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ABSTRACT

Modeling the Unsaturated Zone at the Area 5 Radioactive Waste 
Management Site: Effects of Climate Change and 

Vegetation on Flow Conditions

by

Amanda Marie Brandt

Dr. David Kreamer, Advisory Committee Chair 
Professor of Hydrology 

University of Nevada, Las Vegas

This thesis tests a series of potential future climate scenarios and associated 

environmental conditions that could result in the reversal of the present upward hydraulic 

gradient in the vadose zone at the Area 5 Radioactive Waste Management Site (RWMS) by 

implementing a one-dimensional model developed using the HYDRUS 1-D numerical 

modeling package. The research is divided into two phases. Phase I simulates the system 

from the Pleistocene to Holocene transition (approximately 13,000 years ago) to the present 

and is tested by independently varying precipitation, evaporation and transpiration rates. The 

results provide initial conditions for subsequent modeling under Phase 11, which considers 

potential future flow conditions under a series of eight possible bioclimatic scenarios 

analogous to potential future climates for the next +1,000 years. Results indicate that the net 

upward hydraulic gradient is reversed under four of the future (Phase 11) cases considered 

where vegetation does not effectively remove available soil moisture. This scenario can 

occur in periods of (1) warmer temperatures, higher precipitation rates and expanded 

vegetation cover, (2) warmer temperatures, lower precipitation rates and reduced vegetation 

cover, and (3) cooler temperatures, higher precipitation rates and expanded vegetation cover.
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CHAPTER 1 

INTRODUCTION

The Area 5 Radioactive Waste Management Site (RWMS) has been the focus of several 

research studies and ongoing monitoring efforts to ensure continued compliance with 

environmental and safety regulations. Current understanding of deep arid zone hydrology in 

Southern Nevada indicates net recharge is not occurring under modem climatic conditions 

(Shott et al., 1995; Tyler, 1996) and net soil moisture flux is primarily upward in response to 

arid climate and plant root uptake (Edmunds and Tyler, 2002; Walvoord et al., 2002a; Young 

et al., 2002; Scanlon et al., 2003). Research based on paleohydrologic records o f the region 

suggests the flow regime in the region was once characterized by a net downward flux 

associated with a wetter, cooler climate and mesic vegetation adapted to moderately moist 

soil conditions, followed by a transition to a warmer, drier climate and associated xeric 

vegetation tolerant of very dry conditions (Walvoord et al., 2002b).

Because the influence of high root suction by desert vegetation is a prominent feature of 

most conceptual models, there is a need to better understand how this zone might respond to 

future climate scenarios. This research hypothesizes that variations in environmental 

conditions affected by climate change, specifically alterations to vegetation cover, could 

result in a reversal of the hydraulic gradient, altering the eurrent regime of near-surfaee 

upward flow. Understanding the influence of future climate on the deep hydraulic gradient is 

complimented by examining paleoflow responses by modifying past environmental 

conditions, encoiu’aging a temporally expansive approach to the problem that considers both



past and future climate conditions. Specific objectives of the study to test the hypothesis are 

to:

(i) evaluate the effects of wetter and drier climate inputs on paleoflow at the study site;

(ii) evaluate the effects of higher and lower évapotranspiration rates on paleoflow;

(iii) develop a method to represent possible environmental conditions under potential 

future climates, and;

(iv) evaluate the effects of environmental conditions on flow for potential future 

climates.

These objectives are accomplished through the completion of three research tasks 

undertaken in two phases. Phase I focuses on paleoclimate modeling efforts and Phase 11 

focuses on potential future climates. Phase I accomplishes objectives (i) and (ii) through the 

development and verification of a paleomodel. A one-dimensional, forward run hydrologie 

model representing paleoenvironmental conditions at the Area 5 RWMS is developed using a 

variably saturated, finite element modeling package (HYDRUS 1-D; Simunek et al., 2005) 

and observed soil properties. The paleomodel is used to evaluate the effects of varying 

boundary conditions, allowing independent comparison of the effects of altered climate and 

vegetation inputs as they would affect paleoflow. Different treatments of the upper boundary 

are undertaken for comparative purposes and include doubled precipitation fi’om 

paleoclimatic levels, reduced precipitation from paleoclimatic levels, increased precipitation 

intensity, expanded vegetation cover from paleovegetation distributions, and removed 

vegetation cover. Phase II meets objectives (iii) and (iv) by presenting a method used to 

generate a series of bioclimatic analogs for future climate conditions, then implementing 

these coupled effects in a future climate model. This is accomplished by examining expected 

long-term climatic trends in the region, developing likely vegetation profiles for each climate 

stage, and modeling flow under these scenarios. Results are examined for changes in soil



water pressure head and water flux through the entire profile, with particular attention to the 

influence of vegetation at the root zone.

Existing research in the separate but related fields of climate change prediction, plant 

community evolution and deep arid zone hydrology is presented in Chapter 2, “Existing 

Research.” This is followed by a description of the methodology used to develop and 

implement the hydrologie model found in Chapter 3, “Modeling Methods.” Results from 

runs under each of the conditions are presented in Chapter 4, “Results.” A discussion of 

determined hydraulic gradient and flux profiles conditions is presented in Chapter 5.

Study Area Description 

The Area 5 Radioactive Waste Management Site (RWMS) is located in northern 

Frenchman Flat in the southeast comer of the Nevada Test Site (NTS), approximately 26 km 

(16 mi) north of Mercury, NV (US DOE, 1997), 105 km (65 mi) northwest o f Las Vegas 

(Shott et al., 1995) at an elevation of 971 m (3186 ft). The disposal facility has been in 

operation since 1961 (Shott et al., 1995), and receives low-level, mixed-level and transuranic 

wastes deposited in pits, trenches and deep boreholes (Albright et al., 1994). Filled trenches 

are covered with a 2.4 m (8 ft) native soil cover to inhibit movement of gas or water 

(National Securities Technologies, 2007).

The site is located on approximately 2.96 km^ (1.14 mi^) of alluvial basin fill in the 

Frenchman Flat drainage basin (Albright et al., 1994). The soil upon which the RWMS is 

built is primarily alluvial detritus from exposed Tertiary volcanic material from 

Massachusetts Mountain Range (Bechtel Nevada, 2005b). These unconsolidated soils are 

primarily sand with silt, some gravel, and no clay sized particles (Bechtel Nevada, 2005b). 

Several studies report composition did not vary significantly with depth (Shott et al., 1995; 

Bechtel Nevada, 2005a; Bechtel Nevada, 2005b), though recent work indicates that



heterogeneity may play a more significant role in flow than previous work suggests (Yucel 

and Levitt, 2001). The alluvial basin fill below the site extends to a depth of 360 -  460 m 

(1,200 -  1,500 ft), and is underlain by a layer of Tertiary volcanic tuff estimated at 550 m 

(1,800 ft) thick, sitting atop deep Paleozoic carbonate aquifer (Shott et al., 1995; Bechtel 

Nevada, 2001).

The uppermost aquifer in the unconsolidated alluvium has a water table located 

approximately 235 m (770 ft) beneath the surface (US DOE, 1997); multiple studies have 

shown aerial recharge is not occurring under current climate conditions (Bechtel Nevada, 

2005a). Additionally, this aquifer has a relatively flat water table demonstrating a hydraulic 

gradient of nearly zero (Bechtel Nevada, 2005b); characterization studies of the region report 

no horizontal movement in the aquifer (Bechtel Nevada, 2005b). The underlying volcanic 

tuff acts as a large regional aquitard, and is considered to be a major barrier between the 

alluvial aquifer and the deep regional carbonate aquifer below (Bechtel Nevada, 2001).

Extreme arid conditions, including very low annual precipitation of approximately 123 

mm (4.85 in) (reported for Area 5 weather station W5B in Soule, 2006) and extremely high 

annual potential évapotranspiration rates of 1625 mm (64 in) (Yucel and Levitt, 2001) are 

representative of the current interglacial climate state (Sharpe, 2003). The rain shadow effect 

of the Sierra Nevada Range to the west is considered the dominant climate control in the 

region (Miklas et al., 1995). Infrequent precipitation events are usually the result of moist 

oceanic air moving around the southernmost end of the Sierra Nevada Range from the Pacific 

Ocean or Mexico, or wet air masses moving southward from the Pacific Northwest (Miklas et 

al., 1995). Most rainfall occurs January -  March, with a secondary maximum falling during 

summer months (Soule, 2006). The area averages 14 thunderstorm days per year (Soule, 

2006). Though annual precipitation totals are quite low, intensity can vary greatly. Extreme 

precipitation events are occasionally recorded at the NTS, with 50 — 75 mm (2 -3 in) storm



totals being recorded at several sites (Soule, 2006). A 100-year storm event for this region is 

defined as 90 mm (3.5 in) in a 24-hour period, and was last recorded in Mercury, NV on 

08/18/1983 (Soule, 2006).

Flora at the site is dominated by perennial desert vegetation including Larrea tridentata 

(creosote bush) accounting for 6% of ground cover. Ambrosia dumosa (white bursage) at 

1.3% ground cover and Acamptopappus shockleyi (Shockley goldenhead) at less than 1% 

(Webb et al., 2003). Total live ground cover in the area is less than 9%, with an additional 

12% of ground cover by dead shrub material (Webb et al., 2003). Vegetational composition 

has been relatively constant over the last 40 years at this site, with Larrea tridentata 

accounting for 6%, 7% and 6% ground cover when monitored in 1963, 1975 and 2002, 

respectively (Webb et. al., 2003). When dead shrub material is included, total ground cover 

has remained constant at around 20% (Webb et al., 2003). Fauna surveys published in 2003 

by Hansen and Ostler from two additional plots in the vicinity of the Area 5 RWMS 

identified many of the same dominant species but in varying proportions (Table 1.1).

Taken together, these unique geologic, hydrologie, and climatic features generally favor 

this region for waste disposal by minimizing the potential for offsite transport of 

contaminants. The generally inhospitable environment has historically precluded this area 

from human settlement; natural conditions, land accessibility and current and future use 

suggest it will remain an unlikely location for intensive human development. It is these 

features that make this a unique and interesting site for hydrologie research.



Table 1.1. Canopy Cover near the Area 5 RWMS

Site 1 - 
600m N of 

Area 5 
RWMS“

Site 2 -  1.25 
km NE of 

Area 5 
RWMS“

Plot 28'’ Plot 28'’ Plot 28"

Location -  
Easting/Northing

592937 E, 
4079992 N

594605 E, 
4079688 N

596258 E, 
4079198N

596258 E, 
4079198N

596258 E, 
4079198N

Date Sampled 2001 2001 1963 1974 2002

Total Shrub Cover 21% 18.60% 14.68% 17.95% 8.64%
Larrea tridentata 
(creosote bush) 12.6% 2A2% 5.92% 7.15% 5.69%
Acamptopappus shockleyi 
(Shockley goldenhead) 4.83% 4.28% 2.08% 4.62% 0.03%
Ambrosia dumosa 
(white bursage) 1.68% 8.93% 4.08% 2.76% 1.28%
Lycium andersonii 
(Anderson's wolfberry) 1.68% 0.93% 0.00% 0.00% 0.00%
Krameria erecta 
(range ratany) 0.42% 0.93% 0.12% 0.21% 0.40%
Krascheninnikovia lanata 
(winterfat) 0.42% 0.56% 0.04% 0.03% 0.00%

“Hansen and Ostler, 2003 
*J3eatley, 1974 in Webb et al., 2003 
"Webb et al., 2003



CHAPTER 2 

EXISTING WORK

Significant work was reviewed for each segment of interest in the disciplines of 

unsaturated zone hydrology, climate prediction and plant community development. 

Completed studies of relevance to this project are summarized below.

Area 5 Vadose Zone Flow Modeling

The high level of interest in the behavior of deep vadose zone flow systems in arid 

environments is evident by the number of studies that have been undertaken in the region. 

The Area 5 Radioactive Waste Management Site, in particular, has been the focus of much 

research; as an area on the edge of the climatological regime, it is a site of great interest for 

exploring the potential responses in the face of climate change. The system is well 

understood to be dominated by high surface evaporation rates, very low annual precipitation, 

low soil moisture content, and strongly negative matric potentials at the root zone, indicating 

a slight net upward hydraulic gradient. Significant work influencing how regional hydrology 

is understood was initiated by Winograd and Thordarson (1975), and expanded and refined 

by several others.

Phillins G 9941

Phillips reviewed environmental tracer data, specifically bomb pulse tritium (^H), 

chlorine-36 (^^Cl), and meteoric chloride data from several sites in the southwestern U.S. to 

look for regional similarities in the depth profiles that would indicate larger flow patterns. 

This work identified similar ^^Cl bulges in the upper 2.5 m (8 ft) of the soil at all seven sites



where data were available, in spite o f geographically separated sites with varying soils. The 

consistency between sites implies that a large scale, spatially uniform, one-dimensional 

conceptual flow model may reliably describe the behavior of the system on a decadal time 

scale. Chloride mass balance calculations predicted location of the bomb pulse concentration 

reasonably well, indicating ^^Cl behaves conservatively and does not exhibit preferential flow 

as compared to meteoric Cl. In addition, the profile had migrated further into the profile 

than the bomb pulse chlorine, in spite of its later deposition, indicating the role of thermally 

induced vapor transport. Evidence supported the idea that all sites were subject to a common 

control by climate change, resulting in regional cessation of net recharge 12 to 16 thousand 

years ago.

Deep chloride profiles representing much longer time scales were interpreted using the 

chloride mass balance approach. Phillips stated that deep soil-moisture flux throughout the 

entire region has decreased by a factor of 20, suggesting that deep vadose zone moisture 

conditions and chemistry are influenced by Pleistocene conditions, and are not in equilibrium 

with the more shallow soil. He also suggested that shallow, downward flux from the surface 

is likely dominated by desert vegetation extracting nearly all available soil water from the 

profile.

Interpretation of the environmental tracer data presented by Philips indicates the presence 

of a widespread, climatically driven change in water balance, resulting in little to no water 

available for percolation into the deep vadose zone. This interpretation is reflective of the 

underlying assumption of downward-only liquid flow implied in the chloride mass balance 

calculation. As a result, all flux estimates generated as a result of this approach will be 

positive downward, in the direction of the water table.



Tyler et al. (1996)

The work by Tyler et al. (1996) expanded the use of environmental tracers in the 

southwestern U.S., including carbon-14 (''*C) for dating soil pore water and stable isotope 

data (S'^O and ô^H) from Area 5 RWMS samples collected at depth (>230 m), in addition to 

^^Cl and chloride, to reconstruct soil water fluxes over the last 120,000 years. Tyler et al. 

compared the inferred paleohydrology from tracer data to climate history from ice cores and 

found a strong correlation between recharge and climate. The data further supported the idea 

that recharge is not occurring under current conditions, and last occurred during the 

Pleistocene epoch. They proposed a Gaussian model to fit the deep chloride profile data and 

developed dispersion coefficients and estimated recharge rates of 7.6 mm/yr and 5.9 mm/yr 

for each of the boreholes. Consistent differences between locations indicate that, in addition 

to the dominant role of climate change to the overall profile, local conditions such as surface 

topography, soil texture and hydraulic properties will have an effect on recharge rates.

Similar to the work presented by Phillips (1994), interpretation of the data rely on the 

governing assumption of piston-like, downward advective flow through the deep vadose zone 

to fit the deep chloride profile. However, this approach for determining paleorecharge rates 

does not explain the near-surface elevated chloride concentrations in the PW wells, nor does 

it address any of the recent processes that might have contributed to the development of the 

modem chloride bulge.

Walvoord et al. (2002a. 2002bi

Walvoord et al. documented conceptual models for understanding arid climate vadose 

zone behavior that have been postulated and applied in various previous studies, and 

presented an alternative explanation to account for disparity between existing conceptual 

models and chlorine profile and soil potential data. The conceptual model, termed as the 

Deep Arid System Hydrodynamic (DASH) Model, links vegetation changes that occurred



during the transition from the cooler, wetter Pleistocene epoch to drier Holocene epoch, and 

presented how vegetational shift could provide the driving forces for observed liquid and 

vapor fluxes in the deep profile. The vegetational transition is hypothesized to have created a 

zone of strongly negative soil moisture potential, effectively dampening occasional 

infiltration events. This conceptual model is supported by data showing that fluctuations due 

to surface conditions are rarely felt below the root zone.

