l lb II /‘ 7 | UNIVERSITY
LIBRARIES

UNLV Retrospective Theses & Dissertations
1-1-2008

Pipelined implementation of Jpeg image compression using Hdl

Arun Kumar Reddy Toomu
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation

Toomu, Arun Kumar Reddy, "Pipelined implementation of Jpeg image compression using Hdl" (2008).
UNLYV Retrospective Theses & Dissertations. 2387.

http://dx.doi.org/10.25669/swja-6ku

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2387&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/swja-6ku1
mailto:digitalscholarship@unlv.edu

PIPELINED IMPLEMENTATION OF JPEG IMAGE COMPRESSION

USING HDL

Arun Kumar Reddy Toomu

Bachelor of Technology
JN.T University, Hyderabad, India
2006

A thesis submitted in partial fulfillment
of the requirement for the

Master of Science Degree in Electrical Engineering
Department of Electrical and Computer Engineering
Howard R. Hughes College of Engineering

- Graduate College
University of Nevada, Las Vegas
August 2008

UMI Number: 1460544

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1460544
Copyright 2009 by ProQuest LLC.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, Ml 48106-1346

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

UNIVERSITY OF NEVADA LAS VEGAS

JULY 18 2008

The Thesis prepared by

ARUN TOOMI

Entitled

PIPELINED IMPLEM

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Examination Committee Chair

Dean of the Graduate College

inagion Committee Memlber

Ny

e
/j;fExammatzon»Cgmmz £

P

Graduate College Faculty Representative

1017-53 ii

ABSTRACT
Pipelined Implementation of JPEG Image Compression using VHDL
by
Arun Kumar Reddy Toomu
Dr. Henry Selvaraj, Examination Committee Chair
Professor of Electrical and Computer Engineering
University of Nevada, Las Vegas

This thesis presents the architecture and design of a JPEG compressor for color
images using VHDL. The system consists of major parts like color space converter, down
sampler, 2-D DCT module, quantization, zigzag scanning and entropy coding. The color
space conversion transforms the RGB colors to YCbCr color coding. The down sampling
operation reduces the sampling rate of the color information (Cb and Cr). The 2-D DCT
transform the pixel data from the spatial domain to the frequency domain. The
quantization operation eliminates the high frequency components and the small amplitude
coefficients of the co-sine expansion. Finally, the entropy coding uses run-length
encoding (RLE), Huffman, variable length coding (VLC) and differential coding to
decrease the number of bits used to represent the image. The JPEG compression is a lossy
compression, since downsampling and quantization operations are irreversible. But the
losses can be controlled in order to keep the necessary image quality.

Architectures for these parts were designed and described in VHDL. The results were
observed using Active-HDL simulator and the code being synthesized using xilinx ise for

vertex-4 FPGA. This pipelined architecture has a minimum latency of 187 clock cycles

111

TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt st ste ettt st ae s et s ntemae e essasbeanseestesieeasesnsens 111
LIST OF FIGURES ...ttt ettt sttt ettt sstesmeeseseeaneans vi
ACKNOWLEDGEMENTS ...ttt st ettt sttt ae e vii
CHAPTER] INTODUCTION....c..coiiitiiieteienteee ettt sttt 1
1.1 Thesis OULLNE ..c.eevieeirieriieieiteeeie ettt ettt eae s e et eeneesseeasesrnanees 3

1.2 BaCKEIOUNdc..eeiiiiiiiieiini ettt et ettt s s s 3
CHAPTER2 THEORITICAL BACKGROUND......cccoiiiiiieiienieieeteeeeee e 4
2.1 Data Compression BasiCscccooieiiiieriiiiiiiiecieeie ettt 4

2.2 Data Compression teChNIQUES.........oceeiiiiiriiirieriinientcecre ettt st nees 5
2.2.1 Lossless VS LSSy COMPIESSION.......coviiuerrrerreenrieerirenaeriraesraeeseessesessuesnns 5

2.2.2 Predictive Vs Transform Codingccooeevirieiieniiiniieeeesceneeeeeieee 5

2.2.3 SUDDANA COAING....eorviiiiereiiiieiiiciteree et riee e reresir e teeraesetesssbessaessaesnsaanens 6

2.3 1.0SS 1688 COMPIESSIONeieurieiiieiireiiierieeiteeireeiteesiteeetaeeee et esse s st eesseeeseesaseesnaeas 6

2.4 Lossy Compression tEChNIQUEScoouierierriiiiieeieeieeette ettt 7
2.4.1 Subband Coding........coceriiriiiirieniieteieeeteee ettt sttt nee s 8

2.4.2 Transform CodiNg........cccooverieiriiiiiniiiineiirece e 10

2.4.2.1 Discrete Cosine Transform (DCT) Based Coding........cc.ccevveverneen 11

2.4.2.2 Lapped Transforms (LT) Based Coding.....c..cccccecevvuerivenicnennennnns 14

2.4.2.3 Discrete Wavelet Transform (DWT) Based Coding..........c.cccuee. 14

24231 JPEG 2000 ..ottt e 16

CHAPTER3 ARCHITECTURE.....ccoiiiiie ettt sne e see e 18
3.1 0UHNE OF JPEG ...ttt ettt emeae e 18

3.2 Architectures OF JPEG.....cccoiiriiiiiiiiiieceeerecetee ettt cre e 21
3.2.1 COlOr CONVETSIONeoeiivteirenteeieritenieetesieeereeiteeneenteeeeeneeereenne e eseseseeseesane 21

3.2.2 Discrete Cosine Transformcocccorviiiiiniiniiinieereceececeee e 22

3.2.3 QUANLIZATIONoccviiieiiiieiee ettt e iee e tee e e e e e seraeebtesensanesneeessnneesnnes 27

3.2. 4 71 7A@ SCANNINE ...eeeereriieiiieeeieeerreeeieeeeteeesrae e areseeaee s e e e eesaneesnnis 30

3.2.5 Entropy Coder.......cccovvvereannnen. ettt et e et e e e s ee e s s aeeesearereeeean 31

3.2.5.1 Differential Coder.........cooeuuee.eee. VPO RO UUU U U UUPURPURUPPN: 34

3.2.5.2 Run Length ENCOder.......cooouiieiiiiiiiiiiiiiiicccceeeceeec e 35

3.2.5.3 Size CalCulator.........ovviieieiier ittt e 37

3.2.5.4 Variable Length Coder........c.ooociiiiiiiiiiiiiiiiiineececiceeeee 38

3.2.5.5 Huffman Encoder............ccccvernennne heeeeeaeraeeeeearareeaaharaaeennrtaeeanan 39

3.2.5.6 Preassmeblerot 40

v

3257 ASSEIMDIET . e e e e e e ae e e e e e e e e et e e e ne e nanes 41

CHAPTER4 RESULTS AND DISCUSSIONcctiiiiiintiieneienieeee e eceieeneens 44

4.1 SIMulation WaVETOTINISoooviiiiireieeieei ettt e e e e e e e aaaaeeeens 44
4.1.1 COlOT CONVETSION ...ooeiiiuvvieeeeeieieeeeiieieecereeeeeeeeaaeeeeeenareeeeseensseseeeessseesseannnns 44

3 A D L O RO 44

4.1.3 QUANTIZALIONc..tetiiieeierieeree et sie e sttt e et te st e et ebeestessee st esteeeesateeneebeenees 46

4.1.4 Z1g ZAZ SCANNING......ecoueereiieetiniiereeneerteetteiee st etesatenreseeeeeeseseeseeenseensen 47

4.1.5 Differential Coder........cooovviiiiiiiiiieiiiiiiie et eeeee e 48

4.1.6 Run Length ENCOCETcociiiiiiiiiiiiiciiieeiencrce et 48

4.1.7 S12€ CalCULALOTcctviiiieiieie ettt e e e err e e e eaeeeeeeans 49

Q1.8 VLEC COET vt eeetee e e e e e e e eaa e e esraeeeeesnns 50

4.1.9 Huffman ENCOAET..........vciviiiviiiciiiiniieiiicceeriiitinereeereesecessansvnsrneeressssnssnnenes 50

4.1.10 PreasSembIEToecevviiieirieceeecetee ettt ettt et e s eae s sbeeesarae s 52

A 1.11 ASSEMDIET .ovveiiiiiiiee ettt e e et eenaeeeeeenes 53

AL A2 TPEG oo et e et e et .. 54

4.2 Synthesis REePOTtocoiiiiiiiiiiiiiiiiiicec s 55
CHAPTERS CONCLUSION L. ettt 57
REFERENCESottt e et e e e atee e e e e nnaaee s eeenneaeesananeeens 58
VITA e et e e e e e e et e e ettt e et e e e eareeeaabeeeeteeeeeaneeeeneeeeereseeaneeeanns 61

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

LIST OF FIGURES

Block Diagram of SBC........cccooiiiiiiiiiiceececrccee e 9
2-D DCT using Vector Processing..........coocevevieciieniereriesninencreeeieeeeeenreans 13
Level-3 dyadic DWT scheme used for Image Compression...................... 16
General block diagram of the JPEG 2000 encoderc..ccoevevievveennnnnn. 17
The JPEG Baseline ENnCoder..........c.occuveiieiiiiiieiieieeiecreeeeeeee e 18
1-D DCT Implementation.cccceeeieaiieriiiieiieeicenteesresresereeeeesesneessnnenes 25
2-D DCT Implementation.............cccoeoeiieiiiieiie e 26
Quantization ATChiteCtUIEccooiiiiiiie e 27
Z1ZAZ SCANNING ..cnvviiiiiiieeiieeieeteetee e eeite st ettesteeseeeereesseeaseteeeeasnaeanns 31
Entropy ENCOAETcooiiiiiiiiiiiieeece ettt et 31
Pipelined Architecture for Entropy coder........c.oooeviiniiiniineiniicceeieceen, 33
Differential CoAeT.......ccoiiiiiiiiiiiiee ettt e evae e 34
Run Length Encoder..........oooiiiiiiiiiiiitie et 45
Huffman Coder Architecturecooeeiiuieeiiiiieiieee e, 39
Preassembler ArChiteCture.ooeuiiriiiiiiiiee e 41
Assembler ATChItECTULEocviieiiiieeciieeee e e 42
Simulation of Color COnVErsioN...........ccceeveuieeiiiieeeiiieeeiee e e 44
SImulation Of DCTcooiiiiiiiieieeree et e e 45
Simulation of QUANtIZETccveeiieiiiiieiiee e 46
Simulation of Zig Zag SCanmer...........ccccoviieiiieniieiiieneeeeces e 47
Simulation of Differential Coder..........coooioiiiieiiiiii e 48
Simulation of Run Length encoder...........ccccooooiiiiiiiiiniie e 48
Simulation of Size Calculator.........cc.cccccceviieninnncene. et 49
Simulation of VLC Codercocoiiriiiiriiiiiiiiececteene e 50
Simulation of Huffman Coder for DC Components...........c.ccceeecvveernveennee. 50
Simulation of Huffman Coder for AC Components............ccccceeeeeevrveeeennne. 51
Simulation of Preassembler...........ooccieviieiiieiieeiieiiecrieeie e 52
Simulation of ASSEMDIETc..ccoiiiiiiiiicieee e 53
Simulation of JPEG Encoder..........cccocoiviiiniiiiiiiiiiiiieieeeeeeceeeees 54
RTL Schematic of JPEG Encodercoccueiviiiiciiiiiiiiiiiieceieeeeeeeieeae 55
Design Summary of JPEG for Vertex-4 FPGA.........coociiiiiiiiiiiiieeee 56

vi

ACKNOWLEDGEMENTS
It is great pleasure for me to acknowledge the people who have helped me during the
course of my thesis work. My special thanks to my advisor, Dr. Henry Selvaraj who has
supported me in the right direction. I would specially acknowledge Dr. Emma Regentova,
Dr. Yahia Baghzouz for serving as committee members and Dr Laxmi Gewali for serving
as graduate college representative. [would like to thank my friends who gave me morale
support in achieving this. I would like to acknowledge Aldec- ari people for supporting

with the project “Real time system on Chip” # 2368-254-50YH.

