l lb II /‘ 7 | UNIVERSITY
LIBRARIES

UNLV Retrospective Theses & Dissertations
1-1-2008

Test suite prioritization techniques applied to Web-based
applications

Vani Kandimalla
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation

Kandimalla, Vani, "Test suite prioritization techniques applied to Web-based applications" (2008). UNLV
Retrospective Theses & Dissertations. 2376.

http://dx.doi.org/10.25669/29kj-d23a

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/29kj-d23a
mailto:digitalscholarship@unlv.edu

TEST SUITE PRIORITIZATION TECHNIQUES APPLIED TO

WEB-BASED APPLICATIONS

by

Vani Kandimalla

B.Tech, Electronics and Communication Engineering
Jawaharlal Nehru Technological University, Hyderabad, India,
2004

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science
School of Computer Science
Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas
August 2008

UMI Number: 1460533

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1460533
Copyright 2009 by ProQuest LLC.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, Ml 48106-1346

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

UNIVERSITY OF NEVAUDA LAS VEGAS

JULY 24TH ,2008

The Thesis prepared by

VANI KANDIMALLA

Entitled

TESTCASE PRIORITIZATION TECHNIQUES APPLIED FOR WEB-BASED APPLICATIONS.

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

(g b s

Examination Committee Chair

Dean of the Graduate College

E@j;iztion Committee MemlLer
T M

Voo

% inatio mmittee Member
/24" NN

Graduate College Faculty Representative

1017-53 11

ABSTRACT

Test Suite Prioritization Techniques applied to Web-Based
: Applications

by

Vani Kandimalla
Dr. Renee Bryce, Examination Committee Chair
Assistant Professor, School of Computer Science
University of Nevada, Las Vegas

Web applications have rapidly gained importance in many businesses.
The increased usage of web applications has created a challenging need
for efficient and effective web applicatioh testing strategies. This thesis
examines one aspect of web testing, that of test suite prioritization. We
examine new test suite prioritization strategies that may improve the rate
of fault detection for user-session based test suites. These techniques
consider test-lengths and systematic coverage of parameter-values and
their interactions. Experimental results show that some of these
prioritization strategies often improve the rate of fault detection of test
suites when compared to random ordering of the test cases. In general

the most effective prioritization strategies consider the systematic

coverage of the combinations of parameter-values as early as possible.

iii

TABLE OF CONTENTS

ABSTRACT ...ttt st s b e e s absans e i
LIST OF TABLES.......ciittiiiiiiiiii it et eena v s eaaeans vi
LIST OF FIGURES........ciciiiiiiiiiniiiiinn i vii
ACKNOWLEDGEMENTScioviiiiiiiiiiiiiii i viii
CHAPTER 1 INTRODUCTIONcitviiiiiiiniiiiiiiiiiiiniccieeencein e, 1
1.1, Goal and SCOPE....ccteuiiirinreiiieiiniriiiei et e eaens 4
CHAPTER 2 BACKGROUND AND RELATED WORK.......c..cccviiuniinninnnnnn. 6
2.1. Web APPHCAtIONScouvviiniiiiiiniiiiinin e 6

2.2. User-session-based TeStNGccoccovviiiiiiiiiiiiiiiiiiiininnn 6

2.3. Test Case Prioritizationc..ccoeoviiiiiiiiiiiiiiiiininnan, 8

2.4. Related WOrKcoovviiiiiiiniiiiii 10
CHAPTER 3 TEST CASE PRIORITIZATION STRATEGIESc...... 15
3.1. Generation Of teSt CASES ...ccuuivriiiiiiiiiiiiiiiiii 16

3.2. TeStLENGLNS ..coviiiiiiiiieiiiiii e 17

3.3. Systematic Prioritization by Parameter-Values..................... 18

3.3.1. Unique parameter-value coverage...........coeuveuennns 19

3.3.2. Parameter-value Interaction Coverage 19

3.3.3. Length by parameter-value countscoeeeuennee 21

3.4. RANAOIM c...uviiiiiiiiiiiiiiiii i e 21
CHAPTER 4 EXPERIMENTAL EVALUATIONccoovvviiiiiiiniiniiiniiininnnens 22
4.1. Parsing Tool...........ccooiiiiiiiiiiiiiiniii 22

4.1.1. Test set generationccceeeevriviiiiinineieiiininnnniennne.. 22

4.1.2. General Layout of GUIL......c.ccovviiiiiiniiniiiniiinininn 28

4.1.3. Major Operationsccceeeeriiniiinnrininniiininnneenn. 29

4.2, EXPEeIIMEIIES. . iiiiiiiiiiiiiiieee it et eeeaneaeeeaeataraneneneeaenenannene 40
CHAPTER 5 EXPERIMENTAL RESULTSccoiviiiiviniiniiiiniinininn, 45
5 T P 53 1 45

iv

B.2. MASPLASttt et et ce e e e aas 46

5.3. BOOKS ...ttt ettt e e 48
CHAPTER 6 SUMMARY AND CONCLUSIONccoiiiiiiiiiiiiiiriciinecennnn. 50
6.1. Summary of ReSUltS........cccciviuiiiiiiiiiiiiiiiiii e, 50
6.2. Conclusion..........cccevenvenvenanne SO SPPPRPRPN 51
BIBLIOGRAPHY ...ttt ciree et ee e e sen s sasasasasasasesesnsesnsas 53
VT A e et e et st e s s s eeeaesessasaonnnnsassensossnsnasnss 56

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

LIST OF TABLES

Example Test Case.....ccccovvrvviiiniiiiniiiiniiiniinieen s 18
Four parameters can take on one of three values each 19
A set Of TESE CASES ..vvvvveiiiiiiii it 20
2-way parameter-value interaction...........ccovvviiniiiiiininniininn, 20
Number of options for each page........ccocecevviviiiiiiiiiiiinnn, 25
Unique IDS of Pa@es.......cocuvieniiiiiiiiiiiiiiniiiniceeaean 26
Unique IDs parameter-values.....ocovvvveeviniiniiiiniininiineineeen, 26
Test case enerationc..ccevvvviiiiiniiiieiiinii i, 27
Simple URL format typesccocovviiiiiiiiiiiniiiinin 29
Subject Applications and Test Suite Characteristics............. 43
APFD for CPM (in percentage) ettt b era s aaneenaas 47
APFD for MASPLAS (in percentage)c.cccoeevvunviiniinnninnnnnnn. 47
BOOK: APFD Metric (in percentage)coocevvvievineniiiinnennnnn.. 49
Percent of Test Suite Run (Execution time in seconds).......... 49

|
i
t
|
|
1

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.

