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ABSTRACT
Comparison of Confidence Intervals For Binomial Proportions
by
Narain Armbya
Dr. Rohan Dalpatadu, Examination Committee Chair
Associate Professor, Department of Mathematical Sciences
University of Nevada, Las Vegas
The main objective of this thesis is to compare the performance of confidence
intervals for binomial proportions and also propose a Bayesian analysis for estimating the
credible sets. In this thesis, a combination of énalytical and numerical techniques is used
to compare the Wald interval, exact interval and obtain the Bayesian credible sets for the

binomial distribution when p is close to 0 or 1. Uniform and Beta priors were used and

the credible sets were obtained. The statistical package R was used for this purpose.
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CHAPTER 1

INTRODUCTION
1.1. Confidence Intervals and Credible Sets

A confidence interval, for a population parameter, is an interval between two numbers
with an associated probability p which is generated from a random sample of an
underlying population, such that if the sampling was repeated numerous times and the
confidence interval recalculated from each sample according to the same method, a
proportion p of the confidence intervals would contain the population parameter in
question. A (1 — a)100% confidence interval for a parameter 6 is the interval (I, u) such
that

Pl<6<u)=1-q.
A credible set is a Bayesian analogue of a confidence interval. A (1 — a)100%

credible set for a parameter 0 is the set (1, u) such that
PI<0<u|x)= [g(0]x)d6>1-a.
!

The coverage probability of the confidence interval is based on the sampling

distribution of the parameter; in other words, how it varies over all possible samples.
Hence the probabilities are determined pre-data. They do not depend on the particular

sample that occurred. This is in contrast to the Bayesian credible set calculated from the
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posterior distribution that has a direct probability interpretation conditional on the
observed sample data. The Bayesian credible set is more useful, i.e., it summarizes the
belief about the parameter values that could credibly be believed given the observed data
that occurred. In other words, it is post data. One need not be concerned about the data

that could have occurred but did not (Bolétad, 2004).

1.2. Binomial Confidence Interval
The binomial distribution is a discrete probability distribution whose probability mass
function f(x) determines the probability of obtaining exactly x successes out of n
Bernoulli trials where each Bernoulli trial has success with a probability p and failure
probability 1-p. The probability mass function of a binomial distribution is given by the

formula
fx)="C,p"(1-p)"~
The binomial distribution will be discussed in detail in Chapter 2.

The observed proportion of successes in a binomial sample is denoted by

A X
p=-—.
n

One of the most basic and methodologically important problems in statistical practice
is the interval estimation of the probability of success in a binomial distribution. For a
binomial proportion, four types of confidence intervals can be distinguished: Wilson’s
score interval (Wilson, 1927), the Wald interval (Wald & Walfowitz, 1939), the adjusted
Wald interval (Agresti & Coull, 1998), and the ‘exact’ Cloppér—Pearson interval
(Clopper& Pearson, 1934). The text-book confidence interval which is widely used in

practice is the Wald interval given by the formula,
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. p(1-p)
+ T,
p Z‘“”/z n

where 7, is the 100(1-a/2)th percentile of the standard normal distribution (Wald and
Wolfowitz, 1939).

At first glance, one may think that the problem is too simple and has a clear and
present solution when in fact, it does not. It is Widely recognized that the actual coverage
probability of the standard interval is poor for p near 0 or 1 unless n is very large; for
example see Ghosh (1979) or Blythe and Still (1983). Even at the level of introductory
statistics texts, the standard interval is often presented with the caveat that it should be
used only when n'(min p, 1 — p) is at least 5 (or 10). Examination of the popular texts
reveals that the qualifications with which the standard interval is presented are varied, but
they all reflect the concern about poor coverage when p is near the boundaries. This is
because the exact binomial distribution gets highly skewed as p tends to 0 or 1 and the

normal approximation to the sampling distribution of p requires large samples before it

actually takes hold.

1.3. Bayeéian Statistics
Statistical analysis is the process of separating out systematic effects from the random
noise inherent in all sets of observations. Jeff Gill in his book Bayesian Methods: A
social and behavioral science approach has stated that there are three general steps in this
process: collection, analysis and statistical inferences. Suppose there exists a statistical

data analysis process with the following desirable characteristics:

e Overt and clear model assumptions
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e A rigorous way to make probability statements about the real quantities of
theoretical interest.

e An ability to update these statements as new information is received.

e Systematic incorporation of previous knowledge on the subject.

e Missing values handled seamlessly as a part of the estimation process.

e Recognition that population quantities are changing over time rather than forever
fixed (i.e., the population of interest is dynamic rather than static).

e The ability to model a wide class of data types (with sufficient computing and
programming expertise).

e Straightforward assessment of both model quality and sensitivity to assumptions.

Bayesian statistics possesses all of these qualities and the type of data researchers
routinely encounter makes the Bayesian approach ideal in ways that frequentist data
analysis cannot match. These advantages include avoiding the assumptions of infinite
amounts of forthcoming data, recognition that fixed-point assumptions about human
behavior are dubious, and a direct way to include existing expertise ( or ignorance) in
the analysis.

With Bayesian analysis, inferences about unknown model parameters are not
expressed in the conventional way as point estimates with reliability assessed using
the null hypothesis significance test. Bayesian analysts make no fundamental
distinction between observations and the unknown parameters are treated as random
variables themselves as a logical consequence of Bayestan conditional analysis.
Bayesian statistical information about parameters is summarized in probability

statements applied to samples or populations in the form of a posterior distribution:
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the joint distribution of unknown parameters after observing the data and updating the
model. These summary quantities include quantiles of the posterior distribution, the
predictive quantities from the posterior and Bayesian forms of confidence intervals,
the credible sets and the highest posterior density region.
The essentials of Bayesian thinking are contained in three general steps:
e Specify a probability model that includes some prior knowledge about the
parameters if available for unknown parameter values.
e Update the knowledge about the unknown parameters by conditioning this
probability model on observed data.
e Evaluate the fit of the model to the data and the sensitivity of the conclusions to
the assumptions.
The value of a given Bayesian model is found in the description of the distribution
of some parameter of interest in probabilistic terms (Gill,2002). The framework of the

Bayesian analysis will be discussed in depth in Chapter 2.

1.4. Objective and Approaéh
As mentioned earlier, there many procedures for computing binomial confidence
intervals, so the main objective of this thesis is to compare these procedures. More
specifically, we will consider the Wald interval, the exact interval and a method for
estimating the Bayesian credible sets for the binomial population proportion. A
combination of analytical and numerical techniques is used to obtain the Bayesian
credible sets for the binomial distribution when p is close to 0 or 1. Chapter 2 explains in

detail the binomial model, the Wald interval and the Exact interval. Chapter 3 deals with
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the Bayesian framework. Uniform and Beta priors are used to calculate the posterior

densities. The analytical approach used to get these posteriors is also discussed. Some

examples and results are summarized in Chapter 4.
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CHAPTER 2

CONFIDENCE INTERVALS FOR BINOMIAL PROPORTIONS
This chapter provides information on the working theory behind the Wald interval
and the Exact interval for estimating a binomial proportion. The chapter is split into two
sections. The first part provides a detailed description of the concept of binomial

distribution, the second presents the details of Wald Interval and the Exact interval

2.1. The Binomial Distribution

Probability distributions are used to model randomness in populations; as such,
statistiéian_s usually deal with a family of distributions rather than a single distribution.
There are two major types of probability distributions: discrete and continuous. A real
valued random variable X is a function from a sample space into the real numbers, with
the property that for every potential outcome X there is an associated probability P[X=x]
which exists for all real values of X in the sample space. A random variable X is said to
have a discrete distribution if the support of X, the sample space, is countable; in most
situations, the random variable has integer-valued outcomes. The second major type of

distribution has a continuous support region; in this situation, the sample space is some

interval of the real line and the function used to model random behavior over the sample

space is called a probability density function (pdf).
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The purpose of this chapter is to introduce a particular type of discrete distribution,
the binomial distribution, and its relation to other common discrete distributions. For each
distribution, we will give its mean and variance and some other useful statistical
descriptive measures and interrelationships that may aid understanding.

2.1.1. Specification of binomial distribution

The binomial distribution is based on the idea of a Bernoulli trial. A Bernoulli trial
(named for James Bernoulli, one of the founding fathers of probability theory) is a
random experiment with exactly two possible outcomes. A random variable X has a
Bernoulli (p) distribution if

1 with probability p
X= . . ,where 0<p<1.
0 with probability 1 - p

The value X = 1 is often termed a “success” and p is referred to as the success
probability. The value X = 0 is termed a “failure”.

The binomial distribution gives the discrete probability distribution P(X = x) of
exactly x successes out of n Bernoulli trials (Kotz 1969) . The binomial distribution is

there fore given by
P(X=x)=("jpx(1——p)""‘, x=1,2,3,..n

The following figure is the plot of the binomial pdf for four values of p and n.
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Figure 2.1. Plots of binomial probability distribution function.

