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ABSTRACT

Self-Stabilizing Protocol For Anonymous Oriented Bi-directional Rings 
Under Unfair Distributed Schedulers With A Leader

By

Chitwan Kumar Gupta

Dr. Lawrence L. Larmore, Examination Committee Chair 
School of Computer Science 

University of Nevada, Las Vegas

We propose a self-stabilizing protocol for anonymous oriented bi-directional rings of any

size under unfair distributed schedulers with a leader. The protocol is a randomized self-

stabilizing, meaning that starting from an arbitrary configuration it converges (with

probability 1) in finite time to a legitimate configuration (i.e. global system state) without

the need for explicit exception handler of backward recovery. A fault may throw the

system into an illegitimate configuration, but the system will autonomously resume a

legitimate configuration, by regarding the current illegitimate configuration as an initial

configuration, if the fault is transient. A self-stabilizing system thus tolerates any kind

and any finite number of transient faults. The protocol can be used to implement an unfair

distributed mutual exclusion in any ring topology network.

Keywords: self-stabilizing protocol, anonymous oriented bi-directional ring, unfair 

distributed schedulers. Ring topology network, non-uniform and anonymous network, 

self-stabilization, fault tolerance, legitimate configuration.
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CHAPTER 1 

INTRODUCTION

In this thesis, we present a self-stabilizing protocol for anonymous oriented bi-directional 

rings of any size under unfair distributed schedulers. Self-stabilization is a well-known 

paradigm of non-masking fault tolerant distributed algorithms [21, 10, 9]. Self­

stabilization introduced by Dijkstra, [I], provides an uniform approach to fault-tolerance, 

[8]. We are particularly interested in non-uniform (i.e. all processors don’t perform the 

same algorithm) and anonymous network (i.e. no processor has a distinct identifier). This 

protocol guarantees that, regardless of the initial state, the system will eventually 

converge to the intended behavior without the need for explicit exception handler of 

backward recovery.

I . I Distributed Systems 

A distributed system in its simplest form can be presented as a set of processors 

connected over a communication medium. The processors make local computations and 

exchange messages using the communication medium. Distribution systems can be 

classified as synchronous or asynchronous. Processors can be synchronous or 

asynchronous depending on how the local computations are made. The communication 

medium can be synchronous or asynchronous depending on how the communication 

between the processors is accomplished.



1.2 Self-Stabilization

Self-Stabilization is an important concept for distributed computing and communication 

networks. It describes a system’s ability to recover automatically from unexpected 

failure. It is also an important issue for multiagent systems, as they are distributed and 

communicative systems. Self-stabilization is a framework for dealing with channel or 

memory failures. After a failure the system is allowed to temporarily exhibit an incorrect 

behavior, but after a period of time as short as possible, it must behave correctly, without 

external intervention, [22]. The practical appeal of stabilizing protocols is that they are 

simpler (i.e., they avoid a slew of mechanisms to deal with a catalog of anticipated 

faults), and they are more robust (e.g., they can recover from transient faults such as 

memory corruption as well as common faults such as link and node crashes), [12].

1.3 Related Work

The first self-stabilizing algorithms was introduced by Dijkstra[I]. Schneider[21] 

presented a survey on early research on self-stabilization.Katz and Perry [3] showed how 

to compile an arbitrary asynchronous protocol into a stabilizing equivalent. Their general 

transformation is expensive; hence more efficient (and possibly less general) techniques 

are needed. Techniques that transform any locally checkable protocol into a stabilizing 

equivalent are given in [12, 13].

In [4] Burns and Pachl presented a deterministic algorithm for uniform 

unidirectional rings of prime size and proved that no deterministic solution exists for 

rings of composite size. Itkis, Lin, and Simon [5] present a deterministic constant-space 

self-stabilizing protocol for leader election on uniform bidirectional asynchronous rings



of prime size. In their model, there is a central daemon that picks an enabled processor 

each time to make an atomic move. The chosen processor can read the states of its two 

neighbors at the same time to determine its next state.

Dolev, Israeli, and Moran [14] presented a randomized self-stabilizing leader 

election protocol that tolerates addition or deletion of processors and links. Their protocol 

uses 0(log n) bits per node. Ghosh and Gupta [15] introduced a self-stabilizing leader- 

election algorithm that recovers quickly from small-scale transient faults. Higham and 

Myers [20] gave a randomized self-stabilizing algorithm that solves token circulation and 

leader election on anonymous, uniform, synchronous, and unidirectional rings of 

arbitrary but known size, in which each processor state and message has size in 0(log n). 

Kakugawa and Yamashita [16] presented a probabilistic uniform self-stabilizing 

algorithm on uniform rings that does guarantee an upper bound between two critical 

section entries.