vii

CHAPTER 1

INTRODUCTION

The transition from magnetic film based image representation to digital representation
has been primarily motivated by the ease of working with digital data and better special
representatioh of the image. Over the years, the need for image compression has grdwn
steadily and currently it is being recognized as an enabling technology. For example,
image compression has been and continues to be crucial to the growth of multimedia
computing. In addition, it is the natural technology for handling the increased spatial
resolutions of today's imaging sensors, and evolving broadcast television standards.
Furthermore, image compression plays a crucial role in many important and diverse
applications, including videoconferencing, remote sensing, document and medical
imaging, facsimile transmission (FAX), and the control of remotely piloted vehicles in
military, space, and hazardous waste control applications. In short, an ever-expanding
number of applications depend on the efficient manipulation, storage, and transmission of
binary, gray-scale, or color images. One notable area of application which is greatly
driving R&D in image compression is the enormous growth in the use of Internet and
mobile communication devices that generated a revolution in the way human-beings

communicate and exchange information. The necessity of efficient digital information

delivery (e.g. images) in those devices is imperative, and different methods to do that
have been proposed. A digital image uses a big storage space and big bandwidth for
transmission, in mobile devices this is a problem because the space and bandwidth can be
spent or saturated rapidly. A possible solution to solve this problem is to find a
representation that use less information to represent digital images, by this necessity
image compression emerges in the field of video and digital images. Image compression
addresses the problem of reducing the daté amount required to represent a digital image
and is made by a removal process of the image redundant information [1]. An ideal
scheme is to make lossy image compression in order to save a lot of storage space but
sacrificing the quality of an image. We can compress the image with lossless
compression techniques (e.g. Run Length Coding, Huffman Coding) but the compression
ratio is small. These techniques are highly useable in the areas like Medical and Military
applications where highly accurate data is needed.

JPEG image compression is lossy compression technique which is based on transform
coding. Basically the image compression techniques make use of following factors for
the compression: One is majority of useful content changes relatively slowly across the
image. So by transforming the image content to frequency domain we can represent data
as frequency components. Usually low frequency components contain most of the image
data than high frequency components. For compressing the image we can eliminate the
high frequency components. The other is defects in Human visual system (HVS). Human

eye is less perceptible to High frequency components than low frequency.

1.1 Background

Digital image compression is a very popular research topic in the field of multimedia
processing. The main objective of research is to develop architecture for JPEG
Compression schemes that give good visual quality and speed. The Compression
technique was implemented hardware description language like VHDL, VERILOG.

Hardware implementation speeds up image/video processing comparing to software.

1.2 Thesis Outline

This thesis is organized into five chapters. Chapter 1 gives the introduction. Chapter
2 gives an overview of image compression and classification of compression schemes. It
discusses different compression methods such as subband coding, discrete cosine
transform (DCT), lapped transform (LT) and discrete wavelet transform based coding.
Chapter 3 describes architecture of JPEG image compression and its implementation.
Chapter 4 gives simulated results of different modules in JPEG compression and
discussion about the results. Chapter 5 describes the final conclusion of the thesis and

presents some future work.

CHAPTER 2

2.1 DATA COMPRESSION BASICS

Data compression is the reduction or elimination of redundancy in data representation
in order to achieve savings in storage and communication costs. It relies on the fact that
image information, by its very nature, is not random but exhibits order and has some
form of structure. If this order and structure can be extracted, the essence of the
information often can be represented and transmitted using less data bits than would be
needed for the original. We can then reconstruct the original or a close approximation of
it at the receiving end. A common characteristic of most images is that the neighboring
pixels are correlated and therefore contain redundant information. Image, Video and
audio signals are amenable to compression due to the following factors: redundancy and
irrelevancy reduction.
Redundancy reduction: Redundancy looks at “properties” of an image and reduces
redundant data.
Irrelevancy reduction: Much of the data in an image may be irrelevant to a human
observer so we can omit that data.
In general, three types of redundancy can be identified:

e Spatial Redundancy or correlation between neighboring pixel values.

e Spectral Redundancy or correlation between different color planes or spectral

bands.

e Temporal Redundancy or correlation between adjacent frames in a sequence of
images (in video applications).
Image compression research aims at reducing the number of bits needed to represent an
image by removing the spatial and spectral redundancies as much as possible. Since we
will focus only on still image compression, we will not worry about temporal

redundancy.

2.2. Data Compression Techniques
2.2.1 Lossless vs. Lossy Compression

In lossless Compression schemes the reconstructed image, after compression is
digitally identical to the original image. However, lossless compression can only achieve
a modest amount of compression. On the other hand, lossy schemes are capable of
achieving much higher compression but under normal viewing conditions no visible loss
is perceived (visually lossless). Some of the lossy compression schemes used include
differential pulse code modulation (DPCM), pulse code modulation (PCM), vector
quantization (VQ), Transform and Subband coding. An image reconstructed following a
lossy compression contains degradation relative to the original. Often this is because the
compression scheme also discards non-redundant information.
2.2.2. Predictive vs. Transform Coding

In Predictive Coding, information already sent or available is used to predict future
values, and the difference is coded. It removes redundancy between successive pixels. It
only encodes residual between actual and predicted. Since this is done in the image or

spatial domain, it is relatively simple to implement and is readily adapted to local image

characteristics. Differential Pulse Code Modulation (DPCM) is one particular example of
predictive coding. Transform coding, on the other hand, first transforms the image from
its spatial domain representation to a different type of representation using some well-
known transforms such as DCT, DWT or Lapped transform, and then codes the
transformed values (coefficients). This method provides greater data compression
compared to predictive methods as transforms use energy compaction properties to pack
an entire image or a video frame into
2.2.3 Subband Coding

In Subband Coding, information (image) is split in to frequency band of a signal in
various subbands. To code each subband, we use a coder and bit rate accurately matched

to the statistics of the subband.

2.3 Lossless Compression

In lossless compression schremes the reconstructed image, after compression is
numerically identical to the original image. Through lossless compression we can only
achieve a modest amount of compression [1].

The lossless methods are also called entropy-coding schemes, since there is no loss
of information content during the process of compression. This type of compression is
used in certain environments such as compression of text, database records, spreadsheets,
word processing files, or medical and military imaging medical imaging where no loss of
information is tolerated. Typical compression ratios for lossless data compression are

around 3:1.

2.4 Lossy Compression Technique

In lossy compression, the reconstructed image is approximation of the originél image.
Lossy compression is generally used for video and sound, where a certain amount of
information loss can be tolerated. The JPEG image compression is one of the examples of
lossy compression. Using JPEG cofnpression, one can decide how much loss to introduce
and make a trade-off between file size and image quality. Depending upon the fidelity
required, compression ratios of even up to 100:1 can be obtained.

The JPEG committee has created many standards since it was created in 1986. ISO
had actually started to work on this 3 years earlier, in April 1983, in an attempt to find
methods to add photo quality graphics to the text terminals of the time, but the 'Joint' that
the 'J' in JPEG stands for refers to the merger of several groupings in an attempf to share
and develop their experience. This is the collaboration between three international
standard organizations, International Telegraph and Telephone Consultative Committee
(CCITT), International Organization for Standardization (ISO), and the International
Electrotechnical Commission (IEC).

The formal name of the standard that most people refer to as 'JPEG' is ISO/IEC IS
10918-1 | ITU-T Recommendation T.81, as the document was published by both ISO
through its national standards bodies, and CCITT, now called ITU-T. IS 10918 has
actually 4 parts
Part 1 - The basic JPEG standard, which defines many options and alternatives for the
coding of still images of photographic quality

Part 2 - which sets rules and checks for making sure software, conforms to Part 1

Part 3 - set up to add a set of extensions to improve the standard, including the SPIFF file
format
Part 4 - defines methods for registering some of the parameters used to extend JPEG [1].
JPEG has defined an international standard for coding and compression of continuous
tone still images. The primary aim of the JPEG standard is to propose an image
compression algorithm that would be generic, application independent and aid VLSI
implementation of data compression. To meet the different applications, the JPEG
standard includes two basic compression methods, each with various modes of operation.
For lossy compression DCT (Discrete Cosine Transform) method is proposed and a
predictive method for lossless Compression. The Baseline DCT method is most widely
implemented JPEG method for many applications.
The compression ratio of the image is given by:

Compression ratio = Source coder input data size 2.1
Source coder output data size

Most widely used lossy compression techniques are
(1) Subband Coding
(11) Transform Coding
2.4.1 Subband Coding

The fundamental concept behind Subband Coding (SBC) is to split up the frequency
band of a signal (image in our case) into various frequency subband or subband signals
and then to code each subband using a coder and bit rate accurately matched to the

statistics of the band. SBC has been used extensively first in speech coding [10, 13] and

later in image coding [14] because of its inherent advantages like variable bit assignment
among the subbands and coding error confinement within the subbands.

The simplest way to encode audio signals is Pulse Code Modulation (PCM), which is
used on music CDs, DAT recordings, and so on. This produces a high quality signal, but
at a high bit rate (over 700k bps for one channel of CD audio). To reduce the bandwidth
we can use mu-law encoding. This is like PCM on a logarithmic scale, and the effect is to
add noise that is proportional to the signal strength. Sun's au format for sound files is a

popular example of mu-law encoding. Using 8-bit mu-law encoding we can reduce the

bandwidth to 350k bps, which is better than PCM.

Audio
Bit stream
Digitgl audio ;
signal 1. . TimelFrequency . »| Quantizer and coding Frame packing *
Mapping ‘v
%
#'Psychoacoustic Model
Digital
audio signal
Audio
Bit stream, £rame Unpacking Reconstruction Frec:\::;gi):glme e

Figure 2.1 Block Diagram of SBC

Fig 2.1 represents general subband encoder. First, a time-frequency mapping (a filter
bank, or FFT, or something else) decomposes the input signal into subbands. The
psychoacoustic model looks at these subbands as well as the original signal, and

determines masking thresholds using psychoacoustic information. Using these masking

thresholds, each of the subband samples is quantized and encoded so as to keep the
quantization noise below the masking threshold. Finally all these encoded bits are packed
as a frame and sent through communication channel.

