
UNLV Retrospective Theses & Dissertations 

1-1-2008 

Comparison of confidence intervals for binomial proportions Comparison of confidence intervals for binomial proportions 

Narain Armbya 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds 

Repository Citation Repository Citation 
Armbya, Narain, "Comparison of confidence intervals for binomial proportions" (2008). UNLV 
Retrospective Theses & Dissertations. 2388. 
http://dx.doi.org/10.25669/3ut9-y5mm 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized 
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2388&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/3ut9-y5mm
mailto:digitalscholarship@unlv.edu


COMPARISON OF CONFIDENCE INTERVALS FOR BINOMIAL PROPORTIONS

by

Narain Armbya

Master of Science 
University o f Nevada, Las Vegas 

2004

A thesis submitted in partial fulfillment 
o f the requirements for the

Master of Science Degree in Mathematical Sciences 
Department of Mathematical Sciences 

College of Sciences

Graduate College 
University of Nevada, Las Vegas 

D e c e m b e r  2 0 0 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 1462874

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 
submitted. Broken or indistinct print, colored or poor quality illustrations and 
photographs, print bleed-through, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1462874 

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 E. Eisenhower Parkway 

PC Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



uNiy Thesis Approval
The Graduate College 
University of Nevada, Las Vegas

The Thesis prepared by 

N a ra in  Armbya_____

November 15 06
 20___

Entitled

C om parison o f  C o n fid en ce  I n t e r v a l s  f o r  B in o m ia l P r o p o r t io n s

is approved in partial fulfillment of the requirements for the degree of 

M aster o f  S c ie n c e  in  M a th e m a tica l S c ie n c e s

Examination Committee M ember

ExaminatîQXLjCommittee\^^nh^ 

Graduate College Faculty Representative

Exammation Committee Chair

Dean o f the Graduate College

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Comparison of Confidence Intervals For Binomial Proportions

by

Narain Armbya

Dr. Rohan Dalpatadu, Examination Committee Chair 
Associate Professor, Department o f Mathematical Sciences 

University o f Nevada, Eas Vegas

The main objective of this thesis is to compare the performance of confidence 

intervals for binomial proportions and also propose a Bayesian analysis for estimating the 

credible sets. In this thesis, a combination o f analytical and numerical techniques is used 

to compare the Wald interval, exact interval and obtain the Bayesian credible sets for the 

binomial distribution when p is close to 0 or 1. Uniform and Beta priors were used and 

the credible sets were obtained. The statistical package R was used for this purpose.
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CHAPTER 1

INTRODUCTION

1.1. Confidence Intervals and Credible Sets

A confidence interval, for a population parameter, is an interval between two numbers 

with an associated probability p  which is generated from a random sample of an 

underlying population, such that if  the sampling was repeated numerous times and the 

confidence interval recalculated from each sample aecording to the same method, a 

proportion p  of the confidence intervals would contain the population parameter in

question. A (1 -  a) 100% eonfidenee interval for a parameter 0 is the interval (1, u) sueh

that

P(1 < 0 < u ) = 1 -  a.

A credible set is a Bayesian analogue o f a eonfidenee interval. A (1 -  a) 100% 

eredible set for a parameter 6 is the set (1, u) such that

P(1 < 0 < u I x) = ^ g { 6 1 x)d0  > 1 -  a.
/

The coverage probability o f the confidence interval is based on the sampling 

distribution of the parameter; in other words, how it varies over all possible samples. 

Hence the probabilities are determined pre-data. They do not depend on the particular 

sample that occurred. This is in contrast to the Bayesian credible set calculated from the
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posterior distribution that has a direct probability interpretation conditional on the 

observed sample data. The Bayesian credible set is more useful, i.e., it summarizes the 

belief about the parameter values that could credibly be believed given the observed data 

that occurred. In other words, it is post data. One need not be concerned about the data 

that could have occurred but did not (Bolstad, 2004).

1.2. Binomial Confidence Interval

The binomial distribution is a discrete probability distribution whose probability mass 

function f(x) determines the probability of obtaining exactly x successes out o f n 

Bernoulli trials where eaeh Bernoulli trial has success with a probability p and failure 

probability 1-p. The probability mass function o f a binomial distribution is given by the 

formula

f ( x ) = " C ,y ( l - ; , ) " -

The binomial distribution will be discussed in detail in Chapter 2.

The observed proportion o f successes in a binomial sample is denoted by

X
P = ~ -  n

One o f the most basic and methodologically important problems in statistical practice 

is the interval estimation o f the probability o f suceess in a binomial distribution. For a 

binomial proportion, four types o f confidence intervals can be distinguished: Wilson’s 

score interval (Wilson, 1927), the Wald interval (Wald & Walfowitz, 1939), the adjusted 

Wald interval (Agresti & Coull, 1998), and the ‘exact’ Clopper-Pearson interval 

(Clopper& Pearson, 1934). The text-book confidence interval whieh is widely used in 

practice is the Wald interval given by the formula.
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p±z^
n

where zi.a/2 is the 100(l-a/2)th percentile o f the standard normal distribution (Wald and 

Wolfowitz, 1939).

At first glance, one may think that the problem is too simple and has a clear and 

present solution when in fact, it does not. It is widely recognized that the aetual coverage 

probability o f the standard interval is poor for p near 0 or 1 unless n is very large; for 

example see Ghosh (1979) or Blythe and Still (1983). Even at the level o f introductory 

statistics texts, the standard interval is often presented with the caveat that it should be 

used only when n (min p, 1 -  p) is at least 5 (or 10). Examination o f the popular texts 

reveals that the qualifications with which the standard interval is presented are varied, but 

they all reflect the concern about poor coverage when p is near the boundaries. This is 

because the exact binomial distribution gets highly skewed as p tends to 0 or 1 and the 

normal approximation to the sampling distribution of p  requires large samples before it 

actually takes hold.

1.3. Bayesian Statistics 

Statistical analysis is the process of separating out systematic effects from the random 

noise inherent in all sets of observations. Jeff Gill in his book Bayesian Methods: A 

social and behavioral science approach has stated that there are three general steps in this 

process: co llection , analysis and statistical inferences. Suppose there ex ists a statistical 

data analysis process with the following desirable characteristics:

• Overt and clear model assumptions
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• A rigorous way to make probability statements about the real quantities of 

theoretical interest.

• An ability to update these statements as new information is received.

•  Systematic incorporation o f previous knowledge on the subject.

•  Missing values handled seamlessly as a part of the estimation process.

• Recognition that population quantities are ehanging over time rather than forever 

fixed (i.e., the population o f interest is dynamie rather than statie).

•  The ability to model a wide class o f data types (with sufficient eomputing and 

programming expertise).

•  Straightforward assessment o f both model quality and sensitivity to assumptions. 

Bayesian statistics possesses all o f these qualities and the type of data researchers

routinely encounter makes the Bayesian approach ideal in ways that frequentist data 

analysis cannot match. These advantages include avoiding the assumptions o f infinite 

amounts o f forthcoming data, recognition that fixed-point assumptions about human 

behavior are dubious, and a direct way to include existing expertise ( or ignorance) in 

the analysis.

With Bayesian analysis, inferences about unknown model parameters are not 

expressed in the eonventional way as point estimates with reliability assessed using 

the null hypothesis significance test. Bayesian analysts make no fundamental 

distinction between observations and the unknown parameters are treated as random 

variables themselves as a logieal eonsequenee o f Bayesian conditional analysis. 

Bayesian statistieal information about parameters is summarized in probability 

statements applied to samples or populations in the form of a posterior distribution:
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the joint distribution o f unknown parameters after observing the data and updating the 

model. These summary quantities include quantiles o f the posterior distribution, the 

predietive quantities from the posterior and Bayesian forms of confidence intervals, 

the eredible sets and the highest posterior density region.

The essentials o f Bayesian thinking are contained in three general steps:

•  Specify a probability model that ineludes some prior knowledge about the 

parameters if  available for unknown parameter values.

• Update the knowledge about the unknown parameters by conditioning this 

probability model on observed data.

• Evaluate the fit o f the model to the data and the sensitivity of the conclusions to 

the assumptions.

The value of a given Bayesian model is found in the description of the distribution 

o f some parameter o f interest in probabilistie terms (Gill,2002). The framework of the 

Bayesian analysis will be discussed in depth in Chapter 2.

