
UNLV Retrospective Theses & Dissertations

1-1-2008

Pipelined implementation of Jpeg image compression using Hdl Pipelined implementation of Jpeg image compression using Hdl

Arun Kumar Reddy Toomu
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Toomu, Arun Kumar Reddy, "Pipelined implementation of Jpeg image compression using Hdl" (2008).
UNLV Retrospective Theses & Dissertations. 2387.
http://dx.doi.org/10.25669/swja-6ku1

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2387&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/swja-6ku1
mailto:digitalscholarship@unlv.edu

PIPELINED IMPLEMENTATION OF JPEG IMAGE COMPRESSION

USING HDL

by

Arun Kumar Reddy Toomu

Bachelor o f Technology
J.N.T University, Hyderabad, India

2006

A thesis submitted in partial fulfillment
o f the requirement for the

Master of Science Degree in Electrical Engineering
Department of Electrical and Computer Engineering

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

August 2008

UMI Number: 1460544

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, If unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1460544

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

UM Z Thesis Approval
The Graduate College
University of N evada, Las Vegas

JULY 18 . 2008

The Thesis prepared by

ARUN TOOMU

Entitled

PIPELINED IMPLEMENTATION OF JPEG COMPRRSSThN USTNC HOT,

is approved in partial fulfillm ent of the requirements for the degree of

_________________MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

in a m n Committee Member

om mitfée M em b■''.Examination'^.

Graduate College Faculty Representative

Examination Committee Chair

Dean o f the Graduate College

1017-53 11

ABSTRACT

Pipelined Implementation of JPEG Image Compression using VHDL

by

Arun Kumar Reddy Toomu

Dr. Henry Selvaraj, Examination Committee Chair
Professor o f Electrical and Computer Engineering

University o f Nevada, Las Vegas

This thesis presents the architecture and design o f a JPEG compressor for color

images using VHDL. The system consists o f major parts like color space converter, down

sampler, 2-D DCT module, quantization, zigzag scanning and entropy coding. The color

space conversion transforms the RGB colors to YCbCr color coding. The down sampling

operation reduces the sampling rate o f the color information (Cb and Cr). The 2-D DCT

transform the pixel data from the spatial domain to the frequency domain. The

quantization operation eliminates the high frequency components and the small amplitude

coefficients o f the co-sine expansion. Finally, the entropy coding uses run-length

encoding (RLE), Huffman, variable length coding (VLC) and differential coding to

decrease the number o f bits used to represent the image. The JPEG compression is a lossy

compression, since downsampling and quantization operations are irreversible. But the

losses can be controlled in order to keep the necessary image quality.

Architectures for these parts were designed and described in VHDL. The results were

observed using Active-HDL simulator and the code being synthesized using xilinx ise for

vertex-4 FPGA. This pipelined architecture has a minimum latency o f 187 clock cycles

iii

TABLE OF CONTENTS

ABSTRACT... iii

LIST OF F IG U R E S..vi

ACKNOW LEDGEM ENTS.. vii

CHAPTERI INTODUCTION.. I
1.1 Thesis Outline ... 3
1.2 B ackground... 3

CHAPTER2 THEORITICAL BACKGROUND.. 4
2.1 Data Compression B asics .. 4
2.2 Data Compression techniques...5

2.2.1 Lossless Vs Lossy Com pression..5
2.2.2 Predictive Vs Transform C oding ...5
2.2.3 Subband Coding.. 6

2.3 Loss less Com pression... 6
2.4 Lossy Compression techniques.. 7

2.4.1 Subband Coding...8
2.4.2 Transform Coding... 10

2.4.2.1 Discrete Cosine Transform (DCT) Based C oding...............................11
2.4.2.2 Lapped Transforms (LT) Based C oding..14
2.4.2.3 Discrete W avelet Transform (DWT) Based Coding........................... 14

2.4.2.3.1 JPEG 2 0 0 0 ... 16

CH APTER3 ARCHITECTURE.. 18
3.1 Outline o f JP E G .. 18
3.2 Architectures o f JPEG.. 21

3.2.1 Color Conversion..21
3.2.2 Discrete Cosine T ransform .. 22
3.2.3 Q uantization... 27
3.2. 4 Zig zag Scanning ...30
3.2.5 Entropy Coder... 31

3.2.5.1 Differential C oder.. 34
3.2.5.2 Run Length E ncoder.. 35
3.2.5.3 Size C alculator.. 37
3.2.5.4 Variable Length Coder...38
3.2.5.5 Huffman Encoder.. 39
3.2.5.6 Preassm ebler.. 40

IV

3.2.5.7 Assem bler.. 41

CHAPTER4 RESULTS AND D ISCUSSION... 44
4.1 Simulation W aveform s.. 44

4 .1.1 Color C onversion ..44
4.1.2 DCT...44
4.1.3 Quantization..46
4.1.4 Zig zag Scanning..47
4.1.5 Differential C oder..48
4.1.6 Run Length Encoder... 48
4.1.7 Size Calculator... 49
4.1.8 VLC Coder.. 50
4.1.9 Huffman Encoder...50
4.1.10 Preassem bler...52
4 .1 .11 A ssem bler... 53
4.1.12 JP E G .. :..54

4.2 Synthesis R epo rt..55

CHAPTERS CONCLUSION ...57

R EFER EN C ES...58

VITA... 61

LIST OF FIGURES

Figure 2.1 Block Diagram o f SBC... 9
Figure 2.2 2-D DCT using Vector Processing.. 13
Figure 2.3 Level-3 dyadic DW T scheme used for Image Com pression......................... 16
Figure 2.4 General block-diagram o f the JPEG 2000 encoder ..17
Figure 3.1 The JPEG Baseline Encoder.. 18
Figure 3.2 1-D DCT Implementation...25
Figure 3.3 2-D DCT Implementation.. 26
Figure 3.4 Quantization A rchitecture... 27
Figure 3.5 Zigzag Scanning.. 31
Figure 3.6 Entropy Encoder.. 31
Figure 3.7 Pipelined Architecture for Entropy coder...33
Figure 3.8 Differential Coder.. 34
Figure 3.9 Run Length Encoder.................... 45
Figure 3.10 Huffman Coder Architecture .. 39
Figure 3 .11 Preassembler Architecture...41
Figure 3.12 Assembler A rchitecture... 42
Figure 4.1 Simulation o f Color Conversion...44
Figure 4.2 Simulation o f D C T 45
Figure 4.3 Simulation o f Q uantizer...46
Figure 4.4 Simulation o f Zig Zag Scanner...47
Figure 4.5 Simulation o f Differential Coder..48
Figure 4.6 Simulation o f Run Length encoder.. 48
Figure 4.7 Simulation o f Size Calculator.. 49
Figure 4.8 Simulation o f VLC C o d er... 50
Figure 4.9 Simulation o f Huffman Coder for DC Components.. 50
Figure 4.10 Simulation o f Huffman Coder for AC Components.. 5 1
Figure 4 .11 Simulation o f Preassem bler...52
Figure 4.12 Simulation o f A ssem bler..53
F igure 4.13 S imulation o f JPEG Encoder...54
Figure 4.14 RTL Schematic o f JPEG E ncoder... 55
Figure 4.15 Design Summary o f JPEG for Vertex-4 FPGA .. 56

VI

ACKNOW LEDGEMENTS

It is great pleasure for me to acknowledge the people who have helped me during the

course o f my thesis work. My special thanks to my advisor, Dr. Henry Selvaraj who has

supported me in the right direction. I would specially acknowledge Dr. Emma Regentova,

Dr. Yahia Baghzouz for serving as committee members and D r Laxmi Gewali for serving

as graduate college representative. I would like to thank my friends who gave me morale

support in achieving this. I would like to acknowledge Aldec- ari people for supporting

with the project “Real time system on Chip” # 2368-254-50YH.

Vll

CHAPTER 1

INTRODUCTION

The transition from magnetic film based image representation to digital representation

has been primarily motivated by the ease o f working with digital data and better special

representation o f the image. Over the years, the need for image compression has grown

steadily and currently it is being recognized as an enabling technology. For example,

image compression has been and continues to be crucial to the growth o f multimedia

computing. In addition, it is the natural technology for handling the increased spatial

resolutions o f today's imaging sensors, and evolving broadcast television standards.

Furthermore, image compression plays a crucial role in many important and diverse

applications, including videoconferencing, remote sensing, document and medical

imaging, facsimile transmission (FAX), and the control o f remotely piloted vehicles in

military, space, and hazardous waste control applications. In short, an ever-expanding

number o f applications depend on the efficient manipulation, storage, and transmission o f

binary, gray-scale, or color images. One notable area o f application which is greatly

driving R&D in image compression is the enormous growth in the use o f Internet and

mobile communication devices that generated a revolution in the way human-beings

communicate and exchange information. The necessity o f efficient digital information

delivery (e.g. images) in those devices is imperative, and different methods to do that

have been proposed. A digital image uses a big storage space and big bandwidth for

transmission, in mobile devices this is a problem because the space and bandwidth can be

spent or saturated rapidly. A possible solution to solve this problem is to find a

representation that use less information to represent digital images, by this necessity

image compression emerges in the field o f video and digital images. Image compression

addresses the problem o f reducing the data amount required to represent a digital image

and is made by a removal process o f the image redundant information [I]. An ideal

scheme is to make lossy image compression in order to save a lot o f storage space but

sacrificing the quality o f an image. We can compress the image with lossless

compression techniques (e.g. Run Length Coding, Huffman Coding) but the compression

ratio is small. These techniques are highly useable in the areas like Medical and Military

applications where highly accurate data is needed.

JPEG image compression is lossy compression technique which is based on transform

coding. Basically the image compression techniques make use o f following factors for

the compression: One is majority o f useful content changes relatively slowly across the

image. So by transforming the image content to frequency domain we can represent data

as frequency components. Usually low frequency components contain most o f the image

data than high frequency components. For compressing the image we can eliminate the

high frequency components. The other is defects in Human visual system (HVS). Humqn

eye is less perceptible to High frequency components than low frequency.

1.1 Background

Digital image compression is a very popular research topic in the field o f multimedia

processing. The main objective o f research is to develop architecture for JPEG

Compression schemes that give good visual quality and speed. The Compression

technique was implemented hardware description language like VHDL, VERILOG.

Hardware implementation speeds up image/video processing comparing to software.

1.2 Thesis Outline

This thesis is organized into five chapters. Chapter 1 gives the introduction. Chapter

2 gives an overview o f image compression and classification o f compression schemes. It

discusses different compression methods such as subband coding, discrete cosine

transform (DCT), lapped transform (LT) and discrete wavelet transform based coding.

Chapter 3 describes architecture o f JPEG image compression and its implementation.

Chapter 4 gives simulated results o f different modules in JPEG compression and

discussion about the results. Chapter 5 describes the final conclusion o f the thesis and

presents some future work.

