
UNLV Retrospective Theses & Dissertations

1-1-2008

Test suite prioritization techniques applied to Web-based Test suite prioritization techniques applied to Web-based

applications applications

Vani Kandimalla
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Kandimalla, Vani, "Test suite prioritization techniques applied to Web-based applications" (2008). UNLV
Retrospective Theses & Dissertations. 2376.
http://dx.doi.org/10.25669/29kj-d23a

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/29kj-d23a
mailto:digitalscholarship@unlv.edu

TEST SUITE PRIORITIZATION TECHNIQUES APPLIED TO

WEB-BASED APPLICATIONS

by

Vani Kandimalla

B.Tech, Electronics and Communication Engineering
Jawaharlal Nehru Technological University, Hyderabad, India,

2004

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

August 2008

UMI Number: 1460533

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, If unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1460533

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Thesis Approval
The G raduate C ollege

U n iversity of N ev a d a , Las Vegas

JULY 24TH ■ 2 0 0 8

The T hesis prepared b y

VANI KANDIMALLA

E n titled

TESTCASE PRIORITIZATION TECHNIQUES APPLIED FOR WEB-BASED APPLICATIONS.

is ap proved in partial fu lfillm en t of the requirem ents for the d egree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Exam ination C omm ittee M ember

w m inatiorfC om m ittee M ember

Graduate College Faculty Représentative

nr-
Examination Committee Chair

Dean o f the Graduate College

1017-53 11

ABSTRACT

Test Suite Prioritization Techniques applied to Web-Based
Applications

by

Vani Kandimalla

Dr. Renee Bryce, Examination Committee Chair
Assistant Professor, School of Computer Science

University of Nevada, Las Vegas

Web applications have rapidly gained importance in many businesses.

The increased usage of web applications has created a challenging need

for efficient and effective web application testing strategies. This thesis

examines one aspect of web testing, tha t of test suite prioritization. We

examine new test suite prioritization strategies tha t may improve the rate

of fault deteetion for user-session based test suites. These techniques

consider test-lengths and systematic coverage of parameter-values and

their interaetions. Experimental results show tha t some of these

prioritization strategies often improve the rate of fault deteetion of test

suites when compared to random ordering of the test eases. In general

the most effeetive prioritization strategies eonsider the systematic

coverage of the combinations of parameter-values as early as possible.

I ll

TABLE OF CONTENTS

ABSTRACT..üi

LIST OF TABLES... vi

LIST OF FIGURES .. vii

ACKNOWLEDGEMENTS... viü

CHAPTER 1 INTRODUCTION.. 1
1.1. Goal and Scope.. 4

CHAPTER 2 BACKGROUND AND RELATED WORK................................... 6
2.1. Web A pplications... 6
2.2. User-session-based Testing..6
2.3. Test Case Prioritization...8
2.4. Related W ork.. 10

CHAPTER 3 TEST CASE PRIORITIZATION STRATEGIES.......................15
3.1. Generation of test e a se s ..16
3.2. Test L engths..17
3.3. Systematic Prioritization by Parameter-Values.........................18

3.3.1. Unique parameter-value eoverage..............................19
3.3.2. Parameter-value Interaction Coverage..................... 19
3.3.3. Length by parameter-value c o u n ts21

3.4. Random ... 21

CHAPTER 4 EXPERIMENTAL EVALUATION... 22
4.1. Parsing Tool.. 22

4.1.1. Test set generation.. 22
4.1.2. General Layout of GUI ... 28
4.1.3. Major O perations...29

4.2. Experiments .. 40

CHAPTERS EXPERIMENTAL RESULTS.. 45
5.1. CPM.................... 45

IV

5.2. MASPLAS... 46
5.3. BOOKS.. 48

CHAPTER 6 SUMMARY AND CONCLUSION..50
6.1. Summary of Results.. 50
6.2. Coneluslon.................................. 51

BIBLIOGRAPHY... 53

VITA..56

V

LIST OF TABLES

Table 1. Example Test Case... 18
Table 2. Four parameters ean take on one of three values e a c h19
Table 3. A set of test c a se s ..20
Table 4. 2-way parameter-value interaetion...20
Table 5. Number of options for each page.. 25
Table 6. Unique IDs of Pages.. 26
Table 7. Unique IDs param eter-values.. 26
Table 8. Test case generation.. 27
Table 9. Simple URL format ty p e s ... 29
Table 10. Subject Applications and Test Suite Characteristics................43
Table 11. APFD for CPM (in percentage) ..47
Table 12. APFD for MASPLAS (in percentage)...47
Table 13. BOOK: APFD Metric (in percentage).. 49
Table 14. Percent of Test Suite Run (Execution time in seconds)............49

VI

LIST OF FIGURES

Figure 1. Pseudo code (Generation of test cases)......................................16
Figure 2. User Session eap tu res..23
Figure 3. Page names along with the associated data............................. 24
Figure 4. Front end of the Parsing Tool..28
Figure 5. Simple URL form at.. 30
Figure 6. Uploading the User-session directory...................................... 31
Figure 7. Files uploaded for parsing ... 32
Figure 8. Display of the parsing Result..33
Figure 9. Display of the Resultant test c a ses ... 34
Figure 10. Error message when uploaded wrong directory.....................35
Figure 11. Selecting the Prioritization ty p e ..36
Figure 12. Test cases prioritized by length Longest to S hortest...............37
Figure 13. Test cases prioritized by length Shortest to Longest..............37
Figure 14. S tatus Bar, displaying the status of operation 38
Figure 15. Confirmation window to clear all the fields.............................. 38
Figure 16. Help window with Quick start gu ide...39

V ll

ACKNOWLEDGEMENTS

I am veiy much thankful to my advisor Dr. Renee Biyce for her

constant support, encouragement and adviee in my academic as weU in

my personal life. I am thankful to Dr. Evangelos Yfantis, Dr. John Minor

and Dr. Fatm a Nasoz for serving as my thesis advisors committee.

Special thanks are extended to Dr. Sreedevi Sampath and Dr. Bryce for

helping me throughout my research and allowing me to serve as co­

author for the paper submitted to ICST. Also, thank you to Dr. Sam path

for providing the test suites for the experiments summarized in this

thesis and for eomputing the APFD for the results. I would like to thank

Dr. Ajoy D atta for his advice and help throughout my academic career

and my course work. I am also thankful to the members in the registrar’s

office for letting me be a part of their team; it was a great learning

experience working a t the registrar’s office. Thanks to the faculty of the

Computer Scienee Department for helping me pursue my academic

goals.

I express my profound thanks to my Mom, Dad and my family for

their constant support and encouragement throughout my life.

vm

CHAPTER 1

INTRODUCTION

Web applications are critical to the day-to-day operations of

businesses. Web applications may experience permanent, intermittent,

or transient failures tha t may affect a web site. Failures in this domain

result in losses of millions of dollars to organizations [17, 21]. A single

hour of down time can cost a retailer lost sales. Most web applications

m ust be available 2 4 /7 and undergo continual modification throughout

their lifetime. This requires testers to fix bugs in an application and

deploy a new version quickly. As changes occur, the problem of testing

modified versions of the appHeation with respect to these changes

efficiently is important. Regression testing is the activity of testing

modified versions of software to increase the confidence tha t the changes

behave as intended and do not adversely affect the rest of the software.

Regression testing consumes approximately 50% of maintenance costs

for software applications [3, 15]. Several tasks are involved in regression

testing, such as selecting a subset of test cases to execute, prioritizing

test cases to achieve a performanee goal, and augmenting a test suite

with test cases to test the modified parts of the software. This testing

activity has always been challenging because developers need to check

not only the intended functionality of the changes themselves, bu t also

the intended functionality of the rest of the software tha t interacts with

the changes. Testers can benefit from test suites tha t can detect faults

early in the test execution cycle. This thesis focuses on test suite

prioritization.

