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ABSTRACT

Test Suite Prioritization Techniques applied to Web-Based
Applications

by

Vani Kandimalla

Dr. Renee Bryce, Examination Committee Chair 
Assistant Professor, School of Computer Science 

University of Nevada, Las Vegas

Web applications have rapidly gained importance in many businesses.

The increased usage of web applications has created a challenging need

for efficient and effective web application testing strategies. This thesis

examines one aspect of web testing, tha t of test suite prioritization. We

examine new test suite prioritization strategies tha t may improve the rate

of fault deteetion for user-session based test suites. These techniques

consider test-lengths and systematic coverage of parameter-values and

their interaetions. Experimental results show tha t some of these

prioritization strategies often improve the rate of fault deteetion of test

suites when compared to random ordering of the test eases. In general

the most effeetive prioritization strategies eonsider the systematic

coverage of the combinations of parameter-values as early as possible.
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CHAPTER 1 

INTRODUCTION

Web applications are critical to the day-to-day operations of 

businesses. Web applications may experience permanent, intermittent, 

or transient failures tha t may affect a web site. Failures in this domain 

result in losses of millions of dollars to organizations [17, 21]. A single 

hour of down time can cost a retailer lost sales. Most web applications 

m ust be available 2 4 /7  and undergo continual modification throughout 

their lifetime. This requires testers to fix bugs in an application and 

deploy a new version quickly. As changes occur, the problem of testing 

modified versions of the appHeation with respect to these changes 

efficiently is important. Regression testing is the activity of testing 

modified versions of software to increase the confidence tha t the changes 

behave as intended and do not adversely affect the rest of the software. 

Regression testing consumes approximately 50% of maintenance costs 

for software applications [3, 15]. Several tasks are involved in regression 

testing, such as selecting a subset of test cases to execute, prioritizing



test cases to achieve a performanee goal, and augmenting a test suite 

with test cases to test the modified parts of the software. This testing 

activity has always been challenging because developers need to check 

not only the intended functionality of the changes themselves, bu t also 

the intended functionality of the rest of the software tha t interacts with 

the changes. Testers can benefit from test suites tha t can detect faults 

early in the test execution cycle. This thesis focuses on test suite 

prioritization.

As applications evolve, test eases from a previous version are reused 

to test the new version of the application. Usually, a large num ber of test 

cases accumulate over the life cycle of an application, which makes the 

reuse of all of these test cases to test the new version impractical. The 

tester is often required to select and execute a small subset of test cases. 

Test case prioritization is one such selection methodology where test 

cases are selected according to some criterion to meet a performance 

goal. While several strategies have been proposed and evaluated to 

prioritize test cases for C programs [8, 9, 24] and Java programs [4, 5], to 

our knowledge, little work has been done to prioritize test suites for web 

applications.

Usage data from web appHeations which can be eonverted into the 

test eases is easily available to the testers [25]. This conversion process is 

known as user-session-based testing [9, 25, 26]. Prioritizing test eases 

becomes particularly significant in user-session-based testing because a



large num ber of usage-based test cases can be present for a frequently 

used application. The data from the user log provides information about 

the user navigation through the web site along with the user induced 

events, which are ideal test cases. User sessions eontain events th a t are 

typically base requests and name value pairs (for example, form field 

data) sent as requests to the web server. A base request for a  Web 

application is the request type and resource location without the 

associated data (for example, GET /apps/bookstore/Login.jsp). The 

ability to record these requests is often built into the Web server, so little 

effort is needed to record the desired events. Cookies and the information 

about the IP address ean be used to eonvert the requests in the web 

server log into a sequence of user-session based test cases. These 

requests exercise the complex interactions between the application 

components, for example a parameter-value specified by the user may 

access back-end code or retrieve the stored data in the databases. 

Further, user- sessions identify the most frequently aeeessed parts of an 

application. This is important in testing because frequently accessed 

components of a system have significant impact on the user-perceived 

reliability of an application.

With the goal of identifying prioritization criteria tha t order test cases 

sueh th a t faults in the applieation are detected as early as possible in the 

test execution cycle, we examine prioritization metries tha t are based on 

eharacteristics of a web applieation and user-session-based tests. Sinee



web applications exhibit characteristics of GUI applications and are 

largely driven by user input (i.e., events), we apply the prioritization 

techniques proposed in [4] to web based applications. We also examine 

frequency-based metries tha t are unique for web applieation testing. The 

main contributions of this thesis are: (1) a tool to parse and prioritize test 

suites and (2) a summary o f empiricaL results fo r three web-based 

applications.

Chapter 2 presents the background in web application testing, user- 

session-based testing, and test case prioritization. In chapter 3, we 

present prioritization metries. Chapter 4 presents our subject 

applications and experimental methodology. We present and analyze the 

results in chapter 5 and conclude in chapter 6.

1.1. Goal and Scope 

The goal of this research is to improve the quality of existing test 

suites with respect to the rate of fault deteetion as measured by APFD. 

To quantify this goal, Rothermel et al. introduced a metric, (Rothermel et 

al., 2001) [24] APFD, which measures the Average o f the Percentage o f 

Faults Detected (APFD) over the life of the suite. APFD values range from 

0 to 100; higher num bers imply faster (better) fault detection rates. Let T 

be a test suite containing n test cases, and let F  be a set of m faults 

revealed by T. Let TFi be the first test case in ordering T ‘ of T which 

reveals fault L The APFD for test suite T ‘ is given by the equation:



1 -

m

nm

To address this goal, various test case prioritization techniques have 

been developed.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1. Web AppHeations 

Web applications are one of the largest growing types of software. Web 

application software can be updated and maintained without distributing 

and installing software on client computers. Web pages can be either 

static, in which case the content of the page is the same on all client 

machines and to all the users, or dynamic where the contents of the page 

depends on input.

A main challenge faeed with web appHeations is tha t they run  on 

many platforms, use many technologies, and can be written in num erous 

languages.

2.2. User-session-based Testing 

Experiments [9] show tha t user session data gathered as users 

operate web appHeations can be successfully employed in the testing of 

Web appHeations. Experiments eompare new and existing test generation 

teehniques for web applications, assessing both the adequacy of the 

generated tests and their abüity to detect. Results show tha t user session



data can produce test suites as effective overall as those produced by 

existing whlte-box techniques bu t a t less expense, can be used in 

automating the regressions testing process, and they also find different 

types of faults.