At the decoder end, frames are unpacked, subband samples are decoded, and a
frequency-time mapping turns them back into a single output audio signal.
Disadvantages of Subband Coding

e One of the major problems with the subband coding is to resolve the bit allocation
problem or the number of bits assigned to each individual subband to get the best
performance. One way is to use the idea of optimal bit allocation to each
quantized subband output individually. This is mostly valid for higher bit rates of
approximately 1 bit/sample or more.

e In Subband coding method is it is difficult to determine optimal coding system for
low bit rate applications.

e If the overall bit rate changes the optimal bit allocation change which requires
repetition of entire coding process again.

e As the filters are not ideal ﬁlteré it is not possible to perfectly decorrelate all the
frequency Subbands and there is slight overlapping between adjacent frequency
Subbands.

e It is very difficult to use Subband coding scheme for motion compensated video
because of frequency Subbands.

2.4.2 Transform Coding
Transform Coding is converting information from one set values to another using

mathematical functions.

10

Different types of transform coding techniques are
(a) Discrete Cosine Transform (DCT) based coding
(b) Lapped Transforms (LT) based coding
(¢) Discrete Wavelet Transform (DWT) based coding.
2.4.2.1 Discrete Cosine Transform (DCT) Based Coding

Discrete cosine transform (DCT) translates the image information from spatial
domain to frequency domain to be represented in a more compact form. DCT properties
are similar to Fourier transform.

By simple analogy we can illustrate how DCT works. Consider an unsorted list of 15
numbers between 0 and 4 (2,3,1,4,2,2,0,1,4,1,0,1, 4,0, and 0). The transformation
involves two steps one is sorting the list and second is counting the frequency of
occurrence of each number -> (4, 4, 3, 1, and 3). Through this transformation we lost the
spatial information but captured the frequency information.

Neighboring pixels within an image are highly correlated. So it is required to use any
transform to exploit this correlation and representing information with fewer number of
bits. The Discrete Cosine Transform (DCT) has been shown to be near optimal for a large
class of images in energy concentration and de-correlating (Karhunen Loeve Transform
{KLT} is the optimal transform but it isn’t used because its difﬁcuity to practically
implement) [7]. The DCT decomposes the signal into spatial fréquencies, which then
allow further processing techniques to reduce the precision of the DCT coefficients
consistent with the Human Visual System (HVS) model.

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N

image block is transformed from the spatial domain to the DCT domain. DCT convert the

11

input image into spatial frequency components called DCT coefficients, in such a way
that lower frequency components appear at left hand corner and high frequency
components at right hand side of DCT matrix. As we know Human Visual System is less
sensitive to high frequency components than low frequency components, we can further
process the coefficients by quantization like process to represent data with less number of
bits.

Advantages of DCT

e DCT is the near-optimal for signal processing

Efficient and wide acceptability

Parallel processing capability

e Less complex comparing to other transform algorithms

DCT can be done block by block level.
Mathematical equations of DCT

The 2-D DCT is give as

M-IN-1

XCyp, = XN, .-) @ .CoS z@m+1)p .cos z@2n+1g (2.2)
0 n=0 4 2M 2N

First 1-D DCT for rows is calculated and then the 1- D DCT of columns is calculated.

The above equation is divided into rows and column parts as follows:

o8 (2.colnumber+ 1) e rownumbere

C=K 23
°C 3 (2.3)
K= — forrow=0
N
2
K=— forrow #0
N

12

(2.rownumber+ 1) e colnumbere ©
2N

C'=Kecos (2.4)

K= for column =0

M
N

M

[\

K = for column =0

For the 8X8 blocks, a one dimensional DCT/IDCT followed by an internal buffer
memory followed by one-dimensional DCT is used to perform 2-D DCT. This way we

can reduce the computation complexity of DCT for the 2-D Image.

2-D DCT
Coefficients
YCbCr signals
S—— 1_D CT B RAM Buffer - 2_D DCT A
Figure 2.2 2-D DCT using Vector Processing
Disadvantages of DCT

e InJPEG, we divide an image into 2-D non-overlapping blocks of 8X8 and apply
8-point 2-D DCT on them to obtain fewer transformed coefficients. By this
process we will only exploit spatial correlation between pixels but not correlation
between blocks.

e The second disadvantage is blocking artifacts, discontinuities at the block
boundaries (because of using 8X8 blocks) resulting from reconstruction

mismatches at low bit-rate situations.

13

2.4.2.2 Lapped Transforms (LT) Based Coding

The lapped transform was developed to solve the problem of blocking effect in DCT
based coding schemes. Instead of non-overlapping 2-D blocks, the process uses
overlapping 2-D blocks of an image spatially. One of the special types of lapped
transforms is called lapped orthogonal transform (LOT).

Advantages of lapped transform

e No need to use block based coding.

e Coding efficiency can be improved by taking into account of inter block spatial

correlation.

e Blocking artifacts are eliminated

e Pre- and post-filter are can be constructed in modular cascaded stages, to

minimize hardware/software modifications.

By lapped transform blocking effects are reduced but other effects like ringing
around edges of blocks will appear due longer basis functions. LOT is extension of DCT
but due to its complexity compared to improved-advantages, so it is less popular for
image compression [2].

2.4.2.3 Discrete Wavelet Transform (DWT) Based Coding

Discrete wavelet transform (DWT) is one of the latest coding techniques used instead of

DCT. Its main advantage over DCT is that there is no need to divide the image into non

overlapping blocks. Because of their inherent multi resolution nature, wavelet-coding schemes

are especially suitable for applications where scalability and tolerable degradation are

important. After JPEG image compression JPEG committee has released its new image coding

standard, JPEG-2000, which has been based upon DWT.

14

By Fourier transform (DCT based) we can represent signal as sum of sine and cosine
functions. By this we can know frequency spectrum of the signal, but we do not know
when and where they are present. To overcome this problem we should able to represent
signal in frequency as well as time domain. This is done by wavelet transform.

By time-frequency joint representations one has to cut the signal of interest into
several parts and then analyze the parts separately, by this we can get more information
about the signal. In wavelet transform the use of a fully scalable modulated window
solves the signal-cutting problem. The window is shifted along the signal and for every
position the spectrum is calculated. Wavelet transform is convolving input signal with
particular instances of the wavelet (window) at various time scales and positions. Then
this process is repeated many times for every new cycle. By this we can get signal in time
as frequency domain, all with different resolutions [3].

Performing these convolutions at every position and every characteristic scale is
called the continuous wavelet transform. By, Nyquist's theorem the highest frequency we
can model with discrete signal data is half that of the sampling frequency. So in the worst
case we have to use the transform at every other point [4].’

The continuous wavelet transform is generally expressed as:
CWT! (z,5)= / | x(t)y(—t-:—T-Jdt [4] (2.5)
Vs s

In CWT, the signals are analyzed using a set of basis functions which relate to each
other by simple scaling and translation. In the case of DWT, digital filtering techniques
are used for the time-scale representation. The signal to be analyzed is passed through

filters with different cutoff frequencies at different levels [12].

15

ILIE R lLH

HL.
LILH fLIHH

IMAGE

1H HH

1 Level 2 Levels

Figure 2.3 Level-3 dyadic DWT scheme used for Image Compression [5]

2.4.2.3.1 JPEG 2000
JPEG2000, the new standard for still image coding, better addresses the problems of still
image compression by previous methods. It offers a wide range of functionalities such as
lossless and lossy coding, embedded lossy to lossless coding, progression by resolution and
quality, high compression efficiency, error resilience and region-of-interest (ROI) coding.
Comparative results have shown that JPEG2000 is indeed superior to established image
compression standards [5].
In JPEG-2000 compression first the image is preprocessed by tiling the image 1i.e.
partitioning the original image into non-overlapping blocks. Tile components are decomposed

into various decomposition levels by using separable wavelet transform, than a scalar

16

quantization is used to quantize than each block is entropy encoded. EBCOT process is used

for Entropy coding.
fmage ’/
DWT B (optional) \ Code-block:partition Coefficiant:bit Modeting
Code
Stream) Foimatting - Layer formation —— Code truncation i ic Codi

{optional} - {Rate control)

Figure 2.4 General block diagram of the JPEG 2000 Encoder [11]

Advantages OF JPEG 2000
e JPEG 2000 offers high image quality than JPEG.
e In the JPEG 2000 compression the compressor can choose image quality,
maximum resolution and losses.
e JPEG 2000 can provide both lossless and lossy compression in the same
compression engine.
Disadvantages of DWT

e The cost of computing DWT as compared to DCT is much higher. The

complexity of calculating DWT depends upon the length of wavelet filter.
e Larger DWT basis functions or wavelet filters produces blurring and ringing noise

near edge regions in images or video frames.

17

CHAPTER 3

ARCHITECTURE

3.1 Outline of JPEG

The basic model of JPEG is shown below

- Differential

" Goder

iz ~ = e i B =) Output Bitstream
owl YEBCT | Ls| Foward OCT s ‘Quantization |- | - VLC Encoder | - *(':“Ofg::;" S
- Conversion ‘ | L -

-Run Length
i fEnéoder

Quantization Hufﬁnan
tables Tables

Figure 3.1 JPEG Baseline Encoder

The Join Photographic Expert Group proposed the JPEG compression standards [6].
The encoder model transforms the input image into suitable form for further processing.
After that entropy encoder compresses the output form encoder.

Different modes of JPEG are

e Lossless Coding

e Sequential Coding

e Progressive Coding

e Hierarchical Coding.

18

In Lossless Coding the image can be reconstructed after decoding. In this process we
use methods like differential coding, Huffman coding, Arithmetic coding.

In Sequential Coding image blocks are scanned sequentially from top to bottom and
left to right. Baseline Coding is example of sequential coding. In Progressive Coding
image blocks are processed sequentially, but coding is completed in multiple scans. The
first scan yields the full image but without full details which are provided in successive
scans. In Hierarchical Coding each image component is encoded as a sequence of frames.
The first frame is usually a low resolution of original image and subsequent frames are
differential frames between original and reference reconstructed image [7].

Based on these modes there are four distinct processes for jpeg image compression.

e Baseline process,

e Extended DCT-based process,

e Lossless process,

e Hierarchical process.

Both baseline and extended DCT processes uses DCT 1in the encoding process, but in
the entropy coding Baseline uses Huffman encoding and extended DCT uses Huffman or
arithmetic coding. Lossless process uses predictive or sequential methods for encoding
and Huffman or arithmetic for entropy process. Hierarchical process uses either DCT or
lossless process for encoding and same entropy encoding methods as other process.

In this thesis we are going to discuss about implementation of baseline JPEG image
compression.

Baseline JPEG mode is the most widely used jpeg image compression. Baseline mode

is simple and is based on sequential mode i.e. Image is scanned from left to right and top

19

to bottom. Image is divided into non overlapping blocks of 8X8 each of 8 bit, DCT
process, Quantization and entropy encoding steps are performed on that.