As applications evolve, test eases from a previous version are reused

to test the new version of the application. Usually, a large num ber of test

cases accumulate over the life cycle of an application, which makes the

reuse of all of these test cases to test the new version impractical. The

tester is often required to select and execute a small subset of test cases.

Test case prioritization is one such selection methodology where test

cases are selected according to some criterion to meet a performance

goal. While several strategies have been proposed and evaluated to

prioritize test cases for C programs [8, 9, 24] and Java programs [4, 5], to

our knowledge, little work has been done to prioritize test suites for web

applications.

Usage data from web appHeations which can be eonverted into the

test eases is easily available to the testers [25]. This conversion process is

known as user-session-based testing [9, 25, 26]. Prioritizing test eases

becomes particularly significant in user-session-based testing because a

large num ber of usage-based test cases can be present for a frequently

used application. The data from the user log provides information about

the user navigation through the web site along with the user induced

events, which are ideal test cases. User sessions eontain events th a t are

typically base requests and name value pairs (for example, form field

data) sent as requests to the web server. A base request for a Web

application is the request type and resource location without the

associated data (for example, GET /apps/bookstore/Login.jsp). The

ability to record these requests is often built into the Web server, so little

effort is needed to record the desired events. Cookies and the information

about the IP address ean be used to eonvert the requests in the web

server log into a sequence of user-session based test cases. These

requests exercise the complex interactions between the application

components, for example a parameter-value specified by the user may

access back-end code or retrieve the stored data in the databases.

Further, user- sessions identify the most frequently aeeessed parts of an

application. This is important in testing because frequently accessed

components of a system have significant impact on the user-perceived

reliability of an application.

With the goal of identifying prioritization criteria tha t order test cases

sueh th a t faults in the applieation are detected as early as possible in the

test execution cycle, we examine prioritization metries tha t are based on

eharacteristics of a web applieation and user-session-based tests. Sinee

web applications exhibit characteristics of GUI applications and are

largely driven by user input (i.e., events), we apply the prioritization

techniques proposed in [4] to web based applications. We also examine

frequency-based metries tha t are unique for web applieation testing. The

main contributions of this thesis are: (1) a tool to parse and prioritize test

suites and (2) a summary o f empiricaL results fo r three web-based

applications.

Chapter 2 presents the background in web application testing, user-

session-based testing, and test case prioritization. In chapter 3, we

present prioritization metries. Chapter 4 presents our subject

applications and experimental methodology. We present and analyze the

results in chapter 5 and conclude in chapter 6.

1.1. Goal and Scope

The goal of this research is to improve the quality of existing test

suites with respect to the rate of fault deteetion as measured by APFD.

To quantify this goal, Rothermel et al. introduced a metric, (Rothermel et

al., 2001) [24] APFD, which measures the Average o f the Percentage o f

Faults Detected (APFD) over the life of the suite. APFD values range from

0 to 100; higher num bers imply faster (better) fault detection rates. Let T

be a test suite containing n test cases, and let F be a set of m faults

revealed by T. Let TFi be the first test case in ordering T ‘ of T which

reveals fault L The APFD for test suite T ‘ is given by the equation:

1 -

m

nm

To address this goal, various test case prioritization techniques have

been developed.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1. Web AppHeations

Web applications are one of the largest growing types of software. Web

application software can be updated and maintained without distributing

and installing software on client computers. Web pages can be either

static, in which case the content of the page is the same on all client

machines and to all the users, or dynamic where the contents of the page

depends on input.

A main challenge faeed with web appHeations is tha t they run on

many platforms, use many technologies, and can be written in num erous

languages.

2.2. User-session-based Testing

Experiments [9] show tha t user session data gathered as users

operate web appHeations can be successfully employed in the testing of

Web appHeations. Experiments eompare new and existing test generation

teehniques for web applications, assessing both the adequacy of the

generated tests and their abüity to detect. Results show tha t user session

data can produce test suites as effective overall as those produced by

existing whlte-box techniques bu t a t less expense, can be used in

automating the regressions testing process, and they also find different

types of faults.

User-sessions captured from previous releases of the software ean

serve as regression tests. A user-session-based test ease is the sequence

of the HTTP requests containing base requests and the name-value pairs

th a t are recorded when a user accesses the application. In the example

test case in Table 1, for the following request:

Login.jsp&riame=‘John’’&pswd=‘‘doe’’, the base request is Loginjsp and

the parameter-value pairs are name=”John” and pswd=“doe”. Base

requests can be HTTP request accesses to both static and dynamic web

page content. User-session-based test cases can be generated from usage

logs. User-session-based test cases begin when a request from a new IP

address arrives at the server and ends when the user leaves the web site

or the session times out. A 45 minutes gap between two requests from a

server is considered equivalent to a session timing out in the test eases

tha t we use. Different strategies ean eonstruet test eases for the collected

user sessions [9, 20, 22, and 27].

Experiments [9] show tha t user session-based test cases are often

efficient a t deteeting faults; however, a challenge arises on how to

manage a large pool of such test cases. There are test suite reduction

techniques based on criterion, sueh as eovering all base requests in the

7

application while maintaining the use ease representation. These

reduction techniques reduce original suites [26] while maintaining overall

fault finding effectiveness, bu t tests are in no partieular order. Whereas,

test suite prioritization uses the entire test suit for execution, bu t the

test cases are ordered based on pre-determined criteria tha t attem pt to

detect faults as quickly as possible in the test execution cycle.

2.3. Test Case Prioritization

Regression testing of an applieation is the process of testing whether

the recently modified software introduced any new faults into already

tested eode. Regression testing is very important, yet an expensive and

time consuming process. In the life cycle of an application, a new version

of the application is created as a result of (a) bug fixes and (b)

requirements modification [19]. As an application evolves, test engineers

run regression tests to validate new features and detect whether any new

faults are introduced into previously tested code. There may be a large

num ber of test cases available from testing previous versions of the

application, which can be reused to test the new version of the

application. However, running all of the test cases in a test suite may

take a significant amount of time. For instance, Rothermel et. al. report

an example in whieh it ean take weeks to exeeute all of the test eases

from a previous version [24]. Due to time eonstraints, a tester m ust often

select a subset of test eases which can be executed to achieve the testing

8

objectives earlier in the testing process. The main testing objective we

focused on is the rate of fault deteetion- a measure of how quiekly a test

order detects faults as measured by APFD.

One approach to selecting test cases is to schedule the test cases in

an order according to some criterion tha t increases the effectiveness in

meeting a performance goal. Scheduling test cases in this m anner is

known as test case prioritization. To reduce the cost of regression testing

and the time involved in it, software testers may prioritize their test cases

so th a t those which are more important, by some measure, are run

earlier in the regression testing process. There are many possible goals

for prioritization; [24] describes several. One possible goal of test case

prioritization is tha t of increasing the test suit’s rate of fault detection.

An increased rate of fault detection can provide earlier feedback on the

system under regression test and let developers begin locating and

correcting faults earlier than might otherwise be possible. Sueh feedback

can also provide evidence tha t a quality goal is still not met, allowing

testers to take strategy decisions about release schedules. Further, an

improved rate of fault detection can increase the likelihood tha t if testing

is prematurely halted, those test cases tha t offer the greatest fault

detection ability in the available testing time will have been executed.

