
UNLV Retrospective Theses & Dissertations

1-1-2008

Self-stabilizing protocol for anonymous oriented bi-directional Self-stabilizing protocol for anonymous oriented bi-directional

rings under unfair distributed schedulers with a leader rings under unfair distributed schedulers with a leader

Chitwan Kumar Gupta
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Gupta, Chitwan Kumar, "Self-stabilizing protocol for anonymous oriented bi-directional rings under unfair
distributed schedulers with a leader" (2008). UNLV Retrospective Theses & Dissertations. 2406.
http://dx.doi.org/10.25669/8gs6-rekc

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/8gs6-rekc
mailto:digitalscholarship@unlv.edu

SELF-STABILIZING PROTOCOL FOR ANONYMOUS ORIENTED

BI-DIRECTIONAL RINGS UNDER UNFAIR DISTRIBUTED

SCHEDULERS WITH A LEADER

By

Chitwan Kumar Gupta

Bachelor of Engineering
University Of Rajasthan, Jaipur

May 2005

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University Of Nevada, Las Vegas

December 2008

UMI Number: 1463509

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1463509

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Thesis Approval
The Graduate College
University of N evada, Las Vegas

N ovem b er, 17 _,200i.

The Thesis prepared by

CHITWAN KUMAR GUPTA

Entitled

SELF-STABILIZING PROTOCOL FOR ANONYMOUS ORIENTED BI-DIRECTIONAL RINGS

UNDER UNFAIR DISTRIBUTED SCHEDULERS WITH A LEADER.

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Examination Committee Chair

Dean of the Graduate College

Examination Committee Member

Examination Committee Member

Gratmate College Faculty Representative

11

ABSTRACT

Self-Stabilizing Protocol For Anonymous Oriented Bi-directional Rings
Under Unfair Distributed Schedulers With A Leader

By

Chitwan Kumar Gupta

Dr. Lawrence L. Larmore, Examination Committee Chair
School of Computer Science

University of Nevada, Las Vegas

We propose a self-stabilizing protocol for anonymous oriented bi-directional rings of any

size under unfair distributed schedulers with a leader. The protocol is a randomized self-

stabilizing, meaning that starting from an arbitrary configuration it converges (with

probability 1) in finite time to a legitimate configuration (i.e. global system state) without

the need for explicit exception handler of backward recovery. A fault may throw the

system into an illegitimate configuration, but the system will autonomously resume a

legitimate configuration, by regarding the current illegitimate configuration as an initial

configuration, if the fault is transient. A self-stabilizing system thus tolerates any kind

and any finite number of transient faults. The protocol can be used to implement an unfair

distributed mutual exclusion in any ring topology network.

Keywords: self-stabilizing protocol, anonymous oriented bi-directional ring, unfair

distributed schedulers. Ring topology network, non-uniform and anonymous network,

self-stabilization, fault tolerance, legitimate configuration.

Ill

TABLE OE CONTENTS

ABSTRACT... iii

ACKNOWLEDGEMENT... v

CHAPTER 1 INTRODUCTION.. I
I . I Distributed Systems.............................. I
1.2 Self-Stabilization..2
1.3 Related W ork... 2
1.4 Contributions.. 3
1.5 Outline of the Thesis... 4

CHAPTER 2 ORIGIN OE DINING PHILOSOPHERS PROBLEM.................................... 5
2.1 Definitions...5
2.2 Dining Philosophers Problem (D PP)..7
2.3 Survey of Non Self-Stabilizing DPP... 8
2.4 Survey of Self-Stabilizing D P P ..10

CHAPTER 3 DINING PHILOSOPHERS... 12
3.1 The Dining Philosophers Problem...12

3.1.1 Livelock and Deadlock...14
3.2 The Chain Version of the Dining Philosophers Problem................................... 14
3.3 Proof of Correctness of DPCHAIN..................... 19
3.4 The Algorithm DPRING.. 21

3.4.1 Eormal Definition of DPRING... 23
3.5 Proof of Correctness of DPRING... 27

CHAPTER 4 CONCLUSION AND EUTURE RESEARCH................. :..........................3 1

BIBLIOGRAPHY...32

VITA...37

ACKNOWLEDGMENT

I would like to thank all people who have helped and inspired me during my thesis. I

especially want to thank my advisor, Dr. Lawrence L. Larmore, for his guidance during

my thesis and study at University of Nevada- Las Vegas. His perpetual energy and

enthusiasm in research had motivated me. In addition, he was always accessible and

willing to help me with my research. As a result, research life became smooth and

rewarding for me. I warmly thank Dr. Ajoy K. Datta, for his valuable advice and friendly

help. Throughout my thesis-writing period, he and Dr. Larmore provided encouragement,

sound advice, good teaching, good company, and lots of good ideas. I would have been

lost without them. Dr. Laxmi P. Gewali, Dr. Rohan Dalpatadu, and Dr. Ajoy K. Datta

deserve special thanks as my thesis committee members and advisors. My deepest

gratitude goes to my family for their unflagging love and support throughout my life; this

thesis is simply impossible without them.

CHAPTER 1

INTRODUCTION

In this thesis, we present a self-stabilizing protocol for anonymous oriented bi-directional

rings of any size under unfair distributed schedulers. Self-stabilization is a well-known

paradigm of non-masking fault tolerant distributed algorithms [21, 10, 9]. Self­

stabilization introduced by Dijkstra, [I], provides an uniform approach to fault-tolerance,

[8]. We are particularly interested in non-uniform (i.e. all processors don’t perform the

same algorithm) and anonymous network (i.e. no processor has a distinct identifier). This

protocol guarantees that, regardless of the initial state, the system will eventually

converge to the intended behavior without the need for explicit exception handler of

backward recovery.

I . I Distributed Systems

A distributed system in its simplest form can be presented as a set of processors

connected over a communication medium. The processors make local computations and

exchange messages using the communication medium. Distribution systems can be

classified as synchronous or asynchronous. Processors can be synchronous or

asynchronous depending on how the local computations are made. The communication

medium can be synchronous or asynchronous depending on how the communication

between the processors is accomplished.

1.2 Self-Stabilization

Self-Stabilization is an important concept for distributed computing and communication

networks. It describes a system’s ability to recover automatically from unexpected

failure. It is also an important issue for multiagent systems, as they are distributed and

communicative systems. Self-stabilization is a framework for dealing with channel or

memory failures. After a failure the system is allowed to temporarily exhibit an incorrect

behavior, but after a period of time as short as possible, it must behave correctly, without

external intervention, [22]. The practical appeal of stabilizing protocols is that they are

simpler (i.e., they avoid a slew of mechanisms to deal with a catalog of anticipated

faults), and they are more robust (e.g., they can recover from transient faults such as

memory corruption as well as common faults such as link and node crashes), [12].