1.4. Objeetive and Approaeh 

As mentioned earlier, there many proeedures for computing binomial confidence 

intervals, so the main objective o f this thesis is to compare these procedures. More 

specifically, we will consider the Wald interval, the exact interval and a method for 

estimating the Bayesian credible sets for the binomial population proportion. A 

com bination o f  analytical and num erical techniques is used to obtain the B ayesian  

credible sets for the binomial distribution when p is close to 0 or 1. Chapter 2 explains in 

detail the binomial model, the Wald interval and the Exact interval. Chapter 3 deals with
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the Bayesian framework. Uniform and Beta priors are used to calculate the posterior 

densities. The analytical approach used to get these posteriors is also discussed. Some 

examples and results are summarized in Chapter 4.
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CHAPTER 2

CONFIDENCE INTERVALS FOR BINOMIAL PROPORTIONS 

This chapter provides information on the working theory behind the Wald interval 

and the Exact interval for estimating a binomial proportion. The chapter is split into two 

sections. The first part provides a detailed description of the concept of binomial 

distribution, the second presents the details o f Wald Interval and the Exact interval

2.1. The Binomial Distribution 

Probability distributions are used to model randomness in populations; as sueh, 

statisticians usually deal with a family o f distributions rather than a single distribution. 

There are two major types of probability distributions; discrete and continuous. A real 

valued random variable X is a function from a sample space into the real numbers, with 

the property that for every potential outcome X there is an associated probability P[X=x] 

which exists for all real values of x in the sample space. A random variable X is said to 

have a discrete distribution if the support o f X, the sample space, is countable; in most 

situations, the random variable has integer-valued outcomes. The second major type of 

distribution has a continuous support region; in this situation, the sample space is some 

interval of the real line and the function used to model random behavior over the sample 

space is called a probability density function (pdl).
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The purpose o f this chapter is to introduce a particular type o f discrete distribution, 

the binomial distribution, and its relation to other common discrete distributions. For each 

distribution, we will give its mean and variance and some other useful statistical 

descriptive measures and interrelationships that may aid understanding.

2.1.1. Specification o f binomial distribution 

The binomial distribution is based on the idea of a Bernoulli trial. A Bernoulli trial 

(named for James Bernoulli, one o f the founding fathers o f probability theory) is a 

random experiment with exactly two possible outcomes. A random variable X has a 

Bernoulli (p) distribution if

f 1 with probability p
X -  < , where 0 < p < 1.

[0 with probability 1 - p

The value X = 1 is often termed a “success” and p is referred to as the success 

probability. The value X = 0 is termed a “failure” .

The binomial distribution gives the discrete probability distribution P(X -  x) of 

exactly x successes out o f n Bernoulli trials (Kotz 1969) . The binomial distribution is 

there fore given by

f  (% ^ x) ^ f  " l y  (1 - y - , X=1, 2, 3 ,  n

The following figure is the plot o f the binomial pdf for four values o f p and n.
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Figure 2.1. Plots o f binomial probability distribution function.

2.1.2. Expectation and Variance 

The population mean or expected value o f X, when X ~ Bin(n, p), is given by

E{X)  = np

and the variance is given by

Var(X)  = npi} -  p ) .

2.1.3. Properties o f binomial distribution 

The binomial distribution is unimodal, and belongs to the exponential family of 

distributions with respect to p/(l-p), since we can write

P {X  - x ) -  exp xlog- P
\ - p

• + log
f n \

+ « lo g ( l -p )
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It has also been shown that the binomial distribution belongs to the family o f F- 

distributions w hen  the duality betw een binom ial and beta distribution is  observed. K em p  

(1 9 6 8 ) has show n that binom ial distribution is a generalized  hypergeom etrie distribution.

The skewness o f the distribution is positive if p < 1/2 and negative if  p > 1/2. The 

distribution is symmetric if  and only if p = 1/2.

2.1.4. Relation to other distributions

If n is large and p is small, so that np is moderate, then Poisson distribution is a good 

approximation of the binomial distribution. That is,

/ (x; Â) = -------  where À - n p ,  the binomial mean.
x!

As n becomes large with p fixed, the pivotal quantity X - — =  (where X ~ Bin(n,
^ n p ( \ - p )

p)), approaches a normal(0, 1) distribution.

2.1.5. Applieations of binomial distribution.

The binomial distribution arises whenever the underlying events are independent and 

identical Bernoulli trials; in particular, it is the distribution o f the sum of n sueh trials. 

The importance of the distribution has evolved from its original application in gaming to 

many other areas.

Its use in genetics arises beeause the inheritanee o f biologieal charaeteristies depends 

on genes that oeeur in pairs. A more reeent application is the study of number of 

nucleotides that are in same state in two DNA sequenees. A number o f scientists have 

provided applications o f the binomial distribution in plant and animal ecology.

The number o f defeetives found in a random sample o f size n from a stable 

production process is a binomial variable. Acceptance sampling is a very important

10
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application o f the test for the mean o f a binomial sample against a hypothetical value. 

This distribution is the sampling distribution o f the test statistic in both the sign test and 

McNemar's test. Although appealing in their simplicity, the assumptions o f independence 

and constant success probability for the binomial distribution are rarely precisely 

satisfied. Nevertheless, the model is often sufficiently accurate to enable useful 

inferences to be made.

2.2. Confidence Intervals 

By definition, a confidence interval 0i < 6 < 0u for an unknown parameter 0, with 

unreliability a, comprises all values for which the null hypothesis Ho: 0 == 0o would not 

have been rejected in the observed sample when a two-sided test with unreliability a (i.e., 

the Type I error) would have been applied. Any value 0o smaller than the lower bound 0| 

in the sample at hand is ‘improbably small’, and any 0o > 0u is ‘improbably large’. Given 

some best estimate o f 0 in a given sample, two numbers 0i and 0u have to be calculated 

that meet the required property. Moreover, the interpretation of a confidence interval has 

to be understood in a frequentist sense, i.e., in a framework of repeatedly taking samples 

of size n from the same population distribution, and calculating an interval with 

confidence coefficient l a for some unknown but fixed parameter o f interest in each of 

these samples. Confidence intervals are then constructed so that in the long run, the 

proportion o f intervals covering the fixed population parameter equals 1 -a . Therefore, in

th is  fram ew ork  o f  rep eated  sa m p lin g  under th e  sam e eo n d itio n s , a prob ab ility  statem ent

can be made, saying that the probability that the stochastic interval will cover the 

unknown fixed population value equals 1 -  a. This probability statement refers to the

1 1
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proportion o f the time that a random interval will contain the true value o f the parameter 

(a population constant).

The lower and upper bounds o f a two-sided confidence interval are random in the 

sense that they may change from sample to sample. In a given sample, however, they are 

known numbers. On the other hand, the population parameter 0 is a fixed but unknown 

number. It is this contraposition ‘stochastic but unknown’ versus ‘fixed but unknown’ 

that makes the interpretation o f a confidence interval so difficult, because o f the mind’s 

tendency to think that the unknown quantity 6 has a probability distribution. But as long 

as the concept o f probability refers to the frequentist point o f view —  what happens if the 

sampling experiment is repeated —  that is incorrect thinking. Only in Bayesian statistics, 

not in classical statistics, can a parameter have a probability distribution.

The idea o f constructing confidence intervals in the framework of repeated sampling 

is illustrated in Figure 2.

0

4 s f f i up l e s

Figure 2.2. Confidence intervals for a fixed proportion parameter 0 in 5 samples from the
same population.

12
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2.2.1. Wald Interval.

A common confidence interval procedure for estimating the binomial proportion p is 

the Wald interval given by the formula

where zi.a/2 is the 100(1-a/2)*'’ percentile o f the standard normal distribution (Wald and 

Wolfowitz, 1939). This procedure applies in large samples where the sampling

/  \ \
distribution o f p  is reasonably approximated by a A p { \ - p )  

P-> distribution.
/

This standard interval is easy to calculate and heuristically appealing because o f its 

simplicity. In introductory statistics texts and courses, the confidence interval is usually 

presented along with some heuristic justification based on the central limit theorem. The 

larger the sample size n, the better the normal approximation, and thus the closer the 

actual coverage would be to the nominal level 1-a. The normal approximation used to 

justify the standard confidence interval for p has a significant error. The error is most 

evident when the true p is close to 0 or 1. In fact, it is easy to show that, for any fixed n, 

the binomial distributions converge to a degenerate distribution as p 0 or p —> 1. The 

length o f the interval converges to 0.