User-sessions captured from previous releases of the software ean 

serve as regression tests. A user-session-based test ease is the sequence 

of the HTTP requests containing base requests and the name-value pairs 

th a t are recorded when a user accesses the application. In the example 

test case in Table 1, for the following request: 

Login.jsp&riame=‘John’’&pswd=‘‘doe’’, the base request is Loginjsp and 

the parameter-value pairs are name=”John” and pswd=“doe”. Base 

requests can be HTTP request accesses to both static and dynamic web 

page content. User-session-based test cases can be generated from usage 

logs. User-session-based test cases begin when a request from a new IP 

address arrives at the server and ends when the user leaves the web site 

or the session times out. A 45 minutes gap between two requests from a 

server is considered equivalent to a session timing out in the test eases 

tha t we use. Different strategies ean eonstruet test eases for the collected 

user sessions [9, 20, 22, and 27].

Experiments [9] show tha t user session-based test cases are often 

efficient a t deteeting faults; however, a challenge arises on how to 

manage a large pool of such test cases. There are test suite reduction 

techniques based on criterion, sueh as eovering all base requests in the
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application while maintaining the use ease representation. These 

reduction techniques reduce original suites [26] while maintaining overall 

fault finding effectiveness, bu t tests are in no partieular order. Whereas, 

test suite prioritization uses the entire test suit for execution, bu t the 

test cases are ordered based on pre-determined criteria tha t attem pt to 

detect faults as quickly as possible in the test execution cycle.

2.3. Test Case Prioritization 

Regression testing of an applieation is the process of testing whether 

the recently modified software introduced any new faults into already 

tested eode. Regression testing is very important, yet an expensive and 

time consuming process. In the life cycle of an application, a new version 

of the application is created as a result of (a) bug fixes and (b) 

requirements modification [19]. As an application evolves, test engineers 

run  regression tests to validate new features and detect whether any new 

faults are introduced into previously tested code. There may be a large 

num ber of test cases available from testing previous versions of the 

application, which can be reused to test the new version of the 

application. However, running all of the test cases in a test suite may 

take a significant amount of time. For instance, Rothermel et. al. report 

an example in whieh it ean take weeks to exeeute all of the test eases 

from a previous version [24]. Due to time eonstraints, a tester m ust often 

select a subset of test eases which can be executed to achieve the testing

8



objectives earlier in the testing process. The main testing objective we 

focused on is the rate of fault deteetion- a measure of how quiekly a  test 

order detects faults as measured by APFD.

One approach to selecting test cases is to schedule the test cases in 

an order according to some criterion tha t increases the effectiveness in 

meeting a performance goal. Scheduling test cases in this m anner is 

known as test case prioritization. To reduce the cost of regression testing 

and the time involved in it, software testers may prioritize their test cases 

so th a t those which are more important, by some measure, are run  

earlier in the regression testing process. There are many possible goals 

for prioritization; [24] describes several. One possible goal of test case 

prioritization is tha t of increasing the test suit’s rate of fault detection. 

An increased rate of fault detection can provide earlier feedback on the 

system under regression test and let developers begin locating and 

correcting faults earlier than  might otherwise be possible. Sueh feedback 

can also provide evidence tha t a  quality goal is still not met, allowing 

testers to take strategy decisions about release schedules. Further, an 

improved rate of fault detection can increase the likelihood tha t if testing 

is prematurely halted, those test cases tha t offer the greatest fault 

detection ability in the available testing time will have been executed. 

Other possible goals described in [24] include: early coverage of the code 

in the application under test, meeting code coverage criterion, increasing 

the confidence in the application under test at faster rate, and the

9



likelihood of catching the faults to specific code changes m uch earlier in 

the testing process. Additional eriteria inelude eode eoverage, fault 

likelihood, and fault exposure potential [8, 9, 24].

Rothermel et. al. [24] define the test case prioritization problem and 

the issues relevant to the solutions. We will review a small portion of the 

material here. The test case prioritization problem is defined as follows: 

The Test Case Prioritization Problem:

Given: T, a  test suite; PT, the set of permutations of T, and / ,  a  function 

from FT to the real numbers.

PmWem: Pmd T' e  FT such that (VT'l (T" e  FT) (T'' T') [/(T') >  /(T"')].

Here, PT represents the set of all possible prioritizations (orderings) of 

T, a n d / i s  a function that, applied to any sueh ordering, yields an award 

value for tha t ordering [24].

2.4. Related Work

In recent years, research has been conducted addressing several 

techniques for the test ease prioritization problem. We will review a  small 

portion of the material of previous work done on prioritization in this 

section.

W ong et al. (Wong et al., 1997) [31] suggested a techn ique  which 

prioritizes the test cases according to the criterion of “increasing cost per 

additional coverage”. The authors restricted prioritizing the subset of test 

cases which are selected from the test suite by a safe test selection

10



technique, and the subset of test cases selected are the one which reach 

the modified code, bu t other test eases ean be placed after this subset for 

further execution. So, this technique is using the modification 

information, feedback and test cost information.

Rothermel et al. [24] and Elbaum et al. [6, 7] study prioritization. They 

define several prioritization techniques, whieh are classified into 2 

categories:

• General test case prioritization

Prioritizing the test eases for finding the order th a t will be 

effective over a succession of subsequent versions of software.

• Version-specific test case prioritization

Prioritizing the test cases in a manner tha t will be most 

effective for a particular version of the software.

They restricted their attention to the version-specific test case 

prioritization operated at relatively fine granularity- tha t is, they involved 

instrum entation, analysis, and prioritization at the level of source code 

statem ents. An alternative is to operate at a relatively coarse granularity; 

prioritization, at the function level.

They summarized several techniques which are classified into 3 

categories and present the results of several empirical studies of those 

techniques.

11



• Comparator Techniques

The techniques, which use the random ordering or the 

optimal ordering of the test cases, come under this category.

• Statem ent Level Techniques

This category consists of the techniques th a t prioritize the 

test cases by considering the attributes of the program at the 

statem ent level.

• Function Level techniques

This category consists of the teehniques tha t prioritize the 

test cases by considering the attributes of the program at the 

functional level.

All the techniques suggested in this research improve the rate of fault 

detection, including the simplest one. The improvement in rate of fault 

detection occurs for both functional and statem ent level techniques.