1.3 Related Work

The first self-stabilizing algorithms was introduced by Dijkstra[I]. Schneider[21]

presented a survey on early research on self-stabilization.Katz and Perry [3] showed how

to compile an arbitrary asynchronous protocol into a stabilizing equivalent. Their general

transformation is expensive; hence more efficient (and possibly less general) techniques

are needed. Techniques that transform any locally checkable protocol into a stabilizing

equivalent are given in [12, 13].

In [4] Burns and Pachl presented a deterministic algorithm for uniform

unidirectional rings of prime size and proved that no deterministic solution exists for

rings of composite size. Itkis, Lin, and Simon [5] present a deterministic constant-space

self-stabilizing protocol for leader election on uniform bidirectional asynchronous rings

of prime size. In their model, there is a central daemon that picks an enabled processor

each time to make an atomic move. The chosen processor can read the states of its two

neighbors at the same time to determine its next state.

Dolev, Israeli, and Moran [14] presented a randomized self-stabilizing leader

election protocol that tolerates addition or deletion of processors and links. Their protocol

uses 0(log n) bits per node. Ghosh and Gupta [15] introduced a self-stabilizing leader-

election algorithm that recovers quickly from small-scale transient faults. Higham and

Myers [20] gave a randomized self-stabilizing algorithm that solves token circulation and

leader election on anonymous, uniform, synchronous, and unidirectional rings of

arbitrary but known size, in which each processor state and message has size in 0(log n).

Kakugawa and Yamashita [16] presented a probabilistic uniform self-stabilizing

algorithm on uniform rings that does guarantee an upper bound between two critical

section entries.

1.4 Contribution

Many of the previous works on the self-stabilizing mutual exclusion problem either

assume a central daemon or assume unfair daemon for uniform unidirectional rings or

assume unfair daemon for non-uniform bi-directional rings but use message passing

model . We present an self-stabilizing protocol under unfair daemon for oriented bi­

directional non-uniform ring without using message passing model. In [16], Kakugawa

and Yamashita claimed that “there is no such system when the number n of processes

(i.e., ring size) is composite, even if a fair central-daemon (c-daemon) is assumed” and

there was an open question to design a self stabilizing algorithm that solves the mutual

exclusion problem under an unfair distributed scheduler. We answer the open question of

[16] and present an self-stabilizing algorithm for anonymous oriented bi-directional rings

of any size under unfair distributed schedulers with a leader.

1.5 Outline of the Thesis

We give definitions of some topics involved in this research and an overview of dining

philosopher problem including survey of self-stabilizing and non self-stabilizing dining

philosopher problem in Chapter 2.

In Chapter 3, first we give the solution to the simplified version of dining

philosophers problem. We consider chain topology instead of ring topology and present a

solution by DPCHAIN algorithm. Then we consider ring topology instead of chain

topology and present a solution by DPRING algorithm. It also includes the proof of

correctness of both DPCHAIN and DPRING algorithm.

We finish with concluding remarks in Chapter 4.

CHAPTER 2

ORIGIN OE DINING PHILOSOPHERS PROBLEM

2.1 Definitions

Mutual Exclusion; Mutual Exclusion is a fundamental problem in the area of distributed

computing. Concurrent processes come into conflict with each other when they are

competing for the use of the same resource. They are not necessarily aware of each other,

but the execution of one process may affect the behavior of competing processes. Mutual

Exclusion is a collection of techniques for sharing resources so that different processes do

not conflict and cause unwanted interactions. Examples of such resources are fine­

grained flags, counters or queues, used to communicate between code that runs

concurrently, such as an application and its interrupt handlers.

Consider a system of n processors. Every processor, from time to time, may need to

execute a critical section in which exactly one processor is allowed to use some shared

resource. A distributed system solving the mutual exclusion problem must guarantee the

following two properties [18]:

(i) Mutual Exclusion: Exactly one processor is allowed to execute its critical

section at any time.

(ii) Fairness: Every processor must be able to execute its critical section infinitely

often.

One of the most commonly used techniques for mutual exclusion is the semaphore.

Starvation: Starvation is a control problem due to the enforcement of mutual exclusion.

Consider we have three processes, P I, P2, and P3, competing for a resource R. Suppose

each of them require periodic access to R, which is not sharable, and PI is first granted

access to R. Then when PI exits its critical section, either P2 or P3 may be allowed

access to R. Assume that R is allocated to P3 and PI requires access to R again. If the

operating system alternately allocates R to PI and P3, then P2 has to wait indefinitely and

thus experience starvation, [24].

Deadlock: Deadlocks form one of the important error categories of concurrent computer

systems, [32]. A set of processes, or threads, is resource deadlocked if each process in the

set requests a resource, a lock, held by another process in the set, forming a cycle of lock

requests. In communication deadlocks, messages are the resources for which processes

wait.

Four conditions must hold for deadlock to occur:

1. Exclusive use - when a process accesses a resource, it is granted exclusive use of

that resource.

2. Hold and wait - a process is allowed to hold onto some resources while it is

waiting for other resources.

3. No preemption - a process cannot preempt or take away the resources held by

another process.

4. Cyclical wait - there is a circular chain of waiting processes, each waiting for a

resource held by the next process in the chain.

Deadlock can occur whenever two or more processes are competing for limited

resources and the processes are allowed to acquire and hold a resource (obtain a lock)

thus preventing others from using the resource while the process waits for other

resources.

Scheduler: All Components of (Processors an communication links) of distributed

systems may not share the same speed assumptions (i.e. one processor may execute its

code speedily, while many others are very slow.). The scheduler is a way to model such

different behaviors. A scheduler chooses processors to execute their code at a given time.

The scheduler (also known as daemon) is said to be fa ir if it selects every process

infinitely many times; otherwise, it is unfair, [18].

2.2 Dining Philosophers Problem (DPP)

The problem of the dining philosophers, proposed by Dijkstra in [17], is a very popular

example of control problem in distributed systems, and has become a typical benchmark

for testing the expressiveness of concurrent languages and of resource allocation

strategies. The dining philosophers problem is a simple case of general resource-

allocation problem. The situation is modeled by a graph on the set of processors with an

edge between two nodes if they share some resource (Each resource is thus represented

by the edges of a complete graph connecting the processors that have access to it). Each

processor handles a sequence of jobs; each job in the sequence of a processor has a

resource requirement that is a subset of the resources accessible to that processor, [23].

Eor a job to be executed, all of the required resources must be available for exclusive use

by its processor. This can be interpreted as saying that the processor must control the

edges incident to it corresponding to the needed resources.

Traditionally, the problem is described in terms of the following informal scenario.

There are n philosophers (users) seated around a table, usually thinking. Between each

pair of philosophers is a single fork (resource). From time to time, any philosopher might

become hungry and attempt to eat. In order to eat, the philosopher needs exclusive use of

the two adjacent forks. After eating, the philosopher needs exclusive use of the two

adjacent forks. After eating, the philosopher relinquishes the two forks (i.e., perform an

exit protocol) and resume thinking.