The JPEG Baseline can be divided mainly into five parts: those are color space
conversion, down sampling, 2-D DCT, quantization and entropy encoding. The color
space conversion converts the image form RGB color to YCbCr (luminance component
Y and two chrominance components Cb and Cr). Luminance components component
contains gray image and chrominance components contain color information. The down
sampling reduces the sampling rate of color information (Cb,Cr). 2-D DCT transform
image information from spatial domain to frequency domain. By quantization operation
high frequency components are eliminated and low frequency components are
represented by less number of bits. JPEG uses predefined quantization tables for
eliminating the high frequency components. The selection of quantization tables is
critical since it affects both compression efficiency and image quality. After quantization,
the DCT coefficients are arranged in zigzag order to get low frequency components at the
top and high frequency components at the bottom. It maps 8X8 block to 1X64 values.
Finally entropy coding is applied. It uses differential coding for the DC components and
Run Length Encoding for AC Components. The location of (0, 0) of each block i contains
DC Coefficient represented as DCi. Since the adjacent blocks are likely have similar
average energy levels so we can send only the difference of current and previous DC
coefficients which is know as Differential Pulse Code Modulation (DPCM). The 1X64
vectors have lot of zeros, it is represented by [run length, count, and value] pair by Run
Length encoding to reduce the number of bits to represent data. In Run Length encoding

only non-zero values will be sent with counting the number of zeros preceding it. After

20

that Variable length coding (VLC) and Huffman coding is applied to represent data with
less number bits [6]. In the VLC coder the amplitude is represented with its significant bit
as most significant bit. For each pair of run length codes there is a variable length
Huffman code which will be used by the Huffman encoder to perform the compression.
The Huffman codes are stored in tables. In the JPEG image compression process down
sampling and quantization are irreversible, but the losses can be controlled depending the

necessity of image quality [8].

3.2 Architectures of jpeg
-3.2.1 Color Conversion

The color space conversion is the first operation in a JPEG compressor if the input
images are in RGB color space. Although the JPEG algorithm is unaffected by color,
since it processes each color independently, but change in color space improves
compression ratio significantly. This is due to defect in Human Visual System (HVS) that
is less particular for some of the characteristics of the image and also RGB is not efficient
in dealing of real world images. In RGB all the three components need equal band width
to generate colors and highly correlated. RGB images are not very best for processing of
the image too. For example if want to change intensity of pixel we should call all the
three colors and process the colors. If we have any access to intensity of colors directly
the processing will be faster. The appropriate representation of colors for JPEG
compression is YCbCr Where Y is Luminance component and Cb and Cr are two

Chrominance components. Luminance component contains image information (Gray

21

scale) and Chrominance component contains color inforﬁlation. Component Cb contains
information relative to blue color and Cr component contains information relative to

red color. The range of YCbCr is 16-235 for 8 bit representation.

The below calculation are used in converting RGB to YCbCr.

Y= 0.299R;+0.587G;+0.114B;;
Cb;= —0.169R;;~0.331G;;+0.5B;;
Cr;= 0.5R;;-0.419G;;~0.081B;;

The source image is portioned into non-overlapping 2-d blocks of 8x8, which are
scanned sequentially form left to right and top to bottom. The nominal range of
Luminance component is 0 to 1 and Chrominance component’s nominal range is -0.5 to
0.5. To make Chrominance components range equal to Luminance, 128 is added to the
Cb and Cr components [17].

This color conversion architecture is based on simplified models provided by Xilinx
Corporation which uses only four multipliers [17]. The architecture has latency of six
clock cycles and operates at frequency of 285 MHZ.

3.2.2 Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N
image block is transformed from the spatial domain to the DCT domain. DCT
decomposes the signals into frequency domain which are called DCT coefficients. The
lower frequency DCT coefficients appear towards upper left corner and higher frequency
DCT coefficients are in the right-hand corner of DCT matrix. The Human visual System
is less sensitive to high frequency components so we can quantize high frequency

components by quantization.

22

For implementing of DCT we use vector processing using four parallel multipliers.
The output Y of 8 X 8 DCT for input X is given by Y = C+X+C', where C is the matrix
with the cosine basis functions, and C'is the transpose coefficients [18]. Using row
column decomposition Y can be computed by 1-D DCT transforms as

Y=C+Z where Z= X+C'. (2.6)

The mathematical equation for DCT is given as

M-1N-1
XCpo = Z:Z:XNmn ‘C(p) =G .cos #@m+Dp .COS #(@2n+1q 2.7)
- 4 2M 2N

First 1-DCT is performed for rows and then for columns. The 1-D DCT is calculated by
separating equation-1 into rows and column parts.

Where C and C'are calculated as

/23170 23170 23170 23170 23170 23170 23170 23170\
32148 27246 18205 6393 -6393 -18205 -27246-32138
30724 12540 -12540 -30274 -30274 12540 12540 30274
C=| 27246 -6393 -32138 -18205 18205 32138 6393 -27246
23170 -23170 -23170 23170 23170 -23170 -23170 23170
18205 -32138 6393 27246 -27246 -6393 32138 -18205
12540 -30274 30274 -12540 -12540 30724 -30724 12540
\ 6393 -18205 27246 -32138 32138 -27246 18205 -6393 /

23

a)

23170 32138 30274 27246 23170 18205 12540 6393
23170 27246 12540 -6393 -23170 -32138 -30274 -18205
23170 18205 -12540 -32138 -23170 6393 30724 27246
23170 6393 -30274 -18205 23170 27246 -12540 -32138
23170 -18205 -12540 32138 -23170 -6393 30274 -27246
23170 -27246 12540 6393 -23170 32138 -30274 18205
Q?) 170 -32138 30274 -27246 23170 -18205 12540 -6393/

Ct

The intermediate value Z = X+C' can be calculated as follows:

Where

x00 x01 x02 x03 x04 x05 x06 x07
X10 x11 x12 x13 x14 x15 x16 x17
X20 x21 x22 X23 x24 x25 x26 x27
¥ = |%30 %31 x32 x33 x34 x35 x36 X37
X40 %41 X42 x43 x44 x45 x48 x47
x50 x51 x52 x53 x54 x55 x56 x57
X60 x61 X62 X63 x64 x65 x66 x67
[X70 x71 x72 X73 x74 X75 X76 X77]

Z0,0=23170(x00HX01+X02+X03+X04TX05TX06TX07)
Z,1y=32138x001+27246x%01+18205x02+6393x03-6393%04-18205%05-27246X06-32138%¢7)
=32138(x00-X07)+27246(x01-X06)+ 1 8205(Xoa-X05)+6393 (X03-X04)

7402730274 (x00-X07)+ 1 2540(x01-X06)-12540(XorHos)-30274(Xo3+Xo4)
Z0,3=27246(X00-X07)-6393(X01-X06)-32138(X02-X05)- 18205(X03-X04)
Z04=23170(x00-X07)-23170(X01-X06)-23 1 70(x0r+X05)+23170(X03X04)
Z0,5=18205(x00-X07)-32138(x01-X06)+6393(X02-X05)+27246(X03-X04)
Z0,6=12540(x00-X07)-30274(X01-X06)+30274(X02X05)-12540(X03+X04)

Z(077)=63 93(X00—X07)— 1 8205(7(01-Xog)-27246(X02-X05)-32 13 8(Xo3—X04)

24

Or
Z1,0y=23 170(Xxo+Xi1 X HXis T Xiat XisHXusTXk7)

Z1,1=32138%k0+27246x1+18205%40+6393 %4 3-6393X14-18205x15-27246Xy6-32138x17)
=32138(Xx0-Xk7)+27246(xk1-Xk6)+ 18205 (Xk2-Xk5)+6393 (Xk3-Xka)

Z2=30274(Xxo-Xi7)+12540(Xk1-Xk6)- 12540(X10+Xx5)-30274(Xi3+Xka)

Z13=27246(Xx0-Xk7)-6393 (Xk1-Xx6)-32138(Xk2-Xxs)-18205(x3-Xk4)

Z.4=23170(Xx0-Xk7)-23 1 70(Xk1-Xx6)-23170(Xk2+Xie5)+23 1 70(Xk3+Xc4)

Zi5=18205(xx0-Xk7)-32138(Xk1-Xk6)+6393 (Xk2-Xk5) T2 7246(Xx3-Xka)

Z i 6=12540(Xx0-Xx7)-30274(x11-Xk6)+30274(X12HXx5)-12540(X13+X ka)

Zx7=6393(Xi0-Xx7)-18205(Xk1-Xk6)-27246(Xi2-Xks5)-32138(Xi3-Xk4)

Where k=0,2....... 7

Then 2-d DCT function is calculated from Y= CZ. Where Z is 1-D DCT matrix for input

X and C is matrix of cosine coefficients.

"] AN

HLas

Ak

L

AR

ALTEY

AT

LA

N 3 ABD
Tegie 3w Bl

Fiip Flop

Figure 3.2 1-D DCT Implementation [18]

25

The above block diagram is used for implementation of 1-d DCT. First 1-D DCT
values are calculated and stored in a RAM and second 1-D DCT 1is done on the values
stored in the RAM. 8X8 inputs are loaded into adder/subtractor whose outputs are fed to
the multiplier. The multiplier takes constant coefficients from the ROM and feed into the
second input of the multiplier. The multiplier outputs are given to adder which will
perform additions and gives 1-D DCT Coefficients which will be stored in a transpose

buffer (RAM). The toggle flip flop controls the addition and subtraction operations.

Zho
T ADD
Zst T ————]
SUH Z
A
-
rd \\
PG AXIEE WY 17245 2370 8205 TR0 63 wenf X} -
\
Lt
ADD
e B .
su
A
e A
THYO ZTR4E] 12540 LIP3 -ZNTC 32036 30204 18205 »f\ D
N
sz ?f
o
ADD =
Fas)
SUB
e Ysioio7h
20170 1BRGY A0 G2 AIIG 009D 3027 274G si S \, * *
S
Zxi
ADD
Zat
SUB
]
SN
RIITD 6303 30274 18D AB1TO 27246 12540 1S --w‘{ x }‘»~~~~ »
N
N
Toggic
Flip Flop

Figure 3.3 2-D DCT Implementation [18]

26

The values stored in the transpose buffer are read column by column and fed as input
to second DCT. The output of DCT is 2-D DCT coefficients which are used as inputs to
quantizer for further processing.

3.2.3 Quantization

The quantization process reduces number of bits used to represent the DCT
coefficients. Since Human eye is less sensitive to high frequency components than low
frequency components so quantization factors are high for high frequency components
than low frequency components.

The quantization operation is an integer division of the 2-D DCT coefficients by pre-
defined values. These pre-defined values are stored in tables called quantization tables.
There are two quantization tables for baseline JPEG standards one for Luminance (Y)
and other for Chrominance components (Cb and Cr). The optimum values of the
components in quantization tables are dependent on the application, but the JPEG
standard suggests typical tables that have a good efficiency for any application [9].By

quantization we can eliminate coefficients which are less perceptible to human eye.

gt

S i il
Ee R e
oty

"
ETE
iy

Figure 3.4 Quantization Architecture [9]

27

The quantization architecture designed as shown in fig. 3.5. The quantization
architecture uses two ROMs for storing the quantization tables for Luminance and
Chrominance components. For the multiplier we use barrel shifters controlled by
quantization values stored in the ROMs. By using the barrel shifters for the multiplication
we can reduce the number of clock cycles required for multiplication. For each array
element of 8X8 blocks, there is a specific constant to be used from the quantization table
for the division operation [9].