CHAPTER 2

2.1 DATA COMPRESSION BASICS

Data compression is the reduction or elimination o f redundancy in data representation

in order to achieve savings in storage and communication costs. It relies on the fact that

image information, by its very nature, is not random but exhibits order and has some

form o f structure. I f this order and structure can be extracted, the essence o f the

information often can be represented and transmitted using less data bits than would be

needed for the original. We can then reconstruct the original or a close approximation o f

it at the receiving end. A common characteristic o f most images is that the neighboring

pixels are correlated and therefore contain redundant information. Image, Video and

audio signals are amenable to compression due to the following factors: redundancy and

irrelevancy reduction.

Redundancy reduction: Redundancy looks at “properties” o f an image and reduces

redundant data.

Irrelevancy reduction: Much o f the data in an image may be irrelevant to a human

observer so we can omit that data.

In general, three types o f redundancy can be identified;

• Spatial Redundancy or correlation between neighboring pixel values.

• Spectral Redundancy or correlation between different color planes or spectral

bands.

• Temporal Redundancy or correlation between adjacent frames in a sequence o f

images (in video applications).

Image compression research aims at reducing the number o f bits needed to represent an

image by removing the spatial and spectral redundancies as much as possible. Since we

will focus only on still image compression, we will not worry about temporal

redundancy.

2.2. Data Compression Techniques

2.2.1 Lossless vs. Lossy Compression

In lossless Compression schemes the reconstructed image, after compression is

digitally identical to the original image. However, lossless compression can only achieve

a modest amount o f compression. On the other hand, lossy schemes are capable o f

achieving much higher compression but under normal viewing conditions no visible loss

is perceived (visually lossless). Some o f the lossy compression schemes used include

differential pulse code modulation (DPCM), pulse code modulation (PCM), vector

quantization (VQ), Transform and Subband coding. An image reconstructed following a

lossy compression contains degradation relative to the original. Often this is because the

compression scheme also discards non-redundant information.

2.2.2. Predictive vs. Transform Coding

In Predictive Coding, information already sent or available is used to predict future

values, and the difference is coded. It removes redundancy between successive pixels. It

only encodes residual between actual and predicted. Since this is done in the image or

spatial domain, it is relatively simple to implement and is readily adapted to local image

characteristics. Differential Pulse Code M odulation (DPCM) is one particular example o f

predictive coding. Transform coding, on the other hand, first transforms the image from

its spatial domain representation to a different type o f representation using some well-

known transforms such as DCT, DW T or Lapped transform, and then codes the

transformed values (coefficients). This method provides greater data compression

compared to predictive methods as transforms use energy compaction properties to pack

an entire image or a video frame into

2.2.3 Subband Coding

In Subband Coding, information (image) is split in to frequency band o f a signal in

various subbands. To code each subband, we use a coder and bit rate accurately matched

to the statistics o f the subband.

2.3 Lossless Compression

In lossless compression schemes the reconstructed image, after compression is

numerically identical to the original image. Through lossless compression we can only

achieve a modest amount o f compression [1].

The lossless methods are also called entropy-coding schemes, since there is no loss

o f information content during the process o f compression. This type o f compression is

used in certain environments such as compression o f text, database records, spreadsheets,

word processing files, or medical and military imaging medical imaging where no loss o f

information is tolerated. Typical compression ratios for lossless data compression are

around 3:1.

2.4 Lossy Compression Technique

In lossy compression, the reconstructed image is approximation o f the original image.

Lossy compression is generally used for video and sound, where a certain amount o f

information loss can be tolerated. The JPEG image compression is one o f the examples o f

lossy compression. Using JPEG compression, one can decide how much loss to introduce

and make a trade-off between file size and image quality. Depending upon the fidelity

required, compression ratios o f even up to 100:1 can be obtained.

The JPEG committee has created many standards since it was created in 1986. ISO

had actually started to work on this 3 years earlier, in April 1983, in an attempt to find

methods to add photo quality graphics to the text terminals o f the time, but the 'Joint' that

the 'J' in JPEG stands for refers to the merger o f several groupings in an attempt to share

and develop their experience. This is the collaboration between three international

standard organizations. International Telegraph and Telephone Consultative Committee

(CCITT), International Organization for Standardization (ISO), and the International

Electrotechnical Commission (lEC).

The formal name o f the standard that most people refer to as 'JPEG' is ISO/IEC IS

10918-1 I ITU-T Recommendation T .8I, as the document was published by both ISO

through its national standards bodies, and CCITT, now called ITU-T. IS 10918 has

actually 4 parts

Part 1 - The basic JPEG standard, which defines many options and alternatives for the

coding o f still images o f photographic quality

Part 2 - which sets rules and checks for making sure software, conforms to Part I

Part 3 - set up to add a set o f extensions to improve the standard, including the SPIFF file

format

Part 4 - defines methods for registering some o f the parameters used to extend JPEG [I].

JPEG has defined an international standard for coding and compression o f continuous

tone still images. The primary aim o f the JPEG standard is to propose an image

compression algorithm that would be generic, application independent and aid VLSI

implementation o f data compression. To meet the different applications, the JPEG

standard includes two basic compression methods, each with various modes o f operation.

For lossy compression DCT (Discrete Cosine Transform) method is proposed and a

predictive method for lossless Compression. The Baseline DCT method is most widely

implemented JPEG method for many applications.

The compression ratio o f the image is given by;

Compression ratio = Source coder input data size (2.1)
Source coder output data size

Most widely used lossy compression techniques are

(i) Subband Coding

(ii) Transform Coding

2.4.1 Subband Coding

The fundamental concept behind Subband Coding (SBC) is to split up the frequency

band o f a signal (image in our case) into various frequency subband or subband signals

and then to code each subband using a coder and bit rate accurately matched to the

statistics o f the band. SBC has been used extensively first in speech coding [10, 13] and

later in image coding [14] because o f its inherent advantages like variable bit assignment

among the subbands and coding error confinement within the subbands.

The simplest way to encode audio signals is Pulse Code M odulation (PCM), which is

used on music CDs, DAT recordings, and so on. This produces a high quality signal, but

at a high bit rate (over 700k bps for one channel o f CD audio). To reduce the bandwidth

we can use mu-law encoding. This is like PCM on a logarithmic scale, and the effect is to

add noise that is proportional to the signal strength. Sun's au format for sound files is a

popular example o f mu-law encoding. Using 8-bit mu-law encoding we can reduce the

bandwidth to 350k bps, which is better than PCM.

Audio
Bit s tream

D ig ita l a u d i o
s i g n a l T im e/F requency

M apping Q uantizer an d coding Fram e packing

P sychoacoustic Model

Audio
Bit stream^ F ram e Unpacking R econstruction

Digital
audio signal

Frequency/T im e
M apping

Figure 2.1 Block Diagram o f SBC

Fig 2.1 represents general subband encoder. First, a time-frequency mapping (a filter

bank, or FFT, or something else) decomposes the input signal into subbands. The

psychoacoustic model looks at these subbands as well as the original signal, and

determines masking thresholds using psychoacoustic information. Using these masking

thresholds, each o f the subband samples is quantized and encoded so as to keep the

quantization noise below the masking threshold. Finally all these encoded bits are packed

as a frame and sent through communication channel.

At the decoder end, frames are unpacked, subband samples are decoded, and a

frequency-time mapping turns them back into a single output audio signal.

Disadvantages o f Subband Coding

• One o f the major problems with the subband coding is to resolve the bit allocation

problem or the number o f bits assigned to each individual subband to get the best

performance. One way is to use the idea o f optimal bit allocation to each

quantized subband output individually. This is mostly valid for higher bit rates o f

approximately 1 bit/sample or more.

• In Subband coding method is it is difficult to determine optimal coding system for

low bit rate applications.

• I f the overall bit rate changes the optimal bit allocation change which requires

repetition o f entire coding process again.

• As the filters are not ideal filters it is not possible to perfectly decorrelate all the

frequency Subbands and there is slight overlapping between adjacent frequency

Subbands.

• It is very difficult to use Subband coding scheme for motion compensated video

because o f frequency Subbands.

2.4.2 Transform Coding

Transform Coding is converting information from one set values to another using

mathematical functions.

10

Different types o f transform coding techniques are

(a) Discrete Cosine Transform (DCT) based coding

(b) Lapped Transforms (LT) based coding

(c) Discrete W avelet Transform (DWT) based coding.

2.4.2.1 Discrete Cosine Transform (DCT) Based Coding

Discrete cosine transform (DCT) translates the image information from spatial

domain to frequency domain to be represented in a more compact form. DCT properties

are similar to Fourier transform.

By simple analogy we can illustrate how DCT works. Consider an unsorted list o f 15

numbers between 0 and 4 (2, 3, 1, 4, 2, 2, 0, 1, 4, 1, 0,1, 4, 0, and 0). The transformation

involves two steps one is sorting the list and second is counting the frequency o f

occurrence o f each number -> (4, 4, 3, 1, and 3). Through this transformation we lost the

spatial information but captured the frequency information.

Neighboring pixels within an image are highly correlated. So it is required to use any

transform to exploit this correlation and representing information with fewer number o f

bits. The Discrete Cosine Transform (DCT) has been shown to be near optimal for a large

class o f images in energy concentration and de-correlating (Karhunen Loeve Transform

{KLT} is the optimal transform but it isn’t used because its difficulty to practically

implement) [7]. The DCT decomposes the signal into spatial frequencies, which then

allow further processing techniques to reduce the precision o f the DCT coefficients

consistent with the Human Visual System (HVS) model.

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N

image block is transformed from the spatial domain to the DCT domain. DCT convert the

11

input image into spatial frequency components called DCT coefficients, in such a way

that lower frequency components appear at left hand com er and high frequency

components at right hand side o f DCT matrix. As we know Human Visual System is less

sensitive to high frequency components than low frequency components, we can further

process the coefficients by quantization like process to represent data with less number o f

bits.

Advantages o f DCT

• DCT is the near-optimal for signal processing

• Efficient and wide acceptability

• Parallel processing capability

• Less complex comparing to other transform algorithms

• DCT can be done block by block level.

Mathematical equations o f DCT

The 2-D DCT is give as

XC,., = y g x N . , (2.2)
" " 4 2M 2V

First 1-D DCT for rows is calculated and then the 1-D DCT o f columns is calculated.

The above equation is divided into rows and column parts as follows:

„ (2 .colnumber-F 1) # rownumber# 7i
C = K • cos --------------------- (2.3)

2M

K = — for row = 0
N

■Jl
K = — for row ^ 0

N

12

„t (2. rownumber +1) • colnumber» n
C = K # c o s - --

I N

K = — for column = 0
M

(2.4)

V2
K = — for column 0

M

For the 8X8 blocks, a one dimensional DCT/IDCT followed by an internal buffer

memory followed by one-dimensional DCT is used to perform 2-D DCT. This way we

can reduce the computation complexity o f DCT for the 2-D Image.

YCbCr signals
1-D DCT I

2-D DCT
Coefficients

RAM Buffer 2-D DCT

Figure 2.2 2-D DCT using Vector Processing

Disadvantages o f DCT

• In JPEG, we divide an image into 2-D non-overlapping blocks o f 8X8 and apply

8-point 2-D DCT on them to obtain fewer transformed coefficients. By this

process we will only exploit spatial correlation between pixels but not correlation

between blocks.