LIST OF FIGURES

Pseudo code (Generation of test cases)....cc..oeeuvrevneienneinnnenne. 16
USEr SESSION CAPLUIES .vuvinininiriiiiiirneeietniaeaenenrseneasensocnns 23
Page names along with the associated data............c............ 24
Front end of the Parsing TooOl.............ccoceeiiiiiiiiiiniiiieneinaane.. 28
Simple URL format.....c.occoeiiiiiiniiiiiiiiinin e 30
Uploading the User-session direCtory.......c..coovveviuiininninnnnnn. 31
Files uploaded for parsingc..ccceeveueviiiiiiieiinciicniiineennes 32
Display of the parsing Result...........cccocoviiviiiiiiinininn, 33
Display of the Resultant test casescceecvvvviiiiinieninnanen. 34
Error message when uploaded wrong directory 35
Selecting the Prioritization typeccoviivviiiiiiiininn. 36
Test cases prioritized by length Longest to Shortest 37
Test cases prioritized by length Shortest to Longest 37
Status Bar, displaying the status of operation 38
Confirmation window to clear all the fields...........c..c.cc.o... 38
Help window with Quick start guidec.cooeoiiiiiiin, 39

ACKNOWLEDGEMENTS

I am very much thankful to my advisor Dr. Renee Bryce for her
constant support; encouragement and advice in my academic as well in
my personal life. I am thankful to Dr. Evangelos Yfantis, Dr. John Minor
and Dr. Fatma Nasoz for serving as my thesis advisors committee.
Special thanks aré extended to Dr. Sreedevi Sampath and Dr. Bryce for
helping me throughout my research and allowing me to serve as co-
author for the paper submitted to ICST. Also, thank you to Dr. Sampath
for providing the test suites for the experiments summarized in this
thesis and for computing the APFD for the results. I would like to thank
Dr. Ajoy Datta for his advice and help throughout my academic careér
and my course work. [am also thankful to the members in the registrar’s
office for letting me be a part of their team; it was a great learning
experience working at the registrar’s office. Thanks to the faculty of the
Computer Science Department for helping me pursue my academic
goals.

I express my profound thanks to my Mom, Dad and my family for

their constant support and encouragement throughout my life.

CHAPTER 1

INTRODUCTION

Web applications are critical to the day-to-day operations of
businesses. Web applications may experience permanent, intermittent,
or transient failures that may affect a web site. Failures in this domain
result in losses of millions of dollars to organizations [17, 21]. A single
hour of down time can cost a retailer lost sales. Most web applications
| must be available 24/7 and undergo continual modification throughout
their lifetime. This requires testers to fix bugs in an application and
deploy a new version quickly. As changes occur, the problem of testing
modified versions of the application with respect to these changes
efficiently is important. Regression testing is the‘ activity of testing
modified versions of software to increase the confidence that the changes
behave as intended and do not adversely affect the rest of the software.
Regression testing consumes approximately 50% of maintenance costs
for software applications [3, 15]. Several tasks are involved in regression

testing, such as selecting a subset of test cases to execute, prioritizing

test cases to achieve a performance goal, and augmenting a test suite
with test cases to test the modified parts of the software. This testing
activity has always been challenging because developers need to check
not only the intended functionality of the changes themselves, but also
the intended functionality of the rest of the software that interacts with
the chémges. Testers can benefit from test suites that can detect faults
early in the test execution cycle. This thesis focuses on test suite
prioritization.

As applications evolve, test cases from a previous version are reused
to test the new version of the application. Usually, a large number of test
cases accumulate over the life cycle of an application, which makes the
reuse of all of these test cases to test the new version impractical. The
tester is often required to select and execute a small subset of test cases.
Test case prioritization is one such selection methodology where test
cases are selected according to some criterion to meet a performance
goal. While several. strategies have been proposed and evaluated to
prioritize test cases for C programs [8, 9, 24] and Java programs [4, 5], to
our knowledge, little work has been done to prioritize test suites for web
applications. |

Usage data from web applications which can be converted into the
test cases is easily available to the testers [25]. This conversion process is
known as user-session-based testing [9, 25, 26]. Prioritizing test cases

becomes particularly significant in user-session-based testing because a

large number of usage-based test cases can be present for a frequently
used application. The data from the user log provides information about
the user navigation through the web site along with the user induced
events, which are ideal test cases. User sessions contain events that are
typically base requests and name value pairs (for example, form field
data) sent as requests to the web server. A base request for a Web
application is the request type and resource location without the
associated data (for example, GET /apps/bookstore/Login.jsp). The
ability to record these requests is often built into the Web server, so little
effort is needed to record the desired events. Cookies and the information
about the IP address can be used to convert the requests in the web
server log into a sequence of user-session based test cases. These
requests exercise the complex interactions between the application
components, for example a parameter-value specified by the user may
access back-end code or retrieve the stored data in the databases.
Further, user- sessions identify the most frequently accessed parts of an
application. This is important in testing because frequently accessed
components of a system have significant impact on the user-perceived
reliability of an application.

With the goal of identifying prioritization criteria that order test cases
such that faults in the application are detected as early as possible in the
test execution cycle, we examine prioritization metrics that are based on

characteristics of a web application and user-session-based tests. Since

web applications exhibit characteristics of GUI applications and are
largely driven by user input (i.e., events), we apply the prioritizﬁtion
techniques proposed in [4] to web based applications. We also examine
frequency-based metrics that are unique for web application testing. The
main contributions of this thesis are: (1) a tool to parse and prioritize test
suites and (2) a summary of empirical results for three web-based
applications.

Chapter 2 presents the background in web application testing, user-
session-based testing, and test case prioritization. In chapter 3, we
present prioritization metrics. Chapter 4 presents our subject
applications and experimental methodology. We present and analyze the

results in chapter 5 and conclude in chapter 6.

1.1. Goal and Scope

The goal of this research is to improve the quality of existing test
suites with respect to the rate of fault detection as measured by APFD.
To quantify this goal, Rothermel et al. introduced a metric, (Rothermel et
al., 2001) [24] APFD, which measures the Average of the Percentage of
Faults Detected (APFD) over the life of the suite. APFD values range from
| 0 to 100; higher numbers imply faster (better) fault detection rates. Let T
be a test suite containing n test cases, and let F be a set of m faults
revealed by T. Let TF; be the first test case in ordering T * of T which

reveals fault i. The APFD for test suite T is given by the equation:

To address this goal, various test case prioritization techniques have

been developed.

CHAPTER 2

BACKGROUND AND. RELATED WORK
2.1. Web Applications

Web applications are one of the largest growing types of software. Web
application software can be updated and maintained without distributing
and installing software on client computers. Web pages can be either
static, in which case the content of the page is the same on all client
machines and to all the users, of dynamic where the contents of the page
depends on input.

A main challenge faced with web applications is that they run on
many platforms, use many technologies, and can be written in numerous

languages.

2.2. User-session-based Testing |
Experiments [9] show that user session data gathered as users
operate web applications can be successfully employed in the testing of
Web applications. Experiments compare new and existing test generation
techniques for web applications, assessing both the adequacy of the

generated tests and their ability to detect. Results show that user session

data can produce test suites as effective overall as those produced by
existing white-box techniques but at less expense, can be used in
automating the regressions testing process, and they also find different
types of faults.

User-sessions captured from previous releases of the software can
serve as regression tests. A user-session-based test case is the sequence
of the HTTP requests containing base requests and the name-value pairs
that are recorded when a user accesses the application. In the example
test case in Table 1, for the following request:
Login.jsp&name=“john”"&pswd="“doe”, the base request is Loginjsp and
the parameter-value pairs are name="john” and pswd=“doe”. Base
requests can be HTTP request accesses to both static and dynamic web
page content. User-session-based test cases can be generated from usage
logs. User-session-based test cases begin when a request from a new IP
address arrives at the server and ends when the user leaves the web site
or the session times out. A 45 minutes gap between fwo requests from a
server is considered equivalent to a session timing out in the test cases
that we use. Different strategies can construct test cases for the collected
user sessions [9, 20, 22, and 27].

Experiments [9] show that user session-based test cases are often
efficient at detecting faults; however, a challenge arises on how to
manage a large pool of such test cases. There are test suite reduction

techniques based on criterion, such as covering all base requests in the

application while maintaining the wuse case representation. These
reduction techniques reduce original suites [26] while maintaining overall
fault finding effectiveness, but tests are in no particular order. Whereas,
test suite prioritization uses the entire test suit for execution, but the
test cases are ordered based on pre-determined criteria that attempt to

detect faults as quickly as possible in the test execution cycle.