Walvoord et al. identified the importance of the climatic transition to modern-day arid 

conditions, and found that including a paleovegetation component, that compliments 

paleoclimate as a major driver in the flow system, can better account for observed chloride 

profiles and matric potentials through the entire profile. Their work demonstrates that vapor 

flow is currently primarily upward in response to a fixed root zone matric potential. The 

revised conceptual model emphasized the importance of the root zone to arid zone systems, 

suggesting that plant characteristics that might factor into the force exerted at the root zone 

deserve further exploration.

Wolfsberg and Stauffer (2003)

This research focused on developing a detailed process model for upward liquid and 

vapor flow in the near surface environment to provide fluxes for the Area 5 RWMS 

Performance Assessment models. The liquid and vapor fluxes in the shallow UZ are 

upwardly advective, but very small, and of less consequence than the diffusive solute fluxes 

which are downward in response to solute concentration gradients in the presence of 

available water. Advective forces acting on the movement of soil moisture include gravity 

driven percolation (downward), capillary suction (upward) and vapor gradients (upward).

Like the Walvoord et al. work, hydraulic conditions resulting from root zone influence 

are represented using a fixed low matric potential (model) node at the base of the root zone 

(in this case, located three meters below the surface). Effective precipitation is represented as

10



a constant flux surface boundary condition. The Wolfsberg and Stauffer research 

demonstrates the importance o f diffusive fluxes and vapor gradients, given the very low 

water contents and consequently small advection occurring at the site.

Yin et al. (20081

The work of Yin et al. emphasizes the importance o f interrelationships between 

environmental factors and the flow system in arid environments. This research simulated 

paleoclimate from 18,000 years ago to present using a series of case studies to test effects of 

root water uptake, precipitation intensity, extreme precipitation events, seasonal canopy 

structure, root growth, and root zone distribution. Results indicate that depth of chloride 

accumulation in the profile is a function of both climate and depth of the root zone. 

Additionally, recharge rates below the root zone are essentially zero as a result o f plant water 

uptake, even in more a pluvial climate prior to the epochal transition, verifying that aspect of 

the conceptual model proposed by Walvoord et al. (2002a, 2002b) and employed in 

Wolfsberg and Stauffer (2003). However, results demonstrate that when vegetation is 

removed, downward recharge below the root zone becomes significant.

This thesis follows several approaches and techniques presented in Yin et al. to describe 

the Area 5 study site, including temporal resolution (daily time step over a several thousand 

year simulation period), use of time-variable atmospheric boundary conditions to represent 

surface conditions (including daily precipitation and évapotranspiration rates), and 

distribution of transpiration over the root zone according to growth form. Linkages 

demonstrated in the Yin et al. work are explored further in the Chapter 5, “Conclusions.”

Hydraulic Properties

Two sets of hydraulic properties are reported for this area. The original data published by 

Reynolds Electrical and Engineering Company (REECo, 1994) include van Genuchten -

11



Mualem (Mualem, 1976; van Genuchten, 1980) estimates (from soil water content -  soil 

water potential relationships) of the soil retention and hydraulic conductivity curves for 

various samples collected from three deep pilot wells near Area 5, as well as direct 

measurements of matric potential, porosity, and bulk density. Young et al. (2002) present 

direct measurements of soil retention and hydraulic conductivity, on samples collected by 

REECo, using the Unsaturated Flow Apparatus (UFA) in Washington. The finite element 

heat and mass transfer (FEHM) modeling work by Wolfsberg and Stauffer (2003) used both 

the REECo and Young et al. data to develop eight distinct material distributions for their 

simulations (Catlett et al., 2003).

Future Climate Prediction

Miklas et al. (1995)

This paper reports the findings of a Nuclear Regulatory Commission (NRC) study which 

used a process of expert elicitation to identify and describe predicted climate conditions at 

Yucca Mountain, NV at 100, 300, 1000, 5000 and 10,000 years in the future. Each of a five- 

member panel of climatologists described future climate at each identified time step, 

including dominant controls and how these controls would likely influence mean temperature 

and precipitation, expected trends of temperature and precipitation over time, percentage of 

winter to summer precipitation, storm intensity and frequency. Generally, the region is 

dominated by the rain shadow effect of the Sierra Nevada Range, which limited precipitation 

increases under all future conditions. Median temperature change over the entire 10,000 year 

period was not predicted to increase or decrease by more than 2° C. Even under the extreme 

scenario of doubled precipitation, the area is predicted to remain arid or semi-arid. Future 

climate ranges presented in the Miklas et al. paper provide the initial bounds upon which the

12



bioclimatic scenarios developed in this thesis are based. Descriptions of the +100, +300 and 

+1,000 year time steps are detailed in Chapter 3, “Modeling Methods.”

Sharpe (20031

Sharpe (2003) adapted a methodology developed by the United States Geological Survey 

(USGS) (Houseworth, 2001) for predicting future climate out 10,000 - 1,000,000 years after 

present. This approach assumes the earth is subject to repeatable long-term climate cycles of 

approximately 400,000 years in duration, and establishes a series of climate states (i.e., 

Milankovitch astronomical forcing). Climate states are identified and described on the basis 

of paleoenvironmental records. According to the chronology established in this 

methodology, climatic conditions in the southwestern U.S. will cycle through Interglacial 

(current state), Intermediate/Monsoon, Glacial, and Intermediate, with each state defined by 

average precipitation quantities and patterns and solar characteristics with respect to the 

current climate.

Sharpe used geographic analog sites to generate data sets representative of upper and 

lower bounds for each of the described climate states based on earth’s orbital and rotational 

(or axial) characteristics and their influence on paleoclimatic circulation patterns. This thesis 

implements the same approach of selecting modem analog climate data to represent future 

climate states, though results from the comparatively shorter time scale of interest in this 

thesis imply greater climate stability than considered in Sharpe’s work; the degree of climatic 

variability expected over the 1,000 year simulation period in this thesis is much less than the 

range predicted by Sharpe. Still, some of the basic ideas identified in Sharpe (2003) are 

valuable in this thesis, specifically geographic proximity can be generally related to temporal 

proximity, and climate states may regularly switch between sub-states as often as every 

+1,000 years (±500 years), within the scope of the simulation period.
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Intergovernmental Panel on Climate Change (2007)

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report: 

Regional Climate Analysis of North America (Chapter 11) indicates the southwestern United 

States is likely to experience reduced precipitation rates in response to global climate change 

over the next 100 years. This reduetion in rainfall is likely to result from the eomparatively 

smaller warming over the Paeifie Ocean to warming over the continent, which will result in 

amplification and northward displacement o f the tropical anti-cyclone which brings the 

summer monsoon rainfall, resulting in less precipitation for the southwest, although most 

other areas of North America will experience increases in precipitation.

Data from the regional climate model outputs of the IPCC 3"̂  ̂ Assessment Report 

published in 2001 have been made available through an online portal sponsored by the U.S. 

Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) (Kitell et ah, 2004). The 

VEMAP project represents a large collaborative effort to compile high resolution climate, 

soils, and vegetative data averaged over 0.5° latitude by 0.5° longitude grid cells for the 

conterminous United States. The project involved running an equilibrium model and a 

transient processes model. For this collaborative research, outputs from the Transient 

Processes Model generated using the Canadian Climate Center for Modeling and Analysis 

(CCC) model version 3 and the Hadley Climate Center (HADGCM) outputs were translated 

into the VEMAP grid and integrated forward. VEMAP data made the results available for 

individual grid cells identifiable by latitude and longitude, which provided the localized 

change ratios used in this thesis for developing future climatic model inputs.
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Vegetation Profiling and Migration 

Climate is widely accepted as the driving force for large-scale vegetation distribution 

(Kirilenko & Solomon, 1998), but disturbance events and atmospheric composition can also 

effect plant communities (Woolfenden, 1996). Paleobotanical records indicate changes in 

plant phenology as a result of these driving forces, and using these records as an analog of 

previously existing vegetation will capture past events. However, some research indicates 

potential problems with this approach; Capon (2003) proposes that vegetation compositions 

will differ as a function of wetting versus drying conditions. Also, species migration will be 

less likely to resemble past evolutionary patterns as a result of barriers to migration not 

present in the early Holocene. Intensive land development, biodiversity reduction and 

increased atmospheric carbon concentrations as a result of human activity may play a part in 

the reduction of species migration rates (Kirilenko & Solomon, 1998).

Schlesinger and Pilmanis (1998)

Work by Schlesinger and Pilmanis (1998) suggests that plant-climate interactions are 

doubly coupled, and changes in vegetation characteristics of deserts have strong feedbacks to 

atmospheric conditions. Arid lands with bare soils are a significant source of dust, which can 

effectively cool the atmosphere over the oceans, effecting global circulation patterns. 

Increased bare soil as grasslands are converted to desert shrubs will result in higher albedo in 

the desert and a higher flux of sensible heat from the surface. However, these cooling effects 

on the soil during the transition of grasslands to desert shrubs, as a result of reflected energy, 

are overridden by reduced transpiration resulting in elevated surface soil and air temperatures 

(Schlesinger and Pilmanis, 1998).

This vegetational progression implies that increased soil water evaporation, in response to 

increased temperature, results in less moisture available for plants (Balling, 1988), further 

promoting the expansion of desert shrublands. Canopy composition might be expected to
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reflect reduced grass cover in favor of expanded shrub coverage with time, a potential 

scenario explored in the future case simulations of this thesis.

Thompson and Anderson (2000)

An extensive compilation of fossil pollen and plant (from packrat midden) data were 

developed and used to map biome occurrence based on Kuchler’s classification scheme at 

6,000 and 18,000 years in the past for the western United States. Results indicate that both 

the pollen and plant data sources show good agreement when used for biome reconstruction, 

and support the use of macrofossils as an indication of past vegetation classes.

Biomes constructed by Thompson and Anderson generally adhere well to Kuchler’s 

classification scheme, upon which much current research is based. However, the macrofossil 

data examined by Thompson and Anderson suggest the presence of a separate classification 

for “open conifer woodland” biome, which they adopted. Biome distribution at 6,000 years 

ago is similar to current distributions, but environments appear to differ at 18,000 years ago, 

indicative of the transition from the Last Glacial Maximum to current Holocene conditions.

Biome tolerances expressed in Thompson and Anderson (2000) are used in this thesis to 

identify and describe compatible biomes for possible future climate scenarios, and the growth 

form - species catalog developed in their work is employed to delineate guild compositions 

for each of the bioclimatic analogs developed in Chapter 3.
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CHAPTER 3

MODELING METHODS 

Predictive modeling is often associated with uncertainty and error. The complexity of 

arid desert environments, including high variability in vegetation, climate zones, topography 

and orographic conditions, can make it difficult for general circulation models (GCMs) to 

predict trends in this region with high levels of confidence (Lioubimtseva, 2004). GCM and 

regional climate model (RCM) results indicate that areas of the western U.S. are subject to 

predicted higher variability than the rest of the country. The southern Sierra Nevada Range 

may experience generally higher precipitation rates, while Arizona and New Mexico may 

experience reduced precipitation rates (Kim, 2005; IPCC, 2007). Seemingly opposing 

seasonal temperature trends observed in the western U.S. complicate understanding of 

underlying circulation mechanisms (Abatzoglou and Redmond, 2007). Difficulty in 

resolving regional phenomena at a local scale compound the problem of projecting future 

conditions at a specific site, and at a site or area that differs in scale from the measurement 

scale.

To address some of these difficulties, this project is conducted in two phases with the 

intent to verify that the model successfully handles major interactions between atmospheric 

inputs, vegetation uptake and soil properties on flow  before considering future cases. Phase I 

consists of an epochal reconstruction of the Holocene to present conditions, simulated 

forward in time from 13,000 years ago to present. Initial conditions are based on knowledge 

of the hydraulic transition between Pleistocene and Holocene. Enviromnental factors are
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varied individually by known quantities through a series of tests. Phase II proceeds forward 

from the paleomodel developed in Phase I in short-term (centurial scale) time steps by 

applying conditions associated with bioclimatic scenarios developed as part of this work. A 

range of conditions are explored out to a period o f+ 1 , 0 0 0  years.

Phase II incorporates two different approaches to predicting conditions at the site. The 

first approach relies on predicted scaling factors for climate parameters of net incident solar 

radiation, wind speed, temperature and precipitation generated by a well-documented RCM 

under doubled atmospheric carbon dioxide (CO2) concentrations applied to the Area 5 

meteorological data. Scaling factors obtained from Kittel et al. (2004) are presented as a 

monthly average for each climate variable; predicted temperature change is expressed as a 

difference between RCM temperature at current CO2 levels -  temperature predicted at 

doubled CO2 levels. Change ratios for precipitation, solar radiation and wind speed are 

expressed as the ratio the value under doubled CO2 levels/ the value at current CO2 levels. 

(Access to the dataset used for this scenario was provided by the Climate System Modeling 

Program, University Corporation for Atmospheric Research, and the Ecosystem Dynamics 

and the Atmosphere Section, Climate and Global Dynamics Division, National Center for 

Atmospheric Research. Readers are encouraged to refer to Kittel et al. (2004) for additional 

information.) By scaling observed Area 5 site data, this approach maintains the inherent 

cyclic characteristic and other features of observed weather patterns.

The second approach employed in Phase II involves the development and application of a 

series of bioclimatic analogs. The use of geographic analog sites is defensible on the basis 

that climate is driven by atmospheric circulation, and these circulation patterns are influenced 

by the solar radiation resulting from the planet’s orbital and rotational characteristics, which 

vary on a predictable cyclical pattern (Sharpe, 2003). The use of analog sites for representing 

future climate states provides a series of additional benefits for this project, by firstly
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allowing resolution of weather events on daily scale that has been shown to influence flow 

patterns; secondly, providing inputs at a resolution that enable other model components (i.e. 

potential évapotranspiration) to be explicitly calculated; and thirdly, by providing a realistic 

representation of observed ranges and fluctuations in weather patterns. Each of the 

bioclimatic analogs developed in Phase II provide model inputs for a series of future climate 

scenarios, simulated in Cases 1-8.

Predicting the response of coupled environmental systems under varying future climate 

change is, by its nature, complex. Uncertainties inherent in developing inputs for predictive 

modeling need to be considered, particularly developing a sound and defensible methodology 

for future climate estimates. Controls employed in this work to limit uncertainties in 

describing potential climates include:

1.) Internal controls in the formal elicitation process (Miklas et al., 1995) used to

describe future climate steps in this thesis. Internal process controls include 

solicitation of information from climatological researchers with appropriate 

backgrounds and levels of expertise, led by personnel with expertise in decision 

theory, probability theory and assessment to facilitate the process, and extensive 

training for researchers in recognizing and overcoming bias.

2.) Explicit project controls. Expert opinions are aggregated and characterized by

probability distributions. These probabilities are compared to climate descriptors

developed in this work for each predicted future climate scenario. Probabilities 

for each time step are given in Figure 3.1.

3.) Environmental controls resulting from the biogeographical characteristics of the

study site. Climate in this region has been remarkably stable over thousands of 

years (Spaulding, 1990) as a result of the Sierra Nevada rain shadow, and is likely
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to remain relatively so during the period of interest in this study, constraining the 

range of possibilities.
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Figure 3.1 (a-e). Cumulative Probability Distributions for Predicted Changes in Temperature 
and Precipitation at the +100, +300 and +1,000 Year Time Step (Miklas et al., 1995)

4.) Verification against robust physically-based regional climate models (RCMs) 

when available. The +100 year, doubled CO2 climate scenario developed in this 

thesis (Case 2) is compared with RCM temperature and precipitation projections 

(from Christensen et al., 2007) in Figure 3.2. Case 2 falls within the 25% - 75% 

quartile range of predicted precipitation for all seasons, and within the 50% 

quartile for summer and fall predicted temperature response. Winter and spring 

predicted temperature responses for Case 2 are outside the 75% quartile for the 

region, but still within predicted maximums for 14 of 21 averaged RCMs. 

Though these RCM outputs are averaged responses for the entire western United
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States, these values demonstrate that Case 2 inputs represent predicted trends 

across the larger region.
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Figure 3.2. Projected Climate Responses at +100 Years Under a Doubled C02 Scenario for 
(a) Precipitation and (b) Temperature (Christensen et al., 2007).