Figure 1.1: Dining Philosophers Problem (for n=5)

2.3 Survey of Non Self-Stabilizing DPP

The dining philosophers problem was first introduced in a specialized setting of a ring of

five philosophers by Dijkstra in [17]. The problem was later generalized to the current

setting of arbitrary graphs by Lynch in [19]. In this generalization, processes and

resources are modeled by a graph with each vertex representing a process, and each edge

representing a resource shared by the end vertices. The first work to consider the

response time explicitly was the seminal work by Lynch [33] who considered the

8

problem in the context of resource allocation. Lynch’s algorithm provides an upper

bound on the response time of a job. The solution of dining philosophers problem

proposed by M. Rabin and D. Lehmann [25] is fully distributed and does not involve any

central memory or any process with which every philosopher can communicate. They

exhibit a probabilistic solution for dining philosophers problem which guarantees, with

probability one, that every hungry philosopher eventually gets to eat.

Styer and Peterson [38] extended and augmented Lynch’s idea [33] to give an

algorithm that guarantees a bound on the waiting time of a job that is polynomial in the

number of processors at some maximum distance from the processor to which job is

assigned. B. Awerbuch and M. Saks,[23] presented a new deterministic algorithm for a

general job scheduling problem (generalizing the drinking (and dining) philosophers

problem) that guarantees a response time that is not much more than the square of the

lower bound. The unique feature of their algorithm is that resources are not explicitly

collected; rather a job at the front of the queue simply executes its job, and the properties

of the queue ensure that no conflicting job will execute at the same time.

A few non-stabilizing solution to the diners problem with optimal failure locality are

also known [34, 42,49]. Choy and Singh [42] investigated the fault-tolerance of

distributed algorithms in asynchronous message passing systems with undetectable

process failures. They considered two specific synchronization problems the dining

philosophers problem and the binary committee coordination problem. The abstraction of

a bounded doorway is introduced as a general mechanism for achieving individual

progress and good failure locality. Using it as a building block, optimal fault-tolerant

algorithms are constructed for the two problems. Sivilotti, Pike and Sridhar [34]

presented a new algorithm for the dining philosophers problem that has optimal failure

locality. As a refinement, the algorithm can be easily parameterized by a simple failure

model to achieve super-optimal failure locality in the average case. Tsay and Bargodia

[49] presented an algorithm that combines the idea of a dynamic priority scheme with the

use of a preemptive fork collecting strategy. Its response time is 0(n), where n is the total

number of processes, if no failures actually occur or 0(n in the presence of failures.

2.4 Survey of Self-Stabilizing DPP

Besides the non-stabilizing solution to the diners problem, a number of stabilizing

solutions are published as well [35, 36, 45,48]. Antonoiu and Srimani [35] proposed a

new protocol that is id-based and does not use any shared variable as opposed to the self-

stabilizing traditional mutual exclusion algorithm, which is anonymous and does use

shared link registers. It is also based on read/write atomicity [26] of operations and

operates under a distributed demon.

Beauquier, Datta, Gradinariu and Magniette [36] presented a self-stabilizing solution

to the local mutual exclusion problem that is the extension of dining philosophers

problem to any arbitrary network. They proposed a transformation technique that to

transform self-stabilizing algorithms under weaker daemons into algorithms, which

maintain the self-stabilization property, and also work under any arbitrary distributed

daemon. Arora and Nesterenko [51] combined the stabilization and crash fault tolerance

to present an efficient and inexpensive solution to the dining philosophers problem for a

rich class of faults-malicious crashes.

10

Hoover and Poole [46] presented self-stabilizing dining philosophers algorithm that

was inspired by the self-stabilizing dining philosophers algorithm presented by Gouda

[52]. In Gouda’s solution, one of the philosophers is required to behave differently than

the others in order to introduce asymmetry. Datta, Gradinariu and Raynal [27] presented

a self-stabilizing solution to the mobile philosophers problem (for asynchronous model)

that is a new version of the dining philosophers problem. They assume that the resources

form a logical ring (as in dining philosophers problem) and the philosophers can move

around a logical ring formed out of a dynamic network.

II

CHAPTER 3

DINING PHILOSOPHERS

3.1 The Dining Philosophers Problem

In this section, we give a self-stabilizing asynchronous distributed algorithm for the

Dining Philosophers Problem, in the composite model of computation. We first describe

the problem formally, guided by the presentation given by Lynch [16].

Each philosopher Pi is represented by two processes, the user Ui, and the agent ,

which we also call Pi. The user decides when to request and return the resources, and the

agent actually executes the algorithm. We are also given resources f l, . . . fn. In order for

a request by Ui to be satisfied, the Pi must have use of both fi-i and fi (except that PI

uses fn and fl), and no two philosophers may simultaneously have use of the same

resource. We refer to fi-i and fi as the left and right resources of Pi, and to Pi-i and Pi+i

as the left and right neighbors of Pi.

Figure 3.1, which is similar to Figure 11.2 of [16], shows the network of processes

and resources in the case n = 5.

12

ra 0 u

p, p, p. p
\ /̂ \ \ / \

Figure 3.1: Network of Processors and Resources for the
Dining Philosophers Problem

• Ui has only two states, request and s a t .

• Pi can either lock or release either of its resources.

• Pi can use fj if Pi is holding fj and no other process is holding fj .

• If Ui is in state request and Pi can use both neighboring resources. Pi will be

begin executing. Eventually the request will be satisfied, after which Ui will

change its state to s a t .

A solution to the Dining Philosophers Problem consists of a protocol (program) for

each agent process, such that every request by any user process is eventually satisfied. A

configuration is said to be illegitimate if two processes are simultaneously holding the

same resource, or if a processor is attempting to execute without holding both resources.

We call the first situation contention, and we call the second situation premature

execution. A configuration is legitimate otherwise.

13

3.1.1 Livelock and Deadlock

Note that, if two processes are holding the same resource, neither can be executing. It

could happen that two processes simultaneously lock the same resource. One of the

processes • must release the resource if this occurs. But if both release the resource

simultaneously, they could both lock it again simultaneously. This cycle could continue

indefinitely, a situation known as livelock.

On the other hand, a configuration could occur where each user Ui is in state

request, and each agent process Pi holds fi, and refuses to release it until it can lock fi+i

also. In this situation, called deadlock, nothing can happen, and the requests are never

satisfied.

3.2 The Chain Version of the Dining Philosophers Problem

We first give a solution to a simplified version of the Dining Philosophers Problem,

where the topology is that of a chain rather than a ring. We still have philosophers P I , . . .

Pn, with user processes UI . . .Un, but we have n + I resources, namely fO, fI . . . fn, as

shown in Figure 3.2. Our solution is a distributed algorithm in the composite model of

computation. Each process has shared variables that can be read by its neighbor

processes.