2.3. Test Case Prioritization

Regression testing of an application is the process of testing whether
the recently modified software introduced any new faults into already
tested code. Regression testing is very important, yet an expensive and
time consuming process. In the life cycle of an application, a new version
of the application is created as a result of (a) bug fixes and (b)
requirements modification [19]. As an application evolves, test engineers
run regression tests to validate new features and detect whether any new
faults are introduced into previously tested code. There may be a large
number of test cases available from testing previous versions of the
application, which can be reused to test the new version of the
application. However, running all of the test cases in a test suite may
take a significant amount of time. For instance, Rothermel et. al. report
an example in which it can take weeks to execute all of the test cases
from a previous version [24]. Due to time constraints, a tester must often

select a subset of test cases which can be executed to achieve the testing

objectives earlier in the testing process. The main testing objective we
focused on is the rate of fault detection- a measure of how quickly a test
order detects faults as measured by APFD.

One approach to selecting test cases is to schedule the test cases in
an order according to some criterion that increases the effectiveness in
meeting a performance goal. Scheduling test cases in this manner is
known as test case prioritization. To reduce the cost of regression testing
and the time involved in it, software testers may prioritize their test cases
so that those which are more important, by some measure, are run
earlier in the regression testing process. There are many possible goals
for prioritization; [24] describes several. One possible goal of test case
prioritization is that of increasing the test suit’s rate of fault detection.
An increased rate of fault detection can provide earlier feedback on the
system under regression test and let developers begin locating and
correcting faults earlier than might otherwise be possible. Such feedback
can also provide evidence that a quality goal is still not met, allowing
testers to take strategy decisions about release schedules. Further, an
improved rate of fault detection can increase the likelihood that if testing
is prematurely halted, those test cases that offer the greatest fault
detection ability in the available testing time will have been executed.
Other possible goals described in [24] include: early coverage of the code
in the application under test, meeting code coverage criterion, increasing

the confidence in the application under test at faster rate, and the

likelihood of catching the faults to specific code changes much earlier in
the testing process. Additional criteria include code coverage, fault
likelihood, and fault exposure potential [8, 9, 24].

~ Rothermel et. al.[24] define the test case prioritization problem and
the issues relevant to the solutions. We will review a small portion of the
material here, The test case prioritization problem is defined as follows:
The Test Case Prioritization Problem:
Given: T, a test suite; PT, the set of permutations of T} and f, a function
from PT to the real numbers.

Problem: Find 77 € PT such that (YT) (T € PT) (T” £ T [f(T") > f(T™)].

Here, PT represents the set of all possible prioritizations (orderings) of

T, and fis a function that, applied to any such ordering, yields an award

value for that ordering [24].

2.4. Related Work

In recent years, research has been conducted addressing several
techniques for the test case prioritization problem. We will review a small
portion of the material of previous work done on prioritization in this
section.

Wong et al. (Wong et al., 1997) [31] suggested a technique which
- prioritizes the test cases according to the criterion of “increasing cost per
additional coverage”. The authors restricted prioritizing the subset of test

cases which are selected from the test suite by a safe test selection

10

technique, and the subset of test cases selected are the one which reach
the modified code, but other test cases can be placed after this subset for
further exécution. So, this technique is using the modification
information, feedback and test cost information.

Rothermel et al. [24] and Elbaum et al. [6, 7] study prioritization. They
define several prioritization techniques, which are classified into 2
categories:

e General test case prioritization

Prioritizing the test cases for finding the order that will be
effective over a succession of subsequent versions of software.
¢ Version-specific test case prioritization
Prioritizing the test cases in a manner that will be most
effective for a particular version of the software.

They restricted their attention to the version-specific test case
prioritization operated at relatively fine granularity- that is, they involved
instrumentation, analysis, and prioritization at the level of source code
statements. An alternative is to operate at a relatively coarse granularity;
prioritization, at the function level.

They summarized several techniques which are classified into 3

categories and present the results of several empirical studies of those

techniques.

11

e Comparator Techniques
The techniques, which use the random ordering or the
optimal ordering of the test cases, come under this category.

o Statement Level Techniques

This category consists of the techniques that prioritize the
test cases by considering the attributes of the program at the
statement level.

e Function Level techniques

This category consists of the techniques that prioritize the
test cases by considering the attributes of the program at the
functional level.

All the techniques suggested in this research improve the rate of fault
detection, including the simplest one. The improvement in rate of fault
detection occurs for both functional and statement level techniques.

Jones et al. (Jones and Harrold, 2001) [12] describe a technique for
prioritizing test cases which can be wused with the modified
condition/decision coverage (MCDC) criteria, this technique uses
feedback, but no modification information.

Srivastava and Thiagarajan (Srivastava and Thiagarajan, 2002) [30]
present a technique for prioritizing the test cases based on the basic
block coverage, which uses both feedback and the change information.

This technique is different from the others as this computes the flow

12

graph and the coverage from the binaries, and tries to predict the
possible affects on the control flow following the code modifications.

Jeffrey and Neelam [11] prioritize using relevant slices. Techniques
used before for prioritizing the test cases were based on the total humber
of coverage requirements and additional requirement coverage exercised
by the test cases. Total statement coverage prioritization orders the test
cases in the decreasing order of the number of statements they exercise,
and additional statement coveragé prioritization orders the test cases in
the decreasing order of the additional statements they exercise that have
not been covered earlier in the prioritized sequence. This new test case
prioﬁtizing approach based on the relevant slices not only takes into
account the total statement coverage, but also the number of statements
executed that influence or have the potential to influence the output
produced by the test cases.

Additional critéria exist for GUI-based programs. For instance, Bryce
and Memon [4] prioritize preexisting test suites for GUI-based programs
by the lengths of tests (i.e., the numbér of steps in a test case, where a
test case is a sequence of events that a user invokes through the GUI),
early coverage of all unique events in a test suite, and early event-
interaction coverage between windows (i.e., select tests that contain
combinations of events invoked from different windows which have not

been covered in previously selected tests) [4]. In half of their experiments,

13

prioritization by event-interactions results in the fastest rate of fault

detection.

14

CHAPTER 3

TEST CASE PRIORITIZATION STRATEGIES

In this section, we examine prioritization functions for user-session-
based testing. The functions include:
Test length based on number of base requests (LtoS, Stol): order test
cases by the number of HTTP requests that they contain. Orderings
include longest to shortest (LtoS) and shortest to longest (StoL).
Unique coverage of parameter-values (1-way): Order test cases by the
number of unique parameter-values covered by each of the test cases.
2-way parameter-value interaction coverage (2- way): Order test cases by
the count of pair wise combinations of parameter-values between pages.
Test length based on number of parameter-values (PV-L to S, PV- S to L):
Ordered according to the number of parameter-values used in a test
case. Orderings include Longest to Shortest (PV- L to S) and Shortest to
Longest (PV- S to L),

Random: Execute the test cases in random order.

15

3.1. Generation of test cases
Application usage data is used for test cases. The usage data is
captured from previous releases of the software. Converting usage data
into test cases for testing web application is known as user-session-
based testing.
Figure 1 explains the Parsing algorithm; conversion of usage data into

test cases.

Pseudo code

input. user-sessions captured previously
irt files = no of user sessions captured .
while {files=0)

int Urlcount = no: of urls in the file.
While {uricount=0}

i

if { page and parameter values already existin the data structures) then
i

1
fiParse the URL for page name and the unicue parametervalues and assign themthe unique
page no. and the param no. and store themin the data structure.

