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ABSTRACT

Implementation of BMA Based Motion Estimation Hardware Accelerator In HDL

by

Nachikct Jugadc

Dr. Henry Sclvaraj, Examination Committee Chair 
Professor o f Electrical Engineering 
University o f Nevada, I .as Vegas

Motion Estimation in MPEG (Motion Pictures Experts Group) video is a temporal

prediction technique. The basic principle o f  motion estimation is that in most cases,

consecutive video frames w ill be similar except for changes induced by objects moving

w ith in the frames. Motion Estimation performs a comprehensive 2-dimensional spatial

search for each luminance macroblock (16x16 pixel block). MPEG does not define how

this search should be performed, 'fh is is a detail that the system designer can choose to

implement in one o f many possible ways. It is well known that a full, exhaustive search

over a wide 2-dimensional area yields the best matching results in most cases, but this

performance comes at an extreme computational cost to the encoder. Some lower cost

encoders might choose to lim it the pixel search range, or use other techniques usually at

some cost to the video quality whieh gives rise to a trade-off.

Such algorithms used in image processing are generally computationally expensive. 

FPGAs are capable o f running graphics algorithms at the speed comparable to dedicated
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graphies chips. A t the same time they are configurable through high-level programming 

languages, e.g. Verilog, VFIDL. The work presented entirely focuses upon a Hardware 

Accelerator capable o f performing Motion Estimation, based upon Block Matching 

Algorithm. The SAD based Full Search M otion Estimation coded using Verilog H D L 

relies upon a 32x32 pixel search area to find the best match for single 16x16 macroblock. 

Keywords: Motion Estimation, MPEG, macrobloek, FPGA, SAD, Verilog, V H D L
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CHAPTER 1

INTRODUCTION

1.1 Introduction to motion estimation theory

Image compression, whether for still pictures or motion pictures (e.g., video), plays 

an important role in Internet and multimedia applications, digital appliances such as 

HDTV, and handheld devices such as digital cameras and mobile phones. Compression 

allows one to represent images and video w ith a mueh smaller amount o f data and 

negligible quality loss. The reduction in data decreases storage requirements (important 

for embedded devices) and provides higher effective transmission rates (important for 

Internet enabled devices). Unfortunately, implementing a compression seheme can be 

especially d ifficu lt. For performance reasons, implementations arc typically not portable 

as they are tuned to specific architectures. And while image and video compression is 

needed on embedded systems, desktop PCs, and high end servers; implementing all 

probable architectures separately is not cost effective. Furtheimore, compression 

standards are also continuously evolving, and thus compression programs must be easy to 

modify and update.

In the last few years there has been a growing trend to design very complex and 

efficient processing systems by integrating already developed and dedicated cores which 

implement, in a particularly efficient way, certain specific and critical parts o f the main 

system. Such design approach can either be conducted in order to obtain very complex
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and autonomous processing architectures, or to implement specific and dedicated 

processing structures that w ill be integrated w ith other larger scale processing modules, 

in the form o f co-processors, to alleviate the computational burden. As a consequence, a 

significant amount o f quite different processing modules have been proposed and made 

available, providing an easy integration w ith the target processing systems and a 

substantial reduction o f the design effort. To attain such objective, these processing cores 

have to fo llow  strict design methodologies, in order to provide an easy and efficient 

implementation in a broad range o f target implementation technologies (e.g.: FPGA, 

ASIC, etc.) [2 |.

Recently, we are witnessing a new trend in embedded processor design that is again 

quickly reshaping the embedded processor design. Instead o f implementing the time 

critical tasks in ASICs, these tasks are to be implemented in field-programmable gate 

arrays (FPGA) structures or comparative technologies [6, 7]. Since FPGAs have the 

advantages such as

■ Increased flex ib ility : The functionality o f the embedded processor can be quickly 

changed without requiring another roll-out o f the embedded processor itse lf and 

design faults can be quickly rectified. It also allows for quiek adaptation o f new 

(possibly unforeseen) developments.

■ Sufficient perfoimance: The performance o f FPGAs has increased tremendously 

and is quickly approaching that o f ASICs [2 |. This seems to be mainly due to the 

faster adaptation o f new technological advancements by FPGAs than by ASICs.

■ Faster design times: Faster design times are achieved by re-using intellectual 

property (IP) cores or by slightly modifying them. More importantly, high-level



design languages (such as Verilog, V H D L etc) can be used in the design process 

and thereby speeding it up significantly.

Field-programmable gate array is a semiconductor device containing programmable 

logic components called "logic blocks", and programmable interconnects. Logic blocks 

can be programmed to pertbim the function o f basic logic gates such as AND, and XOR, 

or more complex combinational functions such as decoders or mathematical functions. In 

most FPGAs, the logic blocks also include memory elements, which may be simple tlip - 

fiops or more complete blocks o f  memory. A  hierarchy o f programmable interconnects 

allows logic blocks to be interconnected as needed by the system designer, somewhat like 

a one-chip programmable breadboard. Logic blocks and interconnects can be 

programmed by the customer or designer, after the FPGA is manufactured, to implement 

any logieal function— hence the name "field-programmable".

FPGAs are usually slower than their application-specific integrated circuit (ASIC) 

counterparts, cannot handle as complex a design, and draw more power (for any given 

semiconductor process). But their advantages inelude a shorter time to market, ability to 

re-program in the field to fix  bugs, and lower non-recuiTing engineering costs. Vendors 

can sell cheaper, less flexible versions o f their FPGAs which cannot be modified after the 

design is committed. The designs are developed on regular FPGAs and then migrated into 

a fixed version that more resembles an ASIC. To configure ("program") an FPGA we 

specify how we want the ehip to work w ith a logic circuit diagram or a source code using 

a hardware description language (HDL). The H D L form might be easier to work w ith 

when handling large structures because it's possible to just specify them numerically 

rather than having to draw every piece by hand. On the other hand, schematic entry might



allow for a more tight specification o f what you want. For this purpose V H D L and 

Verilog HDL are popular. SystemC is also in the race and popular w ith  embedded 

systems designers. Going from schematic/HDL source files to actual configuration, the 

source tiles are fed to a software suite from the FPGA vendor that through different steps 

w ill produce a file. This file  is then transferred to the FPGA via a serial interface or USB 

(JTAG) interface or to external memory device like an EEPROM. . The literature survey 

revealed that many companies have done extensive research on this part o f  video 

encoding. The H D L code for motion estimation core is not easily available on the World 

Wide Web. So the code was written from scratch for this project after comprehensive 

literature survey. For simulation purposes a smaller test image is used and due to the 

generic nature o f the explained architecture it  can be extended to test larger images but 

w ith more complex debugging equipments and techniques.

Digital video compression entails the utilization o f many coding techniques w ith the 

ultimate goal to reduce the size o f the digital representation o f a video sequence. The 

same techniques used to compress digital pictures, e.g., in the JPEG picture standard, can 

be applied to single video frames. Such techniques exploit the fact that colors in 

photographic images tend to only gradually change when traversed from one side to 

another. In the video coding case, the tact that subsequent video frames do not differ 

much can be sim ilarly exploited in order to increase compression efficiency. A ll coding 

techniques can be categorized into two main categories, namely lossy and lossless 

techniques. Lossy coding techniques remove pel infonnation that the human eye is 

unable to perceive using coding techniques such as the discrete cosine transform and 

quantization. The information that has been removed in most cases cannot be exactly



regained, but it  usually can only be approximated. On the other hand, lossless coding 

techniques do not remove any information. Instead, it exploits redundancies, i.e., 

similarities, between pels found in and between video frames whieh results in the 

representation o f pel information using fewer bits. A  lossless coding technique is 

predictive coding which predicts current pel(s) using reference pel(s) and then store the 

difference(s) between the prediction and the current pel(s). Assuming redundancy 

between pels, the differences are usually small and can be coded using less bits than the 

coding o f the original pels. Predictive coding can use pels from the same video frame as 

reference pels (intra-coding) or pels from other video frames (interceding). Inter-frame 

predictive coding can contribute to the overall compression efficiency, because 

consecutive video frames are usually similar, i.e., they do not d iffer much. In this sense, 

the reference pels can be found in a reference frame located at the same position as the 

cunent pels in the eurrent to be coded frame. This approach can also be used to capture 

scene changes by choosing the reference frames in the near future o f the cunent (to be 

encoded) frame instead from its past. However, such a straightforward approach has one 

major drawback. Objects in a video scene tend to move around resulting in poor 

compression perfoimance o f the straightforward inter-frame predictive coding method, 

because pels located at the same location in consecutive frames are now quite different.