Therefore, most major problems arise regarding coverage probability when p is near 

the boundaries. Poor coverage probabilities for p near 0 or 1 are widely remarked on, and 

generally, in the popular texts, a brief sentence is added qualifying when to use the Wald 

interval for p. For example, this confidence interval can be used if  np and np(\ -  p ) > 5

or 10; np and n p { \-  p )  > 5 or 10, etc. Figures 3 and 4 show the coverage probabilities 

for n = 5 and 25 and p = 0 to 1, for tbe Wald interval at the nominal level o f 95%.

13
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Coverage f e rn  = 5 by Wald Interval

0.80,2 0 4 0,6 100,0

ps

Figure 2.3. Coverage probability for n = 5 and p = 0 to 1 at 95% nominal level for the
Wald interval.

Coverage for n = 25 by Wald Interval

CN

0.2 0 6 0.8 1.00 0

ps

Figure 2.4. Coverage probability for n = 25 and p = 0 to 1 at 95% nominal level for the
Wald interval.

14
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There are oscillations in the coverage in both the figures. These oscillations are 

due to the discreteness o f the binomial distribution. Another reason is the presence of 

systematic bias in the coverage probability o f the confidence interval. The bias is due 

mainly to the fact that the standard interval has the “wrong” center. The standard interval

is centered at p  = — . Although p  is the MLE and an unbiased estimate of p, as the 
n

center o f a confidence interval it causes a systematic negative bias in the coverage. The 

standard interval is based on the fact that

\ p ( \ - p )

However, even for quite large values o f n, the actual distribution o f W„ may be 

significantly non-normal. Thus the very premise on whieh the standard interval is based 

is seriously flawed for moderate values o f n.

A discussion on the coverages for some sample values o f n and the confidence 

intervals is given in chapter 4.

2.2.2. Exact Interval

To avoid the approximation o f the Wald interval, textbooks recommend the Clopper- 

Pearson “exact” confidence interval for p, based on inverting equal-tailed binomial tests 

of Ho : p = po- Its endpoints that are the solutions p„ and pi to the simultaneous equations

k=x \  k J

and

15
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except that the lower bound is 0 when x = 0 and upper bound is 1 when x = n. The 

interval estimator is guaranteed to have coverage probability o f at least 1 -  a  for every 

possible value o f p. When x = 1, 2, 3, . . . n -  1, the confidence interval equals

1 +  -
n - x  + \

<  /? < 1 +
n — x

- I

where Fa,b,c denotes the 1-e quantile from the F-distribution with degrees o f freedom a 

and b. Equivalently, the lower endpoint is the a/2 quantile o f a beta distributionwith 

parameters x and n -  x + 1, and the upper endpoint is the 1 -  a /2 quantile of a beta 

distribution with parameters x + I and n -  x. This exaet interval is typically treated as the 

gold standard. However the procedure is necessarily conservative, beeause of the 

discreteness of the binomial distribution. This means that for any fixed parameter value, 

the aetual coverage probability can be much larger than the nominal confidence level 

unless n is quite large. This is shown in both the plots o f figure 2.5. The lower dotted line 

is the 95% coverage mark and the upper dotted line is the 100% coverage mark. As is 

seen here the coverage probability is higher than the 95% nominal level.
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Coverage fe rn  = 5 by Exact Interval Coverage for n = 25 by Exact Interval
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Figures 2.5. Coverage probability for n = 5 and 25 and p = 0 to 1 at 95% nominal level
for the Exact interval.
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CHAPTER 3

BAYESIAN ESTIMATION OF CREDIBLE SETS 

The classical statistical approach considers a parameter as a fixed, but unknown 

constant to be estimated using data randomly sampled from the population o f interest. A 

confidence interval for an unknown parameter is really a frequency statement about the 

likelihood that numbers calculated from a sample capture the true parameter value in 

repeated sampling. So the classical statistical approach cannot say there is a 95% 

probability that the true proportion is in any single interval, because it is either already in, 

or it is not. This is because under the classical approach, the true proportion is a fixed 

unknown constant, so it does not have a distribution; however, the sample proportion

p does. Thus, we can say that there is a 95% chance the random interval contains p, in 

repeated samples o f size m from the same population.

The Bayesian approach, on the other hand, treats the population model parameter as 

random instead o f fixed. Actually, the data are treated as fixed realizations o f a random 

process, accounted for by the likelihood function. Before looking at the current data, we 

use past information to construct a prior distribution model for the parameter. The prior 

distribution is chosen to reflect one’s prior knowledge o f p, whieh may vary from one 

person to the next. As a result, the mathematical form of a prior distribution is quite 

flexible. In particular, conjugate priors are a natural and popular choice of Bayesian prior 

distribution model, due to their mathematical convenience. The prior distribution of a

18
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parameter may be noninformative or informative. Noninformative priors are locally 

uniform in a certain range of parameter values. The range o f possible values may be fixed 

or may be infinite. An informative prior distribution specifies a particular nonuniform 

shape for the distribution of the parameter. When new data are gathered, they are used to 

update the prior distribution. We then take the weighted average o f the prior and data, 

expressed through the likelihood function, to derive what is called the posterior 

distribution model for the population model parameter. Point estimates, along with 

interval estimates (known as credibility intervals), are calculated directly from the 

posterior distribution. Credibility intervals are legitimate probability statements about the 

unknown parameter, since the parameter now is considered random. Under the Bayesian 

point of view, we can say that there is a 95% probability that the interval contains the 

population proportion.

The posterior distribution model is based on Bayes’ theorem, which expresses the 

conditional probability of an event A, given that the event B has occurred, in terms of 

unconditional probabilities and the probability the event B has occurred, given that A has 

occurred. It is defined as

P(B) P(B)

In terms o f probability density functions, the theorem takes the form

J ,  f i x  I  p)gip)dp

This is known as the posterior density o f x, where f(x|p) is the likelihood function of the 

observed data x given the unknown parameter p, g(p) is the prior density of p and the 

denominator represents the marginal density o f x. When g(p | x) and g(p) both belong to

19
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the same family o f distribution, g(p) and f(x|p) are called conjugate distributions and g(p) 

is called the conjugate prior for f(x|p). For example, the Beta distribution model is a 

conjugate prior for the proportion o f successes p when samples have a binomial 

distribution.

With probability 1 -  a , a Bayesian credibility interval for p is given by (Pl>Pu ) , 

where p^ and p^ satisfy

r g{p\x)dp = \ - a .

This yields an interval estimate o f p with probability 1 -  a .

In this chapter, a detailed overview of the estimation o f the credible sets using 

uniform and beta priors is presented

3.1. Using Uniform priors

If there is no idea beforehand as to what the proportion p is, it is reasonable to choose 

a prior that does not favor any one value over the other. The idea is to be as objective as 

possible. In such a case a uniform prior that gives equal weight to all possible values of 

success probability p is to be used. Hence a reasonable prior is p ~ Unif(0,l).

The density function for this prior is given by

J 1 where 0 < p < 1,
| o  elsewhere.

Let X ~ Bin(n, p) and p ~ Unif(0,l). Using Bayes' formula, the posterior density 

function is given by

l / { x \ p ) g { p ) d p
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that is

y  ( 1 xi

Notice that the denominator is the normalizing eonstant and the produet in the 

numerator is the kernel of the beta distribution.

The pdf o f the beta distribution is;

where 0 < x <1, a ,P  > 0 and F ( k )  = (k - l ) l  is the Gamma function when k > 1 is 

integer-valued.

If we let X = p, a  = X + 1 and P = n - x + 1, we get the following expression:

g { p \ x )  =

Since f  7—1—  r x  p’‘ (l -  p X  dp \s the integral o f the beta pdf over the
• ^ r ( x + i ) r ( « - x + i )  ^  ̂ ^  ^ ^

parameter space for p. This expression is equal to one. Thus, after simplifieation we have

which corresponds to a Beta(x + l , n - x  + l) density.

It worked out that the posterior distribution is a form of a beta distribution. The Bayes 

estimator o f the proportion in the population p, under squared error loss, is just the 

posterior mean. If Y ~ Beta(a, P), then the mean of a beta distribution is

21
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jr(}r)==
0,4-/?