3

:;
¥
if dothe same to parse the data and cutput the unique values fromthe data structures used for
storing the page names and the parametervalues

Figure 1. Pseudo code (Generation of test cases)

16

3.2. Test Lengths

This technique orders test cases by selecting the next test case with
maximum number of base requests, counting the duplicates. Ordering
test cases based on the length of base requests can affect the rate of fault
detection of the ordered test suite, since the amount of application code
covered is also partially determined by the number of base requests in
the test case. Table 1 shows an example of a test case, tcl where the
length tcl is four i.e., the number of base requests in tcl. Register.jsp,
Login.jsp, Search.jsp and Logout.jsp are the base requests covered by the
test case tcl.

The test cases can be prioritized in descending order of the number of
the base requests, Request-longest to shortest (Reg-L to S) i.e., executing
the test cases with more number of base requests before the test cases
with less number of base requests, or in the ascending order of the
number of base requests, Request-shortest to longest (Reg-S to L) i.e., the
test case with less number of base requests are covered first than the one
with more number. Here the number of base requests also includes

counting the duplicates.

17

Test case tcl
Register.jsp&name=john&pswd=doe&fname=John&lname=Doe
Login.jsp&name=john&pswd=doe

Search.jsp&bookid=10

Logout.jsp

Base Parameter-value pairs
request
Register.jsp | Name=john, pswd1l=doe, fname=John, Iname=Doe
Login.jsp Name=john, pswd=doe

Search.jsp | Bookid=10

Logout.jsp null

Table 1. Example Test Case

3.3. Systematic Prioritization by Parameter-Values

Most of the pages of the web application deal with the parameters for
which the user needs to specify the value. For example consider the test
case shown in Table 1. The Login.jsp page accessed in the test case has
two parameters, “name” and “pswd” that can take on values. We can
prioritize these user-sessions by the discrete number of values that have
been specified for these parameters. For instance, test case tcl in Table 1
has the parameter “namé” set to the value “john”. We refer to this as a

parameter-value.

18

Log-in Member Discount Shipping
Type Status Method
New Member Basic None Standard
Member(logged in) Silver 810 off Express
Member (not logged in) | Gold Free Ship. Overnight

Table 2. Four parameters can take on one of three values each

3.3.1. Unique parameter-value coverage

This technique selects the next test that has the maximum number of

the parameter-values that are not in the previously selected test.

3.3.2. Parameter-value Interaction Coverage

The t-way criteria selects the next test that maximizes the number of
t- way parameter-value interactions between pages that occur in a test.
Here t is set to 2 i.e., t=2 for pair wise coverage of parameter-values.
Consider the example of 4 parameters as shown in Table 2 that can each

take on one of three values from the list. Table 3 shows an example of

parameter-values that occur in a set of test cases.

19

Test | Log-in Member | Discount | Shipping

No. Type Status Method

1 New Member Basic None Standard
2 New Member Basic $10 off Express

3 New Member Basic Free Ship. | Overnight
4 Member (logged in) Silver None Overnight
5 Member (logged in) Gold 810 off Standard

6 Member (not logged in) | Basic $S10 off Overnight

Table 4 lists the six pair wise parameter-value interactions that occur .
in Test 1. The number of previously uncovered parameter-values in each

test is counted and prioritizes the tests by selecting the test with the

Table 3. A set of test cases

Test No. 1

Pair

Parameter - values

1 (New Member, Basic)

(New Member, None)

(New Member, Standard (5-7))

(Basic, None)

(Basic, Standard (5-7))

o O | W] N

(None, Standard (5-7))

Table 4. 2-way parameter-value interaction

maximum number of parameter values next.

20

3.3.3. Length by parameter-value counts
In this technique, test cases are prioritized according to the number of
parameter-value pairs that each test-case contains, counting the
duplicates. Selecting those tests with the largest number of parameter-
values in a tést first is called PV-LtoS (PV-Longest to Shortest).
Conversely, selecting those tests with the smallest number of parameter-

values first is called PV-StoL (PV- Shortest to Longest).
3.4. Random

We select test cases uniformly at random until there are no remaining

test cases.

21

CHAPTER 4

EXPERIMENTAL EVALUATION
4.1. Parsing Tool
In our experiments the user sessions captured previously serve as
tests. We develop a tool for parsing and prioritization. There are 2 major
functionalities supported by the tool:
1. Parsing the user sessions for generating the test sets
2. Prioritizing the test set depending upon some criteria.
4.1.1. Test set generation
The input fo the tool is the user sessions which contain the captured
data from the user log. These user sessions provide information about
the user navigation through the web site along with the user invoked
events. User sessions contains events that are typically base requests
and name value pairs (for example, form field data) sent as requests to

the web server. A base request for a Web application is the request type

22

and resource location without the associated data (for example, GET
/apps/bookstore/Login.jsp) and the associated data is the parameter-
value pairs.

For example, Figure 2 shows a single captured user session, which is
the set of urls through which the user navigates in a session. Session on
a server is considered to be the time elapsed between the user login and
the logout from a particular web application existing on the server.

We need to identify all windows, parameters and the values, for which

the beginning part of the url should be parsed out, as shown in Figure 3.

http:{/dwalin.cis udel edu:8080/apps/bookstore/Login jsp

hitp://dwalin.cis.udel edu:8080/apps/bookstore/Login jsp?
Password=guest&FormName=Login&FommAction=login&Login=guest
hitp://dwalin.cis.udel edu:8080/apps/bookstore/ShoppingCart jsp
hitp:/Idwalin.cis.udel edu:8080/apps/bookstore/ShoppingCartRecord jsporder_id=2&
hittp://dwalin.cis.udel edu:8080/apps/bookstore/ShoppingCart jsp
httpy://dwalin.cis.udel.edu:8080/apps/bookstore/ShoppingCartRecord jsp2order_id=2&
hitp://dwalin.cis udel edu:8080/apps/bookstore/ShoppingCart jsp

http://dwalin.cis.udel edu:8080/apps/bookstore/Mylnfojsp?

hitp:/Idwalin.cis.udel edu:8080/apps/bookstoreDefault jsp

Figure 2. User Session captures
(Base request along with parameter value pairs)

23

Figure 3 shows the part of the URL with page names along with the
associated parameter-value pairs, which are further parsed for different
pages.

The list of pages include: Login.jsp, ShoppingCart.jsp, MyInfo.jsp,
Default.jsp, and ShoppingCartRecord.jsp.

The parameter-value are:

For page “Login” <Password,guest>, <FormName,Login>,<Login,guest>,
<FormAction,login>

For Page “ShoppingCartRecord”: <order_id,2>

Login jsp
Login.jsp7Password=guest&FormName=Login&FormAction=login&Login=guest
ShoppingCart jsp

ShoppingCarfRecord jsp?order 1d=2&

ShoppingCart.jsp

ShoppingCartRecord jspTorder id=2&

ShoppingCart.jsp

Mylnfo jsp?

Default jsp

Figure 3. Page names along with the associated data
The pair (or t-way interaction) are between windows. For example,

since parameter-values <Password,guest> and <FormName,Login> are

both from the Login page, they are not counted as an interaction.

24

However parameter-values <Password,guest> and <order_id,2> is
considered to be a pair because they are from differeht windows (Login
page and ShoppingCartRecord page).

We assign a unique ID to each page and parameter-value so that we
make sure that we are testing interaction between pages.

Number of pages = 5

Number of parameter-values for pages is listed in Table 5.