In video coding, similarities between video frames can be exploited to achieve higher 

compression ratios. However, moving objects w ith in a video scene diminish the 

compression efficiency o f the straightforward approach that only considers pels located at 

the same position in the video frames. In order to achieve higher compression efficiency, 

motion estimation was introduced in an attempt to accurately capture such movements. It



is performed for every macroblock, i.e., an array o f 16x16 pels, in the to be encoded 

frame by finding its ‘best’ match in a reference frame. The most commonly used metric is 

the “ Mean Absolute Differenees”  (M A D ), which adds up the absolute differences 

between eorresponding elements in the macrobloeks. The M AD  operation is very time- 

eonsuming due to the complex nature o f the absolute operation and the subsequent 

multitude o f additions. In [3], a parallel hardware implementation was proposed to speed 

up the M A D  computation process.

Motion Estimator is one such module deserving a particular attention in the scope o f 

digital video coding. This block enjoys its own independenee as it is not constrained by 

any video coding protocols and its functionality is solely based upon the designers’ 

creativity, need and application. In fact, although this block is often regarded as one o f 

the most important operations in video coding to exploit temporal redundancies in 

sequences o f images, it often represents most o f the computation cost o f these systems 

[1]. As a consequence, real-time Motion Estimation is usually only achievable by 

adopting specialized VLSI structures to implement this processing task. Motion 

Estimation in MPEG video is a temporal prediction technique. The basic principle o f 

motion estimation is that in most cases, consecutive video frames w ill be similar except 

for changes induced by objects moving w ith in the frames. In the triv ia l case o f zero 

motion between frames (and no other différences caused by noise, etc.), it is easy for the 

encoder to efficiently predict the current frame as a duplicate o f  the prediction frame. In 

such as case, the only infoimation necessary to transmit to the decoder becomes the 

syntactic overhead necessary to reeonstruct the picture from the original reference frame. 

When there is motion in the images, the situation is not as simple.



Motion estimation techniques form the core o f video eompression and video 

processing applieations. Motion estimation extracts motion infonnation from the video 

sequence. The motion is typically represented using a motion vector (x, y). T he motion 

vector indicates the displacement o f  a pixel or a pixel block from the cuirent location due 

to motion. Motion infonnation is used in video eompression to find best matching block 

in reference frame to caleulate low energy residue, used in scan rate conversion to 

generate temporally interpolated frames. It is also used in applications such motion 

compensated de-interlacing, video stabilization, motion tracking etc. Varieties o f motion 

estimation techniques are available. There are pel-recursive techniques, which derive 

motion vector for each pixel. There is the phase plane correlation technique, which 

generates motion vectors via correlation between eurrent frame and referenee frame. The 

computational complexity o f a motion estimation teehnique can then be determined by 

three factors: Search algorithm. Cost function/evaluate function and Search range

parameter.

Actually, we can reduce the complexity o f the motion estimation algorithms by 

reducing the complexity o f the applied search algorithm and/or the complexity o f the 

selected cost function. A  full search algorithm evaluates all the weights in the search 

window, and a more efficient, less complex search algorithm w ill decrease the search 

space. Intuitively, one might expect that the ideal processor for reducing temporal 

redundancy is one that tracks every pixel from frame to frame. This is computationally 

intensive, and such methods do not provide reliable tracking due to presence o f noise in 

frames. Instead o f tracking individual pixels from frame to frame, video coding standards 

only allow tracking infonnation for 16x16 pixel regions, commonly referred to as



macroblocks [1J. The macroblock dimension o f 16x16 is chosen because it  provides a 

good compromise between providing efficient temporal redundancy reduction and 

requiring moderate computational requirements.

Let the two consecutive frames in Fig. 1.1 be denoted as frame (t - 1) and frame (f). In 

the first stage, we segment frame (t) into non-overlapping 16x16 pixel regions 

(macrobloeks), and for each 16x16 block we determine a eorresponding 16x16 pixel 

region in frame (t-1).

I
Fig. 1.1 Illustration o f two consecutive frames

Using coiTesponding 16x16 pixel region from frame (t-1), the temporal redundancy 

reduction processor generates a representation for frame (t) that contains only the changes 

between the two frames. I f  the two frames have a high degree o f  temporal redundancy, 

then the difference frame would have a large number o f pixels that have values near zero 

[1]. For example, in F ig.1.1, there is a high degree o f temporal redundancy, as evidenced 

by the sim ilarity o f features in both frames. On the other hand, i f  frame (t) were 

completely different than frame (t-1), then the temporal redundant reduction processor 

may fail to corresponding regions between two frames. The other techniques w ill be



discussed in detail in the later part o f this chapter. The most popular technique is Block 

Matching Algorithm . The implementation described here uses Block Matching 

Algorithm. The implementation is based upon a proposed motion estimation accelerator 

module in [3, 5]. The extension is implemented w ith  a special hardware for alignment o f 

reference frames and the required control circuitry. A  32x32 pixel search area o f the 

referenee frame is used as standard for each current frame. The implementation differs 

from [3, 5] due to the pipelining approach which considerably reduces the total 

computation time for finding the best match.

1.2 Block matching algorithm theory

1.2.1 Introduction

Block Matching A lgorithm  (BM A) is the most popular motion estimation algorithm. 

Block Matching A lgorithm  calculates motion vector for an entire block o f pixels instead 

o f individual pixels. The same motion vector is applicable to all the pixels in the block. 

This reduces computational requirement and also results in a more accurate motion vector 

since the objects are typically a cluster o f pixels. Block Matching A lgorithm  is illustrated 

in Fig. 1.2 [14]. The current frame is divided into pixel blocks and motion estimation is 

performed independently for each pixel block. Motion estimation is done by identifying a
t

pixel block from the reference frame that best matches the cunent block, whose motion is 

being estimated. The reference pixel block is generated by displacement from the cunent 

block’s location in the reference frame. The displacement is provided by the Motion 

Vector (M V). M Y  consists o f is a pair (x, y) o f horizontal and vertical displacement 

values.



Search region

Motion Vector -  MV1(x,y)

'OXJ

o o o a ^Gference Block 
b-o-oxj

Reference Frame

Current Block ]

p t j o ' d  
|d o o c( 
o o o q 
b x L O _ d

Current Frame

Fig. 1.2 Illustration o f  Block Matching A lgorithm  (BM A)

In video coding terminology, the match is being performed between rectangular 

regions; this is refeiTed to as a block matching criterion, and search techniques to find the 

motion vectors, that yield the smallest Mean Absolute Difference (M AD ), are referred to 

as Block Matching Algorithms. There are various criteria available for calculating block 

matching. We focus ourselves to M AD . Let the pixels o f the macroblock in the current 

frame be denoted as C (x+k, y+1) and the pixels in the referenee frame be denoted as 

R(x+i+k, y+j+1). The cost function becomes

Mean Absolute Difference (M AD ) =

AM V-l

M A
2 j  + k ,y + l ) -  R{x +  i +  k, y + j  + f))\ ( Eq 1.1)
A-T) l~0
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Sum o f  Absolute Differences (SAD)

A /-I V - l

2  2  + A j;+ Z )  - /((% + / +  + /) )  | (Eq 1.2)
k-0 1-0

In video coding standards, N = M  = 16. The best matching block is the block R(x+i, 

y+ j) for which M A D  (i, j )  is minimized. Thus, the coordinates (i, j )  for which M A D  is 

minimized define the motion vector. Basically, M A D  is obtained by dividing SAD by the 

product o f M N  i.e. 256. In hardware it indicates a shift o f value to the right by 8 

positions, since 2^ = 256. M A D  provides fa irly good match at lower computational 

requirement. Hence it is widely used for block matching. There are various other criteria 

also available such as cross coirelation, maximum matching pixel count etc. The 

reference pixel blocks are generated only from a region known as the search area. Search 

region defines the boundary for the motion vectors and lim its the number o f blocks to 

evaluate. The height and width o f the search region is dependant on the motion in video 

sequence. The available computing power also detennines the search range. Bigger 

search region requires more computation due to increase in number o f evaluated 

candidates. Typically the search region is kept wider (i.e. w idth is more than height) since 

many video sequences often exhibit panning motion. The search region can also be 

changed adaptively depending upon the detected motion.