It should be emphasized that future climate steps described in this work are not intended 

to be predictive in nature, but instead provide a methodology for testing a variety of realistic 

interdependent environmental conditions, while offering a view of how progressional 

changes might impact the flow system.

Phase I: Paleomodel

The paleomodel is constructed as a forward simulation of paleoclimatic conditions as 

they evolved through to present time (approximately 13,000 years). This provides the 

opportunity to examine the effects of changing climate and vegetation on flow conditions by 

independently testing individual processes, while allowing use of present-day observations 

for benchmarking purposes of the Base Case. In addition to the 13,000-year initial 

simulation (paleomodel Base Case), the paleomodel run series includes tests of:
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A.) Elevated évapotranspiration: Plant cover is increased from 20% total vegetation 

cover in the paleomodel Base Case to 90% deciduous shrub/ 90% grass cover. This 

is intended to simulate a very dense shrub cover with grass understory.

B.) Reduced transpiration: Plants uptake is reduced to zero for 30 years every 100 years 

to simulate periods of widespread vegetation mortality, such as might be observed on 

a 1 0 0 -year wildfire cycle.

C.) Increased precipitation: Rainfall is doubled for the entire simulation, equivalent to a 

mean annual precipitation rate of 224 mm yr ’.

D.) Reduced precipitation: Rainfall is halved for the entire simulation, equivalent to a 

mean annual precipitation rate of 56 mm yr ’.

E.) Timing of precipitation: 80% of precipitation is compressed into an 8 -hour period 

(08:00 -  16:00), 1 0 % falling in early morning (0:00-08:00) and the remaining 1 0 % 

falling in the evening (16:00-24:00). The allotted amount is randomly distributed 

within each block using an algorithm designed for this purpose (Appendix I). The 

model is run in hourly time steps.

Outputs from the Paleomodel Base Case provide initial conditions for the Phase II future 

case series.

Phase II: Future Cases

To represent future conditions in the model, this thesis couples the most probable climate 

states with supportable biomes based on climate conditions, vegetation tolerances, local soil 

conditions, topography and general suitability of each of the profiles for the Area 5 site. The 

suite of environmental factors used to provide the inputs for each case is termed a bioclimatic 

scenario; it is defined by climate characteristics and representative growth forms, which are
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in turn used to develop root density profiles and ground coverage estimates following the 

methodology below:

1.) Identify and describe most probable future climate states;

2.) Select representative climate analog sites and process data sets;

3.) Determine appropriate biome for climate analog based on biome tolerances;

4.) Select representative vegetation for biome from field survey plots;

5.) Generate guild composition by classifying observed vegetation according to growth 

form;

6 .) Parameterize guild composition for partitioning évapotranspiration (leaf area index, 

canopy cover) and root distributions.

Bioclimatic scenarios developed for this paper are outlined in Table 3.1, Table 3.2 and 

Table 3.3.

Selection of Probable Future Climates

A range of possibilities for the most probable scenarios are identified, providing high and 

low bounding conditions for each time step. Each future time step is treated as representative 

of that climatic state, avoiding difficulties associated with modeling highly uncertain 

transitional phenomenon. Findings of an expert panel debate for predicting future climate at 

Yucca Mountain (Miklas et al., 1995) are combined with work done by Sharpe (2003) 

outlining the use of orbital and rotational variations to predict long-term climate states to 

develop a series of probable climate states. Each climate state, identified by time of 

occurrence, is defined by the dominant controls influencing weather patterns, mean aimual 

precipitation, and mean aimual temperature. This work considers possible scenarios out to 

1,000 years after present, with climatic transitions occurring at +100, +300 and +1,000 years.
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Table 3.1. Bioclimatic Scenario - Climate Description

Timing", Dominant control Description" Climate
State"

Representative
Locale

Mean
Annual
Precip
(mm)"

Mean
Annual
Temp
(C°)"

Growing
Degree
Days
(Base
5°C)"

Mean
Temp

Coldest
Month
CO"

Moisture
Index''

1. Present 
Day

Sierra Nevada Rainshadow Current Interglacial Desert Rock 
Airport, NTS 
9 years
8/1/98-7/31/07 112 18.6 5015 7.4 -0.93

2 . +100 
years

-Rainshadow effect 
-Anthropogenic forcing 
-Doubled atmospheric CO2

Much
warmer/
wetter

Interglacial DRA, scaled 
9 years
8/1/98-7/31/07 134 219 6881 12.6 -0.94

3. +100 
years

-Rainshadow effect 
-Anthropogenic forcing

Warmer/
wetter

Interglacial-
Monsoon

Calipatria, CA 
1 5 years 
8/1/90-7/31/05 128 21.3 5997 5.6 -0.94

4.+300 
years

-Rainshadow effect 
-Anthropogenic forcing Warmer/

drier
Interglacial-
Monsoon

Parker, AZ 
18 years 
1/1/87-731/05

97 21.4 5997 10.2 -0.96
5. +300 
years

-Rainshadow effect 
-Anthropogenic forcing

6. +300 
years

-Rainshadow effect 
-Anthropogenic forcing Warmer/

wetter
Interglacial-
Monsoon

Harquahala, AZ 
9 years
8/1/97-7/31/06

186 20.5 5651 8.9 -0.92

7. +1000 
years

-Rainshadow effect 
-Anthropogenic forcing 
-Orbital variation

Cooler/
wetter Intermediate

Riverside, CA 
22 years 
8/1/85-7/31/07

236 17.7 4648 12.3 -0.87

8. +1000 
years

-Rainshadow effect 
-Anthropogenic forcing 
-Orbital variation

Cooler/
wetter Intermediate

Victorville, CA 
13 years 
3/1/94-7/31/07

257 16.1 4086 6 . 8 -0.91

K)

"Sharpe, 2003
'■’Miklas et al, 1995
"Calculated from raw weather data
‘'Calculated after Wilmott and Feddema, 1992



Table 3.2. Climatic Tolerances of Biomes in western North America

Biome"
Min Mean 

Temp Coldest 
Month"

Max Mean 
Temp Coldest 

Month"

Min Growing 
Degree Days 

(GDD;)"

Max Growing 
Degree Days 

(GDD,)"

a Min"/ 
a Min^

a Max"/ 
aMax^

Desert 0 12.5 3000 6500 0.05/ -0.95 0.40/ -0.20
Xerophytic woods/scrub 2.5 12.5 2000 5000 0.30/ -0.40 0.70/ 0.40
Grassland -15.0 7.5 1500 5000 0.35/ -0.30 0.70/ 0.40
Steppe -10.0 0 1000 3000 0.15/ -0.70 0.55/ 0.1
"Thompson and Anderson, 2000; Calculated after Wilmott and Feddema, 1992

Table 3.3. Bioclimatic Scenario - Vegetation Profile

Timing Biome® Guild
Composition''

Representative Species Timing Biome® Guild Composition'’ Representative Species

1 .Present 
case

Desert Evergreen - 7.1% 
Subshrub- 10.3% 
Grass - 2.7%
Forb - 0.2%

Larrea tridentata 
Ambrosia dumosa 
Oryzopis hymenoides 
Mirabilis pudica

5. +300 
years 
Warmer/ 
drier

Bare Soil Bare Soil

2. +100 
years 
Warmer/ 
wetter

Desert Evergreen -  16.4% 
Subshrub-20.1%  
Grass -  1.0%
Forb -  0%

Larrea tridentata 
Ambrosia dumosa 
Oryzopis hymenoides 

^ ira b ilis  pudica

6. +300 
years 
Warmer/ 
wetter

Desert Evergreen -  8.6% 
Subshrub- 15.5% 
Grass -  1.4%
Forb - 0.1%

Larrea tridentata 
Acamptopappus shockleyi 
Oryzopis hymenoides 
Stanleya pinnata pinnata

3. +100 
years 
Warmer/ 
wetter

Desert Evergreen -  5.2% 
Subshrub- 15.3% 
Grass -  2.6% 
Forb-0.1%

Larrea tridentata 
Menodora spinescens 
Oryzopis hymenoides 
Sphaeralcea emoryi

7.+1000 
years 
Warmer/ 
wetter

Desert Evergreen -  17.0% 
Subshrub -  19.9% 
Grass -  12.2% 
Forb - 0.0%

Coleogyne ramosissima 
Grayia spinosa 
Stipa speciosa 
Delphinium parishii

4. +300 
years 
Warmer/ 
drier

Desert Evergreen -  4.0% 
Subshrub -  4.9% 
Grass -  0.1% 
Forb - 0.1% 
Succulent - 0.2%

Larrea tridentata 
Psorothamnus fremontii 
Oryzopis hymenoides 
Mirabilis pudica 
Opuntia ramosisima

8.+1000 
years 
Cooler/ 
wetter

Xerophytic
scrub

Evergreen-21.0%  
Subshrub -  2.5% 
Grass -  9.8%
Forb - 8.7% 
Conifer -  13.0%

Artemisia nova 
Chrysothamnus viscidiflorus 
Sitanion hystrix 
Eriogonium ceaspitosum 
Pinus monophylla



Selection o f Analog Climate Sites

Analog sites are chosen at varying geographical locations to provide proxy data for each 

of the specified climate states. The analog for each climate step is chosen primarily for its 

representativeness of the dominant indicators of precipitation and mean annual temperature. 

To be considered as an analog site, available data sets have to include a variety of 

atmospheric parameters to support the calculation of the Penman-Monteith reference 

évapotranspiration (ETg), including net radiation, wind speed, mean temperature, and actual 

vapor pressure (or in its absence, daily minimum and maximum or hourly relative humidity). 

Alternatively, if station ETo data was available, it is used.

It is reasonable to anticipate that analog sites for near-term climate steps would be 

geographically nearer to the current site than long-term climate analogs, thus the selection of 

representative locations begins in the southwest and western regions of the country. Weather 

data networks sourced for potential sites include the California Irrigation Management 

Information System (CIMIS), Arizona Meteorological Network (AZMET), National Oceanic 

and Atmospheric Administration Surface Radiation Budget Network (SURFRAD), and 

University of Utah’s Department of Meteorology MesoWest network. Preliminary analysis 

of each potential analog site determines length of record, mean annual temperature, mean 

annual precipitation and seasonal precipitation patterns. These basic indicators are compared 

to current conditions for relative changes expected in future climate steps.

Climate Inputs

As the length of available record is necessarily less than the period of simulation, climate 

data sets are generated for each case by incrementing the analog data into shorter segments 

and randomly generating longer climate cycles. For example, the 9-year present day climate 

data set used in the Paleofiow Base Case and Case 1 is incremented into I-year, 3-year and 9-

26



year blocks and randomized for 27, 9 and 3 permutations, respectively. This results in a 350- 

year randomized cycle for the each simulation, which is in keeping with observed cyclic 

weather patterns (e.g., 100-year and 500-year weather events). This approach is preferable to 

setting fixed boundary conditions, such as a prescribed surface flux or infiltration rate used in 

other long-term models of the region (Kwicklis et al., 2006; Walvoord et al., 2004; Scanlon 

et al., 2003), allowing the model to resolve daily events of consequence (i.e., extreme 

weather events such as short but intense storms characteristic of this region). Extreme events 

could conceivably affect flow patterns but would be averaged out by using fixed, longer-term 

(i.e. monthly or yearly) averages. This approach also allows calculated plant uptake (a 

function of temperature, wind speed and vapor pressure) to be correlated with observed 

precipitation, incorporating a greater level of realism in the model. This method preserves 

the descriptive statistics of the data set, while offsetting artificial short-term trends or cycles 

that might otherwise be introduced.

Case 1. +100 Years: Present Dav Conditions

Current climate conditions at the Area 5 RWMS are represented by meteorological and 

radiation data recorded at the Desert Rock Airport (DRA) in Mercury, NV, 26 km (16 mi) to 

the south. Although precipitation data are available from stations at the Area 5 RWMS, the 

necessary solar measurements required to develop reference évapotranspiration {ETq) are not 

available; data from a single location was desired to reduce possible modeling errors as a 

result of mismatch between localized precipitation and solar radiation records. The selected 

meteorological data are from the DRA Surface Radiation Site, maintained by the SURFRAD 

network for the 9-year period 8/1/1998-7/31/2007. Mean annual precipitation during this 

period is 112 mm/yr, mean annual temperature is 18.6 °C, mean temperature for the coldest 

month is 7.4 °C, and growing degree days (GDD;) is 5015. The Preistley-Taylor moisture 

availability, expressed on a scale of -1< a <1, is -0.93. Case 1 is a continuation of the
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Paleomodel Base Case, run for an additional 350-year simulation period to provide a point of 

reference for Cases 2-8; as a result, this scenario has reached steady state.

Case 2. +100 Years: Warmer/ Much Wetter. Doubled Atmospheric Carbon Dioxide

Projected future climate for Case 2 is developed from current climate data using monthly 

scaling factors developed and grid referenced by the VEMAP Project (Kittel et al., 2004) 

based on output from the nested regional climate model by the Canadian Center for Climate 

Modelling and Analysis (CCC) High Resolution GCM Experiment (Boer et al., 1992). 

Monthly scaling factors for net incident solar radiation, temperature and wind speed for the

0.5° latitude x 0.5° longitude grid cell associated with the Area 5 RWMS are applied to the 

DRA climate data set from Case 1 using “ETrefTC02” (Appendix I) to calculate CO; 

adjusted reference évapotranspiration (ETg). Monthly scaling factors for precipitation from 

the Kittel et al. (2004) RCM data set are applied directly to the DRA precipitation data. 

Mean annual precipitation during this period is 134 mm/yr, mean annual temperature is 23.9 

°C, mean temperature for the coldest month is 12.6 °C, growing degree days (GDD5) is 6881, 

and the moisture index is -0.94.

Case 3.+100 Years: Warmer/Wetter

As an alternative to the scaled data set, the analog site exhibits warmer temperatures and 

higher precipitation relative to current conditions. The 15-year data set from CIMIS Station 

41 (Calipatria, CA) has a mean temperature of 21.3 °C, mean annual precipitation of 123 

mm/yr, mean temperature coldest month of 5.7 °C, 5965 G D D 5  and a moisture index of-0.94. 

Cases 4 and 5.+300 Years: Warmer/Drier

The 17-year data set from AZMET Station 08 (Parker, AZ) has a mean temperature of

21.4 °C, mean annual precipitation of 95 mm/yr, mean temperature coldest month of 10.3 °C, 

G D D 5  = 5996 and a moisture index of -0.95, the driest of all simulations.
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Case 6: +300 years. Warmer/ Wetter

Analog AZMET station 23 (Harquahala, AZ) provides a 9-year data set averaging 20.5 

°C, mean annual precipitation of 170 mm/yr, mean temperature coldest month is 8 . 8  °C, 

GDDs equal to 5646 and a moisture index of -0.92.

Case 7: +1.000 vears -  Warmer/ Wetter

Climate data from CIMIS Station 44 (Riverside, CA) span 20 years, and have a mean 

annual temperature of 24.6 °C, mean annual precipitation of 246 mm/yr, mean temperature 

coldest month of 12.2 °C, 4650 growing degree days, and a moisture index of -0.87. 

Proportionally wetter winters evidenced here are representative of atmospheric cooling 

affected by Milankovitch forcing and associated movements (Miklas et al., 1995).

Case 8 : +1.000 vears -  Cooler/ Wetter

Climate data from analog site CIMIS Station 117 (Victorville, CA) has a mean 

temperature of 16.1°C, mean annual precipitation of 257 mm/yr, mean temperature coldest 

month of 6 .8 °C, 4086 growing degree days and a moisture index of -0.91, the wettest and 

coolest of all simulations.

Development of Representative Biomes 

Data for each of the climate analogs selected in the previous step are examined in terms 

of mean annual temperature, mean annual precipitation, number of growing degree days 

(base 5° C), Priestley-Taylor moisture availability index (scaled to -1 < a < 1, where -1 = 

extremely dry and +1 = extremely wet following the method proposed by Wilmott and 

Feddema, 1992) and summer versus winter precipitation patterns. Climate profiles are 

compared to tolerance levels for biomes of western North America developed in Thompson 

and Anderson (2000). The work in this thesis employs the extensive catalog of
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representative species for each biome presented in Thompson and Anderson (2000) to 

facilitate a review of species for additional site limitations that would favor or discourage the 

establishment of that biome at the Area 5 site.