No of No: of List of Parameter-values
Parameter- | Pages

Values

5 1 page "Login” has parameter-value <none, none>,

<password, guest>, <FormName, Login>,
<FormAction, login>,<Login, guest>

1 1 page “ShoppingCart” has no parameter-values
<none, none>

1 1 page “ShopCartRecord” has one parameter-value
<order_id, 2>

1 1 page “Myinfo” has no parameter-value <none,
none>

1 1 page “Default” has no parameter-value <none,
none>

Table 5. Number of options for each page

We assigned a unique id to each of the pages and its associated

parameter-values as shown in Table 6 & Table 7.

25

Page Name IDs
Login 0
ShoppingCart 1
ShoppingCartRecord 2
Myinfo 3
Default 4
Table 6: Unique IDs of Pages
Page Name Parameter-Values IDs
Login page <none, none> 0
<Password, guest> 1
<FormName, Login> | 2
<FormName, login> |3
<Login,guest> 4
ShoppingCart page <none, none> 5
ShoppingCartRecord <order_id, 2> 6
MylInfo page <none,none> 7
Default page <none,none> 8

Table 7. Unique IDs parameter-values

26

Test cases will then be generated as shown in Table 8.

Login.jsp

Login.jsp?Password=guest&FormName=
Login&FormAction=login&Login=guest

1,2,3,4

ShoppingCart.jsp |

ShoppingCartRecord.jsp?order_id=2

ShoppingCart.jsp

ShoppingCartRecord.jsp?order_id=2

ShoppingCart.jsp

MyInfo.jsp?

Default.jsp

) N} O o) G o Ot

Table 8. Test case generation

The resultant test case that will be the input to the prioritization

algorithm is:

0123456565738

This example is just for one test case, we need to enumerate all pages

and parameter-values in the collection of tests, assign them unique IDs

and then prioritize.

27

4.1.2. General Layout of GUI
Figure 4 shows the general layout of the Parsing tool GUI. “Files
Uploaded” displays all the files of the user-sessions. “Parsing Result”
shown in the figure is the result obtained after the test cases have been
parsed and the unique IDs have been assigned to all the different pages
and the parameter-values. “Resultant TestCases” displays the actual test

cases that we input to the prioritization algorithm.

Figure 4. Front end of the Parsing Tool

28

4.1.3. Major Operations
There are 2 major functionalities supported by the tool
1. Parsing the user sessions for generating the test sets
2. Prioritizing the test set depending upon some criteria.

Currently the tool supports uploading files with the extensions:
" wget”, “.us”, and “.tc”

The user-sessions captured are with the file extensions listed above.
In the experiments conducted on the user-sessions of three web
applications,

1. “.wget” extension files have URLs of a simple format as explained
below.
Simple URL format: This can be categorized into two types as shown

listed in Table 9.

URL format Example

Directory (http://dwalin.cis.udel.edu:8080/apps/bookstore)
format '

File name (http://dwalin.cis.udel.edu:8080/apps/bookstore/Default.jsp)
format

Table 9: Simple URL format types

29

ttp://dwalin.cis.odel edu:8080/apps/bookstoreLogin.jsp Password=yyv&FomiName=Login& FormAction=loginéL ogin=xx

Service Host Port File and resourse detals Parameter-Values

Figure 5. Simple Url format

2. ".us” and “.tc” extension files have URLs with GET and POST variables
I. URLs with GET and POST variable
Example:
a. GET /scheduler/
b. GET /scheduler/grader.html
II. URLs with GET and POST variable
Example:

a. GET /masplasO05/index.html POST
/masplas05/FinalSubmission.do --post- data=
"&email=yyy%40g.y.j&last_name=mmmd&first_name=t+"

In example I, the URL “GET /scheduler/” has no parameter-values.
Parsing the user session for generating the test sets:
- To start, upload the directory where the user-sessions reside, by
clicking the “Browse” button as shown in Figure 6.
Select the proper directory where the user sessions reside and, by
clicking the “Parse” button, sessions will be parsed and the result of

parsing the user sessions, assigning the unique identifier to the page

30

names and the parameter-values, and the test sets are displayed in the

respective fields provided as shown in Figure 7, Figure 8 and Figure 9.

My Virtual Machines Statflad
WMyWebs thesie g
rengs I Thesis)
[Resuma_Anps Update]
2 SOL Server Management Studio Express T Vani fing

File Mame: - ClJsersivani iDocuments

Figure 6. Uploading the User-session directory

31

Files Uploaded
List of all the files uploaded will be displayed in the “Files Uploaded”
field provided; it also displays the path of the directory where the user-

sessions reside as shown in Figure 7.

ser-Sessions directonyg sersivant rocumentsitenseisampleicprisampl

unber of Tes uploaded

. sessiondii Lus
1. sessionin2us
. S2s5ion0003.us
3. session0004.us

4. sessiond0D5.us
5, session0006.us

Figure 7. Files uploaded for parsing

32

Parsing result

The result after parsing the user -sessions and computing the
number of options of each page and assigning the unique identifier to
each of the page and the parameter-value pairs is displayed in the

“Parsing Result” field as shown in Figure 8.

Ii st Cases with file name

session0iotus 145 43717376 141140

pesionB0D2us 145 M3 72 74 77 124 123 77 75 109 108 139 132 129 137 131
ession0N03.us 143 145 1449189979894 85868382788082787938 30
essionboBd.us 117 120 118121 122 112 113 116 110 111 112 114 116 1101
essiondios.us 107

essioni0NG.us 145 144 9083 8698 93

nigue Pages

- page 0 : CatchAssignGroupGrade

- page 1 : CatchGroupCancelSerdet
page 2 : CatchGroupSignupSendet
»g:age 3: CreateSchedSendst
jpage 4 : Grader vallSignupSendet
]?)age 5 : GraderLoginServet
page 6 : GraderOptionsSerdet
page 7 GroupCancelSerdiat

Eage 8 : GroupRleDplionsSendet

page 9 GrouploginServiet

age 10 : GroupOptionsSendet

age 11 : GroupSignupSendet

ane 12 © GroupViewGroupSendet
L page 13 : LognutSendet

page 14 NewSchedServiet

age 15 ; Mol oginCatchGroaupSignupSendet
“page 15 NologinCourseOptionsSerdet

age 17 : Nol oginGroupFileOptionsSendet
Fgge 18 : NoLoginGroupSignupSendet

4 g

Figure 8. Display of the parsing Result

33

Resultant test cases

The actual test cases, the sequence of numbers of the parameter-
value pairs generated as a result of parsing the user-session, which will
be the input to the prioritization tool, will be displayed in the “Resultant

TestCases” field as shown in Figure 9.

ResultantTestCases

Test0-145 143 71 73 76 141 10

Test 1-145 443 72 74 77 124 123 77 75 108 108 139 132 129 1
Test2-143 145 144 91 39 97 98 54 85 86 83 82 78 80 82 78 74
Test3-117 120 118 121 122 112 113 116 110 111 112 114 116 1
Test 4 107 {
‘Mest5.145 144 90 88 96 98 43

IUser-Bessions parsed stctessiully

Figure 9. Display of the Resultant test cases

34

If files other than the extension “.wget” or “.us” or “.tc” are uploaded

than an error message will be displayed as shown in Figure 10.

Figure 10. Error message when uploaded wrong directory

Prioritizing ihe test set depending upon some criteria
Presently the tool supports the prioritization by length in 3 ways

1. Test length -- Longest to Shortest

2. Test length ~ Shortest to Longest

3. Random

We can prioritize by selecting the prioritization criteria from the drop
down box “Prioritization Type” and pressing the “Prioritize” button as

shown in the figure below

35

Figure 11. Selecting the Prioritization type

The resultant test cases after prioritization are displayed in the

“Resultant TestCases” field provided as shown in Figure 12 and Figure

13.