1.2.2 Full search block matching algorithm

Among all the BMAs, Full-Seaich Block Matching A lgorithm  (FSBMA) is the most 

popular. FSBMA evaluates every possible pixel block in the search region. Hence, it can 

generate the best block matching motion vector. This type o f B M A  can give least

11



possible residue for video compression. But, the required computations are prohibitively 

high due to the large amount o f candidates to evaluate. For typical values for broadcast 

TV  (I = 720, J = 480 and F = 30), motion estimation based on full-search algorithm 

requires 29.89 GOPS (Giga operations per second) for a search area o f 32x32 pixels [1].

The FSBMA is usually used in the hardware implementation o f Motion Estimation, 

because o f its simplicity, regularity, and optimum result. The most commonly used 

metric to determine the best match for FSBMA in hardware is the Mean Absolute 

Differences. Main goal is to compute the m inimum M A D  from among all the candidate 

blocks. To do this, search iteration is performed for eaeh eandidate block. The M A D  adds 

up the absolute differences between corresponding elements in the candidate and 

reference block. The M A D  cost function is described in Equation (1).

Field Programmable Gate Arrays supports a high number o f processor elements (PE) 

in parallel mode. This property can be used to process, at the same time, all SAD 

operations from a MPEG macroblock in a search area. W ith this real time video encoder 

for Motion Estimation can be reached [15].

1.2.3 2D logarithmie search

2D Logarithmic search is very similar to binary search and it tests lim ited candidates. 

In the first step, the [-p, p] search rectangle is divided into two areas: one inside a

- p  p

(at integer pixel location) rectangle and one outside it. Further-more, instead o f 

searching the whole area, the Block Matching Criteria is computed for nine locations: at 

(0, 0) and at the eight major points in the perimeter o f the area. That is, i f  the distance 

between these points is d,, we compute the m inimum at (0, 0), (0, d,), (0, -di), (-d|, 0), 

(di, 0), (d), di), (di, -d|) and (-di, -d,). The distance d| is given by d, = 2'̂ "', where k =

12



[log2p]. For example for p = 7, k = 3, di = 4 pixels. Using the best mateh location as the 

starting point, we then look for the best match in the eight perimeter points at distance d] 

which is d]/2. We continue this process until the k"’ search, where the eight perimeter 

search locations are spaced by one point. A fter these eight locations have been examined, 

we determine the location that yields the smallest criteria.

As shown in Fig. 1.3, during the first iteration, a total o f five candidates are tested. 

The candidates are centered around the current block location in a diamond shape. The 

step size for first iteration is set equal to ha lf the search range. For the second iteration, 

the centre o f  the diamond is shifted to the best matching candidate. The step size is 

reduced by ha lf only i f  the best candidate happens to be the centre o f the diamond. I f  the 

best candidate is not the diamond centre, same step size is used even for second iteration. 

In this case, some o f the diamond candidates are already evaluated during first iteration. 

Hence, there is no need for block matching calculation for these candidates during the 

second iteration. The results from the first iteration can be used for these candidates, fhe 

process continues t i l l  the step size becomes equal to one pixel. For this iteration all eight 

surrounding candidates are evaluated. The best matching candidate from this iteration is 

selected for the cunent block. I  he number o f  evaluated candidate is variable for the 2D 

logarithmie seareh. However, the worst case and best ease candidates ean be ealeulated. 

For I = 720, J = 480, F = 30 and search area o f 32x32, logarithmic search requires one 

GOP. The eomplexity o f logarithmic search is only 3.3 percent o f the complexity o f fu ll 

search [1]



Final iteration candidates 

Third iteration candidates 

Second iteration candidates 

First iteration candidates

Fig. 1.3 2D Logarithmic search

1.2.4 Three step search

In a three-step search (TSS) algorithm, the first iteration evaluates nine candidates as 

shown in Fig. 1.4. The candidates are centered around the current block’ s position. The 

step size for the fist iteration is typically set to ha lf the search range. During the next 

iteration, the search centre is shifted to the best matching candidate from the first 

iteration. Also, the step size is reduced by half. The same process continues t ill the step 

size becomes equal to one pixel. This is the last iteration o f the three-step search 

algorithm. The best matching candidate from this iteration is selected as the final
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candidate. The motion vector corresponding to this candidate is selected for the cuiTent 

block. The number o f candidates evaluated during three-step search is very less compared 

to the fu ll search algorithm. The number o f evaluated candidate is fixed depending upon 

the step size set during the first iteration. For example, the computational complexity 

associated w ith 25 search locations is 777.6 MOPS (M illion  operations per second) [1].

Final iteration candidates 

Second iteration candidates 

First iteration candidates

Fig. 1.4 Three step search
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1.2.5 Parallel Plierarchical One-Dimensional Search (PHODS)

Unlike the logarithmic search, the search in this search strategy is done independently 

along the two dimensions. The search algorithm is as follows;

1. For a [-p, p] search region let S = 2 and set the origin o f the search space at 

search location (0,0). Denote the origin as (di, dj).

2. In parallel, compute the

a. i-axis local minimum: Among the three locations (di-S,dj), (di,dj), 

(di+S,dj), find the location that yields the smallest M AD . Set dj to the j  

coordinate o f  this location.

b. j-axis local minimum: Among the three locations (di,dj-S), (di,dj), 

(di,dj+S), find the location that yields the smallest M AD . Set dj to the j 

coordinate o f this location.

Set S = - .
2

Repeat step 2, until S= 0. The final (di,dj) is the motion vector that yields the best match 

for the macrobloek in the cun-ent picture. For the case o f p = 7, we need to examine 13 

search locations, which for frames at 720 x 480 resolution and 30 frames/s coiTcsponds to 

404.35 MOPS. Parallel Hierarchical One-Dimensional Search has two distinct 

advantages over TSS: (1) the M A D  calculations are parallelizable, and (2) it  has regular 

data flow , since the search locations are always along the i-axis and the j-axis.

Both logarithmic and the PHODS methods belong to the class o f fast algorithms that 

reduce motion estimation complexity by reducing the number o f search locations that are 

used in determining the minimum M AD. For p = 7, compared to fu ll search method, the 

complexity is reduced from 6.99 GOPS to 404.35 MOPS [I  j. Fast algorithms that work
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in reduced search space assume that M A D  (i,j) increases monotonically as the search area 

moves away from the best matched location. Such algorithms perfonn as well as the fu ll- 

search method i f  this assumption holds; however, in practice the assumption often fails, 

since not all the search locations are visited and the search for a global minimum may get 

trapped into a local minimum. Moreover, it is easy to parallelize Full-Search architectures 

whereas logarithmic algorithms require complex control mechanisms.
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CHAPTER 2 

BACKGROUND OF MPEG

2.1 Background and overview

Video pictures in today’ s digital era pose a problem o f compression. Uncompressed 

digital video pictures take up enonirous amounts o f information. I f  you were to record 

digital video to a CD without compression, it  could only hold about five minutes, and 

that's without any sound. MPEG standards reduce the amount o f data needed to represent 

video, at the same time manages to retain very high picture quality. The Moving Picture 

Experts Group, commonly refeiTcd to as simply MPEG, is a working group o f 

International Organization for Standardization (ISO)/ International Electrotechnical 

Commission (lEC) charged w ith the development o f video and audio encoding standards. 

Its first meeting was in May o f 1988 in Ottawa, Canada. As o f late, MPEG has grown to 

include approximately 350 members per meeting from various industries, universities, 

and research institutions. MPEG's officia l designation is ISO/IEC JTCI/SC29 W G II. 

ISO/IEC JTC I is Joint Technical Committee 1 o f the ISO and the I EC. It deals w ith all 

matters o f information technology. MPEG has standardized the follow ing compression 

formats and ancillary standards:
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• MPEG-1 : In itia l video and audio eompression standard. Later used as the standard 

for Video CD, and includes the popular Layer 3 (MP3) audio compression format.

• MPEG-2: Transport, video and audio standards for broadeast-quality television. 

Used for over-the-air digital television ATSC, DVB and ISDB, digital satellite 

TV  services like Dish Network, digital cable television signals, SVCD, and with 

slight modifications, as the .VOB (Video OBject) files that carry the images on 

DVDs.

• MPEG-3: Originally designed for HD TV, but abandoned when it was realized 

that MPEG-2 (w ith extensions) was sufficient for HDTV.

•  MPEG-4: Expands MPEG-1 to support video/audio "objects", 3D content, low 

bitrate encoding and support for D igital Rights Management.

In addition, the follow ing standards, while not sequential advances to the video 

encoding standard as w ith MPEG-1 through MPEG-4, are retened to by sim ilar notation:

• MPEG-7: A  multimedia content description standard.

• MPEG-21 : MPEG describes this standard as a multimedia framework.