Jones et al. (Jones and Harrold, 2001) [12] describe a technique for 

prioritizing test eases which ean be used with the modified 

condition/decision coverage (MCDC) criteria, this technique uses 

feedback, bu t no modification information.

Srivastava and Thiagarajan (Srivastava and Thiagarajan, 2002) [30] 

present a technique for prioritizing the test cases based on the basic 

block coverage, whieh uses both feedback and the change information. 

This technique is different from the others as this computes the flow

12



graph and the eoverage from the binaries, and tries to predict the 

possible affects on the control flow following the code modifications.

Jeffrey and Neelam [11] prioritize using relevant slices. Techniques 

used before for prioritizing the test cases were based on the total num ber 

of coverage requirements and additional requirement coverage exercised 

by the test cases. Total statem ent coverage prioritization orders the test 

cases in the decreasing order of the num ber of statem ents they exercise, 

and additional statem ent eoverage prioritization orders the test cases in 

the decreasing order of the additional statem ents they exercise tha t have 

not been covered earlier in the prioritized sequence. This new test case 

prioritizing approach based on the relevant slices not only takes into 

account the total statem ent coverage, bu t also the num ber of statem ents 

executed tha t influence or have the potential to influence the output 

produced by the test cases.

Additional criteria exist for GUI-based programs. For instance, Bryce 

and Memon [4] prioritize preexisting test suites for GUI-based programs 

by the lengths of tests (i.e., the num ber of steps in a test case, where a 

test case is a sequence of events tha t a user invokes through the GUI), 

early eoverage of all unique events in a test suite, and early event- 

interaction coverage between windows (i.e., select tests th a t contain 

combinations of events invoked from different windows which have not 

been covered in previously selected tests) [4]. In half of their experiments.

13



prioritization by event-interactions results in the fastest rate of fault 

detection.
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CHAPTERS

TEST CASE PRIORITIZATION STRATEGIES 

In this section, we examine prioritization functions for user-session- 

based testing. The functions include:

Test length based on number o f base requests (LtoS, StoL): order test 

cases by the num ber of HTTP requests tha t they contain. Orderings 

include longest to shortest (LtoS) and shortest to longest (StoL).

Unique coverage o f parameter-values (1-way): Order test cases by the 

num ber of unique parameter-values covered by each of the test cases. 

2-way parameter-value interaction coverage (2- way): Order test cases by 

the count of pair wise combinations of parameter-values between pages. 

Test length based on number o f parameter-values (PV-L to S, PV- S  to L): 

Ordered according to the number of parameter-values used in a test 

case. Orderings include Longest to Shortest (PV- L to S) and Shortest to 

Longest (PV- S to L),

Random: Execute the test eases in random order.

15



3.1. Generation of test cases 

Application usage data is used for test cases. The usage data is 

captured from previous releases of the software. Converting usage data 

into test cases for testing web application is known as user-session- 

based testing.

Figure 1 explains the Parsing algorithm; conversion of usage data into 

test cases.

iiyPsetdocode
Input:; user-sesaons captured previœsly 
irt lies = n o: of user sessions capt ured. 
wWle (Res>G)

Î
IntUrlGount = no: cf ufis httiefile.
WMiie (urlcount>o)

I
If (! page and pararrester values alrea# scMln the data structures) then

{
A'Parse the URL for page name and the umque pa-ametervalues and assign them the unique 
a page no: and the param m: snd store them: In the data structure.

I
}

}
A do the same to parse the data and otiput the unique values from the data structures used for 
A storing the page names and the pararaeler-vaiues

Figure 1. Pseudo code (Generation of test cases)

16



3.2. Test Lengths

This technique orders test cases by selecting the next test case with 

maximum num ber of base requests, counting the duplicates. Ordering 

test cases based on the length of base requests can affect the rate of fault 

detection of the ordered test suite, since the am ount of application code 

covered is also partially determined by the num ber of base requests in 

the test case. Table 1 shows an example of a test case, te l where the 

length te l is four i.e., the num ber of base requests in te l. Register.Jsp, 

Login.Jsp, Search.Jsp and Logout.]sp are the base requests covered by the 

test case te l.

The test cases can be prioritized in descending order of the num ber of 

the base requests. Request-longest to shortest (Req-L to S] i.e., executing 

the test cases with more num ber of base requests before the test cases 

with less num ber of base requests, or in the ascending order of the 

num ber of base requests. Request-shortest to longest (Req-S to L] i.e., the 

test case with less number of base requests are covered first than  the one 

with more number. Here the num ber of base requests also includes 

counting the duplicates.

17



Test case tel
Register .j sp&name=j ohn&pswd=doe&fname=John6dname=Doe 
Login .j sp&name=J ohn&pswd=doe 
Search.] sp&bookid= 10 
Logout.]sp

Base
request

Parameter-value pairs

Register.] sp 
Login.Jsp 
Search.Jsp 
Logout.]sp

Name=]ohn, pswdl=doe, fname=John, lname=Doe
Name=]ohn, pswd=doe
Bookid=10
null

Table 1. Example Test Case

3.3. Systematic Prioritization by Parameter-Values 

Most of the pages of the web application deal with the param eters for 

which the user needs to specify the value. For example consider the test 

case shown in Table 1. The Loginjsp page accessed in the test case has 

two parameters, “nam e” and “pswd” tha t can take on values. We can 

prioritize these user-sessions by the discrete num ber of values th a t have 

been specified for these parameters. For instance, test case tel in Table 1 

has the parameter “name” set to the value “John”. We refer to this as a 

parameter-value.

18



Log-in Member
Type

Discount
Status

Shipping
Method

New Member Basic None Standard

Memberflogged in) Silver $10 off Express
Member (not logged in) Gold Free Ship. Overnight

Table 2. Four param eters can take on one of three values each

3.3.1. Unique parameter-value coverage 

This technique selects the next test tha t has the maximum num ber of 

the parameter-values tha t are not in the previously selected test.

3.3.2. Parameter-value Interaction Coverage 

The t-way criteria selects the next test that maximizes the num ber of 

t- way parameter-value interactions between pages tha t occur in a test. 

Here t  is set to 2 i.e., t=2 for pair wise coverage of parameter-values. 

Consider the example of 4 parameters as shown in Table 2 tha t can each 

take on one of three values from the list. Table 3 shows an example of 

parameter-values tha t occur in a set of test cases.
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Test
No.