2.1.2. Expectation and Variance
The population mean or expected value of X, when X ~ Bin(n, p), is given by
E(X)=np
and the variance 1s given by
Var(X)=np(1-p).
2.1.3. Properties of binomial distribution

The binomial distribution is unimodal, and belongs to the exponential family of

distributions with respect to p/(1-p), since we can write

p n
P(X =x)=exp| xlog n +log . +nlog(l1-p)|.
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It has also been shown that the binomial distribution belongs to the family of F-
distributions when the duality between binomial and beta distribution is observed. Kemp
(1968) has shown that binomial distribution is a generalized hypergeometric distribution.

The skewness of the distribution is positive if p < 1/2 and negative if p > 1/2. The
distribution is symmetric if and only if p = 1/2.

2.1.4. Relation to other distributions
If n is large and p is small, so that np is moderate, then Poisson distribution is a good

approximation of the binomial distribution. That is,

-A
e A"

' where A = np, the binomial mean.
X:

SO A)=

. . X - .
As n becomes large with p fixed, the pivotal quantity \/Tnp:) (where X ~ Bin(n,
npl—p

p)), approaches a normal(0, 1) distribution.
2.1.5. Applications of binomial distribution.

The binomial distribution arises whenever the underlying events are independent and
identical Bernoulli trials; in particular, it is the distribution of the sum of n such trials.
The importance of the distribution has evolved from its original application in gaming to
many other areas.

Its use in genetics arises because the inheritance of biological characteristics depends
on geneé that occur in pairs. A more recent application is the study of number of
nucleotides that are in same state in two DNA sequences. A number of scientists have
provided applications of the binomial distribution in plant and animal ecology.

The number of defectives found in a random sample of size n from a stable

production process is a binomial variable. Acceptance sampling is a very important

10
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application of the test for the mean of a binomial sample against a hypothetical value.
This distribution is the sampling distribution of the test statistic in both the sign test and
McNemar's test. Although appealing in their simplicity, the assumptions of independence
and constant success probability for the binomial distribution are rarely precisely
satisfied. Nevertheless, the model is often sufficiently accurate to enable useful

inferences to be made.

2.2. Confidence Intervals

By definition, a confidence interval 6, < 6 < 6, for an unknown parameter 0, with
unreliability o, comprises all values 6y for which the null hypothesis Ho: 6 = 69 would not
have been rejected in the observed sample when a two-sided test with unreliability a (i.e.,
the Type 1 error) would have been applied. Any value 6y smaller than the lower bound 6,
in the sample at hand is ‘improbably small’, and any 6 > 0, is ‘improbably large’. Given
some best estimate of 0 in a given sample, two numbers 6, and 6, have to be calculated
that meet the required property. Moreover, the interpretaﬁon of a confidence interval has
to be understood in a frequentist sense, i.e., in a framework of repeatedly taking samples
of size n from the same population distribution, and calculating an interval with
confidence coefficient 1 — a for some unknown but fixed parameter of interest in each of
these samples. Confidence intervals are then constructed so that in the long run, the

proportion of intervals covering the fixed population parameter equals 1—a. Therefore, in

this framework of repeated sampling under the same conditions, a probability statement
can be made, saying that the probability that the stochastic interval will cover the

unknown fixed population value equals 1 — a. This probability statement refers to the

11
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proportion of the time that a random interval will contain the true value of the parameter
(a population constant).

The lower and upper bounds of a two-sided confidence interval are random in the
sense that they may change from sample to sample. In a given sample, however, they are
known numbers. On the other hand, the population parameter 0 is a fixed but unknown
number. It is this contraposition ‘stochastic but unknown’ versus ‘fixed but unknown’
that makes the interpretation of a confidence interval so difficult, because of the mind’s
tendency to think that the unknown quantity 6 has a probability distribution. But as long
as the concept of probability refers to the frequentist point of view — what happens if the
sampling experiment is repeated — that is incorrect thinking. Only in Bayesian statistics,
not in classical statistics, can a parameter have a probability distribution.

The idea of constructing confidence intervals in the framework of repeated sampling

is illustrated in Figure 2.

4 SRR U ) -

d 5 somles

o
| S )

Figure 2.2. Confidence intervals for a fixed proportion parameter 6 in 5 samples from the
same population.

12
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2.2.1. Wald Interval.
A common confidence interval procedure for estimating the binomial proportion p is

the Wald interval given by the formula

p-p)

z
1-e/ n

=+

p
where Zj.4n 1S the 1()0(1—01/2)Ih percentile of the sfandard normal distribution (Wald and

Wolfowitz, 1939). This procedure applies in large samples where the sampling

distribution of p is reasonably approximated by a N ( pf—(l-_—p—)j distribution.

n
This standard interval is easy to calculate and heuristically appealing because of its
simplicity. In introductory statistics texts and courses, the confidence interval is usually
presented along with some heuristic justification based on the central limit theorem. The
larger the sample size n, the better the normal approximation, and thus the closer the
actual coverage would be to the nominal level 1—a. The normal approximation used to
justify the standard confidence interval for p has a significant error. The error is most
evident when the true p is close to 0 or 1. In fact, it is easy to show that, for any fixed n,
the binomial distributions converge to a degenerate distribution as p — 0 or p — 1. The
length of the interval converges to 0.
Therefore, most major problems arise regarding coverage probability when p is near
the boundaries. Poor coverage probabilities for p near 0 or 1 are widely remarked on, and
generally, in the popular texts, a brief sentence is added qualifying when to use the Wald

interval for p. For example, this confidence interval can be used if np and np(1-p) > 5
or 10; np and np(1— p) > 5 or 10, etc. Figures 3 and 4 show the coverage probabilities

forn=35 and 25 and p = 0 to 1, for the Wald interval at the nominal level of 95%.

13
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Coverage for n = 5 by Wald Interval
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Figure 2.3. Coverage probability for n = 5 and p=0to 1 at 95% nominal level for the
Wald interval.

Coverage for n = 25 by Wald Interval

S
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Figure 2.4. Coverage probability for n =25 and p =0 to 1 at 95% nominal level for the
Wald interval. '
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There are oscillations in the coverage in both the figures. These oscillations are
due to the discreteness of the binomial distribution. Another reason is the presence of
systematic bias in the coverage probability of the confidence interval. The bias is due

mainly to the fact that the standard interval has the “wrong” center. The standard interval
: A X " . .
is centered at p=—. Although p is the MLE and an unbiased estimate of p, as the

n

center of a confidence interval it causes a systematic negative bias in the coverage. The

standard interval is based on the fact that

wo= | (p- N(0,1
iy PP NOD

However, even for quite large values of n, the actual distribution of W, may be
significantly non-normal. Thus the very premise on which the standard interval is based
is seriously flawed for moderate values of n.

A discussion on the coverages for some sample values of n and the confidence
intervals is given in chapter 4.

2.2.2. Exact Interval

To avoid the approximation of the Wald interval, textbooks recommend the Clopper-

Pearson “exact” confidence interval for p, based on inverting equal-tailed binomial tests

of Ho : p = po. Its endpoints that are the solutions p, and pj to the simultaneous equations
Z[ jpk (-p)* =24
k=x \_k

and

(:)pk(l—p)""‘ =2/

k=0
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except that the lower bound is 0 when x = 0 and upper bound is 1 when x = n. The

interval estimator is guaranteed to have coverage probability of at least 1 — a for every

possible value of p. Whenx =1, 2, 3, ...., n— 1, the confidence interval equals
. -l
{ n—x+1 } n—x
l+ ——— | <p<|l+
xF‘Zx,2(n‘x+l),]—'% (x + 1)F;(x+l),2()l~x),%

where F,p . denotes the 1-c quantile from the F-distribution with degrees of freedom a
and b. Equivalently, the lower endpoint is the a/2 quantile of a beta distributionwith
parameters X and n — vx + 1, and the upper endpoint is the 1 — a/2 quantile of a beta
distribution with parameters x + 1 and n — x. This exact interval is typically treated as the
gold standard. However the procedure is necessarily conservative, because of the

discreteness of the binomial distribution. This means that for any fixed parameter value,

the actual coverage probability can be much larger than the nominal confidence level
unless n is quite large. This is shown in both the plots of figure 2.5. The lower dotted line
is the 95% coverage mark and the upper dotted line is the 100% coverage mark. As is

seen here the coverage probability is higher than the 95% nominal level.