36

st A0 B M HPTRBUBBURBURNBIRILHBNY
Test3-117 120 113 120 122 112 113 106 140 111 112 144 196 110 110 17 117 19 118 12
Test0-445 13 71 73 76 141 140

Test5-445 144 90 93 %6 99 93

Test4.107

Figure 12. Test cases prioritized by length Longest to Shortest

ResutantTestCases.
Test 4 .07

Test5-145 144 90 38 96 98 93
Test0-145 143 71 75 76 141 140
Test3-117 120 M8 121 122 112 113 116 M0 M1 112 114 116 110 M1 17 17 119 149 12
Jest2-143 145 144 91 89 97 98 94 85 96 83 82 78 80 82 78 7O 38 39 42 34 35 103 8 ¢
Test1-145 M3 72 74 77 124 123 77 75 100 108 139 132 129 137 131 127 133 130 134 13t

Figure 13. Test cases prioritized by length Shortest to Longest

37

A Status bar is provided at the bottom of the window which displays

the status of parsing and prioritizing.

111 page PickDemoGroupserviet has 2 option
|| | page VerifySchedSendet has 15 option
|1 |page ViewAllGradesSendet has 3 option
|| ipage grader html has 1 option

-1 | page group.html has 1 option
page scheduler has 1 option

Figure 14. Status Bar, displaying the status of operation

Every computation in the tool can be cleared by clicking “Delete All”

button, which need the user confirmation as shown below.

Figure 15. Confirmation window to clear all the fields

Help is provided to the user to guide the tester through the process of

parsing and prioritizing.

38

About ParsingTool

:{ Parsing Tool is the Testing Tool which is used to generate the test cases fiom the
*} user-sessions captured; it is also included with priontizing the test cases this toolis
/- developed using the Java API. Parsing Tool has & Jeve-Swing based User Interface
¢ which ellows the user to parse the user-sessions and generate the fest ceses.
Currently the Tool allows Priontization by test length in three ways.
1. Longest to Shortest
12, Shartest to Longest

3. Random

Figure 16. Help window with Quick start guide

The test cases can be directly uploaded into the tool for prioritizing by
File - open/ upload;h the uploaded test cases are shown in the “Resultant
TestCases” filed.

To save the resultant test cases, select menu File = Save, give the file
name and the location where you intend to save the file. File-> Exit will

exit the tool.
Select - Help will bring up the help document, explaining about the tool.
In future work we will consider adding more prioritization techniques in

the tool and more features for generating the test cases from scratch.

39

4.2. Experiments

In the experiments conducted, the effectiveness of each of the
prioritization strategies were studied by evaluating their rate of fault
detection.

Independent and Dependent Variables. Here the user-session based
test suites, prioritization strategies énd the faults seeded into the test are
considered to be the Independent variables, and the rate of fault
detection, average percentage faults detected (APFD)[24] , and the test
execution times are the Dependent variables.

Subject Applications and Test Suites. Three web based applications,
along with their pre-existing test suites, where the test suites are the
previously recorded user-sessions (for experiments in Sampath et al. [26]
and Sprenkle et al. [28]) were used for evaluating the proposed
prioritization strategies. The subject applications have different
characteristics: an open-source e-commerce bookstore (Book) [10], a
Course Project Manager (CPM), and the web application used for the Mid-
Atlantic Symposium on Programming Languages and Systems (Masplas).
Test suite characteristics and subject programs of the three web
applications are shown in Table 10.

Book. Book is a web application which allows users to browse for
books, search for a particular book by keyword, rate the books, and
purchase the books by adding them to their shopping cart. The users are

even allowed to register, login, modify their personal information and

40

logout. The Book application was designed using JSP for the front-end
and MySQL for the back-end database. Since the experiments intend to
test the consumer functionality, the administrator code is not included in
testing [26]. Sampath et al. [26], by sending emails to local newsgroups
and by posting advertisements in the University of Delaware’s classifieds
web page asking for volunteer users, collected about 125 test cases.

CPM. CPM is the application designed at University of Delaware,
which allows course instructors to login and create grader accounts for
teaching assistants. In turn the Instructors and teaching assistants
create group accounts for students, assign grades, and create schedules
for demonstrated time slots. CPM was designed using Java Sefvlets and
JSPs and the user interface is generated by HTML. It manages the state
in a file-based data store. Sampath et al. [26] and Sprenkle et al. [28]
collected 890 test cases from instructors, teaching assistants, and
students using CPM during the 2004-05 and 2005-06 academic years at
the University of Delaware.

Masplas. Masplas was a web application designed for managing the
regional workshop at University of Delaware. Users can register for the
workshop, upload abstracts and papers, and view the schedule,
proceedings, and other related information. Masplas is written using
Java, JSP, and MySQL. Sampath et al. [26, 25] and Sprenkle et al. [29]

collected 169 test cases that we use in our experiments.

41

Evaluation Metrics. Prioritization techniques that are evaluated
assume that the tester is aware of the prior knowledge of the faults
detected by the regression test suites. As discussed previously these
techniques are evaluated with respect to their rate of fault detection, the
average percentage of faults detected (APFD) [24], and the test suite
execution time.

The rate of fault detection is defined as the total number of faults
detected for a given subset of the prioritized test case order. The average
percent of faults detected (APFD) is defined using the notation in [24].

_ Informally, APFD measures the area under the curve that plots test
suite fraction and the number of faults detected by the prioritized test
case order.

In the experiments conducted, finding the most faults in the earliest
tests (i.e., in the first 10% of the tests executed) and locating 100% of the

faults earliest are the main concerns.

42

Covered in pre-existing test suite

Metrics Book | CPM MASPLAS
Classes 11 75 9
Methods 319 173 22
Conditions 1720 1260 108
Non-commented Lines of Code 7615 | 9401 999
Seeded faults 40 135 29
Total number of user sessions 125 890 169
Total number of requests accessed 3640 | 12352 1107
Number of unique requests 10 69 24
Largest user session in number of requests 160 585 69
Average user session in number of requests 29 14 7
Number of unique parameter-values 1415 | 4146 645
% of 2-way parameter-value interactions 92.5% | 97.8% 96.2%

Table 10. Subject Applications and Test Suite Characteristics

Experimental Methodology. The information on how many faults are

detected by each test case, i.e., a fault matrix, mapping each test case to

the faults detected by test case, is already available from the previous

experiments conducted by Sampath et al. [26] and Sprenkle et al. [28,
29]. The fault matrices used are generated by using the struct oracle for
CPM and Masplas and the diff oracle for Book [28, 29]. In addition to
seeding some naturally occurring faults found during the deployment
there are some faults manually seeded in the applications by the
graduate and the undergraduate students, as described in [26, 28]. In

general, there are five types of faults seeded into the applications—data

43

store (faults that exercise application code interacting with the data
store), logic (application code logic errors in the data and control flow),
form (modifications to parameter-value pairs and form actions),
appearance (faults which change the way in which the user views the
page), and link (faults that change the hyperlinks location) [26].

The implementations of the prioritization techniques are as described
in Chapter 3. In case of a tie between two or more tests that meet the
prioritization criterion, a random tiebreaking strategy is implemented. To
account for the non-determinism introduced by random tie breaking,
each of the prioritization techniques is executed five times and the

average rate of fault detection, APFD, is reported.