Other possible goals described in [24] include: early coverage of the code

in the application under test, meeting code coverage criterion, increasing

the confidence in the application under test at faster rate, and the

9

likelihood of catching the faults to specific code changes m uch earlier in

the testing process. Additional eriteria inelude eode eoverage, fault

likelihood, and fault exposure potential [8, 9, 24].

Rothermel et. al. [24] define the test case prioritization problem and

the issues relevant to the solutions. We will review a small portion of the

material here. The test case prioritization problem is defined as follows:

The Test Case Prioritization Problem:

Given: T, a test suite; PT, the set of permutations of T, and / , a function

from FT to the real numbers.

PmWem: Pmd T' e FT such that (VT'l (T" e FT) (T'' T') [/(T') > /(T"')].

Here, PT represents the set of all possible prioritizations (orderings) of

T, a n d / i s a function that, applied to any sueh ordering, yields an award

value for tha t ordering [24].

2.4. Related Work

In recent years, research has been conducted addressing several

techniques for the test ease prioritization problem. We will review a small

portion of the material of previous work done on prioritization in this

section.

W ong et al. (Wong et al., 1997) [31] suggested a techn ique which

prioritizes the test cases according to the criterion of “increasing cost per

additional coverage”. The authors restricted prioritizing the subset of test

cases which are selected from the test suite by a safe test selection

10

technique, and the subset of test cases selected are the one which reach

the modified code, bu t other test eases ean be placed after this subset for

further execution. So, this technique is using the modification

information, feedback and test cost information.

Rothermel et al. [24] and Elbaum et al. [6, 7] study prioritization. They

define several prioritization techniques, whieh are classified into 2

categories:

• General test case prioritization

Prioritizing the test eases for finding the order th a t will be

effective over a succession of subsequent versions of software.

• Version-specific test case prioritization

Prioritizing the test cases in a manner tha t will be most

effective for a particular version of the software.

They restricted their attention to the version-specific test case

prioritization operated at relatively fine granularity- tha t is, they involved

instrum entation, analysis, and prioritization at the level of source code

statem ents. An alternative is to operate at a relatively coarse granularity;

prioritization, at the function level.

They summarized several techniques which are classified into 3

categories and present the results of several empirical studies of those

techniques.

11

• Comparator Techniques

The techniques, which use the random ordering or the

optimal ordering of the test cases, come under this category.

• Statem ent Level Techniques

This category consists of the techniques th a t prioritize the

test cases by considering the attributes of the program at the

statem ent level.

• Function Level techniques

This category consists of the teehniques tha t prioritize the

test cases by considering the attributes of the program at the

functional level.

All the techniques suggested in this research improve the rate of fault

detection, including the simplest one. The improvement in rate of fault

detection occurs for both functional and statem ent level techniques.

Jones et al. (Jones and Harrold, 2001) [12] describe a technique for

prioritizing test eases which ean be used with the modified

condition/decision coverage (MCDC) criteria, this technique uses

feedback, bu t no modification information.

Srivastava and Thiagarajan (Srivastava and Thiagarajan, 2002) [30]

present a technique for prioritizing the test cases based on the basic

block coverage, whieh uses both feedback and the change information.

This technique is different from the others as this computes the flow

12

graph and the eoverage from the binaries, and tries to predict the

possible affects on the control flow following the code modifications.

Jeffrey and Neelam [11] prioritize using relevant slices. Techniques

used before for prioritizing the test cases were based on the total num ber

of coverage requirements and additional requirement coverage exercised

by the test cases. Total statem ent coverage prioritization orders the test

cases in the decreasing order of the num ber of statem ents they exercise,

and additional statem ent eoverage prioritization orders the test cases in

the decreasing order of the additional statem ents they exercise tha t have

not been covered earlier in the prioritized sequence. This new test case

prioritizing approach based on the relevant slices not only takes into

account the total statem ent coverage, bu t also the num ber of statem ents

executed tha t influence or have the potential to influence the output

produced by the test cases.

Additional criteria exist for GUI-based programs. For instance, Bryce

and Memon [4] prioritize preexisting test suites for GUI-based programs

by the lengths of tests (i.e., the num ber of steps in a test case, where a

test case is a sequence of events tha t a user invokes through the GUI),

early eoverage of all unique events in a test suite, and early event-

interaction coverage between windows (i.e., select tests th a t contain

combinations of events invoked from different windows which have not

been covered in previously selected tests) [4]. In half of their experiments.

13

prioritization by event-interactions results in the fastest rate of fault

detection.

14

CHAPTERS

TEST CASE PRIORITIZATION STRATEGIES

In this section, we examine prioritization functions for user-session-

based testing. The functions include:

Test length based on number o f base requests (LtoS, StoL): order test

cases by the num ber of HTTP requests tha t they contain. Orderings

include longest to shortest (LtoS) and shortest to longest (StoL).

Unique coverage o f parameter-values (1-way): Order test cases by the

num ber of unique parameter-values covered by each of the test cases.

2-way parameter-value interaction coverage (2- way): Order test cases by

the count of pair wise combinations of parameter-values between pages.

Test length based on number o f parameter-values (PV-L to S, PV- S to L):

Ordered according to the number of parameter-values used in a test

case. Orderings include Longest to Shortest (PV- L to S) and Shortest to

Longest (PV- S to L),

Random: Execute the test eases in random order.

15

3.1. Generation of test cases

Application usage data is used for test cases. The usage data is

captured from previous releases of the software. Converting usage data

into test cases for testing web application is known as user-session-

based testing.

Figure 1 explains the Parsing algorithm; conversion of usage data into

test cases.

iiyPsetdocode
Input:; user-sesaons captured previœsly
irt lies = n o: of user sessions capt ured.
wWle (Res>G)

Î
IntUrlGount = no: cf ufis httiefile.
WMiie (urlcount>o)

I
If (! page and pararrester values alrea# scMln the data structures) then

{
A'Parse the URL for page name and the umque pa-ametervalues and assign them the unique
a page no: and the param m: snd store them: In the data structure.

I
}

}
A do the same to parse the data and otiput the unique values from the data structures used for
A storing the page names and the pararaeler-vaiues

Figure 1. Pseudo code (Generation of test cases)

16

3.2. Test Lengths

This technique orders test cases by selecting the next test case with

maximum num ber of base requests, counting the duplicates. Ordering

test cases based on the length of base requests can affect the rate of fault

detection of the ordered test suite, since the am ount of application code

covered is also partially determined by the num ber of base requests in

the test case. Table 1 shows an example of a test case, te l where the

length te l is four i.e., the num ber of base requests in te l. Register.Jsp,

Login.Jsp, Search.Jsp and Logout.]sp are the base requests covered by the

test case te l.

The test cases can be prioritized in descending order of the num ber of

the base requests. Request-longest to shortest (Req-L to S] i.e., executing

the test cases with more num ber of base requests before the test cases

with less num ber of base requests, or in the ascending order of the

num ber of base requests. Request-shortest to longest (Req-S to L] i.e., the

test case with less number of base requests are covered first than the one

with more number. Here the num ber of base requests also includes

counting the duplicates.

17

Test case tel
Register .j sp&name=j ohn&pswd=doe&fname=John6dname=Doe
Login .j sp&name=J ohn&pswd=doe
Search.] sp&bookid= 10
Logout.]sp

Base
request

Parameter-value pairs

Register.] sp
Login.Jsp
Search.Jsp
Logout.]sp

Name=]ohn, pswdl=doe, fname=John, lname=Doe
Name=]ohn, pswd=doe
Bookid=10
null

Table 1. Example Test Case

3.3. Systematic Prioritization by Parameter-Values

Most of the pages of the web application deal with the param eters for

which the user needs to specify the value. For example consider the test

case shown in Table 1. The Loginjsp page accessed in the test case has

two parameters, “nam e” and “pswd” tha t can take on values. We can

prioritize these user-sessions by the discrete num ber of values th a t have

been specified for these parameters. For instance, test case tel in Table 1

has the parameter “name” set to the value “John”. We refer to this as a

parameter-value.