MPEG compresses high data imagery and slightly affects the picture quality, which is 

not notable to the human eye. l  ire illusion o f  movement in TV  and cinema pictures is 

actually created by showing a sequence o f still pictures in quick succession, each picture 

changing a small amount from the one before. We cannot detect the individual pictures - 

our brain 'smoothes' the action out, A  dumb analogue TV  picture sends every part o f 

every picture, but digital MPEG video is much smarter. It looks at two pictures and 

works out how much o f the picture is the same in both. Because pictures don't change
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much from one to the next, there is quite a lot o f repetition. The parts that are repeated 

don't need to be saved or sent, because they already exist in  a previous picture. These 

parts can be thrown out. Digital video also contains components our eyes can't see, so 

these can be thrown out as well. MPEG-2 is a popular coding and decoding standard for 

digital video data. MPEG-2 encoding uses both lossy compression and lossless 

compression. Lossy compression permanently eliminates infonnation from a video based 

on a human perception model. Humans are much better at discerning changes in color 

intensity (luminance infoimation) than changes in color (chrominance infonnation). 

Humans are also much more sensitive to low  frequency image components, such as a 

blue sky, than to high frequency image components, such as a plaid shirt. Details which 

humans are like ly to miss can be thrown away without affecting the perceived video 

quality. Lossless compression eliminates redundant infonnation while allowing for its 

later reconstruction. Similarities between adjacent video pictures are encoded using 

motion prediction, and all data is Huffman compressed. The amount o f lossy and lossless 

compression depends on the video data. Common compression ratios range from 10:1 to 

100:1. Certain sections o f  video are more complicated than other sections. When there is 

lots o f action and tine detail it's much more d iftlcu lt to encode properly than a slow 

moving scene w ith large areas o f the same color or texture in the picture. MPEG deals 

w ith this by concentrating its efforts and data use on the complicated parts. This means 

that the video is encoded in the best possible way. In MPEG, video is represented as a 

sequence o f pictures, and each picture is treated as a two-dimensional array o f pixels 

(pels). The color o f each pel is consists o f three components: Y  (luminance), Cb and Cr 

(two chrominance components).
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The process can be explained in short as following: The encoder operates on a 

sequence o f pictures. Each picture is made up o f pixels amanged in a 16x16 array known 

as a macroblock. Macroblocks consist o f a 2x2 array o f blocks (each o f  which contains an 

8x8 array o f pixels). There is a separate series o f macroblocks for each color channel, and 

the macrobloeks for a given channel are sometimes downsampled to a 2x1 or 1x1 block 

matrix. The compression in MPEG is achieved largely via motion estimation, which 

detects and eliminates similarities between macrobloeks across pictures. Specifically, the 

motion estimator calculates a motion vector that represents the horizontal and vertical 

displacement o f a given macroblock (i.e., the one being encoded) from a matching 

macroblock-sized area in a reference picture. The matching macro block is removed 

(subtracted) from the current picture on a pixel by pixel basis, and a motion vector is 

associated w ith the macroblock describing its displacement relative to the reference 

picture. The result is a residual predictive-code (P) pieture. It represents the difference 

between the current picture and the reference picture. Reference pictures encoded without 

the use o f motion prediction are intra-coded (1) pictures. In addition to forward motion 

prediction, it is possible to encode new pictures using motion estimation from both 

previous and subsequent pictures. Such pictures are bidirectionally predictive-coded (B) 

pictures, and they exploit a greater amount o f temporal locality. Each o f  1, P, and B 

pictures then undergoes a 2-dimensional discrete cosine transfonn (DCT) which separates 

the pieture into parts w ith varying visual importance. The input to the DCT is one block. 

The output o f the DC 1 is an 8x8 matrix o f frequency coefficients. The upper left corner 

o f the matrix represents low frequencies, whereas the lower right corner represents higher 

frequencies. The latter are often small and can be neglected without sacrifieing human
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visual perception. The DCT coefficients are quantized to reduce the number o f bits 

needed to represent them. Following quantization, many coefficients are effectively 

reduced to zero. The DCT matrix is then run-length encoded by emitting each non-zero 

coefficient, followed by the number o f zeros that precede it, along w ith the number o f 

bits needed to represent the coefficient, and its value. The run-length encoder scans the 

DCT matrix in a zig-zag order to consolidate the zeros in the matrix. Finally, the output 

o f the run-length encoder, motion vector data, and other information (e.g., type o f 

picture), are Huffman coded to further reduce the average number o f bits per data item. 

Fhe compressed stream is sent to the output device.

[n order to achieve high compression ratio, we must use hybrid coding techniques to 

reduce both spatial redundancy and temporal redundancy. In the MPEG coding, there are 

two kinds o f blocks: the 16x16 (pels) macro-block and the 8x8 (pels) basic block. The 

basic block is used when the DCT is performed and the macro-block is used for motion 

estimation. The encoding o f a video stream is done in several steps. Each o f the steps 

separately depicted in Fig. 2.1 are explained below. In the Fig. 2.1, DCT stands for 

Discrete Cosine Transform, Q for Quantization, IDCT for Inverse Discrete Cosine 

Transform, IQ for Inverse Quantization. The FRAMES block stores two frames at a time

i.e. currently encoded frame and a previously encoded frame. These two frames are used 

to estimate the motion occurred between two consecutive frames o f the video sequence.
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Fig. 2.1 Video encoder block diagram

2.1.1 Color conversion

In this step the input color-space is transformed into the YCbCr color-space. 

Furthennore, the chrominances are subsampled by a factor o f two in both the horizontal 

and vertical direction. Thus, a 16x16 block from the video signal results in four 8x8 

luminance blocks, one 8x8 Cb block, and one 8x8 Cr block. These 8x8 blocks are used 

by the DCT. The 16x16 luminance block is used by the motion estimation.

2.1.2 Motion estimator

Motion estimation is the process o f determining motion vectors that describe the 

transformation from one 2D image to another; usually from adjacent frames in a video 

sequence. It is an ill-posed problem as the motion is in three dimensions but the images 

are a projection o f the 3D scene onto a 2D plane. The motion vectors may relate to the
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whole image (global motion estimation) or specific parts, such as rectangular blocks, 

arbitrary shaped patches or even per pixel. The motion vectors may be represented by a 

translational model or many other models that can approximate the motion o f a real video 

camera, such as rotation and translation in all three dimensions and zoom. In motion 

estimation an exact 1:1 correspondence o f pixel positions is not a requirement. Applying 

the motion vectors to an image to synthesize the transformation to the next image is 

called Motion compensation. The combination o f motion estimation and motion 

compensation is a key part o f video compression as used by MPEG 1, 2 and 4 as well as 

many other video codecs.

2.1.3 Motion compensator

One method used by various video fomrats to reduce file  size is motion 

compensation. For many frames o f a movie, the only difference between one frame and 

another is the result o f either the camera moving or an object in the frame moving. In 

reference to a video file, this means much o f the infonnation that represents one frame 

w ill be the same as the infoimation used in the next frame. Motion compensation takes 

advantage o f this to provide a way to create frames o f a movie from a reference frame. 

For example, in principle, i f  a movie is shot at 24 frames per second, motion 

compensation would allow  the movie file  to store the fu ll infoimation for every fourth 

frame, fhe only information stored for the frames in between would be the information 

needed to transform the previous frame into the next frame. I f  a frame o f infoimation is 

one M B in size, then uncompressed, one second o f this film  would be 24 MB in size. 

Using motion compensation, the file  size for one second o f the film  could be reduced to a 

little  over 6 MB. More formally, in video compression, motion compensation is a
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technique for deseribing a picture in terms o f the transformation o f  a reference picture to 

the current picture. The reference picture may be previous in time or even from the 

future. When images ean be accurately synthesized from previously transmitted/stored 

images then the compression efficiency can be improved. In MPEG, images arc predicted 

from previous frames (P frames) or bidirectionally from previous and future frames (B 

frames). B frames are not so popular because the image sequence must be 

transmitted/stored out o f order so that the future frame is available to generate the B 

frames. A fter predicting frames using motion compensation, the coder finds the error 

(residual) which is then compressed using the DCT and transmitted.