44

CHAPTER 5

EXPERIMENTAL RESULTS
5.1. CPM

The results for CPM are shown in Table 11. For CPM, the results for
the length based on number of base requests (Req-LtoS, Req-Stol),
Random and also the rate of fault detection for parameter-value
interaction (l-way, 2-way, PV-LtoS, PV-Stol), Random are shown in
Table 11.

Table 11 shows the APFD in 10% increments of the number of
executed tests. The prioritization techniques with highest APFD for the
corresponding percentage of the test suites executed are shown in bold-
faced numbers. The same notations are used for showing the results in
Masplas and Book.

Finding the most faults in the earliest tests. Prioritization by 2-way
parameter-value interaction coverage is the most effective technique as
shown in Table 11.

Locating 100% of the faults earliest. After the first 10% of tests are

run, the 2-way parameter-value interaction coverage has the fastest rate

45

of fault detection in the rest of the 90% of test suite. The technique
Prioritization by the length based on number of requests — shortest to
longest, PV-StoL, is the least effective one. The remaining prioritization
techniques fall in between these best and worst cases of APFD. For
instance, prioritizations by 1-way and by PV-LtoS are generally the
second most effective techniques in the latter 90% of the tests run.
Prioritization Random, Req-StoL, and Req-LtoS are less effective than the

other techniques.

5.2. MASPLAS

Finding the most faults in the earliest tests. I APFD during the first
30% of the test suite is of primary concern, prioritization by Req-LtoS is
the mést effective as shown in Table 12.

Locating 100% of the faults earliest. After executing the first 30% of the
test suite, the remaining 70% of the test suites has the best APFD if
prioritized by 2-way. It can be seen from Table 12 that in the last 70% of
the test suite, Req-LtoS and PV-LtoS are comparable in their APFD. PV-
StoL’s APFD suggests that it is the least effective prioritization technique.
The remaining prioritization techniques fall in between these best and

worst cases.

46

% of test | LtoS | StoL | Random | 1-way | 2-way | PV- PV-

suite run LtoS | StoL
10 78.17 | 75.14 | 48.63 83.79 | 83.72 | 83.53 | 16.38
20 80.34 | 77.76 | 57.55 87.78 | 90.8 | 88.77 | 25.6
30 81.77 | 80.27 | 64.51 91.54 | 91.72 | 88.77 | 26.44
40 84.58 | 81.39 | 69.19 94.79 | 95.64 | 92.71 | 28.76
50 85.58 | 82.95| 73.03 94.79 | 95.64 | 92.71 | 30.33
60 87.14 | 84.44 | 75.37 94.79 | 95.64 | 94.26 | 34.64
70 87.74 | 85.15 | 77.37 94.79 | 95.64 | 94.26 | 39.15
80 88.27 | 86.21 | 78.24 94,79 | 95.64 | 94.26 | 39.58
90 88.3 | 86.31 | 78.45 94.99 | 95.64 | 94.26 | 42.18
100 88.36 | 86.35 | 78.49 94.99 | 95.64 | 94.26 | 43.09

Table 11 - APFD for CPM (in percentage)

% of test | LtoS | StoL | Random | 1-way | 2-way | PV- PV-

suite run LtoS | StoL
10 95.12 | 81.5 76.33 89.6 | 90.98 | 86.05 | 4.44
20 95.12 | 91.06 | 80.51 | 93.04 | 90.98 | 89.74 | 4.44
30 95.12 [91.06 | 85.57 | 93.04 | 94.28 | 89.74 | 26.61
40 95.68 | 91.59 | 87.59 | 95.56 | 97.06 | 93.38 | 30.08
50 95.68 | 91.59 | 89.91 | 95.56 | 97.06 | 94.84 | 50.16
60 95.68 | 91.59 | 90.69 | 95.56 [97.06 | 94.84 | 53.91
70 95.97 | 91.89 | 90.69 | 95.56 | 97.06 | 94.84 57
80 96.14 | 92.08 | 90.91 | 95.56 [97.06 | 94.84 | 58.1
90 96.22 | 92.17 | 90.91 | 95.56 | 97.06 | 94.84 | 58.85
100 96.22 | 92.2 90.91 | 95.56 | 97.06 | 94.84 | 58.85

Table 12 - APFD for MASPLAS (in percentage)

47

5.3. BOOKS

In Books, for finding the most faults in the earliest tests, prioritization
by l-way has proven to be the best for the first 20% of the test suite
execution as shown in Table 13. Prioritization by PV- StoL and Reg-StoL
are the slow starters during the first 10% of the test run, i.e., the first test
case in each technique detects only 6 faults, whereas the first test case
in the other techniques detects between 15 and 24 faults.

Locating 100% of the faults earliest. Table 13 shows that prioritization
by 1-way has a high APFD.

Fault Detection Density. From Table 13, It can be noted that Random
creates a reasonably effective test order with APFD comparable to the
other techniques.

If the execution time is of primary céncem then choosing the right
prioritization could help the tester find and fix faults in the application

quickly, which could translate into thousands of dollars in cost savings.

48

% of test | LtoS | StoL | Random | 1-way | 2-way | PV- PV-

suite run LtoS StoL
10 92.96 |70.04 | 90.34 |93.44 | 93.22 | 93.11 | 70.13
20 92.96 | 86.09| 93.7 93.44 | 93.22 [93.11 | 70.13
30 92.96 | 88.15| 94.52 | 93.44 | 93.22 | 93.11 | 78.17
40 92.96 [88.91 | 94.86 | 93.44 | 93.22 | 93.11 | 79.86
50 92.96 |88.91| 94.86 [94.96 | 94.69 | 93.11 | 84.12
60 92.96 189.15] 95.11 |96.13 | 94.69 | 94.47 | 86.73
70 93.74 189.54| 95.27 [96.13 | 95.62 | 95.56 | 86.73
80 94.11 |89.81 | 95.56 |96.13 | 95.62 | 95.56 | 86.73
90 94.18 189.92| 95.56 |96.13 | 95.62 | 95.56 | 86.73
100 94.27 |189.94| 95.57 |96.13 | 95.62 | 95.56 | 86.73

Table 13 - Book APFD

Table 14 shows the execution time, time taken to reply test suite.

Execution time does not include the time taken to detect faults, i.e., fault

detection replay.

Application 1-way 2-way PV-LtoS PV-StoL

CPM 83.26(813) | 38.88(618) | 58.20(746) 100(889)

MASPLAS 93.44 33.73(36) 42.01 97.04(71)
BOOKS 57.60(907) | 66.40(1024) | 60.80(1002) | 54.40(300)

Table 14 - Percent of Test Suite Run (Execution time in seconds) for
100% Fault Detection

49

CHAPTER 6

SUMMARY AND CONCLUSION
6.1. Summary of Results

The results from the experiments show that none of the prioritization
techniques is clearly the “the winner” for all three of the web applications
tested. However, for two of our three applications, prioritization
techniques that consider parameter-value counts or interactions find
100% of faults before the other techniques. This study shows that 2-way
prioritization finds all of the faults with 38% of the test suite for CPM in
618 seconds, and 33% of the test suite for Masplas in 36 seconds as
shown in Table 14. In both these applications, 2-way has the highest
APFD values overall (after 100% of the test suite is executed). In Book,
however, 1-way has the highest overall APFD.

In CPM, prioritization by 2-way parameter-value interaction coverage
is generally the most effective. In Masplas, for the first 30% of the test
suite Req-LtoS is the best technique and for the remaining 70% of the
test suite, giving preference to covering every 2-way parameter-value

interaction creates the most effective test suite ordering for finding the

50

best APFD. In Book, for achieving a good rate of fault detection early (first
10%) in the test cycle, choosing any of the metrics other than Req-StoL,
PVStoL, or Random will be good options. However, for achieving 100%
fault detection with the smallest test number and with low APFD of
overall execution of tests,‘ PV-StoL is the best prioritization technique.
Though random appears to create an effective test suite ordering for
books, for large number of test cases and low fault detection densities,
Random’s effectiveness will decrease. Parameter-value interaction
coverage and frequency-based techniques can detect more faults early in
the test execution cycle.