Therefore, the Bayes estimator o f p is

jôjky» = JC(;;| ):)= n + 1

The credibility interval for the parameter p is then computed from that posterior beta 

distribution with parameters x + 1, n - x + 1.

This uniform prior is just one o f an infinite number o f possible prior distributions. 

Since the point o f interest in this thesis, "p" is near 0 or 1, p is taken from Unif(0. 0.2) or 

Unif(0.8, 1). The simulations and the results are shown in the next chapter.

3.2. Using Beta Priors

When there is a prior knowledge as to the proportion p, a beta prior is a useful alternative. 

For a random variable p, where p ~ Beta(a, P), the pdf is

In fact, we can show that the Beta(l, 1) distribution is the Unif(0,l) distribution; that is

which gives us

=  \ 0 < p < l
r(l)F(l)

This is the density function for the Uniform (0,1) distribution.

Figure 3.1 shows the plots o f two beta pdfs. The first one is Beta(10, 100) and the 

second one is Beta(100, 10). This corresponds to the knowledge that the binomial
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probability comes from a known prior and has the value close to 0 (first plot) or 1 

(second plot).

0.0 0.2 0.4 0 6 0.8 10 0 0 0.2 0.4 0.6 0.8 10

Figure 3.1. Prior distributions o f Beta(10, 100) and Beta(100, 10)

Let X -  Bin(n, p), as we defined in the previous section, and let g(p) ~ Beta (a , p) ; 

that is, the proportion p has beta prior distribution. Then,

.g(j9) = r(or)r(;0)

where 0 < p <1, a > 0 , P > 0  and a ,p  are known arbitrary constants. The posterior 

density is given by

f{ \̂p)g{p)
[f{ \̂p)g(.P)dp

where

We then have

f(x|p) =
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n

\
dp

JE(p""-'(i- p)”*''’")<4’
The denominator is the normalizing constant of a beta distribution. We then have the 

following expression,

n+B~x-\

T { x  + a ) Y { n - x  + p )  w T { x  + a  + n - x  + p )  j  
r ( x  + a  + n - x  + P)  ^  r ( x  + a ) r ( / 7 - x  +P )   ̂ /

Since f —^  r— -, x [ (l -  p)"*^  ̂ ^\dp  is the integral o f the beta pdf
^ T { x ^ a ) Y { n - x  + p )   ̂ ^  ^  ^

over the parameter space for p, this expression equals one. The posterior density is then

which is a Beta (x + a, n - x + p) density.

It worked out that the posterior distribution is a form of the prior distribution updated 

by the new data. In general, when this occurs we say the prior is conjugate.

The Bayes estimator, under squared error loss, is the mean of the posterior Beta (x + a, n 

- X + P) distribution.

The Bayes credible set for p is given by (pi, pu) where pi, and pu satisfy
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g { p \ X ) d p  = \ - a ,
P̂i

where a is the significance level. The credible interval used in this thesis is computed 

from the posterior beta cumulative density function as

f  + + < p <  Beta^_^^2 {x + a ,n -x - \-  P ) ^ - \ - a .

Then a 1 - a  Bayesian credible interval for p is (pi, pu) where pi the a/2 quantile and 

Pu is the 1 - a/2 quantile of the beta distribution with parameters x + a, and n - x + p. 

Chapter 4 shows the simulations and results for this analysis.
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CHAPTER 4

SIMULATIONS AND RESULTS OF EXPERIMENTS 

In this chapter, results and simulations of the confidence intervals and the credible 

sets are discussed. The first section deals with the Wald and the Exact interval and the 

second section deals with the Bayesian credible sets.

4.1. The Wald Interval and the Exact Interval 

95% confidence intervals were constructed for n = 5, 25, 50, 75, 100 and 1000 using 

the statistical software package R for the computations.

10,000 simulations were carried out to evaluate the coverage probabilities for both 

intervals at various values of n and p. The values of p used in this simulation are 0 to 0.1 

(in increments o f 0.01), 0.15, 0.2, 0.8, 0.85, and 0.9 to 1 (in increments o f 0.01). Table 

4.1 gives a sample o f the output obtained for the Wald interval, with p = 0.05 and n = 

equal to 25. From left to right, the columns denote simulation number, the lower limit, 

the upper limit, the length o f the confidence interval and whether or not p is captured by 

the confidence interval (1 if yes and 0 if it is not). Table 4.2 shows the same for the Exact 

Interval.
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Table 4.1 .Sample of the program output for Wald interval at n = 25 and p = 0.05
No. Lower Limit Upper Limit Length Hits

1 0 0 0 0
2 -0.036816 0.116816 0.153632 1
3 -0.0263469 0.1863469 0.212694 1
4 -0.0263469 0.1863469 0.212694 1
5 0 0 0
6 -0.036816 0.116816 0.153632 1
7 -0.036816 0.116816 0.153632 1
8 0 0 0
9 -0.036816 0.116816 0.153632 1
to 0 0 0
11 -0.0073849 0.2473849 0.25477 1
12 -0.036816 0.116816 0.153632 1
13 -0.036816 0.116816 0.153632 1
14 -0.036816 0.116816 0.153632 1
15 -0.036816 0.116816 0.153632 1
16 -0.036816 0.116816 0.153632 1
17 -0.036816 0.116816 0.153632 1
18 -0.036816 0.116816 0.153632 1
19 -0.0263469 0.1863469 0.212694 1
20 -0.0263469 0.1863469 0.212694 1
21 -0.036816 0.116816 0.153632 1
22 -0.0073849 0.2473849 0.25477 1
23 -0.036816 0.116816 0.153632 1
24 -0.036816 0.116816 0.153632 1
25 -0.0263469 0.1863469 0.212694 1
26 -0.036816 0.116816 0.153632 1
27 -0.036816 0.116816 0.153632 1
28 -0.036816 0.116816 0.153632 1
29 -0.0263469 0.1863469 0.212694 1
30 0 0 0
31 0 0 0
32 -0.036816 0.116816 0.153632 1
33 -0.0263469 0.1863469 0.212694 1
34 -0.036816 0.116816 0.153632 1
35 0 0 0
36 -0.036816 0.116816 0.153632 1
37 -0.036816 0.116816 0.153632 1
38 -0.036816 0.116816 0.153632 1
39 -0.036816 0.116816 0.153632 1
40 0 .0162904 0 .30 3 7 0 9 6 0 .287419 1

41 -0.036816 0.116816 0.153632 1
42 -0.0263469 0.1863469 0.212694 1
43 0 0 0 0
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Table 4.2.Sample o f the program output for Exact interval at n = 25 and p = 0.05
No. Lower Limit Upper Limit Length Hits

1 0 0.1371852 0.137185 1
2 0.0098396 0.2603058 0.250466 1
3 0.0010122 0.2035169 0.202505 1
4 0.0098396 0.2603058 0.250466 1
5 0.0098396 0.2603058 0.250466 1
6 0.0010122 0.2035169 0.202505 1
7 0.0010122 0.2035169 0.202505 1
8 0 0.1371852 0.137185 1
9 0 0.1371852 0.137185 1
10 0.0010122 0.2035169 0.202505 1
11 0.0010122 0.2035169 0.202505 1
12 0.0254654 0.3121903 0.286725 1
13 0.0254654 0.3121903 0.286725 1
14 0.0098396 0.2603058 0.250466 1
15 0.0254654 0.3121903 0.286725 1
16 0 0.1371852 0.137185 1
17 0.0010122 0.2035169 0.202505 1
18 0 0.1371852 0.137185 1
19 0 0.1371852 0.137185 1
20 0.0010122 0.2035169 0.202505 1
21 0.0010122 0.2035169 0.202505 1
22 0.0010122 0.2035169 0.202505 1
23 0 0.1371852 0.137185 1
24 0 0.1371852 0.137185 1
25 0.0098396 0.2603058 0.250466 1
26 0.0254654 0.3121903 0.286725 1
27 0.0010122 0.2035169 0.202505 1
28 0.0254654 0.3121903 0.286725 1
29 0 0.1371852 0.137185 1
30 0.0098396 0.2603058 0.250466 1
31 0.0010122 0.2035169 0.202505 1
32 0.0010122 0.2035169 0.202505 1
33 0 0.1371852 0.137185 1
34 0.0098396 0.2603058 0.250466 1
35 0 0.1371852 0.137185 1
36 0 0.1371852 0.137185 1
37 0 0.1371852 0.137185 1
38 0.0098396 0.2603058 0.250466 1
39 0.0098396 0.2603058 0.250466 1
40 0.0010122 0 .2035169 0 .202505 1
41 0.0098396 0.2603058 0.250466 1
42 0.0254654 0.3121903 0.286725 1
43 0.0683115 0.4070374 0.338726 0
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The lower limit o f the Wald confidence interval when the value of p =0.5 (or when 

close to 0) has negative values. This is because of the normal approximation. Similarly 

for values o f p near 1, the upper confidence limits tend to exceed 1. Tables 4.3 to 4.5 

show the comparison of the coverage probabilities of the Exact interval and the Wald 

interval.