Log-in Member
Type

Discount
Status

Shipping
Method

1 New Member Basic None Standard

2 New Member Basic $10 off Express

3 New Member Basic Free Ship. Overnight

4 Member (logged in) Silver None Overnight

5 Member (logged in) Gold $10 off Standard

6 Member (not logged in) Basic $10 off Overnight

Table 3. A set of test cases

Test No. 1

Pair Parameter - values
1 (New Member, Basic)

2 (New Member, None)

3 (New Member, Standard (5-7))

4 (Basic, None)

5 (Basic, Standard (5-7))

6 (None, Standard (5-7))

Table 4. 2-way parameter-value interaction

Table 4 lists the six pair wise parameter-value interactions tha t occur 

in Test 1. The num ber of previously uncovered parameter-values in each 

test is counted and prioritizes the tests by selecting the test with the 

maximum num ber of param eter values next.
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3.3.3. Length by parameter-value counts 

In this technique, test cases are prioritized according to the num ber of 

parameter-value pairs tha t each test-case contains, counting the 

duplicates. Selecting those tests with the largest num ber of parameter- 

values in a test first is called PV-LtoS (PV-Longest to Shortest). 

Conversely, selecting those tests with the smallest num ber of parameter- 

values first is called PV-StoL (PV- Shortest to Longest).

3.4. Random

We select test cases uniformly at random untü there are no remaining 

test cases.
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CHAPTER 4

EXPERIMENTAL EVALUATION 

4.1. Parsing Tool

In our experiments the user sessions captured previously serve as 

tests. We develop a tool for parsing and prioritization. There are 2 major 

functionalities supported by the tool:

1. Parsing the user sessions for generating the test sets

2. Prioritizing the test set depending upon some criteria.

4.1.1. Test set generation 

The input to the tool is the user sessions which contain the captured 

data from the user log. These user sessions provide information about 

the user navigation through the web site along with the user invoked 

events. User sessions contains events that are typically base requests 

and name value pairs (for example, form field data) sent as requests to 

the web server. A base request for a Web application is the request type
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and resource location without the associated data (for example, GET 

/apps/bookstore/Login.jsp) and the associated data is the parameter- 

value pairs.

For example. Figure 2 shows a single captured user session, which is 

the set of urls through which the user navigates in a session. Session on 

a  server is considered to be the time elapsed between the user login and 

the logout from a particular web application existing on the server.

We need to identify all windows, parameters and the values, for which 

the beginning part of the url should be parsed out, as shown in Figure 3.

^ sW k sW S Î
%/MWiiLcis.udàe{Ë808Q

Figure 2. User Session captures 
(Base request along with parameter value pairs)
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Figure 3 shows the part of the URL with page names along with the 

associated parameter-value pairs, which are further parsed for different 

pages.

The list of pages include: Login.Jsp, ShoppmgCart.jsp, Mylnfo.jsp, 

Default.jsp, and ShoppingCartRecord.Jsp.

The parameter-value are:

For page “Login” <Password,guest>, <FormName,Login>,<Login,guest>, 

<F ormAction, login>

For Page “ShoppingCartRecord”: <order_id,2>

Logkjsp
Logm.jsp?PeOTOî'd==gaestâFoffiiName=LogiDâ:FoniQiActîoiî-togiE&Logî!i=giiest
SboppmgCaitjsp
Six);^ÈigCar&eœrdjsp?OK(0M
SiioppkgCartjsp 
ShoppmgCa#.econl.jsp?Wei_M=2& 
ShoppittgCmljsp

Figure 3. Page names along with the associated data

The pair (or t-way interaction) are between windows. For example, 

since parameter-values <Password,guest> and <FormName,Login> are 

both from the Login page, they are not counted as an interaction.
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However parameter-values <Password,guest> and <order_id,2> is 

considered to be a pair because they are from different windows (Login 

page and ShoppingCartRecord page).

We assign a unique ID to each page and parameter-value so th a t we 

meike sure tha t we are testing interaction between pages.

Number of pages = 5

Number of parameter-values for pages is listed in Table 5.

No of
Parameter-
Values

No: of 
Pages

List of Parameter-values

5 1 page "Login" has parameter-value <none, none>, 
<password, guest>, <FormName, Login>, 
<FormAction, login>,<Login, guest>

1 1 page “ShoppingCart” has no parameter-values 
<none, none>

1 1 page “ShopCartRecord” has one parameter-value 
<order_id, 2>

1 1 page “Myinfo” has no parameter-value <none, 
none>

1 1 page “Default” has no parameter-value <none, 
none>

Table 5. Number of options for each page

We assigned a unique id to each of the pages and its associated 

parameter-values as shown in Table 6 & Table 7.
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Page Name IDs

Login 0

ShoppingCart 1

ShoppingCartRecord 2

Myinfo 3

Default 4

Table 6: Unique IDs of Pages

Page Name Parameter-Values IDs

Login page <none, none> 0

<Password, guest> 1

<FormName, Login> 2

<FormName, login> 3

<Login,guest> 4

ShoppingCart page <none, none> 5

ShoppingCartRecord <order_id, 2> 6

Myinfo page <none,none> 7

Default page <none,none> 8

Table 7. Unique IDs parameter-values
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T est cases will th e n  be generated  as show n in Table 8.

Login.Jsp 0
Login.Jsp?Password=guest&FormName=
Login&FormAction=login&Login=guest

1,2,3,4

ShoppingCart.J sp 5
ShoppingCartRecord.Jsp?order_id=2 6
ShoppingCart.J sp 5
ShoppingCartRecord.Jsp?order_id=2 6
ShoppingCart.J sp 5
Mylnfo.jsp? 7
Default.jsp 8

Table 8. Test case generation

The resultant test case tha t will be the input to the prioritization 

algorithm is:

0 1 2 3 4 5 6 5 6 5 7 8  

This example is ju s t for one test case, we need to enumerate all pages 

and parameter-values in the collection of tests, assign them  unique IDs 

and then prioritize.
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4.1.2. General Layout of GUI 

Figure 4 shows the general layout of the Parsing tool GUI. “Files 

Uploaded” displays all the files of the user-sessions. “Parsing Result” 

shown in the figure is the result obtained after the test cases have been 

parsed and the unique IDs have been assigned to all the different pages 

and the parameter-values. “Resultant TestCases” displays the actual test 

cases th a t we input to the prioritization algorithm.