• The second disadvantage is blocking artifacts, discontinuities at the block

boundaries (because o f using 8X8 blocks) resulting from reconstruction

mismatches at low bit-rate situations.

13

2.4.2.2 Lapped Transforms (LT) Based Coding

The lapped transform was developed to solve the problem o f blocking effect in DCT

based coding schemes. Instead o f non-overlapping 2-D blocks, the process uses

overlapping 2-D blocks o f an image spatially. One o f the special types o f lapped

transforms is called lapped orthogonal transform (LOT).

Advantages o f lapped transform

• No need to use block based coding.

• Coding efficiency can be improved by taking into account o f inter block spatial

correlation.

• Blocking artifacts are eliminated

• Pre- and post-filter are can be constructed in modular cascaded stages, to

minimize hardware/software modifications.

By lapped transform blocking effects are reduced but other effects like ringing

around edges o f blocks will appear due longer basis functions. LOT is extension o f DCT

but due to its complexity compared to improved advantages, so it is less popular for

image compression [2],

2.4.2.3 Discrete W avelet Transform (DWT) Based Coding

Discrete wavelet transform (DWT) is one o f the latest coding techniques used instead o f

DCT. Its main advantage over DCT is that there is no need to divide the image into non

overlapping blocks. Because o f their inherent multi resolution nature, wavelet-coding schemes

are especially suitable for applications where scalability and tolerable degradation are

important. After JPLG image compression JPLG committee has released its new image coding

standard, JPLG-2000, which has been based upon DWT.

14

By Fourier transform (DCT based) we can represent signal as sum o f sine and cosine

functions. By this we can know frequency spectrum o f the signal, but we do not know

when and where they are present. To overcome this problem we should able to represent

signal in frequency as well as time domain. This is done by wavelet transform.

By time-frequency joint representations one has to cut the signal o f interest into

several parts and then analyze the parts separately, by this we can get more information

about the signal. In wavelet transform the use o f a fully scalable modulated window

solves the signal-cutting problem. The window is shifted along the signal and for every

position the spectrum is calculated. W avelet transform is convolving input signal with

particular instances o f the wavelet (window) at various time scales and positions. Then

this process is repeated many times for every new cycle. By this we can get signal in time

as frequency domain, all with different resolutions [3].

Performing these convolutions at every position and every characteristic scale is

called the continuous wavelet transform. By, N yquisf s theorem the highest frequency we

can model with discrete signal data is half that o f the sampling frequency. So in the worst

case we have to use the transform at every other point [4].

The continuous wavelet transform is generally expressed as:

L [4] (2.5)
/ ̂ y s)

In CWT, the signals are analyzed using a set o f basis functions which relate to each

other by simple scaling and translation. In the case o f DWT, digital filtering techniques

are used for the time-scale representation. The signal to be analyzed is passed through

filters with different cutoff frequencies at different levels [12].

15

I M A G E

1 LevelsI

3 Levels

Figure 2.3 Level-3 dyadic DWT scheme used for Image Compression [5]

2.4.2.3.I JPLG 2000

JPLG2000, the new standard for still image coding, better addresses the problems o f still

image compression by previous methods. It offers a wide range o f functionalities such as

lossless and lossy coding, embedded lossy to lossless coding, progression by resolution and

quality, high compression efficiency, error resilience and region-of-interest (ROI) coding.

Comparative results have shown that JPLG2000 is indeed superior to established image

compression standards [5].

In JPLG-2000 compression first the image is preprocessed by tiling the image i.e.

partitioning the original image into non-overlapping blocks. Tile components are decomposed

into various decomposition levels by using separable wavelet transform, than a scalar

16

quantization is used to quantize than eaeh bloek is entropy eneoded. EBCOT proeess is used

for Entropy eoding.

{Rate control)
Arithmetic CodingFormatting Layer formation

(opSonal)

C pde-block partition(optional)

Figure 2.4 General bloek diagram o f the JPEG 2000 Eneoder [11]

Advantages OF JPEG 2000

• JPEG 2000 offers high image quality than JPEG.

• In the JPEG 2000 compression the compressor can choose image quality,

maximum resolution and losses.

• JPEG 2000 can provide both lossless and lossy compression in the same

compression engine.

Disadvantages o f DW T

• The cost o f computing DW T as compared to DCT is much higher. The

complexity o f calculating DWT depends upon the length o f wavelet filter.

• Larger DW T basis functions or wavelet filters produces blurring and ringing noise

near edge regions in images or video frames.

17

CHAPTER 3

ARCHITECTURE

3.1 Outline o f JPEG

The basic model o f JPEG is shown below

In p u t I m a g e -
R G B to

, Y C b C r

; C o n v e r s io n

F o r w a r d D C T Q u a n t iz a t io n

A

D if fe re n tia l
: G o d e r

R u n L e n g th
E n c o d e r

Huffman
Coding

à

O u tp u t B i t s t r e a m

Q u a n t iz a t io n
t a b l e s

H u # n a n
T a b le s

Figure 3.1 JPEG Baseline Encoder

The Join Photographic Expert Group proposed the JPEG compression standards [6].

The encoder model transforms the input image into suitable form for further processing.

After that entropy encoder compresses the output form encoder.

Different modes o f JPEG are

• Lossless Coding

• Sequential Coding

• Progressive Coding

• Hierarchical Coding.

18

In Lossless Coding the image can he reconstructed after decoding. In this process we

use methods like differential coding, Huffman coding, Arithmetic coding.

In Sequential Coding image blocks are scanned sequentially from top to bottom and

left to right. Baseline Coding is example o f sequential coding. In Progressive Coding

image blocks are processed sequentially, but coding is completed in multiple scans. The

first scan yields the full image but without full details which are provided in successive

scans. In Hierarchical Coding each image component is encoded as a sequence o f frames.

The first frame is usually a low resolution o f original image and subsequent frames are

differential frames between original and reference reconstructed image [7].

Based on these modes there are four distinct processes for jpeg image compression.

• Baseline process,

• Extended DCT-based process,

• Lossless process,

• Hierarchical process.

Both baseline and extended DCT processes uses DCT in the encoding process, but in

the entropy coding Baseline uses Huffman encoding and extended DCT uses Huffman or

arithmetic coding. Lossless process uses predictive or sequential methods for encoding

and Huffman or arithmetic for entropy process. Hierarchical process uses either DCT or

lossless process for encoding and same entropy encoding methods as other process.

In this thesis we are going to discuss about implementation o f baseline JPEG image

compression.

Baseline JPEG mode is the most widely used jpeg image compression. Baseline mode

is simple and is based on sequential mode i.e. Image is scanned from left to right and top

19

to bottom. Image is divided into non overlapping blocks o f 8X8 each o f 8 bit, DCT

process. Quantization and entropy encoding steps are performed on that.

The JPEG Baseline can be divided mainly into five parts: those are color space

conversion, down sampling, 2-D DCT, quantization and entropy encoding. The color

space conversion converts the image form RGB color to YCbCr (luminance component

Y and two chrominance components Cb and Cr). Luminance components component

contains gray image and chrominance components contain color information. The down

sampling reduces the sampling rate o f color information (Cb,Cr). 2-D DCT transform

image information from spatial domain to frequency domain. By quantization operation

high frequency components are eliminated and low frequency components are

represented by less number o f bits. JPEG uses predefined quantization tables for

eliminating the high frequency components. The selection o f quantization tables is

critical since it affects both compression efficiency and image quality. After quantization,

the DCT coefficients are arranged in zigzag order to get low frequency components at the

top and high frequency components at the bottom. It maps 8X8 block to 1X64 values.

Finally entropy coding is applied. It uses differential coding for the DC components and

Run Length Encoding for AC Components. The location o f (0, 0) o f each block i contains

DC Coefficient represented as DCi. Since the adjacent blocks are likely have similar

average energy levels so we can send only the difference o f current and previous DC

coefficients which is know as Differential Pulse Code M odulation (DPCM). The 1X64

vectors have lot o f zeros, it is represented by [run length, count, and value] pair by Run

Length encoding to reduce the number o f bits to represent data. In Run Length encoding

only non-zero values will be sent with counting the number o f zeros preceding it. After

20

that Variable length coding (VLC) and Huffman coding is applied to represent data with

less number bits [6]. In the VLC coder the amplitude is represented with its significant bit

as most significant bit. For each pair o f run length codes there is a variable length

Huffman code which will be used by the Huffman encoder to perform the compression.

The Huffman codes are stored in tables. In the JPEG image compression process down

sampling and quantization are irreversible, but the losses can be controlled depending the

necessity o f image quality [8].

3.2 Architectures o f jpeg

3.2.1 Color Conversion

The color space conversion is the first operation in a JPEG compressor if the input

images are in RGB color space. Although the JPEG algorithm is unaffected by color,

since it processes each color independently, but change in color space improves

compression ratio significantly. This is due to defect in Human Visual System (HVS) that

is less particular for some o f the characteristics o f the image and also RGB is not efficient

in dealing o f real world images. In RGB all the three components need equal band width

to generate colors and highly correlated. RGB images are not very best for processing o f

the image too. For example if want to change intensity o f pixel we should call all the

three colors and process the colors. I f we have any access to intensity o f colors directly

the processing will be faster. The appropriate representation o f colors for JPEG

compression is YCbCr W here Y is Luminance component and Cb and Cr are two

Chrominance components. Luminance component contains image information (Gray

21

scale) and Chrominance component contains color information. Component Cb contains

information relative to blue color and Cr component contains information relative to

red color. The range o f YCbCr is 16-235 for 8 bit representation.

The below calculation are used in converting RGB to YCbCr.

Y;,= 0.299R,v+0.587G,y+0.114B,^

Cb/^= —0.169Ry—0.331 G,y+0.5By

Cr,y= 0.5R,y-0.419G,y-0.081B,^

The source image is portioned into non-overlapping 2-d blocks o f 8x8, which are

scanned sequentially form left to right and top to bottom. The nominal range o f

Luminance component is 0 to 1 and Chrominance component’s nominal range is -0.5 to

0.5. To make Chrominance components range equal to Luminance, 128 is added to the

Cb and Cr components [17].

This color conversion architecture is based on simplified models provided by Xilinx

Corporation which uses only four multipliers [17]. The architecture has latency o f six

clock cycles and operates at frequency o f 285 MHZ.

3.2.2 Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N

image block is transformed from the spatial domain to the DCT domain. DCT

decomposes the signals into frequency domain which are called DCT coefficients. The

lower frequency DCT coefficients appear towards upper left com er and higher frequency

DCT coefficients are in the right-hand com er o f DCT matrix. The Human visual System

is less sensitive to high frequency components so we can quantize high frequency

components by quantization.

22

For implementing o f DCT we use vector processing using four parallel multipliers.

