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ABSTRACT

Pipelined Implementation of JPEG Image Compression using VHDL

by

Arun Kumar Reddy Toomu

Dr. Henry Selvaraj, Examination Committee Chair 
Professor o f Electrical and Computer Engineering 

University o f Nevada, Las Vegas

This thesis presents the architecture and design o f a JPEG compressor for color 

images using VHDL. The system consists o f major parts like color space converter, down 

sampler, 2-D DCT module, quantization, zigzag scanning and entropy coding. The color 

space conversion transforms the RGB colors to YCbCr color coding. The down sampling 

operation reduces the sampling rate o f the color information (Cb and Cr). The 2-D DCT 

transform the pixel data from the spatial domain to the frequency domain. The 

quantization operation eliminates the high frequency components and the small amplitude 

coefficients o f the co-sine expansion. Finally, the entropy coding uses run-length 

encoding (RLE), Huffman, variable length coding (VLC) and differential coding to 

decrease the number o f bits used to represent the image. The JPEG compression is a lossy 

compression, since downsampling and quantization operations are irreversible. But the 

losses can be controlled in order to keep the necessary image quality.

Architectures for these parts were designed and described in VHDL. The results were 

observed using Active-HDL simulator and the code being synthesized using xilinx ise for 

vertex-4 FPGA. This pipelined architecture has a minimum latency o f 187 clock cycles
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CHAPTER 1 

INTRODUCTION

The transition from magnetic film based image representation to digital representation 

has been primarily motivated by the ease o f working with digital data and better special 

representation o f the image. Over the years, the need for image compression has grown 

steadily and currently it is being recognized as an enabling technology. For example, 

image compression has been and continues to be crucial to the growth o f multimedia 

computing. In addition, it is the natural technology for handling the increased spatial 

resolutions o f today's imaging sensors, and evolving broadcast television standards. 

Furthermore, image compression plays a crucial role in many important and diverse 

applications, including videoconferencing, remote sensing, document and medical 

imaging, facsimile transmission (FAX), and the control o f remotely piloted vehicles in 

military, space, and hazardous waste control applications. In short, an ever-expanding 

number o f applications depend on the efficient manipulation, storage, and transmission o f 

binary, gray-scale, or color images. One notable area o f application which is greatly 

driving R&D in image compression is the enormous growth in the use o f Internet and 

mobile communication devices that generated a revolution in the way human-beings 

communicate and exchange information. The necessity o f efficient digital information



delivery (e.g. images) in those devices is imperative, and different methods to do that 

have been proposed. A digital image uses a big storage space and big bandwidth for 

transmission, in mobile devices this is a problem because the space and bandwidth can be 

spent or saturated rapidly. A possible solution to solve this problem is to find a 

representation that use less information to represent digital images, by this necessity 

image compression emerges in the field o f video and digital images. Image compression 

addresses the problem o f reducing the data amount required to represent a digital image 

and is made by a removal process o f the image redundant information [I]. An ideal 

scheme is to make lossy image compression in order to save a lot o f  storage space but 

sacrificing the quality o f an image. We can compress the image with lossless 

compression techniques (e.g. Run Length Coding, Huffman Coding) but the compression 

ratio is small. These techniques are highly useable in the areas like Medical and Military 

applications where highly accurate data is needed.

JPEG image compression is lossy compression technique which is based on transform 

coding. Basically the image compression techniques make use o f following factors for 

the compression: One is majority o f useful content changes relatively slowly across the 

image. So by transforming the image content to frequency domain we can represent data 

as frequency components. Usually low frequency components contain most o f the image 

data than high frequency components. For compressing the image we can eliminate the 

high frequency components. The other is defects in Human visual system (HVS). Humqn 

eye is less perceptible to High frequency components than low frequency.



1.1 Background

Digital image compression is a very popular research topic in the field o f multimedia 

processing. The main objective o f research is to develop architecture for JPEG 

Compression schemes that give good visual quality and speed. The Compression 

technique was implemented hardware description language like VHDL, VERILOG. 

Hardware implementation speeds up image/video processing comparing to software.

1.2 Thesis Outline

This thesis is organized into five chapters. Chapter 1 gives the introduction. Chapter 

2 gives an overview o f image compression and classification o f compression schemes. It 

discusses different compression methods such as subband coding, discrete cosine 

transform (DCT), lapped transform (LT) and discrete wavelet transform based coding. 

Chapter 3 describes architecture o f JPEG image compression and its implementation. 

Chapter 4 gives simulated results o f different modules in JPEG compression and 

discussion about the results. Chapter 5 describes the final conclusion o f the thesis and 

presents some future work.



CHAPTER 2

2.1 DATA COMPRESSION BASICS 

Data compression is the reduction or elimination o f redundancy in data representation 

in order to achieve savings in storage and communication costs. It relies on the fact that 

image information, by its very nature, is not random but exhibits order and has some 

form o f structure. I f  this order and structure can be extracted, the essence o f the 

information often can be represented and transmitted using less data bits than would be 

needed for the original. We can then reconstruct the original or a close approximation o f 

it at the receiving end. A common characteristic o f most images is that the neighboring 

pixels are correlated and therefore contain redundant information. Image, Video and 

audio signals are amenable to compression due to the following factors: redundancy and 

irrelevancy reduction.

Redundancy reduction: Redundancy looks at “properties” o f an image and reduces 

redundant data.

Irrelevancy reduction: Much o f  the data in an image may be irrelevant to a human 

observer so we can omit that data.

In general, three types o f redundancy can be identified;

• Spatial Redundancy or correlation between neighboring pixel values.

• Spectral Redundancy or correlation between different color planes or spectral 

bands.



• Temporal Redundancy or correlation between adjacent frames in a sequence o f 

images (in video applications).

Image compression research aims at reducing the number o f bits needed to represent an 

image by removing the spatial and spectral redundancies as much as possible. Since we 

will focus only on still image compression, we will not worry about temporal 

redundancy.

2.2. Data Compression Techniques

2.2.1 Lossless vs. Lossy Compression

In lossless Compression schemes the reconstructed image, after compression is 

digitally identical to the original image. However, lossless compression can only achieve 

a modest amount o f compression. On the other hand, lossy schemes are capable o f 

achieving much higher compression but under normal viewing conditions no visible loss 

is perceived (visually lossless). Some o f the lossy compression schemes used include 

differential pulse code modulation (DPCM), pulse code modulation (PCM), vector 

quantization (VQ), Transform and Subband coding. An image reconstructed following a 

lossy compression contains degradation relative to the original. Often this is because the 

compression scheme also discards non-redundant information.

2.2.2. Predictive vs. Transform Coding

In Predictive Coding, information already sent or available is used to predict future 

values, and the difference is  coded. It removes redundancy between successive pixels. It 

only encodes residual between actual and predicted. Since this is done in the image or 

spatial domain, it is relatively simple to implement and is readily adapted to local image



characteristics. Differential Pulse Code M odulation (DPCM) is one particular example o f 

predictive coding. Transform coding, on the other hand, first transforms the image from 

its spatial domain representation to a different type o f representation using some well- 

known transforms such as DCT, DW T or Lapped transform, and then codes the 

transformed values (coefficients). This method provides greater data compression 

compared to predictive methods as transforms use energy compaction properties to pack 

an entire image or a video frame into

2.2.3 Subband Coding

In Subband Coding, information (image) is split in to frequency band o f a signal in 

various subbands. To code each subband, we use a coder and bit rate accurately matched 

to the statistics o f the subband.

2.3 Lossless Compression

In lossless compression schemes the reconstructed image, after compression is 

numerically identical to the original image. Through lossless compression we can only 

achieve a modest amount o f compression [1].

The lossless methods are also called entropy-coding schemes, since there is no loss 

o f information content during the process o f compression. This type o f compression is 

used in certain environments such as compression o f text, database records, spreadsheets, 

word processing files, or medical and military imaging medical imaging where no loss o f 

information is tolerated. Typical compression ratios for lossless data compression are 

around 3:1.



2.4 Lossy Compression Technique

In lossy compression, the reconstructed image is approximation o f the original image. 

Lossy compression is generally used for video and sound, where a certain amount o f 

information loss can be tolerated. The JPEG image compression is one o f  the examples o f 

lossy compression. Using JPEG compression, one can decide how much loss to introduce 

and make a trade-off between file size and image quality. Depending upon the fidelity 

required, compression ratios o f  even up to 100:1 can be obtained.