Fk Euit Help

Filss UptoadÈd "] Parsing R esults i Resultant T es iC asss

a.;;

I

■ Upload User Session airecîory ;

P a rse

Prioritization Type :

Hetp;

Figure 4. F ron t end  of th e  Parsing Tool
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4.1.3. Major Operations 

There are 2 major functionalities supported by the tool

1. Parsing the user sessions for generating the test sets

2. Prioritizing the test set depending upon some criteria. 

Currently the tool supports uploading files with the extensions:

”.wget”, “.us”, and “.tc”

The user-sessions captured are with the file extensions listed above. 

In the experiments conducted on the user-sessions of three web 

applications,

1. “.wget” extension files have URLs of a  simple format as explained 

below.

Simple URL format: This can be categorized into two types as shown 

listed in Table 9.

URL format Example

Directoiy
format

(http : /  /  dwalln. cis. udel. edu :8080/ apps /bookstore)

File name 
format

(http : /  /  dwalln. cis. udel. edu :8080/ apps /bookstore /Default .j sp)

Table 9: Simple URL format types
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htlpy/dwA.diii(kL6Ë808WaR)s/boA(oR&)gËjsp?Pmfod=yyy&f(Ê

Service Host Port File and resourse Paraffleter-¥a!ues

Figure 5. Simple Url format

2. ".us” and “.tc” extension files have URLs with GET and POST variables

I. URLs with GET and POST variable 

Example:

a. GET /scheduler/

b. GE/T / scheduler/grader.html

II. URLs with GET and POST variable 

Example:

a. GET/masplasOS/index.html POST

/masplasOS/FinalSubmission.do —post- data= 

"&email=yyy%40g.y.j&last_name=mmm&first_name=t+"

In example 1, the URL “GET /schedu ler/” has no parameter-values. 

Parsing the user session for generating the test sets:

To start, upload the directoiy where the user-sessions reside, by 

clicking the “Browse” button as shown in Figure 6.

Select the proper directory where the user sessions reside and, by 

clicking the “Parse” button, sessions wiU be parsed and the result of 

parsing the user sessions, assigning the unique identifier to the page
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nam es and the parameter-values, and the test sets are displayed in the 

respective fields provided as shown in Figure 7, Figure 8 and Figure 9.

File E d it h e lp

' F lesU ploaced  1 Pars«@ Result: '^R esiAan(T8slCa;es 

Fj'e: Uptoaoad

.J*

Upload User S ession  dlretkty :

&
Look In: M  Documents I  '  '  i  D ' O l

1 ê3  Mï  Virtual M achines Ü S t a t f l e !
Be Folder Ü  My W e b s C ] l t i e s : s [
p  ^ r e n e e a  T h e s is ,
1 Q  R e s u m e _ ^ s [ ]  U pdate
1 Q  SQ L Senrar W an ag em en t S tudio  E x p ie s s E S  Vani fin

y

.PrlonUzalon Type 

Select the oi oiMlzidlon type

File Name. C.VJserskani itDocuments

Files oflype: :AI Files

Ooen I Gmcel 

   — ^

vi

Figure 6. Uploading the User-session directory

Help I
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Files Uploaded

List of all the files uploaded will be displayed in the “Files Uploaded” 

field provided; it also displays the path of the directoiy where the user- 

sessions reside as shown in Figure 7.

Files Uploaded 

Files Uploaded

Results i ResultantTestCeses User Session directory ;

3nts^renee\saTTipîë\cpmsanip]e

r  BrowseUser-Sessions directory' C U ersVani r^ocuments\renee^ample^pmsan^li

Number of flies uploaded

. sesstonOOOI^us
1. sessionOO02jus
2. session0003.us
3. sessîoriOSÛ4.us
4. sessionOOOS.us
5. sessionOOOS.us

Select the priontetiontype | v

H*̂lp

Figure 7. Files uploaded for parsing
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Parsing result

The result after parsing the user -sessions and computing the 

num ber of options of each page and assigning the unique identifier to 

each of the page and the parameter-value pairs is displayed in the 

“Parsing Result” field as shown in Figure 8.

F ile  E d it  H e lp

sesüJtawiMsteas®Jp lo ad ed  I  P a ssin g  R esu lts;

[Test Cases with file name 

lsession0801.us 145 143 7173 76 141 140
|session0002.us 145 143 72 74 77 124 123 77 75 109 108 139 132 129 137 131 
|session0003.iis 143 145 144 91 89 97 98 94 85 86 83 82 78 80 82 78 79 38 39 
|session0004.us 117 120 118 121 122 112 113 116 110 111 112 114 116 110 1 
jsesstonOOOS.us 107 
.ession0006.us 145 144 90 88 96 98 93

Llnique Pages

: CatchftssignCroiipGratle 
: CatchGfoupCancelServlet 
: CafchGroupSigmipServlet 
: CreateSchedServlet 
: Grader AvaiiSiginipServlet 
: GraOerLogiuSetvtet 
: GraelerOplionsServiet 
: GroupCanceiServlet 
: GroupFileOptionsServlet 
: GroupLoginServlet 
8 : GroupOptionsServlet
1 : QroupSignupServlef
2 : Group'\)1ewGroupSe(vtet
3 : LogoutSendet
4 : NewSchedSerwlet
5 : NoLoginCatchGroupSignupSewlet 
S : NoLoginCourseOptionsServlet 
7 : NoLoginGroupFiieOptiotisServlet 
3 : NoLoginGroupSlgnupSeryfet____________________ ____

U p lo a o  U s e r  S e s s i o n  directory ; 

s t i t s l r e n e e V s a m p l s t c p m s a m p l s '

: Parse

PrtordlzaltonType :

Select the prioritization type

p r io r it iz e

Ueer-Seselone parsed successWy

Figure 8. D isplay of th e  parsing  R esult
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Resultant test cases

The actual test cases, the sequence of num bers of the parameter- 

value pairs generated as a result of parsing the user-session, which wül 

be the input to the prioritization tool, wül be displayed in the “Resultant 

TestCases” field as shown in Figure 9.

ng & pr,c, ,«ng g

P a r s i n g  R e s u i t s  |  R e s u i l

lesuKantTealCasae
Test 0-145 143 71 73 76 141 140
Test 1-145 143 72 74 77 124 123 77 75 109 108 139 132 129 13
Test 2-143 145 144 91 89 97 98 94 85 86 83 82 78
Test 3-117 120 118 121 122 112 113 116 110 111 112 114 116 1
Test 4 -107
Test 5-145 144 90 38 96 98 93

82 78 71

Uptoma U ser s e s s io n  d lractoty:. 

w ilsV m w tsam p latcp m sam p la

Browse

I  Parse

Prioritization Type :

S e le c t th e  prioritization type |

1 Del ;̂

Figure 9. Display of the Resultant test cases
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If files other than  the extension “.wget” or “.us” or “.tc” are uploaded 

than  an error message will be displayed as shown in Figure 10.