In block motion compensation (BMC), the frames are partitioned in blocks o f  pixels 

(e.g. macrobloeks o f 16x16 pixels in MPEG). Each block is predicted from a block o f 

equal size in the reference frame. The blocks are not transfomred in any way apart from 

being shifted to the position o f the predicted block. This shift is represented by a motion 

vector. To exploit the redundancy between neighboring block vectors, (e.g. for a single 

moving object covered by multiple blocks) it is common to encode only the difference 

between the current and previous motion vector in the bit-stream. The result o f this 

differencing process is mathematically equivalent to global motion compensation capable 

o f panning. Further down the encoding pipeline, an entropy coder w ill fake advantage o f 

the resulting statistical distribution o f the motion vectors around the zero vector to reduce 

the output size. If is possible to shift a block by a non-integer number o f  pixels, which is 

called sub-pixel precision. The in-between pixels are generated by inteipolating 

neighboring pixels. Commonly, half-pixel or quarter pixel precision is used. The 

computational expense o f sub-pixel precision is much higher due to the extra processing
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required for interpolation and on the encoder side, a much greater number o f potential 

source blocks to be evaluated.

The main disadvantage o f block motion compensation is that it  introduces 

discontinuities at the block borders (blocking artifacts). These artifacts appear in the form 

o f sharp horizontal and vertical edges which are easily spotted by the human eye and 

produce ringing effects (large coeffieients in high frequency sub-bands) in the Fourier- 

related transform used fo r transform coding o f the residual frames.

Block motion compensation divides up the current frame into non-overlapping 

blocks, and the motion compensation vector tells where those blocks come from (a 

common misconception is that the previous frame is divided up into non-overlapping 

blocks, and the motion compensation vectors tell where those bloeks move to). The 

source blocks typically overlap in the source frame. Some video compression algorithms 

assemble the cunent frame out o f pieces o f several different previously-transmitted 

frames. Frames can also be predicted from future frames. The future frames then need to 

be encoded before the predicted frames and thus, the encoding order does not necessarily 

match the real frame order. Such frames arc usually predicted from two directions, i.e. 

from the I- or f^-frames that immediately precede or fo llow  the predieted frame. These 

bidirectionally predicted frames are called B-frames. A  coding scheme could, for 

instance, be IBBPBBPBBPBB.

2.1.4 Discrete Cosine Transfonn (DCT) and Inverse Discrete Cosine Transform (IDCT)

DCT is a lossy compression scheme where an N x N image block is transfonned from 

the spatial domain to the DCT domain. DCT decomposes fhe signal into spatial frequency 

components called DCT coefficients [23]. The lower frequency DCT coefficients appear
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toward the upper left-hand corner o f the DCT matrix, and the higher frequeney 

coefficients are in the lower right-hand corner o f the DC'F matrix. The Human Visual 

System (I I VS) is less sensitive to errors in high frequency coefficients than it is to lower 

frequeney coefficients. Because o f this, the higher frequency components can be more 

finely quantized, as done by the quantization matrix. Each value in the quantization 

matrix is pre-sealed by m ultiplying by a single value, known as the quantizer scale code. 

This value can range in value from one to 112 and is modifiable on a macroblock basis. 

D ivid ing each DCT coefficient by an integer scale factor and rounding the results 

accomplishes quantization. This sets the higher frequency eoetficients (in the lower right 

comer), that are less significant to the compressed picture, to zero by quantizing in larger 

steps. I'he low  frequency coefficients (in the upper left comer), are more significant to 

the compressed picture, and are quantized in  smaller steps. The goal o f quantization is to 

force as many o f the DCT coefficients to zero, or near zero, as possible w ith in the 

boundaries o f the prescribed bit-rate and video quality parameters. Thus, since 

quantization throws away some infomiation, it is a lossy compression scheme.

'fhe data compressed at the transmitter needs to be decompressed at the receiver. 

IDCT is used to decompress DCT compressed data in the decoder. DCT and IDCT are 

two o f the most computation intensive funtions in compression. I'herefore, a fast and 

optimized DCT/IDCT implementation is essential in improving the perfomiance o f the 

video coder and decoder.

2.1.5 Quantization and Inverse Quantization

Quantization is done to achieve better compression. Quantization reduces the number 

o f bits needed to store information by reducing the size o f the integers representing the
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information in the scene. These are details that the human visual system ignores, fhis 

step represents one key segment in the m ulti- compression process. A  reduction in the 

number o f bits reduces storage capacity needed, improves bandwidth, and lowers 

implementation costs. Quantization is the process o f selectively discarding visual 

information without a significant loss in the visual effect. Quantization reduces the 

number o f bits needed to store an integer value by reducing the precision o f  the integer. 

Each discrete cosine transform (DCT) component is divided by a separate quantization 

eoefticient, and rounded to the nearest integer. The larger the quantization coefficient 

(i.e., coefficient weighting), the smaller the resulting answer and associated bits needed to 

express the DCT component. In the reverse process, the fractional bits are "rounded" and 

are recovered as zeros, constituting a precision loss from the original number. 

Quantization could be considered as input data binning where the number o f bins is less 

than the number o f possible input values. The number o f bins is decided by the 

quantization factor Q. I f  the input data range is from one to 60, and i f  Q is 5, then 60/5 is 

12 bins (0 to 5, 6 to 10, and so on). A  different input data range o f 60 is now reduced to 

12 possible bins [24]. The quantized Discrete Cosine transform coded coefficients are fed 

into the quantizer. The quantized coefficients are taken through an inverse quantizer to 

get back the original DCT coefficients. Since quantizing is a lossy process where certain 

DCT coeffieients are thrown away, the inverse quantization w ill not given back all o f the 

original 64 DCT coeffieients. The non-recovered coefficients have the least visual effect 

on the picture.
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2.1.6 Huffman Coding

Frequently oeeurring symbols are assigned short code words whereas rarely occurring 

symbols are assigned long code words. The resulting code string can be uniquely decoded 

to get the original output o f the run length encoder. The code assignment procedure 

developed by Fluffman is used to get the optimum code word assignment for a set o f 

input symbols. The procedure for Huffman coding involves the pairing o f symbols. The 

input symbols are written out in the order o f decreasing probability. The symbol w ith the 

highest probability is written at the top, the least probability is written down last. The 

least two probabilities are then paired and added. A  new probability lis t is then formed 

w ith one entry as the previously added pair. The least symbols in the new list are then 

paired. This process is continued t i l l  the list consists o f only one probability value. The 

values "0" and "1" are arbitrarily assigned to each element in each o f the lists. Fig. 2.2 

shows the follow ing symbols listed w ith a probability o f occurrence where: A  is 30%, B 

is 25%, C is 20%, D is 15%, and E = 10% [25].

A — 30 00
A — 30

B — 25 01
B - - 2 5

C — 20 f f
-----F — 25

D — 15 fOO
0  — 20

fOf
E — 10 ■

00

Of

to
11

- G — 45 1

A — 30 00

B — 25
Of

-H — 55 

G -— 45

Fig. 2.2 Illustration o f huffman coding
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Steps in Huffman coding

1. Adding the two least probable symbols gives 25%. The new symbol is F

2. Adding the two least probable symbols gives 45%. The new symbol is G

3. Adding the two least probable symbols gives 55%. The new symbol is H

4. W rite "0" and " 1 " on each branch o f the summation arrows. These binary values

are called branch binaries.

5. For each letter in each column, copy the binary numbers from the column on the 

right, starting from the right most column (i.e., in column three, G gets the value 

"1" from the G in column four.) For summation branches, append the binary from 

the right-hand side column to the left o f  each branch binary. For A  and C in 

column three append "0" from H in column four to the left o f the branch binaries. 

This makes A "00" and B "01".

Completing step 5 gives the binary values for each letter: A  is "00", B is "01", C is 

"11", D is "100", and E is "101". The input w ith the highest probability is represented by 

a code word o f length two, whereas the lowest probability is represented by a code word 

o f length three.



CHAPTER 3

IM PLEM ENTATIO N OF MO FION ESTIM ATIO N HARDW ARE ACCELERATOR

3.1 Introduction

The main purpose o f  this project was to build a lab prototype o f a motion estimation 

hardware accelerator which can be easily mounted to a general purpose RISC processor. 

There are varieties o f implementations described by research teams all around the world, 

but none provide any modules or codes in implementation and testing o f a motion 

estimator module in hardware. I'h is was the very reason which prompted me to write a 

Verilog H D L code for the motion estimator hardware accelerator. The HD L approach 

facilitates reconfigurability and m odifiability. The entire code has been written in Verilog 

HDL. During the course o f the project number o f problems were faced and tackled. 