The JPEG committee has created many standards since it was created in 1986. ISO 

had actually started to work on this 3 years earlier, in April 1983, in an attempt to find 

methods to add photo quality graphics to the text terminals o f the time, but the 'Joint' that 

the 'J' in JPEG stands for refers to the merger o f  several groupings in an attempt to share 

and develop their experience. This is the collaboration between three international 

standard organizations. International Telegraph and Telephone Consultative Committee 

(CCITT), International Organization for Standardization (ISO), and the International 

Electrotechnical Commission (lEC).

The formal name o f the standard that most people refer to as 'JPEG' is ISO/IEC IS 

10918-1 I ITU-T Recommendation T .8I, as the document was published by both ISO 

through its national standards bodies, and CCITT, now called ITU-T. IS 10918 has 

actually 4 parts

Part 1 - The basic JPEG standard, which defines many options and alternatives for the 

coding o f still images o f photographic quality

Part 2 - which sets rules and checks for making sure software, conforms to Part I



Part 3 - set up to add a set o f extensions to improve the standard, including the SPIFF file 

format

Part 4 - defines methods for registering some o f the parameters used to extend JPEG [I].

JPEG has defined an international standard for coding and compression o f continuous

tone still images. The primary aim o f the JPEG standard is to propose an image

compression algorithm that would be generic, application independent and aid VLSI

implementation o f data compression. To meet the different applications, the JPEG

standard includes two basic compression methods, each with various modes o f operation.

For lossy compression DCT (Discrete Cosine Transform) method is proposed and a

predictive method for lossless Compression. The Baseline DCT method is most widely

implemented JPEG method for many applications.

The compression ratio o f the image is given by;

Compression ratio = Source coder input data size (2.1)
Source coder output data size

Most widely used lossy compression techniques are

(i) Subband Coding

(ii) Transform Coding

2.4.1 Subband Coding

The fundamental concept behind Subband Coding (SBC) is to split up the frequency 

band o f a signal (image in our case) into various frequency subband or subband signals 

and then to code each subband using a coder and bit rate accurately matched to the 

statistics o f the band. SBC has been used extensively first in speech coding [10, 13] and



later in image coding [14] because o f its inherent advantages like variable bit assignment 

among the subbands and coding error confinement within the subbands.

The simplest way to encode audio signals is Pulse Code M odulation (PCM), which is 

used on music CDs, DAT recordings, and so on. This produces a high quality signal, but 

at a high bit rate (over 700k bps for one channel o f CD audio). To reduce the bandwidth 

we can use mu-law encoding. This is like PCM on a logarithmic scale, and the effect is to 

add noise that is proportional to the signal strength. Sun's au format for sound files is a 

popular example o f mu-law encoding. Using 8-bit mu-law encoding we can reduce the 

bandwidth to 350k bps, which is better than PCM.

Audio 
Bit s tream

D ig ita l  a u d i o  
s i g n a l T im e/F requency

M apping Q uantizer an d  coding Fram e packing

P sychoacoustic  Model

Audio 
Bit stream^ F ram e Unpacking R econstruction

Digital 
audio signal

Frequency/T im e
M apping

Figure 2.1 Block Diagram o f SBC

Fig 2.1 represents general subband encoder. First, a time-frequency mapping (a filter 

bank, or FFT, or something else) decomposes the input signal into subbands. The 

psychoacoustic model looks at these subbands as well as the original signal, and 

determines masking thresholds using psychoacoustic information. Using these masking



thresholds, each o f the subband samples is quantized and encoded so as to keep the 

quantization noise below the masking threshold. Finally all these encoded bits are packed 

as a frame and sent through communication channel.

At the decoder end, frames are unpacked, subband samples are decoded, and a 

frequency-time mapping turns them back into a single output audio signal.

Disadvantages o f Subband Coding

• One o f  the major problems with the subband coding is to resolve the bit allocation 

problem or the number o f bits assigned to each individual subband to get the best 

performance. One way is to use the idea o f optimal bit allocation to each 

quantized subband output individually. This is mostly valid for higher bit rates o f 

approximately 1 bit/sample or more.

• In Subband coding method is it is difficult to determine optimal coding system for 

low bit rate applications.

• I f  the overall bit rate changes the optimal bit allocation change which requires 

repetition o f entire coding process again.

• As the filters are not ideal filters it is not possible to perfectly decorrelate all the 

frequency Subbands and there is slight overlapping between adjacent frequency 

Subbands.

• It is very difficult to use Subband coding scheme for motion compensated video 

because o f frequency Subbands.

2.4.2 Transform Coding

Transform Coding is converting information from one set values to another using 

mathematical functions.

10



Different types o f transform coding techniques are

(a) Discrete Cosine Transform (DCT) based coding

(b) Lapped Transforms (LT) based coding

(c) Discrete W avelet Transform (DWT) based coding.

2.4.2.1 Discrete Cosine Transform (DCT) Based Coding

Discrete cosine transform (DCT) translates the image information from spatial 

domain to frequency domain to be represented in a more compact form. DCT properties 

are similar to Fourier transform.

By simple analogy we can illustrate how DCT works. Consider an unsorted list o f 15 

numbers between 0 and 4 (2, 3, 1, 4, 2, 2, 0, 1, 4, 1, 0,1,  4, 0, and 0). The transformation 

involves two steps one is sorting the list and second is counting the frequency o f 

occurrence o f each number -> (4, 4, 3, 1, and 3). Through this transformation we lost the 

spatial information but captured the frequency information.

Neighboring pixels within an image are highly correlated. So it is required to use any 

transform to exploit this correlation and representing information with fewer number o f 

bits. The Discrete Cosine Transform (DCT) has been shown to be near optimal for a large 

class o f images in energy concentration and de-correlating (Karhunen Loeve Transform 

{KLT} is the optimal transform but it isn’t used because its difficulty to practically 

implement) [7]. The DCT decomposes the signal into spatial frequencies, which then 

allow further processing techniques to reduce the precision o f  the DCT coefficients 

consistent with the Human Visual System (HVS) model.

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N 

image block is transformed from the spatial domain to the DCT domain. DCT convert the

11



input image into spatial frequency components called DCT coefficients, in such a way 

that lower frequency components appear at left hand com er and high frequency 

components at right hand side o f  DCT matrix. As we know Human Visual System is less 

sensitive to high frequency components than low frequency components, we can further 

process the coefficients by quantization like process to represent data with less number o f 

bits.

Advantages o f DCT

• DCT is the near-optimal for signal processing

•  Efficient and wide acceptability

• Parallel processing capability

• Less complex comparing to other transform algorithms

• DCT can be done block by block level.

Mathematical equations o f DCT

The 2-D DCT is give as

XC,., = y g x N . ,  (2.2)
" " 4  2M  2V

First 1-D DCT for rows is calculated and then the 1-D  DCT o f columns is calculated.

The above equation is divided into rows and column parts as follows:

„  (2 .colnumber-F 1) # rownumber# 7i
C = K • cos  ---------------------    (2.3)

2M

K = —  for row = 0
N

■Jl
K = —  for row ^ 0 

N

12



„t (2. rownumber +1) • colnumber» n
C = K # c o s - ----------------------------------------------

I N

K = —  for column = 0
M

(2.4)

V2
K = —  for column 0 

M

For the 8X8 blocks, a one dimensional DCT/IDCT followed by an internal buffer 

memory followed by one-dimensional DCT is used to perform 2-D DCT. This way we 

can reduce the computation complexity o f DCT for the 2-D Image.

YCbCr signals
1-D DCT I

2-D DCT
Coefficients

RAM Buffer 2-D  DCT

Figure 2.2 2-D DCT using Vector Processing

Disadvantages o f DCT

• In JPEG, we divide an image into 2-D non-overlapping blocks o f 8X8 and apply 

8-point 2-D DCT on them to obtain fewer transformed coefficients. By this 

process we will only exploit spatial correlation between pixels but not correlation 

between blocks.

• The second disadvantage is blocking artifacts, discontinuities at the block 

boundaries (because o f using 8X8 blocks) resulting from reconstruction 

mismatches at low bit-rate situations.

13



2.4.2.2 Lapped Transforms (LT) Based Coding

The lapped transform was developed to solve the problem o f blocking effect in DCT 

based coding schemes. Instead o f non-overlapping 2-D blocks, the process uses 

overlapping 2-D blocks o f an image spatially. One o f the special types o f  lapped 

transforms is called lapped orthogonal transform (LOT).