16
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Figures 2.5. Coverage probability for n =5 and 25 and p=0to 1 at 95% nominal level
for the Exact interval.
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CHAPTER 3

BAYESIAN ESTIMATION OF CREDIBLE SETS

The classical statistical approach considers a parameter as a fixed, but unknown
constant to be estimated using data randomly sampled froﬁq the population of interest. A
confidence interval for an unknoWn parameter is réa]ly a frequency statement about the
likelihood that numbers calculated from a sample capture the true parameter value in
repeated sampling. So the classical statistical approach cannot say there is a 95%
probability that the true proportion is in any single interval, because it is either already in,
or it is not. This is because under the classical approach, the true proportion is a fixed

unknown constant, so it does not have a distribution; however, the sample proportion
f)does. Thus, we can say that there is a 95% chance the random interval contains p, in

repeated samples of size m from the same population.

The Bayesian approach, on the other hand, treats the population model parameter as
random instead of fixed. Actually, the data are treated as fixed realizations of a random
process, accounted for by the likelihood function. Before looking at the current data, we
use past information to construct a prior distribution model fof the parameter. The prior
distribution is chosen to reflect one’s prior knowledge of p, which may vary from one
person to the next. As a result, the mathematical form of a prior distribution is quite
flexible. In particular, conjugate priors are a natural and popular choice of Bayesian prior

distribution model, due to their mathematical convenience. The prior distribution of a

18
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parameter may be noninformative or informative. Noninformative priors are locally
uniform in a certain range of parameter values. The range of possible values may be fixed
or may be infinite. An informative prior distribution specifies a particular nonuniform
shape for the distribution of the parameter. When new data are gathered, they are used to
update the prior distribution. We then take the weighted average of the prior and data,
expressed through the likelihood function, to derive what is called the posterior
distribution model for the population model parameter. Point estimates, along with
interval estimates (known as credibility intervals), are calculated directly frorﬁ the
posterior distribution. Credibility intervals are legitimate probability statements about the
unknown parameter, since the parameter now is considered random. Under the Bayesian
point of view, we can say that there is a 95% probability that the interval contains the
population proportion.

The posterior distribution model is based on Bayes’ theorem, which expresses the
conditional probability of an event A, given that the event B has occurred, in terms of
unconditional probabilities and the probability the event B has occurred, given that A has

‘occurred. It is defined as

_ P(4,B) _ P(4)x P(B| 4)

P(A4IB)=
(B) P(B)

In terms of probability density functions, the theorem takes the form

f(x|p)g(p)
[ pepydp

g(plx)=

This is known as the posterior density of x, where f(x|p) is the likelihood function of the
observed data x given the unknown parameter p, g(p) is the prior density of p and the

denominator represents the marginal density of x. When g(p| x)and g(p) both belong to

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the same family of distribution, g(p) and f(x|p) are called conjugate distributions and g(p)
is called the conjugate prior for f(x|p). For example, the Beta distribution model is a
conjugate prior for the proportion of successes p when samples have a binomial

distribution.

With probability 1 — o, a Bayesian credibility interval for p is given by (pL,pU ) ,

where p, and p,; satisfy

[ epixdp=1-a.

This yields an interval estimate of p with probabilityl — a.
In this chapter, a detailed overview of the estimation of the credible sets using

uniform and beta priors is presented

3.1. Using Uniform priors
If there is no idea beforehand as to what the proportion p is, it is reasonable to choose
a prior that does not favor any one value over the other. The idea is to be as objective as
possible. In such a case a uniform prior that gives equal weight to all possible values of
success probability p is to be used. Hence a reasonable prior is p ~ Unif(0,1).

The density function for this prior is given by

1 where 0 <p <1,

g(p)= {

0 elsewhere.
Let x ~ Bin(n, p) and p ~ Unif(0,1). Using Bayes' formula, the posterior density
function is given by

f(xIp)ep)
f (x| p)g(p)dp

g(plx)=
J

20
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that is

p (- p)"_x x1
r (1 -—p)""x xl)dp

g(plx)=£(

Notice that the denominator is the normalizing constant and the product in the
numerator is the kernel of the beta distribution.

The pdf of the beta distribution 1s:

f(x|a, B)= %xa—x (1-x)"

where 0 <x <1, o, >0 and T'(k) = (k —1)! is the Gamma function when k >1 is

integer-valued.
Ifweletx=p,0=x+1and B=n-x+ 1, we get the following expression:

X

px (] _ p)n~

g(plx)= -
(x+1)F(n—x+1) F(n+2) ) —
[ I'(n+2) )X'Er(x+1)r(n—x+])xp (1-p)" dp

I'(n+2)

Flr ) (n—xt1) xp*(1- p)"" dpis the integral of the beta pdf over the

Since 1:

parameter space for p. This expression is equal to one. Thus, after simplification we have

F(n+2)

&P 1) S (o) P 0P

which corresponds to a Beta(x + 1, n - x + 1) density.

It worked out that the posterior distribution is a form of a beta distribution. The Bayes
estimator of the proportion in the population p, under squared error loss, is just the

posterior mean. If Y ~ Beta(a, B), then the mean of a beta distribution is

21
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a

a+pf’

E(Y)=

Therefore, the Bayes estimator of p is

x+1

ﬁ]iayes :E(p|x):;2—

The credibility interval for the parameter p is then computed from that posterior beta
distribution with parameters x + 1,n-x + 1.
This uniform prior is just one of an infinite number of possible prior distributions.

Since the point of interest in this thesis, "p" is near 0 or 1, p is taken from Unif(0. 0.2) or

Unif(0.8, 1). The simulations and the results are shown in the next chapter.

3.2. Using Beta Priors
When there is a prior knowledge as to the proportion p, a beta prior is a useful alternative.

For a random variable p, where p ~ Beta(a, B), the pdf is

I'la+p)

a-~1 1_ p-1
raorp? 4P

gpla.p)=

In fact, we can show that the Beta(l, 1) distribution is the Unif(0,1) distribution; that is

ra+ly 141
L)=——"2p"1- 0<p<l,
g(p|LD) TOT) (-p) p
which gives us
Beta(,)) =—4FD 0<p<1
rra)

This is the density function for the Uniform (0,1) distribution.
Figure 3.1 shows the plots of two beta pdfs. The first one is Beta(10, 100) and the

second one is Beta(100, 10). This corresponds to the knowledge that the binomial
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probability comes from a known prior and has the value close to 0 (first plot) or 1

(second plot).
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Figure 3.1. Prior distributions of Beta(10, 100) and Beta(100, 10)

Let x ~ Bin(n, p), as we defined in the previous section, and let g(p) ~ Beta(a,B);

that 1s, the proportion p has beta prior distribution. Then,

_ r(a + /8) pa—]

= 1- p)»!
rarp? P

g(p)

where 0 <p <1, a>0,B>0 and a,p are known arbitrary constants. The posterior
density is given by

f(xIp)gp)
f(xlp)e(p)dp

g(plx)= J:

where f(xlp) = (:j pa-p).

We then have
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= (z]p (=r)y _I:F(L;;{%p“_' (1-p)”"
o J:(@p e —F%%%P““(l—p)ﬂ_]]dp

pa+x—l a- p)'1+/3~.x—1
E ( pre] (1 _ p)n+ﬂ—x—1 ) dp

The denominator is the normalizing constant of a beta distribution. We then have the

following expression,

px+a-| (1 _ p)"+ﬂ"x"l

g(plx)= r(x+a)T(n~x+,b’)E F(x+a+n—x+,b’) x( vt (] ),H/;_x_])d
F(x+a+n-x+p) *I'(x+a)l(n-x+p) P P P
Since _[: [(x+atn-x+p) x(p““‘] (l—p)mﬁ»x“])dp is the integral of the beta pdf

F(x+a)l"(n—x+ﬂ)

over the parameter space for p, this expression equals one. The posterior density is then

B F(x+0{+n—x+ﬂ) ol et fmx-1
g(plx)= F(x+a)F(n—x+,B)x( (1-p) )’

which is a Beta (x + a, n - x + ) density.

It worked out that the posterior distribution is a form of the prior distribution updated
by the new data. In general, when this occurs we say the prior is conjugate.
The Bayes estimator, under squared error loss, is the mean of the posterior Beta (x + a, n
- x + B) distribution.

(x+a)

Ppayes = E(p|X)= m .

The Bayes credible set for p is given by (p;, p.) where pi, and p, satisfy
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f"g(plX)dpﬂ—a,

where a is the significance level. The credible interval used in this thesis is computed
from the posterior beta cumulative density function as

P[Betaa/2 (x+a,n—x+ﬂ)<p<Beta]_aﬂ(x+a,n—x+ﬁ)]=l—a.

Then a 1 - a Bayesian credible interval for p is (p;, py) where p, the a/2 quantile and
pu is the 1 - o/2 quantile of the beta distribution with parameters x + @, and n - x + .

Chapter 4 shows the simulations and results for this analysis.
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CHAPTER 4

SIMULATIONS AND RESULTS OF EXPERIMENTS
In this chapter, results and simulations of the confidence intervals and the credible
sets are discussed. The first section deals with the Wald and the Exact interval and the

second section deals with the Bayesian credible sets.