This thesis follows the growth form classification system presented by Reynolds et al.

(1996) and used in recent arid zone research of interest (Kemp et al., 1997; Yin et al., 2008) 

to describe each biome in terms of guild composition. Vegetation occurring in the vicinity of 

the study site is classified into the following representative growth forms, or “guilds,” as they 

are sometimes referred to in the literature (Kemp et al., 1997): evergreen shrubs, deciduous 

winter-active shrubs and subshrubs, grasses, spring/summer-active perennial forbs, 

succulents, and drought-tolerant woodland conifers. Designating a particular species to a 

functional type follows the classification presented by Thompson and Anderson (2000) when 

available; otherwise, growth form was obtained from the USDA PLANTS database (USDA 

NRCS, 2008) or the Utah State University Range Plants database (Utah State University, 

2008). Where multiple growth forms are possible, species are assigned to a guild based on 

activity patterns and physical form most likely to develop given the climate state. Larrea 

tridentata (creosote hush) is classified as an evergreen shruh on the basis of rooting patterns, 

seasonal activity and stomatal responses to low moisture as suggested by Kemp et al (1997).

Plant species identified in the Area 5 RWMS vegetation surveys (Hansen and Oslter, 

2003) and the extensive Nevada Test Site vegetation surveys (Webb et al., 2003; Beatley, 

1974) are, on balance, representative of Thompson and Anderson’s (2000) desert biome 

classification. Nearly all are considered to be of the desert shrub plant functional type, 

except for the desert forb. Mirabilis pudica (four o’clock). Plants near Area 5 that are 

classified as occurring in other designated regions include Atriplex confertifolia (shadscale 

saltbush) and Ceratoides lanata (winterfat), which are considered steppe shrubs, and 

Oryzopsis hymenoides (Indian ricegrass), a grass, in spite of conditions well outside of
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predicted climatic tolerance. This indicates a certain amount of flexibility in the ability of 

plants to adapt to conditions outside their designated biome.

Guild compositions are developed in this study from the NTS vegetation surveys (Webb 

et al., 2003) that allow observation plots to be tied to climate characteristics. Though caution 

must be exercised when extrapolating vegetation patterns to other locales, using this set of 

geographically related sites allows consideration of what is likely to develop given regional 

soil, climate patterns, faunal exposure and migratory probabilities. A representative 

vegetation plot is selected for each bioclimatic scenario based on the following criteria:

1.) Average annual precipitation at the plot must be within ±10% of predicted 

precipitation for the climate scenario;

2.) Soil must be representative of the study site; that is, composed primarily of 

alluvium or sandy alluvium with no subsurface formation that would structurally 

impair root growth, thereby influencing the vegetation that has developed there;

3.) Location must be primarily undisturbed.

Surveyed plant species are grouped according to their guild, and the most common 

species from each guild is selected as its representative for leaf area index (defined as total 

leaf surface divided by land area) and rooting distribution. Guild composition is calculated 

using the 1970’s ground cover data for each plot (Beatley, 1974). The 1970’s data is selected 

in favor of the large percentage of dead and dormant vegetation observed in the 2 0 0 2  data set 

resulting from an extreme drought in 1989-1991, and lesser droughts in 1996 and 2002 

(Webb et al., 2003). Developed guild compositions and leaf area index (LAI) for all cases 

are referenced in Tables 3 .4-3 .10.
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Table 3.4. Guild Composition, Case 1

Guilds
% Ground 

Cover" Representative species
Leaf Area 

Index
Evergreen Shrub 7.1% Larrea tridentata (creosote bush) 0.65"
Deciduous Subshrub 10.3% Ambrosia dumosa (white bursage) 5.7"
Grasses 2.7% Oryxopis hymenoides (Indian ricegrass) 3.6"
Perennial Forbs 0.2% Mirabilis pudica (four o’clock) 2 .3 /
Total live ground cover 20.3%

Table 3.5. Guild Composition, Case 2
% Ground Leaf Area

Guilds Cove/ Representative species Index
Evergreen Shrub 16.4% Larrea tridentata (creosote bush) 0.65"
Deciduous Subshrub 20.1% Ambrosia dumosa (white bursage) 5.7'’
Grasses 1.0% Oryxopis hymenoides (Indian ricegrass) 3.6"
Perennial Forbs 0% Mirabilis pudica (four o’clock) 2 .3 /
Total live ground cover 37.5%

Table 3.6. Guild Composition, Case 3
% Ground Leaf Area

Guilds Cover® Representative species Index
Evergreen Shrub 5.2% Larrea tridentata (creosote bush) 0.65"
Deciduous Subshrub 15.3% Mindora spinescens (spiny hopsage) 5.7'’
Grasses 2.6% Oryxopis hymenoides (Indian ricegrass) 3.6"
Perennial Forbs 0.1% Sphaeralcea emoryi (Emory’s globemallow) 2 .3 /
Total live ground cover 23.2%

Table 3.7. Guild Composition, Case 4
% Ground Leaf Area

Guilds Cove/ Representative species Index
Evergreen Shrub 4.0% Larrea tridentata (creosote bush) 0.65"
Deciduous Subshrub 4.9% Ambrosia dumosa (white bursage) 5.7'’
Grasses 0.1% Oryxopis hymenoides (Indian ricegrass) 3.6"
Perennial Forbs 0.1% Mirabilis pudica (four o’clock) 2.37‘*
Succulents 0.2% Opuntia ramosissima (diamond cholla) 0.25"
Total live ground cover 9.3%

Sources:
a ,b ,c,d  Kemp et al., 1997.

"Ludwig et al., 1975; Barbour, 1977 
'’Ludwig et al., 1975; Depuit and Caldwell, 1975 
"Williamson et al, 1987 
‘'IBP, 1974.

"Plot 28a,Webb et al., 2003 
'^Housman et al., 2006 
®Plot 7,Webb et al., 2003
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Table 3.8. Guild Composition, Case 6

Guilds
% Ground 

Cover® Representative species
Leaf Area 

Index
Evergreen Shrub 8.6% Larrea tridentata (creosote bush) 0.65"
Deciduous Subshrub 15.5% Acamptopappus shockleyi (Shockley’s goldenhead) 5.7"
Grasses 1.4% Oryxopis hymenoides (Indian ricegrass) 3.6"
Perennial Forbs 0.1% Stanleya pinnata pinnata (desert prince’s plume) 2.37''
Total live ground cover 25.5%

Table 3.9. Guild Composition, Case 7

Guilds
% Ground 

Cover' Representative species
Leaf Area 

Index
Evergreen Shrub 17.0% Coleogyne ramosissima (blackbrush) 1.35"
Deciduous Subshrub 19.9% Grayia spinosa (spiny hopsage) 5.7"
Grasses 12.2% Stipa speciosa (desert needlegrass) 3.6"
Perennial Forbs 0.02% Delphinium parishii (desert larkspur) 2.37''
Total live ground cover 49.1%

Table 3.10. Guild Composition, Case 8

Guilds
% Ground 

Cover' Representative species
Leaf Area 

Index
Evergreen Shrub 21.0% Artemisia nova (big sagebrush) 0.29'
Deciduous Subshrub 2.5% Chrysothamnus viscidiflorus (yellow rabbitbrush) 5.7"
Grasses 9.8% Sitanion hystrix (bottlebrush squirreltail) 3.6"
Perennial Forbs 8.7% Eriogonium ceaspitosum (mat buckwheat) 2.37''
Drought Tolerant 
Conifers 13.0% Pinus monophylla (singleleaf pinyon juniper) 3.4''
Total live ground cover 55.0%

Sources:
After Kemp et al., 1997.
"Ludwig et al., 1975; Barbour, 1977 
"Ludwig et al., 1975; Depuit and Caldwell, 1975 
"Williamson et al, 1987 
■'IBP, 1974.

"Briones et al., 1996 
'Plot33,Webbet al., 2003

®Plot 57,Webb et al., 2003 
"Smith et al., 1995 
'Plot 47,Webb et al., 2003 
jElvidge and Chen, 1995 
'‘Warren et al., 2001 
'Plot 63, Webb et al., 2003
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The biome for the elevated CO2 scenario in Case 2 is developed based on work showing 

measurable increases in productivity and photosynthetic response among desert shrubs to 

elevated atmospheric CO2 , particularly during wetter periods (Hamerlynck et al., 2000; 

Housman et al., 2006). Productivity factors of 2.3 for evergreen shrubs and 1.95 for 

deciduous subshrubs derived from Housman et al. (2006) are applied to Case 1 guild 

compositions to develop the biome for Case 2. Grass coverage is reduced by nearly 40% to 

account for the dynamics of shrubland expansion associated with drying conditions (Balling, 

1988; Schlesinger and Pilmanis, 1998).

Case 4 demonstrates greatly reduced vegetation, and Case 5 tests the effects of soil 

evaporation only, thus guild compositions and root distributions = 0. Case 6  reflects similar 

proportions of high deciduous subshrubs and the perennial evergreen Larrea tridentata as 

seen in Case 3. The biome also represents an increase in coverage of grasses under 

increasing precipitation, as their rapid migratory properties all them to move in and takes 

advantage of increased available soil moisture (Prentice et al., 1992).

Case 7 is represented by total ground cover increases of nearly 50% in what is 

essentially a pluvial period in a semi-arid region. Larrea tridentata is replaced by Coleogyne 

ramosissima (blackbrush), Grayia spinosa (spiny hopsage) becomes the most abundant 

single species on the landscape, and an attendant increase in the grass population is seen. 

Leaf area index for Coleogyne ramosissima is updated with observations made under periods 

of low water stress by Smith et al. (1995). LAI for stipa speciosa (desert needlegrass) was 

held constant, due to the similarity in form and activity to previous representative species 

Oryxopis hymenoides (Indian ricegrass) (Pavek, 1993).

In Case 8 , total vegetation cover was increased to 55%. The biome indicators 

demonstrate the potential for tolerance of xerophytic scrub plants; the appearance of some of 

these species, most notably, Pinus monophylla, represent the introduction of drought-tolerant
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woodland conifers guild to the biome. Leaf area index is 3.4 (Classen et al., 2005) (averaged 

for healthy pinyon juniper), in line with averaged observations by Warren et al. (2001) of 3.7 

and 3.6 for Pinus pinus and Pinus radiata, respectively. LAI for Artemisia nova is 0.29, 

from measurements of full-foliage Artemisia tridentata (big sagebrush) (Elvidge and Chen, 

1995).

Calculation of Evapotranspiration 

Potential plant évapotranspiration, or reference évapotranspiration {ETo), is calculated for 

each biome using the Penman-Monteith method as detailed by the Food and Agriculture 

Organization (FAQ) (Equation 3.1) (Allen et al., 1998).

900
0.408A(Æ, -  G) *m(& -&)

E To=---------------------------------------  (3.1)
A+y(l+0.34m)

where A = slope vapor pressure curve [kPa °C '], R„ = net radiation at the crop surface [MJ m" 

 ̂day '], G = soil heat flux density [MJ m'^ day-'], y = psychrometric constant [kPa °C''], T = 

mean daily air temperature at 2 m height [°C], U2 = wind speed at 2 m height [m s '], es = 

saturation vapor pressure [kPa], = actual vapor pressure [kPa] and ĝ -gg = saturation vapor 

pressure deficit [kPa].

This thesis opts for the Penman-Monteith approach over other available methods for 

calculating ETo in an effort to use a physically-based approach that explicitly accounts for 

meteorological parameters (specifically wind speed, solar radiation and temperature) that 

may be affected by climatic variations. In addition, this method was developed with the 

intention o f serving as a standard in agricultural applications; as a result, many data networks 

are beginning to supply daily ETo with currently available datasets, facilitating cross-network 

data comparison. A comparison between Penman-Monteith and Hargreaves (Wu, 1997;

35



Hargreaves and Allen, 2003) estimates of ETg for the Case 1 climate data set indicates a good 

correlation (r  ̂= 0.7302) between the two methods (Figure 3.3), so in practice the selection of 

the calculation method would have comparatively little impact on the flow model. 

Calculated ETg results were compared to seasonal évapotranspiration data for Larrea 

tridentata (creosote bush) reported in literature (Sammis and Gay, 1979; Scott et al., 2006) 

and were in line with the magnitude and variation of field observations.

A Fortran program “ETreffave”, developed for this project to facilitate preprocessing 

and calculation of ETo from the extensive SURFRAD data set (which are available as daily 

files, written every three minutes), is included in Appendix I. Day of year, daily mean 

temperature and ETo are written to an output file used to develop the variables tAtm(i), 

rSoil(i) and rRoot(i), respectively, for HYDRUS upper boundary condition input file 

“ATMOSPH.IN.”

ETo Method Com parison

R2 = 0.7302o
0 8UJii

ai 0.4

0.2

1.2 1.40 0.6 0.0 10.2 04
FAO Penm an-M onteith  ETo (cm)

Figure 3.3. Comparison of Reference Evapotranspiration {ETo) 
Calculation Methods using the Case 1 Climate Data Set.

Partitioning of ETo into potential evaporation {Epo) and potential transpiration {Tpô ) is 

accomplished externally in Microsoft Excel using an approach described in Kemp et al.

(1997) and employed in work by Yin et al. (2008);
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Tpot =  E T o * ( \ - e - ' ‘*^ '̂) (3 .2 )

Epo, = ETo*e^*^^’ (3.3)

where ETo = reference évapotranspiration [L], LAI = leaf area index [-], available from the 

literature and k [-] is a parameter accounting for radiation extinction by the canopy and varies 

with sun angle, leaf distribution and leaf arrangement (Kemp et al., 1997).

Total soil evaporation values for the biome are calculated by adding the guild values 

weighted by percent vegetation cover:

g
Bevap = ^  EpoP * GC (3.4)

/=!

where Bevap refers to the total potential transpiration and potential evaporation for the biome 

[L], g = the number of guilds occurring in the biome and GC = percent ground cover [%]. 

Potential transpiration (Tpot) and potential evaporation (Epoi) are not seasonally adjusted by 

guild; all guilds are assumed to be annually active.

This method is selected over the crop coefficient (Kc) based method, proposed by Allen et 

al. (1998), because crop coefficients inherently assume that vegetation are unstressed; thus, 

this approach is inapplicable to plants with a high degree of stomatal control, which is not 

very compatible with natural arid systems (Mata-Gonzalez et al., 2005). In practice, the crop 

coefficient method is difficult to implement for desert vegetation and Kc for an individual 

species can show great variability; Larrea tridentata can exhibit field behavior described by 

Kc ranging from 0.3 to 1.25 (Saucedo et al., 2005).

Root densities for evergreen shrubs, subslirubs, forbs and grasses are obtained from 

Kemp et al. (1997), succulents from Briones et al. (1996) field surveys, and conifers from the 

equation published by Jackson et al. (1996) for temperate coniferous forests; these are listed 

in Table 3.11. Existing data indicate that most root profiles, even among plants of varying
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physiological types and geographical locations, share common root distribution, densities and 

biomass (Jackson et al., 1996; Schenk, 2005). Composite distributions are developed by 

weighting the root distribution by guild ground cover:

J = X ; n * G G  (3.5)
/=! 7=1

where g = the number o f guilds occurring in the biome, x = root zone depth [L], r = total root 

density for the interval xj -  Xj.i [%] and GC = percent ground cover [%]. Root distributions 

are assumed constant over the duration of the simulation. Given the tendency for primary 

roots o f perennial plants to reach depth relatively quickly and persist throughout the year, a 

fixed distribution is reasonable for this system. Grasses and forbs are combined into one 

group due to similarities in rooting patterns. Composite root distribution for all cases except 

Case 5 are shown in Figure 3.4.

