesis, we have given an overview of logic queries and their

implementation. We have shown how a bottom-up approach computes a

recursive query using a concrete example with applications for bibliographic

databases. Future work will focus on experimental analysis to compare the time

complexity of the ConceptBase approach with other approaches such as XML

query processing using XQUERY and XSLT.

8 2

REFERENCES

[1]Francous Bancilhon, Raghu Ramakrishnan, An Amateur’s Introduction to

Recursive Query Processing Strategies.

[2] Juliana Freire, Using Logic Programming to Efficiently Evaluate Recursive

Queries

[3]Notes on Datalog - http://infolab.stanford.edu/~ullman/dscb/pslides/dloq.ppt

[4]Raghu Ramakrishnan, Jeffrey .D. Ullman, A survey of Research on Deductive

Database Systems

[5] S Krishna, Introduction to Database and Knowledge-base systems. World

Scientific Series in Computer Science - Volume 28

[6] Jeffery .D. Ullman, Principles of Database & Knowledge-Base Systems Vol. 1 :

Classical Database Systems

[7]Jeffery D. Ullman, Principles of Database and Knowledge-Base Systems

Volume II: The New Technologies

[8]Catriel Beeri, Raghu Ramakrishna, Qn the Power of Magic

[9]Seppo Sippu, Eljas Soisalon- Soininen, An analysis of magic sets and related

optimization strategies for logic queries

[10]ConceptBase site- http://dbis.rwth-aachen.de/CBdoc/

[11]ConceptBase tutorial - http://dbis.rwth-aachen.de/CBdoc/tutorial/

[12]ConceptBase user manual - http://dbis.rwth-aachen.de/CBdoc/userManual/

83

http://infolab.stanford.edu/~ullman/dscb/pslides/dloq.ppt
http://dbis.rwth-aachen.de/CBdoc/
http://dbis.rwth-aachen.de/CBdoc/tutorial/
http://dbis.rwth-aachen.de/CBdoc/userManual/

VITA

Graduate College
University of Nevada, Las Vegas

Jayalakshmi Jeyaraman

Address:
1780 Creekside Drive Apt #1023
Folsom, CA 95630

Degree:
• Bachelor of Engineering, Computer Science, 2006 Anna University, India

Thesis Title: Implementation of Recursive Queries for Information Systems

Thesis Examination Committee:
• Chairperson, Dr. Kazem Taghva, Ph.D.
• Committee Member, Dr. Ajoy.K.Datta,, Ph.D.
• Committee Member, Dr. Wolfgang Bein, Ph.D.
• Graduate College Representative, Dr Emma Regentova, Ph.D.

84

85

	Implementation of recursive queries for information systems
	Repository Citation

	ProQuest Dissertations