Table 4.3. Comparison of coverage
P (n=5) Exact Wald

0.01 0.9991 0.0505
0.02 0.9961 0.0979
0.03 0.991 0.1397
0.04 0.9868 0.1848
0.05 0.9963 0.2212
0.06 0.9979 0.2659
0.07 0.9974 0.2965
0.08 0.9959 0.3342
0.09 0.9933 0.3716
0.1 0.9928 0.3998

0.15 0.998 0.5382
0.2 0.9938 0.6732
0.8 0.9924 0.6628

0.85 0.9977 0.5293
0.9 0.9889 0.4001

0.91 0.9945 0.375
0.92 0.996 0.3342
0.93 0.9975 0.2989
0.94 0.9979 0.2642
0.95 0.9765 0.2275
0.96 0.986 0.188
0.97 0.993 0.1438
0.98 0.9958 0.0937
0.99 0.9986 0.0509

probabilities o f the two intervals, n = 5 and 25
P (n=25) Exact Wald

0.01 0.9978 0.2154
0.02 0.9853 0.3968
0.03 0.9941 0.5356
0.04 0.9824 0.6378
0.05 0.9931 0.7266
0.06 0.9842 0.7891
0.07 0.9931 0.8271
0.08 0.9876 0.8685
0.09 0.9781 0.9035
0.1 0.9903 0.9182

0.15 0.9738 0.8991
0.2 0.9807 0.8853
0.8 0.9801 0.8852

0.85 0.974 0.901
0.9 0.9905 0.9207

0.91 0.9788 0.8962
0.92 0.9878 0.8794
0.93 0.9937 0.8289
0.94 0.9846 0.7831
0.95 0.9934 0.7267
0.96 0.9922 0.6445
0.97 0.9944 0.5292
0.98 0.9873 0.3875
0.99 0.999 0.2233
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Table 4.4. Comparison o f the coverage probabilities of the two intervals for n = 50 and 75
p(n=50) Exact Wald

O.OI 0.9873 0.3879
0.02 0.9819 0.6343
0.03 0.9835 0.7884
0.04 0.9866 0.8666
0.05 0.9874 0.9133
0.06 0.9912 0.8103
0.07 0.9769 8.6156
0.08 0.9699 0.9109
0.09 0.9786 0.9423
0.1 0.9706 0.8762

0.15 0.9725 0.9371
0.2 0.9675 0.9362
0.8 0.964 0.9394

0.85 0.9704 0.9381
0.9 0.9711 0.878
0.91 0.9771 0.9436
0.92 0.9708 0.9093
0.93 0.9794 0.8651
0.94 0.9907 0.8028
0.95 0.9894 0.9178
0.96 0.9851 0.8651
0.97 0.9804 0.7788
0.98 0.9831 0.6267
0.99 0.984 0.3861

p(n=75) Exact Wald
0.01 0.9924 0.5286
0.02 0.9812 0.7794
0.03 0.9919 0.8935
0.04 0.989 0.8033
0.05 0.9649 0.8896
0.06 0.9746 0.9426
0.07 0.9814 0.8953
0.08 0.9723 0.9384
0.09 0.9767 0.9073
0.1 0.9689 0.9453

0.15 0.9642 0.9317
0.2 0.9578 0.9286
0.8 0.957 0.9319

0.85 0.9676 9.3223
0.9 0.9677 0.9443
0.91 0.9776 0.9089
0.92 0.9665 0.9401
0.93 0.9799 0.8979
0.94 0.9778 0.9411
0.95 0.9657 0.8951
0.96 0.9912 0.8031
0.97 0.9932 0.9003
0.98 0.9815 0.7785
0.99 0.9929 0.5319
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Table 4.5. Comparison o f the coverage probabilities o f the two intervals for n = 100 and
1000

p(n=100) Exact Wald
0.01 0.9802 0.6316
0.02 0.9844 0.8671
0.03 0.9889 0.8041
0.04 0.9639 0.7073
0.05 0.9822 0.8767
0.06 0.9655 0.9346
0.07 0.9711 0.9137
0.08 0.9719 0.8965
0.09 0.9652 0.9457
0.1 0.9548 0.9341

0.15 0.9653 0.9333
0.2 0.9656 0.9321
0.8 0.9667 0.9343

0.85 0.9627 0.9324
0.9 0.9569 0.9299

0.91 0.9671 0.9431
0.92 0.9751 0.8988
0.93 0.973 0.9144
0.94 0.9681 0.9399
0.95 0.9822 0.8794
0.96 0.9654 0.9054
0.97 0.9899 0.7991
0.98 0.9844 0.8678
0.99 0.9806 0.6331

p(n=1000) Exact Wald
0.01 0.9773 0.9323
0.02 0.9574 0.9484
0.03 0.9582 0.9318
0.04 0.9582 0.9491
0.05 0.96 0.9425
0.06 0.9558 0.9511
0.07 0.9501 0.9474
0.08 0.9497 0.9484
0.09 0.9488 0.948
0.1 0.9554 0.9532

0.15 0.9495 0.9486
0.2 0.9537 0.948
0.8 0.9484 0.9463

0.85 0.9515 0.9449
0.9 0.9506 0.9531

0.91 0.9534 0.9491
0.92 0.9521 0.953
0.93 0.9508 0.9508
0.94 0.953 0.9488
0.95 0.9546 0.9407
0.96 0.9656 0.9471
0.97 0.957 0.9366
0.98 0.9582 0.9485
0.99 0.9789 0.9223

The above tables show that the coverage probability for the Exact interval is above 

the 95% nominal level. For small values o f n, the coverage probability for this interval is 

very high at the extreme values o f p. As p moves away from the extremes, the coverage 

probability approaches 0.95. As n increases, the coverage probability tends towards the 

nominal level and at very high values o f n (n = 1000), the coverage probability almost 

equals the nominal level. But the coverage probability always remains higher than 0.95 

because of the discreteness o f the binomial distribution which results in this interval 

being conservative.
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The coverage probability for the Wald interval, for low values o f n, is very low at the 

extremes; moreover it is uniformly less than 0.95 for n = 5. As n increases, the coverage 

probability increases to 0.95 for each p and equals to 0.95 at very high values o f n 

(n=1000). But the coverage probability o f this interval is always less than the nominal 

level for the values of p near 0 or 1. For example, it is a mere 0.4 for n = 25 and p = 0.9, 

0.88 at n = 50 and p = 0.9 and for very low value of p (0.01) and n (5), it is 0.05. Even at 

n = 1000 and p = 0.99 the coverage probability is less than 0.95 (0.92).

Graphs showing the coverage probability for both intervals at different values o f n are 

shown below in Figures 4.1- 4.5.

Coverage for n = 50 by Wald Interval

100.20 0 04 0 6 08

ps

Figure 4.1. Coverage probability for n = 50 and p = 0 to 1 at 95% nominal level for the
W ald interval.
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Coverage for n = 100 by Wald Interval

Figure 4.2. Coverage probability for n = 100 and p -  0 to 1 at 95% nominal level for the
Wald interval.

Coverage for n = 1000 by Wald Interval

I

S

8

0.0 0.2 0 4 06 0 8 10
ps

Figure 4.3. Coverage probability for n = 1000 and p = 0 to 1 at 95% nominal level for the
Wald interval.
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C overage for n = 100 by Exact Interval

S’

0.2 0 4 0 6 0.8 1.00 0

ps

Figure 4.4. Coverage probability for n = 100 and p = 0 to 1 at 95% nominal level for the
Exact interval.

Coverage for n = 1000 by Exact Interval

O

cn
O

0.2 0.800 0.4 0.6 1.0

ps

Figure 4.5. Coverage probability for n = 1000 and p = 0 to 1 at 95% nominal level for the
Exact interval.
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The graph o f coverage probabilities for n = 5 and n = 25 for the Exact interval is 

given in page 16. 