18

Log-in Member
Type

Discount
Status

Shipping
Method

New Member Basic None Standard

Memberflogged in) Silver $10 off Express
Member (not logged in) Gold Free Ship. Overnight

Table 2. Four param eters can take on one of three values each

3.3.1. Unique parameter-value coverage

This technique selects the next test tha t has the maximum num ber of

the parameter-values tha t are not in the previously selected test.

3.3.2. Parameter-value Interaction Coverage

The t-way criteria selects the next test that maximizes the num ber of

t- way parameter-value interactions between pages tha t occur in a test.

Here t is set to 2 i.e., t=2 for pair wise coverage of parameter-values.

Consider the example of 4 parameters as shown in Table 2 tha t can each

take on one of three values from the list. Table 3 shows an example of

parameter-values tha t occur in a set of test cases.

19

Test
No.

Log-in Member
Type

Discount
Status

Shipping
Method

1 New Member Basic None Standard

2 New Member Basic $10 off Express

3 New Member Basic Free Ship. Overnight

4 Member (logged in) Silver None Overnight

5 Member (logged in) Gold $10 off Standard

6 Member (not logged in) Basic $10 off Overnight

Table 3. A set of test cases

Test No. 1

Pair Parameter - values
1 (New Member, Basic)

2 (New Member, None)

3 (New Member, Standard (5-7))

4 (Basic, None)

5 (Basic, Standard (5-7))

6 (None, Standard (5-7))

Table 4. 2-way parameter-value interaction

Table 4 lists the six pair wise parameter-value interactions tha t occur

in Test 1. The num ber of previously uncovered parameter-values in each

test is counted and prioritizes the tests by selecting the test with the

maximum num ber of param eter values next.

20

3.3.3. Length by parameter-value counts

In this technique, test cases are prioritized according to the num ber of

parameter-value pairs tha t each test-case contains, counting the

duplicates. Selecting those tests with the largest num ber of parameter-

values in a test first is called PV-LtoS (PV-Longest to Shortest).

Conversely, selecting those tests with the smallest num ber of parameter-

values first is called PV-StoL (PV- Shortest to Longest).

3.4. Random

We select test cases uniformly at random untü there are no remaining

test cases.

21

CHAPTER 4

EXPERIMENTAL EVALUATION

4.1. Parsing Tool

In our experiments the user sessions captured previously serve as

tests. We develop a tool for parsing and prioritization. There are 2 major

functionalities supported by the tool:

1. Parsing the user sessions for generating the test sets

2. Prioritizing the test set depending upon some criteria.

4.1.1. Test set generation

The input to the tool is the user sessions which contain the captured

data from the user log. These user sessions provide information about

the user navigation through the web site along with the user invoked

events. User sessions contains events that are typically base requests

and name value pairs (for example, form field data) sent as requests to

the web server. A base request for a Web application is the request type

22

and resource location without the associated data (for example, GET

/apps/bookstore/Login.jsp) and the associated data is the parameter-

value pairs.

For example. Figure 2 shows a single captured user session, which is

the set of urls through which the user navigates in a session. Session on

a server is considered to be the time elapsed between the user login and

the logout from a particular web application existing on the server.

We need to identify all windows, parameters and the values, for which

the beginning part of the url should be parsed out, as shown in Figure 3.

^ sW k sW S Î
%/MWiiLcis.udàe{Ë808Q

Figure 2. User Session captures
(Base request along with parameter value pairs)

23

Figure 3 shows the part of the URL with page names along with the

associated parameter-value pairs, which are further parsed for different

pages.

The list of pages include: Login.Jsp, ShoppmgCart.jsp, Mylnfo.jsp,

Default.jsp, and ShoppingCartRecord.Jsp.

The parameter-value are:

For page “Login” <Password,guest>, <FormName,Login>,<Login,guest>,

<F ormAction, login>

For Page “ShoppingCartRecord”: <order_id,2>

Logkjsp
Logm.jsp?PeOTOî'd==gaestâFoffiiName=LogiDâ:FoniQiActîoiî-togiE&Logî!i=giiest
SboppmgCaitjsp
Six);^ÈigCar&eœrdjsp?OK(0M
SiioppkgCartjsp
ShoppmgCa#.econl.jsp?Wei_M=2&
ShoppittgCmljsp

Figure 3. Page names along with the associated data

The pair (or t-way interaction) are between windows. For example,

since parameter-values <Password,guest> and <FormName,Login> are

both from the Login page, they are not counted as an interaction.

24

However parameter-values <Password,guest> and <order_id,2> is

considered to be a pair because they are from different windows (Login

page and ShoppingCartRecord page).

We assign a unique ID to each page and parameter-value so th a t we

meike sure tha t we are testing interaction between pages.

Number of pages = 5

Number of parameter-values for pages is listed in Table 5.

No of
Parameter-
Values

No: of
Pages

List of Parameter-values

5 1 page "Login" has parameter-value <none, none>,
<password, guest>, <FormName, Login>,
<FormAction, login>,<Login, guest>

1 1 page “ShoppingCart” has no parameter-values
<none, none>

1 1 page “ShopCartRecord” has one parameter-value
<order_id, 2>

1 1 page “Myinfo” has no parameter-value <none,
none>

1 1 page “Default” has no parameter-value <none,
none>

Table 5. Number of options for each page

We assigned a unique id to each of the pages and its associated

parameter-values as shown in Table 6 & Table 7.

25

Page Name IDs

Login 0

ShoppingCart 1

ShoppingCartRecord 2

Myinfo 3

Default 4

Table 6: Unique IDs of Pages

Page Name Parameter-Values IDs

Login page <none, none> 0

<Password, guest> 1

<FormName, Login> 2

<FormName, login> 3

<Login,guest> 4

ShoppingCart page <none, none> 5

ShoppingCartRecord <order_id, 2> 6

Myinfo page <none,none> 7

Default page <none,none> 8

Table 7. Unique IDs parameter-values

2 6

T est cases will th e n be generated as show n in Table 8.

Login.Jsp 0
Login.Jsp?Password=guest&FormName=
Login&FormAction=login&Login=guest

1,2,3,4

ShoppingCart.J sp 5
ShoppingCartRecord.Jsp?order_id=2 6
ShoppingCart.J sp 5
ShoppingCartRecord.Jsp?order_id=2 6
ShoppingCart.J sp 5
Mylnfo.jsp? 7
Default.jsp 8

Table 8. Test case generation

The resultant test case tha t will be the input to the prioritization

algorithm is:

0 1 2 3 4 5 6 5 6 5 7 8

This example is ju s t for one test case, we need to enumerate all pages

and parameter-values in the collection of tests, assign them unique IDs

and then prioritize.

27

4.1.2. General Layout of GUI

Figure 4 shows the general layout of the Parsing tool GUI. “Files

Uploaded” displays all the files of the user-sessions. “Parsing Result”

shown in the figure is the result obtained after the test cases have been

parsed and the unique IDs have been assigned to all the different pages

and the parameter-values. “Resultant TestCases” displays the actual test

cases th a t we input to the prioritization algorithm.