4.1. The Wald Interval and the Exact Interval

95% confidence intervals were constructed for n = 5, 25, 50, 75, 100 and 1000 using
the statistical software package R for the computations.

10,000 simulations were carried out to evaluate the coverage probabilities for both
intervals at various values of n and p. The values of p used in this simulation are 0 to 0.1
(in increments of 0.01), 0.15, 0.2, 0.8, 0.85, and 0.9 to 1 (in increments of 0.01). Table
4.1 gives a sample of the output obtained for the Wald interval, with p = 0.05 and n =
equal to 25. From left to right, the columns denote simulation number, the lower limit,
the upper limit, the length of the confidence interval and whether or not p is captured by
the confidence interval (1 if yes and 0 if it is not). Table 4.2 shows the same for the Exact

Interval.
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Table 4.1.Sample of the program output for Wald interval at n = 25 and p = 0.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No. Lower Limit|Upper Limit| Length Hits
1 0 0 0 0
2 -0.036816 | 0.116816 | 0.153632 1
3 -0.0263469 | 0.1863469 | 0.212694 1
4 -0.0263469 | 0.1863469 | 0.212694 1
5 0 0 0 0
6 -0.036816 | 0.116816 | 0.153632 1
7 -0.036816 | 0.116816 | 0.153632 1
8 0 0 0 0
9 -0.036816 | 0.116816 | 0.153632 1
10 0 0 0 0
11 -0.0073849 | 0.2473849 | 0.25477 1
12 -0.036816 | 0.116816 | 0.153632 1
13 -0.036816 | 0.116816 | 0.153632 1
14 -0.036816 | 0.116816 | 0.153632 1
15 -0.036816 | 0.116816 | 0.153632 1
16 -0.036816 | 0.116816 | 0.153632 1
17 -0.036816 | 0.116816 | 0.153632 1
18 -0.036816 | 0.116816 | 0.153632 1
19 -0.0263469 | 0.1863469 | 0.212694 1

20 -0.0263469 | 0.1863469 | 0.212694 1
21 -0.036816 | 0.116816 | 0.153632 1
22 -0.0073849 | 0.2473849 | 0.25477 1
23 -0.036816 | 0.116816 | 0.153632 1
24 -0.036816 | 0.116816 | 0.153632 1
25 -0.0263469 | 0.1863469 | 0.212694 1
26 -0.036816 | 0.116816 | 0.153632 i
27 -0.036816 | 0.116816 | 0.153632 1
28 -0.036816 | 0.116816 | 0.153632 1
29 -0.0263469 | 0.1863469 | 0.212694 1
30 0 0 0 0
31 0 0 0 0
32 -0.036816 | 0.116816 | 0.153632 1
33 -0.0263469 | 0.1863469 | 0.212694 1
34 -0.036816 | 0.116816 | 0.153632 1
35 0 0 0 0
36 -0.036816 | 0.116816 | 0.153632 1
37 -0.036816 | 0.116816 | 0.153632 1
38 -0.036816 | 0.116816 | 0.153632 1
39 -0.036816 | 0.116816 | 0.153632 1
40 0.0162904 | 0.3037096 | 0.287419 1
41 -0.036816 | 0.116816 | 0.153632 1
42 -0.0263469 | 0.1863469 | 0.212694 1
43 0 0 0 0
27




Table 4.2.Sample of the program output for Exact interval at n = 25 and p = 0.05

No. [Lower Limit|Upper Limit| Length Hits
1 0 0.1371852 | 0.137185 1
2 0.0098396 | 0.2603058 | 0.250466 1
3 0.0010122 | 0.2035169 | 0.202505 1
4 0.0098396 | 0.2603058 | 0.250466 1
5 0.0098396 | 0.2603058 | 0.250466 1
6 0.0010122 | 0.2035169 | 0.202505 1
7 0.0010122 | 0.2035169 | 0.202505 1
8 0 0.1371852 | 0.137185 1
9 0 0.1371852 | 0.137185 1
10 0.0010122 | 0.2035169 | 0.202505 1
11 0.0010122 | 0.2035169 | 0.202505 1
12 0.0254654 | 0.3121903 | 0.286725 1
13 0.0254654 | 0.3121903 | 0.286725 1
14 0.0098396 | 0.2603058 | 0.250466 1
15 0.0254654 | 0.3121903 | 0.286725 1
16 0 0.1371852 | 0.137185 1
17 0.0010122 | 0.2035169 | 0.202505 1
18 0 0.1371852 | 0.137185 1
19 0 0.1371852 | 0.137185 1
20 0.0010122 | 0.2035169 | 0.202505 1
21 0.0010122 | 0.2035169 | 0.202505 1
22 0.0010122 | 0.2035169 | 0.202505 1
23 0 0.1371852 | 0.137185 1
24 0 0.1371852 [ 0.137185 1
25 0.0098396 | 0.2603058 | 0.250466 1
26 0.0254654 | 0.3121903 | 0.286725 1
27 0.0010122 } 0.2035169 | 0.202505 1
28 0.0254654 | 0.3121903 | 0.286725 1
29 0 0.1371852 | 0.137185 1
30 0.0098396 | 0.2603058 | 0.250466 1
31 0.0010122 | 0.2035169 | 0.202505 1
32 0.0010122 | 0.2035169 | 0.202505 1
33 0 0.1371852 | 0.137185 1
34 0.0098396 | 0.2603058 | 0.250466 1
35 0 0.1371852 | 0.137185 1
36 0 0.1371852 | 0.137185 1
37 0 0.1371852 [ 0.137185 1
38 0.0098396 | 0.2603058 | 0.250466 1
39 0.0098396 | 0.2603058 | 0.250466 1
40 0.0010122 | 0.2035169 | 0.202505 1
41 0.0098396 | 0.2603058 | 0.250466 1
42 0.0254654 | 0.3121903 | 0.286725 1
43 0.0683115 | 0.4070374 | 0.338726 0

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The lower limit of the Wald confidence interval when the value of p =0.5 (or when
close to 0) has negative values. This is because of the normal approximation. Similarly
for values of p near 1, the upper confidence limits tend t§ exceed 1. Tables 4.3 to 4.5
show the comparison of the coverage probabilities of the Exact interval and the Wald

interval.

Table 4.3. Comparison of coverage probabilities of the two intervals, n = 5 and 25

p (n=5) Exact Wald p (n=25) Exact Wald

0.01 0.9991 0.0505 0.01 0.9978 0.2154
0.02 0.9961 0.0979 0.02 0.9853 0.3968
0.03 0.991 0.1397 0.03 0.9941 0.5356
0.04 0.9868 0.1848 0.04 0.9824 0.6378
0.05 0.9963 0.2212 0.05 0.9931 0.7266
0.06 0.9979 0.2659 0.06 0.9842 0.7891
0.07 0.9974 0.2965 0.07 0.9931 0.8271
0.08 0.9959 0.3342 0.08 0.9876 0.8685
0.09 0.9933 0.3716 0.09 0.9781 0.9035
0.1 0.9928 0.3998 0.1 0.9903 0.9182
0.15 0.998 0.5382 0.15 0.9738 0.8991
0.2 0.9938 0.6732 0.2 0.9807 0.8853
0.8 0.9924 0.6628 0.8 0.9801 0.8852
0.85 0.9977 0.5293 0.85 0.974 0.901

0.9 0.9889 0.4001 0.9 0.9905 0.9207
0.91 0.9945 0.375 0.91 0.9788 0.8962
0.92 0.996 0.3342 0.92 0.9878 0.8794
0.93 0.9975 0.2989 0.93 0.9937 0.8289
0.94 0.9979 0.2642 0.94 0.9846 0.7831
0.95 0.9765 0.2275 ‘ 0.95 0.9934 0.7267
0.96 0.986 0.188 0.96 0.9922 0.6445
0.97 0.993 0.1438 0.97 0.9944 0.5292
0.98 0.9958 0.0937 0.98 0.9873 0.3875
0.99 0.9986 0.0509 0.99 0.999 0.2233
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Table 4.4. Comparison of the coverage probabilities of the two intervals for n = 50 and 75
p(n=50) Exact Wald p(n=75) Exact Wald
0.01 0.9873 0.3879 0.01 0.9924 0.5286
0.02 0.9819 0.6343 0.02 0.9812 0.7794
0.03 0.9835 0.7884 0.03 0.9919 0.8935
0.04 0.9866 0.8666 0.04 0.989 0.8033
0.05 0.9874 0.9133 0.05 0.9649 0.8896
0.06 0.9912 0.8103 0.06 0.9746 0.9426
0.07 0.9769 8.6156 0.07 0.9814 0.8953
0.08 0.9699 0.9109 0.08 0.9723 0.9384
0.09 0.9786 0.9423 0.09 0.9767 0.9073
0.1 0.9706 0.8762 0.1 0.9689 0.9453
0.15 0.9725 0.9371 0.15 0.9642 0.9317
0.2 0.9675 0.9362 0.2 0.9578 0.9286
0.8 0.964 0.9394 0.8 0.957 0.9319
0.85 0.9704 0.9381 0.85 0.9676 9.3223
09 0.9711 0.878 0.9 0.9677 0.9443
0.91 0.9771 0.9436 0.91 0.9776 0.9089
0.92 0.9708 0.9093 0.92 0.9665 0.9401
0.93 0.9794 0.8651 0.93 0.9799 0.8979
0.94 0.9907 0.8028 0.94 0.9778 0.9411
0.95 0.9894 '| 09178 0.95 0.9657 0.8951
0.96 0.9851 0.8651 0.96 0.9912 0.8031
0.97 0.9804 0.7788 0.97 0.9932 0.9003
0.98 0.9831 0.6267 0.98 0.9815 0.7785
0.99 0.984 0.3861 0.99 0.9929 0.5319
30
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Table 4.5. Comparison of the coverage probabilities of the two intervals for n = 100 and