The output Y o f 8 X 8 DCT for input X is given by Y = C*X»C', where C is the matrix

with the cosine basis functions, and C' is the transpose coefficients [18]. Using row

column decomposition Y can be computed by 1 -D DCT transforms as

Y=C*Z where Z= X*C'. (2.6)

The mathematical equation for DCT is given as

M-\ N~\

XCpo = Z Z X N ,
C(p)C(q) 7 r { lm + \)p 7r{2n + l)q

-.cos
m-0n=0 2M

.cos-
2V

(2.7)

First 1-DCT is performed for rows and then for columns. The 1-D DCT is calculated by

separating equation-1 into rows and column parts.

W here C and C* are calculated as

C =

^ 3 1 7 0 23170 23170 23170 23170 23170 23170 23170^

32148 27246 18205 6393 -6393 -18205 -27246 -32138

30724 12540 -12540 -30274 -30274 12540 12540 30274

27246 -6393 -32138 -18205 18205 32138 (%93 -27246

23170 -23170 -23170 23170 23170 -23170 -23170 23170

18205 -32138 6393 27246 -27246 -6393 32138 -18205

12540 -30274 30274 -12540 -12540 30724 -30724 12540

1 ^ 3 9 3 -18205 27246 -32138 32138 -27246 18205 -6 3 9 ^

23

r

c '

23170 32138 30274 27246 23170 18205 12540 6393

23170 27246 12540 -6393 -23170 -32138 -30274 -18205

23170 18205 -12540 -32138 -23170 6393 30724 27246

23170 6393 -30274 -18205 23170 27246 -12540 -32138

23170 -18205 -12540 32138 -23170 -6393 30274 -27246

23170 -27246 12540 6393 -23170 32138 -30274 18205

^ 3 1 7 0 -32138 30274 -27246 23170 -18205 12540 -6 3 9 2 ^

The intermediate value Z = X»C' can be calculated as follows:

Where

X =

xOO x01
x 1 0 XVI
X20x21
X30x31
x40 X41
X50 X51
X60 X61
X70x71

x02x03
x12 x13
X22X23
X32X33
X42x43
X52XS3
X62X63
X72x73

X04 X05
x14 x15
x24 X25
X34 x35
X44 X45
X54 x55
X64 X65
X74 X75

x06 x07
x16xT7
X26x27
X36x37
X46 X47
x5€ x57
x66 x67
x76 x77

Z(0,0)-23 1 7 0 (Xoo+Xoi+Xo2+Xo3+Xo4+Xo5+Xo6+Xo7)

Z(0,,)=32138x00+27246x01+18205X02+6393X03^6393X04-18205x05-27246x06-32138X07)

=3 2 1 3 8(xoo-xo?)+27246(xo i -xoo)+1 8205 (xo2-xq5) + 6 3 93 (X03-X04)

Z(o,2)=30274(xoo-xo7)+12540(xoi-xo6)-12540(xo2+Xo5)-30274(xo3+xo4)

Z(o,3)=27246(xoo-xo7)-6393(xoi-xo6)-32138(xo2-xo5)-18205(xo3-xo4)

Z (o,4)= 23 1 7 0 (xoo- xo7)-2 3 1 7 0 (xo i- xo6)-2 3 1 7 0 (xo2+ xo5)+ 2 3 1 7 0 (xo3+ xq4)

Z(0,5)= 1 8205 (xoo-xo7) - 3 2 138(xoi -Xoo)+6393(xo2-xo5)+27246(xo3-xo4)

Z(o,6)=12540(xoo-xo7)-30274(xoi-xo6)+30274(xo2+xo5)-12540(xo3+xo4)

Z(o,7)=6393(xoo-xo7)-18205(xoi-xo6)-27246(xo2-xo5)-32138(xo3-xo4)

24

Or
Z(k,0)=23170(XkO+Xki+Xk2+Xk3+Xk4+Xk5+Xk6+Xk7)

Z(k,i)~32138xko+27246xki+18205xk2+6393xk3-6393xk4-l 8205xk5-27246xk6-32138xk7)

=32138(xko-Xk7)+27246(xki-Xk6)+18205(xk2-Xk5)+6393(xk3-Xk4)

Z(k,2)=30274(Xko-Xk7)+12540(xki-Xk6)-12540(xk2+Xk5)-30274(xk3+Xk4)

Z(k,3)=27246(xko-Xk7)-6393(xki-Xk6)-32138(xk2-Xk5)-18205(xk3-Xk4)

Z(k,4)=23170(Xko-Xk7)-23170(xki-Xk6)-23170(xk2+Xk5)+23170(xk3+Xk4)

Z(k,5)=18205(xko-Xk7)-32138(xki-Xk6)+6393(xk2-Xk5)+27246(xk3-Xk4)

Z(k,6)=12540(xko-Xk7)-30274(xki-Xk6)+30274(xk2+Xk5)-12540(xk3+Xk4)

Z(k,7)=6393(xko-Xk7)-18205(xki-Xk6)-27246(xk2-Xk5)-32138(xk3-Xk4)

Where k=0,2..........7

Then 2-d DCT function is calculated from Y= CZ. Where Z is 1-D DCT matrix for input

X and C is matrix o f cosine coefficients.

Figure 3.2 1-D DCT Implementation [18]

25

The above bloek diagram is used for implementation o f 1-d DCT. First 1-D DCT

values are ealculated and stored in a RAM and seeond 1-D DCT is done on the values

stored in the RAM. 8X8 inputs are loaded into adder/subtractor whose outputs are fed to

the multiplier. The multiplier takes constant coefficients from the ROM and feed into the

second input o f the multiplier. The multiplier outputs are given to adder which will

perform additions and gives 1-D DCT Coefficients which will be stored in a transpose

buffer (RAM). The toggle flip flop controls the addition and subtraction operations.

Toggle

ADD

ADD

SUB

ADO

Figure 3.3 2-D DCT Implementation [18]

2 6

The values stored in the transpose buffer are read column by column and fed as input

to second DCT. The output o f DCT is 2-D DCT coefficients which are used as inputs to

quantizer for further processing.

3.2.3 Quantization

The quantization process reduces number o f bits used to represent the DCT

coefficients. Since Human eye is less sensitive to high frequency components than low

frequency components so quantization factors are high for high frequency components

than low frequency components.

The quantization operation is an integer division o f the 2-D DCT coefficients by pre

defined values. These pre-defined values are stored in tables called quantization tables.

There are two quantization tables for baseline JPEG standards one for Luminance (Y)

and other for Chrominance components (Cb and Cr). The optimum values o f the

components in quantization tables are dependent on the application, but the JPEG

standard suggests typical tables that have a good efficiency for any application [9].By

quantization we can eliminate coefficients which are less perceptible to human eye.

Figure 3.4 Quantization Architecture [9]

27

The quantization architecture designed as shown in fig. 3.5. The quantization

architecture uses two ROMs for storing the quantization tables for Luminance and

Chrominance components. For the multiplier we use barrel shifters controlled by

quantization values stored in the ROMs. By using the barrel shifters for the multiplication

we can reduce the number o f clock cycles required for multiplication. For each array

element o f 8X8 blocks, there is a specific constant to be used from the quantization table

for the division operation [9].

The quantization tables used for the JPEG compressions are presented in these are

tables proposed by standard JPEG-92. The quantization tables used for compression and

reconstruction are exactly same. Scaling factor is used to get the desired compression

levels. The scaling factors after 2-d DCT are multiplied with quantization values and

multiplied values are stored in ROM [9].

The Quantization operation is given by

Cqij = round
r
CijX 1_

Q ij X F c i j

0 - i j - 7

W here
Cqij quantization coefficient
Cij Coefficient o f 2-d DCT
Q ij quantization constant
Fey Scaling factor

. The quantization values (Qy) and scaling factors (Fey) are as given below:

Qîîj =

C 11 10 16 124 140 151 161 145 X

12 12 14 19 126 158 160 155

14 13 16 24 140 157 169 156

14 17 22 29 151 187 180 162

18 22 37 56 168 109 103 162

24 35 55 64 181 104 113 192

49 64 78 87 103 121 120 101

. 72 92 95 98 112 100 103 199J

2 8

QCÿ =

r 17 18 24 47 99 99 99 99 9 9 ^

18 21 26 66 99 99 99 99 99

24 26 56 99 99 99 99 99 99

47 66 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 J

r

Fcii

8, 10 11,10 10, 45 9,41 8, 00 6, 29 4, 33 2,21

11, 10 15, 39 14,50 13, 05 11, 10 8, 72 6,01 3 ,07

10, 45 14,50 13,66 12, 29 10, 45 8,21 5, 66 2, 88

9,41 13,05 12,29 11,06 9,41 7, 39 5, 09 2, 60

8, 00 11, 10 10, 45 9, 41 8, 00 6,29 4, 33 2,21

6, 29 8, 72 8,21 7, 39 6, 29 4, 94 3, 40 1,73

4, 33 6,01 5, 66 5,09 4, 33 3,40 2, 34 1,20

Q 2,21 3,07 2, 88 2, 60 2,21 1,73 1,20 0 , ^

The basic operation o f quantizer is multiplying Cy with l/(Qy * Fey). In the

quantization architecture it uses ROM memory for storing the controls o f the four

dislocated ones indicating the displacements that must be carried by each barrel shifter,

instead o f storing quantization matrix. Each barrel shifter uses three bit control for the

displacement i.e. total o f 12 bits. B S l uses three most significant bits where as BS4 uses

three least significant bits. The input to quantizer is 15 bit and output is 10 bits that means

it reduces periodically the number o f bits that represent the data. Quantization operation

is carried in the pipeline o f three stages. In the first clock cycle quantizer takes the input

and corresponding calculates displacement and addition o f shifted inputs form B S l, BS2,

29

BS3, BS4 are carried in A, B adders and in the next clock cycle adder C adds the result

o f adder A and B. In the next clock cycle we will get the output

Table 3.1 Barrel Shifter Controls

C ontro l Barre l Shifter

000 6 zero zero zero
001 7 9 10 11
010 8 10 11 12
o i l 9 11 12 13
100 10 12 13 14
101 11 13 14 15
110 X 14 15 15
111 X 15 15 15

In the quantizer architecture the control word are stored in column by column. So

when we are reading the inputs for quantizer that is outputs o f DCT we should read

column by column.

3.2.4 Zig Zag Scanning

Quatized DCT coefficients will have zeros in the high frequency region o f image

blcok i.e. right bottom com er o f the block. For getting more number o f zeros at the same

place, we scan the image block in such a way that all the zeros will accumulate at the end.

Zig Zag scanning is very useful for further processing o f the image. It maps 2-D 8X8

image to 1X64 1-D coefficients.