Advantages o f lapped transform

• No need to use block based coding.

• Coding efficiency can be improved by taking into account o f  inter block spatial 

correlation.

• Blocking artifacts are eliminated

• Pre- and post-filter are can be constructed in modular cascaded stages, to 

minimize hardware/software modifications.

By lapped transform blocking effects are reduced but other effects like ringing 

around edges o f blocks will appear due longer basis functions. LOT is extension o f DCT 

but due to its complexity compared to improved advantages, so it is less popular for 

image compression [2],

2.4.2.3 Discrete W avelet Transform (DWT) Based Coding

Discrete wavelet transform (DWT) is one o f the latest coding techniques used instead o f 

DCT. Its main advantage over DCT is that there is no need to divide the image into non 

overlapping blocks. Because o f their inherent multi resolution nature, wavelet-coding schemes 

are especially suitable for applications where scalability and tolerable degradation are 

important. After JPLG image compression JPLG committee has released its new image coding 

standard, JPLG-2000, which has been based upon DWT.

14



By Fourier transform (DCT based) we can represent signal as sum o f sine and cosine 

functions. By this we can know frequency spectrum o f the signal, but we do not know 

when and where they are present. To overcome this problem we should able to represent 

signal in frequency as well as time domain. This is done by wavelet transform.

By time-frequency joint representations one has to cut the signal o f interest into 

several parts and then analyze the parts separately, by this we can get more information 

about the signal. In wavelet transform the use o f a fully scalable modulated window 

solves the signal-cutting problem. The window is shifted along the signal and for every 

position the spectrum is calculated. W avelet transform is convolving input signal with 

particular instances o f the wavelet (window) at various time scales and positions. Then 

this process is repeated many times for every new cycle. By this we can get signal in time 

as frequency domain, all with different resolutions [3].

Performing these convolutions at every position and every characteristic scale is 

called the continuous wavelet transform. By, N yquisf s theorem the highest frequency we 

can model with discrete signal data is half that o f the sampling frequency. So in the worst 

case we have to use the transform at every other point [4].

The continuous wavelet transform is generally expressed as:

L  [4] (2.5)
/   ̂ y  s  )

In CWT, the signals are analyzed using a set o f basis functions which relate to each 

other by simple scaling and translation. In the case o f DWT, digital filtering techniques 

are used for the time-scale representation. The signal to be analyzed is passed through 

filters with different cutoff frequencies at different levels [12].
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I M A G E

1  LevelsI

3 Levels

Figure 2.3 Level-3 dyadic DWT scheme used for Image Compression [5]

2.4.2.3.I JPLG 2000

JPLG2000, the new standard for still image coding, better addresses the problems o f still 

image compression by previous methods. It offers a wide range o f  functionalities such as 

lossless and lossy coding, embedded lossy to lossless coding, progression by resolution and 

quality, high compression efficiency, error resilience and region-of-interest (ROI) coding. 

Comparative results have shown that JPLG2000 is indeed superior to established image 

compression standards [5].

In JPLG-2000 compression first the image is preprocessed by tiling the image i.e. 

partitioning the original image into non-overlapping blocks. Tile components are decomposed 

into various decomposition levels by using separable wavelet transform, than a scalar
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quantization is used to quantize than eaeh bloek is entropy eneoded. EBCOT proeess is used 

for Entropy eoding.

{Rate control)
Arithmetic CodingFormatting Layer formation 

(opSonal)

C pde-block partition(optional)

Figure 2.4 General bloek diagram o f the JPEG 2000 Eneoder [11]

Advantages OF JPEG 2000

• JPEG 2000 offers high image quality than JPEG.

• In the JPEG 2000 compression the compressor can choose image quality, 

maximum resolution and losses.

•  JPEG 2000 can provide both lossless and lossy compression in the same 

compression engine.

Disadvantages o f DW T

• The cost o f computing DW T as compared to DCT is much higher. The 

complexity o f calculating DWT depends upon the length o f wavelet filter.

•  Larger DW T basis functions or wavelet filters produces blurring and ringing noise 

near edge regions in images or video frames.
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CHAPTER 3 

ARCHITECTURE

3.1 Outline o f JPEG

The basic model o f JPEG is shown below

In p u t  I m a g e -
R G B  to

, Y C b C r  

; C o n v e r s io n

F o r w a r d  D C T Q u a n t iz a t io n

A

D if fe re n tia l  
: G o d e r

R u n  L e n g th  
E n c o d e r

Huffman
Coding

à

O u tp u t  B i t s t r e a m

Q u a n t iz a t io n
t a b l e s

H u # n a n
T a b le s

Figure 3.1 JPEG Baseline Encoder

The Join Photographic Expert Group proposed the JPEG compression standards [6]. 

The encoder model transforms the input image into suitable form for further processing. 

After that entropy encoder compresses the output form encoder.

Different modes o f JPEG are

• Lossless Coding

• Sequential Coding

•  Progressive Coding

• Hierarchical Coding.
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In Lossless Coding the image can he reconstructed after decoding. In this process we 

use methods like differential coding, Huffman coding, Arithmetic coding.

In Sequential Coding image blocks are scanned sequentially from top to bottom and 

left to right. Baseline Coding is example o f  sequential coding. In Progressive Coding 

image blocks are processed sequentially, but coding is completed in multiple scans. The 

first scan yields the full image but without full details which are provided in successive 

scans. In Hierarchical Coding each image component is encoded as a sequence o f frames. 

The first frame is usually a low resolution o f original image and subsequent frames are 

differential frames between original and reference reconstructed image [7].

Based on these modes there are four distinct processes for jpeg image compression.

• Baseline process,

• Extended DCT-based process,

• Lossless process,

• Hierarchical process.

Both baseline and extended DCT processes uses DCT in the encoding process, but in 

the entropy coding Baseline uses Huffman encoding and extended DCT uses Huffman or 

arithmetic coding. Lossless process uses predictive or sequential methods for encoding 

and Huffman or arithmetic for entropy process. Hierarchical process uses either DCT or 

lossless process for encoding and same entropy encoding methods as other process.

In this thesis we are going to discuss about implementation o f baseline JPEG image 

compression.

Baseline JPEG mode is the most widely used jpeg image compression. Baseline mode 

is simple and is based on sequential mode i.e. Image is scanned from left to right and top
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to bottom. Image is divided into non overlapping blocks o f 8X8 each o f 8 bit, DCT 

process. Quantization and entropy encoding steps are performed on that.

The JPEG Baseline can be divided mainly into five parts: those are color space 

conversion, down sampling, 2-D DCT, quantization and entropy encoding. The color 

space conversion converts the image form RGB color to YCbCr (luminance component 

Y and two chrominance components Cb and Cr). Luminance components component 

contains gray image and chrominance components contain color information. The down 

sampling reduces the sampling rate o f color information (Cb,Cr). 2-D DCT transform 

image information from spatial domain to frequency domain. By quantization operation 

high frequency components are eliminated and low frequency components are 

represented by less number o f bits. JPEG uses predefined quantization tables for 

eliminating the high frequency components. The selection o f quantization tables is 

critical since it affects both compression efficiency and image quality. After quantization, 

the DCT coefficients are arranged in zigzag order to get low frequency components at the 

top and high frequency components at the bottom. It maps 8X8 block to 1X64 values. 

Finally entropy coding is applied. It uses differential coding for the DC components and 

Run Length Encoding for AC Components. The location o f (0, 0) o f  each block i contains 

DC Coefficient represented as DCi. Since the adjacent blocks are likely have similar 

average energy levels so we can send only the difference o f current and previous DC 

coefficients which is know as Differential Pulse Code M odulation (DPCM). The 1X64 

vectors have lot o f zeros, it is represented by [run length, count, and value] pair by Run 

Length encoding to reduce the number o f  bits to represent data. In Run Length encoding 

only non-zero values will be sent with counting the number o f zeros preceding it. After
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that Variable length coding (VLC) and Huffman coding is applied to represent data with 

less number bits [6]. In the VLC coder the amplitude is represented with its significant bit 

as most significant bit. For each pair o f  run length codes there is a variable length 

Huffman code which will be used by the Huffman encoder to perform the compression. 

The Huffman codes are stored in tables. In the JPEG image compression process down 

sampling and quantization are irreversible, but the losses can be controlled depending the 

necessity o f image quality [8].