14

Figure 3.2: Network of Processors and Resources for the Chain
Dining Philosophers Problem

We write:

User(Pi) = Ui

Left(Pi) = Pi - 1

Right(Pi) = Pi+i

Variables of DPCHAIN:

P.flag G {A ,B}. This variable can be read by P’s neighbors.

P.state G {waiting, executing, idle}. This variable can be read by User (P), but not

by P ’s neighbor agents.

Functions of DPCHAIN:

Define reverse (A) = B and reverse(B) = A.

Holds_Left(P) = P is holding its left resource.

Holds_Right(P) = P is holding its right resource.

L eft_F ree(P) = no p rocess is h o ld in g P ’s le ft resource.

Right_Free(P) = no process is holding P ’s right resource.

reverse(P.flag) if P = PI

Left_Nbr_Flag(P) = -<

Left(P).flag otherwise

15

p.flag if P = Pn

Right_Nbr _Flag(P) = -<

 ̂ Right(P).flag otherwise

Left_Enabld(P) = Left_Nbr_Elag(P) P.flag

Right_Enabld(P) = Right_Nbr_Elag(P) = P.flag

Has_Tokens(P) = Left_Enabld(P) A Right_Enabld(P)

Error (P) = (Holds_Left(P) A -iLeft_Enabld(P)) V

(Holds_Right(P) A -iRight_Enabld(P))) V

((P.State = executing) A (-<Holds_Right(P) V -<Holds_Left(P))) V

((P. State = idle) A (Holds_Right(P) V Holds_Left(P)))

Macros of DPCHAIN:

Lock_Right(P): P locks its right resource.

Lock_Left(P): P locks its left resource.

Release_Right(P): P releases its right resource.

Release_Left(P): P releases its left resource.

Release_Tokens(P): P.flag <— reverse(P.flag).

The Elags A and B, and virtual tokens. Since livelock is caused by different

processes simultaneously locking the same resource, we can avoid that problem by a

scheme which enables only one process to lock a resource at any given time. We use the

concept of a token, where possession of a token enables a process to lock resources.

In DPCHAIN tokens are virtual. There is no variable called “token” in our code.

Instead, we implement tokens by the use of a shared variable P.flag for each process P.

The value of P.flag is always either A or B, and a process P “has its right token” if P’s

flag is the same as that of its right neighbor (if it has a right neighbor) and P “has its left

16

token” if P ’s flag is different from that of its left neighbor (if it has a left neighbor). By

default, PI always “has its left token” and Pn always “has its right token.” By this simple

method, using only one bit per process, we guarantee that no two adjacent processes have

both both of its tokens, while simultaneously guaranteeing that at least one process in the

chain has both of its tokens.

Clauses and Priorities: The third column of each action given in Table 3.1 consists of a

list of clauses, each of which is a Boolean expression over the variables and functions

which are computable by a process P. All of those clauses must be true for the action to

be enabled. Priorities are also assigned in Table 3.1. The guard of each action contains

the unwritten clause that no action whose priority number is lower is enabled. For

example, if Error (P) holds, then no action other than Action A1 is enabled.

The Program: The algorithm DPCHAIN is almost anonymous, i.e., all processes have

the same program, except for the two end processes of the chain, whose programs are

very slightly different, due to the slightly different definition of Left_Enabld for PI and

Right_Enabld for Pn.

17

Table 3.1: Actions of DPCHAIN

AI
priority I

Detect
Error

Error (P)

A2
priority 2

Read
Request

P.state = idle
User(P).state = request

A3
priority 2

Read
Satisfaction

P.state ^ idle
User(P).state = sat

A4
priority 3

Release
Tokens

P.state = idle
Has_Tokens(P)

A5
priority 3

Release
Left

-iHas_Tokens(P)
P.state ^ executing
Holds_Left(P)

A6
priority 3

Release
Right

-iHas_Tokens(P)
P.state ^ executing
Holds_Right(P)

A7
priority 3

Lock
Left

P.state = waiting
Has_Tokens(P)
Left_Free(P)

A8
priority 3

Lock
Right

P.state = waiting
Has_Tokens(P)
Right_Free(P)

A9
priority 3

Start
Execution

P.state - waiting
Has_Tokens(P)
Holds_Left(P)
Holds_Right(P)

ReIease_Left(P)
ReIease_Right(P)
P.state <— idle

► P.state <— waiting

► P.state <— idle

Release_T okens (P)

• ReIease_Left(P)

 ̂Release_Right(P)

► Lock_Left(P)

► Lock_Right(P)

P.state <— executing
ReIease_T okens(P)

18

3.3 Proof of Correctness of DPCHAIN

Lemma 3.1:

(a) From an arbitrary configuration, the network will reach a legitimate configuration

within one round.

(b) From a legitimate configuration, the network will never reach an illegitimate configu­

ration.

Proof. If the configuration is illegitimate by contention, i.e., two processes simul­

taneously hold a resource, within one round, at least one of these processes will notice the

contention and release the process by executing Action A I. Thus, there will be no more

contention after one round has elapsed. If the configuration is illegitimate by premature

execution of some P, then P will execute Action A I, returning to the state idle. No action

of DPCHAIN can cause a new contention or premature execution to occur, so the system

will never enter an illegitimate configuration from a legitimate configuration. Henceforth,

we will assume that the network is always in a legitimate configuration.

Pseudo-Time. We define an integral function x (P) for all processors P as follows:

0 if i - 1

X (Pi) = ^ X (P i-1) - 1 if i > 1 and Left_Enabld(Pi)

X (P i-1) + 1 otherwise

Remark 3.1 Eor any I < i, j < n, Ix (Pi) - x (Pj)l < Ii - jl

Let Num(P) be the number of times that P has executed Release_Tokens since the

network was initialized. Let Ai = Num(Pi) - Num(PI) - Vi x (Pi).

Lemma 3.2 Eor any I < i < n. Ai is constant.

19

Proof. Whenever Pi executes Release_Tokens, Num(Pi) increases by 1 and r (Pi)

increases by 2. Whenever PI executes Release_Tokens, Num(Pl) increases by 1 and r

(Pi) decreases by 2.

n
Let T = >4 n (n - l) + n Num(Pl) + V2 Z r (Pi) (3.1)

i=2

Remark 3.2 T is an integer, and nNum(Pl) < T < nNum(Pl) + V2 n (n -l)

Lemma 3.3 During any given step, T increases by the number of processes that execute

Release Tokens during that step.

Proof. Execution of Release_Tokens(Pi) causes r (Pi) to increase by 2 if i > 1, and hence

causes T to increase by 1. Execution of Release_Tokens(Pl) causes Num(Pl) to increase

by 1 and causes r (Pi) to decrease by 2 for all i > 1, and hence causes T to increase by 1.

Lemma 3.4 Starting from any configuration, T eventually increases.