Table 3.11. Root Distribution by Guile
Depth Evergreen Deciduous Grasses/ Succulents’’ Drought
(cm) Shrub̂ Subshrub“ Perennial

Forbs"
Tolerant
Conifers’’

0 0 0 0.2 0.35 0
9 0 0.1 0.3 0.53 0.004

22 0.1 0.2 0.2 0.11 0.008
31 0.2 0.2 0.2 0.01 0.010
40 0.2 0.2 0.1 - 0.011
62 0.3 0.2 - - 0.013
80 0.1 0.05 - - 0.014
98 0.1 0.05 - - 0.014
106 - - - - 0.014
588 - - - - 0.007
610 - - - - -

Source:
^Kemp et al., 1997 
*’Briones et al., 1996 
“̂ Jackson et al., 1996
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Figure 3.4; Composite Root Distribution for Cases 1-8 for (a) depth = -1.2 
meters and (b) depth = -6.5 meters

Numerical Flow Model Description 

HYDRUS-ID (Simunek et al., 2005) is a one-dimensional numerical modeling package 

that includes coupled liquid water, water vapor and energy transport. It has been selected for 

its accessibility as a public-domain package, capability to account for vapor flux, and 

flexibility of analytical hydraulic properties models (including Brooks and Corey (1966), van 

Genuchten (1980) or Vogel & Cislerova (Vogel et al., 1991) hydraulic property calculation 

schemes), which can be important when considering soil conditions in extremely arid 

regions. HYDRUS uses Darcy’s law to describe liquid water flux, Fick’s law of diffusion to 

describe vapor flux, and a convection-dispersion equation for heat transport. Water flow is 

solved using Richard’s equation in the form:

dt dz dz
- S (3.6)
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where 6 is volumetric water content [L^L'^], t is time [T], h is pressure head [L], z is a spatial 

coordinate (in this case, profile depth) [L], K  is hydraulic conductivity [L T '], and S  [T ’J is 

the sink term representing plant water uptake (Simunek et al., 2005).

Although HYDRUS offers a variety of water retention functions to develop hydraulic 

properties as mentioned above, all of these relationships suffer from fundamental limitations 

inherent in using Richard’s equation under conditions of very low or very high water contents 

(such as those encountered in extremely arid environments or saturated conditions). Under 

these conditions, the assumption of laminar flow (defined as the flow of adjacent layers of 

fluid are not turbulent relative to one another) required by Darcy’s law may no longer be 

valid (Hillel, 1998). At very low water contents, water can bind to the soil particle surface as 

a result of adsorptive forces, resulting in non-viscous flow that is no longer proportional to 

the hydraulic gradient (Hillel, 1998). At very high water contents in association with large 

soil pores, high flow velocity may become turbulent, which also renders Darcy’s law invalid 

(Hilell, 1998). Though these limitations are hardly unique to HYDRUS, it is worthwhile to 

identify it as a possible source of error. Another potential disadvantage of this numerical 

code is the assumption that advective vapor phase flow is negligible, which may not 

necessarily be true in the presence of some environmental conditions (e.g. high atmospheric 

pressure gradients) (Choi et al., 2002). This work does not explicitly address advective vapor 

flux resulting from barometric pumping or other surface atmospheric conditions.

Time Discretization and Scaling

The major climate states are predicted to occur on the order of 10,000 years, and in some 

cases transitional ages might vary by thousands of years. Yet the processes of interest occur 

on very short time scales. To resolve these different temporal scales, short term variations 

are emphasized, and results from each case simulation are to be considered a moment in time. 

Inputs are on a daily time scale except paleomodel Test E, which considers the impact of
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hourly versus daily time step. Since this work does not model the transitional period between 

climate states and biome changes, it is assumed that the biome compositions are well 

established and will not change significantly over the course of the scenario.

Model Structure

In the model, the site is represented as a one-dimensional soil column with a depth to 

water table of 235 meters, represented by a fixed head lower boundary condition. Soil is 

assumed to be unsorted and homogeneous throughout the column. Though some research 

indicates that soil heterogeneity may play a more significant role in lateral flow than 

conservative estimates allowed for (Yucel and Levitt, 2001), the available soil properties data 

indicates that the alluvium is unconsolidated and poorly sorted, and virtually homogeneous 

throughout the profile (Bechtel Nevada, 2005a, 2005b). Thus, not only is the assumption of 

homogeneity in this work appropriate, but it simplifies analysis of the effects of 

environmental conditions on the deep hydraulic gradient by preventing flow that is solely a 

consequence of soil properties. In addition, the bulk of research suggests that on a longer 

time horizon of interest in this study, a one-dimensional conceptualization is also appropriate 

(Tyler et al., 1996, Walvoord et al., 2002a, 2002b, 2004).

The system is represented by a 500-node telescoping column, with higher densities of 0.5 

cm (0.2 in) at the surface and through the root zone, estimated at a depth of 1.2 m (4 ft) based 

on work by Hansen and Ostler (2003) identifying maximum rooting depth for Area 5 

vegetation of 95.5 to 115.8 cm. Nodal density at the bottom of the profile is 23.5 cm (9.2 in). 

Soil Properties

Soil hydraulic properties used as model inputs are described in Table 4.1, and are 

obtained from Area 5 Pilot Well data for Ue5PW3. Although some research indicates 

hydraulic properties will change as the soil surface ages (Young et al., 2004), this work opts 

to hold soil properties constant throughout the simulation in all cases due to the
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comparatively short forward simulation period relative to the time scale of measurable soil 

change.

Table 3.12 Summary of Soil Hydraulic Properties

^Residual Water Content (BJ [cm  ̂cm' ]̂ 0.045
^Saturated Water Content (8J [cm  ̂cm ''] 0.303
\a n  Genuchten alpha (a) [cm '] ^ 0.028

v̂an Genuchten n (n) [-] 1.38
^Saturated hydraulic conductivity (K^J [cm day'] 141.22
^Tortuosity factor (1) 0.5

^Bechtel Nevada, 2005b
^Soil textural properties catalogue for sand and loamy sand, Carsel and Parrish, 1988

Initial and Boundarv Conditions

The entire profile is assigned an initial head of -10 m (33 ft) representative of wetter 

conditions found at the end of the Pleistocene, with the bottom of the column assigned a 

constant head of 0 m, consistent with the location o f the water table. Minimum allowable 

head in the profile is -1000 m. The initial temperature gradient assigned to the profile is 34.5 

°C km ', with the water table temperature at 26.5 °C and an initial surface temperature of

18.4 °C at the time of transition (Walvoord et al., 2004). Water table and surface 

temperatures are held constant during the base case at 26.5 °C and 21.4 °C, representative of 

the warmer surface conditions developing through the Holocene and creating an upward 

thermal gradient.

Plant Water Uptake

Plant water uptake is explicitly accounted for in HYDRUS-ID as an additional sink term 

in the water flow equation (3.2) above:

S(h) = a(h)Sp (3.7)
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where the root-water uptake stress response function a{h) is a dimensionless function of 

pressure head h (0 < a < I), and Sp is the possible water uptake rate (Simunek et al., 2005). 

Potential plant transpiration is provided as an externally partitioned input (see equation 3.1) 

via the atmospheric input file ATMOSPH.IN. The actual uptake for the given time step is 

partitioned over the root zone in accordance with the prescribed root density. The HYDRUS 

model allows for adjustment of the uptake volume due to plant stress function using one of 

two available schemes, though all scenarios were run using the stepwise water stress response 

function developed by Feddes et al. (1978) (as described in Simunek et al., 2005). This 

assumes that water uptake is equal to zero close to saturation (hi = 0 ) and when exceeding 

the wilting point (h4 = wilting point). Uptake is optimal between h2 and h3, and decreases 

linearly as the system approaches either saturation or the wilting point (Simunek et al., 2005).

Feddes parameters for Cases 1 -  6  for Larrea tridentata (Figure 3.5a) were obtained from 

Franco et al. (1994); potential transpiration rates are from Hupet et al. (2002). As significant 

climatic changes lead to alterations in vegetation communities, plant parameters are updated 

to reflect dominant vegetation. For Case 7, uptake parameters (Figure 3.5b) (¥'„,„= -6.0 MPa; 

^max- -1.0 MPa) are taken from observations of xylem water potential of Coleogyne 

ramosissima by Gebauer and Ehleringer (2000), which are in line with observations for 

Ephedra nevadensis (Mormon tea) from a Coleogyne ramosissima- Ephedra nevadensis- 

Grayia spinosa- Haplopappus cooperi assemblage (Smith et al., 1995) similar to this biome 

(ÿ'mm = -6.5 MPa; W„,ax = -1.6 MPa). For Case 8 , Feddes parameters for Pinus monophylla 

(Figure 3.5c) (!P„„„= -2.6 MPa; W„ax= -11 MPa) are obtained from Jaindl et al. (1995) 

observations made in a Pinus monophylla -  Artemisia tridentata (singleleaf pinyon -  big 

sagebrush) community. Pressure potentials are converted to head of water [cm] for model 

parameters.
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Figure 3.5: Feddes Plant Uptake Parameters, (a) Cases 1-6; (b) Case 7; (c) Case 8

Model Performance Measures 

Validation of model performance is complicated by the high level of uncertainty 

associated with the interdependent processes of climate change, vegetation and soil 

evolution. In addition, the predictive nature of forward simulation makes it difficult to 

identify appropriate performance measures. To that end, this project uses the paleomodel 

developed in Phase I to project forward from known paleoclimatic inputs to present day 

output, and verifies results of the paleomodel against observed current soil potential and 

water content data for the Area 5 study site. The hydrologie reversal from net downward to 

net upward flow associated with the transition from Pleistocene to Holocene conditions is 

well accepted by researchers (Walvoord et ah, 2002a, 2002b; Edmunds and Tyler, 2002; 

Scanlon et ah, 2003) and the timing of the transition is placed at approximately 12,000 to 

16,000 years ago (Phillips, 1994). This work adopts the assumption that net flux = 0 

approximately 13,000 years ago (Walvoord et ah, 2004), and uses the developed inputs from 

paleoclimate simulations from previous work as initial conditions from the time of hydraulic 

transition to the present. All chronological forward steps are driven by potential outputs from 

the previous run. Model performance with respect to identified benchmarks is discussed in 

Chapter 4.
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CHAPTER 4

RESULTS 

Phase I Paleomodel Results

Paleomodel Base Case Results

Simulated soil water pressure head for the paleomodel initial simulation (Base Case) is 

shown in Figure 4.1. For all parameters of interest, the system responds very quickly and 

stabilizes within 3,500 years from initialization, with remarkable similarity at all time steps in 

the upper 10 m. Soil water potential becomes strongly negative in the upper 1 m of the soil 

profile under the influence of the root zone then becomes less negative immediately below.

Soü manx (m) Soil m a t n x  h e a d  ( m )
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Figure 4.1a Figure 4.1b

Figure 4.1. Simulated Soil Matrix Head from 13,000 Years Ago to Present, 
(a) entire soil profile; (b) upper 1 0  meters.
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where it remains eonstant around -14 m through the profile and down to the water table. This 

zone of constant head at depth indicates that the deep profile has reached unit gradient 

conditions, where pressure head contributes very little to the total hydraulic head and 

gravitational head dominants (A/f/lz =1) .  As a result, the downward flux approximately 

equals the unsaturated hydraulic conductivity (K) (Hillel, 1998); for the Base Case, K  = 

0.0025 mm day"' (0.9 mm yr ') at h = -14 m. Similarly, volumetric water content (Figure 4.2) 

increases at the base of the root zone and remains fairly constant through the profile until 

about 1 0  m above the water table, where it increases as the capillary fringe is encountered 

near the saturated lower boundary. Flux (Figure 4.3) is slightly positive (i.e. upward) 

through the top 1 0  cm in response to surface evaporation, and remains at or very nearly zero 

(-0.05 to 0.08 mm yr ') to a depth of approximately 1 m. Flux is upward from the base of the 

root zone (~ 105 cm) through 9.2 m. Below this point, flux becomes negative (i.e., in a 

downward direction) through to the base of the profile.
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Figure 4.2a Figure 4.2b
Figure 4.2. Simulated Volumetric Water Content from 13,000 Years Ago to Present,
(a) entire soil profile; (b) upper 1 0  meters.
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Figure 4.3bFigure 4.3a

Figure 4.3. Simulated Flux from 13,000 Years Ago to Present, (a) entire soil profile;
(b) upper 1 0  meters.

Tests A -  E Results

Soil water pressure heads and volumetric water contents for Base Tests A-E are shown in 

Figure 4.4. Test E results (i.e., compressed precipitation) for soil water pressure head, water 

content and flux are qualitatively indistinguishable from the Base Case. The most strongly 

negative heads are observed for Test D, where precipitation was reduced by 50% (equivalent 

to mean annual rainfall of 56 mm y r ’). Head remains negative from the base o f the root zone 

and increases to equilibrium values of approximately -31.1 m at a depth of around 85 m. 

Test A results (i.e., increased vegetation cover) exhibit similar features. Root water uptake 

led to more negative heads well below the base of the root zone and increasing to equilibrium 

values of -30.8 m at a depth of around 85 m. Both Tests A and D exhibit similar volumetric 

soil moisture profiles, averaging around 8 % and 9%, respectively.
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Figure 4.4. Simulated Soil Matrix Head and Volumetric Water Content for Paleomodel 
Test Series, (a) Soil matrix head for entire soil profile; (b) soil matrix head for upper 10 
meters; (c) volumetric water content for entire soil profile; (d) volumetric water content 
for upper 1 0  meters.
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Results from Test B (i.e., wildfire scenario) and Test C (i.e. precipitation doubled to 224 

mm yr ') demonstrate the opposite trend, with less negative heads through the deep vadose 

zone relative to the Base Case. Both Tests B and C show pressure heads of approximately -5 

m at unit gradient. Soil water heads in Test B (wildfire scenario) begin to diverge from those 

predicted in the Base Case at around 20 m depth, becoming gradually less negative through 

the base of the profile. Similarly, water contents increase slightly around 20 m depth and 

continue to rise as the water table is encountered, indicating that periodic deep percolation is 

occurring during periods of vegetation removal. Test C (i.e., doubled precipitation) shows a 

slight bulge in water content near the soil surface (0.6 m -  4 m) which is reflected in the 

elevated positive (downward) fluxes over this depth (Figure 4.5). Fluxes for Test C are 150 

times greater in the downward direction at the base of the profile in response to greater water 

availability.
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Figure 4.5a Figure 4.5b

Figure 4.5. Simulated Flux for Paleomodel Test Series, (a) entire soil profile; (b) upper 
1 0  meters.
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All tests display the characteristically highly negative pressure heads near the root zone, 

rapidly increasing to a unit gradient condition in the deeper portion o f the profile where 

gravitational flow dominates (A///Az =1) .  In all tests, fluxes are upward toward the soil 

surface in the upper portion of the profile and downward through the majority of the deep 

vadose zone. The plane of zero flux (as defined by Hillel, 1998) in the Base Case is 9.2 m 

(±0.12 m). Test A is 35.9 m (±0.11 m). Test B is 10.3 m (±0.05 m). Test C is 1.8 m (±0.06 

m), Test D is 37.6 m (±0.12 m) and Test E is 8.9 m (±0.28 m).

Water balance outputs at the end of the paleomodel simulation for test conditions A - E  

are presented in Table 4.2. Reducing precipitation values by 50% in Test D results in the 

driest soil column at the end of the simulation period, nearly matched by the effects of 

increased évapotranspiration in Test A; Tests A and D result in reductions of soil moisture 

storage compared to Case 1 of 13.8% and 14.0%, respectively. The other three tests (B, C 

and E) predictably lead to conditions wetter than Case 1. Periodic vegetation mortality 

represented in Test B shows increased storage of 18.2% compared to Case 1, while doubled 

precipitation results in the wettest simulated profile, with a 28.5% increase in stored water.

The effect of time step on calculation of net infiltration (precipitation -  potential 

évapotranspiration) is demonstrated in Test E, which results in an increased total soil 

moisture in the profile of ±5.3% at tf= 13,000 years, relative to using daily precipitation 

inputs (as in the Base Case). Fluxes out of the profile decreased from -0.31 mm yr ' to -0.14 

mm yr ' as concentrating precipitation resulted in proportionally greater precipitation relative 

to ET. T his supports find ings presented in  Scanlon et al. (2002) that treatment of the upper 

boundary condition in HYDRUS ID results in a slight overestimation of evaporation when 

using daily precipitation inputs. However, examination of changes to the water balance for 

the Base Case and Test E indicate no difference between change in stored water over the last
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350 years, where it remained -0.1 cm for both cases. Given that any underestimation of 

water storage resulting from time step over a 350-year simulation period is less than the 

precision of the model, the effect of time step on water balance is not significant on the 

centurial time scale used in the Future Cases.