3.2 Architectures o f jpeg

3.2.1 Color Conversion

The color space conversion is the first operation in a JPEG compressor if  the input 

images are in RGB color space. Although the JPEG algorithm is unaffected by color, 

since it processes each color independently, but change in color space improves 

compression ratio significantly. This is due to defect in Human Visual System (HVS) that 

is less particular for some o f the characteristics o f  the image and also RGB is not efficient 

in dealing o f real world images. In RGB all the three components need equal band width 

to generate colors and highly correlated. RGB images are not very best for processing o f 

the image too. For example if  want to change intensity o f pixel we should call all the 

three colors and process the colors. I f  we have any access to intensity o f colors directly 

the processing will be faster. The appropriate representation o f colors for JPEG 

compression is YCbCr W here Y is Luminance component and Cb and Cr are two 

Chrominance components. Luminance component contains image information (Gray
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scale) and Chrominance component contains color information. Component Cb contains

information relative to blue color and Cr component contains information relative to

red color. The range o f YCbCr is 16-235 for 8 bit representation.

The below calculation are used in converting RGB to YCbCr.

Y;,= 0.299R,v+0.587G,y+0.114B,^

Cb/^= —0.169Ry—0.331 G,y+0.5By 

Cr,y= 0.5R,y-0.419G,y-0.081B,^

The source image is portioned into non-overlapping 2-d blocks o f 8x8, which are 

scanned sequentially form left to right and top to bottom. The nominal range o f 

Luminance component is 0 to 1 and Chrominance component’s nominal range is -0.5 to 

0.5. To make Chrominance components range equal to Luminance, 128 is added to the 

Cb and Cr components [17].

This color conversion architecture is based on simplified models provided by Xilinx 

Corporation which uses only four multipliers [17]. The architecture has latency o f six 

clock cycles and operates at frequency o f 285 MHZ.

3.2.2 Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N 

image block is transformed from the spatial domain to the DCT domain. DCT 

decomposes the signals into frequency domain which are called DCT coefficients. The 

lower frequency DCT coefficients appear towards upper left com er and higher frequency 

DCT coefficients are in the right-hand com er o f DCT matrix. The Human visual System 

is less sensitive to high frequency components so we can quantize high frequency 

components by quantization.
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For implementing o f DCT we use vector processing using four parallel multipliers. 

The output Y o f 8 X 8 DCT for input X is given by Y = C*X»C', where C is the matrix 

with the cosine basis functions, and C' is the transpose coefficients [18]. Using row 

column decomposition Y can be computed by 1 -D DCT transforms as

Y=C*Z where Z= X*C'. (2.6)

The mathematical equation for DCT is given as

M-\ N~\

XCpo = Z Z X N ,
C(p)C(q) 7 r { lm + \ )p  7r{2n + l)q

-.cos
m-0n=0 2M

.cos-
2V

(2.7)

First 1-DCT is performed for rows and then for columns. The 1-D DCT is calculated by 

separating equation-1 into rows and column parts.

W here C and C* are calculated as

C =

^ 3 1 7 0 23170 23170 23170 23170 23170 23170 23170^

32148 27246 18205 6393 -6393 -18205 -27246 -32138

30724 12540 -12540 -30274 -30274 12540 12540 30274

27246 -6393 -32138 -18205 18205 32138 (%93 -27246

23170 -23170 -23170 23170 23170 -23170 -23170 23170

18205 -32138 6393 27246 -27246 -6393 32138 -18205

12540 -30274 30274 -12540 -12540 30724 -30724 12540

1 ^ 3 9 3 -18205 27246 -32138 32138 -27246 18205 -6 3 9 ^
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r

c '

23170 32138 30274 27246 23170 18205 12540 6393

23170 27246 12540 -6393 -23170 -32138 -30274 -18205

23170 18205 -12540 -32138 -23170 6393 30724 27246

23170 6393 -30274 -18205 23170 27246 -12540 -32138

23170 -18205 -12540 32138 -23170 -6393 30274 -27246

23170 -27246 12540 6393 -23170 32138 -30274 18205

^ 3 1 7 0 -32138 30274 -27246 23170 -18205 12540 -6 3 9 2 ^

The intermediate value Z = X»C' can be calculated as follows: 

Where

X =

xOO x01 
x 1 0  XVI 
X20x21 
X30x31 
x40 X41 
X50 X51 
X60 X61 
X70x71

x02x03  
x12 x13 
X22X23 
X32X33 
X42x43 
X52XS3 
X62X63 
X72x73

X04 X05 
x14 x15 
x24 X25 
X34 x35 
X44 X45 
X54 x55 
X64 X65 
X74 X75

x06 x07 
x16xT7 
X26x27 
X36x37 
X46 X47 
x5€ x57 
x66 x67 
x76 x77

Z(0,0)-23 1 7 0 (Xoo+Xoi+Xo2+Xo3+Xo4+Xo5+Xo6+Xo7)

Z(0,,)=32138x00+27246x01+18205X02+6393X03^6393X04-18205x05-27246x06-32138X07) 

=3 2 1 3 8(xoo-xo?)+27246(xo i -xoo)+1 8205 (xo2-xq5 ) + 6 3  93 (X03-X04) 

Z(o,2)=30274(xoo-xo7)+12540(xoi-xo6)-12540(xo2+Xo5)-30274(xo3+xo4) 

Z(o,3)=27246(xoo-xo7)-6393(xoi-xo6)-32138(xo2-xo5)-18205(xo3-xo4)

Z (o,4 )= 23  1 7 0 ( xoo- xo7 )-2 3  1 7 0 ( xo i- xo6 )-2 3  1 7 0 ( xo2+ xo5 )+ 2 3  1 7 0 ( xo3+ xq4)

Z(0,5)= 1 8205 (xoo-xo7 ) - 3 2  138(xoi -Xoo)+6393(xo2-xo5)+27246(xo3-xo4)

Z(o,6)=12540(xoo-xo7)-30274(xoi-xo6)+30274(xo2+xo5)-12540(xo3+xo4)

Z(o,7)=6393(xoo-xo7)-18205(xoi-xo6)-27246(xo2-xo5)-32138(xo3-xo4)

24



Or
Z(k,0)=23170(XkO+Xki+Xk2+Xk3+Xk4+Xk5+Xk6+Xk7)

Z(k,i)~32138xko+27246xki+18205xk2+6393xk3-6393xk4-l 8205xk5-27246xk6-32138xk7) 

=32138(xko-Xk7)+27246(xki-Xk6)+18205(xk2-Xk5)+6393(xk3-Xk4) 

Z(k,2)=30274(Xko-Xk7)+12540(xki-Xk6)-12540(xk2+Xk5)-30274(xk3+Xk4) 

Z(k,3)=27246(xko-Xk7)-6393(xki-Xk6)-32138(xk2-Xk5)-18205(xk3-Xk4)

Z(k,4)=23170(Xko-Xk7)-23170(xki-Xk6)-23170(xk2+Xk5)+23170(xk3+Xk4) 

Z(k,5)=18205(xko-Xk7)-32138(xki-Xk6)+6393(xk2-Xk5)+27246(xk3-Xk4) 

Z(k,6)=12540(xko-Xk7)-30274(xki-Xk6)+30274(xk2+Xk5)-12540(xk3+Xk4) 

Z(k,7)=6393(xko-Xk7)-18205(xki-Xk6)-27246(xk2-Xk5)-32138(xk3-Xk4)

Where k=0,2..........7

Then 2-d DCT function is calculated from Y= CZ. Where Z is 1-D DCT matrix for input 

X and C is matrix o f cosine coefficients.

Figure 3.2 1-D DCT Implementation [18]
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The above bloek diagram is used for implementation o f 1-d DCT. First 1-D DCT 

values are ealculated and stored in a RAM and seeond 1-D DCT is done on the values 

stored in the RAM. 8X8 inputs are loaded into adder/subtractor whose outputs are fed to 

the multiplier. The multiplier takes constant coefficients from the ROM and feed into the 

second input o f the multiplier. The multiplier outputs are given to adder which will 

perform additions and gives 1-D DCT Coefficients which will be stored in a transpose 

buffer (RAM). The toggle flip flop controls the addition and subtraction operations.

Toggle

ADD

ADD

SUB

ADO

Figure 3.3 2-D DCT Implementation [18]
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The values stored in the transpose buffer are read column by column and fed as input 

to second DCT. The output o f DCT is 2-D DCT coefficients which are used as inputs to 

quantizer for further processing.

3.2.3 Quantization

The quantization process reduces number o f bits used to represent the DCT 

coefficients. Since Human eye is less sensitive to high frequency components than low 

frequency components so quantization factors are high for high frequency components 

than low frequency components.