Control circuitry had to be redone a couple o f  times w ith respect to optimized control and 

output. Various algorithms were studied and the perfomiance descriptions provided in [1] 

gave a clear idea about advantages and disadvantages o f  each algorithm. The literature 

survey gave a fa ir idea o f the recent research being camied out in this field [16, 17, 18, 

19, 20, and 21]. Though the logarithmic and much superior estimation algorithms assist 

in achieving faster computations, the complex control associated w ith them and the 

probability o f error left w ith the option to choose Full Search Block Matching Algorithm 

as the candidate for implementation. The advantages like parallelizable structures and 

ease o f implementation o f Full Search Block Matching A lgorithm  described in [1, 2, 15,
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and 181 makes it  an ideal algorithm to be implemented when it comes to FPGA based 

systems. The very features have been fu lly  utilized in the implementation which is an 

extension to the proposed SAD motion estimation architecture explained in [4, 5].

The hardware accelerator consists o f the SAD module, CuiTcnt frame control. Reference 

frame control and the frame storages. The output is the motion vectors which describe 

where in the 2-dimensional area is the best match found. The SAD module fomis the core 

o f the whole system. The follow ing block diagram in Fig. 3.1 gives an idea o f different 

components and the next section explains the working o f each module in detail.

3.2 Block diagram description

Current 
frame storage

SAD

MVs

State machine

Current Reference
frame control frame controlJ L

Reference 
frame storage

Fig. 3.1 Motion estimation block diagram
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3.2.1 Reference frame storage

The current macrobloeks are 16x16 blocks which contain the current frame 

information and have to be compared w ith the reference macrobloeks which arc already 

stored. For this project, M A T LA B  is used to segregate the macrobloeks. But, I w ill 

explain it here theoretically to give an idea. The Frame Grabber board [22] which we 

have has a Video RAM  installed on it which stores frames o f moving pictures and has a 

huge FIFO structure to store each pixel one by one in it as explained in [22]. The FIFO 

read pointer in itia lly  points to the location where the luminance (Y) information o f the 

first pixel o f the current frame is stored. The Chrominance components (Cb and Cr) o f 

the pixel are stored in  and 2"'  ̂ location. The Frame grabber can be programmed to 

make the read pointer go to the user desired location which facilitates the segregation o f 

32x32 search area o f the reference frame as well as the 16x16 macroblock o f the current 

frame. Moreover, for motion estimation module only luminance infonnation is used to 

compute the motion vectors. So the Frame grabber can be programmed to just read and 

send Luminance pixels o f the required 256 bytes. The increment pointer makes it even 

easier to hop from pixel 16 to pixel 257 to achieve the sliding macroblock effect. For my 

implementation I have made use o f Irfan V iew  ©software to first segregate the individual 

frames from the movie [8]. Further I have written a code in M A T IA B '' ’̂ '© to segregate 

individual current frame into 16x16 macrobloeks which can be directly fed into Block 

RAMs in the FPGA and also to segregate the 32x32 search area o f the reference frame. 

This is just for the functional simulation purposes. Once Irfan V iew  grabs into individual 

frames from the movie, the M A TLA B  code segregates the individual macrobloeks and 

search areas into specific text files which are read by the HD I. code testbench. The



testbench operates in a sequential fashion. So this takes up time during simulation. In 

real-time the Video R A M  buffer has to be used and data has to be read from the same. 

For this an on-ehip or off-ehip SDRAM ean be used. Normally, all the FPGA vendors 

sell the SDRAM eontroller HDL codes as it is very complex and is out o f the scope o f 

this project.

3.2.2 Current frame storage

For the current frame storage is done in a sim ilar way as the reference frame storage. 

The only difference is segregation has to be done for 16x16 macrobloeks. It requires less 

memory and is faster as each time only 256 bytes o f luminance pixels have to be read. As 

explained earlier the testbench method helps in testing the functional simulation but is not 

helpful in speed up due to its sequential operation, fh is  can be avoided by concurrent 

operation which can be achieved in case o f  an on-chip or off-chip memory. I f  two 

different R A M  modules are used w ith the read cycles properly synchronized by a FSM 

then while one port is being utilized to work a macroblock the other port can be used to 

read the second 16x16 macroblock and store it in the second Current Frame FIFO 

explained in the next section. Similar can be applied to the Reference Frame Sliding 

W indow Controller explained in the further sections. I ’his w ill help in nu llify ing wait 

times for the SAD module in reading the required data.

To simulate this on-chip memory is used, which in case o f FPGAs is the Block RAMs 

(BRAMs). The BRAMs can be instantiated w ith the help o f the CORE Generator feature 

in-built in the X ilin x  ISE. CORE Generator is a graphical interactive design tool that 

enables us to create high-level modules such as memory elements, math functions and 

communications and 10 interface cores. We can customize and pre-optimize the modules



to take advantage o f the inherent architectural features o f the X ilin x  FPGA architectures, 

such as Fast CatTy Logic, SRLl6s, and distributed and block R AM  [9|.

The instantiation can be done by referring to the text file  which is segregated using 

M A T LA B  as a Coefficients file  (.coe) file  [10]. This file loads up to initialize the 

BRAM s as per the values in the .coe file. For the coefficients file  some syntaetieal rules 

have to be followed otherwise the CORE generator outputs an error message. A fter the 

BR AM  is instantiated a my ram .m if (Memory Initialization Format) file  is generated 

which contains the values we fed as the Coefficients tile. Only COE files may be used as 

inputs to cores for the purpose o f specifying initialization values for memory cores and 

for specifying coefficient values. M IF files can only be generated as output files for use 

in HDL behavioral simulations. They cannot be used to specify in itia l values when a core 

is generated. M IF files w ill always be written out for memory (in binary fonnat only), 

based on values specified in any input COE files (or default values, as the ease may be).

3.2.3 Reference frame control

This module is a sliding window controller which sweeps across the 32x32 search 

area i.e. 1024 pixels. The Fig. 3.2 gives a clear picture o f the sliding window movement. 

The Macroblock at each specific point as shown in the figure is latched and fed to the 

SAD module for further computation. The sliding window gives an accurate account o f 

overall search area. The probability o f finding the best match increases in this case.
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Fig. 3.2 Sliding motion o f the reference macroblock with in the search area

The hardware for this is as shown in the Fig. 3.3. The FIFOs and D Flip Flops are 

connected in such a way that at every clock cycle a new set o f  16x16 i.e. 256 values are 

available. These values are fed into the SAD module at once. Each value in the FIFO and 

the D Flip Flop are a byte long accounting only for the luminance information o f the 

pixels in the image. I'he feeding in o f this structure takes up most o f the critical time, 

which can be properly synchronized to achieve the desired speed up by using two 

memories and two such structures. While one is active the other structure can start 

acquiring new set o f macroblock values and a control circuit can be set up easily.

36



DFF
-«— • • •  < -

DFF DFF FIFO
1 15 16 16 deep

DFF ^  e  #  #  ^ DFF DFF FIFO
33 47 48 16 deep

#  #  # DFF FIFO
80 4— 16 deep 4----

•

•

DFF
4— •  •  •  4- DFF DFF FIFO

481 495 496 16 deep

Fig. 3.3 Sliding window architecture

INPUT

'['here is an in-eguiarity involved in the architecture shown in Fig. 3.3. There are some 

values in the search area which are redundant i.e. when the window reaches the rightmost 

part o f the search area. During this time interval, the window has values which exactly do 

not define any particular macroblock in the search area, 'fhe values define nothing but an 

iiTegular macroblock which consists o f values from rightmost part o f the first row and left 

most part o f the second row o f  the search area. This is controlled by a control signal 

during which the SAD module does not capture any values. So only those valid values 

which define the search area properly are captured and used for finding the best match.



This avoids any incorrect results. This structure captures only 289 valid candidate 

macrobloeks for computation. This module assists in selecting all the macrobloeks in the 

search area without having any complex control c ircu itiy or coding techniques. The SAD 

module takes up almost 38 clock cycles as w ill be discussed in the next section, 'fhat 

forms the frequency o f the reference control sliding window operation which we call as 

reference elk. This frequency o f operation can be increased by achieving pipelining. 

Pipelining approach has also been adopted here, which w ill be explained in later sections. 

By breaking down the combinational logic and inserting registers, the critical path can be 

comprehensively reduced to 3 times increase in the operating frequency o f  the Reference 

Frame eontroller sliding window module. W ith minor extra overheads a faster operation 

can be achieved.