If we observe the execution time of the tests, 2- way detects 100% of
the faults 30% faster than the worst technique, PV-StoL, in CPM, and in
Masplas 2-way detects 100% of the faults 40% faster than the worst
technique PV-StoL, whereas PV-StoL in Book has the fastest rate of fault
detection and detects 100% of the faults 74.5% faster than the worst

technique, Reqg-LtoS, but has the lowest overall APFD.

6.2. Conclusion
The web-application domain has an advantage, that actual user-

sessions can be recorded and used for regression testing. While these

tests are indicative of user’s interactions with the system, selecting and
prioritizing user-sessions has not been thoroughly studied. This thesis

involves studying prioritization of such user-sessions for three web

51

applications. Several new prioritization criteria are applied to these test
suites to identify whether they can be used to increase the rate of fault
detection. The experimental results suggest that prioritization by
frequency metrics and systematic coverage of parameter-value
interactions may increase the rate of fault detéction for web applications.
Since the conclusion is not clear and there is no clear winner in the
prioritization techniques, future work needs to examine additional web
based applications, test suites, and prioritization techniques. We can
also focus on the hybrid prioritization technique which includes

prioritizing by more than one technique for one application.

52

-BIBLIOGRAPHY

[1] A. Andrews, J. Offutt, and R. Alexander. Testing web applications by
modeling with FSMs. Software and Systems Modeling, 4(3):326-345, Jul.
2005.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In the Intl. Conf. on Software
Engineering, pages 402-411, May 2005.

[3] D. Binkley. Using semantic differencing to reduce the cost of
regression testing. In the Intl. Conf. on Software Maintenance, pages 41-
50, Nov. 1992.

[4] R. C. Bryce and A. M. Memon. Test suite prioritization by interaction
coverage. In the Workshop on Domain-Specific Approaches to Software
Test Automation, pages 1-7, Sep. 2007.

[5] H. Do, G. Rothermel, and A. Kinneer. Prioritizing junif test cases: An
empirical assessment and cost-benefits analysis. In the Intl. Symp. on
Software Reliability Engineering, pages 113-124, Nov. 2004.

[6] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test
cases for regression testing. In the Intl. Symp. On Software Testing and
Analysis, pages 102-112, Aug. 2000.

[71 S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans. On Software
Engineering, 28(2):159-182, Feb. 2002.

[8] S. Elbaum, G. Rothermel, S. Kanduri, and A. Malishevsky. Selecting a
cost-effective test case prioritization technique. Software Quality Journal,
12(3):185-210, Sep. 2004.

[9] S. Elbaum, G. Rothermel, S. Karre, and M. F. II. Leveraging user

session data to support web application testing. IEEE Trans. on Software
Engineering, 31(3):187-202, May 2005.

53

[10] Open source web applications with source code. http:
/ /www.gotocode.com, 2006.

[11] D. Jeffrey and N. Gupta. Test case prioritization using relevant
slices. In the Intl. Computer Software and Applications Conf., pages 411-
418, Sep. 2006.

[12] J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization
for modified condition / decision coverage. Trans. on Software
Engineering, 29(3):195-209, Mar. 2003.

[13} E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz. Experiences in
engineering flexible web service. IEEE MultiMedia, 8(1):58-65, Jan. 2001.

[14] D. C. Kung, C.-H. Liu, and P. Hsia. An object-oriented web test
model for testing web applications. In The Asia-Pacific Conf. on Quality
Software, pages 111-120, Oct. 2000.

[15] J. Lee and X. He. A methodology for test selection. Journal of
Systems and Software, 13(3):177-185, Nov. 1990.

[16] G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini. Testing web
applications. In the IEEE Intl. Conf. on Software Maintenance, pages 310-
319, Oct. 2002.

[17] Michal Blumenstyk. Web Application Development- Bridging the
Gap between QA and Development. http: //www.stickyminds.com.

[18] J. Offutt, J. Pan, and J. M. Voas. Procedures for reducing the size of
coverage-based test sets. In Intl. Conf. on Testing Computer Software,
pages 111-123, Jun. 1995.

[19] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma. Regression
testing in an industrial environment. Comumnunications of the ACM,
41(5):81-86, May 1988.

[20] Parasoft WebKing. http://www.parasoft.com, 2004.

[21] S. Pertet and P. Narsimhan. Causes of failures in web applications.
Technical Report CMU-PDL-05-109, Carnegie Mellon University, 2005.

[22] Rational Robot. http://www.ibm.com/software/
awdtools/tester/robot/, 2006.

54

http://www.stickyminds.com
http://www.parasoft.com
http://www.ibm.com/software/

[23] F. Ricca and P. Tonella. Analysis and testing of web applications. In
the Intl. Conf. on Software Engineering, pages 25-34, May 2001.

[24] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing

test cases for regression testing. IEEE Trans. On Software Engineering,
27(10):929-948, Oct. 2001.

[25] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock. Web Application
Testing with Customized Test Requirements— An Experimental
Comparison Study. In the Intl. Symp. on Software Reliability Engineering,
pages 266-278, Nov. 2006.

[26] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S. Greenwald.
Applying concept analysis to user-sessionbased testing of web
applications. IEEE Trans. on Software Engineering, 33(10):643-658, Oct.
2007.

[27] J. Sant, A. Souter, and L. Greenwald. An exploration of statistical
models of automated test case generation. In the Intl. Workshop on
Dynamic Analysis, pages 1-7, May 2005.

[28] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated
replay and failure detection for web applications. In The Intl. Conf. of
Automated Software Engineering, pages 253-262, Nov. 2005.

[29] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott.
Automated oracle comparators for testing web applications. In the Intl
Symp. on Software Reliability Engineering, pages 253-262, November
2007.

[30] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in
development environment. In the Int. Symp. on Software Testing and
Analysis, pages 97-106, Jul. 2002

[31] W.Wong, J. Horgan, S. London, and H. Agrawal. A study of e®ective
regression in practice. In Proceedings of the Eighth International
Symposium on Software Reliability Engineering, pages 230{238, November
1997.

55

VITA

Graduate College
University of Nevada, Las Vagas

Vani Kandimalla

Local Address:
4223 Cottage Circle, Apt# 3
Las Vegas, NV - 89119

Degree:
Bachelor of Engineering in Electronics & Communication, 2004
JNTU, Hyderabad, India

Selected Publications: .
e S. Sampath, R. Bryce, Gokulanand Viswanath, Vani Kandimalla,
A. Gunes Koru. Prioritizing User-Session-Based Test Cases for Web
Applications Testing. Proceedings of the International Conference on
Software Testing, Verification, and Validation (ICST), Lillehammer,
Norway, April 2008, pp. 141-150

Thesis Title: :
Test Suite Prioritization Techniques applied to Web-Based
Applications

Thesis Examination Committee:
Chairperson, Dr. Renee Bryce, Ph.D
Committee Member, Dr. John Minor, Ph.D
Committee Member, Dr. Evangelos Yfantis, Ph.D
Graduate College Representative, Dr. Fatma Nasoz, Ph.D

56

	Test suite prioritization techniques applied to Web-based applications
	Repository Citation

	ProQuest Dissertations