M e s s a g

Only m es having extension .wget or .us or tc are accepted, s e e  help for m ore informabon

Figure 10. Error message when uploaded wrong directory

Prioritizing the test set depending upon some criteria 

Presently the tool supports the prioritization by length in 3 ways

1. Test length — Longest to Shortest

2. Test length -  Shortest to Longest

3. Random

We can prioritize by selecting the prioritization criteria from the drop

down box “Prioritization Type” and pressing the “Prioritize” button as

shown in the figure below
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132 129  13 
B 8 2  78  7i 
114 116 1

Upload U ser S e ss io n  directory : 

antsVaneeXeamplekpnriBample. 

Browae

P arse

PiiorMlzatlonTvpe :

Salectthe phoMUzatlonlype j 

Select the prlorlüzatlon type

R andom

Figure 11. Selecting the Prioritization type

The resultant test cases after prioritization are displayed in the 

“Resultant TestCases” field provided as shown in Figure 12 and Figure 

13.
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F0e E# Hek

( F a a sU p lo ad e il  I Pam i RmMWasaa

1w(1.145 143 72 74 77 124 123 77 75 
W 2 143 145 144 91 % 97 98 94 85 «
TMI3.117 120 118 121 122 112 113 116
T@s18 .145 143 71 73 76 141 140
J@S15 .145 144 98 88 96 98 93

108 139 132 129 137 131 127 133 130 134 138* 
182 78 80 82 78 79 38 39 42 34 35 103 99 r  
111 112 114 116 110 111 117 117 119 118 121

(
j UÿMdUswWon##'

cmsefAaiimOoamiKAEni

L@ n@ sllDSh«lM l ' V

Figure 12. Test cases prioritized by length Longest to Shortest

... - 9 j _____

: ResLKMtTeacasas

iR@NiWTW:as!K'
II«sJ4-107
T M t; .1 4 5  144 W  88  96 9@ 93
T est 0 -1 45  143 71 73 76 141 149
T e s t3 -117  120 118 121 122 112 113 116 110 111 112 114 116 110 111 117 117 119 118 12
T e s t2 1 4 3  145 144 91 89 97 88 84 K 9 « S 3 8 2 7 8 8 @  82 78 79 38 39 42 34 35 183 9 9 '
T M t1  145 143 72 74  77 124 123 77 M  188 W  138 132 1 %  137 131 127 133 130 134 13E

C;1Users\vani: fflccumentslrsni: :

PnonWtmTYpe: 
laiw tleslb Longest | i

yoAce 1

Figure 13. Test cases prioritized by length Shortest to Longest
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A S tatus bar is provided at the bottom of the window which displays 

the sta tus of parsing and prioritizing.

p̂ PKMiMnoGroupseNanaszopwn 
page VerüÿSchalSeNlet has 15 opAon 
page VIeeiAKradesSefvlet has 3 ophsR 
p ^  gadet AM  has 1 
page groupAM has 1 option 
pagp scheduler has 1 optim

i

Prioritization successful and the result Is displayed In R esu ltan tT estcases

Figure 14. S tatus Bar, displaying the status of operation

Every computation in the tool can be cleared by clicking “Delete All” 

button, which need the user confirmation as shown below.

n f ' t r a t  c".

Do you want to reset all the fields

Figure 15. Confirmation window to clear all the fields

Help is provided to the user to guide the tester through the process of 

parsing and prioritizing.
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'■ee.cc

ParsingTool I 
ParsingTod QuickStart
itDLÎ̂ ŜrtTa'Cr-

[p

About FarsiiigTool

PaisiagTooI is the Testing Tool wM chis \ised to genemte the test cases from  the 
Tiser-sessmns captuied; it is aiso in c lid s i w ith pnoritising the tes t cases this too l is 
developed using t k  Jroa A P I. Parsing: Tool has a  Java-Swingbased User interface 
w hichalow s the user to parse the mer-sessions and generate the test cases.

Currently the Tool allows Prioritisation b y  test length in three ways.

1 .L o n ^ s t to Shortest

2. Shortest to Longest

3. Random

Figure 16. Help window with Quick start guide

The test cases can be directly uploaded into the tool for prioritizing by 

File -> open/upload; the uploaded test cases are shown in the “Resultant 

TestCases” filed.

To save the resultant test cases, select menu File -> Save, give the file 

name and the location where you intend to save the file. Füe-> Exit will 

exit the tool.

Select Help wUl bring up the help document, explaining about the tool. 

In future work we will consider adding more prioritization techniques in 

the tool and more features for generating the test cases from scratch.
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4.2. Experiments

In the experiments conducted, the effectiveness of each of the 

prioritization strategies were studied by evaluating their rate of fault 

detection.

Independent and Dependent Variables. Here the user-session based 

test suites, prioritization strategies and the faults seeded into the test are 

considered to be the Independent variables, and the rate of fault 

detection, average percentage faults detected (APED)[24] , and the test 

execution times are the Dependent variables.

Subject Applications and Test Suites. Three web based applications, 

along with their pre-existing test suites, where the test suites are the 

previously recorded user-sessions (for experiments in Sam path et al. [26] 

and Sprenkle et al. [28]) were used for evaluating the proposed 

prioritization strategies. The subject applications have different 

characteristics: an open-source e-commerce bookstore (Book) [10], a 

Course Project Manager (CPM), and the web application used for the Mid- 

Atlantic Symposium on Programming Languages and Systems (Masplas). 

Test suite characteristics and subject programs of the three web 

applications are shown in Table 10.