1000
p(n=100) Exact Wald p(n=1000)] Exact Wald
0.01 0.9802 0.6316 0.01 0.9773 0.9323
0.02 0.9844 0.8671 0.02 0.9574 0.9484
0.03 0.9889 0.8041 0.03 0.9582 0.9318
0.04 0.9639 0.7073 0.04 0.9582 0.9491
0.05 0.9822 0.8767 0.05 0.96 0.9425
0.06 0.9655 0.9346 0.06 0.9558 0.9511
0.07 0.9711 0.9137 0.07 0.9501 0.9474
0.08 0.9719 0.8965 0.08 0.9497 0.9484
0.09 0.9652 0.9457 0.09 0.9488 0.948
0.1 0.9548 0.9341 0.1 0.9554 0.9532
0.15 0.9653 0.9333 0.15 0.9495 0.9486
02 0.9656 0.9321 0.2 0.9537 0.948
0.8 0.9667 0.9343 0.8 0.9484 0.9463
0.85 0.9627 0.9324 0.85 0.9515 0.9449
0.9 0.9569 0.9299 0.9 0.9506 0.9531
0.91 0.9671 0.9431 0.91 0.9534 0.9491
0.92 0.9751 0.8988 0.92 0.9521 0.953
0.93 0.973 09144 0.93 0.9508 0.9508
0.94 0.9681 0.9399 0.94 0.953 0.9488
0.95 0.9822 0.8794 0.95 0.9546 0.9407
0.96 0.9654 0.9054 0.96 0.9656 0.9471
0.97 0.9899 0.7991 0.97 0.957 0.9366
0.98 0.9844 0.8678 0.98 0.9582 0.9485
0.99 0.9806 0.6331 0.99 0.9789 0.9223

The above tables show that the coverage proBability for the Exact interval is above
the 95% nominal level. For small values of n, the coverage probability for this interval is
very high at the extreme values of p. As p moves away from the extremes, the coverage
probability approaches 0.95. As n increases, the coverage probability tends towards the
nominal level and at {/ery high values of n (n = 1000), the coverage probability almost
equals the nominal level. But the coverage probability always remains higher than 0.95
because of the discreteness of the binomial distribution which results in this interval

being conservative.
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The coverage probability for the Wald interval, for low values of n, is very low at the
extremes; moreover it is uniformly less than 0.95 for n = 5. As n increases, the coverage
probability increases to 0.95 for each p and equals to 0.95 at very high values of n
(n=1000). But the coverage probability of this interval is always less than the nominal
level for the values of p near 0 or 1. For example, it is a mere 0.4 for n =25 and p = 0.9,
0.88 at n = 50 and p = 0.9 and for very low value of p (0.01) and n (5), 1t is 0.05. Even at
n=1000and p= 0.99 the coverage probability is less than 0.95 (0.92).

Graphs showing the coverage probability for both intervals at different values of n are

shown below in Figures 4.1- 4.5.

Coverage for n = 50 by Wald Interval
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Figure 4.1. Coverage probability for n = 50 and p =0 to 1 at 95% nominal level for the
Wald interval.
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Coverage for n = 100 by Wald Interval
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Figure 4.2. Coverage probability for n = 100 and p = 0 to 1 at 95% nominal level for the
Wald interval.

Coverage for n = 1000 by Wald Interval
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Figure 4.3. Coverage probability for n = 1000 and p =0 to 1 at 95% nominal level for the
Wald interval.
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Coverage for n = 100 by Exact Interval
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'Figure 4.4. Coverage probability for n =100 and p = 0 to 1 at 95% nominal level for the
Exact interval.
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Figure 4.5. Coverage probability for n= 1000 and p = 0 to 1 at 95% nominal level for the
Exact interval.
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The graph of coverage probabilities for n = 5 and n = 25 for the Exact interval is
given in page 16.

The Tables 4.6, 4.7 and 4.8 show the mean and the standard deviation of the lengths (
upper limit - lower limit) of the confidence interval for both the Exact and the Wald

Intervals.

Table 4.6. Mean and Standard deviations of the interval lengths for n == 5 and n = 25
n=5 Exact Wald n=25 Exact Wald

p Mean | Std. dev. | Mean | Std. dev. p Mean | Std. dev. | Mean | Std. dev.
0.01 {0.5316| 0.0422 |0.0355]| 0.15408 0.01 10.1528| 0.0304 ]0.0346] 0.0668
0.02 [0.5406] 0.0573 [0.0696| 0.21136 0.02 {0.1691}| 0.0412 |0.0667{ 0.0841
0.03 [0.5508 0.0698 |0.0994 ] 0.24638 0.03 |0.1821| 0.0464 |0.0946{ 0.0916
0.04 |0.5572] 0.076 |0.1326| 0.27843 0.04 {0.1957| 0.0506 | 0.118 | 0.0939
0.05 10.5666| 0.0841 ]0.1592| 0.2988 0.05 10.2074| 0.0533 |0.1395| 0.0929
0.06 10.5739| 0.0889 [0.19361 0.32076 0.06 }0.2189} 0.0551 |0.1591} 0.0914
0.07 |0.5839| 0.0947 [0.2165| 0.3328 0.07 [0.2291] 0.0559 | 0.173 | 0.0892
0.08 [0.5914| 0.0982 |0.2454| 0.3448 0.08 10.2399| 0.056 (0.1292} 0.087
0.09 10.5992| 0.1018 |0.2754| 0.3551 0.09 10.2499( 0.056 |0.2034| 0.0817

0.1 [0.6064] 0.104 [0.2993| 0.3622 0.1 ]10.2592) 0.0561 }0.2164| 0.0793
0.15 {0.6411] 0.1116 {0.4217| 0.3748 0.15 10.2984| 0.0517 j0.2664| 0.0647
0.2 10.6712| 0.1107 10.5173| 0.3611 0.2 10.3298| 0.0447 |0.3026| 0.0525
0.8 (0.6735| 0.1104 [0.5088 | 0.3626 0.8 [0.3306| 0.0447 |0.3024 | 0.0526
0.85 10.6404] 0.1114 |0.6416| 0.3751 0.85 10.2932] 0.0512 | 0.267 | 0.0638
0.9 10.6067] 0.0105 [0.2991| 0.3621 0.9 10.2592| 0.0557 {0.2164| 0.079

0.91 [0.5993| 0.1019 10.2778 | 0.35622 091 [0.2502} 0.0567 [0.2032| 0.0838
0.92 [0.5902]| 0.098 | 0.246 | 0.34535 0.92 [0.2414| 0.056 |0.1913| 0.0849
0.93 [0.5836] 0.0946 [0.2181] 0.33286 0.93 10.2304| 0.0556 | 0.174 | 0.0893
0.94 10.5742} 0.0894 10.1917| 0.3193 0.94 10.2175| 0.0547 |0.1574| 0.0918
0.95 10.5672| 0.0844 10.1636 0.3014 0.95 {0.2078 0.0529 10.1392| 0.0928
0.96 {0.5574| 0.0763 [0.1347] 0.2803 0.96 [0.195| 0.0508 [0.1194| 0.0937
0.97 10.5491| 0.0671 [0.1026| 0.2502 0.97 {0.1814] 0.0463 10.0939| 0.092
0.98 ]0.5406| 0.0575 ]0.0662} 0.20615 0.98 {0.1685| 0.0408 ] 0.065 | 0.0836
0.99 |0.5311] 0.0413 }0.0358] 0.15503 0.99 |0.153 | 0.0306 |0.0358| 0.0674

It is evident from the above tables that even though the Exact interval gives higher

coverage probabilities, the confidence intervals have a wider length but a smaller
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standard deviation. The Wald interval lengths are smaller, i.e. the Wald interval gives a
tighter confidence interval but a larger standard deviation when compared to the Exact

interval.