Fk Euit Help

Filss UptoadÈd "] Parsing R esults i Resultant T es iC asss

a.;;

I

■ Upload User Session airecîory ;

P a rse

Prioritization Type :

Hetp;

Figure 4. F ron t end of th e Parsing Tool

28

4.1.3. Major Operations

There are 2 major functionalities supported by the tool

1. Parsing the user sessions for generating the test sets

2. Prioritizing the test set depending upon some criteria.

Currently the tool supports uploading files with the extensions:

”.wget”, “.us”, and “.tc”

The user-sessions captured are with the file extensions listed above.

In the experiments conducted on the user-sessions of three web

applications,

1. “.wget” extension files have URLs of a simple format as explained

below.

Simple URL format: This can be categorized into two types as shown

listed in Table 9.

URL format Example

Directoiy
format

(http : / / dwalln. cis. udel. edu :8080/ apps /bookstore)

File name
format

(http : / / dwalln. cis. udel. edu :8080/ apps /bookstore /Default .j sp)

Table 9: Simple URL format types

29

htlpy/dwA.diii(kL6Ë808WaR)s/boA(oR&)gËjsp?Pmfod=yyy&f(Ê

Service Host Port File and resourse Paraffleter-¥a!ues

Figure 5. Simple Url format

2. ".us” and “.tc” extension files have URLs with GET and POST variables

I. URLs with GET and POST variable

Example:

a. GET /scheduler/

b. GE/T / scheduler/grader.html

II. URLs with GET and POST variable

Example:

a. GET/masplasOS/index.html POST

/masplasOS/FinalSubmission.do —post- data=

"&email=yyy%40g.y.j&last_name=mmm&first_name=t+"

In example 1, the URL “GET /schedu ler/” has no parameter-values.

Parsing the user session for generating the test sets:

To start, upload the directoiy where the user-sessions reside, by

clicking the “Browse” button as shown in Figure 6.

Select the proper directory where the user sessions reside and, by

clicking the “Parse” button, sessions wiU be parsed and the result of

parsing the user sessions, assigning the unique identifier to the page

30

nam es and the parameter-values, and the test sets are displayed in the

respective fields provided as shown in Figure 7, Figure 8 and Figure 9.

File E d it h e lp

' F lesU ploaced 1 Pars«@ Result: '^R esiAan(T8slCa;es

Fj'e: Uptoaoad

.J*

Upload User S ession dlretkty :

&
Look In: M Documents I ' ' i D ' O l

1 ê3 Mï Virtual M achines Ü S t a t f l e !
Be Folder Ü My W e b s C] l t i e s : s [
p ^ r e n e e a T h e s is ,
1 Q R e s u m e _ ^ s [] U pdate
1 Q SQ L Senrar W an ag em en t S tudio E x p ie s s E S Vani fin

y

.PrlonUzalon Type

Select the oi oiMlzidlon type

File Name. C.VJserskani itDocuments

Files oflype: :AI Files

Ooen I Gmcel

 — ^

vi

Figure 6. Uploading the User-session directory

Help I

31

Files Uploaded

List of all the files uploaded will be displayed in the “Files Uploaded”

field provided; it also displays the path of the directoiy where the user-

sessions reside as shown in Figure 7.

Files Uploaded

Files Uploaded

Results i ResultantTestCeses User Session directory ;

3nts^renee\saTTipîë\cpmsanip]e

r BrowseUser-Sessions directory' C U ersVani r^ocuments\renee^ample^pmsan^li

Number of flies uploaded

. sesstonOOOI^us
1. sessionOO02jus
2. session0003.us
3. sessîoriOSÛ4.us
4. sessionOOOS.us
5. sessionOOOS.us

Select the priontetiontype | v

H*̂lp

Figure 7. Files uploaded for parsing

32

Parsing result

The result after parsing the user -sessions and computing the

num ber of options of each page and assigning the unique identifier to

each of the page and the parameter-value pairs is displayed in the

“Parsing Result” field as shown in Figure 8.

F ile E d it H e lp

sesüJtawiMsteas®Jp lo ad ed I P a ssin g R esu lts;

[Test Cases with file name

lsession0801.us 145 143 7173 76 141 140
|session0002.us 145 143 72 74 77 124 123 77 75 109 108 139 132 129 137 131
|session0003.iis 143 145 144 91 89 97 98 94 85 86 83 82 78 80 82 78 79 38 39
|session0004.us 117 120 118 121 122 112 113 116 110 111 112 114 116 110 1
jsesstonOOOS.us 107
.ession0006.us 145 144 90 88 96 98 93

Llnique Pages

: CatchftssignCroiipGratle
: CatchGfoupCancelServlet
: CafchGroupSigmipServlet
: CreateSchedServlet
: Grader AvaiiSiginipServlet
: GraOerLogiuSetvtet
: GraelerOplionsServiet
: GroupCanceiServlet
: GroupFileOptionsServlet
: GroupLoginServlet
8 : GroupOptionsServlet
1 : QroupSignupServlef
2 : Group'\)1ewGroupSe(vtet
3 : LogoutSendet
4 : NewSchedSerwlet
5 : NoLoginCatchGroupSignupSewlet
S : NoLoginCourseOptionsServlet
7 : NoLoginGroupFiieOptiotisServlet
3 : NoLoginGroupSlgnupSeryfet____________________ ____

U p lo a o U s e r S e s s i o n directory ;

s t i t s l r e n e e V s a m p l s t c p m s a m p l s '

: Parse

PrtordlzaltonType :

Select the prioritization type

p r io r it iz e

Ueer-Seselone parsed successWy

Figure 8. D isplay of th e parsing R esult

33

Resultant test cases

The actual test cases, the sequence of num bers of the parameter-

value pairs generated as a result of parsing the user-session, which wül

be the input to the prioritization tool, wül be displayed in the “Resultant

TestCases” field as shown in Figure 9.

ng & pr,c, ,«ng g

P a r s i n g R e s u i t s | R e s u i l

lesuKantTealCasae
Test 0-145 143 71 73 76 141 140
Test 1-145 143 72 74 77 124 123 77 75 109 108 139 132 129 13
Test 2-143 145 144 91 89 97 98 94 85 86 83 82 78
Test 3-117 120 118 121 122 112 113 116 110 111 112 114 116 1
Test 4 -107
Test 5-145 144 90 38 96 98 93

82 78 71

Uptoma U ser s e s s io n d lractoty:.

w ilsV m w tsam p latcp m sam p la

Browse

I Parse

Prioritization Type :

S e le c t th e prioritization type |

1 Del ;̂

Figure 9. Display of the Resultant test cases

34

If files other than the extension “.wget” or “.us” or “.tc” are uploaded

than an error message will be displayed as shown in Figure 10.

M e s s a g

Only m es having extension .wget or .us or tc are accepted, s e e help for m ore informabon

Figure 10. Error message when uploaded wrong directory

Prioritizing the test set depending upon some criteria

Presently the tool supports the prioritization by length in 3 ways

1. Test length — Longest to Shortest

2. Test length - Shortest to Longest

3. Random

We can prioritize by selecting the prioritization criteria from the drop

down box “Prioritization Type” and pressing the “Prioritize” button as

shown in the figure below

35

132 129 13
B 8 2 78 7i
114 116 1

Upload U ser S e ss io n directory :

antsVaneeXeamplekpnriBample.

Browae

P arse

PiiorMlzatlonTvpe :

Salectthe phoMUzatlonlype j

Select the prlorlüzatlon type

R andom

Figure 11. Selecting the Prioritization type

The resultant test cases after prioritization are displayed in the

“Resultant TestCases” field provided as shown in Figure 12 and Figure

13.