Book. Book is a web application which allows users to browse for 

books, search for a particular book by keyword, rate the books, and 

purchase the books by adding them  to their shopping cart. The users are 

even allowed to register, login, modify their personal information and
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logout. The Book application was designed using JSP for the front-end 

and MySQL for the back-end database. Since the experiments intend to 

test the consumer functionality, the administrator code is not included in 

testing [26]. Sampath et al. [26], by sending emails to local newsgroups 

and by posting advertisements in the University of Delaware’s classifieds 

web page asking for volunteer users, collected about 125 test cases.

CPM. CPM is the application designed at University of Delaware, 

which allows course instructors to login and create grader accounts for 

teaching assistants. In turn  the Instructors and teaching assistants 

create group accounts for students, assign grades, and create schedules 

for demonstrated time slots. CPM was designed using Java Servlets and 

JSPs and the user interface is generated by HTML. It manages the state 

in a file-based data store. Sampath et al. [26] and Sprenkle et al. [28] 

collected 890 test cases from instructors, teaching assistants, and 

students using CPM during the 2004-05 and 2005-06 academic years at 

the University of Delaware.

Masplas. Masplas was a web application designed for managing the 

regional workshop at University of Delaware. Users can register for the 

workshop, upload abstracts and papers, and view the schedule, 

proceedings, and other related information. Masplas is written using 

Java, JSP, and MySQL. Sampath et al. [26, 25] and Sprenkle et al. [29] 

collected 169 test cases tha t we use in our experiments.
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Evaluation Metrics. Prioritization techniques th a t are evaluated 

assum e th a t the tester is aware of the prior knowledge of the faults 

detected by the regression test suites. As discussed previously these 

techniques are evaluated with respect to their rate of fault detection, the 

average percentage of faults detected (AFFD) [24], and the test suite 

execution time.

The rate o f fa u lt detection is defined as the total num ber of faults 

detected for a  given subset of the prioritized test case order. The average 

percent o f fau lts detected (APFD) is defined using the notation in [24].

Informally, APFD measures the area under the curve th a t plots test 

suite fraction and the num ber of faults detected by the prioritized test 

case order.

In the experiments conducted, finding the most fau lts in the earliest 

tests (te., in the first 10% o f the tests executed) and locating 100% o f the 

fau lts earliest are the main concerns.
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Metrics Book CPM MASPLAS
Classes 11 75 9

Methods 319 173 22
Conditions 1720 1260 108
Non-commented Lines of Code 7615 9401 999
Seeded faults 40 135 29
Total num ber of user sessions 125 890 169
Total num ber of requests accessed 3640 12352 1107
Number of unique requests 10 69 24
Largest user session in num ber of requests 160 585 69
Average user session in num ber of requests 29 14 7
Number of unique parameter-values 1415 4146 645
% of 2-way parameter-value interactions 
Covered in pre-existing test suite

92.5% 97.8% 96.2%

Table 10. Subject Applications and Test Suite Characteristics

Experimental Methodology. The information on how many faults are 

detected by each test case, i.e., a  fault matrix, mapping each test case to 

the faults detected by test case, is already available from the previous 

experiments conducted by Sampath et al. [26] and Sprenkle et al. [28, 

29]. The fault matrices used are generated by using the struct oracle for 

CPM and Masplas and the dt[f oracle for Book [28, 29]. In addition to 

seeding some naturally occurring faults found during the deployment 

there are some faults manually seeded in the applications by the 

graduate and the undergraduate students, as described in [26, 28]. In 

general, there are five types of faults seeded into the applications—data
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store (faults tha t exercise application code interacting with the data 

store), logic (application code logic errors in the data and control flow), 

form (modifications to parameter-value pairs and form actions), 

appearance (faults which change the way in which the user views the 

page), and link (faults tha t change the hyperlinks location) [26].

The implementations of the prioritization techniques are as described 

in Chapter 3. In case of a tie between two or more tests th a t meet the 

prioritization criterion, a random tiebreaking strategy is implemented. To 

account for the non-determinism introduced by random tie breaking, 

each of the prioritization techniques is executed five times and the 

average rate of fault detection, APFD, is reported.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1. CPM

The results for CPM are shown in Table 11. For CPM, the results for 

the length based on num ber of base requests (Req-LtoS, Req-StoL), 

Random and also the rate of fault detection for parameter-value 

interaction (1-way, 2-way, PV-LtoS, PV-StoL), Random are shown in 

Table 11.

Table 11 shows the APFD in 10% increments of the num ber of 

executed tests. The prioritization techniques with highest APFD for the 

corresponding percentage of the test suites executed are shown in bold­

faced numbers. The same notations are used for showing the results in 

Masplas and Book.

Finding the most fau lts in the earliest tests. Prioritization by 2-way 

parameter-value interaction coverage is the most effective technique as 

shown in Table 11.

Locating 100% o f the faults earliest. After the first 10% of tests are 

run, the 2-way parameter-value interaction coverage has the fastest rate
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of fault detection in the rest of the 90% of test suite. The technique 

Prioritization by the length based on num ber of requests -  shortest to 

longest, PV-StoL, is the least effective one. The remaining prioritization 

techniques fall in between these best and worst cases of APFD. For 

instance, prioritizations by 1-way and by PV-LtoS are generally the 

second most effective techniques in the latter 90% of the tests run. 

Prioritization Random, Req-StoL, and Req-LtoS are less effective than  the 

other techniques.

5.2. MASPLAS

Finding the most faults in the earliest tests. S  APFD during the first 

30% of the test suite is of primary concern, prioritization by Req-LtoS is 

the most effective as shown in Table 12.

Locating 100% o f the faults earliest. After executing the first 30% of the 

test suite, the remaining 70% of the test suites has the best APFD if 

prioritized by 2-way. It can be seen from Table 12 tha t in the last 70% of 

the test suite, Req-LtoS and PV-LtoS are comparable in their APFD. PV- 

StoL’s APFD suggests tha t it is the least effective prioritization technique. 