30

f / / / / / / /I
I' / / / / >

/ / / / /
I' / / / / / /
f / / / y / / •d

/ / / / /
1 /̂

8x8

3.2.5 Entropy Encoder

DC

m M x

DC 1'

Acn

AC1

ACM

Figure 3.5 Zig Zag Scanning

StzA Cèkülatlon s iz e . DCHWman
Coder

RLE
Coder

VLC
Coder

size

---- Size CakadatKxi AC Huffman
1 ^ Coder

[— ►

Slze|AmpMude
DC Code

Run/SizelAmpllhjde
AC Cod#

AC I luWman
Tables

Figure 3.6 Entropy Encoder [7]

The last stage o f JPEG Compression is entropy encoding. This block improves

overall compression efficiency by performing lossless coding on the quantized DCT

coefficients. The entropy encoder receives 10 bits input after quantization and gives

output o f 32 bit JPEG in an asynchronous way. The entrance o f the architecture o f the

entropy encoder is synchronous and exit is asynchronous. This is mainly due to two

31

reasons, one is the output o f the Run Length Encoder (RLE) is asynchronous and it is

propagated throughout the architecture and other is due to different lengths o f Huffman

codes.

After quantization the resulting matrix will have large number o f zeros which are

read in Zig Zag manner to increase the sequence o f zeros. Entropy encoder uses

differential coding, Run Length Encoding (RLE), Variable Length Coding (VLC) and

Huffman encoding to make the reduction in the number o f bits used to represent the

image after JPEG Compression [6,9,10].Color and gray scale image follow same step for

entropy coding, but the differential coder and Huffman coder are different for color and

gray scale images. In entropy coding DC and AC components are processed separately.

The component in the position <0, 0> (first line first column) o f the 8X8 matrix is called

DC Component and reaming 63 components are AC Components. The first operation is

Differential coder for DC components and Run Length Coder (RLE) for the AC

components.

The DC Components o f successive 8X8 windows in an image are highly correlated.

So by differential encoding we will only take the difference between actual DC

Component and previous DC Component o f the previous matrix. The differential code is

coded by VLC coder and it is also used to calculate number o f significant bits that are

generated by VLC coder. This is done by Size calculator. So, by VLC encoder we will

get the amplitude and by Size calculator we will get the sizes which are given as inputs to

Huffman coder. Huffman coder uses Huffman tables which are stored in ROMs (one for

Luminance and one for Chrominance DC Components) to get the outputs. The values

32

generated by Huffman coder and VLC coder are concatenated to get the JPEG DC code

[7].

For Processing AC components, first step is counting the number o f zeros before non

zero coefficient which is will be done by Run Length Encoder (RLE). The RLE encoder

compresses an input stream by representing consecutive zeros by their run-length. The

Run Length Encoder counts number o f zeros until the last zero is present or it reaches

maximum zero count. So the output o f Run Length Encoder is [Run Length and

Amplitude]. The non-zero values are passed through VLC encoder to get the amplitude

and also it is given to Size Calculator to calculate the size. Both Run and Size are

concatenated and are Huffman Coded. Huffman encoder takes codes from predefined

Huffman tables which are stored in FPGA internal ROMs. VLC coder amplitude,

Coefficient Size, Huffman Code and Huffman Size are given to Pre assembler which will

concatenate the VLC amplitude and Huffman Size to give variable length code which is

applied to Assembler for further processing. The number o f significant bits in the

amplitude o f Preassembler is given by addition o f Coefficient Size and Huffman Size.

In the assembler stage amplitude is assembled into 32 bit words output Compressed

JPEG bit stream.

The pipelined architecture o f entropy encoder is given as

%o

OK

JPEG

^ DC AmpWud*
^ AC AmpAud#
^ Run
Q) AmpACDC
<§) CceffVeienl

VLC
Coder

Size
C a lc u la tio n

Hulfrnan
Coder

Assembler
Differential

Coder

RLE
Coder

Figure 3.7 Pipelined Architecture for Entropy coder [20]

33

In the pipelined architecture intermediate registers are used for the synchronization o f

different operations.

3.2.5.1 Differential Coder

Differential coding is the first operation in the entropy encoding. It is used only for

DC components. Differential coder performs simple subtraction between the current

matrix DC component and previous matrix DC component o f the same color elements.

The result is called Amplitude DC.

i
a

Figure 3.8 Differential Coder [20]

The Differential coder for color images is presented in above Fig 3.8. It consists o f

three 10 bit registers for storing the previous DC Coefficients o f each color matrix

(Y,Cb,Cr) and one 10 bit adder for performing the subtraction operation. The writing o f

the register is done when the ACDC signal is active high that indicates the matrix value is

DC. By using YCbCr signal we can select which register we need to write. We will use

multiplexer signal YCbCr to select exact adder input form Luminance or Chrominance

registers. W hen rst signal is low the DC coefficient is writes the input into the register

according to the signal ACDC and YCbCr and the same input is given to Adder. The 10

34

Bit Adder performs the subtraction operation and gives the output which is processed by

VLC encoder in the next clock cycle.[20]

Registers
YCbCf ACDC Y Cb Cr

00 0 Yes No No
01 0 No Y es N 0
10 0 N 0 No Y es
X 1 No N 0 No

Table 3.2 Selection o f Component

The signal YCbCr is used to control the multiplexer which gives the input to
subtractor.

3.4.5.2 Run Length Encoder

Run Length Encoder (RLE) is used for counting the number o f zeros in the AC

components. Run length Encoder is same for gray and color images. RLE coder

architecture is presented below.

$
&
I
Ü<

ACDC

Figure 3.9 Run Length Encoder [20]

35

The AmpACDC and Run, Okrle registers presented in architecture are same registers

which are used in the global Entropy coder architecture for pipelining. The output o f RLE

coder is asynchronous where as input is synchronous. While Run length Encoder is

counting number o f zeros, OKrle signal goes low and there w on’t be any valid output.

W hen the non-zero input occurs RLE coder stops counting the zeros and it updates the

outputs with new pair o f Run and AC amplitude. RLE architecture has a flag (Okrle) to

indicate when new valid outputs are available. There are two restrictions in RLE coder

that are imposed by JPEG standards [20].

The first restriction is maximum value o f Run should be 15 then zero counter has 4

bits. W hen there are more than 16 zeros in the sequence, the zero counter will be restarted

and the output is sent has 15/0 Run/Amplitude pair, which indicates there are 15

continuous zeros fallowed by zero. Counter used in the RLE coder controls this

restriction. W hen it reaches 15 zeros followed by 0 it will automatically give outputs 15

for Run and zero for AmpACDC. The second restriction is when the input is sent which

is last input and it is Zero than Last signal will come into picture and it controls the

outputs by sending this bit as the last bit. If the value is zero than it will reset the output

register forming the pair 0/0. In the normal operation when these two restrictions doesn’t

occur the counter operation counts the number zeros and when it is counting, Okrle signal

goes low indicating output is not ready. W hen the non-zero input occurs Okrle signal

goes high indicating valid output and ACC signal gives number o f zeros to Run register

and amplitude is sent to AmpACDC register [9].

Differential coder and RLE coder must operate in perfect synchronism, so that they

can be used by other components in the Entropy coder at the same pipeline stages. The

36

DC and AC amplitudes generated by Differential and RLE coder pass through the

multiplexer controlled by ACDC signal to get the correct output to be used in the rest o f

the architecture.

3.2.5.3 Size Calculator

DC and AC amplitudes are applied to Size calculator that indicates number o f

significant bits o f the AmpACDC value. The size calculation is done by looking at the

tables proposed by JPEG standards [6].

The size calculation table is given as

Table 3.3 Size Calculation table

Value Size

0 0(0000)

-1,1 1(0001)

-3,-2,2,3 2(0010)

-7 ...-4 ,4 ...7 3(0011)

-15....-8,8....15 4(0100)

-31...-16,16...31 5(0101)

-63...-32,32...63 6(0110)

-127...-64,64....127 7(0111)

-255...-128,128...255 8(1000)

-511...-256,256....511 9(1001)

-1023..512,512 1023 10(1010)

37

From the above table we can generate coefficient size o f 4 bits which is used to

control the VLC coder architecture and it is also given as input to the Huffman coder and

pre assembler architectures. Amplitude form Differential coder or Run Length Encoder is

given as input to Size Calculator to find out the Coefficient Size.

3.4.5.4 Variable Length Coder:

Variable Length Coder (VLC) is used to identify which bits among the 10 bits

AmpACDC are significant with the objective to discard the not significant bits, including

the sign bit. The negative number must be represented in one’s compliment to be VLC

coded. The entrance o f the VLC coder has a controller to discard sign bit. The signal

interpretation is also inverted: a number that starts with zero is negative and a number

that starts with one is positive.

The number o f shifts to left to each Coefficient Size value is given as.

Table 3.4 VLC Architecture Shifts

Coefficient
Size

Number o f
shifts to left

0 10
1 9
2 8
3 7
4 6
5 5
6 4
7 3
8 2

9 1

VLC encoder uses Barrel shifter controlled by Coefficient Size which is calculated

from size calculator. This barrel shifter shifts the AmpACDC value to the left to put the

38

first significant bit as most significant bit o f the word discarding sign bit. The ealculated

amplitude is called VLC Amplimde. The output o f the VLC coder is 9 bit which is not

really variable length. The assembler in the next stage will discard the not significant bits

and generates Variable length Codes.

3.2.5.5 Huffman Encoder:

The Coefficient size (to DC Coefficients) and concatenation o f Coefficient Size and

Run (to AC coefficients) are Huffman coded. The architecmre proposed below uses static

Huffman tables proposed by JPEG 92 standards. In the Huffman coding, the compression

is achieved by assigning short code words to input symbols o f high probability and long

code words to low probability input symbols. For a given source-probability distribution

Huffman coder gives optimum symbols to represent the data [7]. The use o f standard

tables simplifies hardware but decreases the compression rate [7]. Huffman Coder

architecture designed for color images is given below.

, H u ffm an
' T a b le s

ROM1
12x13Wh

MRP a

YCbGM
Huffman

CodeROW2
lAlSb**

"0000
& Size C bO r/D C I1MSB &

x)oo«xr%
4m.aB

ROM3

ACDC1

ROM4
178x21 M

C bC r/A C

31SB
y Hu*msn

Size
YCbCfl

Figure 3.10 Huffman Coder Architecture [20]

39

The architecture presented above uses four ROM memories for storing the Huffman

tables used to code color images: one for DC Luminance, one for AC Luminance, One

for DC Chrominance and one for AC Luminance components. The Huffman tables store

Huffman code and Huffman size. The size o f Huffman codes can be calculated by Size

calculator but we know the sizes o f Huffman codes so we can directly store the Huffman

size into static tables which eliminates delay. So the output o f ROM memories is

Huffman code followed by Huffman Size. The values to be Huffman coded are used like

address to these memories. The number o f words and bit width used to represent

Huffman codes were optimized. The DC tables use 12 memory positions with 4 address

bits (Size). AC tables uses 176 memory positions with 8 bit address bits (Run & Size).

DC Luminance table 9 bits to Huffman codes and 4 bits for Huffman size. DC

Chrominance table uses 11 bits for Huffman codes and 4 bits for Huffman tables. AC

Luminance and Chrominance components uses 16 bits for Huffman Code and 5 bit

Huffman Size. Two multiplexer are used to which o f the four memories should be

connected to the output. In the two multiplexers YCbCr signal is used as a controller to

process either Luminance(Y) or Chrominance (CbCr). ACDC signal is used to get the DC

or AC component as the output. The Huffman code and Huffman Size are applied to Pre

assembler for further processing.