The quantization tables used for the JPEG compressions are presented in these are
tables proposed by standard JPEG-92. The quantization tables used for compression and
reconstruction are exactly same. Scaling factor is used to get the desired compression
levels. The scaling factors after 2-d DCT are multiplied with quantization values and
multiplied values are stored in ROM [9].

The Quantization operation is given by
Cqij =round |C; X 1 0= 1,j= 7
Qjj X Fej;
Where
Cq;; quantization coefficient
C;; Coefficient of 2-d DCT
Qi; quantization constant

Fe;j Scaling factor

. The quantization values (Qj) and scaling factors (Fe;;) are as given below:

11 10 16 124 140 151 161 145
12 12 14 19 126 158 160 155
14 13 16 24 140 157 169 136
Qwi-| 14 17 22 29 151 187 180 162
18 22 37 56 163 109 103 162
24 35 55 64 181 104 113 192
49 64 7% 87 103 121 120 101
_72 92 95 98 112 100 103 199)

28

/17 18 24 47 99 99 99

18 21 26 66 99 99 99

24 26 56 99 59 99 09

47 66 99 99 59 99 09

QCj4= 99 99 00 90 90 GO 09

992 9% 90 09 99 00 99

99 99 90 00 90 09 99

,\.99 99 99 90 09 {0 0§

r8, 10 11,10 10,45 9,41 8,00
11,10 15,39 14,50 13,05 11,10
10,45 14,50 13,66 12,29 10,45
Fej - 9,41 13,05 12,29 11,06 9,4l
8,00 11,10 10,45 9, 41 8,00
6,29 8,72 821 7,39 6,29
4,33 6,01 5,66 5,09 4,33
(221 3,07 2,88 2,60 2,21

99
99
99
99
99
99
99
99

6,29
8,72
8,21
7,39
6,29
4,94
3, 40
1,73

99)
99
99
99
99
99
99

99 _J

4,33 2,2?

6,01
5, 66
5,09
4,33
3, 40
2,34
1,20

3,07
2, 88
2, 60
2,21
1,73
1,20

0,6)

The basic operation of quantizer is multiplying C; with 1/(Qi * Fey). In the

quantization architecture it uses ROM memory for storing the controls of the four

dislocated ones indicating the displacements that must be carried by each barrel shifter,

instead of storing quantization matrix. Each barrel shifter uses three bit control for the

displacement i.e. total of 12 bits. BS1 uses three most significant bits where as BS4 uses

three least significant bits. The input to quantizer is 15 bit and output is 10 bits that means

it reduces periodically the number of bits that represent the data. Quantization operation

is carried in the pipeline of three stages. In the first clock cycle quantizer takes the input

and corresponding calculates displacement and addition of shifted inputs form BS1, BS2,

29

BS3, BS4 are carried in A, B adders and in the next clock cycle adder C adds the result

of adder A and B. In the next clock cycle we will get the output

Table 3.1 Barrel Shifter Controls

Control - Barrel Shifter

1 2 3 4
ooo 6 zero ZEro Zero
0ot 7 9 10 11
010 2 10 11 12
011 9 11 12 13
100 10 12 13 14
101 11 13 14 15
110 b4 14 15 15
111 X 15 15 15

In the quantizer architecture the control word are stored in column by column. So
when we are reading the inputs for quantizer that is outputs of DCT we should read
column by column.

3.2.4 Zig Zag Scanning

Quatized DCT coefficients will have zeros in the high frequency region of image
blcok i.e. right bottom corner of the block. For getting more number of zeros at the same
place, we scan the image block in such a way that all the zeros will accumulate at the end.
Zig Zag scanning is very useful for further processing of the image. It maps 2-D 8X8

image to 1X64 1-D coefficients.

30

N
N
N -

l\ S
\\

L) SN N Y

8x8

I I O I

Figure 3.5 Zig Zag Scanning

3.2.5 Entropy Encoder

DC Huffman
Tables
Matrix -1
Bm—« Siee Calculation size; BCé;i} ig;Tan M{ SizelAmplitude _J
Mateix | I i & 0C Code
ne » VILC -
o Coder size
ACD
AL R,
. X § L
‘ Cii(—iir —#{ Size Calculation é(}é{e ng‘an 1 RuniSizelAmplitude
. Ruti AC Code
ACE2 f
AC Huffman
- Tables

Figure 3.6 Entropy Encoder [7]

The last stage of JPEG Compression is entropy encoding. This block improves
overall compression efficiency by performing lossless coding on the quantized DCT
coefficients. The entropy encoder receives 10 bits input after quantization and gives
output of 32 bit JPEG in an asynchronous way. The entrance of the architecture of the

entropy encoder is synchronous and exit is asynchronous. This is mainly due to two

31

reasons, one is the output of the Run Length Encoder (RLE) is asynchronous and it is
propagated throughout the architecture and other is due to different lengths of Huffman
codes.

After quantization the resulting matrix will have large number of zeros which are
read in Zig Zag manner to increase the sequence of zeros. Entropy encoder uses
differential coding, Run Length Encoding (RLE), Variable Length Coding (VLC) and
Huffman encoding to make the reduction in the number of bits used to represent the
image after JPEG Compression [6,9,10].Color and gray scale image follow same step for
entropy coding, but the differential coder and Huffman coder are different for color and
gray scale images. In entropy coding DC and AC components are processed separately.
The component in the position <0, 0> (first line first column) of the 8X8 matrix is called
DC Component and reaming 63 components are AC Components. The first operation is
Differential coder for DC components and Run Length Coder (RLE) for the AC
components.

The DC Components of successive 8X8 windows in an image are highly correlated.
So by differential encoding we will only take the difference between actual DC
Component and previous DC Component of the previous matrix. The differential code is
coded by VLC coder and it is also used to calculate number of significant bits that are
generated by ‘VLC coder. This is done by Size calculator. So, by VLC encoder we will
get the amplitude and by Size calculator we will get the sizes which are given as inputs to
Huffman coder. Huffman coder uses Huffman tables which are stored in ROMs (one for

Luminance and one for Chrominance DC Components) to get the outputs. The values

32

generated by Huffman coder and VLC coder are concatenated to get the JPEG DC code
[7].

For Processing AC components, first step i1s counting the number of zeros before non
zero coefficient which is will be done by Run Length Encoder (RLE). The RLE encoder
compresses an input stream by representing consecutive zeros by their run-length. The
Run Length Encoder counts number of zeros until the last zero is present or it reaches
maximum zero count. So the output of Run Length Encoder is [Run Length and
Amplitude]. The non-zero values are passed through VLC encoder to get the amplitude
and also it is given to Size Calculator to calculate the size. Both Run and Size are
concatenated and are Huffman Coded. Huffman encoder takes codes from predefined
Huffman tables which are stored in FPGA internal ROMs. VLC coder amplitude,
Coefficient Size, Huffman Code and Huffman Size are given to Pre assembler which will
concatenate the VLC amplitude and Huffman Size to give variable length code which is |
applied to Assembler for further processing. The number of significant bits in the
amplitude of Preassembler is given by addition of Coefficient Size and Huffman Size.

In the assembler stage amplitude is assembled into 32 bit words output Compressed
JPEG bit stream.

The pipelined architecture of entropy encoder is given as

vie @ g
Coder 3 I NE oK
5 Differential oo I Pre- ¥ o
g Coder - % assembler ko Assembler |JPEG
£ Size ®, g >
% catculation| T__[I% AT 2
S 1 aicuiation 1
A 2
e [= @ DT Aeplituge VLC Arplitde
% RLE Huffman § (D) AC Amplitude () Huffroan Code
. @ Coder Coder = 3 Run Huffman Size
& @ AampACDC B Amplitude
g prt (B CoeMicient Size D Size

Figure 3.7 Pipelined Architecture for Entropy coder [20]

33

In the pipelined architecture intermediate registers are used for the synchronization of

different operations.
3.2.5.1 Differential Coder

Differential coding is the first operation in the entropy encoding. It is used only for
DC components. Differential coder performs simple subtraction between the current

matrix DC component and previous matrix DC component of the same color elements.

The result is called Amplitude DC.

Cr
|

DC Amplitude

DC Confficient

Figure 3.8 Differential Coder [20]

The Differential coder for color images is presented in above Fig 3.8. It consists of
three 10 bit registers for storing the previous DC Coefficients of each color matrix
(Y,Cb,Cr) and one 10 bit adder for performing the subtraction operation. The writing of
the register is done when the ACDC signal is active high that indicates the matrix value is
DC. By using YCbCr signal we can select which register we need to write. We will use
multiplexer signal YCbCr to select exact adder input form Luminance or Chrominance
registers. When rst signal is low the DC coefficient is writes the input into the register

according to the signal ACDC and YCbCr and the same input is given to Adder. The 10

34

Bit Adder performs the subtraction operation and gives the output which is processed by

VLC encoder 1in the next clock cycle.[20]

Registers
YCuCr ACDC Y Cb Cr
00] Yes No Mo
01 0 Mo Yes Mo
10 1] No HNo Tes
X 1 No HNo Mo

Table 3.2 Selection of Component
The signal YCbCr is used to control the multiplexer which gives the ipput to
subtractor.
3.4.5.2 Run Length Encoder
Run Length Encoder (RLE) is used for counting the number of zeros in the AC
components. Run length Encoder is same for gray and color images. RLE coder

architecture is presented below.

AMpACDS

AC Companard

Okrie

Figure 3.9 Run Length Encoder [20]

35

The AmpACDC and Run, Okrle registers presented in architecture are same registers
which are used in the global Entropy coder architecture for pipelining. The output of RLE
coder is asynchronous where as input is synchronous. While Run length Encoder is
counting number of zeros, OKrle signal goes low and there won’t be any valid output.
When the non-zero input occurs RLE coder stops counting the zeros and it updates the
outputs with new pair of Run and AC amplitude. RLE architecture has a flag (Okrle) to
indicate when new valid outputs are available. There are two restrictions in RLE coder
that are imposed by JPEG standards [20].

The first restriction is maximum value of Run should be 15 then zero counter has 4
bits. When there are more than 16 zeros in the sequence, the zero counter will be restarted
and the output is sent has 15/0 Run/Amplitude pair, which indicates there are 15
continuous zeros fallowed by zero. Counter used in the RLE coder controls this
restriction. When it reaches 15 zeros followed by 0 it will automatically give outputs 15
for Run and zero for AmpACDC. The second restriction is when the input is sent which
is last input and it is Zero than Last signal will come into picture and it controls the
outputs by sending this bit as the last bit. If the value is zero than it will reset the output
register forming the pair 0/0. In the normal operation when these two restrictions doesn’t
occur the counter operation counts the number zeros and when it is counting, Okrle signal
goes low indicating output is not ready. When the non-zero input occurs Okrle signal
goes high indicating valid output and ACC signal gives number of zeros to Run register
and amplitude is sent to AmpACDC register [9].