1.4 Contribution

Many of the previous works on the self-stabilizing mutual exclusion problem either 

assume a central daemon or assume unfair daemon for uniform unidirectional rings or 

assume unfair daemon for non-uniform bi-directional rings but use message passing 

model . We present an self-stabilizing protocol under unfair daemon for oriented bi­

directional non-uniform ring without using message passing model. In [16], Kakugawa 

and Yamashita claimed that “there is no such system when the number n of processes 

(i.e., ring size) is composite, even if a fair central-daemon (c-daemon) is assumed” and 

there was an open question to design a self stabilizing algorithm that solves the mutual



exclusion problem under an unfair distributed scheduler. We answer the open question of 

[16] and present an self-stabilizing algorithm for anonymous oriented bi-directional rings 

of any size under unfair distributed schedulers with a leader.

1.5 Outline of the Thesis 

We give definitions of some topics involved in this research and an overview of dining 

philosopher problem including survey of self-stabilizing and non self-stabilizing dining 

philosopher problem in Chapter 2.

In Chapter 3, first we give the solution to the simplified version of dining 

philosophers problem. We consider chain topology instead of ring topology and present a 

solution by DPCHAIN algorithm. Then we consider ring topology instead of chain 

topology and present a solution by DPRING algorithm. It also includes the proof of 

correctness of both DPCHAIN and DPRING algorithm.

We finish with concluding remarks in Chapter 4.



CHAPTER 2

ORIGIN OE DINING PHILOSOPHERS PROBLEM

2.1 Definitions

Mutual Exclusion; Mutual Exclusion is a fundamental problem in the area of distributed 

computing. Concurrent processes come into conflict with each other when they are 

competing for the use of the same resource. They are not necessarily aware of each other, 

but the execution of one process may affect the behavior of competing processes. Mutual 

Exclusion is a collection of techniques for sharing resources so that different processes do 

not conflict and cause unwanted interactions. Examples of such resources are fine­

grained flags, counters or queues, used to communicate between code that runs 

concurrently, such as an application and its interrupt handlers.

Consider a system of n processors. Every processor, from time to time, may need to 

execute a critical section in which exactly one processor is allowed to use some shared 

resource. A distributed system solving the mutual exclusion problem must guarantee the 

following two properties [18]:

(i) Mutual Exclusion: Exactly one processor is allowed to execute its critical 

section at any time.

(ii) Fairness: Every processor must be able to execute its critical section infinitely 

often.

One of the most commonly used techniques for mutual exclusion is the semaphore.



Starvation: Starvation is a control problem due to the enforcement of mutual exclusion. 

Consider we have three processes, P I, P2, and P3, competing for a resource R. Suppose 

each of them require periodic access to R, which is not sharable, and PI is first granted 

access to R. Then when PI exits its critical section, either P2 or P3 may be allowed 

access to R. Assume that R is allocated to P3 and PI requires access to R again. If the 

operating system alternately allocates R to PI and P3, then P2 has to wait indefinitely and 

thus experience starvation, [24].

Deadlock: Deadlocks form one of the important error categories of concurrent computer 

systems, [32]. A set of processes, or threads, is resource deadlocked if each process in the 

set requests a resource, a lock, held by another process in the set, forming a cycle of lock 

requests. In communication deadlocks, messages are the resources for which processes 

wait.

Four conditions must hold for deadlock to occur:

1. Exclusive use -  when a process accesses a resource, it is granted exclusive use of 

that resource.

2. Hold and wait -  a process is allowed to hold onto some resources while it is 

waiting for other resources.

3. No preemption -  a process cannot preempt or take away the resources held by 

another process.

4. Cyclical wait -  there is a circular chain of waiting processes, each waiting for a 

resource held by the next process in the chain.

Deadlock can occur whenever two or more processes are competing for limited 

resources and the processes are allowed to acquire and hold a resource (obtain a lock)



thus preventing others from using the resource while the process waits for other 

resources.

Scheduler: All Components of (Processors an communication links) of distributed 

systems may not share the same speed assumptions (i.e. one processor may execute its 

code speedily, while many others are very slow.). The scheduler is a way to model such 

different behaviors. A scheduler chooses processors to execute their code at a given time. 

The scheduler (also known as daemon) is said to be fa ir  if it selects every process 

infinitely many times; otherwise, it is unfair, [18].

2.2 Dining Philosophers Problem (DPP)

The problem of the dining philosophers, proposed by Dijkstra in [17], is a very popular 

example of control problem in distributed systems, and has become a typical benchmark 

for testing the expressiveness of concurrent languages and of resource allocation 

strategies. The dining philosophers problem is a simple case of general resource- 

allocation problem. The situation is modeled by a graph on the set of processors with an 

edge between two nodes if they share some resource (Each resource is thus represented 

by the edges of a complete graph connecting the processors that have access to it). Each 

processor handles a sequence of jobs; each job in the sequence of a processor has a 

resource requirement that is a subset of the resources accessible to that processor, [23]. 