3.4.5.6 Preassembler

The Pre-assembler architecture receives four inputs generated form the previously

explained blocks: VLC Amplitude from VLC coder. Coefficient Size from Size

Calculator and Huffman Size, Huffman code from Huffman Coder and generates two

outputs Amplitude and Size which will be used in Assembler architecture.

40

S iz e

'O’s
CoefTtoent Size

B S A

Figure 3.11 Preassembler Architecture [20]

VLC Amplitude bits are shifted to right by Barrel Shifter (BSA) that is controlled by

Huffman Size. These shifted codes are assembled with Huffman Code by ‘O R’ logic

operation. The Huffman code is concatenated with zeros in the right which are used as a

mask in performing the ‘O R’ logic operation with VLC amplitude. The ‘O R’ logic

operation preserves only significant bits which makes the code variable length. Assembly

o f the Huffman code and VLC code generates Pre-assembler output Amplitude o f 28 bits.

The addition o f Huffman Size and Coefficient Size gives the number o f significant bits in

the Amplitude output which represented by Size.

3.4.5.7 Assembler

The final assembling o f words in JPEG is carried through the Assembler architecture

con sid er in g o n ly s ig n ifica n t b its o f the A m p litu d e input. The S iz e input gen erated from

the Pre-assembler indicates how many bits are significant among the 25 Amplitude bits

V I

41

OK

JPEG
word

»j

Figure 3.12 Assembler Architecture [20]

The Assembler architecture consist o f one Barrel Shifter (BSB) controlled by

accumulation o f Size values and an ‘O R’ logic operation to assemble the significant hits

o f different inputs. The assembly o f the words is controlled by an adder which

accumulates different sizes o f input Amplitudes and stores into the register ACC.

The Assembler uses two 32 bit registers to assemble jpeg words. The High registers

stores the 32 most significant bits from the Barrel shifter (BSB) output. W hen it records

the 32 bits it will send the word as output JPEG word and OK register sends the output is

valid. The Low register is used to store Overflow bits when the generated values from the

Barrel shifter (BSB) as more than 32 significant bits. This overflow hits are again sent to

High register when new jpeg word is ready to assemble. The maximum size o f Amplitude

input is 25 bits and the higgest displacement possible by Barrel shifter is 31 hits, so the

output o f Barrel shifter should be 56 bits. O f these 56 hits, 32 bits most significant bits

are used in the ‘O R’ logic operation whose result will he stored in High register and the

remaining 26 bits are stored in the Low register. ‘O K ’ register indicates new valid data is

ready. OK signal is also act as control signal for the multiplexer which decides input for

the ‘O R’ logic operation. I f the new jpeg word is ready it takes the values from the Low

42

register otherwise it allows High register as input to the jpeg word. The assembler

operation is enabled only when the RLE eoder generates valid outputs. This is eontrolled

by O krelel signal. O krlel signal is generated when the valid output is present at the RLE

eoder with one delay eloek eyele. In this way we ean eliminate the effeet asynchronous

results given by RLE eoder [20].

43

CHAPTER-4

RESULTS AND DISCUSSIONS

4.1 Simulation Waveforms

4.1.1 Color Conversion

N a m e 1 V a lu e ■ 100 , 200 . 300 400 , 50C --------- "%0 1 700 ■ 800 > 900 1000 1 1100 1 1200 '

Cio ■

1 ^

1

C lock 0

^ C lockE n... 1 r............

8F <= XFF XF» X « X»F XOF X31

RI (- Xff X w , XM XD3 Xl7 .. X I L

b 'j <= (i"i %FF x « XD5 X'df

Y EE ;(cicp XIO Xe b X " XOE Xffi

œ "O Cb 80 ;<oo x « X70 Xso X07

B - o Cl 80 '■{m x«» Xfc X05 X72 XB7

Fig 4.1 Simulation o f Color Conversion

The eolor conversion module inputs are R, G, B, elk, elken and ouputs are Y, Cb, Cr

For the inputs R = FF, G = FF, B = FF Outputs are Y = EB, Cb = 80, Cr = 80.

Latency o f eolor conversion module is five eloek cycles.

44

4.1.2 Discrete Cosine Transform (DCT)

Name

î>-RST

Value

0

| I I 200 7 ' 400 1 600 , 800 , 1000 ,

l<=o i 1

1200 1400 1 1800 , 2000 , 2200 , 2400
JM 50 ns ...:...........

^CLK 1

m ^ xin DD :<=,,. ifuLI XfF X'fS Xe8) (C 5 XoD

m ^ z _ _ o u \ 0F7 \ Kooo X0F7 X03F X02B X7D6 XOOOXOII X7F8)(7F1 XiOS X̂OOO

rdy_out 0 1

E) -c dct_2d 000: I ffbooo

N a m e V a l u e S t i . . . 1 . 9 .4 . r — 1 , . 9 i . , . Ip . , 10.2 1 . 10/ 10.6 1 10.8 , % 1l ' 7 7 \ " l f 2 " i . 114 . , 11,6 '...... ' . 3,

>>■ R S T 0 < = 0

" > C L K 1 D o . . . j7rUijmrL^n_rur^^uu^uaj^r^uTrmj“mjLr
B ^ x in D D

l+J ^ 2 o u t 1 0 8 | l 0 8 X^OO X 1O8 X ooo X108 X ooo

o r d v _ o u t 1

Œ! d c l _ 2 d 1 7 4 6

Fig 4.2 Simulation o f DCT

DCT input matrix is
r

Xin=

FF F8 E8

DD DD DD

DD DD DD

DD DD DD

DD DD DD

DD DD DD

DD DD DD

DD DD DD

E9 A9 A5

DD DD DD

DD DD DD

DD DD DD

DD DD DD

DD DD DD

DD DD DD

DD DD DD

C5 DD

DD DD

DD DD

DD DD

DD DD

DD DD

DD DD

DD DD

2-D DCT coefficients are obtained by calculating 1-D DCT on rows first and then on the

columns.

First 1- D DCT Output we get on the 14 th eloek eyele and these outputs are stored in

a transpose buffer. Second DCT is applied on the outputs o f the transpose buffer.

We get 2-D DCT coefficients starts from 95^ eloek eyele DC coefficient is 1746 and

after that for every eloek eyele we get other AC coefficients.

45

4.1.3 Quantizer

N a m e V a lu e Sti... 100 1 200 1 300 . 400 ' 5 0 0 1 1 800 1 000 1 lopo , 1100 1 1200

o~ f e s e t 0 < = 0 1 Î..........................‘

^ e lk 1 D o .. .

lo a d 1 < = 1 .1

YCbCr 0 < = ... I

m ^ d a ta <uuu X200 X249 X 4 K X449 X 4 C X 4 K X4DC X45B X3Z7 _ X 495 2 ^

Œi ^ q u a n L ir’i Ü3EC < uuuu Xe73F X^SCE X^BCC X^BEC X^SEC | X^^ED X o ooo Xoooo Xoooo

i±! q u a n L o u t 0 5 3 <000 Xo X04D X02C X004

rdyquant 1 1 1 ...

i.+.i b s l _ o u t 0 0 0 3 .(0000 X0033 X0037 XOOIB Xoooo Xoooo Xoooo

5 ^ b s 2 _ o u t 0 0 0 1 (oo o o XOOOD Xotiot Xoooo “ X oool Xoooo

t o u t 0 0 0 0 <0000 Xoooe Xoooo Xoooo

l±i *r b ? 4 _ o u t 0 0 0 0 <0000 Xoooo Xoool Xoooo

itj ^ a d d e t_ a IJ0U4 <0000 X0033 Xo044 X0023 Xo004 Xoooo Xo004 Xoooo Xoooo

[±i ^ a d d e r _ b 0 0 0 0 <0000 Xoooo X0004 ~Xo(IOO

1+] ^ a d d e r _ c 0 0 2 C <0000 Xoooo X004D <002C Xo004 Xoooo Xo004 Xoooo

E] a d d e r _ in c 0 4 D <000 X im X o to X02C X004 X003
I M l

Fig 4.3 Simulation o f Quantizer

Quantizer divides input DCT eoeffieients with predefined number to represent data

with less number o f bits.

Quantizer inputs are YCbCr, load(rdy signal form DCT), Quantin and Outputs are

Quant out and rdyquant.

YCbCr selects the predefined value form luminance or Chrominance component ROMs.

For the inputs quant in = 673F (110011100111111), YCbCr = 0 (Luminance)

The first predefined value data = 200(100000000000).

Output is quant out = 033(0000110011).

For the inputs quant in = 673F (0001100111001110), YCbCr = 0 (Luminance)

The first predefined value data = 249(001001001001).

Output is quant out = 033(0001001101)

46

4.1.4 Zig Zag Scanning

m r i
^ elk 0 CIO i J i n _ n j L n j i . r L m T j m n n n r L i T _ r u m r L r i J L R n n j i r
D" rdy_in 1 .1 1

E l ^ q d c L in IV' < (X X X X X X iK B X X X X ^ X i K F

I S s c a n _ m e m 0 0 K u u X«o X m X * X « X M X « X " X " X '9 X ’2 X «B X " X " X « : X '^ X 'a X ^ X ^ X » X « X = X = X "

r S ^ c n t6 4

^ to g g le _ m e m 1

r+] q d c L in _ r e g l (0 2 F ,0 2 F ,.. , C O C O O O O O C C C C O C C C C C O G O C O Z X J C ^
[+1 q d c L tf i_ fe g 2 [02F.U LI... ?({UUU.UUU.UUU.UUU.UUU.UUU,UUU,UUU.UUU.UUU,UUI L J L J .UUU.UUU.UUU.UUU.UUU.UUU.UUU.UUU.UUU.UUU.UUiJ.UUU.UUL

[+] zigsasL O U t Ü2F iooo

rdy_out 1

N am e V a lu e Is i i . . . 4300 1 5000 1 5200 i 5400 i 5600 i 5800 i 6000 i 6200 i 6400 ■ 6600 i r"— -------17000 1 7200 1 7400 i

ï> c lk |0 Clo... _ R j L f L r L J i R J i r m r L r L n „ a ^ _ R j m n n r L r T J i _ f L f L f L n _ r

^ rdy_in 11 <= 1

+ q d c l_ in 0 2 “ X Xo' f X X Xn?'

El sca n _ m e m 100

+ ctil64 2

^ togg te_m em j 1 1

+ g d c l in t e a l |02F ,C2F x x x x x x x x x x x x x x x x

I+J q d c t jn _ r e g 2 fQ2F UU... X l O C C O O f l O C

[S z i g z a g _ o u t |0 2 F X D C C @ @ L J G G $

rdy_out 11 r

Fig 4.4 Simulation o f Zig Zag Scanner

In the Zig Zag Scanning inputs are elk, rdy in, qdet in and Outputs are zigzag out,

rd y o u t.