Differential coder and RLE coder must operate in perfect synchronism, so that they

can be used by other components in the Entropy coder at the same pipeline stages. The

36

DC and AC amplitudes generated by Differential and RLE coder pass through the
multiplexer controlled by ACDC signal to get the correct output to be used in the rest of
the architecture.
3.2.5.3 Size Calculator

DC and AC amplitudes are applied to Size calculator that indicates number of
significant bits of the AmpACDC value. The size calculation is done by looking at the
tables proposed by JPEG standards [6]. |

The size calculation table is given as

Table 3.3 Size Calculation table

Value Size
0 0(0000)
-1,1 1(0001)
-3,-2,2,3 2(0010)
-7...-44...7 3(0011)
-15....-8,8....15 4(0100)
-31...-16,16...31 5(0101)
-63...-32,32...63 6(0110)
-127...-64,64....127 7(0111)
-255...-128,128...255 8(1000)
-511...-256,256....511 9(1001)
-1023..512,512........ 1023 10(1010)

37

From the above table we can generate coefficient size of 4 bits which is used to
control the VLC coder architecture and it is also given as input to the Huffman coder and
pre assembler architectures. Amplitude form Differential coder or Run Length Encoder is
given as input to Size Calculator to find out the Coefficient Size.
3.4.5.4 Variable Length Coder:

Variable Length Coder (VLC) is used to identify which bits among the 10 bits
AmpACDC are significant with the objective to discard the not significant bits, including
the sign bit. The negative number must be représented in one’s compliment to be VLC
coded. The entrance of the VLC coder has a controller to discard sign bit._ The signal
interpretation is also inverted: a number that starts with zero is negative and a number
that starts with one is positive.

The number of shifts to left to each Coefficient Size value is given as.

Table 3.4 VLC Architecture Shifts

Coefficient Number of
Size shifts to left
0 10
| 9
2 8
3 7
4 6
5 5
6 4
7 3
8 2

9 1

VLC encoder uses Barrel shifter controlled by Coefficient Size which is calculated

from size calculator. This barrel shifter shifts the AmpACDC value to the left to put the

38

first significant bit as most significant bit of the word discarding sign bit. The calculated
amplitude is called VLC Amplitude. The output of the VLC coder is 9 bit which is not
really variable length. The assembler in the next stage will discard the not significant bits
and generates Variable length Codes.

3.2.5.5 Huffman Encoder:

The Coefficient size (to DC Coefficients) and concatenation of Coefficient Size and
Run (to AC coefficients) are Huffman coded. The architecture proposed below uses static
Huffman tables proposed by JPEG 92 standards. In the Huffman coding, the compression
is achieved by assigning short code words to inpﬁt symbols of high probability and long
code words to low probability input symbols. For a given source-probability distribution
- Huffman coder gives optimum symbols to represent the data [7]. The use of standard
tables simplifies hardware but decreases the compression rate [7]. Huffman Coder

architecture designed for color images is given below.

+ Huffman
v Tables
L]
[}
o ROME e loumsea
o s 1Y
. 4%55
% YfDC '
’ .
@ . ' YOO
L]
B o rowr s Huffman
= 4Lse 121 5bits Lk Code
S o 4 booe J A —
2 " 4 size bin « |CRCr/DCJ! 11MSE & LA
= 4 HE ! “00000° &
s 5 . 4LSE
0
© = <+ Rmomz iy
g | Szed M0 | gl rrecibits fag sLsE
% ’.f_ Riln i Y 1)
& | viac I :
scoes| N Hufeman
N " ! Bize
- "
'l ROMs L T
B 4| yraeatnits |14 YCRCH
i (o ei1e I

Figure 3.10 Huffman Coder Architecture [20]

39

The architecture presented above uses four ROM memories for storing the Huffman
tables used to code color images: one fdr DC Luminance, one for AC Luminance, One
for DC Chrominance and one for AC Luminance components. Tﬁe Huffman tables store
Huffman code and Huffman size. The size of Huffman codes can be calculated by Size
calculator but we know the sizes of Huffman codes so we can directly store the Huffman
size into static tables which eliminates delay. So the output of ROM memories is
Huffman code followed by Huffman Size. The values to be Huffman coded are used like
address to these memories. The number of words and bit width used to represent
Huffman codes were optimized. The DC tables use 12 memory positions with 4 address
bits (Size). AC tables uses 176 memory positions with 8 bit address bits (Run & Size).

‘DC Luminance table 9 bits to Huffman codes and 4 bits for Huffman size. DC
Chrominance table uses 11 bits for Huffman codes and 4 bits for Huffman tables. AC
Luminance and Chrominance components uses 16 bits for Huffman Code and 5 bit
Huffman Size. Two multiplexer are used to which of the four memories should be
connected to the output. In the two multiplexers YCbCr signal is used as a controller to
process either Luminance(Y) or Chrominance (CbCr). ACDC signal is used to get the DC
or AC component as the output. The Huffman code and Huffman Size are applied to Pre-
assembler for further processing.
3.4.5.6 Preassembler

The Pre-assembler architecture receives four inputs generated form the previously
explained blocks: VLC Amplitude from VLC coder, Coefficient Size from Size
Calculator and Huffman Size, Huffman code from Huffman Coder and generates two

outputs Amplitude and Size which will be used in Assembler architecture.

40

4 e

Coeflicient Size |

Coeflicient
Size
5

>
Huffman
Size

3 cont
- A %5
VLG BS
Amplitude

Amplitude

18 Huffrman
o Code &
Huffman | ocooonoao
Code

Figure 3.11 Preassembler Architecture [20]

VLC Amplitude bits are shifted to right by Barrel Shifter (BSA) that is controlled by
Huffman Size. These shifted codes are assembled with Huffman Code b}‘/ ‘OR’ logic
operation. The Huffman code is concatenated with zeros in the right which are used as a
mask in performing the ‘OR’ logic operation with VLC amplitude. The ‘OR’ logic
operation preserves only sigﬁiﬁcant bits which makes the code variable length. Assembly
of the Huffman code and VLC code generates Pre-assembler output Amplitude of 28 bits.
The addition of Huffman Size and Coefficient Size gives the number of significant bits in
the Amplitude output which represented by Size.
3.4.5.7 Assembler

The final assembling of words in JPEG is carried through the Assembler architecture
considering only significant bits of the Amplitude input. The Size input generated from

the Pre-assembler indicates how many bits are significant among the 25 Amplitude bits

[7].

41

JPEG
ward

— | 888 [H
Amplitude A E T

Figure 3.12 Assembler Architecture [20]

The Assembler architecture consist of one Barrel Shifter (BSB) controlled by
accumulation of Size values and an ‘OR’ logic operation to assemble the significant bits
of different inputs. The assembly of the words is controlled by an adder which
accumulates different sizes of input Amplitudes and stores into the register ACC.

The Assembler uses two 32 bit registers to assemble jpeg words. The High registers
stores the 32 most significant bits from the Barrel shifter (BSB) output. When it records
the 32 bits it will send the word as output JPEG word and OK register sends the output is
valid. The Low register is used to store Overflow bits when the generated values from the
Barrel shifter (BSB) as more than 32 significant bits. This overflow bits are again sent to
High register when new jpeg word is ready to assemble. The maximum size of Amplitude
input is 25 bits and the biggest displacement possible by Barrel shifter is 31 bits, so the
output of Barrel shifter should be 56 bits. Of these 56 bits, 32 bits most significant bits
are used in the ‘OR’ logic operation whose result will be stored in High register and the
remaining 26 bits are stored in the Low register. ‘OK’ register indicates new valid data is
ready. OK signal is also act as control signal for the multiplexer which decides input for

the ‘OR’ logic operation. If the new jpeg word is ready it takes the values from the Low

42

register otherwise it allows High register as input ;[0 the jpeg word. The assembler
operation is enabled only when the RLE coder generates valid outputs. This is controlled
by Okrelel signal. Okrlel signal is generated when the valid output is present at the RLE
coder with one delay clock cycle. In this way we can eliminate the effect asynchronous

results given by RLE coder [20].

43

CHAPTER-4

RESULTS AND DISCUSSIONS
4.1 Simulation Waveforms
4.1.1Color Conversion
200 300 400 BOG) 700 800 800 . 1000 . MO0 . t200
{509 ns = —

2 Clock 0 [

o ClockEn...i1 P [e——|
[8F <=..300 WFFFe Y Wer 5 Yo
Ear G 61 = FF D G Yoi YFT
Farp 55 ¢= .. {oo WFF W55 ¥bs JOF
ey EE (] (0 \EB YEY {7 WG AT Ol
#e Ch €0 (oo a0 et 370 V4 Y ¥
e O 80 i ¥eo xic Yo5 72 A8t _

Fig 4.1 Simulation of Color Conversion

The color conversion module inputs are R, G, B, clk, clken and ouputs are Y, Cb, Cr

For the inputs R = FF, G = FF, B = FF Outputs are Y = EB, Cb = 80, Cr = 80.

Latency of color conversion module is five clock cycles.

44

4.1.2 Discrete Cosine Transform (DCT)

.] v 200 v 400 600 . BOD . 1000 . 1200 4 00 " , 1800 , 2000 . 2200 . 2400
LHSU ns 4 i
=0 —1 e

0

o RST

SR N S ey i il iy iy i ipigipipip iy i iginipip i g
B o gin] <= XU YFF ¥F8 YES WES XAS ¥AE {5 OD
Srzow 0F7 @ 0000 A) D
= rdy_out 0 Jrﬁm

-0 dot_2d 0000 Bo00

\ 9404_59255 T T R - T S Y- - B I T SR | 1T
cax 1 G UL UL U DU U U
&0 3in jolel £= ..
B ot 108 105 Yoo Yios yoon 108 {000
© rdy_out 1
Bodot2d 1746 A O 0 0 e O SO O O X X

Fig 4.2 Simulation of DCT

DCT input matrix is

FF F8 E8 E9 A9 A5 C5 DD\
DD DD DD DD DD DD DD DD
DD DD DD DD DD DD DD DD
Xin= DD DD DD DD DD DD DD DD
DD DD DD DD DD DD DD DD
DD DD DD DD DD DD DD DD
DD DD DD DD DD DD DD DD
DD DD DD DD DD DD DD DD/

.

2-D DCT coefficients are obtained by calculating 1-D DCT on rows first and then on the
columns.

First 1- D DCT Output we get on the 14 th clock cycle and these outputs are stored in
a transpose buffer. Second DCT is applied on the outputs of the transpose buffer.
We get 2-D DCT coefficients starts from 95" clock cycle DC coefficient is 1746 and
after that for every clock cycle we get other AC coefficients.