Table 4.2. Water Balance for Paleoflow Model Test Series
Paleo­
model 

Base Case

Test A: 
Increased 

ET

Test B: 
Wildfire 

Cycle

Test C: 
Doubled 

Precip

TestD:
50%

Precip

Test E: 
Compressed 

Precip
Plane o f zero flux 

depth [ml 9.2 m 35.9 m 10.3 m 1.8 m 37.6 m 8.9 m

Actual surface flux 
(Precip- ÆToo,) [cm] 2416.1 1466.2 2698.0 5266.4 1042.4 2378.2

Plant uptake [cm] 2390.0 1468.5 1739.7 2350.3 1045.8 2332.0
Bottom flux [cm] 36.9 7.9 962.5 2920.4 7.9 58.1

Net flux (- indicates 
outflow) [mm yr ’] -0.3 -0.3 -0 . 1 -0 . 1 -0.3 -0 . 0 1

Water in profile [cm] 2598.5 2241.2 3071.4 3337.9 2235.1 2737.1
Change in soil water 

storage relative to 
Base Case [%]

- -13.8% +18.2% +28.5% -14.0% +5.33%

Absolute water 
balance error [cm] 12.0 10.9 4.9 5.8 11.7 28.2

Relative water 
balance error [%] 0.16% 0.17% 0.07% 0.04% 0.33% 0.39%

Note; Absolute error is not related to the water volume in the flow domain, but instead to 
the sum of maximum change in water content and the sum of all boundary fluxes (Simunek 
et al., 1995).

Phase II Future Case Results 

Future cases developed in Chapter 3 and listed in Table 3.1 are summarized below in 

Table 4.3. A schematic of scenario pathways, relation to the timeline, simulation times and 

observational points is presented in Figure 4.6. For all cases, findings are compared at the 

end of the -350-year climate cycle (ending on August 31).
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Table 4.3 . Future C imate Case Summary
Timing
(Years
After

Present)

Description Total
Ground
Cover

Ave 
Annual 
Precip 

(m myr’)

Average
Annual
Temp
CC)

Total
Ground
Cover

Case 1. 0 Present Conditions 20.3% 112 18.6 20.3%
Case 2. + 100 yrs Warmer/ wetter 37.5% 134 23.9 37.5%
Case 3. + 100 yrs Warmer/ wetter 23.2% 128 21.3 23.2%
Case 4. +300 yrs Warmer/ drier 9.2% 97 21.4 9.2%
Case 5. +300 yrs Warmer/ drier 0% 97 21.4 0 %
Case 6. +300 yrs Warmer/ wetter 25.5% 186 20.5 25.5%
Case 7. + 1000 yrs Cooler/ wetter 49.1% 236 17.7 49.1%
Case 8. + 1000 yrs Cooler/ wetter 55.0% 257 16.1 55.0%

Case 7: Cooler, 
wetter

Case 1 : Present 
Conditions

Case 4: Warmer, drier

Case 2:
Elevated C02, 
warmer, wetter

Case 3:
Warmer, wetter

Case 5: Warmer, drier, bare soil

Case 8: 
Cooler, wetter

11=360 yrs 
Case 6: Warmer, wetter

11=720 yrs 

->

tf=330 yrs

t/=350yrs 

— ►

1 I

tf=3S0yrs

I 1 I J
+200 +400 +600 +800

TIME [Years after present]

+ 1000 + 1200 +1400

Figure 4.6. Timeline for Cases 1-8. Arrows indicate case observation points. Initial 
conditions are obtained from the preceding run. Initial conditions for Cases 1-3 are 
from the paleomodel Base Case outputs.

Present Conditions: Case 1

Case 1 is stepped forward from the Paleomodel Base Case under current climate and 

vegetation conditions to provide a reference for other future cases. Conditions have reached 

steady state, thus results are nearly identical to the Paleomodel Base Case detailed above.
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+ 100 Years: Cases 2-3

At the +100 year time step, the elevated carbon dioxide scenario (Case 2) shows the 

development of a slight bulge of increased head from the base of the root zone to around 2 0  

m depth, in response to the 16% increase in average aimual precipitation (Figure 4.7). 

Interestingly, Case 3 having only a 13% increase in precipitation demonstrated a stronger 

response to the available water, with heads becoming less negative to a depth of 120 m. This 

indicates a response to the change in vegetation between these two scenarios; Case 2 has a 

total 38% ground cover, compared to 23% in Case 3. It is possible that the difference in 

uptake by vegetation cover and distribution has crossed some threshold whereby all available 

soil moisture is removed by plants, preventing deep percolation observed in Case 3, from 

occurring in Case 2. This is reflected in the water balance for Cases 2 and 3 (Table 4.4). For 

the +100 year scenario. Case 2 demonstrates an overall slight reduction in water storage of 

-0.37% at the end of the simulation period relative to current conditions, in response to the 

higher vegetation uptake, in spite of the 13% increase in precipitation. Case 3 shows an 

increase of +30.19% in water storage during the same period in response to the 16% increase 

in precipitation under vegetation cover that is similar to Case 1. Net upward flux for Case 2 

is -1.9 mm yr ’ out of the profile, compared to the Case 3 downward flux of +18.0 mm yr ' 

into the profile over the 350-year simulation period.
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Figure 4.7a Figure 4.7b

Figure 4.7. Simulated Soil Matrix Head for Cases 1-3, +100 Years, (a) entire soil 
profile; (b) upper 1 0  meters.

Table 4.4. Water Balance for Future Cases 1 - 3 ,  +100 Years
Case 1 Case 2 Case 3

Time 
[years after present] 1=350 1=100 lc=180 t=350 1=100 t=180 t=350

Actual surface flux 
(Precip- Æ’T’bo,)  [cm] 2416.1 842.8 1498.0 2840.1 901.1 1644.0 3199.1

Plant uptake [cm] 2390.0 852.2 1510.8 2867.9 694.5 1255.4 2479.2
Bottom flux [cm] 36.9 10.6 19.2 37.4 10.7 19.0 70.5

Net flux 
(-ve indicates 

outflow) [mm yr"']
-0.3 -2.0 -1.8 -1.9 +19.6 +20.5 +18.0

Water in profile [cm] 2598.5 2597.1 2598.4 2588.9 2802.8 2983.3 3383.0
Change in soil water 

s to ra g e  re la tiv e  to  
Case 1 [%]

- - 0 . 0 5 % 0 % - 0 .3 7 % 4-7 . 8 6 % 4-1 4 .8 1 % + 3 0 . 19 %

Absolute water 
balance error [cm] 12.0 18.7 32.2 56.7 9.3 16.3 24.5

Relative water 
balance error [%] 0.16% 0.74% 0.71% 0.66% 0.40% 0.39% 0.30%

Note: Absolute error is not related to the water volume in the flow domain, but instead to 
the sum of maximum change in water content and the sum of all boundary fluxes (Simunek 
et al., 1995).
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The difference in availability of soil water in the profile between Cases 2 and 3 is evident 

in the simulated volumetric water contents (Figure 4.8), where the propagation of the wetting 

front to a depth of 87 m is visible in Case 3. The bulge in increased water content in the 

upper 18 cm of the soil profile is a result of a precipitation events 3 and 4 days immediately 

prior to the end of the simulation. The higher water contents are reflected in the flux profiles 

for Cases 2 and 3 (Figure 4.9), where high water contents in Case 2 result in less flux in high 

gradient zones as a result of reduced hydraulic conductivity as compared to increased fluxes 

in Case 3. The plane of zero flux is located at 5.2 m for Case 2 and 4.4 m for Case 3, 

demonstrating the plant uptake zone of influence of plant uptake is deeper in Case 2.

Slight variations within each case at t = 100 yrs, t = 180 years and t = 360 years are a 

result of differences in time-dependant boundary conditions in the -350-year climate cycle. 

+300 Years: Cases 4-6

At the +300 year time step, differences in Cases 4 and 5 (Case 4 = 9% vegetation cover. 

Case 5 = bare soil, identical climatic conditions) clearly show the impact of vegetation on soil 

water pressure heads (Figure 4.10). Case 4, which considers the effect of low vegetation 

cover under dry conditions, demonstrates the characteristic negative soil water heads 

associated with the root water uptake, with a zone of slightly less negative head and water 

content at the base of the root zone (from 1 to 4 m depth). Below the plane of zero flux at 3.8 

m, soil water begins to percolate downward toward the water table. Flux for Case 4 is -0.7 

mm yr ' out of the profile, resulting in a decrease in soil water storage of -0.42% relative to 

current conditions represented in Case 1 (Table 4.5).

Case 5 is the wettest of the +300 year cases through the entire profile with heads 

averaging -5 m through 12 -  190 m. The effect of evaporation is dampened at 20 cm. A 

zone of slightly higher potentials and water content has developed at depths from 2 0  cm to 

8.5 m below ground surface, demonstrating deep percolation in the absence of active root up-
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Figure 4.8. Simulated Volumetric Water Content for Cases 1-3,+100 Years, (a) 
entire soil profile; (b) upper 1 0  meters.
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Figure 4.9. Simulated Flux for Cases 1-3, +100 Years, (a) entire soil profile; (b) 
upper 1 0  meters.
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Figure 4.10. Simulated Soil Matrix Head for Cases 4-6, +300 Years, (a) entire soil 
profile; (b) upper 1 0  meters.

Table 4.5. Water Balance for Future Cases 4-6, +300 Years
Case 1 Case 4 Case 4 Case 5 Case 5 Case 6 Case 6

Time [years after 
present] t=350 T=360 t=720 t=360 t=720 t=350 t=700

Actual surface flux 
(Precip- ET„ot ) [cm]

2416.1 2128.7 2128.5 620.8 309.8 3197.7 3197.5

Plant uptake [cm] 2390.0 2115.4 2124.7 0 0 3198.0 3204.1
Bottom flux [cm] 36.9 37.7 37.6 37.7 530.5 36.0 36.5

Net Flux (-ve indicates 
outflow) [mm yr '] -0.3 -0.7 -0.9 +16.3 +2.2 -1.0 -1.2

Water in Profile (cm) 2598.5 2587.6 2587.6 3186.2 3265.1 2654.3 2702.4
Change in Soil Water 

S to rage  over S im ula tion  
Period (%)

- -0 .4 2 % -0 .4 2 % +22.62
%

+25.65
%

+2.15
% + 4 .0 %

Absolute Water Balance 
Error [cm] 12.0 22.7 22.7 4.1 0.2 93.7 93.3

Relative Water Balance 
Error [%] 0.16% 0.35% 0.35% 0.07% 0.00% 0.93% 0.92%
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take. It is notable that, although Case 6  is the wettest climate condition tested (aimual 

precipitation of 128 mm yr ' versus 97 mm yr ' for Cases 4 and 5), the soil profile is drier 

than the Case 5 in terms of water content (Figure 4.11), with higher heads throughout the 

entire profile depth. This supports findings of others (Gee et al., 1994) that without plants, 

percolation will occur regardless of precipitation amount.

Case 6  results indicate root water uptake exceeds influx from precipitation, and net flux 

o f - 1 . 2  mm yr"' indicates water is leaving the profile, yet stored water in the profile increases 

by +2.15%. This implies that periodic percolation below the root zone is taking place in 

response to the higher precipitation events associated with this wetter climate; this is the only 

case where soil water increases are observed under net drying conditions.
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Figure 4.11. Simulated Volumetric Water Content for Cases 4-6, +300 Years, (a) entire 
soil profile; (b) upper 1 0  meters.
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Figure 4.12. Simulated Flux for Cases 4-6, +300 Years, (a) entire soil profile; (b) upper 
1 0  meters.

+1000 years: Cases 7-8

O f all the cases presented, Cases 7 and 8  have the highest (least negative) pressure heads 

and highest water contents in the deep vadose zone (Figures 4.13 and 4.14). The most 

notable difference in the near-surface environment is the extension of the root zone as a result 

of expanding the biome to include deeper rooting vegetation in Case 8 , resulting in more 

negative heads to a depth of 7 m. Though the top 1 m of the rooting zone is by far the largest 

proportion o f root biomass, an increase in head is observed from depths of 0 to 40 cm. When 

taken in context with the water content, soil water appears to reach the upper 40 cm of the 

profile in response to the elevated precipitation rates.
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Figure 4.13. Simulated Soil Matrix Head for Cases 7-8, +1000 Years, (a) Soil moisture 
head for entire soil profile; (b) soil moisture head for upper 1 0  meters.
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Figure 4.14a Figure 4.14b
Figure 4.14. Simulated Volumetric Water Content for Cases 7-8, +1000 Years.
(a) volumetric water content for entire soil profile; (d) volumetric water content for 
upper 1 0  meters.
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Both Cases 7 and 8  demonstrate an overall positive flux, indicating net water flow is into 

the column over the duration of the simulation, with fluxes of +27.7 and +25.6 mm yr ', 

respectively (Table 4.6). Change in soil water storage compared to current conditions is 

+37.7% and +24.7%. Flux profiles demonstrate the plane of no flux is located at 3.8 m depth 

in Case 7 and 10.8 m in Case 8  (Figure 4.15).

Table 4.6. Water Balance for Future Cases 7-8, +1000 Years
Case 1 Case 7 Case 8

Time [years after present] t=350 t=330 t=330
Actual surface flux (Precip- ETpo, ) [cm] 2416.1 5021.6 6999.9
Plant uptake [cm] 2390.0 4073.2 6033.8
Bottom flux [cm] 36.9 32.0 119.6
Net Flux (-ve indicates outflow) [mm yr '] -0.3 +27.7 +25.6
Water in Profile (cm) 2598.5 3577.6 3457
Change in Soil Water Storage over Simulation Period (%) - +37.68 +24.668
Absolute Water Balance Error [cm] 12.0 75.5 24.7
Relative Water Balance Error [%] 0.16% 0.57% 0.16%
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Figure 4.15. Simulated Flux for Cases 7-8, +1000 Years, (a) entire soil profile;
(b) upper 1 0  meters.
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Model Validation and Performance 

Fit of model outputs to observed field data for soil water pressure heads and volumetric 

water content is evaluated using Root Mean Square Error (RMSE) as a measure of variance 

between modeled results and field data. RMSE was calculated using the following equation 

(after Link et al., 1993):

RMSE =
^  J m o d eled  " ^ o b s e r v e d  X'
f = I

(3.8)

where X  = the data point of interest (i.e. pressure head or water content) and n = number of 

observations.

Results for soil water pressure head and volumetric water content profiles for the 

paleoflow model (Base Case) and Case 1 show reasonably good agreement against observed 

soil water heads for the Area 5 PW wells (Bechtel Nevada, 2005b), with a Root Mean Square 

Error (RMSE) of 12 m for the PW-1 data set (Figure 4.16). Differences between the 

modeled profile and the field data are higher for the PW-2 and PW-3 data sets with a RMSE 

of 200 m for PW-2 and 149 m for PW-3 heads. The RMSE for all three wells is 118 m.

Though these error values seem high relative to the modeled heads, they are influenced 

by (1 ), the large head gradients in the profile (e.g., the transition from root zone to unit 

gradient) that exaggerate the difference between observed and modeled values in regions of 

rapid change, and (2), the large spread in the observed head data set. The descriptive 

statistics for the PW Wells field data listed in Table 4.7 indicate a wide range in values, with 

a coeffic ien t of variance as high as 218% for the PW-3 well data set.

Simulated volumetric water content shows good agreement with the observed contents, 

with an RMSE of 0.03% for PW-1, 0.05% for PW-2, and 0.06% for PW-3. RMSE for all 

three wells is 0.04%, which is less than the precision of the reported water contents.
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Figure 4.16. Paleomodel Performance: Pilot Well Matrix Heads, (a) Simulated 
soil water head and field data to head = -700 m; (b) Simulated soil water head 
and field data to head = -150 m
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Figure 4.17. Paleomodel Performance: 
Pilot Well Volumetric Water Content

Table 4.7. Descriptive Statistics for PW Wells Soil Water Head and Volumetric Water 
Content Data.*

Minimum Maximum Mean Standard
Deviation

Coefficient of 
Variation f%]

PW-1 Head -831.28 m -0.31 m -91.80 m 124.43 m 136.03
PW-2 Head -883.30 m -3.06 m -147.90 m 177.48 m 119.99
PW-3 Head -3822.88 m -69.36 m -398.81 m 2230.18 m 218.65
PW-1 Content 5.6% 28.6% 12.0% 4.7% 39.27%
PW-2 Content 7.3% 21.0% 10.9% 3.0% 27.37%
PW-3 Content 2.6% 13.2% 7.9% 2.3% 29.73%
*Source: Bechtel Nevada, 2005b
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The model stabilizes at approximately 35 years after initialization, based on the change in 

water balance as observed at a 5-year and 25-years intervals (Figure 4.17). The rate of 

change in stored water over the entire profile is a constant -0 . 1 2  cm yr"' (±0 . 0 2  cm).