W hen quantization output is ready qdet in goes high and Zig Zag Scanner starts

loading quantized DCT eoeffieients into R O M l and it continues for 64 eleok eyele.

After 64 eloek eyele Zig Zag scanner gives output in the Zig Zag manner by reading

inputs form RO M l using scan mem.

For input addresses 00,01,02,03 ... so on. Zig Zag Ouput addresses are 00, 01, 0 8 ,.. .so

on.

47

4.1.5 Differential eoder

N a m e V a lu e | s t i . . . j » ' ipo , .1 5 0 7 200 , 25 0 , 35 0 . Epo 1 450 , 500 , 550 , eoo , ■ e so 4-

reset 0 i < = o i 1 1 1
e lk 1 IC I0 . . . 1 1 1 1 1 ■ . . . 1 r “ . . 1 f 1 1 1 1
rdyq u an tl] - - - . 1

'> -A C D C ! - - - - f

El YCbCr ,i;i> X '
E l ^ D C _ c o m p

El -o D C _am p

m ^ Y

El C b

! l , VIS X'G X « X3"

1 X ' X1020 X51

16 I I X " X « 1 X « Xo
000 i i X » 3 3

Cr 000 i I

Fig 4.5 Simulation o f Differential Coder

The Differential coder is used for taking the difference o f current and previous DC

components.

Here Inputs are elk, reset, YCbCr, ACDC, rdyquant 1 and DC comp are inputs.

De amp is the output.

W hen rdy quantl is high and ACDC is low Differential eoder starts processing.

If YCbCr is ‘00’ the output is Y and “01” the output is Cb and “ 10” output is Cr.

Latency o f Differential eoder is zero.

4.1.6 Run Length Encoder

N a m e r u c r j V a l u e

c - t e s e t 1 0

o - e lk 1

la s t I 0

A C D C I

1*3 A C _ c o rn p 10 5 5

[+] A C C I 0

m a m p u ^ Q D I

^ O K ile in |1

. 1Û0 ■ 200 I 300 ■ 4Q0 • 500 700 I 800 1 900 I 1000 , 1100 i 1200

X l9 9 X'OOO X0 5 5 I X o o o X0S7 X023 X08f-‘ XoOO X")03

<0 X ’ X 3 Xo 1 X ' xo X' Xo__
K222...X o o o .. X 5 yooo j(097 J(000 j<000 j(003

K u XO Xi X 2 I X " X1 X o Xi

Fig 4.6 Simulation o f Run Length Encoder

48

RLE coder counts number o f zeros preceding non-zero input.

RLE eoder activates for when ACDC signal is high.

Here the input sequence is AC comp = 199, 0,0,0,55,0,87,23, 8F, 0, 3.

Output (Runin, ampACDCin) is [(0,199), (3, 55), (1, 87), (0, 23), (0, 8F), (0, 3)].

Okrlein is goes high when non-zero output occurs. W hen OKrlein is high the outputs are

valid.

The latency o f RLE coder depends on the oeeurrenee o f non-zero input.

4.1.7 Size Calculator

. 5.0 • I • 100 , , 150 I !2 p 0 < 2 5 0 , 3 0 0 , 3 5 0 ■ 4 0 0 , 4 5 0 i 5 0 0 , 5 5 0 i 6 0 0

^ c l k |0 C lo... 1 r 1 r 1 1 “1 r " “n r - L .

EB am pA C D C OUI {u u u XOID X «17 Xooo

E i s iz e l o {0 * X'e »

Fig 4.7 Simulation o f Size Calculator

The Size Calculator calculates size o f the input amplitude i.e. number o f significant bits

in the signal.

Input is ampACDC from Differential eoder or RLE eoder.

F or input 0 1D (0000011101) Output size = 5

03B (0000111011) Output size = 6

007 (0000000111) Output size = 3

OFF (0011111111) Output size = 8

000 (0000000000) Output size = 0

The Latency o f Size Calculator is one eloek eyele.

49

4.1.8 VLC Coder

N am e V alue Si.. t t 50 1 IOC 1 .150 1" 200 1 250) 1 300 1 350 1 400 1 450 1 500 1 5p—-~|g(

elk 0 Clo...! 1 1 1 1 1 1 1 1 1 i—
0 coef_size 1 <=1 Xs .X'

(003 X0I3 X005 Im (020

B -0 VLCamp 100 (uuu ÿso Po Im)(100

Fig 4.8 Simulation o f VLC Coder

VLC eoder identifies the significant bits and shifts the significant bits to most significant

bits. Inputs to the VLC eoder are eoef_size and ampACDC. Coef_size inputs comes from

Size calculator process which gives the number o f significant bits. ampACDC input is

form Differential eoder or RLE eoder.

If input is (10, 0000000011) output is 1100000000.

(101, 0000010011) output is 1001100000.

(1001, 101001101) output is 1010011010.

Latency o f VLC eoder is zero.

4.1.9 Huffman Coder

H a m s ' j V a lu e f I s i U f . ■ 100 200 . 300 4p0(500 600 1 7 “ 7 Î 800 900 . 1000 . liço 1 1200

o- r e s e t lo [< « 0 1 1
d k h ic io ... 1 - J L _ J — L _ J L _
r e a d _ e n i i I <= 1 '

Y C b C rl iO I <... n ,
J—

»• ACDC 10 1 1-----------

1 ‘ -I./M |3 . ■ % . y i

1+1 ru n 10 i .■ =: 1 i(u Xo X5

B h u f f _ c o d e iCOOQ 1 1(0000 XC0(0 XEOOO _J(eooo _J(AOOO J < 4 0 0 0 _V:(8000

1+1 -o h u h s iz e 103 1 Kpo X03 X04 _)(03

I.+.I ^ R 0 M 1 _ d a te i0 8 Q 3 1 1(0000 X1C04 _X pC 03 XHCI3 _X000S X1003

i+1 R 0 M 2 _ d a ta 12002 5Cj:.ono X7805 _X 7 C o e _J<4002 X?004 X2002 X6003

l+J ^ R O M 3 d a ta 0 0 0 0 0 0 I Koooooo

I'+i ^ R 0 M 4 _ d a ta o n u n u o [Küooooo

Fig 4.9 Simulation o f Huffman Coder for DC Components

50

For DC components

Huffman eoder inputs are size (Size calculator), run (from RLE eoder) and outputs are

huff_eode(Huffman code), huff size (Huffman size).

For the DC components (ACDC=0) Output is from ROM l or Rom2.

YCbCr signal selects the Output should be form Rom l or Rom 2.

For the inputs size= 5(0101) run =0 (0000) ACDC=0, YCbCr=0.

Outputs are Huffman code = COOO (1100000000000000) and Huffman size= 03 (00011).

For the inputs size= 6(0111) run =0 (0000) ACDC=0, YCbCr=0.

Outputs are Huffman code = EOOO (1110000000000000) and Huffman size= 03 (00100).

resel 0 |<=0
U iCIa.,

, I7)3nsi------ :------- :------- :------- :-------

elk _ r ' L _ n _ j L _ r D _ _ n _ _ r " L _ n ._ T i _ j L _ n _ _ n _ _ n _ _ r "
read_en 1 <=1
YCbCrl 1 <= 0_ 1

î>ACDC 1 <=1 1
El ^ size 9 X» X* X» x« x=
f+j run <-i 1 X» Xz x« X) X'

. _

!±] huff_code FFA2 I X4PPCI){WDO Xoooo XFFAO XFFOE X̂FOE XFFAO X̂F̂ ̂ X̂FOO X̂FO!
Lfj hull_size 10 X!» X™
l+l ̂ R0M1_data UMLT Xoooo
El ̂ R0M2_dala OOUL Xoooo
El ̂ R0M3_dal3 1FF4F0 i X'FF*30 X'RR̂BO X'FFIOO X'FFSOO X'FFIBO X'FFOBO
+ R0M4_doia 1FF51C XlFF*50 X’FFSDO X'̂ F'DO XF̂ t̂C XlFF2B0 X'FFIFO X'FFIIO

Fig 4.10 Simulation o f Huffman Coder for AC Components

For AC components (ACDC=1)

For AC components Outputs are taken form R 0M 3 or R 0M 4.

Y CbCr signal selects the Output should be form Rom3 or Rom4

For inputs size= 6(0110), run = 5 (0101), ACDC = 1, YCbCr = 1.

51

Output is taken from R 0M 4.

Outputs are Huffman eode = FFA2 (1111111110100010) and Huffman size = 10(10000).

For inputs size= A(IOIO), run = 4 (0100), ACDC = 1, YCbCr = 1.

Outputs are Huffman eode = FF9E (1111111110011110) and Huffman size = 10(10000).

Latency Huffman coder is six eloek cycles.

4.1.10 Preassembler

Name V alue | s i i 1 ■ 2.0 40 ep 80 100 120 140 160 1 180 200 1 220 , 240 . 260 , rT C ----

1(5 K T - - ------------^
EJ VLCamp 18 0 |< = . Xieo x «

+ ^ h u f L s i z e 11/ < 1(06 X02 X07

[+} ^ huff_code 378 0 | <= . . KFCOO . Xsooci ___X37S0

+ n 02 1 X " Xia

+ ^ 12 0Ü30000 Ü0054000 Xossoooc XoOSPOOO

+ 13 06F0003 K1F80000 X0600000 X06FOOOO

LB ^ bs„in COOOGOOOi x'Aeoooooo Xbooooooo Xcooooooo

r±] ^ b s out û'GOûûo:: i(02AO000O XïCOOOOOCi Xoisooooo

E size 09 I (OB Xm

!+j -c amplilude ooroooo (1FD4000 Xo7SOOOO XoeFocioo

Fig 4.11 Simulation o f Preassembler

Pre assembler concatenates the significant bits o f Huffman eode and VLC amplitude.

Inputs for Preassembler are eoef size (Size calculator), VLCamp (VLC eoder), huff_size,

huff_eode(Huffman eoder).

For the inputs eoef_ size = 5 (0101), VLCamp = 150 (101010000), huff size = 6 (00110),

huff eode = FCOO (1111110000000000)

Outputs are size = b (01011) amplitude = 1FD4 (1111111010100000000000000).

52

4.1.11 Assembler

N am e V a lu e s t i . [■ m 1 ■ 150 1 200 . 250 , ' 300 " 350 1 400 . 460 " 1...... 500 7 ” 5 W " V eoo

i i 0 <= 0 I [

■>- d k 1 C lo .. .!1 . . I ~ 1 .. 1 1 1.............. 1 J 1 J I 1

O K rIel 1 < = 1 i - - - '

O' lo a d 1 <= 1 '

S) o s is e 04 X " XOD ÿ o F x«
@ a m p litu d e iG o m o o <= i X 'scoooo XlEOOOOO X1E5DOOO X’175D400 XiOOOOOO XlSOOOOO

\±! ^ low 0 0 0 0 0 0 0 0 X?5000000 Xoooo 000

m AT h igh 7 5 8 0 0 0 0 0 XCEOOOOOC XCFEOOOOO XCFEF2E80 XCFEF2EDD x ™ tiOOO

S) J P E G w ord C F E F 2E D D Xoooooooo XCEOOOOOO XCFEOOOOO XCFEF2E80 XCFE

^ OK 1 1

itJ ^ A C C _in 1 0 (o c Xl9 X oc Xio

B h ig h i 7 5 8 0 0 0 0 0 XCEOOOOOO XCFEOOOOO XCFEF2E80 XCFEF2EDD X7530 000

^ O K J n 0 J -------------------------------

^ c o u t 0 J 1

ŒI ^ b s_ o u t 0 0 0 0 0 0 0 .. . XcEOOOOOOOOOOOO (OIEODOOOOOOOOO XOOOFZESOOOOOOO X0000005D750000 Xoosooooooooooo X

Fig 4.12 Simulation o f Assembler

Assembler assembles the amplitude inputs to 32 bit words and sends output as JPEG

bit stream.