Proof. Pick i such that r (Pi) is minimum. Then Has_Tokens(Pi), which implies that Pi

will eventually executes Release_Tokens, by executing Action A4 or A9. By Lemma 3.3

we are done.

Lemma 3.5 Starting from any given configuration, for any 1 < i < n. Pi eventually

executes Release_Tokens.

Proof. By Lemma 3.4, T increases without bound. By (3.1), Num(Pl) increases without

bound, since the other two terms of the right side are bounded.

Num(Pi) = Num(Pl) + V2 x (Pi) + Ai by the definition of Ai, x (Pi) > - i, and Ai is constant.

Thus Num(Pi) increases without bound.

Lemma 3.6 If User(P).state = request , P.state ^ executing, and Has_Tokens(P), then P

will eventually execute Action A9.

20

Proof. By Lemma 3.5, P will execute Release_Tokens. Since P cannot execute Action

A4, it must execute Action A9.

Theorem 3.1 The algorithm DPCHAIN is correct.

Proof. If a process receives a request from its user, then, by Lemma 3.6, it must

eventually execute Action A9, after which it must eventually complete that execution.

3.4 The Algorithm DPRING

We now adapt the algorithm DPRING to the ring topology, as described at the beginning

of this chapter. If we use the same code as DPCHAIN, deadlock can occur.

Note that in DPCHAIN, both end processes, PI and Pn, have programs that are

slightly different from the middle processes, P2, . . . , Pn-i. We will do the same for

DPRING. The difference is that in DPRING the end processes are neighbors, and so we

must ensure that they do not execute simultaneously.

As in DPCHAIN, we let each process has two virtual tokens, one that it shares with

its left neighbor, the other with its right. Each middle process has just one flag, and it uses

the same rules as DPCHAIN to decide whether it holds none, one, or both of its tokens.

Each end process has two flags, P.left_flag and P.right_flag. Pl.right_flag and Pn.left_flag

are their “normal” flags, which are used to determine whether they hold the resources

they share with their middle neighbors. The other flag, Pl.left_flag or Pn.right_flag, is

used by the end process to decide whether it holds the “end token,” i.e., permission to use

the end resource. If both end processes’ end flags are equal, Pn has the end token. If they

are different, PI has the token.

21

As long as neither end resource has a request, the end token shuttles endlessly back

and forth between the end processes. Each time an end process has the end token, it

checks to see whether it has its other token and also whether its status is ’’waiting.” If

both are true, it keeps the end token and waits, if necessary, until its middle neighbor (P2

or Pn-1) has finished executing, and then locks both resources and starts executing and

releases both tokens by reversing both flags. In all other cases, it immediately releases

the end token by releasing just its end flag.

An end process has more variables than a middle process, but it allow their

neighbors to see its variables selectively in such a way that, to its middle neighbor, the

end process appears to be just another process. Thus, P2 sees PI.right but not PI.left ,

while Pn-i sees Pn.left but not Pn.right.

Each middle process runs exactly the same code as a middle process of DPCHAIN.

In fact, there is no need for the process to even know that it is running DPRING instead

of DPCHAIN. Eor that reason, we simply use Table 3.1 for the actions of a middle

process.

The Deadlock Problem. There is a deep mathematical reason that it is difficult for an

asynchronous algorithm on the ring to avoid deadlock. This has to do with the fact that

the topology of the ring is not simply connected, i.e., it has a non-contractible cycle. (The

same kind of problem arises some certain other distributed problems on any non-simply

connected topology, such as construction of a synchronizer.)

If we attempt to use a strict analog of DPCHAIN on the ring, deadlock may result.

The key to resolving this problem is to break the cycle in some way. We do this by

22

designating PI and Pn to be end (or leader) processes, with codes that differ from that of

the normal processes, P 2 , . . . Pn-i.

We do this by assigning colors to the tokens. The normal tokens that shuttle back

and forth between the normal processes we assign the color 0. the one end token that

shuttles back and forth between PI and Pn, we assign the color 1.

The tokens have different priorities. If a process has a token of color 0, it holds it

until it has the other token. But if a process (always an end process) needs tokens of both

colors, and it has a token of color 1 but not the token of color 0, it releases the token of

color 1 even if its state is waiting. This scheme prevents deadlock.

The scheme can be extended to other topologies by having more colors, although

that is beyond the scope of this thesis.

3.4.1 Formal Definition of DPRING

We let PI, . . . , Pn be the agent processors, and Ui = User(Pi) the corresponding user

processors. We assume a ring topology, i.e.. Pi and Pi+i are adjacent for i < n, and Pn and

PI are adjacent. Each Pi has the same code, except for PI, which is the leader .

The code for PI is given in Table 3.2. We have carefully designed DPRING so that,

from the viewpoint of any process other than the leader, it is identical to DPCHAIN.

Thus, the code for Pi, for i > 0 is given in Table 3.1

We write:

User(Pi) = Ui

" Pn if i = 1

Left(Pi) = i

^ Pi-1 otherwise

23

PI if i = n

Right(Pi)

Pi+i otherwise

Variables of DPRING:

P.flag G {A,B} if P G {P2, . . . , Pn-1}. This variable can be read by P’s neighbors.

P.left_flag G {A,B} if P G {PI, Pn}. This variable can be read by Left(P).

P.right_flag G {A,B} if P G (PI, Pn}. This variable can be read by Right(P).

P.state G (waiting, executing, idle} This variable can be read by User(P), but not

by its neighbor agents.

Functions of DPRING:

Holds_Left(P) = P is holding its left resource.

Holds_Right(P) = P is holding its right resource.

Left_Free(P) = no process is holding P ’s left resource.

Right_Free(P) = no process is holding P’s right resource.

Pn.right_flag ifP = P l

Left_Nbr_Flag(P) = ^ P 1 .right_flag if P = P2

Left(P).flag otherwise

Pl.left_flag

Right_Nbr_Flag(P) = ^ Pn.left_flag

ifP = Pn

if P = Pn-1

Right(P).flag otherwise

Left_Enabld(P) = Left_Nbr_Flag(P) ^ P.flag

Right_Enabld(P) = Right_Nbr_Elag(P) = P.flag

Has_Tokens(P) = Left_Enabld(P) A Right_Enabld(P)

24

-iHolds_Right(P) A -iHolds_Left(P) A (P. state = idle)

Rest (P)= V A -iLeft_Enabld(P) A -iRight_Enabld(P) if P G {PI, Pn}

-'Holds_Right(P) A -■Holds_Left(P) A (P.state = idle) otherwise

Error (P) = (Holds_Left(P) A -iLeft_Enabld(P)) V

(Holds_Right(P) A -■Right_Enabld(P))) V

((P.state = executing) A (-■Holds_Right(P) V -■Holds_Left(P))) V

((P.state = idle) A (Holds_Right(P) V Holds_Left(P)))

Macros of DPRING:

Lock_Right(P): P locks its right resource.