The quantization operation is an integer division o f the 2-D DCT coefficients by pre

defined values. These pre-defined values are stored in tables called quantization tables. 

There are two quantization tables for baseline JPEG standards one for Luminance (Y) 

and other for Chrominance components (Cb and Cr). The optimum values o f the 

components in quantization tables are dependent on the application, but the JPEG 

standard suggests typical tables that have a good efficiency for any application [9].By 

quantization we can eliminate coefficients which are less perceptible to human eye.

Figure 3.4 Quantization Architecture [9]
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The quantization architecture designed as shown in fig. 3.5. The quantization 

architecture uses two ROMs for storing the quantization tables for Luminance and 

Chrominance components. For the multiplier we use barrel shifters controlled by 

quantization values stored in the ROMs. By using the barrel shifters for the multiplication 

we can reduce the number o f clock cycles required for multiplication. For each array 

element o f  8X8 blocks, there is a specific constant to be used from the quantization table 

for the division operation [9].

The quantization tables used for the JPEG compressions are presented in these are 

tables proposed by standard JPEG-92. The quantization tables used for compression and 

reconstruction are exactly same. Scaling factor is used to get the desired compression 

levels. The scaling factors after 2-d DCT are multiplied with quantization values and 

multiplied values are stored in ROM [9].

The Quantization operation is given by

Cqij = round
r
CijX 1_

Q ij  X  F c i j

0 -  i j  -  7

W here
Cqij quantization coefficient 
Cij Coefficient o f 2-d DCT 
Q ij quantization constant 
Fey Scaling factor

. The quantization values (Qy) and scaling factors (Fey) are as given below:

Qîîj =

C 11 10 16 124 140 151 161 145 X  

12 12 14 19 126 158 160 155

14 13 16 24 140 157 169 156

14 17 22 29 151 187 180 162

18 22 37 56 168 109 103 162

24 35 55 64 181 104 113 192

49 64 78 87 103 121 120 101

. 72 92 95 98 112 100 103 199J
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QCÿ =

r  17 18 24 47 99 99 99 99 9 9 ^

18 21 26 66 99 99 99 99 99

24 26 56 99 99 99 99 99 99

47 66 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 J

r

Fcii

8, 10 11,10 10, 45 9,41 8, 00 6, 29 4, 33 2,21

11, 10 15, 39 14,50 13, 05 11, 10 8, 72 6,01 3 ,07

10, 45 14,50 13,66 12, 29 10, 45 8,21 5, 66 2, 88

9,41 13,05 12,29 11,06 9,41 7, 39 5, 09 2, 60

8, 00 11, 10 10, 45 9, 41 8, 00 6,29 4, 33 2,21

6, 29 8, 72 8,21 7, 39 6, 29 4, 94 3, 40 1,73

4, 33 6,01 5, 66 5,09 4, 33 3,40 2, 34 1,20

Q 2,21 3,07 2, 88 2, 60 2,21 1,73 1,20 0 , ^

The basic operation o f quantizer is multiplying Cy with l/(  Qy * Fey). In the 

quantization architecture it uses ROM memory for storing the controls o f the four 

dislocated ones indicating the displacements that must be carried by each barrel shifter, 

instead o f storing quantization matrix. Each barrel shifter uses three bit control for the 

displacement i.e. total o f 12 bits. B S l uses three most significant bits where as BS4 uses 

three least significant bits. The input to quantizer is 15 bit and output is 10 bits that means 

it reduces periodically the number o f bits that represent the data. Quantization operation 

is carried in the pipeline o f three stages. In the first clock cycle quantizer takes the input 

and corresponding calculates displacement and addition o f shifted inputs form B S l, BS2,
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BS3, BS4 are carried in A, B adders and in the next clock cycle adder C adds the result 

o f  adder A and B. In the next clock cycle we will get the output

Table 3.1 Barrel Shifter Controls

C ontro l  Barre l  Shifter

000 6 zero zero zero
001 7 9 10 11
010 8 10 11 12
o i l 9 11 12 13
100 10 12 13 14
101 11 13 14 15
110 X 14 15 15
111 X 15 15 15

In the quantizer architecture the control word are stored in column by column. So 

when we are reading the inputs for quantizer that is outputs o f DCT we should read 

column by column.

3.2.4 Zig Zag Scanning

Quatized DCT coefficients will have zeros in the high frequency region o f image 

blcok i.e. right bottom com er o f the block. For getting more number o f  zeros at the same 

place, we scan the image block in such a way that all the zeros will accumulate at the end. 

Zig Zag scanning is very useful for further processing o f the image. It maps 2-D 8X8 

image to 1X64 1-D coefficients.
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Figure 3.6 Entropy Encoder [7]

The last stage o f  JPEG Compression is entropy encoding. This block improves 

overall compression efficiency by performing lossless coding on the quantized DCT 

coefficients. The entropy encoder receives 10 bits input after quantization and gives 

output o f 32 bit JPEG in an asynchronous way. The entrance o f the architecture o f the 

entropy encoder is synchronous and exit is asynchronous. This is mainly due to two
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reasons, one is the output o f the Run Length Encoder (RLE) is asynchronous and it is 

propagated throughout the architecture and other is due to different lengths o f Huffman 

codes.

After quantization the resulting matrix will have large number o f zeros which are 

read in Zig Zag manner to increase the sequence o f zeros. Entropy encoder uses 

differential coding, Run Length Encoding (RLE), Variable Length Coding (VLC) and 

Huffman encoding to make the reduction in the number o f  bits used to represent the 

image after JPEG Compression [6,9,10].Color and gray scale image follow same step for 

entropy coding, but the differential coder and Huffman coder are different for color and 

gray scale images. In entropy coding DC and AC components are processed separately. 

The component in the position <0, 0> (first line first column) o f the 8X8 matrix is called 

DC Component and reaming 63 components are AC Components. The first operation is 

Differential coder for DC components and Run Length Coder (RLE) for the AC 

components.

The DC Components o f successive 8X8 windows in an image are highly correlated. 

So by differential encoding we will only take the difference between actual DC 

Component and previous DC Component o f the previous matrix. The differential code is 

coded by VLC coder and it is also used to calculate number o f significant bits that are 

generated by VLC coder. This is done by Size calculator. So, by VLC encoder we will 

get the amplitude and by Size calculator we will get the sizes which are given as inputs to 

Huffman coder. Huffman coder uses Huffman tables which are stored in ROMs (one for 

Luminance and one for Chrominance DC Components) to get the outputs. The values
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generated by Huffman coder and VLC coder are concatenated to get the JPEG DC code 

[7].

For Processing AC components, first step is counting the number o f zeros before non 

zero coefficient which is will be done by Run Length Encoder (RLE). The RLE encoder 

compresses an input stream by representing consecutive zeros by their run-length. The 

Run Length Encoder counts number o f zeros until the last zero is present or it reaches 

maximum zero count. So the output o f Run Length Encoder is [Run Length and 

Amplitude]. The non-zero values are passed through VLC encoder to get the amplitude 

and also it is given to Size Calculator to calculate the size. Both Run and Size are 

concatenated and are Huffman Coded. Huffman encoder takes codes from predefined 

Huffman tables which are stored in FPGA internal ROMs. VLC coder amplitude, 

Coefficient Size, Huffman Code and Huffman Size are given to Pre assembler which will 

concatenate the VLC amplitude and Huffman Size to give variable length code which is 

applied to Assembler for further processing. The number o f significant bits in the 

amplitude o f Preassembler is given by addition o f Coefficient Size and Huffman Size.

In the assembler stage amplitude is assembled into 32 bit words output Compressed 

JPEG bit stream.

The pipelined architecture o f entropy encoder is given as

%o

OK

JPEG

^  DC AmpWud*
^  AC AmpAud# 
^  Run 
Q ) AmpACDC
<§) CceffVeienl

VLC
Coder

Size
C a lc u la tio n

Hulfrnan
Coder

Assembler
Differential

Coder

RLE
Coder

Figure 3.7 Pipelined Architecture for Entropy coder [20]
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In the pipelined architecture intermediate registers are used for the synchronization o f 

different operations.

3.2.5.1 Differential Coder

Differential coding is the first operation in the entropy encoding. It is used only for 

DC components. Differential coder performs simple subtraction between the current 

matrix DC component and previous matrix DC component o f the same color elements. 