Eor a job to be executed, all of the required resources must be available for exclusive use 

by its processor. This can be interpreted as saying that the processor must control the 

edges incident to it corresponding to the needed resources.



Traditionally, the problem is described in terms of the following informal scenario. 

There are n philosophers (users) seated around a table, usually thinking. Between each 

pair of philosophers is a single fork (resource). From time to time, any philosopher might 

become hungry and attempt to eat. In order to eat, the philosopher needs exclusive use of 

the two adjacent forks. After eating, the philosopher needs exclusive use of the two 

adjacent forks. After eating, the philosopher relinquishes the two forks (i.e., perform an 

exit protocol) and resume thinking.

Figure 1.1: Dining Philosophers Problem (for n=5)

2.3 Survey of Non Self-Stabilizing DPP 

The dining philosophers problem was first introduced in a specialized setting of a ring of 

five philosophers by Dijkstra in [17]. The problem was later generalized to the current 

setting of arbitrary graphs by Lynch in [19]. In this generalization, processes and 

resources are modeled by a graph with each vertex representing a process, and each edge 

representing a resource shared by the end vertices. The first work to consider the 

response time explicitly was the seminal work by Lynch [33] who considered the
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problem in the context of resource allocation. Lynch’s algorithm provides an upper 

bound on the response time of a job. The solution of dining philosophers problem 

proposed by M. Rabin and D. Lehmann [25] is fully distributed and does not involve any 

central memory or any process with which every philosopher can communicate. They 

exhibit a probabilistic solution for dining philosophers problem which guarantees, with 

probability one, that every hungry philosopher eventually gets to eat.

Styer and Peterson [38] extended and augmented Lynch’s idea [33] to give an 

algorithm that guarantees a bound on the waiting time of a job that is polynomial in the 

number of processors at some maximum distance from the processor to which job is 

assigned. B. Awerbuch and M. Saks,[23] presented a new deterministic algorithm for a 

general job scheduling problem (generalizing the drinking (and dining) philosophers 

problem) that guarantees a response time that is not much more than the square of the 

lower bound. The unique feature of their algorithm is that resources are not explicitly 

collected; rather a job at the front of the queue simply executes its job, and the properties 

of the queue ensure that no conflicting job will execute at the same time.

A few non-stabilizing solution to the diners problem with optimal failure locality are 

also known [34, 42,49]. Choy and Singh [42] investigated the fault-tolerance of 

distributed algorithms in asynchronous message passing systems with undetectable 

process failures. They considered two specific synchronization problems the dining 

philosophers problem and the binary committee coordination problem. The abstraction of 

a bounded doorway is introduced as a general mechanism for achieving individual 

progress and good failure locality. Using it as a building block, optimal fault-tolerant 

algorithms are constructed for the two problems. Sivilotti, Pike and Sridhar [34]



presented a new algorithm for the dining philosophers problem that has optimal failure 

locality. As a refinement, the algorithm can be easily parameterized by a simple failure 

model to achieve super-optimal failure locality in the average case. Tsay and Bargodia 

[49] presented an algorithm that combines the idea of a dynamic priority scheme with the 

use of a preemptive fork collecting strategy. Its response time is 0(n), where n is the total 

number of processes, if no failures actually occur or 0(n  in the presence of failures.

2.4 Survey of Self-Stabilizing DPP 

Besides the non-stabilizing solution to the diners problem, a number of stabilizing 

solutions are published as well [35, 36, 45,48]. Antonoiu and Srimani [35] proposed a 

new protocol that is id-based and does not use any shared variable as opposed to the self- 

stabilizing traditional mutual exclusion algorithm, which is anonymous and does use 

shared link registers. It is also based on read/write atomicity [26] of operations and 

operates under a distributed demon.

Beauquier, Datta, Gradinariu and Magniette [36] presented a self-stabilizing solution 

to the local mutual exclusion problem that is the extension of dining philosophers 

problem to any arbitrary network. They proposed a transformation technique that to 

transform self-stabilizing algorithms under weaker daemons into algorithms, which 

maintain the self-stabilization property, and also work under any arbitrary distributed 

daemon. Arora and Nesterenko [51] combined the stabilization and crash fault tolerance 

to present an efficient and inexpensive solution to the dining philosophers problem for a 

rich class of faults-malicious crashes.

10



Hoover and Poole [46] presented self-stabilizing dining philosophers algorithm that 

was inspired by the self-stabilizing dining philosophers algorithm presented by Gouda 

[52]. In Gouda’s solution, one of the philosophers is required to behave differently than 

the others in order to introduce asymmetry. Datta, Gradinariu and Raynal [27] presented 

a self-stabilizing solution to the mobile philosophers problem (for asynchronous model) 

that is a new version of the dining philosophers problem. They assume that the resources 

form a logical ring (as in dining philosophers problem) and the philosophers can move 

around a logical ring formed out of a dynamic network.