Lock_Left(P): P locks its left resource.

Release_Right(P): P releases its right resource.

Release_Left(P): P releases its left resource.

Release_Tokens(P):

if P = PI then

P.left_flag <— (Pn.right_flag)

P.right_flag <— reverse(P2.flag)

else if P = Pn then

P.left_flag <— Pn- 1 .flag

P.right_flag <— reverse(Pl.left_flag)

else

P.flag <— reverse(P.flag)

endif

25

Table 3.2: Actions of DPRING for P G {PI, Pn}

B1 Correct Error (P)
priority 1 Error

B2 Read P.state = idle
priority 2 Request User(P). state = request

B3 Read P.state 9 ̂ idle
priority 2 Satisfaction User(P).state = sat

B4 Release P = P1
priority 3 Right P.state = idle

Token Right_Enabld(P)

B5 Release P = Pn
priority 3 Left P.state = idle

Token Left_Enabld(P)

B6 Lock P.state = waiting
priority 3 Left Has_Tokens(P)

Left_Eree(P)

B7 Lock P.state = waiting
priority 3 Right Has_Tokens(P)

Right_Eree(P)

B8 Start P.state = waiting
priority 3 Execution Has_Tokens(P)

Holds_Left(P)
Holds_Right(P)

B9 Shuttle P = P1
priority 4 Left Left_Enabld(P)

BIO Shuttle P = Pn
priority 4 Right Right_Enabld(P)

Release_Left(P)
Release_Right(P)
P.state <— idle

► P.state <— waiting

P.state <— idle

Release_Tokens(P)

Release_T okens(P)

Lock_Left(P)

Lock_Right(P)

P.state <— executing
Release_Tokens(P)

P.left_flag <—Pn.right_flag

P.right_flag
<— reverse(Pl.left_flag)

26

3.5 Proof of Correctness of DPRÜ4G

Lemma 3.7

(a) From an arbitrary configuration, the network will reach a legitimate configuration

within one round.

(b) From a legitimate configuration, the network will never reach an illegitimate

configuration.

The proof is the same as that of Lemma 3.1. Henceforth, we will assume that the network

is always in a legitimate configuration.

Pseudo-Time. We define an integral potential t (P) for all processors P as follows:

1 if i = 1

T (Pi) = ^ T (Pi-1) - 1 if i > 1 and Left_Enabld(Pi)

T (Pi-1) + 1 otherwise

Remark 3.3 For any 1 < i, j < n. It (Pi) - x (Pj)l < li - ji

Let Num(P) be the number of times that P has executed Release_Tokens since the

network was initialized. Let Ai = Num(Pi) - Num(Pl) - Vi x (Pi).

Lemma 3.8 For any 1 < i < n. Ai is constant.

The proof is the same as that of Lemma 3.2.
n

Let T = 14 n (n-1) + n Num(Pl) + 14 Z x (Pi) (3.2)
i=2

Remark 3.4 T is an integer, and nNum(Pl) < T < nNum(Pl) + 14 n (n -l)

Lemma 3.9 During any given step, T increases by the number of processes that execute

Release_Tokens during that step.

The proof is the same as that of Lemma 3.3.

Lemma 3.10 If the configuration is legitimate, then within four rounds, either Pl.left_flag

27

or Pn.right_flag will change.

Proof.

Case I; Left_Enabld(Pl). We have two subcases.

Subcase La: PI.state = waiting and Right_Enabld(Pl). Within three rounds, PI will

execute Action B8. (PI may have to execute one or both locking actions, B6 and B7,

first)

Subcase l.b: PI.state ^ waiting or -iRight_Enabld(Pl). Then, PI is enabled to execute

Action B9. Within one round, either PI will execute Action B9, or that action will be

neutralized by Action B8 being enabled, reducing to subcase l.a.

Case II: Right_Enabld(Pn). Similar to Case 1.

Lemma 3.11 If P is a minimum of the function t , then P eventually executes

Release_Tokens.

Proof. P = Pi for some 1 < i < n.

Case 1: 1 < i < n.

Subcase La: P.state = waiting. Then P will execute Action A9 within three rounds.

Subcase Lb: P.state = idle. Then within one round, either P will execute Action A4, and

we are done, or P will execute Action A2, reducing to Subcase La.

Subcase l.c: P.state = executing. Eventually User(P).state = sat , after which P executes

A3, reducing to Subcase Lb.

Case 11: i = 1. Then Right_Enabld(P).

Subcase ll.a: PI.state = waiting. By Lemma 3.10, Left_Enabld(P) will hold within four

rounds, and within three more rounds, PI will execute Action B8.

28

Subcase n.b: PI.state = idle. Within one round, either Action B4 will execute, in which

case we are done, or PI.state 4 — waiting, reducing to Subcase ll.a.

Subcase U.c: PI.state = executing. Eventually User(P).state = sat , after which PI will

execute Action B3 followed by Action B4, and we are done.

Case III: i = n. Similar to Case II.

Lemma 3.12 Starting from any configuration, T eventually increases.

Proof. Let P be a process such that x (P) is minimum. By Lemma 3.11, P eventually

executes Release_Token. Then, by Lemma 3.9, we are done.

Lemma 3.13 Starting from any given configuration, for any 1 < i < n. Pi eventually

executes Release_Tokens.

The proof is the same as that of Lemma 3.5, except that we use Lemma 3.12 instead of

Lemma 3.4.

Lemma 3.14 If User(P).state = request, P.state 9 ̂ executing, and Has_Tokens(P), then P

will eventually execute Action A9 or B 8 .

Proof.

Case 1: P = Pi for 1 < i < n. By Lemma 3.5, P will execute Release_Tokens. Since P

cannot execute Action A4, it must execute Action A9.

Case II: P = PL Within one round, PL state ■<— waiting. After that, PI executes

Release_Tokens eventually, by Lemma 3.13. Since P cannot execute Action B4, it must

execute Action B 8 .

Case ni: P = Pn. Similar to Case II.

Theorem 3.2 The algorithm DPRING is correct.

29

Proof. If a process receives a request from its user, then, by Lemma 3.14, it must

eventually execute Action A9 or Action B8, after which it must eventually complete that

execution.

30

CHAPTER 4

CONCLUSION AND EUTURE RESEARCH

We propose a self-stabilizing solution for non-uniform bi-directional rings under unfair

distributed daemon without using message passing model and token circulation method.

We present solution for composite size of ring for whieh Bums and Paehl elaim in [4]

that there is no solution possible. Eirst we adapt DPCHAIN algorithm for ehain topology

and then we adapt DPRING Algorithm for ring topology to make sure that both end

proeesses don’t execute simultaneously. By this virtual token scheme we prevent

liveloek, starvation and deadloek in ring topology without using any real token. The

seheme ean be extended to other topologies by having more eolors, although that is

beyond the seope of this thesis.