45

4.1.3 Quantizer

1000) 2000 3000 . 400 4 500 v 800 . 900 , 1000 . 100 . 1200

o jeset 1} =0

> ck 1 Co. f-o---- N S Oy o I [) U

& joad 1 PR I |

e Y ChLr 0 PR R '
A data 440 oy Wo00 Yoas a5z Yaas O & PO O €1 Y45 198
& o guant_in 03EC ¢=. fUUUU XE7OF WISCE {IBCC X1BEC XDOEC | XU3ED Y00 Yoaes Yooz
e oquant_out {033 000 Yoz XwD Yoo yoos 003

© 1dyquant 1 |

FEar bl _out 0003 0000 %0033 Yooz YoorB Yono3 YooosYoaos
W bs2_out oom 0000 KoooD Yogot Woooo Yooor nooo

& bs3_out 0oco 0000 AD00E ¥0003 Y0poo

47 bed_out 0000 1000 0003 %0001 Dwoo

H A adder_a non4 1000 Youss Yoms Yooes yDnos {oooz fooos uoos 003
@ 2 adder_b o007 0000 Aooos noos Yoooo

#ar adder_c 602c 0000 X003z YoodD Yovec Hhoos w0003 o604 Y0006
o oadder_ine (04D 30 Y033 Y0 oo ood Y03 004

Fig 4.3 Simulation of Quantizer

Quantizer divides input DCT coefficients with predefined number to represent data
with less number of bits.

Quantizer inputs are YCbCr, load(rdy signal form DCT), Quantin and Outputs are
Quant_out and rdyquant.
Y CbCr selects the predefined value form luminance or Chrominance component ROMs.
For the inputs quant_in = 673F (110011100111111), YCbCr = 0 (Luminance)
The first predefined value data = 200(100000000000).
Output is quant_out = 033(0000110011).
For the inputs quant_in = 673F (0001100111001110), YCbCr = 0 (Luminance)
The first predefined value data = 249(001001001001).

Output is quant_out = 033(0001001101)

46

4.1.4 Zig Zag Scanning

e ok Clo... - [V LU LU L UL L L L L L L L L
= pdy_in 1 =1 bl
& o gdel_in 02F 4= :‘55 JozB o eer
B % scan_mem 00 Uy n0 o1 {oe Yo Yoo oz o3 Yea X Y 20 19 xjz Xoe o4 o5 xoc ¥ A a1 Yz (0 (s ez B e
H A pntBd 2 m}@_}{ N7 e B W e e e 15 X7 i18 Y18 20 X27 Y32 423 24 K25 %26 e
& toggle_mem 1
[gdet_in_reql [02F 02F.... (:Dmmmmmxc
% gdet_in_reg? {0zF ... UL U000 U0, UUU0UUL UL DU, LIULDUG OO 0D UL 000 DU 00000, GO0 UL, U000, 00, UL, DUU,UULUUD UUU UUU JUULC
-2 zigzag_out a2F oo
B pdy_out 1 -
Name |vale |5i | 4s00 i o0 4 B2p0 |\ B4n0 4 5EOC . 5800 . su_’oo’.'kszp'q“} 5400 1 6EDD .f;;éa;:wpu 17200) 400
0
e ok] co. ! LU UYL J]
© rdy_in 1 <=1
& qdelin 0zF <= 5.6 .Gl
B 2 s0an_mem 0o 5 EC 33 XEA XI5 T (oD ¥26 XTF (8 Y2E X35 YSCYED Y36 oF 37 ME)OF oo br Yos o B8 Yz)03 e i
5 % s : o o Y Y Yo o Yo Y Yo e Y) Y e B D e e e 6
A toggle_mern 1 |
o gdel_in_regl [02F,02F -, 3 \
W ogdeUineg? 0ZFUL.. XX
4 zigzag_out 02F Em@@:}m

©rdy_out

1

Fig 4.4 Simulation of Zig Zag Scanner

In the Zig Zag Scanning inputs are clk, rdy in, qdct_in and Outputs are zigzag out,

rdy out.

When quantization output is ready qdct in goes high and Zig Zag Scanner starts

loading quantized DCT coefficients into ROM1 and it continues for 64 clcok cycle.

After 64 clock cycle Zig Zag scanner gives output in the Zig Zag manner by reading

inputs form ROM1 using scan_mem.

For input addresses 00,01,02,03 ... so on. Zig Zag Ouput addresses are 00, 01, 08,...so

on.

47

4.1.5 Differential coder

s : L0 o WO A0 4 30 eeee)0 4 400 o 480 0 600 1 B0 . 600 i - 0

& reset 0 <0 L . [l

o ok 1 (= DTN [f | | !

o rdyquant] 1 PR I TS I

o ACDC 0 05 | TR L
1 o YCBCr i <=, 20)
Dl comp 16 <= b e Wi Y61
#© DC_amp 1 e B Yinza e
& 16 P e iz b
B Ch 000 Y3z
e Cr 000

Fig 4.5 Simulation of Differential Coder

The Differential coder is used for taking the difference of current and previous DC
components. |

Here Inputs are clk, reset, YCbCr, ACDC, rdyquant1 and DC_comp are inputs.
Dc_amp is the output.
When rdy_quantl is high and ACDC is low Differential coder starts processing.
If YCbCr is ‘00’ the output is Y and “01” the output is Cb and “10” output is Cr.
Latency of Differential coder is zero.

4.1.6 Run Length Encoder

B o+ 100 200 300 400 500 | Pt () 800 200 1000 1100 1200
B peset ju} <=0 '—_“_‘l e
o cik 1 P B i D e D e e i T e e D e O e I e Y
- Joad 1 Pk [PRI |
& fast o <=0 b .
o AZDC 1 EEA I S T 1 7
o AC_somp 055 <= ... X000 pAEE) Gou 055 Goo 057 023 XoaE ono B3
oA ACE a] o 1 2 2 A0 X1 b 1 b I
[# = ampACDCin 055 oy) SEE] PO) T a7 Son oo = e
£ e Furin) u L C X1 2 Ll b J AD O
~2 Qkdein 1 l—-l | 1 I 1 r_

Fig 4.6 Simulaﬁon of Run Length Encoder

48

RLE coder counts number of zeros preceding non-zero input.
RLE coder activates for when ACDC signal is high.
Here the input sequence is AC_comp = 199, 0,0,0,55,0,87,23, 8F, 0, 3.

Output (Runin, ampACDCin) is

[(0,199), (3, 55), (1, 87), (0, 23), (0, 8F), (0, 3)].

Okrlein is goes high when non-zero output occurs. When OKrlein is high the outputs are

valid.
The latency of RLE coder depends on the occurrence of non-zero input.

4.1.7 Size Calculator

Name 1y f 50, 1 M0 B0 . 1200 . 250 ¢ 300 . 30 . 400 . 450 . 500 . 550 . 600

B ok 0 Clo... f~v v P | [| | | [| L__
B = ampdCDC 001 <= 4000 oo o3E Yooz {OFF . Your~
i © size 0 g hd e € g

Fig 4.7 Simulation of Size Calculator

The Size Calculator calculates size of the input amplitude i.e. number of significant bits

in the signal.

Input is ampACDC from Differential coder or RLE coder.

For input 01D (0000011101)

Output size = 5

03B (0000111011) Output size = 6
007 (0000000111) Output size = 3
OFF (0011111111) Output size = 8

000 (0000000000)

The Latency of Size Calculator is one clock cycle.

Output size =0

49

4.1.8 VLC Coder

: i S : ; ; i ' «f,DGns;.S.('
= ck .0 | | [[| l | | |
Becelsze 1 <=1)G i@ i@) A
Boapf0C 001 <o QB on aos ~ up Yoz o
0 VL Camp AV S TR (" ME Yo o ee Yo

Fig4.8 Simulation of VLC Coder

VLC coder identifies the significant bits and shifts the significant bits to most significant
bits. Inputs to the VLC coder are coef size and ampACDC. Coef size inputs comes from
Size calculator process which gives the number of significant bits. ampACDC input is
form Differential coder or RLE coder.
If input is (10, 0000000011) output is 1100000000.

(101, 0000010011) output is 1001100000.

(1001, 101001101) output is 1010011010.
Latency of VL.C coder is zero.

4.1.9 Huffman Coder

900 4+ 1000 . 100 1 1200

o reset Q
2 clk 1
o read _en 1
-y ChCr)
v ACDC 0
B G size 3
0 an 0
1% < hulf_code o0 . T I G Bo00 R
0 huff_size 03 00 xo3 04 03
i oar ROMI_data 0803 () 1803)] KOS 002
i A ROM2_data | 2002 Baoo §
v ROM3_data 1000000 000000
) ROM4_data 1000000 00BG0

Fig 4.9 Simulation of Huffman Coder for DC Components

50

For DC components

Huffman coder inputs are size (Size calculator), run (from RLE coder) and outputs are
huff_code(Huffrﬁan code), huff size (Huffman size).

For the DC components (ACDC=0) Output is fromROM1 or Rom2.

Y CbCr signal selects the Output should be form Rom1 or Rom2.

For the inputs size= 5(0101) run =0 (0000) ACDC=0, YCbCr=0.

Outputs are Huffman code = C000 (1100000000000000) and Huffman size= 03 (00011).

For the inputs size= 6(0111) run =0 (0000) ACDC=0, YCbCr=0.

Outputs are Huffman code = EQ00 (1110000000000000) and Huffman size= 03 (00100).

A, V00 00 . 100 1 W00 o 1800« A6D0 i (70—t o 900 . 2000 . 2100 . 2200
o reset 0 | -
e clk 0
o read_en 1
2 ChCr 1
- ACDC 1
B = size 3 <= bG A e b €] b
o un 2 <=1 45 A Wz e & X bl
#-e hoff_code IFFA2 BT foooa WFFAz| WFFSE NFFSE NFFAS NFF95 SFFBD JFFR
&0 huff_size 10 Yoo Yo
@ ROM1_data 0000 y0000
& ROMZ_dsts 0000 Joooo
¥ & ROM3_data 11FF4F0 {IFFa30 WIFF3E0 NFF!{;’(‘]‘IWS{IFFAF AFF230 WIFFIBO_ YIFFOB0
o ROM4_data [1FF510 (FFe50 WFF300 FFID0 YIFFSIC (IFF2B0 WIFFIFO (FF1ID

Fig 4.10 Simulation of Huffman Coder for AC Components

For AC components (ACDC=1)
For AC components Outputs are taken form ROM3 or ROM4.
Y CbCr signal selects the Output should be form Rom3 or Rom4

For inputs size= 6(0110), run =5 (0101), ACDC =1, YCbCr = 1.

51

Output is taken from ROM4.

Outputs are Huffman code = FFA2 (1111111110100010) and Huffman size = 10(10000).

For inputs size= A(1010), run =4 (0100), ACDC =1, YCbCr = 1.

Outputs are Huffman code = FF9E (1111111110011110) and Huffman size = 10(10000).

Latency Huffman coder is six clock cycles.

4.1.10 Preassembler

1 20 o 40, B0 1 88 1 100 4 120 MO . 160 [, 180 | 200 . 220 ¢ 240 . 260 . ’365&];
5 Y 2
[e Y .Camp 180 <= {160 6o bl
= huff_size o7 <... 306 Yoz 07
i © huff_code 3780 ¢= .. {FCO0 . {3000 p 0
Forg) 02 05 o4 b{(H
a2 0030000 054000 0520000 (0030000
W OEFOO0D TFe0000 Yos00000 @sF Do
S bs in CO000000: AG0N0aN0)BDDIJUOUU }{:COVJDDIJOU
@107 bs_oul 01800000 02400000 20000000 “{e1300000
H 0 size 03 G A8 e
&2 amplituds 06FO0CD FD4000 (0780000 {0EF 0000

Fig 4.11 Simulation of Preassembler

Pre assembler concatenates the significant bits of Huffman code and VLC amplitude.
Inputs for Preassembler are coef size (Size calculator), VLCamp (VLC coder), huff size,
huff code(Huffman coder).