36

F0e E# Hek

(F a a sU p lo ad e il I Pam i RmMWasaa

1w(1.145 143 72 74 77 124 123 77 75
W 2 143 145 144 91 % 97 98 94 85 «
TMI3.117 120 118 121 122 112 113 116
T@s18 .145 143 71 73 76 141 140
J@S15 .145 144 98 88 96 98 93

108 139 132 129 137 131 127 133 130 134 138*
182 78 80 82 78 79 38 39 42 34 35 103 99 r
111 112 114 116 110 111 117 117 119 118 121

(
j UÿMdUswWon##'

cmsefAaiimOoamiKAEni

L@ n@ sllDSh«lM l ' V

Figure 12. Test cases prioritized by length Longest to Shortest

... - 9 j _____

: ResLKMtTeacasas

iR@NiWTW:as!K'
II«sJ4-107
T M t; .1 4 5 144 W 88 96 9@ 93
T est 0 -1 45 143 71 73 76 141 149
T e s t3 -117 120 118 121 122 112 113 116 110 111 112 114 116 110 111 117 117 119 118 12
T e s t2 1 4 3 145 144 91 89 97 88 84 K 9 « S 3 8 2 7 8 8 @ 82 78 79 38 39 42 34 35 183 9 9 '
T M t1 145 143 72 74 77 124 123 77 M 188 W 138 132 1 % 137 131 127 133 130 134 13E

C;1Users\vani: fflccumentslrsni: :

PnonWtmTYpe:
laiw tleslb Longest | i

yoAce 1

Figure 13. Test cases prioritized by length Shortest to Longest

37

A S tatus bar is provided at the bottom of the window which displays

the sta tus of parsing and prioritizing.

p̂ PKMiMnoGroupseNanaszopwn
page VerüÿSchalSeNlet has 15 opAon
page VIeeiAKradesSefvlet has 3 ophsR
p ^ gadet AM has 1
page groupAM has 1 option
pagp scheduler has 1 optim

i

Prioritization successful and the result Is displayed In R esu ltan tT estcases

Figure 14. S tatus Bar, displaying the status of operation

Every computation in the tool can be cleared by clicking “Delete All”

button, which need the user confirmation as shown below.

n f ' t r a t c".

Do you want to reset all the fields

Figure 15. Confirmation window to clear all the fields

Help is provided to the user to guide the tester through the process of

parsing and prioritizing.

38

'■ee.cc

ParsingTool I
ParsingTod QuickStart
itDLÎ̂ ŜrtTa'Cr-

[p

About FarsiiigTool

PaisiagTooI is the Testing Tool wM chis \ised to genemte the test cases from the
Tiser-sessmns captuied; it is aiso in c lid s i w ith pnoritising the tes t cases this too l is
developed using t k Jroa A P I. Parsing: Tool has a Java-Swingbased User interface
w hichalow s the user to parse the mer-sessions and generate the test cases.

Currently the Tool allows Prioritisation b y test length in three ways.

1 .L o n ^ s t to Shortest

2. Shortest to Longest

3. Random

Figure 16. Help window with Quick start guide

The test cases can be directly uploaded into the tool for prioritizing by

File -> open/upload; the uploaded test cases are shown in the “Resultant

TestCases” filed.

To save the resultant test cases, select menu File -> Save, give the file

name and the location where you intend to save the file. Füe-> Exit will

exit the tool.

Select Help wUl bring up the help document, explaining about the tool.

In future work we will consider adding more prioritization techniques in

the tool and more features for generating the test cases from scratch.

39

4.2. Experiments

In the experiments conducted, the effectiveness of each of the

prioritization strategies were studied by evaluating their rate of fault

detection.

Independent and Dependent Variables. Here the user-session based

test suites, prioritization strategies and the faults seeded into the test are

considered to be the Independent variables, and the rate of fault

detection, average percentage faults detected (APED)[24] , and the test

execution times are the Dependent variables.

Subject Applications and Test Suites. Three web based applications,

along with their pre-existing test suites, where the test suites are the

previously recorded user-sessions (for experiments in Sam path et al. [26]

and Sprenkle et al. [28]) were used for evaluating the proposed

prioritization strategies. The subject applications have different

characteristics: an open-source e-commerce bookstore (Book) [10], a

Course Project Manager (CPM), and the web application used for the Mid-

Atlantic Symposium on Programming Languages and Systems (Masplas).

Test suite characteristics and subject programs of the three web

applications are shown in Table 10.

Book. Book is a web application which allows users to browse for

books, search for a particular book by keyword, rate the books, and

purchase the books by adding them to their shopping cart. The users are

even allowed to register, login, modify their personal information and

40

logout. The Book application was designed using JSP for the front-end

and MySQL for the back-end database. Since the experiments intend to

test the consumer functionality, the administrator code is not included in

testing [26]. Sampath et al. [26], by sending emails to local newsgroups

and by posting advertisements in the University of Delaware’s classifieds

web page asking for volunteer users, collected about 125 test cases.

CPM. CPM is the application designed at University of Delaware,

which allows course instructors to login and create grader accounts for

teaching assistants. In turn the Instructors and teaching assistants

create group accounts for students, assign grades, and create schedules

for demonstrated time slots. CPM was designed using Java Servlets and

JSPs and the user interface is generated by HTML. It manages the state

in a file-based data store. Sampath et al. [26] and Sprenkle et al. [28]

collected 890 test cases from instructors, teaching assistants, and

students using CPM during the 2004-05 and 2005-06 academic years at

the University of Delaware.

Masplas. Masplas was a web application designed for managing the

regional workshop at University of Delaware. Users can register for the

workshop, upload abstracts and papers, and view the schedule,

proceedings, and other related information. Masplas is written using

Java, JSP, and MySQL. Sampath et al. [26, 25] and Sprenkle et al. [29]

collected 169 test cases tha t we use in our experiments.

41

Evaluation Metrics. Prioritization techniques th a t are evaluated

assum e th a t the tester is aware of the prior knowledge of the faults

detected by the regression test suites. As discussed previously these

techniques are evaluated with respect to their rate of fault detection, the

average percentage of faults detected (AFFD) [24], and the test suite

execution time.

The rate o f fa u lt detection is defined as the total num ber of faults

detected for a given subset of the prioritized test case order. The average

percent o f fau lts detected (APFD) is defined using the notation in [24].

Informally, APFD measures the area under the curve th a t plots test

suite fraction and the num ber of faults detected by the prioritized test

case order.

In the experiments conducted, finding the most fau lts in the earliest

tests (te., in the first 10% o f the tests executed) and locating 100% o f the

fau lts earliest are the main concerns.

42

Metrics Book CPM MASPLAS
Classes 11 75 9

Methods 319 173 22
Conditions 1720 1260 108
Non-commented Lines of Code 7615 9401 999
Seeded faults 40 135 29
Total num ber of user sessions 125 890 169
Total num ber of requests accessed 3640 12352 1107
Number of unique requests 10 69 24
Largest user session in num ber of requests 160 585 69
Average user session in num ber of requests 29 14 7
Number of unique parameter-values 1415 4146 645
% of 2-way parameter-value interactions
Covered in pre-existing test suite

92.5% 97.8% 96.2%

Table 10. Subject Applications and Test Suite Characteristics

Experimental Methodology. The information on how many faults are

detected by each test case, i.e., a fault matrix, mapping each test case to

the faults detected by test case, is already available from the previous

experiments conducted by Sampath et al. [26] and Sprenkle et al. [28,

29]. The fault matrices used are generated by using the struct oracle for

CPM and Masplas and the dt[f oracle for Book [28, 29]. In addition to

seeding some naturally occurring faults found during the deployment

there are some faults manually seeded in the applications by the

graduate and the undergraduate students, as described in [26, 28]. In

general, there are five types of faults seeded into the applications—data

43

store (faults tha t exercise application code interacting with the data

store), logic (application code logic errors in the data and control flow),

form (modifications to parameter-value pairs and form actions),

appearance (faults which change the way in which the user views the

page), and link (faults tha t change the hyperlinks location) [26].