The result is called Amplitude DC.

i
a

Figure 3.8 Differential Coder [20]

The Differential coder for color images is presented in above Fig 3.8. It consists o f 

three 10 bit registers for storing the previous DC Coefficients o f each color matrix 

(Y,Cb,Cr) and one 10 bit adder for performing the subtraction operation. The writing o f 

the register is done when the ACDC signal is active high that indicates the matrix value is 

DC. By using YCbCr signal we can select which register we need to write. We will use 

multiplexer signal YCbCr to select exact adder input form Luminance or Chrominance 

registers. W hen rst signal is low the DC coefficient is writes the input into the register 

according to the signal ACDC and YCbCr and the same input is given to Adder. The 10
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Bit Adder performs the subtraction operation and gives the output which is processed by 

VLC encoder in the next clock cycle.[20]

Registers
YCbCf ACDC Y Cb Cr

00 0 Yes No No
01 0 No Y es N 0
10 0 N 0 No Y es
X 1 No N 0 No

Table 3.2 Selection o f Component

The signal YCbCr is used to control the multiplexer which gives the input to 
subtractor.

3.4.5.2 Run Length Encoder

Run Length Encoder (RLE) is used for counting the number o f zeros in the AC 

components. Run length Encoder is same for gray and color images. RLE coder 

architecture is presented below.

$
&
I
Ü<

ACDC

Figure 3.9 Run Length Encoder [20]
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The AmpACDC and Run, Okrle registers presented in architecture are same registers 

which are used in the global Entropy coder architecture for pipelining. The output o f RLE 

coder is asynchronous where as input is synchronous. While Run length Encoder is 

counting number o f zeros, OKrle signal goes low and there w on’t be any valid output. 

W hen the non-zero input occurs RLE coder stops counting the zeros and it updates the 

outputs with new pair o f Run and AC amplitude. RLE architecture has a flag (Okrle) to 

indicate when new valid outputs are available. There are two restrictions in RLE coder 

that are imposed by JPEG standards [20].

The first restriction is maximum value o f Run should be 15 then zero counter has 4 

bits. W hen there are more than 16 zeros in the sequence, the zero counter will be restarted 

and the output is sent has 15/0 Run/Amplitude pair, which indicates there are 15 

continuous zeros fallowed by zero. Counter used in the RLE coder controls this 

restriction. W hen it reaches 15 zeros followed by 0 it will automatically give outputs 15 

for Run and zero for AmpACDC. The second restriction is when the input is sent which 

is last input and it is Zero than Last signal will come into picture and it controls the 

outputs by sending this bit as the last bit. If  the value is zero than it will reset the output 

register forming the pair 0/0. In the normal operation when these two restrictions doesn’t 

occur the counter operation counts the number zeros and when it is counting, Okrle signal 

goes low indicating output is not ready. W hen the non-zero input occurs Okrle signal 

goes high indicating valid output and ACC signal gives number o f zeros to Run register 

and amplitude is sent to AmpACDC register [9].

Differential coder and RLE coder must operate in perfect synchronism, so that they 

can be used by other components in the Entropy coder at the same pipeline stages. The
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DC and AC amplitudes generated by Differential and RLE coder pass through the 

multiplexer controlled by ACDC signal to get the correct output to be used in the rest o f 

the architecture.

3.2.5.3 Size Calculator

DC and AC amplitudes are applied to Size calculator that indicates number o f 

significant bits o f the AmpACDC value. The size calculation is done by looking at the 

tables proposed by JPEG standards [6].

The size calculation table is given as

Table 3.3 Size Calculation table

Value Size

0 0(0000)

-1,1 1(0001)

-3,-2,2,3 2(0010)

-7 ...-4 ,4 ...7 3(0011)

-15....-8,8....15 4(0100)

-31...-16,16...31 5(0101)

-63...-32,32...63 6(0110)

-127...-64,64....127 7(0111)

-255...-128,128...255 8(1000)

-511...-256,256....511 9(1001)

-1023..512,512 1023 10(1010)
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From the above table we can generate coefficient size o f 4 bits which is used to 

control the VLC coder architecture and it is also given as input to the Huffman coder and 

pre assembler architectures. Amplitude form Differential coder or Run Length Encoder is 

given as input to Size Calculator to find out the Coefficient Size.

3.4.5.4 Variable Length Coder:

Variable Length Coder (VLC) is used to identify which bits among the 10 bits 

AmpACDC are significant with the objective to discard the not significant bits, including 

the sign bit. The negative number must be represented in one’s compliment to be VLC 

coded. The entrance o f the VLC coder has a controller to discard sign bit. The signal 

interpretation is also inverted: a number that starts with zero is negative and a number 

that starts with one is positive.

The number o f shifts to left to each Coefficient Size value is given as.

Table 3.4 VLC Architecture Shifts

Coefficient
Size

Number o f 
shifts to left

0 10
1 9
2 8
3 7
4 6
5 5
6 4
7 3
8 2

9 1

VLC encoder uses Barrel shifter controlled by Coefficient Size which is calculated 

from size calculator. This barrel shifter shifts the AmpACDC value to the left to put the
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first significant bit as most significant bit o f the word discarding sign bit. The ealculated 

amplitude is called VLC Amplimde. The output o f the VLC coder is 9 bit which is not 

really variable length. The assembler in the next stage will discard the not significant bits 

and generates Variable length Codes.

3.2.5.5 Huffman Encoder:

The Coefficient size (to DC Coefficients) and concatenation o f Coefficient Size and 

Run (to AC coefficients) are Huffman coded. The architecmre proposed below uses static 

Huffman tables proposed by JPEG 92 standards. In the Huffman coding, the compression 

is achieved by assigning short code words to input symbols o f high probability and long 

code words to low probability input symbols. For a given source-probability distribution 

Huffman coder gives optimum symbols to represent the data [7]. The use o f standard 

tables simplifies hardware but decreases the compression rate [7]. Huffman Coder 

architecture designed for color images is given below.

, H u ffm an  
' T a b le s

ROM1
12x13Wh

MRP a

YCbGM
Huffman 

CodeROW2
lAlSb**

"0000 
& Size C bO r/D C I1MSB &

x)oo«xr%
4m.aB

ROM3

ACDC1

ROM4
178x21 M

C bC r/A C

31SB
y  Hu*msn 

Size
YCbCfl

Figure 3.10 Huffman Coder Architecture [20]
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The architecture presented above uses four ROM memories for storing the Huffman 

tables used to code color images: one for DC Luminance, one for AC Luminance, One 

for DC Chrominance and one for AC Luminance components. The Huffman tables store 

Huffman code and Huffman size. The size o f Huffman codes can be calculated by Size 

calculator but we know the sizes o f Huffman codes so we can directly store the Huffman 

size into static tables which eliminates delay. So the output o f ROM memories is 

Huffman code followed by Huffman Size. The values to be Huffman coded are used like 

address to these memories. The number o f words and bit width used to represent 

Huffman codes were optimized. The DC tables use 12 memory positions with 4 address 

bits (Size). AC tables uses 176 memory positions with 8 bit address bits (Run & Size).

DC Luminance table 9 bits to Huffman codes and 4 bits for Huffman size. DC 

Chrominance table uses 11 bits for Huffman codes and 4 bits for Huffman tables. AC 

Luminance and Chrominance components uses 16 bits for Huffman Code and 5 bit 

Huffman Size. Two multiplexer are used to which o f the four memories should be 

connected to the output. In the two multiplexers YCbCr signal is used as a controller to 

process either Luminance(Y) or Chrominance (CbCr). ACDC signal is used to get the DC 

or AC component as the output. The Huffman code and Huffman Size are applied to Pre

assembler for further processing.

3.4.5.6 Preassembler

The Pre-assembler architecture receives four inputs generated form the previously 

explained blocks: VLC Amplitude from VLC coder. Coefficient Size from Size 

Calculator and Huffman Size, Huffman code from Huffman Coder and generates two 

outputs Amplitude and Size which will be used in Assembler architecture.
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Figure 3.11 Preassembler Architecture [20]

VLC Amplitude bits are shifted to right by Barrel Shifter (BSA) that is controlled by 

Huffman Size. These shifted codes are assembled with Huffman Code by ‘O R’ logic 

operation. The Huffman code is concatenated with zeros in the right which are used as a 

mask in performing the ‘O R’ logic operation with VLC amplitude. The ‘O R’ logic 

operation preserves only significant bits which makes the code variable length. Assembly 

o f the Huffman code and VLC code generates Pre-assembler output Amplitude o f 28 bits. 