The Tables 4.6, 4.7 and 4.8 show the mean and the standard deviation of the lengths ( 

upper limit - lower limit) of the confidence interval for both the Exact and the Wald 

Intervals.

Table 4.6. Mean and Standard deviations o f the interval lengths for n -  5 and n = 25
n=5 Exact Wald

P Mean Std. dev. Mean Std. dev.
0.01 0.5316 0.0422 0.0355 0.15408
0.02 0.5406 0.0573 0.0696 0.21136
0.03 0.5508 0.0698 0.0994 0.24638
0.04 0.5572 0.076 0.1326 0.27843
0.05 0.5666 0.0841 0.1592 0.2988
0.06 0.5739 0.0889 0.1936 0.32076
0.07 0.5839 0.0947 0.2165 0.3328
0.08 0.5914 0.0982 0.2454 0.3448
0.09 0.5992 0.1018 0.2754 0.3551
0.1 0.6064 0.104 0.2993 0.3622

0.15 0.6411 0.1116 0.4217 0.3748
0.2 0.6712 0.1107 0.5173 0.3611
0.8 0.6735 0.1104 0.5088 0.3626

0.85 0.6404 0.1114 0.6416 0.3751
0.9 0.6067 0.0105 0.2991 0.3621

0.91 0.5993 0.1019 0.2778 0.35622
0.92 0.5902 0.098 0.246 0.34535
0.93 0.5836 0.0946 0.2181 0.33286
0.94 0.5742 0.0894 0.1917 0.3193
0.95 0.5672 0.0844 0.1636 0.3014
0.96 0.5574 0.0763 0.1347 0.2803
0.97 0.5491 0.0671 0.1026 0.2502
0.98 0.5406 0.0575 0.0662 0.20615
0.99 0.5311 0.0413 0.0358 0.15503

n=25 Exact Wald

P Mean Std. dev. Mean Std. dev.
0.01 0.1528 0.0304 0.0346 0.0668
0.02 0.1691 0.0412 0.0667 0.0841
0.03 0.1821 0.0464 0.0946 0.0916
0.04 0.1957 0.0506 0.118 0.0939
0.05 0.2074 0.0533 0.1395 0.0929
0.06 0.2189 0.0551 0.1591 0.0914
0.07 0.2291 0.0559 0.173 0.0892
0.08 0.2399 0.056 0.1292 0.087
0.09 0.2499 0.056 0.2034 0.0817
0.1 0.2592 0.0561 0.2164 0.0793

0.15 0.2984 0.0517 0.2664 0.0647
0.2 0.3298 0.0447 0.3026 0.0525
0.8 0.3306 0.0447 0.3024 0.0526

0.85 0.2932 0.0512 0.267 0.0638
0.9 0.2592 0.0557 0.2164 0.079

0.91 0.2502 0.0567 0.2032 0.0838
0.92 0.2414 0.056 0.1913 0.0849
0.93 0.2304 0.0556 0.174 0.0893
0.94 0.2175 0.0547 0.1574 0.0918
0.95 0.2078 0.0529 0.1392 0.0928
0.96 0.195 0.0508 0.1194 0.0937
0.97 0.1814 0.0463 0.0939 0.092
0.98 0.1685 0.0408 0.065 0.0836
0.99 0.153 0.0306 0.0358 0.0674

It is evident from the above tables that even though the Exact interval gives higher 

coverage probabilities, the confidence intervals have a wider length but a smaller
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standard deviation. The Wald interval lengths are smaller, i.e. the Wald interval gives a 

tighter confidence interval but a larger standard deviation when compared to the Exact 

interval.

Table 4.7. Mean and Standard deviations ' 75
n=50 Exact Wald

P Mean Std. dev. Mean Std. dev.
0.01 0.0876 0.0219 0.0333 0.0428
0.02 0.1027 0.0277 0.0597 0.0484
0.03 0.1153 0.0305 0.0812 0.0476
0.04 0.1267 0.0316 0.9764 0.0461
0.05 0.1378 0.0328 0.1107 0.0443
0.06 0.1402 0.0325 0.1238 0.0403
0.07 0.157 0.0313 0.1346 0.0395
0.08 0.1651 0.0315 0.1442 0.0374
0.09 0.1731 0.0315 0.1528 0.0356
0.1 0.1802 0.0305 0.161 0.0344

0.15 0.2104 0.0268 0.1944 0.0288
0.2 0.2336 0.023 0.218 0.0248
0.8 0.2338 0.023 0.2185 0.0245

0.85 0.2105 0.0272 0.1937 0.0291
0.9 0.1802 0.0305 0.161 0.0341

0.91 0.1732 0.0312 0.1529 0.0353
0.92 0.165 0.0317 0.1439 0.0373
0.93 0.1566 0.0319 0.1343 0.0385
0.94 0.148 0.0325 0.1235 0.0411
0.95 0.1379 0.0322 0.1108 0.0437
0.96 0.1275 0.0321 0.097 0.0462
0.97 0.1156 0.0309 0.0802 0.0482
0.98 0.102 0.0278 0.0591 0.0486
0.99 0.0879 0.0223 0.0331 0.0427

n=75 Exact Wald

P Mean Std. dev. Mean Std. dev.
0.01 0.0642 0.0174 0.0318 0.0314
0.02 0.0784 0.0212 0.0538 0.0324
0.03 0.0905 0.0225 0.0702 0.0308
0.04 0.1007 0.023 0.0838 0.028
0.05 0.1103 0.023 0.0942 0.0267
0.06 0.1187 0.0228 0.1039 0.0249
0.07 0.1262 0.022 0.1122 0.0242
0.08 0.1333 0.0214 0.1197 0.0234
0.09 0.1401 0.0201 0.1269 0.0226
0.1 0.1458 0.0206 0.1334 0.0219

0.15 0.1709 0.0179 0.1593 0.0187
0.2 0.1989 0.0153 0.1743 0.0162
0.8 0.1898 0.1542 0.1793 0.016

0.85 0.1715 0.0177 0.1592 0.0189
0.9 0.1458 0.0206 0.1327 0.0215

0.91 0.1397 0.0213 0.1267 0.0224
0.92 0.1333 0.0218 0.1196 0.0231
0.93 0.1237 0.0223 0.1121 0.0237
0.94 0.1185 0.0222 0.1039 0.0251
0.95 0.1101 0.0229 0.0946 0.0262
0.96 0.1007 0.0226 0.0831 0.0285
0.97 0.0903 0.0225 0.0707 0.0302
0.98 0.0784 0.0212 0.0539 0.0325
0.99 0.0641 0.0174 0.032 0.0314

4.2. Bayesian Credible Sets with Uniform and Beta Priors 

In this subchapter the simulations and the results o f constructing the Bayesian 

credible sets using uniform and beta priors are shown.
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Table 4.8. Mean and Standard deviations o
n=100 Exact Wald

P Mean Std. dev. Mean Std. dev.
0.01 0.0526 0.0147 0.0298 0.0243
0.02 0.0655 0.017 0.0492 0.0237
0.03 0.0763 0.0174 0.0631 0.0215
0.04 0.0859 0.0176 0.0738 0.0202
0.05 0.0942 0.0176 0.0828 0.0191
0.06 0.1017 0.0172 0.0908 0.0184
0.07 0.1081 0.0167 0.0978 0.0177
0.08 0.1146 0.0163 0.1045 0.0172
0.09 0.1201 0.0159 0.1103 0.0165
0.1 0.1254 0.0155 0.1158 0.0162

0.15 0.1473 0.0137 0.1385 0.014
0.2 0.1641 0.0117 0.1556 0.0121
0.8 0.1641 0.0116 0.1556 0.012