Table 4.7. Mean and Standard deviations of the interval lengths for n = 50 and n =75
n=50 Exact Wald n=75 Exact Wald
p Mean | Std. dev. | Mean | Std. dev. p Mean | Std. dev. | Mean | Std. dev.
0.01 [0.0876| 0.0219 ]0.0333| 0.0428 0.01 10.0642| 0.0174 }0.0318]| 0.0314
0.02 10.1027[ 0.0277 ]0.0597| 0.0484 0.02 |0.0784| 0.0212 [0.0538| 0.0324
0.03 {0.1153| 0.0305 |0.0812| 0.0476 0.03 10.0905] 0.0225 ]0.0702] 0.0308
0.04 10.1267| 0.0316 [0.9764| 0.0461 0.04 10.1007| 0.023 ]0.0838| 0.028
0.05 [0.1378| 0.0328 [0.1107] 0.0443 0.05 10.1103| 0.023 10.0942} 0.0267
0.06 ]0.1402] 0.0325 [0.1238 0.0403 0.06 |0.1187] 0.0228 [0.1039| 0.0249
0.07 {0.157 | 0.0313 |0.1346{ 0.0395 0.07 10.1262| 0.022 |0.1122] 0.0242
0.08 [0.1651| 0.0315 [0.1442| 0.0374 0.08 0.1333} 0.0214 {0.1197{ 0.0234
0.09 [0.1731] 0.0315 }0.1528| 0.0356 0.09 [0.1401] 0.0201 |0.1269| 0.0226
0.1 0.1802] 0.0305 | 0.161 | 0.0344 0.1 10.1458| 0.0206 |0.1334| 0.0219
0.15 10.2104{ 0.0268 {0.1944| 0.0288 0.15 [0.1709] 0.0179 [0.1593} 0.0187
0.2 10.2336] 0.023 | 0.218 | 0.0248 0.2 10.1989] 0.0153 j0.1743] 0.0162
0.8 [0.2338| 0.023 {0.2185] 0.0245 0.8 10.1898| 0.1542 10.1793} 0.016
0.85 102105 0.0272 {0.1937| 0.0291 0.85 |0.1715] 0.0177 [0.1592] 0.0189
0.9 |0.1802] 0.0305 | 0.161 | 0.0341 0.9 {0.1458| 0.0206 10.1327| 0.0215
0.91 ]0.1732| 0.0312 ]0.1529| 0.0353 0.91 [0.1397] 0.0213 [0.1267] 0.0224
0.92 | 0.165 | 0.0317 [0.1439] 0.0373 0.92 ]0.1333 0.0218 [0.1196| 0.0231
0.93 [0.1566| 0.0319 ]0.1343| 0.0385 0.93 [0.1237| 0.0223 [0.1121] 0.0237
0.94 | 0.148 | 0.0325 [0.1235] 0.0411 0.94 [0.1185{ 0.0222 {0.1039| 0.0251
0.95 10.1379{ 0.0322 0.1108] 0.0437 0.95 10.1101 0.0229 10.0946| 0.0262
0.96 10.1275| 0.0321 | 0.097 | 0.0462 0.96 [0.1007| 0.0226 (0.0831| 0.0285
0.97 [0.1156| 0.0309 0.0802| 0.0482 0.97 (0.0903| 0.0225 {0.0707| 0.0302
0.98 | 0.102 | 0.0278 }0.0591| 0.0486 0.98 10.0784| 0.0212 10.0539| 0.0325
0.99 10.0879| 0.0223 }0.0331| 0.0427 0.99 [0.0641]| 0.0174 | 0.032 | 0.0314

4.2. Bayesian Credible Sets with Uniform and Beta Priors
In this subchapter the simulations and the results of constructing the Bayesian

credible sets using uniform and beta priors are shown.
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Table 4.8. Mean and Standard deviations of the interval lengths for n = 100 and n = 1000
n=100 Exact Wald n=1000 Exact Wald
p Mean | Std. dev. | Mean | Std. dev. p Mean | Std. dev. | Mean | Std. dev.
0.01 {0.0526| 0.0147 {0.0298{ 0.0243 0.01 ]0.0133}-0.0019 [0.0121] 0.002
0.02 {10.0655| 0.017 {0.0492| 0.0237 0.02 |0.0183| 0.0019 |0.0172] 0.0019
0.03 {0.0763| 0.0174 ]10.0631| 0.0215 0.03 ]0.0221] 0.0018 | 0.021 | 0.0019
0.04 10.0859| 0.0176 ]0.0738| 0.0202 0.04 |0.0253| 0.0018 10.0242( 0.0018
0.05 {0.0942| 0.0176 0.0828] 0.0191 0.05 |0.028 | 0.0018 {0.0269| 0.0018
0.06 {0.1017| 0.0172 {0.0908| 0.0184 0.06 |0.0304| 0.0017 |0.0294} 0.0017
0.07 10.1081| 0.0167 [0.0978 0.0177 0.07 [0.0326] 0.0017 |0.0315{ 0.0017
0.08 10.1146| 0.0163 {0.1045| 0.0172 0.08 [0.0346} 0.0017 |0.0336| 0.0016
0.09 {0.1201| 0.0159 }0.1103| 0.0165 0.09 10.0364| 0.0016 [0.0354! 0.0016
0.1 10.1254| 0.0155 {0.1158] 0.0162 0.1 {0.0381} 0.0016 [0.0371] 0.0016
0.15 }0.1473| 0.0137 [0.1385{ 0.014 0.15 10.0452] 0.0014 }0.0442} 0.0014

0.2 |0.1641}| 0.0117 |0.1556| 0.012] 0.2 10.0505| 0.0012 ]0.0495] 0.0012
0.8 j0.1641| 0.0116 [0.1556| 0.012 0.8 |0.0505{ 0.0012 }0.0495] 0.0017
0.85 [0.14721 0.0137 [0.1387| 0.014 0.85 [0.0452] 0.0014 ]0.0442| 0.0014
0.9 10.1256| 0.0153 [0.1156| 0.016 0.9 10.0381| 0.00i6 |0.0371| 0.0016

0.91 {0.1203] 0.0158 [0.1103| 0.0166 0.91 [0.0305; 0.0016 [0.0354| 0.0016
0.92 (0.1147| 0.0162 |0.1047| 0.0168 0.92 [0.03461 0.0017 ]0.0336( 0.0016
0.93 [0.1083| 0.0165 [0.0982| 0.0176 0.93 10.0326| 0.0017 10.0316| 0.0017
0.94 (0.1017| 0.0171 |0.0911| 0.0181 0.94 (0.0304| 0.0017 |0.0293| 0.0017
0.95 (0.0941| 0.0174 }0.0832| 0.0191 0.95 |[0.028 | 0.0018 [0.0269| 0.0018
0.96 (0.0857| 0.0177 |0.0735| 0.0201 0.96 [0.0253| 0.0018 |0.0242| 0.0018
0.97 (0.0764| 0.0177 |0.0627| 0.0218 0.97 (0.0022| 0.0018 | 0.021 | 0.0018
0.98 ]0.0655| 0.017 10.0493} 0.0237 0.98 0.0183] 0.0019 |0.0173| 0.0019
0.99 ]0.0525] 0.0145 [0.0301| 0.0246 0.99 10.0134| 0.0019 [0.2124| 0.002

As discussed in section 3.1, a reasonable prior for p is a Uniform(0 1) distribution.
But since the point of interest in this thesis is when p is close to 0 or 1, the condition p is
from a Uniform(0.8, 1)distribution is imposed. 10,000 simulations were carried out to
capture the coverage probabilities for credible sets with this prior for various n. Table 4.9

gives a sample of the output obtained for the credible sets. The first column shows the

simulation number, the second column, the lower limit, the third column, the value of p

obtained from Uniform(0.8, 1), upper limit in the fourth column, the length of the
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confidence interval in the fifth column and the final column, titled hits shows a value of 1

if p is captured by the confidence interval and 0 if it is not.