3.2.4 Current Frame Control

This module is a 8-byte Shift Register (SR) which shifts the 256 different luminance 

values o f the cunent macroblock. As soon as all the 256 values have been clocked in the 

shift register, all the values are latched into the 256in-256out structure, which then feeds 

concurrently into the input o f SAD block. The synchronization is a b it complex but not as 

complex as in the case o f logarithmic algorithms. In this case, the coefficients values 

stored in the current macroblock text files are called in the testbench. The text file  

emulates a R AM  which outputs consecutive RAM  location values one by one. So, the 

cuiTcnt macroblock text file  writes each luminance value in the Shift register location and 

all the 256 values are latched at one time. The latched contents are maintained t il l the 

whole search area is swept and a final motion vectors are obtained. For this, i f  another 

such structure is used w ith the same memory feeding in SR#2 through a Multiplexer,



while SR#1 is maintained for SAD operation, the wait times can be avoided for the SR#2 

to f i l l  up. So t i l l  the time SR#1 is busy finding the best match, memory can f i l l  in SR#2 

which can be ready w ith the next macroblock to go for second SAD operation. For now, 

only one structure operation is simulated.

3.2.5 SAD module

Ih is  section describes the SAD operation and the possible parallel implementations 

as proposed and implemented in [4, 5]. Though the theoretical documentation was 

available, no Verilog codes were available. The Sum o f Absolute Differences considers 

all data units A, and Bj to be unsigned 8 bits numbers. The general algorithm computing 

the Sum Absolute Difference o f two blocks is depicted in Equation ( I) . This section first 

describes the 16x1 SAD operation and then goes further to explain the extension to 16x16 

SAD. A  direct approach in computation the SAD consists o f the fo llow ing steps:

• Compute (A i  - Bj) for all 16x16 pixels in the two bloeks A  and B

•  Déterminé which (A j  - B j)  are negative and produce (B j - A|) in that ease as the 

absolute value, else produce (A j  - B j)

•  Perform the accumulate operation to all 16x16 absolute values.

By determining the smallest o f both operands and subtracting it from a constant, it 

becomes possible to eliminate the absolute operations. This subtraction is a trivia l 

operation, i f  the constant is chosen correctly. The smaller o f  two operands is determined 

by inverting one o f the operands, and computing the carr y-out which would arise from 

the addition o f both operands. The smaller operand is inverted, which means that its value 

changes to (2^ -- 1 -  X ) = (255 -  X). Both inverted smallest and the largest values are 

passed to the adder-trec, which corrects for this constant, 'fhe above two steps can be
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earned out in parallel for 16 pels. The result is 32 8-bit values, on which the follow ing 

steps are applied. The conection term is added to account fo r the (2" -  l ) ’ s introduced by 

the inverting o f the smallest value. I f  the number o f pels on which the unit is operating is 

a power o f 2, the correction tenn is equal to that number, as the sum o f the 2" adds up to 

one “ simple eliminatable b if ’. I f  the number o f  pels the unit operates on is not a power o f 

two, we also have to account for the additional per pel. The resulting rows passed to the 

adder tree and the correction-term is 33 rows, are reduced to 2 rows by using a Wallace 

tree carry save adder scheme as proposed in [11, 12, and 13]. In this final step, a fu ll 

summation o f the two remaining rows is performed. The total sum o f all constants, which 

has to be discarded, is the carry out o f this addition.

To summarize, the first step is performed by computing [A ’ 4- B], where A ’ stands for 

inverted A. In ease no carry was generated, this means that B is not greater than A  and 

thus B should inverted. Otherwise, A  should be inverted. Next to passing the operands to 

an adder tree, an additional correction term must be added to counter the effects o f using 

inverted values, fhe adder tree reduces the adder terms two terms which are then passed 

to an adder. For precise mathematical details o f the approach, we refer to [3, 4].

In the previous section, the significance o f motion estimation in video coding is 

mentioned. An important metric used in motion estimation is the sum o f absolute 

differences (SAD). The absolute difference operation ean be implemented in several 

ways: serial, per column in parallel, per row in parallel, and fu lly  parallel. The 

implementation described in [5] focuses on the SAD 16 operation that performs the SAD 

on one row o f a macroblock (16x1). A ll the input values are 8-bit unsigned binary 

numbers. By iteration or parallel execution o f the SAD 16 operation, the complete SAD
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operation for the 16x16 macroblock can be performed. First, the steps necessary to 

perform the 16x1 SAD operation in more detail:

• Determine the smaller o f the two operands: As suggested in [3, 4], it is only

necessary to determine whether (A ’ + B) produces a carry or not.

• Invert the smallest operand: I f  no carry was produced then B must be inverted; 

otherwise, A  must be inverted. This is done by utiliz ing an EXOR operation.

• Pass both operands to an adder tree: A fter inverting either A  or B, the operands

must be passed to an adder tree. Thus, the values (A ’ , B) or (A , B ’) are passed

further.

•  Add a correction term to the adder tree: Also an additional eorrection term must

be added to the adder tree which is 16 in this case i.e. adding 1 to each o f the 16

blocks.

• Reduce the 33 addition terms to 2: A ll 33 addition terms must be reduced to 2

terms before the final addition can be applied. This can be done using an 8-stage

carry save adder tree using 243 carry save adders.

•  Add the remaining two terms using an adder: The final two addition terms are 

added using a 8-bit carry lookahead adder for the most significant bits. The result 

is a 13-bit unsigned binary number. However, as stated in [4, 5], the most 

significant bit o f  this result can be disregarded resulting in a final 12-bit unsigned 

binary number.

In Fig. 3.4, the first three steps are depicted. The determination whether the addition 

(A ’+ B) generates a carry is performed without actually calculating the addition. Instead, 

this is achieved by only utiliz ing certain parts w ith in a carry-lookahead adder that
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calculate the carry. The resulting carry and inverted carry are fed to two EXORs that w ill 

invert the correct tenn.

Invert

Om ty  generator

4 out B out

Fig. 3.4 Architecture to find the lower among A  and B

The inversion o f either As or Bs for all 16 absolute operations can be carried out in 

parallel and can be fed to an adder tree at the same time [4|. Fig. 3.5 depicts the eomplete 

SADI 6 operation that has been implemented in [5]. Next to the parallel exeeution o f the 

first three steps, the figure also depicts the addition o f a eorreetion tenn o f 16, the 33 to 2 

reduction tree, and the final 2 to 1 reduction. The implementation is synchronous and 

fu lly  pipeline-able.
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Fig. 3.5 16x1 SAD architecture

The 1 6 x 1 6  SAD operations shown in Fig. 3.6, is the implementation earried out in 

Verilog for this project. The results have been compared w ith the implementation o f [5]. 

As in [5], for parallel operation o f 16x16 SAD, there is only one additional 32 to 2 

reduction tree (see Fig. 3.6) when compared to the SAD 16 x 1 unit depicted in Fig. 3.5. 

This reduction tree is o f similar complexity as the 33 to 2 one. For the SAD module o f 

[16] the output is obtained in 27 cloek cycles. The first 33 to 2 module requires 8 cloek 

cycles, second 32 to 2 takes another 8 clock cycles and final 2 to 1 reduction tree takes 

another 9 clock cycles.
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Fig. 3.6 16x16 SAD architecture
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The 16x16 SAD operation implemented here forms the critical path o f the whole 

design whieh eontrols the reference frames feeding pels to the SAD module. To extend 

above module and get the motion vectors as final output, a comparator module, a motion 

vector decoder module and some safety margin is considered. So the final output in this 

case is gotten after 38 clock cycles. The reference control sliding window circuitry is 

clocked at f/38 cycles for proper operation. But w ith the pipelining approach this very 

frequency is increased by approximately 3 times. So w ith the pipelining the combination 

logic is broken down into modules operating at faster frequency. So the final operation 

frequency o f operation at which the Referenee sliding window controller operates is f/14.

3.2.6 State machine

The State maehine controls the address provided to the BRAM s and the data input to 

the motion estimation module. It is a fa irly  simple state machine which utilizes the one- 

hot state encoding approach. The fo llow ing figure shows the state machine which 

controls the ciuTent frame control.

There are two state machines running concuiTcntly. One controls the reference frame 

and other controls the current frame. The states are as shown.

State 1 = "START": This state initializes the state machine

State 2 = ADDR INTf: The addresses o f BRAMs are initialized to all Os

State 3 = EN RAM : The BITAMs are enabled and data is read

State 4 = STAY: In this state, internally another straightforward state machine (explained 

in section explaining ‘ reference frame eontrof ) is activated which controls the flow  o f 

valid MBs with help o f ‘ SAD control’ signal
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State 5 = NEW ADDR: In this state, after SAD operation over whole reference search 

area is completed, a new start address is fed and operation begins from EN R AM  state 

Same state machine is used for current frame except the BRAM  with curtent MBs 

w ill be enabled for 256 addresses only and BRAM  for reference frame search MBs for 

1008 addresses to compute for all valid macroblocks.

a d d rrd y

rst
State

!rst

laddr rdy
State

addr rdy

■addr <1008
State

addr == 1008
 ̂r

!sad endState

sad end

State laddr rdy

Fig. 3.7 State Machine

3.2.7 Pipelining approach to increase the frequeircy o f operation

fhe pipelining approach is explained as follows w ith an example.