The implementations of the prioritization techniques are as described

in Chapter 3. In case of a tie between two or more tests th a t meet the

prioritization criterion, a random tiebreaking strategy is implemented. To

account for the non-determinism introduced by random tie breaking,

each of the prioritization techniques is executed five times and the

average rate of fault detection, APFD, is reported.

44

CHAPTER 5

EXPERIMENTAL RESULTS

5.1. CPM

The results for CPM are shown in Table 11. For CPM, the results for

the length based on num ber of base requests (Req-LtoS, Req-StoL),

Random and also the rate of fault detection for parameter-value

interaction (1-way, 2-way, PV-LtoS, PV-StoL), Random are shown in

Table 11.

Table 11 shows the APFD in 10% increments of the num ber of

executed tests. The prioritization techniques with highest APFD for the

corresponding percentage of the test suites executed are shown in bold­

faced numbers. The same notations are used for showing the results in

Masplas and Book.

Finding the most fau lts in the earliest tests. Prioritization by 2-way

parameter-value interaction coverage is the most effective technique as

shown in Table 11.

Locating 100% o f the faults earliest. After the first 10% of tests are

run, the 2-way parameter-value interaction coverage has the fastest rate

45

of fault detection in the rest of the 90% of test suite. The technique

Prioritization by the length based on num ber of requests - shortest to

longest, PV-StoL, is the least effective one. The remaining prioritization

techniques fall in between these best and worst cases of APFD. For

instance, prioritizations by 1-way and by PV-LtoS are generally the

second most effective techniques in the latter 90% of the tests run.

Prioritization Random, Req-StoL, and Req-LtoS are less effective than the

other techniques.

5.2. MASPLAS

Finding the most faults in the earliest tests. S APFD during the first

30% of the test suite is of primary concern, prioritization by Req-LtoS is

the most effective as shown in Table 12.

Locating 100% o f the faults earliest. After executing the first 30% of the

test suite, the remaining 70% of the test suites has the best APFD if

prioritized by 2-way. It can be seen from Table 12 tha t in the last 70% of

the test suite, Req-LtoS and PV-LtoS are comparable in their APFD. PV-

StoL’s APFD suggests tha t it is the least effective prioritization technique.

The remaining prioritization techniques fall in between these best and

worst cases.

46

% of test
suite run

LtoS StoL Random 1-way 2-way PV-
LtoS

PV-
StoL

10 78.17 75.14 48.63 83.79 83.72 83.53 16.38
20 80.34 77.76 57.55 87.78 90.8 88.77 25.6
30 81.77 80.27 64.51 91.54 91.72 88.77 26.44
40 84.58 81.39 69.19 94.79 95.64 92.71 28.76
50 85.58 82.95 73.03 94.79 95.64 92.71 30.33
60 87.14 84.44 75.37 94.79 95.64 94.26 34.64
70 87.74 85.15 77.37 94.79 95.64 94.26 39.15
80 88.27 86.21 78.24 94.79 95.64 94.26 39.58
90 88.3 86.31 78.45 94.99 95.64 94.26 42.18
100 88.36 86.35 78.49 94.99 95.64 94.26 43.09

Table 11 - APFD for CPM (in percentage)

% of test
suite run

LtoS StoL Random 1-way 2-way PV-
LtoS

PV-
StoL

10 95.12 81.5 76.33 89.6 90.98 86.05 4.44
20 95.12 91.06 80.51 93.04 90.98 89.74 4.44
30 95.12 91.06 85.57 93.04 94.28 89.74 26.61
40 95.68 91.59 87.59 95.56 97.06 93.38 30.08
50 95.68 91.59 89.91 95.56 97.06 94.84 50.16
60 95.68 91.59 90.69 95.56 97.06 94.84 53.91
70 95.97 91.89 90.69 95.56 97.06 94.84 57
80 96.14 92.08 90.91 95.56 97.06 94.84 58.1
90 96.22 92.17 90.91 95.56 97.06 94.84 58.85
100 96.22 92.2 90.91 95.56 97.06 94.84 58.85

Table 12 - APFD for MASPLAS (in percentage)

47

5.3. BOOKS

In Books, fo r finding the most faults in the earliest tests, prioritization

by 1-way has proven to be the best for the first 20% o f the test suite

execution as shown in Table 13. Prioritization by PV- StoL and Req-StoL

are the slow starters during the first 10% of the test run, i.e., the first test

case in each technique detects only 6 faults, whereas the first test case

in the other techniques detects between 15 and 24 faults.

Locating 100% of the faults earliest. Table 13 shows tha t prioritization

by 1-way has a high APFD.

Fault Detection Density. From Table 13, It can be noted tha t Random

creates a reasonably effective test order with APFD comparable to the

other techniques.

If the execution time is of primary concern then choosing the right

prioritization could help the tester find and fix faults in the application

quickly, which could translate into thousands of dollars in cost savings.

48

% of test
suite run

LtoS StoL Random 1-way 2-way PV-
LtoS

PV-
StoL

10 92.96 70.04 90.34 93.44 93.22 93.11 70.13
20 92.96 86.09 93.7 93.44 93.22 93.11 70.13
30 92.96 88.15 94.52 93.44 93.22 93.11 78.17
40 92.96 88.91 94.86 93.44 93.22 93.11 79.86
50 92.96 88.91 94.86 94.96 94.69 93.11 84.12
60 92.96 89.15 95.11 96.13 94.69 94.47 86.73
70 93.74 89.54 95.27 96.13 95.62 95.56 86.73
80 94.11 89.81 95.56 96.13 95.62 95.56 86.73
90 94.18 89.92 95.56 96.13 95.62 95.56 86.73
100 94.27 89.94 95.57 96.13 95.62 95.56 86.73

Table 13 - Book APFD

Table 14 shows the execution time, time taken to reply test suite.

Execution time does not include the time taken to detect faults, i.e., fault

detection replay.

Application 1-way 2-way PV-LtoS PV-StoL

CPM 83.26(813) 38.88(618) 58.20(746) 100(889)
MASPLAS 93.44 33.73(36) 42.01 97.04(71)

BOOKS 57.60(907) 66.40(1024) 60.80(1002) 54.40(300)

Table 14 - Percent of Test Suite Run (Execution time in seconds) for
100% Fault Detection

49

CHAPTER 6

SUMMARY AND CONCLUSION

6.1. Summary of Results

The results from the experiments show that none of the prioritization

techniques is clearly the “the winner” for all three of the web applications

tested. However, for two of our three applications, prioritization

techniques tha t consider parameter-value counts or interactions find

100% of faults before the other techniques. This study shows th a t 2-way

prioritization finds all of the faults with 38% of the test suite for CPM in

618 seconds, and 33% of the test suite for Masplas in 36 seconds as

shown in Table 14. In both these applications, 2-way has the highest

APFD values overall (after 100% of the test suite is executed). In Book,

however, 1-way has the highest overall APFD.

In CPM, prioritization by 2-way parameter-value interaction coverage

is generally the most effective. In Masplas, for the first 30% of the test

suite Req-LtoS is the best technique and for the remaining 70% of the

test suite, giving preference to covering eveiy 2-way parameter-value

interaction creates the most effective test suite ordering for finding the

50

best APFD. In Book, for achieving a good rate of fault detection early (first

10%) in the test cycle, choosing any of the metrics other than Req-StoL,

PVStoL, or Random will be good options. However, for achieving 100%

fault detection with the smallest test num ber and with low APFD of

overall execution of tests, PV-StoL is the best prioritization technique.