II



CHAPTER 3

DINING PHILOSOPHERS

3.1 The Dining Philosophers Problem 

In this section, we give a self-stabilizing asynchronous distributed algorithm for the 

Dining Philosophers Problem, in the composite model of computation. We first describe 

the problem formally, guided by the presentation given by Lynch [16].

Each philosopher Pi is represented by two processes, the user Ui, and the agent , 

which we also call Pi. The user decides when to request and return the resources, and the 

agent actually executes the algorithm. We are also given resources f l, . . . fn. In order for 

a request by Ui to be satisfied, the Pi must have use of both fi-i and fi (except that PI 

uses fn and fl), and no two philosophers may simultaneously have use of the same 

resource. We refer to fi-i and fi as the left and right resources of Pi, and to Pi-i and Pi+i 

as the left and right neighbors of Pi.

Figure 3.1, which is similar to Figure 11.2 of [16], shows the network of processes 

and resources in the case n = 5.

12
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Figure 3.1: Network of Processors and Resources for the 
Dining Philosophers Problem

• Ui has only two states, request and s a t .

• Pi can either lock or release either of its resources.

• Pi can use fj if Pi is holding fj and no other process is holding fj .

• If Ui is in state request and Pi can use both neighboring resources. Pi will be 

begin executing. Eventually the request will be satisfied, after which Ui will 

change its state to s a t .

A solution to the Dining Philosophers Problem consists of a protocol (program) for 

each agent process, such that every request by any user process is eventually satisfied. A 

configuration is said to be illegitimate if two processes are simultaneously holding the 

same resource, or if a processor is attempting to execute without holding both resources. 

We call the first situation contention, and we call the second situation premature 

execution. A configuration is legitimate otherwise.

13



3.1.1 Livelock and Deadlock 

Note that, if two processes are holding the same resource, neither can be executing. It 

could happen that two processes simultaneously lock the same resource. One of the 

processes • must release the resource if this occurs. But if both release the resource 

simultaneously, they could both lock it again simultaneously. This cycle could continue 

indefinitely, a situation known as livelock.

On the other hand, a configuration could occur where each user Ui is in state 

request, and each agent process Pi holds fi, and refuses to release it until it can lock fi+i 

also. In this situation, called deadlock, nothing can happen, and the requests are never 

satisfied.

3.2 The Chain Version of the Dining Philosophers Problem 

We first give a solution to a simplified version of the Dining Philosophers Problem, 

where the topology is that of a chain rather than a ring. We still have philosophers P I , . . .  

Pn, with user processes UI . . .Un, but we have n + I resources, namely fO, fI . . . fn, as 

shown in Figure 3.2. Our solution is a distributed algorithm in the composite model of 

computation. Each process has shared variables that can be read by its neighbor 

processes.

14



Figure 3.2: Network of Processors and Resources for the Chain 
Dining Philosophers Problem

We write:

User(Pi) = Ui 

Left(Pi) = Pi - 1  

Right(Pi) = Pi+i 

Variables of DPCHAIN:

P.flag G {A ,B}. This variable can be read by P’s neighbors.

P.state G {waiting, executing, idle}. This variable can be read by User (P), but not 

by P ’s neighbor agents.

Functions of DPCHAIN:

Define reverse (A) = B and reverse(B) = A.

Holds_Left(P) = P is holding its left resource.

Holds_Right(P) = P is holding its right resource.

L eft_F ree(P ) =  no p rocess is  h o ld in g  P ’s le ft resource.

Right_Free(P) = no process is holding P ’s right resource.

reverse(P.flag) if P = PI

Left_Nbr_Flag(P) = -<

Left(P).flag otherwise

15



p.flag if P = Pn

Right_Nbr _Flag(P) = -<

 ̂ Right(P).flag otherwise

Left_Enabld(P) = Left_Nbr_Elag(P) P.flag 

Right_Enabld(P) = Right_Nbr_Elag(P) = P.flag 

Has_Tokens(P) = Left_Enabld(P) A Right_Enabld(P)

Error (P) = (Holds_Left(P) A -iLeft_Enabld(P)) V

(Holds_Right(P) A -iRight_Enabld(P))) V

((P.State = executing) A (-<Holds_Right(P) V -<Holds_Left(P))) V

((P. State = idle) A (Holds_Right(P) V Holds_Left(P)))

Macros of DPCHAIN:

Lock_Right(P): P locks its right resource.

Lock_Left(P): P locks its left resource.

Release_Right(P): P releases its right resource.

Release_Left(P): P releases its left resource.

Release_Tokens(P): P.flag <— reverse(P.flag).