The remaining prioritization techniques fall in between these best and 

worst cases.
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% of test 
suite run

LtoS StoL Random 1-way 2-way PV-
LtoS

PV-
StoL

10 78.17 75.14 48.63 83.79 83.72 83.53 16.38
20 80.34 77.76 57.55 87.78 90.8 88.77 25.6
30 81.77 80.27 64.51 91.54 91.72 88.77 26.44
40 84.58 81.39 69.19 94.79 95.64 92.71 28.76
50 85.58 82.95 73.03 94.79 95.64 92.71 30.33
60 87.14 84.44 75.37 94.79 95.64 94.26 34.64
70 87.74 85.15 77.37 94.79 95.64 94.26 39.15
80 88.27 86.21 78.24 94.79 95.64 94.26 39.58
90 88.3 86.31 78.45 94.99 95.64 94.26 42.18
100 88.36 86.35 78.49 94.99 95.64 94.26 43.09

Table 11 - APFD for CPM (in percentage)

% of test 
suite run

LtoS StoL Random 1-way 2-way PV-
LtoS

PV-
StoL

10 95.12 81.5 76.33 89.6 90.98 86.05 4.44
20 95.12 91.06 80.51 93.04 90.98 89.74 4.44
30 95.12 91.06 85.57 93.04 94.28 89.74 26.61
40 95.68 91.59 87.59 95.56 97.06 93.38 30.08
50 95.68 91.59 89.91 95.56 97.06 94.84 50.16
60 95.68 91.59 90.69 95.56 97.06 94.84 53.91
70 95.97 91.89 90.69 95.56 97.06 94.84 57
80 96.14 92.08 90.91 95.56 97.06 94.84 58.1
90 96.22 92.17 90.91 95.56 97.06 94.84 58.85
100 96.22 92.2 90.91 95.56 97.06 94.84 58.85

Table 12 - APFD for MASPLAS (in percentage)

47



5.3. BOOKS

In Books, fo r finding the most faults in the earliest tests, prioritization 

by 1-way has proven to be the best for the first 20% o f the test suite 

execution as shown in Table 13. Prioritization by PV- StoL and Req-StoL 

are the slow starters during the first 10% of the test run, i.e., the first test 

case in each technique detects only 6 faults, whereas the first test case 

in the other techniques detects between 15 and 24 faults.

Locating 100% of the faults earliest. Table 13 shows tha t prioritization 

by 1-way has a high APFD.

Fault Detection Density. From Table 13, It can be noted tha t Random 

creates a reasonably effective test order with APFD comparable to the 

other techniques.

If the execution time is of primary concern then choosing the right 

prioritization could help the tester find and fix faults in the application 

quickly, which could translate into thousands of dollars in cost savings.
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% of test 
suite run

LtoS StoL Random 1-way 2-way PV-
LtoS

PV-
StoL

10 92.96 70.04 90.34 93.44 93.22 93.11 70.13
20 92.96 86.09 93.7 93.44 93.22 93.11 70.13
30 92.96 88.15 94.52 93.44 93.22 93.11 78.17
40 92.96 88.91 94.86 93.44 93.22 93.11 79.86
50 92.96 88.91 94.86 94.96 94.69 93.11 84.12
60 92.96 89.15 95.11 96.13 94.69 94.47 86.73
70 93.74 89.54 95.27 96.13 95.62 95.56 86.73
80 94.11 89.81 95.56 96.13 95.62 95.56 86.73
90 94.18 89.92 95.56 96.13 95.62 95.56 86.73
100 94.27 89.94 95.57 96.13 95.62 95.56 86.73

Table 13 - Book APFD

Table 14 shows the execution time, time taken to reply test suite. 

Execution time does not include the time taken to detect faults, i.e., fault 

detection replay.

Application 1-way 2-way PV-LtoS PV-StoL

CPM 83.26(813) 38.88(618) 58.20(746) 100(889)
MASPLAS 93.44 33.73(36) 42.01 97.04(71)

BOOKS 57.60(907) 66.40(1024) 60.80(1002) 54.40(300)

Table 14 -  Percent of Test Suite Run (Execution time in seconds) for
100% Fault Detection
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CHAPTER 6

SUMMARY AND CONCLUSION

6.1. Summary of Results 

The results from the experiments show that none of the prioritization 

techniques is clearly the “the winner” for all three of the web applications 

tested. However, for two of our three applications, prioritization 

techniques tha t consider parameter-value counts or interactions find 

100% of faults before the other techniques. This study shows th a t 2-way 

prioritization finds all of the faults with 38% of the test suite for CPM in 

618 seconds, and 33% of the test suite for Masplas in 36 seconds as 

shown in Table 14. In both these applications, 2-way has the highest 

APFD values overall (after 100% of the test suite is executed). In Book, 

however, 1-way has the highest overall APFD.

In CPM, prioritization by 2-way parameter-value interaction coverage 

is generally the most effective. In Masplas, for the first 30% of the test 

suite Req-LtoS is the best technique and for the remaining 70% of the 

test suite, giving preference to covering eveiy 2-way parameter-value 

interaction creates the most effective test suite ordering for finding the
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best APFD. In Book, for achieving a good rate of fault detection early (first 

10%) in the test cycle, choosing any of the metrics other than  Req-StoL, 

PVStoL, or Random will be good options. However, for achieving 100% 

fault detection with the smallest test num ber and with low APFD of 

overall execution of tests, PV-StoL is the best prioritization technique. 

Though random appears to create an effective test suite ordering for 

books, for large number of test cases and low fault detection densities. 

Random’s effectiveness will decrease. Parameter-value interaction 

coverage and frequency-based techniques can detect more faults early in 

the test execution cycle.

If we observe the execution time of the tests, 2- way detects 100% of 

the faults 30% faster than  the worst technique, PV-StoL, in CPM, and in 

Masplas 2-way detects 100% of the faults 40% faster than  the worst 

technique PV-StoL, whereas PV-StoL in Book has the fastest rate of fault 

detection and detects 100% of the faults 74.5% faster than  the worst 

technique, Req-LtoS, bu t has the lowest overall APFD.

6.2. Conclusion

The web-application domain has an advantage, tha t actual user- 

sessions can be recorded and used for regression testing. While these 

tests are indicative of user’s interactions with the system, selecting and 

prioritizing user-sessions has not been thoroughly studied. This thesis 

involves studying prioritization of such user-sessions for three web
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applications. Several new prioritization criteria are applied to these test 

suites to identify whether they can be used to increase the rate of fault 

detection. The experimental results suggest tha t prioritization by 

frequency metrics and systematic coverage of parameter-value 

interactions may increase the rate of fault detection for web applications. 

Since the conclusion is not clear and there is no clear winner in the 

prioritization techniques, future work needs to examine additional web 

based applications, test suites, and prioritization techniques. We can 

also focus on the hybrid prioritization technique which includes 

prioritizing by more than one technique for one application.
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