For the inputs coef size =5 (0101), VLCamp = 150 (101010000), huff size = 6 (00110),
huff code = FC00 (1111110000000000)

Outputs are size =b (01011) amplitude = 1FD4 (1111111010100000000000000).

52

4.1.11 Assembler

877 15 fun

—— 0 0 ——i L
> ok 1 Ol |] | | | | | | |
o OKrlel 1 <e 1 f--
“ load 1 =11
- size 04 IS (] o5 b Yor Yo+
& o amplitude 1600000 i¢= .1 {C0u00 1E00000 “{IEsOa00 T {1000000 su0000
B fow 00000000 A’ISOOOOOO A BO00H000
Far high 75800000 YCEoanoon YCFE0000 CFEF2ES0 ACFEF2ECD KT8s04000
-2 JPEG_word CFEFZEDD 100000060 ¥CEo00800 ¥CFEQ000 XCFEF2E8D JCFER2ED
© JK 5 S R —
e ACC_in 10 o7 ¥oc s 2 oo b0
@ % pight 75800000 CE000000 YCrEOD000 (CFEF2E30 YCFEF2EDD 75300000
O _in a |
A oyt 0 I
B be out 000R000... fE X Y000F2E) X D750000 _ X00800000000000

Fig 4.12 Simulation of Assembler

Assembler asse‘mbles the amplitude inputs to 32 bit words and sends output as JPEG
bit stream.
Inputs to the assembler are size and amplitude (fro Preassembler) and Okrlel (from RLE
coder) and Output is JPEG_word and OK.
For the inputs (amplitude, size) = (07,19C0000), (05, 1E00000), (0D, 1E6D000), (OF,
175D400), (04, 1000000), (04, 1600000)
The Output JPEG word is CFEF2EDO.
Acc_in accumulates all the sizes and when the Acc_in is 32 bits are more than that OK

signal goes high and JPEG word is the valid output.

53

4.1.12 JPEG Encoder

19

L 1902 1 1904 » 1906 1 1908 1 19,0 (1912] 4 134 . 116

22\ 19.24 0 1926 . 1928 1 19;

& reset 1] <=0
o clk 1 Cho..; | 1] T]
= clken 1 <=1
@ o ChCr 0 <=
o ACDC 1 <=1
o fast 1] <=0
o read_en 1 <=1
= ACDCY 1 <=1
= inad 1 <=1
A (2 aF
i ar g2 4F
ar b2 4F
i ar g1 54
1 ar ch e
arerl 80
& 2T guantin oang
ar edy 1
@ quant_coef1 {000
55 repquant 1
& 8 Runin 1) R B Yz
A ampACDCin (000 00
n OKrlein 0 1
#7 okilelreg_out |1]]
1 mus_out ooo us3 oo
a7 coef_size a Xe e
& 07 VLCamp 1A8 @b B 68
@ ar Y Creg_out D00 e Xoog Kiag
@l bff_code Fnen Yoooa
A bl _size 173 Yoz
huffcodeieq... FOE0 . fFDeo
@ huffsizereg_... | Q& Xoa
s sizein 1z — jmc e
o amplitudein | TFBERADD iFBe0oo FIFBEAGD XiFB5280
A ot na3 P Yosz “Ynoo
& 0 amplitude 1FBEANG ~ Xbsooooo AIFEs000 AIFBEA00
2 size oc 02 Soc X2
-« 0K 1 LT
#© JPEG_woid [947D4C34 EATDACT “RBEX0000A0

Fig 4.13 Simulation of JPEG Encoder

Encoder module reads inputs form a text file and these inputs are applied to Color

Conversion module. At the end of 6™ clock cycle Color conversion module gives Output

which is applied to DCT module. After performing 2-D DCT operation, we get the

Output at the end of 100™ clock cycle which is applied to Quantizer module. Quantized

54

DCT coefficients are stored in a ROM memory of Zig Zag Coder. After storing all ‘64
coefficients Zig Zag scanner sends Output in Zig Zag manner (172" clock cycle) and
these outputs are applied to Differential Coder, Run Length Coder, size calculation, VLC
Coder, Huffman Coder, Preassembler and Assembler modules. The JPEG word is

obtained at the end of 192" clock cycle.

4.2 Synthesis Report

i
1
i
-
]

L
.
e

i)

PEGOOEHHO I

Fig 4.14 RTL Schematic of JPEG Encoder

55

Design Summary

Synthesis Report for Xilinx Virtex 4 FPGA

Fig 4.15 Design Summary of JPEG for Vertex-4 FPGA

Timing Report

Speed Grade: -11

Minimum period: 7.445ns (Maximum Frequency: 134.318MHz)
Minimum input arrival time before clock: 7.703ns

Maximum output required time after clock: 4.221ns

56

Logic Utilization Used | Available | Utilization | Note(s)

Total Number Shce Registers 2692 10,944 24%
Mumber used as Flip Flops 2668
Mumber used as Latches 24

Mumber of 4 input LUTs 2592 10,944 23%

Logic Distribution

Number of nccupied Slices 2,346 - 5472 427
MNumber of Slices containing only related logic 2,346 2.346 100%
Number of Slices containing unrelated logic 0 2.346 0=

Total. Number of 4 input LUTs 2,708 10,944 24%

Number used as logic 2552

Number uzed as a route-thru 67

Number used as Shift registers 43

Number of bonded |0Bs 43 220 13%

Number of BUFG/BUFGCTRLs 2 32 6%
MNumber used as BUFGs 2
Number used as BUFGCTRLs 0

Number of FIFO16/RAMB16s 3 36| 8%
Nurmber used as FIFO16s 0

§ Number used as RAMB16s 3

CHAPTER 5

CONCLUSIONS
This thesis presents pipelined implementation of ‘Baseline JPEG image compression
architecture’ on color images. The optimized architectures for the modules such as DCT,
quantization, differential coder, Run length encoding, Huffman encoding were explained
and coded in VHDL (Hardware description language) using Active HDL simulator. From
simulation results it has been observed that the architecture has a minimum latency of
187 clock cycles for an image of 8X8 pixels.
The VHDL code is synthesized using Xilinx ise 9.1 simulator. The architecture requires

2768 of logic blocks and frequency is 134.318 MHZ for Xilinx Vlrtex-4 FPGA.

57

BIBLIOGRAPHY
[1] “Home site of the JPEG and JBIG committees”, www.JPEG.org.
[2] “Lapped Transform via Time-Domain Pre- and Post-Filtering” by Trac D. Tran,
Member, IEEE, Jie Liang, Student Member, IEEE, and Chengjie Tu, Student Member,
IEEE |
[3] http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#section1
[4] http://www.thepolygoners.com/tutorials/dwavelet/DWTTut.html
[5]1 JPEG2000 Image Coding System Theory and Applications, by N Athanassios.
Skodras Touradj Ebrahimi School of Science and Technology - Computer Science Ecole
Polytechnique Federale de Lausanne — EPFL.
[6]The International Telegraph and Telephone Consultative Committee (CCITT),
“Information Technology — Digital Compression and Coding of Continuous-Tone Still
Images — Requirements and Guidelines”. Rec. T.81, 1992.
[7] “Image and video comoression standards — Second Edition, Kluwer Academic
Publishers, USA, 1999 by vasudev bhaskaran, Konstantinos Konstantinides .
[8] J. Miano. Compressed Image File Formats — JPEG,PNG, GIF, XBM, BMP, Addison
Wesley Longman Inc, USA, 1999.
[9] L. Agostini, S. Bampi, “Integrated Digital Architecture for JPEG Image
Compression,” European Conference on Circuit Theory and Design, Vol. 111, pp. 181-

184, 2001.

58

http://www.JPEG.org
http://pagesperso-orange.fr/polyvalens/elemens/wavelets/wavelets.html%23seetionl
http://www.thepolygoners.eom/tutorials/dwavelet/DWTTut.html

[10] “JPEG Still Image Data Compression Standard”, by W. Pennebaker and J. Mitchell.
Van Nostrand Reinhold, USA, 1992.

[11] “Packet Analyzer for JPEG2000 Code streams and its VHDL model” by Masayuki
Kurosamt, Akemi IKEDAS, Khairul Munadi and Hiioshi Kiyatt, Department of
Electrical Eng., Tokyo Metfopolitan Univ., Japan

[12] http://mtg.upf.edu/~xserra/cursos/TDP/referencies/Park-DWT.pdf

[13] Kum_ar, C.S., "Comments on ‘Subband coding of images'," Acoustics, Speech and
Signal Processing, IEEE Transactions on , vol.36, no.7, pp.1089-1090, Jul 1988 [14]
“Verilog HDL: A Guide to Digital Design and Synthesis”, by Samir Palnitkar, SunSoft
Press, Prentice Hall.

[15] “Design of Architectures for JPEG Image Compression (portuguese). Master
Dissertation by L. Agostini, Federal University of Rio Grande do Sul. Informatics
Institute. Pos-Graduation in Computer Science Program, Porto Alegre, Brazil-

[16] “JAGAR: A Fully Pipeline VLSI Architecture for JPEG Image Compression
Standard”, by M. Kovac and N. Ranganathan, Proceedings of the IEEE, vol. 83, 1995,
pp- 247-258.

[17] http://www xilinx.com/support/documentation/application_notes/xapp930.pdf.

[18] http://www.xilinx.com/support/documentation/application_notes/xapp610.pdf.

[19] Lei, S.-M.; Sun, M.-T., "An entropy coding system for digital HDTV applications,"
Circuits and Systems for Video Technology, IEEE Transactions on, vol.1, no.1, pp.147-

155, March 1991.

59

http://mtg.upf.edu/~xserra/eursos/TDP/refereneies/Park-DWT.pdf
http://www.xilinx.eom/support/doeumentation/application_notes/xapp930.pdf
http://www.xilinx.eom/support/doeumentation/applieation_notes/xapp6I0.pdf

[20] Agostini, L.V.; Silva, 1.S.; Bampi, S., "Pipelined entropy coders for JPEG
compression," Integrated Circuits and Systems Design, 2002. Proceedings. 15th

Symposium on , vol., no., pp. 203-208, 2002

60

VITA

Graduate College
University of Nevada, Las Vegas

Arun kumar reddy Toomu

Local Address:
4248 Grove Circle, apt 3
Las Vegas, NV-89119

Degree:
Bachelor of Technology in Electrical and Computer Engineering, 2006
JNT University, Hyderabad, India

Thesis title: Pipelined Implementation of JPEG Image Compression using VHDL

Thesis Examination Committee:

Chairperson, Dr. Henry Selvaraj, Ph.D.

Committee member, Dr. Emma Regentova, Ph.D.

Committee member, Dr. Yahia Baghzouz, Ph.D.

Graduate College Faculty Representative, Dr. Laxmi gewali, Ph.D.

61

	Pipelined implementation of Jpeg image compression using Hdl
	Repository Citation

	ProQuest Dissertations