The Elags A and B, and virtual tokens. Since livelock is caused by different 

processes simultaneously locking the same resource, we can avoid that problem by a 

scheme which enables only one process to lock a resource at any given time. We use the 

concept of a token, where possession of a token enables a process to lock resources.

In DPCHAIN tokens are virtual. There is no variable called “token” in our code. 

Instead, we implement tokens by the use of a shared variable P.flag for each process P. 

The value of P.flag is always either A or B, and a process P “has its right token” if P’s 

flag is the same as that of its right neighbor (if it has a right neighbor) and P “has its left

16



token” if P ’s flag is different from that of its left neighbor (if it has a left neighbor). By 

default, PI always “has its left token” and Pn always “has its right token.” By this simple 

method, using only one bit per process, we guarantee that no two adjacent processes have 

both both of its tokens, while simultaneously guaranteeing that at least one process in the 

chain has both of its tokens.

Clauses and Priorities: The third column of each action given in Table 3.1 consists of a 

list of clauses, each of which is a Boolean expression over the variables and functions 

which are computable by a process P. All of those clauses must be true for the action to 

be enabled. Priorities are also assigned in Table 3.1. The guard of each action contains 

the unwritten clause that no action whose priority number is lower is enabled. For 

example, if Error (P) holds, then no action other than Action A1 is enabled.

The Program: The algorithm DPCHAIN is almost anonymous, i.e., all processes have 

the same program, except for the two end processes of the chain, whose programs are 

very slightly different, due to the slightly different definition of Left_Enabld for PI and 

Right_Enabld for Pn.

17



Table 3.1: Actions of DPCHAIN

AI 
priority I

Detect
Error

Error (P)

A2 
priority 2

Read
Request

P.state = idle 
User(P).state = request

A3 
priority 2

Read
Satisfaction

P.state ^ idle 
User(P).state = sat

A4 
priority 3

Release
Tokens

P.state = idle 
Has_Tokens(P)

A5 
priority 3

Release
Left

-iHas_Tokens(P) 
P.state ^ executing 
Holds_Left(P)

A6
priority 3

Release
Right

-iHas_Tokens(P) 
P.state ^ executing 
Holds_Right(P)

A7 
priority 3

Lock
Left

P.state = waiting
Has_Tokens(P)
Left_Free(P)

A8
priority 3

Lock
Right

P.state = waiting
Has_Tokens(P)
Right_Free(P)

A9
priority 3

Start
Execution

P.state -  waiting 
Has_Tokens(P) 
Holds_Left(P) 
Holds_Right(P)

ReIease_Left(P) 
ReIease_Right(P) 
P.state <— idle

► P.state <— waiting

► P.state <— idle 

Release_T okens (P) 

• ReIease_Left(P)

 ̂Release_Right(P)

► Lock_Left(P)

► Lock_Right(P)

P.state <— executing 
ReIease_T okens(P)

18



3.3 Proof of Correctness of DPCHAIN

Lemma 3.1:

(a) From an arbitrary configuration, the network will reach a legitimate configuration 

within one round.

(b) From a legitimate configuration, the network will never reach an illegitimate configu­

ration.

Proof. If the configuration is illegitimate by contention, i.e., two processes simul­

taneously hold a resource, within one round, at least one of these processes will notice the 

contention and release the process by executing Action A I. Thus, there will be no more 

contention after one round has elapsed. If the configuration is illegitimate by premature 

execution of some P, then P will execute Action A I, returning to the state idle. No action 

of DPCHAIN can cause a new contention or premature execution to occur, so the system 

will never enter an illegitimate configuration from a legitimate configuration. Henceforth, 

we will assume that the network is always in a legitimate configuration.

Pseudo-Time. We define an integral function x (P) for all processors P as follows:

0 if i -  1

X (Pi) = ^  X (P i-1 ) -  1 if i > 1 and Left_Enabld(Pi)

X (P i-1 ) + 1 otherwise

Remark 3.1 Eor any I < i, j < n, Ix (Pi) -  x (Pj)l < Ii -  jl

Let Num(P) be the number of times that P has executed Release_Tokens since the 

network was initialized. Let Ai = Num(Pi) -  Num(PI) -  Vi x (Pi).

Lemma 3.2 Eor any I < i < n. Ai is constant.
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Proof. Whenever Pi executes Release_Tokens, Num(Pi) increases by 1 and r (Pi) 

increases by 2. Whenever PI executes Release_Tokens, Num(Pl) increases by 1 and r 

(Pi) decreases by 2.

n
Let T = >4 n ( n - l ) +  n Num(Pl) + V2 Z  r (Pi) (3.1)

i=2

Remark 3.2 T is an integer, and nNum(Pl) < T < nNum(Pl) + V2 n (n -l)

Lemma 3.3 During any given step, T increases by the number of processes that execute 

Release Tokens during that step.