0.85 0.1472 0.0137 0.1387 0.014
0.9 0.1256 0.0153 0.1156 0.016

0.91 0.1203 0.0158 0.1103 0.0166
0.92 0.1147 0.0162 0.1047 0.0168
0.93 0.1083 0.0165 0.0982 0.0176
0.94 0.1017 0.0171 0.0911 0.0181
0.95 0.0941 0.0174 0.0832 0.0191
0.96 0.0857 0.0177 0.0735 0.0201
0.97 0.0764 0.0177 0.0627 0.0218
0.98 0.0655 0.017 0.0493 0.0237
0.99 0.0525 0.0145 0.0301 0.0246

the interval lengths for n = 100 and n = 1000
n=1000 Exact Wald

P Mean Std. dev. Mean Std. dev.
0.01 0.0133 0.0019 0.0121 0.002
0.02 0.0183 0.0019 0.0172 0.0019
0.03 0.0221 0.0018 0.021 0.0019
0.04 0.0253 0.0018 0.0242 0.0018
0.05 0.028 0.0018 0.0269 0.0018
0.06 0.0304 0.0017 0.0294 0.0017
0.07 0.0326 0.0017 0.0315 0.0017
0.08 0.0346 0.0017 0.0336 0.0016
0.09 0.0364 0.0016 0.0354 0.0016
0.1 0.0381 0.0016 0.0371 0.0016

0.15 0.0452 0.0014 0.0442 0.0014
0.2 0.0505 0.0012 0.0495 0.0012
0.8 0.0505 0.0012 0.0495 0.0017

0.85 0.0452 0.0014 0.0442 0.0014
0.9 0.0381 0.0016 0.0371 0.0016

0.91 0.0305 0.0016 0.0354 0.0016
0.92 0.0346 0.0017 0.0336 0.0016
0.93 0.0326 0.0017 0.0316 0.0017
0.94 0.0304 0.0017 0.0293 0.0017
0.95 0.028 0.0018 0.0269 0.0018
0.96 0.0253 0.0018 0.0242 0.0018
0.97 0.0022 0.0018 0.021 0.0018
0.98 0.0183 0.0019 0.0173 0.0019
0.99 0.0134 0.0019 0.2124 0.002

As discussed in section 3.1, a reasonable prior for p is a Uniform(0 1) distribution. 

But since the point o f interest in this thesis is when p is close to 0 or 1, the condition p is 

from a Uniform(0.8, l)distribution is imposed. 10,000 simulations were carried out to 

capture the coverage probabilities for credible sets with this prior for various n. Table 4.9 

gives a sample o f the output obtained for the credible sets. The first column shows the 

simulation number, the second column, the lower limit, the third column, the value o f p 

obtained from Uniform(0.8, 1), upper limit in the fourth column, the length of the
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confidence interval in the fifth column and the final column, titled hits shows a value of 1 

if  p is captured by the confidence interval and 0 if it is not.

Table 4.9.Sample o f the program output for the credible sets with Uniform (0.8,1) prior at
n = 25

No. Lower Limit P Upper Limit Length Coverage
1 0.8663417 0.957935 0.9877045 0.121363 1
2 0.8417501 0.955421 0.978251 0.136501 1
3 0.8663417 0.911334 0.9877045 0.121363 1
4 0.8956527 0.985009 0.9952134 0.099561 1
5 0.8073366 0.860262 0.9441232 0.136787 1
6 0.8029478 0.822665 0.9206793 0.117732 1
7 0.8417501 0.947101 0.978251 0.136501
8 0.8015601 0.810856 0.8996962 0.098136 1
9 0.8237624 0.869454 0.9675322 0.14377 1
10 0.8029478 0.80504 0.9206793 0.117732 1
11 0.9302316 0.965354 0.999503 0.069271 1
12 0.9302316 0.996788 0.999503 0.069271 1
13 0.8015601 0.846656 0.8996962 0.098136 1
14 0.8956527 0.953157 0.9952134 0.099561 1
15 0.8015601 0.845044 0.8996962 0.098136 1
16 0.8020838 0.83094 0.9097693 0.107685 1
17 0.8029478 0.82205 0.9206793 0.117732 1
18 0.8073366 0.817307 0.9441232 0.136787 1
19 0.8663417 0.962234 0.9877045 0.121363 1
20 0.8044701 0.822392 0.932224 0.127754 1
21 0.8015601 0.848199 0.8996962 0.098136 1
22 0.8417501 0.948357 0.978251 0.136501 1
23 0.8012187 0.800909 0.8905614 0.089343
24 0.8129735 0.915483 0.9560198 0.143046 1
25 0.8237624 0.929205 0.9675322 0.14377 1
26 0.8009874 0.807842 0.8823877 0.0814 1
27 0.8015601 0.808707 0.8996962 0.098136 1
28 0.8015601 0.836618 0.8996962 0.098136 1
29 0.8073366 0.882564 0.9441232 0.136787 1
30 0.8129735 0.878934 0.9560198 0.143046 1
31 0.8029478 0.830809 0.9206793 0.117732 1
32 0.8663417 0.985265 0.9877045 0.121363 1
33 0.8029478 0.860651 0.9206793 0.1! 7732 1
34 0.9302316 0.998572 0.999503 0.069271 1
35 0.8237624 0.954182 0.9675322 0.14377 1
36 0.8237624 0.949028 0.9675322 0.14377 1
37 0.8044701 0.915277 0.932224 0.127754 1
38 0.8663417 0.977294 0.9877045 0.121363 1
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Simulations were carried out for various n and the summary of the results o f the

simulations is tabulated below.

Table 4.10. Summary o f simulation results using a Uniform(0.8, 1) prior.

n Mean
Length Std.dev Coverage

5 0.1785 0.0143 0.9486
25 0.1434 0.0208 0.9497
50 0.1171 0.0242 0.9478
75 0.1006 0.0243 0.9526
too 0.08959 0.0234 0.9504

1000 0.03269 0.0103 0.9493

The mean length o f the credible interval is the smallest of the three methods. This 

means that tighter confidence limits are obtained. The coverage probability is almost 

equal to 0.95, i.e. it is close to the nominal level o f 95%.

The following figures show the plots o f some uniform prior distributions and their 

posteriors.
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Prior Density with Uniform(0.8,1) Posterior Density with B eta(6 ,1) at n * 5

0.60.2 0.4 D.B 1.00.0

P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 4 9 , 3 }  a t  n  -  5 0 P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 9 9 , 3 )  a t  n  =  1 0 0

0.4 0,60.0 0.2 O.B 1.0 0 6 0.8 1.00.0 02 0 4

Figure 4.6. Uniform(0.8, 1) prior with its posterior distributions

P r i o r  D e n s i t y  w i t h  U n i f o r m ( 0 , 0 . 2 ) P o s t e r i o r  D e n s i t y  w i t h  B e t a { 1 , 6 )  a t  n  =  5

0.2 0.4 0.6 0.6 1.00.0

P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 5 , 4 7 )  a t  n  =  5 0 P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 9 , 9 3 )  a t  n  =  1 0 0

00 0.2 0.4 D.B 0.8 10 0.0 0 2 0 4  0 6  OB 1.0

Figure 4.7. Uniform(0, 0.2) prior with its posterior distributions.
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In this section, the results of the simulations using the beta prior are shown.

Table 4.11. Sample o f the program output for
n =

No. P X n alpha beta mean Icl ucl sig Cov.
1 0.180477 23 100 33 177 0.157143 0.111249 0.209217 0.05 1
2 0.207354 22 100 32 178 0.152381 0.107145 0.203882 0.05 0
3 0.168105 21 100 31 179 0.147619 0.103058 0.19853 0.05 1
4 0.158828 21 100 31 179 0.147619 0.103058 0.19853 0.05 1
5 0.150113 21 100 31 179 0.147619 0.103058 0.19853 0.05 1
6 0.136168 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
7 0.171692 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
8 0.18974 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
9 0.18948 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
10 0.177127 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
11 0.128533 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
12 0.115223 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
13 0.131487 20 100 30 180 0.142857 0.098988 0.193162 0.05 1
14 0.129157 19 100 29 181 0.138095 0.094937 0.187775 0.05 1
15 0.114785 19 100 29 181 0.138095 0.094937 0.187775 0.05 1
16 0.129867 19 100 29 181 0.138095 0.094937 0.187775 0.05 1
17 0.120519 19 100 29 181 0.138095 0.094937 0.187775 0.05 1
18 0.138153 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
19 0.097407 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
20 0.135701 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
21 0.12967 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
22 0.132985 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
23 0.136284 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
24 0.134807 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
25 0.106409 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
26 0.140049 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
27 0.187603 18 100 28 182 0.133333 0.090904 0.182369 0.05
28 0.134971 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
29 0.16262 18 100 28 182 0.133333 0.090904 0.182369 0.05 1
30 0.110585 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
31 0.122284 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
32 0.135033 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
33 0.123648 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
34 0.115206 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
35 0.126473 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
36 0.147317 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
37 0.123193 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
38 0.120946 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
39 0.139787 17 100 27 183 0.128571 0.08689 0.176944 0.05 1
40 0.141925 17 100 27 183 0.128571 0.08689 0.176944 0.05 1

the eredible sets with Beta(10, 100) prior at 
00
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Table 4.12. Sample o f  the program output for the credible sets with Beta(100, 10) prior at
n = 75