Table 4.9.Sample of the program output for the credible sets with Uniform(0.8, 1) prior at

n=25
No. Lower Limit p Upper Limit{ Length | Coverage
1 0.8663417 | 0.957935 | 0.9877045 | 0.121363 1
2 0.8417501 | 0.955421 | 0.978251 | 0.136501 1
3 0.8663417 | 0.911334 | 0.9877045 | 0.121363 1
4 0.8956527 | 0.985009 | 0.9952134 | 0.099561 1
5 0.8073366 | 0.860262 | 0.9441232 | 0.136787 1
6 0.8029478 | 0.822665 | 0.9206793 | 0.117732 1
7 0.8417501 | 0.947101 | 0.978251 | 0.136501 1
8 0.8015601 | 0.810856 | 0.8996962 | 0.098136 1
9 0.8237624 | 0.869454 | 0.9675322 | 0.14377 1
10 0.8029478 | 0.80504 | 0.9206793 | 0.117732 1
i1 0.9302316 | 0.965354 | 0.999503 | 0.069271 1
12 0.9302316 | 0.996788 | 0.999503 | 0.069271 1
13 0.8015601 | 0.846656 | 0.8996962 | 0.098136 1
14 0.8956527 | 0.953157 | 0.9952134 | 0.099561 i
15 0.8015601 | 0.845044 | 0.8996962 | 0.098136 1
16 0.8020838 | 0.83094 | 0.9097693 | 0.107685 ]
17 0.8029478 | 0.82205 | 0.9206793 | 0.117732 1
18 0.8073366 | 0.817307 | 0.9441232 | 0.136787 1
19 0.8663417 | 0.962234 | 0.9877045 | 0.121363 1
20 0.8044701 | 0.822392 | 0.932224 | 0.127754 1
21 0.8015601 | 0.848199 | 0.8996962 | 0.098136 1
22 0.8417501 | 0.948357 | 0.978251 | 0.136501 1
23 0.8012187 [ 0.800909 | 0.8905614 | 0.089343 0
24 0.8129735 | 0.915483 | 0.9560198 | 0.143046 1
25 0.8237624 | 0.929205 | 0.9675322 | 0.14377 1
26 0.8009874 | 0.807842 | 0.8823877 | 0.0814 1
27 0.8015601 | 0.808707 | 0.8996962 | 0.098136 1
28 0.8015601 | 0.836618 | 0.8996962 | 0.098136 1
29 0.8073366 | 0.882564 | 0.9441232 | 0.136787 1
30 0.8129735 | 0.878934 | 0.9560198 | 0.143046 1
31 0.8029478 | 0.830809 | 0.9206793 | 0.117732 1
32 0.8663417 | 0.985265 | 0.9877045 | 0.121363 1
33 0.8029478 | 0.860651 | 0.9206793 | 0.117732 1
34 0.9302316 | 0.998572 | 0.999503 | 0.069271 1
35 0.8237624 | 0.954182 1 0.9675322 | 0.14377 1
36 0.8237624 | 0.949028 | 0.9675322 | 0.14377 1
37 0.8044701 | 0.915277 | 0.932224 | 0.127754 1
38 0.8663417 | 0.977294 | 0.9877045 | 0.121363 1
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Simulations were carried out for various n and the summary of the results of the

simulations is tabulated below.

Table 4.10. Summary of simulation results using a Uniform(0.8, 1) prior.

Mean
n Length Std.dev | Coverage

5 0.1785 0.0143 0.9486
25 0.1434 0.0208 0.9497
50 0.1171 0.0242 0.9478
75 0.1006 0.0243 0.9526
100 0.08959 0.0234 0.9504

1000 | 0.03269 0.0103 0.9493

The mean length of the credible interval is the smallest of the three methods. This
means that tighter confidence limits are obtained. The coverage probability is almost
equal to 0.95, i.e. it is close to the nominal level of 95%.

The following figures show the plots of some uniform prior distributions and their

posteriors.
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Figure 4.7. Uniform(0, 0.2) prior with its posterior distributions.
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In this section, the results of the simulations using the beta prior are shown.

Table 4.11. Sample of the program output for the credible sets with Beta(10, 100) prior at

n =100
No. p X n alpha | beta mean Icl ucl sig |Cov.
1 10.180477 | 23 100 33 177 10.157143 | 0.111249 { 0.209217 { 0.05 | 1
2 10207354 | 22 100 32 178 ] 0.152381 | 0.107145 | 0.203882 | 0.05 | 0
3 10.168105 [ 21 100 31 179 10.147619 1 0.103058 | 0.19853 | 005 | 1
4 [0.158828 | 21 100 31 179 10.147619 1 0.103058 | 0.19853 [ 0.05 | 1
5 10150113 | 21 100 31 179 10.147619 | 0.103058 | 0.19853 | 0.05 | 1
6 [0.136168 | 20 100 30 180 ] 0.142857 | 0.098988 | 0.193162 | 0.05 | 1
7 10.171692 | 20 100 30 180 | 0.142857 | 0.098988 | 0.193162 | 0.05 | 1
8 0.18974 | 20 100 30 180 | 0.142857 | 0.098988 [ 0.193162 | 0.05 | 1
9 0.18948 | 20 100 30 180 | 0.142857 | 0.098988 | 0.193162 | 0.05 | 1
10 ] 0.177127 | 20 100 30 180 | 0.142857 | 0.098988 | 0.193162 | 0.05 | 1
11 |0.128533 | 20 100 30 180 | 0.142857 | 0.098988 | 0.193162 { 0.05 | 1
12 10115223 1 20 100 30 180 | 0.142857 | 0.098988 | 0.193162 | 0.05 | 1
13 [0.131487 | 20 100 30 180 1 0.142857 | 0.098988 | 0.193162 | 0.05 | 1
14 ]10.129157 | 19 100 29 181 | 0.138095 | 0.094937 | 0.187775 ] 0.05 | 1
15 10.114785 19 100 29 181 0.138095 | 0.094637 | 0.187775 | 0.05 1
16 | 0.129867 | 19 100 29 181 | 0.138095 | 0.094937 | 0.187775 | 0.05 1
17 10.120519 ]| 19 100 29 181 10.138095 | 0.094937 | 0.187775 | 0.05 | 1
18 | 0.138153 | 18 100 28 182 10.133333 | 0.090904 | 0.182369 | 0.05 | 1
19 | 0.097407 | 18 100 28 182 ] 0.133333 | 0.090904 { 0.182369 | 0.05 | 1
20 [ 0.135701 | 18 100 28 182 [ 0.133333 ] 0.090904 | 0.182369 | 0.05 | 1
21 | 0.12967 18 100 28 182 10.133333 | 0.090904 | 0.182369 | 0.05 | 1
22 |0.132985 | 18 100 28 182 1 0.133333 | 0.090904 | 0.182369 | 0.05 | 1
23 10.136284 | 18 100 28 182 ]0.133333 1 0.090904 | 0.182369 | 0.05 | 1
24 10.134807 | 18 100 28 182 10.133333 | 0.090904 [ 0.182369 | 0.05 | 1
25 10.106409 | 18 100 28 182 10.133333 | 0.090904 | 0.182369 | 0.05 | 1
26 [ 0.140049 | 18 100 28 182 ] 0.133333 | 0.090904 | 0.182369 | 0.05 [ 1
27 10.187603 | 18 100 28 182 1 0.133333 | 0.090904 | 0.182369 | 0.05 | 0
28 10.134971 | 18 100 28 182 }0.133333 | 0.090904 | 0.182369 | 0.05 | 1
29 | 0.16262 | 18 100 28 182 | 0.133333 | 0.090904 | 0.182369 | 0.05 | 1
30 10.110585 | 17 100 27 183 | 0.128571 | 0.08689 | 0.176944 | 0.05 | 1
31 10.122284 | 17 | 100 27 183 10.128571 | 0.08689 | 0.176944 | 0.05 | 1
32 10.135033 [ 17 100 27 183 [ 0.128571 | 0.08689 | 0.176944 | 0.05 | 1
33 10.123648 | 17 100 27 183 | 0.128571 | 0.08689 | 0.176944 | 0.05 | 1
34 ] 0.115206 | 17 100 27 183 | 0.128571 | 0.08689 | 0.176944 | 0.05 | 1
35 10.126473 17 100 27 183 |} 0.128571 | 0.08689 | 0.176944 | 0.05 1
36 ]10.147317 | 17 100 27 183 ] 0.128571 | 0.08689 | 0.176944 | 0.05 | 1
37 10.123193 | 17 100 27 183 ] 0.128571 | 0.08689 | 0.176944 | 0.05 | 1
38 10.120946 | 17 100 27 183 ] 0.128571 | 0.08689 | 0.176944 [ 0.05 | 1
39 [0.139787 | 17 100 27 183 1 0.128571 | 0.08689 | 0.176944 | 0.05 | 1
40 ]0.141925 | 17 100 27 183 10.128571 | 0.08689 [ 0.176944 | 0.05 | 1