Inputs to the assembler are size and amplitude (fro Preassembler) and O krlel (from RLE

eoder) and Output is JPEG word and OK.

For the inputs (amplitude, size) = (07,1900000), (05, lEOOOOO), (OD, 1E6D000), (OF,

175D400), (04, 1000000), (04, 1600000)

The Output JPEG word is CFEF2ED0.

Aee in aeeumulates all the sizes and when the Aee in is 32 bits are more than that OK

signal goes high and JPEG word is the valid output.

53

4.1.12 JPEG Encoder

<=-• d k

o- d k e n

] o- Y CbCr

£>• A C D C

D" last

r e a d _ e r i

c- ACDC1

o- lo ad

icio.„i
i < = 1 i

i <= 1 I

|<=0 I
{ < - 1 I

l < = 1 j

!<=1 i
a • f2 I4F

a ■ g2 |4 F

a ' b2 14F

y i 54

a ■ cb1 100

a - ' c rl Î8 0

m ' q u an tin iOOOO

rdy 11

[+|iu- q u a n t_ c o e f1 1000

^ rd y q u a n t ! l

(tl ^ R un in 1 -------------------------- X:--------------
_ _

a w am pA C D C in ÜÜÜ Xooo

O krlein 01

o k rle l r e g _ o u t 1 I I....... ... 1

a m ux_out 0 0 0 1 Xooo

a c o e f_ s iz e :: i X» X»

+! V L C c im p lAM Xooo ,X W X 'oo

ŒÎ «''■ V L C reg_ou t 0 0 0 XllE Xooo X'lAS

i+! h u h _ c o d e FDOO Xoooo

i+1 «'’■ h u fL s iz e ÛÛ. i j X02

a ^ h u ffc o d e ie g .. . 1FD8Ü %FD80

C+j ^ huff$ izereg_ ... 11.". XOA

EG sizein 12 X oc x =

a arripliludein ilF B tA O O i X1FB6000 XlFBOflOO X1FB52S0

a XU m ux_out1 1083 i X0O4 Xooo Xooo

a XU am plitude i fB h - r io r i X'o®ooooo X1FB6000 X1FB6A00

i+i lU i t i e X»2 X oc X c

c- OK |l I............

CB JP E G w ord 1 9 4 7D 4C 34 i X947D4C34 X6BOOOOOO

Fig 4.13 Simulation o f JPEG Encoder

E n cod er m o d u le reads inputs form a tex t f ile and th ese inputs are ap p lied to C olor

Conversion module. At the end o f 6*'̂ eloek eyele Color conversion module gives Output

which is applied to DCT module. After performing 2-D DCT operation, we get the

Output at the end o f lOO'^ clock eyele which is applied to Quantizer module. Quantized

54

DCT coefficients are stored in a ROM memory o f Zig Zag Coder. After storing all 64

eoeffieients Zig Zag scanner sends Output in Zig Zag manner (172* clock eyele) and

these outputs are applied to Differential Coder, Run Length Coder, size calculation, VLC

Coder, Huffman Coder, Preassembler and Assembler modules. The JPEG word is

obtained at the end o f 192* eloek eyele.

4.2 Synthesis Report

E J O '

o

Fig 4.14 RTL Schematic o f JPEG Encoder

55

Design Summary

Synthesis Report for Xilinx Virtex 4 FPGA

Dtfviue Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Total Number Slice Registers 2 .692 1 0 .944 24%

N um ber u se d a s Flip Flops 2.GG8

N um ber u se d a s L a tch es 24

N um ber of 4 input LUTs 2 .592 1 0 ,944 23% 1

Logic Distribution

Num ber of o c c u p ie d S lices 2.34G 5 ,472 42% I

N um ber of S lices con tain ing only re lated logic 2 ,346 2 ,3 4 6 100% 1

N um ber of S lices con tain ing un re la ted logic 0 2 ,346 0% 1

Total Number of 4 input LUTs 2 ,708 1 0 ,944 24% 1

Num ber u se d a s logic 2 592

N um ber u se d a s a route-thru 67 1
Num ber u se d a s Shift registers 49

Num ber of b o n d e d lOBs 43 320 13%

Num ber of BU FG /B U FG CTRLs 2 32 6%

N um ber u se d a s BUFGs 2

N um ber u se d a s BUFGCTRLs 0

N um ber of FIFO tG /R A I^B IG s 3 36 8%

N um ber u se d a s FIF01 Gs 0

N um ber u se d a s RAM BIGs 3 1

Fig 4.15 Design Summary o f JPEG for Vertex-4 FPGA

Timing Report

Speed Grade: -11

M inimum period: 7.445ns (Maximum Frequency: 134.318MHz)

M inimum input arrival time before clock: 7.703ns

Maximum output required time after eloek: 4.221ns

56

CHAPTER 5

CONCLUSIONS

This thesis presents pipelined implementation o f ‘Baseline JPEG image compression

architecture’ on eolor images. The optimized architectures for the modules such as DCT,

quantization, differential eoder. Run length encoding, Huffman encoding were explained

and coded in VHDL (Hardware description language) using Active HDL simulator. From

simulation results it has been observed that the architecture has a minimum latency o f

187 eloek cycles for an image o f 8X8 pixels.

The VHDL eode is synthesized using Xilinx ise 9.1 simulator. The architecture requires

2768 o f logic blocks and frequency is 134.318 MHZ for Xilinx Vlrtex-4 FPGA.

57

BIBLIOGRAPHY

[1] “Home site o f the JPEG and JBIG committees”, www.JPEG.org.

[2] “Lapped Transform via Time-Domain Pre- and Post-Filtering” by Trae D. Tran,

Member, IEEE, Jie Liang, Student Member, IEEE, and Chengjie Tu, Student Member,

IEEE

[3] http://pagesperso-orange.fr/polyvalens/elemens/wavelets/wavelets.html#seetionl

[4] http://www.thepolygoners.eom/tutorials/dwavelet/DW TTut.html

[5] JPEG2000 Image Coding System Theory and Applications, by N Athanassios.

Skodras Touradj Ebrahimi School o f Science and Technology - Computer Science Eeole

Polytechnique Fédérale de Lausanne - EPFL.

[6]The International Telegraph and Telephone Consultative Committee (CCITT),

“Information Technology - Digital Compression and Coding o f Continuous-Tone Still

Images - Requirements and Guidelines” . Ree. T.81, 1992.

[7] “Image and video eomoression standards - Second Edition, Kluwer Academic

Publishers, USA, 1999 by vasudev bhaskaran, Konstantinos Konstantinides .

[8] J. Miano. Compressed Image File Formats - JPEG,PNG, GIF, XBM, BMP, Addison

W esley Longman Ine, USA, 1999.

[9] L. Agostini, S. Bampi, “Integrated Digital Architecture for JPEG Image

Compression,” European Conference on Circuit Theory and Design, Vol. Ill, pp. 181-

184, 2001.

58

http://www.JPEG.org
http://pagesperso-orange.fr/polyvalens/elemens/wavelets/wavelets.html%23seetionl
http://www.thepolygoners.eom/tutorials/dwavelet/DWTTut.html

[10] “JPEG Still Image Data Compression Standard”, by W. Pennebaker and J. Mitehell.

Van Nostrand Reinhold, USA, 1992.

[11] “Paeket Analyzer for JPEG2000 Code streams and its VHDL m odel” by Masayuki

Kurosamt, Akemi IKED AS, Khaiml Munadi and Hiioshi Kiyatt, Department of

Eleetrieal Eng., Tokyo Metropolitan Univ., Japan

[12] http://mtg.upf.edu/~xserra/eursos/TDP/refereneies/Park-DW T.pdf

[13] Kumar, C.S., "Comments on 'Subband coding o f images'," Acoustics, Speech and

Signal Processing, IEEE Transactions on , vol.36, no.7, p p .1089-1090, Jul 1988 [14]

“Verilog HDL: A Guide to Digital Design and Synthesis” , by Samir Palnitkar, SunSoft

Press, Prentice Hall.

[15] “Design o f Architectures for JPEG Image Compression (portuguese). M aster

Dissertation by L. Agostini, Federal University o f Rio Grande do Sul. Informatics

Institute. Pos-Graduation in Computer Science Program, Porto Alegre, Brazil-

[16] “JAGAR: A Fully Pipeline VLSI Architecture for JPEG Image Compression

Standard”, by M. Kovae and N. Ranganathan, Proceedings o f the IEEE, vol. 83, 1995,

pp. 247-258.

[17] http://www.xilinx.eom/support/doeumentation/application_notes/xapp930.pdf.

[18] http://www.xilinx.eom/support/doeumentation/applieation_notes/xapp6I0.pdf.

[19] Lei, S.-M.; Sun, M.-T., "An entropy coding system for digital HDTV applications,"

Circuits and Systems for Video Technology, IEEE Transactions on , vo l.l, no .l, p p .147-

155, March 1991.

59

http://mtg.upf.edu/~xserra/eursos/TDP/refereneies/Park-DWT.pdf
http://www.xilinx.eom/support/doeumentation/application_notes/xapp930.pdf
http://www.xilinx.eom/support/doeumentation/applieation_notes/xapp6I0.pdf

[20] Agostini, L.V.; Silva, I.S.; Bampi, S., "Pipelined entropy coders for JPEG

compression," Integrated Circuits and Systems Design, 2002. Proceedings. 15th

Symposium on , vol., no., pp. 203-208, 2002

60

VITA

Graduate College
University o f Nevada, Las Vegas

Arun kumar reddy Toomu

Loeal Address:
4248 Grove Circle, apt 3
Las Vegas, N V -89119

Degree:
Bachelor o f Technology in Electrical and Computer Engineering, 2006
JNT University, Hyderabad, India

Thesis title: Pipelined Implementation o f JPEG Image Compression using VHDL

Thesis Examination Committee:
Chairperson, Dr. Henry Selvaraj, Ph.D.
Committee member. Dr. Emma Regentova, Ph.D.
Committee member. Dr. Yahia Baghzouz, Ph.D.
Graduate College Faculty Representative, Dr. Laxmi gewali, Ph.D.

61

	Pipelined implementation of Jpeg image compression using Hdl
	Repository Citation

	ProQuest Dissertations