Though random appears to create an effective test suite ordering for

books, for large number of test cases and low fault detection densities.

Random’s effectiveness will decrease. Parameter-value interaction

coverage and frequency-based techniques can detect more faults early in

the test execution cycle.

If we observe the execution time of the tests, 2- way detects 100% of

the faults 30% faster than the worst technique, PV-StoL, in CPM, and in

Masplas 2-way detects 100% of the faults 40% faster than the worst

technique PV-StoL, whereas PV-StoL in Book has the fastest rate of fault

detection and detects 100% of the faults 74.5% faster than the worst

technique, Req-LtoS, bu t has the lowest overall APFD.

6.2. Conclusion

The web-application domain has an advantage, tha t actual user-

sessions can be recorded and used for regression testing. While these

tests are indicative of user’s interactions with the system, selecting and

prioritizing user-sessions has not been thoroughly studied. This thesis

involves studying prioritization of such user-sessions for three web

51

applications. Several new prioritization criteria are applied to these test

suites to identify whether they can be used to increase the rate of fault

detection. The experimental results suggest tha t prioritization by

frequency metrics and systematic coverage of parameter-value

interactions may increase the rate of fault detection for web applications.

Since the conclusion is not clear and there is no clear winner in the

prioritization techniques, future work needs to examine additional web

based applications, test suites, and prioritization techniques. We can

also focus on the hybrid prioritization technique which includes

prioritizing by more than one technique for one application.

52

BIBLIOGRAPHY

[1] A. Andrews, J . Offutt, and R. Alexander. Testing web applications by
modeling with FSMs. Software and Systems Modeling, 4(3):326-345, Jul.
2005.

[2] J . H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In the Intl. Conf. on Software
Engineering, pages 402-411, May 2005.

[3] D. Binkley. Using semantic differencing to reduce the cost of
regression testing. In the Intl. Conf. on Software Maintenance, pages 41-
50, Nov. 1992.

[4] R. C. Bryce and A. M. Memon. Test suite prioritization by interaction
coverage. In the Workshop on Domain-Specfic Approaches to Software
Test Automation, pages 1-7, Sep. 2007.

[5] H. Do, G. Rothermel, and A. Kinneer. Prioritizing jun it test cases: An
empirical assessm ent and cost-benefits analysis. In the Intl. Symp. on
Software Reliability Engineering, pages 113-124, Nov. 2004.

[6] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test
cases for regression testing. In the Intl. Symp. On Software Testing and
Analysis, pages 102-112, Aug. 2000.

[7] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans. On Software
Engineering, 28(2): 159-182, Feb. 2002.

[8] S. Elbaum, G. Rothermel, S. Kanduri, and A. Malishevsky. Selecting a
cost-effective test case prioritization technique. Software Quality Journal,
12(3): 185-210, Sep. 2004.

[9] S. Elbaum, G. Rothermel, S. Karre, and M. F. 11. Leveraging user
session data to support web application testing. IEEE Trans, on Software
Engineering, 31(3): 187-202, May 2005.

53

[10] Open source web applications with source code, http;
/ / W W W . gotocode. com, 2006.

[11] D. Jeffrey and N. Gupta. Test case prioritization using relevant
slices. In the Inti Computer Software and Applications Conf, pages 411-
418, Sep. 2006.

[12] J . A. Jones and M. J . Harrold. Test-suite reduction and prioritization
for modified condition / decision coverage. Trans, on Software
Engineering, 29(3): 195-209, Mar. 2003.

[13] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz. Experiences in
engineering flexible web service. IEEE MultiMedia, 8(l):58-65, Jan . 2001.

[14] D. C. Kung, C.-H. Liu, and P. Hsia. An object-oriented web test
model for testing web applications. In The Asia-Pacific Corf, on Quality
Software, pages 111-120, Oct. 2000.

[15] J . Lee and X. He. A methodology for test selection. Journal o f
System s and Software, 13(3): 177-185, Nov. 1990.

[16] G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini. Testing web
applications. In the IEEE Intl. Conf. on Software Maintenance, pages 310-
319, Oct. 2002.

[17] Michal Blumenstyk. Web Application Development- Bridging the
Gap between QA and Development, http: / / www.stickyminds.com.

[18] J . Offutt, J . Pan, and J. M. Voas. Procedures for reducing the size of
coverage-based test sets. In Intl. Conf. on Testing Computer Software,
pages 111-123, Jun . 1995.

[19] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma. Regression
testing in an industrial environment. Communications o f the ACM,
41(5):81-86, May 1988.

[20] Parasoft WebKing. http://www.parasoft.com, 2004.

[21] S. Pertet and P. Narsimhan. Causes of failures in web applications.
Technical Report CMU-PDL-05-109, Carnegie Mellon University, 2005.

[22] Rational Robot. http://www.ibm .com /software/
aw dtools/tester/robot/, 2006.

54

http://www.stickyminds.com
http://www.parasoft.com
http://www.ibm.com/software/

[23] F. Ricca and P. Tonella. Analysis and testing of web applications. In
the Intl. Conf. on Softw are Engineering, pages 25-34, May 2001.

[24] G. Rothermel, R. H. Untch, C. Chu, and M. J . Harrold. Prioritizing
test cases for regression testing. IEEE Trans. On Software Engineering,
27(101:929-948, Oct. 2001.

[25] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock. Web Application
Testing with Customized Test Requirements— An Experimental
Comparison Study. In the Intl. Symp. on Software Reliability Engineering,
pages 266-278, Nov. 2006.

[26] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S. Greenwald.
Applying concept analysis to user-sessionbased testing of web
applications. IEEE Trans, on Software Engineering, 33(10):643-658, Oct.
2007.

[27] J . Sant, A. Souter, and L. Greenwald. An exploration of statistical
models of automated test case generation. In the Intl. Workshop on
Dynamic Analysis, pages 1-7, May 2005.

[28] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated
replay and failure detection for web applications. In The Intl. Conf. o f
Automated Software Engineering, pages 253-262, Nov. 2005.

[29] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott.
Automated oracle comparators for testing web applications. In the Intl.
Symp. on Software Reliability Engineering, pages 253-262, November
2007.

[30] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in
development environment. In the Int. Symp. on Software Testing and
Analysis, pages 97-106, Jul. 2002

[31] W.Wong, J . Horgan, S. London, and H. Agrawal. A study of e®ective
regression in practice. In Proceedings o f the Eighth International
Symposium on Software Reliability Engineering, pages 230(238, November
1997.

55

VITA

Graduate College
University of Nevada, Las Vagas

Vani Kandimalla

Local Address:
4223 Cottage Circle, Apt# 3
Las Vegas, NV - 89119

Degree:
Bachelor of Engineering in Electronics & Communication, 2004
JNTU, Hyderabad, India

Selected Publications:
• S. Sampath, R. Bryce, Gokulanand Viswanath, Vani Kandimalla,

A. Gunes Koru. Prioritizing User-Session-Based Test Cases for Web
Applications Testing. Proceedings o f the International Conference on
Software Testing, Verification, and Validation (ICST), Lülehammer,
Norway, April 2008, pp. 141-150

Thesis Title:
Test Suite Prioritization Techniques applied to Web-Based
Applications

Thesis Examination Committee:
Chairperson, Dr. Renee Bryce, Ph.D
Committee Member, Dr. John Minor, Ph.D
Committee Member, Dr. Evangelos Yfantis, Ph.D
Graduate College Representative, Dr. Fatma Nasoz, Ph.D

56

	Test suite prioritization techniques applied to Web-based applications
	Repository Citation

	ProQuest Dissertations