Proof. Execution of Release_Tokens(Pi) causes r (Pi) to increase by 2 if i > 1, and hence 

causes T to increase by 1. Execution of Release_Tokens(Pl) causes Num(Pl) to increase 

by 1 and causes r (Pi) to decrease by 2 for all i > 1, and hence causes T to increase by 1. 

Lemma 3.4 Starting from any configuration, T eventually increases.

Proof. Pick i such that r (Pi) is minimum. Then Has_Tokens(Pi), which implies that Pi 

will eventually executes Release_Tokens, by executing Action A4 or A9. By Lemma 3.3 

we are done.

Lemma 3.5 Starting from any given configuration, for any 1 < i < n. Pi eventually 

executes Release_Tokens.

Proof. By Lemma 3.4, T increases without bound. By (3.1), Num(Pl) increases without 

bound, since the other two terms of the right side are bounded.

Num(Pi) = Num(Pl) + V2 x (Pi) + Ai by the definition of Ai, x (Pi) > - i, and Ai is constant. 

Thus Num(Pi) increases without bound.

Lemma 3.6 If User(P).state = request , P.state ^ executing, and Has_Tokens(P), then P 

will eventually execute Action A9.
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Proof. By Lemma 3.5, P will execute Release_Tokens. Since P cannot execute Action 

A4, it must execute Action A9.

Theorem 3.1 The algorithm DPCHAIN is correct.

Proof. If a process receives a request from its user, then, by Lemma 3.6, it must 

eventually execute Action A9, after which it must eventually complete that execution.

3.4 The Algorithm DPRING 

We now adapt the algorithm DPRING to the ring topology, as described at the beginning 

of this chapter. If we use the same code as DPCHAIN, deadlock can occur.

Note that in DPCHAIN, both end processes, PI and Pn, have programs that are 

slightly different from the middle processes, P2, . . . , Pn-i. We will do the same for 

DPRING. The difference is that in DPRING the end processes are neighbors, and so we 

must ensure that they do not execute simultaneously.

As in DPCHAIN, we let each process has two virtual tokens, one that it shares with 

its left neighbor, the other with its right. Each middle process has just one flag, and it uses 

the same rules as DPCHAIN to decide whether it holds none, one, or both of its tokens. 

Each end process has two flags, P.left_flag and P.right_flag. Pl.right_flag and Pn.left_flag 

are their “normal” flags, which are used to determine whether they hold the resources 

they share with their middle neighbors. The other flag, Pl.left_flag or Pn.right_flag, is 

used by the end process to decide whether it holds the “end token,” i.e., permission to use 

the end resource. If both end processes’ end flags are equal, Pn has the end token. If they 

are different, PI has the token.
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As long as neither end resource has a request, the end token shuttles endlessly back 

and forth between the end processes. Each time an end process has the end token, it 

checks to see whether it has its other token and also whether its status is ’’waiting.” If 

both are true, it keeps the end token and waits, if necessary, until its middle neighbor (P2 

or Pn-1) has finished executing, and then locks both resources and starts executing and 

releases both tokens by reversing both flags. In all other cases, it immediately releases 

the end token by releasing just its end flag.

An end process has more variables than a middle process, but it allow their 

neighbors to see its variables selectively in such a way that, to its middle neighbor, the 

end process appears to be just another process. Thus, P2 sees PI.right but not PI.left , 

while Pn-i sees Pn.left but not Pn.right.

Each middle process runs exactly the same code as a middle process of DPCHAIN. 

In fact, there is no need for the process to even know that it is running DPRING instead 

of DPCHAIN. Eor that reason, we simply use Table 3.1 for the actions of a middle 

process.

The Deadlock Problem. There is a deep mathematical reason that it is difficult for an 

asynchronous algorithm on the ring to avoid deadlock. This has to do with the fact that 

the topology of the ring is not simply connected, i.e., it has a non-contractible cycle. (The 

same kind of problem arises some certain other distributed problems on any non-simply 

connected topology, such as construction of a synchronizer.)

If we attempt to use a strict analog of DPCHAIN on the ring, deadlock may result. 

The key to resolving this problem is to break the cycle in some way. We do this by
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designating PI and Pn to be end (or leader ) processes, with codes that differ from that of 

the normal processes, P 2 , . . . Pn-i.

We do this by assigning colors to the tokens. The normal tokens that shuttle back 

and forth between the normal processes we assign the color 0. the one end token that 

shuttles back and forth between PI and Pn, we assign the color 1.

The tokens have different priorities. If a process has a token of color 0, it holds it 

until it has the other token. But if a process (always an end process) needs tokens of both 

colors, and it has a token of color 1 but not the token of color 0, it releases the token of 

color 1 even if its state is waiting. This scheme prevents deadlock.

The scheme can be extended to other topologies by having more colors, although 

that is beyond the scope of this thesis.