Change in Water Balance Over Time
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Figure 4.18. Model Performance Over Time. Changes to water stored in the profile 
are used to estimate simulation time to reach model equilibrium.
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CHAPTER 5 

CONCLUSIONS

Results from future case series demonstrate the importance of vegetation on the vadose 

zone flow system. Water balance findings indicate that certain combinations of vegetation 

and climate inputs will reverse the hydraulic gradient, as demonstrated by the net positive 

(downward) fluxes for the soil profile observed in Cases 3, 5, 7 and 8  (with corresponding 

values of +18.0 mm yr"', +16.3 mm yr ', +27.8 mm yr ' and +25.6 mm yr"', compared to net 

flux under current conditions of -0.03 mm yr"'). These findings are supported by an increase 

in stored water volume of +26%, +23%, +38% and +33% relative to current conditions for 

each of the net infiltration cases.

Paleomodel treatments resulted in directional changes to the amount of soil water storage 

as would be expected. For example, increased vegetation cover in Test A and decreased 

precipitation in Test D resulted in less soil water storage compared to the Base Case, while 

reduced vegetation in Test B and increased precipitation in Test C resulted in more soil water 

storage compared to the Base Case. Though none of the treatments considered were 

sufficient to reverse net flux direction from upward to downward, the characteristics of the 

flow regime under wet tests B and C were significantly altered, as evidenced by the increase 

of downward water flux from  the bottom  boundary. Downward percolation to the water table 

becomes the dominant flow direction during periods of high moisture availability.

Though the current understanding of vadose zone flow at Area 5 of NTS is such that 

effects o f individual envirorunental variables might be intuitively and qualitatively
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describable, more complex interactions between climate, vegetation, and their effects on 

water balance are more difficult to predict. In other words, while it is reasonable to expect 

that more precipitation will result in greater soil moisture availability, it is more difficult to 

anticipate how an increase in precipitation might alter the composition and amount of ground 

cover, which affects how much available moisture remains in the profile. This is illustrated 

by the +100 Year scenarios (Cases 2 and 3), both representing a warmer climate, higher

precipitation rates and expanded vegetation. The greater expansion of vegetation in Case 2

results in évapotranspiration removing all of the available water, reducing the flux compared 

to both Cases 1 and 3. Although Case 3 received less rainfall than Case 2, the vegetation was 

insufficient to maintain the current upward flux, so percolation occurred below the root zone; 

thus, the hydraulic gradient was reversed.

Reversal of the hydraulic gradient in Case 5, representing a warmer, much drier climate 

with bare soil, is attributable to the lack of root water uptake. Cases 7 and 8  both result in 

reversal of the hydraulic gradient as greater precipitation exceeds évapotranspiration, in spite 

of the expanded vegetation cover of 49% and 55%. In Case 8 , water content has increased 

through the entire depth and drainage to the water table takes place.

Taken together, the future case findings show that changes associated with future climate 

scenarios can impact the hydrologie system in sometimes unanticipated ways by variably 

emphasizing the importance of different processes. This affect is enhanced by the fact that 

current conditions are extremely arid and fluxes are so low that the threshold for reversal can 

b e crossed  under con ceivab le  future clim ate states.

Though the approaches used here to attempt to capture the possible environmental

conditions were not strictly predictive in nature, and neglect some of the feedbacks inherent 

in complex climate-plant-soil systems such as soil temperature effects on atmospheric inputs, 

seasonal growth patterns, and plant community dynamics, they did successfully result in a
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methodology for testing coupled environmental variables. The bioclimatic analogs 

developed and implemented in this study are appropriate for the intent of this work.

Simulations developed in this work incorporate the salient features of the conceptual 

model employed and verified elsewhere (Walvoord et al., 2002, 2004; Scanlon et al., 2003; 

Yin et al., 2008), including pressure head and water content responses to vegetation, upward 

fluxes in the near surface, and higher constant heads at depth. Some of the results developed 

in this study differed from the findings of others. For example, the prediction of the plane of 

zero flux at 9.8-m depth in the Paleomodel Base Case underestimates the depth of the zone of 

upward flux reported by others; Scanlon et al. (2004) modeled it at 38-m depth for the 13,000 

year run, Kwicklis et al. (2006) modeled it at 65-m depth, and Bechtel Nevada (2005c) 

reported it at 40-m depth. Differences in the depth to the plane of zero flux might be 

attributed to the use of a fixed matric potential to represent the root zone, as opposed to the 

distributed transpiration explicitly accounted for in this work, where it was placed at a lower 

point in the profile. The studies referenced above implemented the fixed sink term at a depth 

of 2  m, as opposed to the 1 . 2  m depth of root zone employed here.

Generally, the high level of flux response to the potential range of climatic conditions, 

even on fairly short (e.g. centurial) time scales, render the use of a conceptual fixed no-flux 

boundary condition to any point in the profile inappropriate. To date. Area 5 modeling 

efforts that previously employed a fixed no-flux condition (Catlett et al., 2003; Neptune and 

Co, 2003) have been revised.

The findings of this work emphasize the importance of vegetation, represented in the 

model as daily potential transpiration and evaporation, on the behavior of the hydrologie 

system. The parameters used to calculate Epot and Tpot values can be difficult to quantify at 

the field scale, and oftentimes a great deal of variability exists in literature-reported values 

for any particular species. For example, reported leaf area index (LAI) for Coleogyne
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ramosissima include 0.02 in Schwinning et al.(2002) and 1.35 in Smith et al. (1995); this two 

order of magnitude difference in LAI results in a maximum reduction of potential 

transpiration of 0.12 cm for an LAI = 0.02 (assuming 17% shrub coverage), equivalent to a 

decrease in root water uptake of greater than 1 0 % when using the value reported by 

Schwinning et al. (2002). Because arid systems, like at this study site, are sensitive to small 

changes in water content, the effects of uncertainty in plant descriptive parameters could have 

an impact on simulated results. This emphasizes the importance of strong representative 

parameters to describe vegetation profiles.

Future Work

This work relies heavily on the use of proxy sites and data sets for future scenarios, 

which assumes that future conditions can be determined by present or past conditions. How 

anthropogenically driven climate change might alter the use of past climate conditions to 

predict future climate is uncertain. The use of historical analog climate data does not address 

the potential for increased frequency of extreme hydrologie events resulting from elevated 

atmospheric CO; (Kim, 2005). It has been shown that extreme events can impact this flow 

system (Yin et al., 2008), and future work should incorporate large storms for comparison.

New research on plant community response to elevated atmospheric CO; indicates that 

responses are both structural (Obrist and Amone, 2003) and behavioral (Hamerlynck et al., 

2 0 0 0 ), and can depend on a several interrelated factors including plant functional type, 

species, water availability and water use efficiency (Hamerlynck et al., 2000; Housman et al., 

2006; Bradley and Fleishman, 2008), making it difficult to predict how future plant 

communities might develop over time. The approaches used in this work to incorporate the 

effects of CO; on plant development as done in Case 2 (application of productivity ratios to 

existing biome compositions) and Case 3 (use of nearby representative compositions based
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on expected climate descriptors) are simplified. Future work at predictive modeling should 

seek to incorporate research focusing on new biome development and migration (Prentice et 

al., 1992; Kirilenko and Solomon, 1998; Melillo et al., 1993).

Additionally, this work does not account for seasonal variability in plant activity levels. 

This could be taken into account by simulating altered root distribution according to 

functional type at the appropriate time, and is recommended for future work. Inclusion of 

isotopic and chloride profiles could strengthen the ability to validate the model to observed 

data sets, as much existing research has been devoted to the use of environmental tracer data 

in this region.
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APPENDIX I

COMPUTER CODE

program ETrefTav 
implicit none
I
! Program written 1/15/06 by Amanda Brandt to read DRA rad files and 
! extract parameters for use in calculating potential évapotranspiration 
! using the Penman-Monteith method (Allen et al., 1998).

! Modified 6/11/08 to include Hargreaves and Allen PET calc for 
(comparison purposes. Changed output to cm.
!
integer,parameter : :nlines=3435
integer,parameter : :un_radin=21,un_radout=26,un_fnamein=31 
integer j,jcount,i,icount 
1
character*80 station_name 
character*80 filepath 
!
integer year,month,day,j day,elevation,version 
integer minute(nlines),hour(nlines) 
real,parameter : ;seconds=0.8 64E5 
real,parameter ::mjfactor=lE-6 
1
real latitude,longitude,dt(nlines),zen(nlines),dirct(nlines) 
real dw_psp(nlines),uw_psp(nlines)
real diffuse(nlines),dw_pir(nlines),dw_casetemp(nlines)
real dw_dometemp(nlines),uw_pir(nlines),uw_casetemp(nlines)
real uw_dometemp(nlines),uvb(nlines),par(nlines)
real netsolar(nlines),netir(nlines),totalnet(nlines)
real temp(nlines),rh(nlines),windspeed(nlines)
real winddir(nlines),pressure(nlines)
real dailynetsum_w,avedailynet_mj
I
Integer qc_direct(nlines),qc_netsolar(nlines),qc_netlr(nlines)
Integer qc dwpsp(nlines),qc_uwpsp(nlines),qc_diffuse(nlines) 
integer qc_dwpir(nlines),qc_dwcasetemp(nlines) 
integer qc__dwdometemp(nlines),qc_uwpir(nlines) 
integer qc_uwcasetemp(nlines),qc_uwdometemp(nlines) 
integer qc_uvb(nlines),qc_par(nlines) 
integer qc_totalnet(nlines),qc_temp(nlines)
Integer qc_rh(nlines),qc_windspeed(nlines),qc_winddir(nlines)

70



integer qc__pressure (nlines)
1
real tempmax,tempmin,rhmax,rhmin,avewspd,avewspd2 
real VPmin,VPmax,VPsat,VPactual,VPCslope,psyccon 
real pave,tempave,ETref,dailypsum,dailywspdsum 
real ETrefnum,ETrefden,Kc,ETcrop,ETrefHarg 
real transp,evap 
real meantemp, dailytempsum
integer averadcount,avewspdcount,avepcount, avetempcount 
! c
ITHIS PROGRAM ALTERED ETref.f95 TO CALC MEAN TEMP*******
! c
open(unit=un_radout,file='c :/F/solarsum.dat',status='n e w ')
! c
!c READ DATA FILE NAMES
open(unit=un_fnamein,file='c :/F/Data/radflies.txt' , status='old') 
! c
jcount=0
do 20 j=l, 3435, 1

read(un_fnamein,600)filepath 
600 format(a24)

if (filepath.eg.'EOF')then
print *,'ALL RAD DATA FILES HAVE BEEN READ.' 

exit
else

! OPEN RAD DATA FILE
open(UNIT=un_radin,file=filepath,status='old')

! c
!c READ DAILY RAD DATA FILE

read(un_radin,100)station_name 
100 format(Ix,a)

read(un radin,*)latitude,longitude,elevation
! c

Kc=0.9
icount=0
avedailynet_mj=0 
dailynetsum__w=0 

averadcount=0 
tempmin=99 9 
tempmax=0 
meantemp=0 
avetempcount=0 
dailytempsum=0 
rhmax=0 
rhmin=999 
dailywspdsum=0 
avewspdcount=0
a v e w s p d = 0

avewspd2=0
dailypsum=0
avepcount=0
VPmin=0
VPmax=0
VPsat=0
VPactual=0
tempave=0
psyccon=0
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ETref=0
ETrefHarg=0
ETrefnum=0
ETrefden=0
ETcrop=0
transp=0
evap=0

do 10 1=1,nlines
! c

read(un_radin,300,end=4 00)year,j day,month, day,hour(i ),& 
m inute(i ),d t (i ),z e n (i ),dw_psp{i ),qc_dwpsp{i ),uwjpsp(i ),& 
qc_uwpsp{i ),dirct(i),qc_direct(i) , diffuse(i) , & 
qc_diffuse{i ),dw_pir{i),qc_dwpir{i),dw_casetemp{i ),& 
qc_dwcasetemp(i),dw dometemp(i),qc dwdometemp(i),& 
uw_pir(i),qc_uwpir(i),uw_casetemp(i),qc_uwcasetemp(i),& 
uw dometemp{i ),qc_uwdometemp{i ),u v b {i ) , qc_uvb{i ),& 
par(i),qc_par(i),netsolar(i),qc_netsolar(i),netir(i),& 
qc_netir(i),totalnet{i ),qc_totalnet(1),t e m p {1),& 
qc_temp(i ),rh(i),qc_rh(i),windspeed(i) , qc_windspeed(i ),& 
winddir(i),qc_winddir(i),pressure(i),qc_pressure(i)

300 format (Ix, 14, Ix, 13, 4 (Ix, 12) , Ix, f6.3, Ix, f6.2, &
2 0 (Ix,f7.1,Ix,il))

! Check validity of measurement, calc sum for NET RADIATION
if {qc_totalnet{i ).e q .0) then

dailynetsum_w=dailynetsum__w+totalnet {i ) 
averadcount=averadcount+I 

endif

1 Check temp for max and min, record associated rh for Tmax and Tmin 
if (qc_temp{i ).eq.0) then

if (temp(i).gt.tempmax)then 
t empma x=t e m p {i )

i f {qc_rh{i ).e q .0)then 
rhmax=rh(i) 

endif 
endif

if {t e m p {i ).I t .tempmin)then 
tempmin=temp{i ) 

if {qc__rh {i ) . eq.O) then 
rhmin=rh{i ) 

endif 
endif
dailytempsum=dailytempsum+temp{i ) 
avetempcount=avetempcount+l 

end! f

! windspeed
if (qc_windspeed(i).eq.0) then

dailywspdsum=dailywspdsum+windspeed{i ) 
avewspdcount=avewspdcount+I 

endif
I Pressure

if (qc_pressure{i ).eq.0)then
dailypsum=dailypsum+pressure(i) 
avepcount= avepcount+1 

endif
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icount=icount+l !line read counter 
10 continue
400 print *,filepath,icount,' records read'
! END OF DAY PROCEDURES
! Check to see if any rad records were contained in the daily file
! then calculate ave net radiation and write to file SOLARSUM.DAT

if (averadcount.n e .0) then
avedailynet_mj =dailynetsum_w/averadcount*seconds*mj factor 

! average net radiation [MJ/m2/day] = average W/m2 *86400
! sec/day * 10^-6 MJ/J

end i f
! Average daily windspeed

if (avewspdcount.n e .0)then
avewspd=dailywspdsum/avewspdcount
avewspd2=avewspd*0.74 8 (convert 10m windspeed to 2m 

endif
if (avepcount.n e .0)then 

pave=dailypsum/avepcount 
endif

! MEAN temperature
if (avetempcount.n e .0)then

meantemp=dailytempsum/avetempcount 
endif

! Actual vapor pressure (ea). from RH data
VPmin=0.6108*exp( (17.27 *tempmin)/(tempmin+237.3) )
VPmax=0.6108*exp((17.27*tempmax)/ (tempmax+237.3))
VPsat=(VPmin+VPmax)/2.
VPactual=((VPmin*rhmax/100)+(VPmax*rhmin/100))/2. 
tempave=(tempmax+tempmin)/2.
VPCslope=(4098.*(0.6108 *ex p ((17.27 *tempave)/&
& (tempave+237.3))))/(tempave+237.3)**2 

! psychrometric constant - convert P from mbar to kPa
psyccon=0.665E-3*pave*0.1 

! Calculate ETo using Penman-Monteith
ETrefnum=(0.4 08*VPCslope*avedailynet_mj) + {(psyccon* 900)/&
& (tempave+&273))
ETrefden=VPCslope+(psyccon*(1+0.34*avewspd2))
ETref={(ETrefnum*avewspd2*(VPsat-VPactual))/ETrefden)*0.1 

! ETref is output in mm/day, converted to cm/day for HYDROS input
! Calculate ETo using Hargreaves

ETrefHarg=0.0135*(meantemp+17.78)*avedailynet_mj *(238.8/&
&{595.5-{0.55*meantemp)))

! Write output file
write(un_radout, 500)month,day,.year,jday,ETref,ETcrop,meantemp,& 
SETrefHarg

500 format{i2, '/ ' ,i2, '/',i4,i5,f14.8,f14.8,f14.8,f14.8,f14.8,f14.8) 
end if ! End of file check IFTHEN statement

! C
j count=j count+ 1 

20 continue

End
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program ETrefC02 
implicit none

Program to read input data from DRA daily atmospheric rad 
data (from SURFRAD network instrumentation), calculate daily 
means and totals, and use these inputs to develop a daily 
reference ET using the Penman-Monteith equation.
Amanda Brandt, 3/4/06

Modified to adjust atmospheric data according to predictive factors 
for a doubled CO2 climate scenario based on CMM climate model outputs.