31

BIBLIOGRAPHY

[1] E.W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,” Comm.
ACM, vol. 17, no. 11, pp. 643-644, Nov. 1974.

[2] E.W. Dijkstra,, “A belated proof of self stabilization,” Distributed Computing, 1:5-
6,1986

[3] Shmuel Katz and Kenneth Perry. Se If-stabilizing extensions fo r message-passing
systems. In Proc. loth ACM PODC Symp., Quebee City, Aug 1990.

[4] Bums and Paehl, Uniform self-stabilizing ring ACM Transaetions on Programming
Languages and Systems, Vol. 11, No. 2, April 1989, Pages 330-344.

[5] Itkis, G., Lin, C., Simon, J.: Deterministic, constant space, self-stabilizing leader
election on uniform rings. In:Workshop on Distributed Algorithms. (1995) 288-302

[6] M. J. Eiseher, N. A. Lyneh, and M. S. Paterson, Impossibility o f Distributed
Consensus with One Faulty Process. Joumal of the ACM, 32(2):374-382, April 1985.

[7] E. AILIOMANDI, M. J. Eiseher, and N. A. Lynch, Efficiency o f Synchronous Versus
Asynchronous Distributed System. Journal of the Assoeiatmn for Computing Maehinery,
Vol 30, No 3, July 1983, pp 449-456

[8] Schneider M.: Self-stabilization. AC M Computing Surveys, 25 (1993), 45-67

[9] E. C. Gartner. Eundamentals of fault-tolerant distributed eomputing in asynchronous
environments. Journal o f Parallel and Distributed Computing, 35 :43^8 , 1996.

[10] M. G. Gouda. The triumph and tribulation o f system stabilization. In 9th
IntemationalWorkshop on Distributed Algorithms (WDAG), LNCS: 972, pages 1-18.
Springer-Verlag, 1995.

[11] Jensen and Rivindran 02 Jensen, E. Douglas and Binoy Ravindran, Eds. IEEE
Transactions on Computers, Special Section on Asynchronous D istributed Real-Time
Systems, August 2002.

[12] B. Awerbueh, B. Patt-Shamir, G. Varghese, and S. Dolev, “Self-Stabilization by
Local Checking and Global Reset (Extended Abstract),” Proc. Eighth Int'l Workshop
Distributed Algorithms (WDAG '94), pp. 326-339, 1994.

32

[13] George Varghese. S elf-stabilization by local checking and correction. Ph.D. Thesis
MIT/LCS/TR-583, MIT, Ott 1992.

[14] Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8 (1997) 424-440

[15] Ghosh, S., Gupta, A.: An exercise in fault-containment: Self-stabilizing leader-
election. Information Processing Letters (59) (1996) 281-288

[16] H. Kakugawa and M. Yamashita (1997), Uniform and Self-Stabilizing Token Rings
Allowing Unfair Daemon , IEEE Transactions on Parallel and Distributed Systems 8
(1997)154-162

[17] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1(2)415-138, Oct. 1971. Reprinted in Operating Systems Techniques, C A R. Hoare and
R.H. Perrot, Eds., Academic Press, 1972, pp. 72-93. This paper introduces the classical
synchronization problem of Dining Philosophers.

[18] A. K. Datta, M. Grandinariu, and S. Tixeuil, "Self-stabilizing mutual exclusion using
unfair distributed scheduler, " Technical Report 1227, LRl, 1999.

[19] N. Lynch. Fast allocation of nearby resources in a distributed system. Proceedings of
the 12th ACM Symposium on Theory of Computing, 70-81, 1980.

[20] Higham, L., Myers, S.: Self-stabilizing token circulation on anonymous message
passing rings. Technical report. University of Calgary (1999)

[21] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1)45-67, March
1993.

[22] J. Beauquier, M. Gradinariu, and C. Johnen: Self-stabilizing and space optimal
leader election under arbitrary scheduler on rings. Internal Report, LRl, Université de
Paris-Sud, France. (1999)

[23] B. Awerbueh and M. Saks, "A Dining Philosophers algorithm with polynomial
response time " in Proc. 31st Annu. IEEE Symp. Foundations Comput. Sci., St. Louis,
MO, Oct. 1990, pp. 65-74.

[24] Jinzhong Niu, “Concurrency: M utual Exclusion and Synchronization - Part
1 "/zttp.v/www.sci.brooklyn.cuny.edu/-jniu/teaching/csc33200/files/1007-Concurrency
01.pdf

[25] M. Rabin and D. Lehmann. On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Proceedings of 8th POPL,
pages 133-138, 1981.

33

http://www.sci.brooklyn.cuny.edu/-jniu/teaching/csc33200/files/1007-Concurrency

[26] S. Dolev, A. Israeli and S. Moran. “Self Stabilizing o f dynamic systems assuming
only read/write atomicity. Distributed Computing 7:3-16,1993.

[27] A. K. Datta, M. Gradinariu, M. Raynal, “Stabilizing mobile philosophers” in:
Information and Processing Letters, IRISA technical report number 1666, 2005, vol. 95,
p. 299-306.

[28] M. H. Karaata, “Self-Stabilizing Strong Fairness Under Weak Fairness”, IEEE
Transactions on Parallel and Distributed Systems, v. l2 n.4, p.337-345, April 2001

[29] P. Danturi, M. Nesterenko, S. Tixeuil, “Self-Stabilizing Philosophers With Generic
Conflicts”, in: Eighth International Symposium on Stabilization, Safety, and Security on
Distributed Systems (SSS 2006), Dallas, Texas, A. K. Datta, M. Gradinariu (editors).
Lecture Notes in Computer Science, Springer Verlag, November 2006, to appear p.

[30] J. Beauquier, C. Johnen, S. Messika, “All k-Bounded Policies Are Equivalent For
Self-Stabilization”, in: Eighth International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), Dallas, Texas, A. K. Datta, M. Gradinariu
(editors). Lecture Notes in Computer Science, November 2006
http://www.lri.fr/parall/publis/messika/sss06.pdf.

[31] J. Beauquier, S. Delaët, S. Haddad. “A 1-Strong Self-Stabilizing Transformer”, in:
Eighth International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), Dallas, Texas, A. K. Datta, M. Gradinariu (editors). Lecture Notes in
Computer Science, November 2006.

[32] S. Bensalem, J. C. Fernandez, K. Havelund and L. Mounier, “Confirmation o f
deadlock potentials detected by runtime analysis”. In Parallel and Distributed Systems:
Testing and Debugging (PADTAD’06), July 2006. Portland, Maine, USA.

[33] N. Lynch. Upper bounds for static resource allocation in a distributed system.
Joumal Of Computation And Systems Sciences, 23(2):254-278, October 1981

[34] P A G. Sivilotti, S. M. Pike, N. Sridhar , “A New Distributed Resource-Allocation
Algorithm with Optimal Failure Locality” Proceedings of the 12th LASTED International
Conference on Parallel and Distributed Computing and Systems, volume 2, pages 524-
529. LASTED/ACTA press November 2000.