3.4.1 Formal Definition of DPRING 

We let PI, . . . , Pn be the agent processors, and Ui = User(Pi) the corresponding user 

processors. We assume a ring topology, i.e.. Pi and Pi+i are adjacent for i < n, and Pn and 

PI are adjacent. Each Pi has the same code, except for PI, which is the leader .

The code for PI is given in Table 3.2. We have carefully designed DPRING so that, 

from the viewpoint of any process other than the leader, it is identical to DPCHAIN. 

Thus, the code for Pi, for i > 0 is given in Table 3.1

We write:

User(Pi) = Ui

" Pn if i = 1

Left(Pi) = i

^  Pi-1 otherwise
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PI if i  = n

Right(Pi)

Pi+i otherwise

Variables of DPRING:

P.flag G {A,B} if P G {P2, . . . ,  Pn-1}. This variable can be read by P’s neighbors. 

P.left_flag G {A,B} if P G {PI, Pn}. This variable can be read by Left(P). 

P.right_flag G {A,B} if P G (PI,  Pn}. This variable can be read by Right(P).

P.state G (waiting, executing, idle} This variable can be read by User(P), but not 

by its neighbor agents.

Functions of DPRING:

Holds_Left(P) = P is holding its left resource.

Holds_Right(P) = P is holding its right resource.

Left_Free(P) = no process is holding P ’s left resource.

Right_Free(P) = no process is holding P’s right resource.

Pn.right_flag ifP  = P l

Left_Nbr_Flag(P) = ^ P 1 .right_flag if P = P2

Left(P).flag otherwise

Pl.left_flag 

Right_Nbr_Flag(P) = ^  Pn.left_flag

ifP  = Pn 

if P = Pn-1 

Right(P).flag otherwise

Left_Enabld(P) = Left_Nbr_Flag(P) ^ P.flag 

Right_Enabld(P) = Right_Nbr_Elag(P) = P.flag 

Has_Tokens(P) = Left_Enabld(P) A Right_Enabld(P)
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-iHolds_Right(P) A -iHolds_Left(P) A (P. state = idle)

Rest (P)= V A -iLeft_Enabld(P) A -iRight_Enabld(P) if P G {PI, Pn}

-'Holds_Right(P) A -■Holds_Left(P) A (P.state = idle) otherwise 

Error (P) = (Holds_Left(P) A -iLeft_Enabld(P)) V

(Holds_Right(P) A -■Right_Enabld(P))) V

((P.state = executing) A (-■Holds_Right(P) V -■Holds_Left(P))) V

((P.state = idle) A (Holds_Right(P) V Holds_Left(P)))

Macros of DPRING:

Lock_Right(P): P locks its right resource.

Lock_Left(P): P locks its left resource.

Release_Right(P): P releases its right resource.

Release_Left(P): P releases its left resource.

Release_Tokens(P): 

if P = PI then

P.left_flag <— (Pn.right_flag)

P.right_flag <— reverse(P2.flag) 

else if P = Pn then

P.left_flag <— Pn- 1 .flag 

P.right_flag <— reverse(Pl.left_flag) 

else

P.flag <— reverse(P.flag) 

endif
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Table 3.2: Actions of DPRING for P G {PI, Pn}

B1 Correct Error (P)
priority 1 Error

B2 Read P.state = idle
priority 2 Request User(P). state = request

B3 Read P.state 9  ̂ idle
priority 2 Satisfaction User(P).state = sat

B4 Release P = P1
priority 3 Right P.state = idle

Token Right_Enabld(P)

B5 Release P = Pn
priority 3 Left P.state = idle

Token Left_Enabld(P)

B6 Lock P.state = waiting
priority 3 Left Has_Tokens(P)

Left_Eree(P)

B7 Lock P.state = waiting
priority 3 Right Has_Tokens(P)

Right_Eree(P)

B8 Start P.state = waiting
priority 3 Execution Has_Tokens(P)

Holds_Left(P)
Holds_Right(P)

B9 Shuttle P = P1
priority 4 Left Left_Enabld(P)

BIO Shuttle P = Pn
priority 4 Right Right_Enabld(P)

Release_Left(P) 
Release_Right(P) 
P.state <— idle

► P.state <— waiting

P.state <— idle

Release_Tokens(P)

Release_T okens(P)

Lock_Left(P)

Lock_Right(P)

P.state <— executing 
Release_Tokens(P)

P.left_flag <—Pn.right_flag

P.right_flag 
<— reverse(Pl.left_flag)
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3.5 Proof of Correctness of DPRÜ4G

Lemma 3.7

(a) From an arbitrary configuration, the network will reach a legitimate configuration 

within one round.

(b) From a legitimate configuration, the network will never reach an illegitimate 

configuration.

The proof is the same as that of Lemma 3.1. Henceforth, we will assume that the network 

is always in a legitimate configuration.