Modified 6/11/08 to include Hargreaves and Allen PET calc for 
comparison purposes. Removed ET partitioning and Kc info. Changed ETo 

output to cm.
!
integer,parameter : :nlines=3435
integer,parameter : :un_radin=21,un_radout=26,un_fnamein=31 
integer j ,jcount,i ,icount
I

character*80 station_name 
character*80 filepath 
1

integer year,month,day,j day,elevation,version 
integer minute(nlines),hour(nlines) 
real,parameter : :seconds=0 . 864E5 
real,parameter ::mjfactor=lE-6
I
real latitude,longitude,dt(nlines),zen(nlines),dirct(nlines) 
real dw_psp(nlines),uw_psp(nlines)
real diffuse(nlines),dw_pir(nlines),dw_casetemp(nlines)
real dw__dometemp(nlines),uw_pir(nlines),uw_casetemp(nlines)
real uw_dometemp(nlines),uvb(nlines),par(nlines)
real netsolar(nlines),netir(nlines),totalnet(nlines)
real temp(nlines),rh(nlines),windspeed(nlines)
real winddir(nlines),pressure(nlines)
real dailynetsum_w,avedailynet_mj
I
integer qc_direct(nlines),qc_netsolar(nlines),qc_netir(nlines) 
integer qc_dwpsp(nlines),qc_uwpsp(nlines),qc_diffuse(nlines) 
integer qc_dwpir(nlines),qc_dwcasetemp(nlines) 
integer qc_dwdometemp(nlines),qc_uwpir(nlines) 
integer qc_uwcasetemp(nlines),qc_uwdometemp(nlines)
integer qc_uvb(nlines),qc_par(nlines) 
integer qc_totalnet(nlines),qc_temp(nlines)
integer qc_rh(nlines),qc_windspeed(nlines) , qc__winddir(nlines) 
integer qc_pressure(nlines)
t
real tempmax,tempmin,rhmax,rhmin,avewspd,avewspd2 
real VPmin,VPmax,VPsat,VPactual,VPCslope, psyccon 
real pave,tempave,ETref,dailypsum,dailywspdsum 
real ETrefnum,ETrefden,ETrefHarg 
real meantemp, dailytempsum
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real srad_co2,temp_co2,ws_co2
integer averadcount,avewspdcount,avepcount, avetempcount 
! c
ITHIS PROGRAM ALTERED ETref.f95 TO CALC MEAN TEMP*******
! c
open(unit=un_radout,file='c:/F/solarsum.dat',status='new')
! c
!c READ DATA FILE NAMES
open(unit=un_fnamein,file='c:/F/Data/radfiles.txt',status='old') 
! c
j count=0
do 20 j=l, 3435,1

read(un_fnamein,600)filepath 
600 format(a24)

if (filepath.e q . 'EO F ')then
print * , 'ALL RAD DATA FILES HAVE BEEN READ.' 

exit
else

! OPEN RAD DATA FILE
open(UNIT=un_radin,file=filepath,status='old')

! c
!c READ DAILY RAD DATA FILE

read(un_radin,100)station_name 
100 format(Ix,a)

read(un_radin, *)latitude,longitude,elevation
! c

icount=0
avedailynet_mj=0
dailynetsum_w=0

averadcount=0
tempmin=999
tempmax=0
meantemp=0
avetempcount=0
dailytempsum=0
rhmax=0
rhmin=999
dailywspdsum=0
avewspdcount=0
avewspd=0
avewspd2=0
dailypsum=0
avepcount=0
VPmin=0
VPmax=0
VPsat=0
VPactual=0
t e m p a v e —0

psyccon=0 
ETref=0 
ETrefnum=0 
ETrefden=0

srad_co2=l 
temp_co2=l 
ws co2=l
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do 10 1 = 1 , n l i n e s
:c

read(un_radin,300,end=4 00)year,jday,month,day,hour(i),& 
minute ( i ) , dt ( i ) , zen ( i ) , dwjpsp ( i ) , qc__dwpsp ( i ) , uw_psp ( i ) , & 
qc_uwpsp(i),dirct(i),qc_direct(i) , diffuse(i) , & 
qc_diffuse(i),dw_pir(i),qc_dwpir(1),dw_casetemp(i),& 
qc_dwcasetemp(i),dw_dometemp(i ),qc_dwdometemp(i ),& 
uw_pir(i),qc_uwpir(i),uw_casetemp(i),qc_uwcasetemp(i),& 
uw_dometemp(i ),qc_uwdometemp(i ),u v b (i ),qc_uvb(i ),& 
par(i),qc_par(i),netsolar(i),qc_netsolar(i),netir(1),& 
qc_netir(1),totalnet(1),qc_totalnet(1),temp(i),& 
qc_temp(i ),r h (1),qc_rh(i ),windspeed(i ),qc_windspeed(1),& 
winddir(i),qc_winddir(i),pressure(i),qc_pressure(i )

300 format (Ix, i4, Ix, i3, 4 (lx,i2) , Ix, f6.3, Ix, f6.2, &
&20(lx,f7.1,lx,il) )

Select monthly scaling values for C02x2 scenario based on 
Julian Day 
select case(day) 

c a s e (1:31)
srad_co2=0.991 

temp_co2=5.2 
ws_co2=l.025 

case(32: 59)
srad__co2=0 . 994 

temp_co2=5 . 5 
ws_co2=l.052 

case(60:90)
srad_co2=0.94 8 

temp_co2=5.7 
ws_co2=0.7 94 

case(91:120)
srad_co2=0.960 

temp_co2=4.5 
ws_co2=0.783 

case(121:151)
srad_co2=0.00979 

temp_co2=4.3 
ws_co2=0.84 6 

case(152:181) 
srad co2=0.947 

temp_co2=4.4 
ws_co2=0.938 

c a s e ( 1 8 2 : 2 1 2 ) 
srad_co2=0.984 

temp_co2=3.7 
ws_co2=l.115 

case(213 : 243) 
srad_co2=0.998 

temp_co2=3.6 
ws_co2=0.958 

c ase(244 :273) 
srad_co2=0.966 

temp_co2=3.6 
ws co2=0.965 

case (274 : 304) 
srad co2=1.003
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temp_co2=3.0 
ws_co2=l.208 

case(305 : 334) 
srad_co2=0.97 2 

temp_co2=3.1 
ws_co2=l.07 3 

case(335: 366) 
srad_co2=0.990 

temp_co2=4.4 
ws_co2=l.02 9 

end select

Check validity of measurement, calc sum for NET RADIATION 
if (qc__totalnet (i) .eq. 0) then

dailynetsum_w=dailynetsum_w+totalnet(i) 
averadcount=averadcount+l 

endi f

Check temp for max and min, record associated rh for Tmax and 
Tmin

if (qc_temp(i).eq.O) then
if (temp (i ).g t .tempmax)then

tempmax=temp(i )+temp_co2 (scale Tmax for C02scenario 
i f (qc_rh(i ) .eq.O)then 

rhmax=rh(i) 
endif 

endif
i f (temp(i ) .It.tempmin)then

tempmin=temp(i)+temp_co2 (scale Tmin for C02scenario 
i f (qc_rh(i ) .eq.O)then 

rhmin=rh(i ) 
endif 

endif
dailytempsum=dailytempsum+temp(i)+temp_co2 (scale

Tmean for C02 scenario
avetempcount=avetempcount+l 

endif

Windspeed
if (qc_windspeed(i).eq.0) then

dailywspdsum=dailywspdsum+windspeed(i )*ws_co2 (scale
WS for C02 scenario

avewspdcount=avewspdcount+l 
endif 

Pressure
if (qc_pressure(i).e q .0)then

dailypsum=dailypsum+pressure(i) 
avepcount= avepcount+1 

endi f

icount=icount+l (line read counter 
10 continue
400 print *,filepath,icount,' records read'

I
( END OF DAY PROCEDURES

I
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Check to see if any rad records were contained in the daily file 
then calculate average net radiation and write to file 
SOLARSUM.DAT
if (averadcount.n e .0) then

avedai 1 ynet__mj=dailynetsuin_w/averadcount*seconds*mj factor 
average net radiation [MJ/m2/day] = average W/m2 *86400 
sec/day * 10^-6 MJ/J
avedailynet_mj=avedailynet_mj*srad_co2 (scale daily radiation 
for C02 scenario 

end if
Average daily windspeed 
if (avewspdcount.ne.0)then

a vewspd=dailywspdsuin/avewspdcount
avewspd2=avewspd*0.748 (convert 10m windspeed to 2m, already 
scaled for CO2 

endif
if (avepcount.n e .0)then 

pave=dailypsum/avepcount 
endif

MEAN temperature - JUST ADDED TO THIS PGM VERSION 
if (avetempcount.n e .0)then

me antemp=dailytempsum/avetempcount 
endif

Actual vapor pressure (ea) from RH data
VPmin=0.6108*exp((17.27*tempmin)/ (tempmin+237.3))
VPmax=0.6108*exp((17.27*tempmax)/ (tempmax+237.3))
VPsat=(VPmin+VPmax)/2.
VPactual=((VPmin*rhmax/100)+ (VPmax*rhmin/100))/2. 
tempave=(tempmax+tempmin)/2
VPCslope=(4098.*(0.6108*exp((17.27*tempave)/&
& (tempave+237.3))))/(tempave+237.3)**2 

psychrometric constant - convert P from mbar to kPa 
psyccon=0.665E-3*pave*0.1 
Calculate ETo using Penman-Monteith
ETrefnum=(0.4 08*VPCslope*avedailynet_mj)+((psyccon*900)/&
& (tempave+273))

ETrefden=VPCslope+(psyccon*(1 + 0.34 *avewspd2))
ETref=((ETrefnum*avewspd2*(VPsat-VPactual))/ETrefden)

ETref is output in mm/day, converted to cm/day for HYDROS input

Calculate ETo using Hargreaves - output in cm/day 
ETrefHarg=0.0135*(meantemp+17.78)*avedailynet_mj *(238.8/&
& (595.5-(0.55*meantemp)))*0.1 

; Write output file
write(un_radout,500)month,day,year,jday,ETref,ETrefHarg,meantemp 

500 format(i2, '/ ' ,i2, '/ ' , i4 , i5,f14.4,f14.4,f14.4)

end if ■
I

j count=j count+ 1 
20 continue

end
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Program pcphourlylO 
implicit none

Program written 6/21/08 to extract an hourly input file (ATMOSPH.IN) 
for compressed precipitation scenario (Test E) for hourly HYDROS run. 
This program reads the current daily ATMOSPH.IN input file, partitions 
daily potential evap and trans values into hourly values, and 
distributes daily precipitation into 3 blocks, with 10% falling 
between 12:01AM - 6AM, 80% between 6AM - 12PM, and 10% between 12:01PM 
and 12AM. Rainfall is randomized within each block by hourly time 
step.
Amanda Brandt

character(len=140) : :headerl,header2,header3,header4

:Prec,rSoil,rRoot,rB,hB,ht 
:tTop,tBot,Ampl,Cone,rRoot_hrly 
:rSoil_hrly, cBot

:RandomO,RanArrayl(6)
:RandomO,RanArray2(7 :18)
:RandomO,RanArray3(19:24)

real, dimension(:),allocatable 
real, dimension(:),allocatable 
real, dimension(:),allocatable 
real : :Pcp_hrly(1: 24)
I

real 
real 
real
real ArraySuml,ArraySum2,ArraySum3
I

integer un_atmos_read,un_atmos_hrly, tfinal_hrly 
integer tfinal,i,j,k,l,hour,ioerrl,ioerr2,hCritS 
integer,dimension(:),allocatable : :tAtm,tAtm_hrly,hCritA
I

ioerrl=0
ioerr2=0
I

un_atmos_read=2
un_atmos_hrly=3
1

I

headerl=" " 
header2=" " 
header3=" " 
header4=" " 
tfinal=130000 
tfinal_hrly=3120000
hour=l
hCritS=0
I

!

open(unit=un_atmos_read,file='c:/F/ATMOSPH.IN',status='old') 
open(unit=un_atmos_hrly,file='c :/F/atmos_hourly.txt',status='new') 
allocate(tAtm(l:tfinal),Prec(l:tfinal),rSoil(l:tfinal),rRoot(1 :tfinal), 
hCritA(1 :tfinal) )
allocate(rB(1 :tfinal),h B (1 :tfinal),h t (1 :tfinal),tTop(l:tfinal),tBot(1 :t 
final),cBot(1 :tfinal))
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allocate(Ampl(1 :tfinal),Cone(1 :tfinal),rRoot_hrly(1:tfinal),rSoil_hrly( 
1 : tfinal))
allocate(tAtm_hrly(1 :tfinal_hrly))
I

! Read ATMOSPH.IN
read(unit=un_atmos_read,fmt=100,iostat=ioerrl)headerl, header2, & 

Stfinal,headers,hCritS, header4 
tfinal_hrly=tfinal*24
write(unit=un_atmos_hrly,fmt=100,iostat=ioerr2)headerl, header2, &
&tfinal_hrly,headers,hCritS,header4

100 format(A120/,A120/,17/,A120/, 17/,A14 0)
200 format(Ix,ilO,3(f12.5) , 112, 8(f12.4))
210 format(Ix,110,3(f12.5) , 112, 9(f12.4))
300 format("Problem with input ATMOSPH.IN!!! Error code",15) 

do 1=1,tfinal
read(unit=un_atmos_read,fmt=200,iostat=ioerrl)tAtm(i ) , Prec(i ) , & 

&rSoil(1),rRoot(1),hCritA(1),r B (i ),h B (i ),h t (i ),tTop(i),tBot(i) , & 
SAmpl(i ),C o n e (i ) 
cBot(i)=0
if(ioerrl.ne.0)then 

write(*,300)ioerrl 
end if
I

do j=l,6
RanArrayl(j )=Random@() 

end do 
do k=7,18

RanArray2(k )=Random@() 
end do 
do 1=19,24

RanArrayS(1)=Random0() 
end do

I

ArraySuml=sum(RanArrayl)
ArraySum2=sum(RanArray2)
ArraySum3=sum(RanArrayS)
I

! Subdivide daily records into hourly 
do hour=l,24

select case(hour) 
case(1:6) 
j=hour
Pcp_hrly(hour)= (RanArrayl{j )/ArraySuml)*Prec(i)*0.10
case(7:18)
k=hour
Pcp_hrly(hour)= (RanArray2(k)/ArraySum2)*Prec(1)*0.80 
case(19:24)
1—hour
Pcp_hrly(hour) = (RanArrayS(1)/ArraySumS)*Prec(i)*0 . 10 

end select 
rSoil_hrly(i)=rSoil(1) / 24 
rRoot_hrly{i )=rRoot(i ) /24 
tAtm hrly(hour)= (tAtm(1)-1)*24+hour

write(unit=un_atmos_hrly,fmt=210,lostat=ioerr2)tAtm_hrly(hour) , & 
&Pcp_hrly(hour),rSoil_hrly(1),rRoot_hrly(i ),hCritA(i) , r B (i ) , h B (i ) , &
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& h t (i),tTop(i),tBot(i),Ampl(i),Cone(i),cBot(i) 
i f (ioerr2.n e .0)then 

stop 
end if 
end do 

end do
write(unit=un_atmos_hrly,fmt=410)
410 format("end")

!
end program
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