The addition o f Huffman Size and Coefficient Size gives the number o f significant bits in 

the Amplitude output which represented by Size.

3.4.5.7 Assembler

The final assembling o f words in JPEG is carried through the Assembler architecture 

con sid er in g  o n ly  s ig n ifica n t b its  o f  the A m p litu d e  input. The S iz e  input gen erated  from  

the Pre-assembler indicates how many bits are significant among the 25 Amplitude bits

V I
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Figure 3.12 Assembler Architecture [20]

The Assembler architecture consist o f one Barrel Shifter (BSB) controlled by 

accumulation o f Size values and an ‘O R’ logic operation to assemble the significant hits 

o f  different inputs. The assembly o f the words is controlled by an adder which 

accumulates different sizes o f input Amplitudes and stores into the register ACC.

The Assembler uses two 32 bit registers to assemble jpeg words. The High registers 

stores the 32 most significant bits from the Barrel shifter (BSB) output. W hen it records 

the 32 bits it will send the word as output JPEG word and OK register sends the output is 

valid. The Low register is used to store Overflow bits when the generated values from the 

Barrel shifter (BSB) as more than 32 significant bits. This overflow hits are again sent to 

High register when new jpeg word is ready to assemble. The maximum size o f  Amplitude 

input is 25 bits and the higgest displacement possible by Barrel shifter is 31 hits, so the 

output o f Barrel shifter should be 56 bits. O f these 56 hits, 32 bits most significant bits 

are used in the ‘O R’ logic operation whose result will he stored in High register and the 

remaining 26 bits are stored in the Low register. ‘O K ’ register indicates new valid data is 

ready. OK signal is also act as control signal for the multiplexer which decides input for 

the ‘O R’ logic operation. I f  the new jpeg word is ready it takes the values from the Low
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register otherwise it allows High register as input to the jpeg word. The assembler 

operation is enabled only when the RLE eoder generates valid outputs. This is eontrolled 

by O krelel signal. O krlel signal is generated when the valid output is present at the RLE 

eoder with one delay eloek eyele. In this way we ean eliminate the effeet asynchronous 

results given by RLE eoder [20].
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CHAPTER-4

RESULTS AND DISCUSSIONS

4.1 Simulation Waveforms

4.1.1 Color Conversion

N a m e 1 V a lu e ■ 100 , 200 . 300 400 , 50C --------- "%0 1 700 ■ 800 > 900 1000 1 1100 1 1200 '

Cio ■

1 ^

1

C lock 0

^  C lockE n... 1 ..... r............

8F <= XFF XF» X «  X»F XOF X31

RI ( - Xff X w , XM XD3 Xl7 .. X I L

b 'j <= (i"i %FF x « XD5 X'df

Y EE ;(cicp XIO Xe b X " XOE Xffi

œ  "O Cb 80 ;<oo x « X70 Xso X07

B - o  Cl 80 '■{m x«» Xfc X05 X72 XB7

Fig 4.1 Simulation o f Color Conversion

The eolor conversion module inputs are R, G, B, elk, elken and ouputs are Y, Cb, Cr 

For the inputs R = FF, G = FF, B = FF Outputs are Y = EB, Cb = 80, Cr = 80.

Latency o f eolor conversion module is five eloek cycles.
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4.1.2 Discrete Cosine Transform (DCT)

Name

î>-RST
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0
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Œ! d c l _ 2 d 1 7 4 6

Fig 4.2 Simulation o f DCT

DCT input matrix is
r

Xin=

FF F8 E8 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD

E9 A9 A5 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD 

DD DD DD

C5 DD 

DD DD 

DD DD 

DD DD 

DD DD 

DD DD 

DD DD 

DD DD

2-D DCT coefficients are obtained by calculating 1-D DCT on rows first and then on the 

columns.

First 1- D DCT Output we get on the 14 th eloek eyele and these outputs are stored in 

a transpose buffer. Second DCT is applied on the outputs o f the transpose buffer.

We get 2-D DCT coefficients starts from 95^ eloek eyele DC coefficient is 1746 and 

after that for every eloek eyele we get other AC coefficients.
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4.1.3 Quantizer
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Fig 4.3 Simulation o f Quantizer

Quantizer divides input DCT eoeffieients with predefined number to represent data 

with less number o f bits.

Quantizer inputs are YCbCr, load( rdy signal form DCT), Quantin and Outputs are 

Quant out and rdyquant.

YCbCr selects the predefined value form luminance or Chrominance component ROMs. 

For the inputs quant in = 673F (110011100111111), YCbCr = 0 (Luminance)

The first predefined value data = 200(100000000000).

Output is quant out = 033(0000110011).

For the inputs quant in = 673F (0001100111001110), YCbCr = 0 (Luminance)

The first predefined value data = 249(001001001001).

Output is quant out = 033(0001001101)
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4.1.4 Zig Zag Scanning
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Fig 4.4 Simulation o f Zig Zag Scanner

In the Zig Zag Scanning inputs are elk, rdy in, qdet in and Outputs are zigzag out, 

rd y o u t.

W hen quantization output is ready qdet in goes high and Zig Zag Scanner starts 

loading quantized DCT eoeffieients into R O M l and it continues for 64 eleok eyele. 

After 64 eloek eyele Zig Zag scanner gives output in the Zig Zag manner by reading 

inputs form RO M l using scan mem.

For input addresses 00,01,02,03 ... so on. Zig Zag Ouput addresses are 00, 01, 0 8 ,.. .so 

on.
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4.1.5 Differential eoder
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Fig 4.5 Simulation o f Differential Coder

The Differential coder is used for taking the difference o f current and previous DC 

components.

Here Inputs are elk, reset, YCbCr, ACDC, rdyquant 1 and DC comp are inputs.

De amp is the output.

W hen rdy quantl is high and ACDC is low Differential eoder starts processing.

If  YCbCr is ‘00’ the output is Y and “01” the output is Cb and “ 10” output is Cr. 

Latency o f Differential eoder is zero.

4.1.6 Run Length Encoder
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Fig 4.6 Simulation o f Run Length Encoder
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RLE coder counts number o f zeros preceding non-zero input.

RLE eoder activates for when ACDC signal is high.

Here the input sequence is AC comp = 199, 0,0,0,55,0,87,23, 8F, 0, 3.

Output (Runin, ampACDCin) is [(0,199), (3, 55), (1, 87), (0, 23), (0, 8F), (0, 3)]. 

Okrlein is goes high when non-zero output occurs. W hen OKrlein is high the outputs are 

valid.

The latency o f RLE coder depends on the oeeurrenee o f non-zero input.

4.1.7 Size Calculator

. 5.0 • I • 100 , , 150 I !2 p 0  < 2 5 0  , 3 0 0  , 3 5 0  ■ 4 0 0  , 4 5 0  i 5 0 0  , 5 5 0  i 6 0 0
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EB am pA C D C OUI {u u u XOID X «17 Xooo

E i  s iz e l o {0 * X'e »

Fig 4.7 Simulation o f Size Calculator

The Size Calculator calculates size o f the input amplitude i.e. number o f significant bits 

in the signal.

Input is ampACDC from Differential eoder or RLE eoder.

F or input 0 1D (0000011101 ) Output size = 5 

03B (0000111011) Output size = 6 

007 (0000000111) Output size = 3 

OFF (0011111111) Output size = 8 

000 (0000000000) Output size = 0 

The Latency o f Size Calculator is one eloek eyele.
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4.1.8 VLC Coder
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Fig 4.8 Simulation o f VLC Coder

VLC eoder identifies the significant bits and shifts the significant bits to most significant 

bits. Inputs to the VLC eoder are eoef_size and ampACDC. Coef_size inputs comes from 

Size calculator process which gives the number o f significant bits. ampACDC input is 

form Differential eoder or RLE eoder.

If  input is (10, 0000000011) output is 1100000000.

(101, 0000010011) output is 1001100000.

(1001, 101001101) output is 1010011010.

Latency o f VLC eoder is zero.

4.1.9 Huffman Coder
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Fig 4.9 Simulation o f Huffman Coder for DC Components
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For DC components

Huffman eoder inputs are size (Size calculator), run (from RLE eoder) and outputs are 

huff_eode(Huffman code), huff size (Huffman size).

For the DC components (ACDC=0) Output is from ROM l or Rom2.

YCbCr signal selects the Output should be form Rom l or Rom 2.