• Consider a combinational logic between two registers as shown in Fig. 3.8 below.
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LOGIC

40ns

CI.K

Fig. 3.8 Logic w ith combinational logic delay

The frequency o f operation w ill depend upon the combination logic path 

delay, setup time and the clock to output delay o f the flip-tlops. Let us just 

consider the combinational logic path delay for the time being. I f  the delay is 

40ns, then our clock frequency becomes 25MFIz. Now we see the pipelining 

approach.

• As shown in fig. 3.9, the combinational logic can be broken down into blocks 

w ith smaller delays.

REG

8ns22ns

CI.KCI.K

Fig. 3.9 Logic w ith reduced combinational logic delay
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Now, we can insert an intenncdiatc register after each smaller delay block and 

increase the frequency o f operation. W ith pipelining the above 40ns combinational logic 

delay is divided into two combinational logic blocks having delay as 22ns and 18ns as 

shown in Fig. 3.9. Consider the maximum o f the two and so 45 M Hz becomes our 

maximum operating frequency. Thus, the frequency increases 1.8 times, which gives a 

considerable speedup in the whole operation.
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CHAPTER 4 

RESULTS

I ’he architecture uses a sliding window controller which sweeps the reference image 

to find the best macroblock match. The valid candidate blocks used to compare w ith the 

current macrobloek are 289. A  control signal controls which candidate blocks are valid to 

be computed and for which ones the SAD value should be registered. For test purposes an 

image 80x32 pixels is used. But the module is compatible to any size o f image as the 

architecture is generic provided the macroblocks and search area block are segregated 

and stored in the memory. The reason for selecting an 80x32 test image was due to ease 

in debugging and it required lesser simulator memory. The outputs involved lot o f values 

at each instant o f time and the generic nature o f the module makes it compatible for any 

size o f image. The time taken to output may vary as the image grows larger in size. This 

module is speeitlcally best utilized for smaller pixel size o f images. For example, Fig. 

4.1a shows a 16x16 macroblock and the Fig. 4.1b shows the 32x32 search area where the 

current macrobloek w ill be searched (Images enlarged from nonnal).

(a) (b)

hg. 4.1 (a) and (b) Illustrations o f current macrobloek and reference search area

respectively
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Fig. 4.2 shows the simulation results for the non-pipelined version o f  the operation. I f  

the main clock is 50 MFIz, our reference frame circuit derived clock w ill be divide-by-38, 

which is 1.3 MFIz. According to the simulation, the total time taken to compute the best 

match for one macroblock is 778.64 us. Tbe final best match motion vectors for a fu ll 

search o f one cuiTcnt macrobloek is available at the rate o f 1.3 KFIz. So, the computation 

o f best match o f one macrobloek takes almost 1000 reference clock cycles. This time 

considerably reduces for the pipelined version. FPGAs which can operate at very high 

frequencies like 130MHz, 200MFlz etc also assist in speeding-up the operation.

Name V ^ ... 1 * 100 ■ . zpO • . 300 . 400 • 500 . . 600 . 700 . 800 ' ' 9(

1+1R- currinl 

;l R= refinl 

R= elk 

R= refcik 

R'- oil

R" end_sirn 

R= fifo_en 

t+i R= mem 

S  R= refmeml 

El R= relmem2 

l±i R= refmemS 

S  R= refm em l 

l+i R= refmemS 

SlR= i

Ei *■ best sad I il,8XX Xooc

E " m ^  1 Xoo

El m vf : Kxx X X""Xo2 X06

Fig. 4.2 Simulation results for motion estimation without pipelining
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As shown in Fig. 4.3, for the same test image, we use the pipelined approach. Here 

for a main clock o f 50 MFIz, the derived clock is divide-by-14 i.e. reference clock is 3.5 

MHz. Thus the output is available after 284.48 us i.e. 3.5 KHz. Thus, for the 1000 

reference clock cycles/MB, the amount o f  time taken to get the final motion vectors for 

one macroblock reduces considerably. The time reduces by 491.52 us per current 

macrobloek best match computation.

Name Value 1 . 100 . 1 . 200 . 1 1 . 300 1 . 400 , . 500 . , . 600 , . ?i

it! R= currinl ffOD

i±l R= refin!

R= elk

R= refcik

R= cir

R= end_sim

R= fifo_en

It! R= mem <

E]R= refmeml Ï

El R= refmern2 K

EI R= refmemS K

[+] R= refmem4 K

El R= refmernS if

l±]R=i

El *■ best_sad K'xxx X)f027 XoOG

E] »■ mvX

Œ l ^ m v f  i Kxx XX'oi

Fig. 4.3 Simulation results for motion estimation w ith pipelining
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Thus from above results, we come up with the following equation, which tells us how

much frames per second is supported by this architecture -

% := -------------------------------   (Eiq 4.1)
(ret clock cycles/MB) x N x Total MBs

Where,

X  = frames per second which can be supported for the given fmax 

fmax = maximum clock frequency

N  = fmax divided by N  gives the reference clock frequency at which reference 

sliding window protocol operates.

Based upon the above equation some o f the projected results are tabulated as follows. 

These results target Common Intermediate Format (CIF). C l F is a format used to 

standardize the horizontal and vertical resolutions in pixels o f YCbCr sequences in video 

signals, commonly used in video teleconferencing systems. It was first proposed in the 

11.261 standard. CIF was designed to be easy to convert to PAL or NTSC standards. 

QCIF means "Quarter CIF". To have one fourth o f the area as "quarter" implies, height 

and width o f the frame are halved. Tenns also used are SQCIF (Sub Quarter CIF), 4CIF 

(4x CIF) and 16CIF (16% CIF). SIF (Source Input Format) is practically identical to CIF, 

but taken from MPEG-1 rather than ITU  standards. SIF based systems is 352 x 240. 

Projected results for some o f them are tabulated in Table 4.1.
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Table 4.1 Results describing the frames per second supported by the arehitccture

Format
Video

Resolution

No. of

MBs

FPGA family/Clock 

(fmax)

Supports fps

Non-
Pipelincd

Pipeline
d

SQCIF 128x96 48

Spartan-3/50MFIz 25fpa 60 fps
Spartan-3 

DSP/130MHz
60 fps 60 fps

Virtex-4/225MHz 60 fps 60 fps

QCIF 176x144 99

Spartan-3/5 OMIlz 15 fps 30 fps
Spartan-3 

DSP/130MHz 301pa 60 fps

Virtex-4/225MHz 60 fps 60 fps

CIF 352x288 396

Spartan-3/50MFIz 3 fps 9 fps
Spartan-3 

DSP/130MHz
8 fps :25 fpa

Virtex-4/225MHz 15 30 fps

SIF 352x240 330

Spartan-3/50MHz 4 fps 10 fps
Spartan-3

DSP/130MHZ 10 fps 25 fps

Virtex-4/225MHz 15 50 fps
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CONCLUSION AND FUTURE RECOMMENDATIONS

Motion Estimation in MPEG video is a temporal prediction technique. The basic 

principle o f motion estimation is that in most cases, consecutive video frames w ill be 

sim ilar except for changes induced by objects moving w ith in  the frames. Motion 

Estimation perfonns a comprehensive 2-dimensional spatial search for each huninance 

macroblock. MPEG does not define how this search should be performed. This is a detail 

that the system designer can choose to implement in one o f many possible ways. The 

motion estimation hardware accelerator based on a Full Search Block Matching 

Algorithm is implemented in Verilog HDL. State Machines for reference SAD control 

and reference BR AM  control can be merged together for sim plicity in coding. In the case 

o f described implementation, the codes were done in a hierarchical order due to which 

the state machines are split and are presented in that fashion. The reconfigurable nature 

o f FPGAs w ill make it easier to implement and make the core and re-test it. This core i f  

tested w ith a general purpose RISC processor like the X ilin x ’s Microblaze w ill make it 

easier to segregate the macroblocks and aid for the achieving the projected timelines. The 

core can be instantiated in the Microblaze and pixels can be fetched using Fast Simplex 

L ink interface at a faster rate. The generic nature o f the module defines a 32x32 search 

area for each cuiTcnt macrobloek and hence any size o f image can be used for testing 

purpose.
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