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.12. Sample of the program output for the credible sets with Beta(100, 10) prior at

n=75
No. p X n |alpha| beta mean Icl ucl sig | Cov.
1 10855084 | 65 | 75 | 165 | 20 |0.891892 [ 0.843447 | 0.932329 | 0.05 1
2 10.8959051 70 | 75 170 15 }0.918919 | 0.875634 | 0.953655 | 0.05 1
3 108956121 64 | 75 [ 164 | 21 |0.886487 | 0.837128 | 0.927947 | 0.05 1
4 10873737 [ 66 | 75 | 166 19 10.897297 | 0.849802 | 0.936676 | 0.05 1
S 10.938065 | 70 | 75 | 170 15 10.918919 | 0.875634 | 0.953655 | 0.05 1
6 10879484 | 64 | 75 | 164 | 21 | 0.886487 | 0.837128 [ 0.927947 | 0.05 1
7 10.899392 | 70 [ 75 | 170 15 [0.918919 | 0.875634 | 0.953655 | 0.05 1
8§ 10914322 ) 69 | 75 | 169 16 10913514 [ 0.869107 | 0.949479 | 0.05 1
O 108820511 65 | 75 | 165 | 20 |0.891892 {0.843447 | 0.932329 | 0.05 1
10 10903907 | 71 | 75 | 171 14 10.924324 | 0.882213 | 0.95778 | 0.05 1
11 10.930297 1 69 | 75 | 169 16 10913514 [ 0.869107 | 0.949479 | 0.05 1
12 10.889599 1 74 | 75 | 174 11 {0.940541 | 0.902325 | 0.969782 | 0.05 0
13 10.877516 1 70 [ 75 | 170 15 10.918919 | 0.875634 [ 0.953655 | 0.05 1
14 10930285 69 [ 75 | 169 16 10.913514 | 0.869107 | 0.949479 | 0.05 1
15 10.897031 ] 70 [ 75 | 170 15 [0.918919 | 0.875634 | 0.953655 | 0.05 1
16 10941951 | 72 | 75 [ 172 13 0.92973 | 0.88885 | 0.961847 | 0.05 1
17 10.863479 1 69 | 75 1 169 16 10913514 | 0.869107 | 0.949479 | 0.05 0
18 { 091178 [ 67 | 75 | 167 18 10.902703 | 0.856195 | 0.940986 | 0.05 1
19 [0.898088 | 68 | 75 | 168 17 10.908108 | 0.862629 | 0.945254 | 0.05 1
20 | 0.899886 | 68 | 75 168 17 {0.908108 | 0.862629 | 0.945254 | 0.05 1
21 10841673 |1 65 | 75 | 165 | 20 [0.891892 | 0.843447 | 0.932329 | 0.05 0
22 10.894879 | 66 | 75 | 166 19 10.897297 | 0.849802 | 0.936676 | 0.05 1
23 10.878103 | 70 | 75 | 170 15 10.918919 | 0.875634 | 0.953655 | 0.05 1
24 10909249 | 64 | 75 | 164 | 21 |[0.886487 | 0.837128 | 0.927947 | 0.05 1
25 [ 0.888152 | 65 | 75 [ 165 | 20 [0.891892 | 0.843447 | 0.932329 | 0.05 1
26 10942452 | 71 | 75 | 171 14 10.924324 | 0.882213 | 0.95778 | 0.05 1
27 | 0.86808 | 67 | 75 | 167 18 [0.902703 | 0.856195 | 0.940986 | 0.05 1
28 109316951 69 | 75 | 169 16 10913514 ] 0.869107 | 0.949479 | 0.05 1
29 10912767 | 69 | 75 | 169 16 [0.913514 | 0.869107 | 0.949479 | 0.05 1
30 10.844343 | 64 | 75 [ 164 | 21 | 0.886487 | 0.837128 | 0.927947 | 0.05 1
31 10878436 | 69 | 75 | 169 16 10913514 | 0.869107 | 0.949479 | 0.05 1
32 10905176 | 68 | 75 | 168 17 10908108 | 0.862629 | 0.945254 | 0.05 1
33 10.845634 | 63 | 75 | 163 | 22 | 0.881081 | 0.830842 § 0.923531 | 0.05 1
34 10936504 | 74 | 75 | 174 11 10.940541 | 0.902325 | 0.969782 | 0.05 1
35 [ 0872118 | 67 | 75 | 167 18 ] 0.902703 | 0.856195 | 0.940986 | 0.05 1
36 [0.874051 | 69 | 75 | 169 16 [0.913514 | 0.869107 | 0.949479 | 0.05 1
37 1095156 | 71 | 75 | 171 14 ] 0.924324 | 0.882213 | 0.95778 | 0.05 1
38 10.852361 | 67 | 75 | 167 18 | 0.902703 | 0.856195 | 0.940986 | 0.05 0
39 10.904894 | 66 75 166 19 | 0.897297 { 0.849802 | 0.936676 | 0.05 1
40 10941301 ] 69 | 75 | 169 16 10913514 | 0.869107 | 0.949479 | 0.05 1
41 [0.854342 | 56 | 75 [ 156 | 29 10.843243 | 0.78763 | 0.891835 | 0.05 1
42 10913493 ] 66 | 75 | 166 19 |10.897297 | 0.849802 | 0.936676 | 0.05 1
43 10.923036 | 69 | 75 | 169 16 | 0913514 | 0.869107 | 0.949479 | 0.05 1
44 10.897717 | 65 | 75 [ 165 | 20 | 0.891892 | 0.843447 | 0.932329 | 0.05 1
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Tables 4.11 and 4.12 give a sample of the output obtained for the credible sets when
the priors are Beta(10, 100) and Beta(100, 10) respectively. The first column shows the
simulation number, the second column, the value of p obtained from the prior, the third
column gives the value of X, n in the fourth column, the posterior values of alpha and beta
in the 5th and 6th columns respectively, the mean of the posterior in the seventh column,
the lower credible limit and the upper credible limit in eighth and ninth columns, the
significance level and the last column, the shows a value of 1 if p is captured by the
credible interval and 0 if it is not.

The summary of all the simulations with Beta(10, 100) prior is shown in table 4.13.

Table 4.13. Summary of simulation results using a Beta(10, 100) prior.

n ;Zf;t?] Std.dev | Coverage
5 0.1245 0.0126 0.9511
25 0.0985 0.0069 0.9584
50 0.0885 0.0065 0.953
75 0.0818 0.0069 0.9684
100 0.0769 0.0071 0.9448
1000 0.0334 0.0043 0.9461

It 1s seen that the coverage probability for all values of n is almost equal to the
nominal level of 95%. The mean credible interval length is also smaller than the Waid
interval and the Exact interval. That is Bayesian credible intervals are tighter than the

Wald and Exact intervals. Figure 4.8 shows the plots of some posterior distributions with

Beta(10, 100) prior distribution.
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Posterior Density with Beta(14,101) atn=5 Posterior Density with Beta(20, 140) at n=50

wn 4
2
= ; - > o
£ - 5
[=] (s}
- = -
~
o - o -
T T T T T T T T T T T T
0o 02 o4 06 0.8 10 0.0 0.2 B.4 0.6 08 1.4
Posterior Density with Beta(13, 197) at n= 100 Posterior Dénsity with Beta(50, 1060) at n= 1000
ﬁ — -
& 3 -
E z
g 2 8
a8 24 a8 i
o — 9 —
o - o -
T T T T T T T T T T T T
00 0.2 0.4 06 0.8 10 - 00 02 04 06 08 1.0
Figure 4.8. Posterior densities with Beta(10, 100) priors
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Figure 4.9. Posterior densities with Beta(100, 10) priors
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Table 4.13. Summary of simulation results using a Beta(100, 10) prior.

n II\::I s;?h Std.dev | Coverage
5 0.1234 0.013 0.9453
25 0.0991 0.0073 0.9515
50 0.0885 0.0062 0.9551
75 0.0818 0.0067 0.9496
100 0.0763 0.007 0.9478
1000 0.0333 0.0041 0.9456

Figure 4.9 shows the plots of some posterior distributions with Beta(100, 10) prior
distribution. A summary of the simulation results using Beta(100, 10) is shown in table
4.13. It is seen that, for the values of p closer to 0 or 1, the credible intervals give very

good coverage probabilities.
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CHAPTER 5

CONCLUSIONS

This work is primarily a comparison of confidence intervals for a binomial
proportion. The literature review showed that there are a lot of methods for analyzing and
computing the confidence intervals of the parameter p for the binomial distribution. The
methods compared here are the Wald interval, the Exact interval and the Bayesian
credible sets.

The Wald interval gives a poor coverage probability when n is very low. For values
of p closer to 0 or 1, even for large values of n. (n > 50), the coverage probability is less
than the nominal value of 95% in most cases. The only advantage is its simplicity and the
tighter confidence interval lengths.

The Exact interval consistently gives a higher coverage probability than the nominal
95% level. The coverage probability is very close to 0.95 only at high values of n. Even
though the length of the Exact confidence intervéls are longer than the Wald confidence
intervals, the coverage probability is much better than the Wald interval.

The Bayesian credible sets consistently give the required coverage probabilities. The
credible limit lengths are consistently smaller compared to the Wald and the Exact
intervals. That is the Bayesian credible sets give have a tighter control over the lengths of
the intervals. The priors are highly informative. This results in the posterior having

smaller probability range and smaller confidence limits.
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This thesis has shown that the Wald interval gives the lowest coverage probability of
the three models. A lot of literature also points to the same. So it is recommended that the
Wald Interval should be used only to demonstrate the generation of confidence intervals.

The computation of the confidence intervals for the binomial proportion should be

done using the Exact Interval or the Bayesian method or the other methods like Score

Interval, The Stern Interval etc.
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