For the inputs size= 5(0101) run =0 (0000) ACDC=0, YCbCr=0.

Outputs are Huffman code = COOO (1100000000000000) and Huffman size= 03 (00011).

For the inputs size= 6(0111) run =0 (0000) ACDC=0, YCbCr=0.

Outputs are Huffman code = EOOO (1110000000000000) and Huffman size= 03 (00100).
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elk _ r ' L _ n _ j  L _ r D _ _ n _ _ r " L _ n ._ T i _ j  L _ n _ _ n _ _ n _ _ r "
read_en 1 <=1
YCbCrl 1 <= 0_ 1

î>ACDC 1 <=1 1 .........................
El ^ size 9 X» X* X» x« x=
f+j run <-i 1 X» Xz x« X) X'

. . ...... _

!±] huff_code FFA2 I X4PPCI ){WDO Xoooo XFFAO XFFOE X̂FOE XFFAO X̂F̂  ̂ X̂FOO X̂FO!
Lfj hull_size 10 X!» X™
l+l ̂  R0M1_data UMLT Xoooo
El ̂  R0M2_dala OOUL Xoooo
El ̂  R0M3_dal3 1FF4F0 i X'FF*30 X'RR̂BO X'FFIOO X'FFSOO X'FFIBO X'FFOBO
+ R0M4_doia 1FF51C XlFF*50 X’FFSDO X'̂ F'DO XF̂ t̂C XlFF2B0 X'FFIFO X'FFIIO

Fig 4.10 Simulation o f Huffman Coder for AC Components 

For AC components (ACDC=1)

For AC components Outputs are taken form R 0M 3 or R 0M 4.

Y CbCr signal selects the Output should be form Rom3 or Rom4 

For inputs size= 6(0110), run = 5 (0101), ACDC = 1, YCbCr = 1.
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Output is taken from R 0M 4.

Outputs are Huffman eode = FFA2 (1111111110100010) and Huffman size = 10(10000). 

For inputs size= A(IOIO), run = 4 (0100), ACDC = 1, YCbCr = 1.

Outputs are Huffman eode = FF9E (1111111110011110) and Huffman size = 10(10000). 

Latency Huffman coder is six eloek cycles.

4.1.10 Preassembler
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Fig 4.11 Simulation o f Preassembler

Pre assembler concatenates the significant bits o f Huffman eode and VLC amplitude. 

Inputs for Preassembler are eoef size (Size calculator), VLCamp (VLC eoder), huff_size, 

huff_eode( Huffman eoder).

For the inputs eoef_ size = 5 (0101), VLCamp = 150 (101010000), huff size = 6 (00110), 

huff eode = FCOO (1111110000000000)

Outputs are size = b (01011) amplitude = 1FD4 (1111111010100000000000000).
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4.1.11 Assembler
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Fig 4.12 Simulation o f Assembler

Assembler assembles the amplitude inputs to 32 bit words and sends output as JPEG 

bit stream.

Inputs to the assembler are size and amplitude (fro Preassembler) and O krlel (from RLE 

eoder) and Output is JPEG word and OK.

For the inputs (amplitude, size) = (07,1900000), (05, lEOOOOO), (OD, 1E6D000), (OF, 

175D400), (04, 1000000), (04, 1600000)

The Output JPEG word is CFEF2ED0.

Aee in aeeumulates all the sizes and when the Aee in is 32 bits are more than that OK 

signal goes high and JPEG word is the valid output.
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4.1.12 JPEG Encoder

<=-• d k  

o- d k e n  

] o- Y CbCr 

£>• A C D C  

D" last 

r e a d _ e r i  

c- ACDC1 

o- lo ad

icio.„i
i < =  1 i

i <= 1 I

|<=0 I
{ < - 1  I

l < = 1  j 

!<=1 i
a • f2 I4F

a ■ g2 |4 F

a '  b2 14F

y i 54

a ■ cb1 100

a - '  c rl Î8 0

m '  q u an tin iOOOO

rdy 11

[+|iu- q u a n t_ c o e f1  1000 

^  rd y q u a n t ! l

(tl ^  R un in 1 -------------------------- X:--------------
_  _

a  w  am pA C D C in ÜÜÜ Xooo

O krlein 0 ...............1

o k rle l r e g _ o u t 1 I I....... ......................................... 1

a  m ux_out 0 0 0  1 Xooo

a  c o e f_ s iz e :: i X» X»

+! V L C c im p lAM Xooo ,X W X 'oo

ŒÎ «''■ V L C reg_ou t 0 0 0 XllE Xooo X'lAS

i+! h u h _ c o d e FDOO Xoooo

i+1 «'’■ h u fL s iz e ÛÛ. i j X02

a  ^  h u ffc o d e ie g .. . 1FD8Ü %FD80

C+j ^  huff$ izereg_ ... 11.". XOA

EG sizein 12 X oc x =

a  arripliludein ilF B tA O O  i X1FB6000 XlFBOflOO X1FB52S0

a  XU m ux_out1 1083  i X0O4 Xooo Xooo

a  XU am plitude i fB h - r io r  i X'o®ooooo X1FB6000 X1FB6A00

i+i lU i t i e X»2 X oc X c

c- OK |l I............

CB JP E G  w ord 1 9 4 7D 4C 34  i X947D4C34 X6BOOOOOO

Fig 4.13 Simulation o f JPEG Encoder

E n cod er m o d u le  reads inputs form  a tex t f ile  and th ese  inputs are ap p lied  to  C olor  

Conversion module. At the end o f 6*'̂  eloek eyele Color conversion module gives Output 

which is applied to DCT module. After performing 2-D DCT operation, we get the 

Output at the end o f lOO'^ clock eyele which is applied to Quantizer module. Quantized
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DCT coefficients are stored in a ROM memory o f Zig Zag Coder. After storing all 64 

eoeffieients Zig Zag scanner sends Output in Zig Zag manner (172* clock eyele) and 

these outputs are applied to Differential Coder, Run Length Coder, size calculation, VLC 

Coder, Huffman Coder, Preassembler and Assembler modules. The JPEG word is 

obtained at the end o f  192* eloek eyele.

4.2 Synthesis Report

E J  O '

o

Fig 4.14 RTL Schematic o f JPEG Encoder
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Design Summary

Synthesis Report for Xilinx Virtex 4 FPGA

Dtfviue Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Total Number Slice Registers 2 .692 1 0 .944 24%

N um ber u se d  a s  Flip Flops 2.GG8

N um ber u se d  a s  L a tch es 24

N um ber of 4 input LUTs 2 .592 1 0 ,944 23% 1

Logic Distribution

Num ber of o c c u p ie d  S lices 2.34G 5 ,472 42% I

N um ber of S lices con tain ing  only re lated  logic 2 ,346 2 ,3 4 6 100% 1

N um ber of S lices con tain ing  un re la ted  logic 0 2 ,346 0% 1

Total Number of 4 input LUTs 2 ,708 1 0 ,944 24% 1

Num ber u se d  a s  logic 2 592

N um ber u se d  a s  a  route-thru 67 1
Num ber u se d  a s  Shift registers 49

Num ber of b o n d e d  lOBs 43 320 13%

Num ber of BU FG /B U FG CTRLs 2 32 6%

N um ber u se d  a s  BUFGs 2

N um ber u se d  a s  BUFGCTRLs 0

N um ber of FIFO tG /R A I^B IG s 3 36 8%

N um ber u se d  a s  FIF01 Gs 0

N um ber u se d  a s  RAM BIGs 3 1

Fig 4.15 Design Summary o f JPEG for Vertex-4 FPGA

Timing Report 

Speed Grade: -11

M inimum period: 7.445ns (Maximum Frequency: 134.318MHz) 

M inimum input arrival time before clock: 7.703ns 

Maximum output required time after eloek: 4.221ns
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CHAPTER 5 

CONCLUSIONS

This thesis presents pipelined implementation o f ‘Baseline JPEG image compression 

architecture’ on eolor images. The optimized architectures for the modules such as DCT, 

quantization, differential eoder. Run length encoding, Huffman encoding were explained 

and coded in VHDL (Hardware description language) using Active HDL simulator. From 

simulation results it has been observed that the architecture has a minimum latency o f 

187 eloek cycles for an image o f 8X8 pixels.

The VHDL eode is synthesized using Xilinx ise 9.1 simulator. The architecture requires 

2768 o f  logic blocks and frequency is 134.318 MHZ for Xilinx Vlrtex-4 FPGA.
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