[35] G Antonoiu and PK Srimani. Mutual exclusion between neighboring nodes in an
arbitrary system graph tree that stabilizes using read/write atomicity. In Europar '99
Parallel Processing, Proceedings LNCS: 1685, pages 823—830, 1999.

[36] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette. “Self-stabilizing local
mutual exclusion and daemon refinement.” In Proceedings of the 14th Conference on
Distributed Computing (DISC), Lecture Notes in Computer Science 2180, pages 240—
254, 2000.

34

http://www.lri.fr/parall/publis/messika/sss06.pdf

[37] S. Dolev, M. Gouda, and M. Schneider, “Memory Requirements For Silent
Stabilization. In PODC96 Proeeeding Of The Fifteenth Annual ACM Symposium on
Prineiples of Distributed Computing”. Pages 27-34,1996.

[38] Eugene Styer and Gary Peterson. Improved algorithms for distributed resouree
alloeation. In Proc. 7th ACM Symp. on Principles of Distributed Computing, pages 105-
116, ACM SIGACT and SIGOPS, ACM, 1988.

[39]S. Delaet, B. Ducourthial, S. Tixeuil, “Self-Stabilization With r-Operators Revisited”,
in; Journal of Aerospaee Computing, Information, and Communieation, 2006.

[40] T. Hérault, P. Lemarinier, O. Peres, L. Pilard, J. Beauquier. “Self-Stabilizing
Spanning Tree Algorithm fo r Large Scale Systems (Brief Announcement)”, in; Eighth
International Symposium on Stabilization, Safety, and Seeurity of Distributed Systems
(SSS), Dallas, Texas, A. K. Datta, M. Gradinariu (editors). Lecture Notes in Computer
Science, November 2006.

[41] J. Lundelius and N. Lyneh. Synthesis of effieient drinking philosophers algorithms.
January 1988. unpublished manuseript

[42] Choy, M.; Singh, A.K.; “Localizing failures in distributed synchronization” Parallel
and Distributed Systems, IEEE Transaetions on Volume 7, Issue 7, July 1996
Page(s):705 - 716

[43] M. Gradinariu, S. Tixeuil, “Conflict Managers fo r Self-stabilization without Fairness
Assumption”, In Proceedings of the International Conferenee on Distributed Computing
Systems (ICDCS 2007). IEEE, June 2007.

[44] A. K. Datta , C. Johnen , F. Petit , V. Villain, “Self-Stabilizing Depth-First Token
Circulation In Arbitrary Rooted N etw orks”, Distributed Computing, v. l3 n.4, p.207-218,
November 2000

[45] A. Arora and M. Nesterenko. “Stabilization-Preserving Atomicity Refinem ent.”,
DISC 99, Proeeedings of the Thirteenth Internationa] Symposium On Distributed
Computing. Pages 254-268,1999.

[46] D. Hoover and J. Poole, “A Distributed Self-Stabilizing Solution to the Dining
Philosophers Problem,” Information Proeessing Letters, vol. 41, no. 4, pp.
209-213, Mar. 1992.

[47] S. Katz and K.J. Perry, Self-stabilizing extensions for message-passing systems,
Teeh. Kept. STP-379-89, MCC, November 1989.

35

[48] M. Mizuno and M. Nesterenko. “ A Transformation O f Se lf Stabilizing Serial Model
Programs For Asynchronous Parallel Computing Environment”, Information Proc.
Letter, 66(6): 285-290, 1998.

[49] Y. Tsay and R. Bargodia, “An Algorithm with Optimal Failure Locality fo r The
Dining Philosopher Problem.” Proc. of WDAG 1994, pp. 296—310.

[50] K. Chandy and J. Misra. “The Drinking Philosophers Problem”. ACM TOPLAS,
6(4):632-646, October 1984.

[51] A. Arora and M. Nesterenko. “Dining Philosophers That Tolerate Malicious
Crashes.”, in 22nd Int'l Conference on Distributed Computing Systems, 2002, pp. 172—
179.

[52] M.G. Gouda, “The stabilizing philosopher: Asymmetry By Memory A nd By Action,”
Tech. Rept. TR-87-12, University of Texas at Austin, 1987.

[53] D. Bein, A. K. Datta, L. L. Larmore: “Self-stabilizing Space Optimal
Synchronization Algorithms on Trees”, SIROCCO, LNCS 4056, Chester, UK 2006:
334-348

[54] D. Bein and A. K. Datta and L. L. Larmore, “On Self-Stabilizing Search Trees”
Disc06, LNCS 4167, Stockholm, Sweden, 2006, pages 76-89.

[55] C. Boulinier, A. K. Datta, L. L. Larmore, and F. Petit, "An Efficient Self-Stabilizing
Distibuted Algorithm fo r BPS Tree Construction", SCS, 1, 2007.

[56] Doina Bein, Ajoy K Datta, Chitwan K Gupta, and Lawrence L. Larmore,
"Local Synchronization On Oriented Rings", 10th International Symposium on

Stabilization, Safety, and Security of Distributed Systems (SSS 2008), November
21-23, 2008, Detroit, Miehigan, Lecture Notes in Computer Science, Volume
5340, pp. 141-156.

36

VITA

Graduate College
University of Nevada, Las Vegas

Chitwan Kumar Gupta

Local Address:
965 Cottage Grove Ave Apt 66
Las Vegas, Nevada 89119

Home Address:
201, Scheme No.-3, Basant Vihar
Alwar, Rajasthan, India 301001

Degrees:
Bachelor of Engineering, Computer Science, May 2005
University of Rajasthan, Jaipur, India.

Special Honors and Awards:
Database Administrator & Developer , Graduate Assistantship
Disability Resource Center

Teaching Assistantship
School Of Computer Science

Publications:

Doina Bein, Ajoy K Datta, Chitwan K Gupta, and Lawrence L. Larmore,
"Local Synchronization On Oriented Rings", 10th International

Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS 2008), November 21-23, 2008, Detroit, Michigan, Lecture Notes in
Computer Science, Volume 5340, pp. 141-156.

37

Thesis Title: Self-Stabilizing Protocol For Anonymous Oriented Bi-directional Rings
Under Unfair Distributed Schedulers With A Leader

Thesis Examination Committee:
Chairperson, Dr. Lawrence L. Larmore, Ph. D.
Committee Member, Dr. Ajoy K. Datta, Ph. D.
Committee Member, Dr. Laxmi P. Gewali, Ph. D.
Graduate Faculty Representative, Dr. Rohan J. Dalpatadu, Ph. D.

38

	Self-stabilizing protocol for anonymous oriented bi-directional rings under unfair distributed schedulers with a leader
	Repository Citation

	ProQuest Dissertations