Pseudo-Time. We define an integral potential t (P) for all processors P as follows:

1 if i  = 1

T (Pi) = ^  T (Pi-1) -  1 if i > 1 and Left_Enabld(Pi)

T (Pi-1) + 1 otherwise

Remark 3.3 For any 1 < i, j < n. It (Pi) -  x (Pj)l < li -  ji

Let Num(P) be the number of times that P has executed Release_Tokens since the 

network was initialized. Let Ai = Num(Pi) -  Num(Pl) -  Vi x (Pi).

Lemma 3.8 For any 1 < i < n. Ai is constant.

The proof is the same as that of Lemma 3.2.
n

Let T = 14 n (n-1) + n Num(Pl) + 14 Z  x (Pi) (3.2)
i=2

Remark 3.4 T is an integer, and nNum(Pl) < T < nNum(Pl) + 14 n (n -l)

Lemma 3.9 During any given step, T increases by the number of processes that execute 

Release_Tokens during that step.

The proof is the same as that of Lemma 3.3.

Lemma 3.10 If the configuration is legitimate, then within four rounds, either Pl.left_flag
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or Pn.right_flag will change.

Proof.

Case I; Left_Enabld(Pl). We have two subcases.

Subcase La: PI.state = waiting and Right_Enabld(Pl). Within three rounds, PI will 

execute Action B8. (PI may have to execute one or both locking actions, B6 and B7, 

first)

Subcase l.b: PI.state ^ waiting or -iRight_Enabld(Pl). Then, PI is enabled to execute 

Action B9. Within one round, either PI will execute Action B9, or that action will be 

neutralized by Action B8 being enabled, reducing to subcase l.a.

Case II: Right_Enabld(Pn). Similar to Case 1.

Lemma 3.11 If P is a minimum of the function t , then P eventually executes 

Release_Tokens.

Proof. P = Pi for some 1 < i < n.

Case 1: 1 < i < n.

Subcase La: P.state = waiting. Then P will execute Action A9 within three rounds. 

Subcase Lb: P.state = idle. Then within one round, either P will execute Action A4, and 

we are done, or P will execute Action A2, reducing to Subcase La.

Subcase l.c: P.state = executing. Eventually User(P).state = sat , after which P executes 

A3, reducing to Subcase Lb.

Case 11: i = 1. Then Right_Enabld(P).

Subcase ll.a: PI.state = waiting. By Lemma 3.10, Left_Enabld(P) will hold within four 

rounds, and within three more rounds, PI will execute Action B8.
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Subcase n.b: PI.state = idle. Within one round, either Action B4 will execute, in which 

case we are done, or PI.state 4 — waiting, reducing to Subcase ll.a.

Subcase U.c: PI.state = executing. Eventually User(P).state = sat , after which PI will 

execute Action B3 followed by Action B4, and we are done.

Case III: i = n. Similar to Case II.

Lemma 3.12 Starting from any configuration, T eventually increases.

Proof. Let P be a process such that x (P) is minimum. By Lemma 3.11, P eventually 

executes Release_Token. Then, by Lemma 3.9, we are done.

Lemma 3.13 Starting from any given configuration, for any 1 < i < n. Pi eventually 

executes Release_Tokens.

The proof is the same as that of Lemma 3.5, except that we use Lemma 3.12 instead of 

Lemma 3.4.

Lemma 3.14 If User(P).state = request, P.state 9  ̂ executing, and Has_Tokens(P), then P 

will eventually execute Action A9 or B 8 .

Proof.

Case 1: P = Pi for 1 < i < n. By Lemma 3.5, P will execute Release_Tokens. Since P

cannot execute Action A4, it must execute Action A9.

Case II: P = PL Within one round, PL state ■<— waiting. After that, PI executes

Release_Tokens eventually, by Lemma 3.13. Since P cannot execute Action B4, it must

execute Action B 8 .

Case ni: P = Pn. Similar to Case II.

Theorem 3.2 The algorithm DPRING is correct.
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Proof. If a process receives a request from its user, then, by Lemma 3.14, it must 

eventually execute Action A9 or Action B8, after which it must eventually complete that 

execution.
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CHAPTER 4

CONCLUSION AND EUTURE RESEARCH 

We propose a self-stabilizing solution for non-uniform bi-directional rings under unfair 

distributed daemon without using message passing model and token circulation method. 

We present solution for composite size of ring for whieh Bums and Paehl elaim in [4] 

that there is no solution possible. Eirst we adapt DPCHAIN algorithm for ehain topology 

and then we adapt DPRING Algorithm for ring topology to make sure that both end 

proeesses don’t execute simultaneously. By this virtual token scheme we prevent 

liveloek, starvation and deadloek in ring topology without using any real token. The 

seheme ean be extended to other topologies by having more eolors, although that is 

beyond the seope of this thesis.
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