No. P X n alpha beta mean Icl ucl sig Cov.
1 0.855084 65 75 165 20 0.891892 0.843447 0.932329 0.05 1
2 0.895905 70 75 170 15 0.918919 0.875634 0.953655 0.05 1
3 0.895612 64 75 164 21 0.886487 0.837128 0.927947 0.05 1
4 0.873737 66 75 166 19 0.897297 0.849802 0.936676 0.05 1
5 0.938065 70 75 170 15 0.918919 0.875634 0.953655 0.05 1
6 0.879484 64 75 164 21 0.886487 0.837128 0.927947 0.05 1
7 0.899392 70 75 170 15 0.918919 0.875634 0.953655 0.05 1
8 0.914322 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
9 0.882051 65 75 165 20 0.891892 0.843447 0.932329 0.05 1
10 0.903907 71 75 171 14 0.924324 0.882213 0.95778 0.05 1
11 0.930297 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
12 0.889599 74 75 174 11 0.940541 0.902325 0.969782 0.05
13 0.877516 70 75 170 15 0.918919 0.875634 0.953655 0.05 1
14 0.930285 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
15 0.897031 70 75 170 15 0.918919 0.875634 0.953655 0.05 1
16 0.941951 72 75 172 13 0.92973 0.88885 0.961847 0.05 1
17 0.863479 69 75 169 16 0.913514 0.869107 0.949479 0.05
18 0.91178 67 75 167 18 0.902703 0.856195 0.940986 0.05 1
19 0.898088 68 75 168 17 0.908108 0.862629 0.945254 0.05 1
20 0.899886 68 75 168 17 0.908108 0.862629 0.945254 0.05 1
21 0.841673 65 75 165 20 0.891892 0.843447 0.932329 0.05
2 2 0.894879 66 75 166 19 0.897297 0.849802 0.936676 0.05 1
23 0.878103 70 75 170 15 0.918919 0.875634 0.953655 0.05 1
24 0.909249 64 75 164 21 0.886487 0.837128 0.927947 0.05 1
25 0.888152 65 75 165 20 0.891892 0.843447 0.932329 0.05 1
26 0.942452 71 75 171 14 0.924324 0.882213 0.95778 0.05 1
27 0.86808 67 75 167 18 0.902703 0.856195 0.940986 0.05 1
28 0.931695 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
29 0.912767 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
30 0.844343 64 75 164 21 0.886487 0.837128 0.927947 0.05 1
31 0.878436 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
32 0.905176 68 75 168 17 0.908108 0.862629 0.945254 0.05 1
33 0.845634 63 75 163 22 0.881081 0.830842 0.923531 0.05 1
34 0.936504 74 75 174 11 0.940541 0.902325 0.969782 0.05 1
35 0.872118 67 75 167 18 0.902703 0.856195 0.940986 0.05 1
36 0.874051 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
37 0.95156 71 75 171 14 0.924324 0.882213 0.95778 0.05 1
38 0.852361 67 75 167 18 0.902703 0.856195 0.940986 0.05
39 0.904894 66 75 166 19 0.897297 0.849802 0.936676 0.05 1

40 0.941301 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
41 0.854342 56 75 156 29 0.843243 0.78763 0.891835 0.05 1
42 0.913493 66 75 166 19 0.897297 0.849802 0.936676 0.05 1
43 0.923036 69 75 169 16 0.913514 0.869107 0.949479 0.05 1
44 0.897717 65 75 165 20 0.891892 0.843447 0.932329 0.05 1
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Tables 4.11 and 4.12 give a sample o f the output obtained for the credible sets when 

the priors are Beta(10, 100) and Beta(100, 10) respectively. The first column shows the 

simulation number, the second column, the value of p obtained from the prior, the third 

column gives the value of x, n in the fourth column, the posterior values o f alpha and beta 

in the 5th and 6th columns respectively, the mean of the posterior in the seventh column, 

the lower credible limit and the upper credible limit in eighth and ninth columns, the 

signifieanee level and the last column, the shows a value of 1 if  p is captured by the 

credible interval and 0 if  it is not.

The summary o f all the simulations with Beta(10, 100) prior is shown in table 4.13.

Table 4.13. Summary of simulation results using a Beta(10, 100) prior

n Mean
length Std.dev Coverage

5 0.1245 0.0126 0.9511
25 0.0985 0.0069 0.9584
50 0.0885 0.0065 0.953
75 0.0818 0.0069 0.9684
100 0.0769 0.0071 0.9448

1000 0.0334 0.0043 0.9461

It is seen that the coverage probability for all values of n is almost equal to the 

nominal level of 95%. The mean credible interval length is also smaller than the Wald 

interval and the Exact interval. That is Bayesian credible intervals are tighter than the 

Wald and Exact intervals. Figure 4.8 shows the plots o f some posterior distributions with 

B eta(1 0 , 100) p rio r d istribu tion .
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Posterior Density with Beta(14,101) at n = 5 Posterior Density with 6eta(20 ,140) at n » 50

0.0 0.2 0.4 06 0.8 ID 1.00.0 0.2 0.4 0.6 0.0

P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 1 3 , 1 9 7 )  a t  n  =  1 0 0 P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 5 D ,  1 0 6 0 )  a t n  =  1 0 0 0
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Figure 4.8. Posterior densities with Beta(10, 100) priors

P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 1 0 4 , 1 1 )  a t  n  -  5 P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 1 1 9 , 1 6 )  a t  n  =  2 5

0 0  0 2  0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1,0

P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 1 6 5 , 2 0 )  a t  n  =  7 5 P o s t e r i o r  D e n s i t y  w i t h  B e t a ( 1 7 5 , 3 5 )  a t  n  =  1 0 0
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Figure 4.9. Posterior densities with Beta(100, 10) priors
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Table 4.13. Summary of simulation results using a Beta(100, 10) priorn Mean
Length Std.devCoverage

5 0.1234 0.013 0.9453
25 0.0991 0.0073 0.9515
50 0.0885 0.0062 0.9551
75 0.0818 0.0067 0.9496
100 0.0763 0.007 0.9478

1000 0.0333 0.0041 0.9456

Figure 4.9 shows the plots of some posterior distributions with Beta(100, 10) prior 

distribution. A summary o f the simulation results using Beta(100, 10) is shown in table 

4.13. It is seen that, for the values o f p closer to 0 or 1, the credible intervals give very 

good coverage probabilities.
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CHAPTER 5 

CONCLUSIONS

This work is primarily a comparison of confidence intervals for a binomial 

proportion. The literature review showed that there are a lot of methods for analyzing and 

computing the confidence intervals o f the parameter p for the binomial distribution. The 

methods compared here are the Wald interval, the Exact interval and the Bayesian 

credible sets.

The Wald interval gives a poor coverage probability when n is very low. For values 

o f p closer to 0 or 1, even for large values of n. (n > 50), the coverage probability is less 

than the nominal value o f 95% in most cases. The only advantage is its simplicity and the 

tighter confidence interval lengths.

The Exact interval consistently gives a higher coverage probability than the nominal 

95% level. The coverage probability is very close to 0.95 only at high values o f n. Even 

though the length o f the Exact confidence intervals are longer than the Wald confidence 

intervals, the coverage probability is much better than the Wald interval.

The Bayesian credible sets consistently give the required coverage probabilities. The 

credible limit lengths are consistently smaller compared to the Wald and the Exact 

intervals. That is the Bayesian credible sets give have a tighter control over the lengths of 

the intervals. The priors are highly informative. This results in the posterior having 

smaller probability range and smaller confidence limits.
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This thesis has shown that the Wald interval gives the lowest coverage probability o f 

the three models. A lot o f literature also points to the same. So it is recommended that the 

Wald Interval should be used only to demonstrate the generation o f confidence intervals.

The computation o f the confidence intervals for the binomial proportion should be 

done using the Exact Interval or the Bayesian method or the other methods like Score 

Interval, The Stern Interval etc.
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