
UNLV Retrospective Theses & Dissertations 

1-1-2008 

A study of Monge matrices with applications to scheduling A study of Monge matrices with applications to scheduling 

Revanth Pamballa 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds 

Repository Citation Repository Citation 
Pamballa, Revanth, "A study of Monge matrices with applications to scheduling" (2008). UNLV 
Retrospective Theses & Dissertations. 2421. 
http://dx.doi.org/10.25669/x1wx-w90k 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized 
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/x1wx-w90k
mailto:digitalscholarship@unlv.edu


A STUDY OF MONGE MATRICES WITH APPLICATIONS TO SCHEDULING

by

Revanth Pamballa

Bachelor of Technology in Computer Science and Information Technology 
Jawaharlal Nehru Technological University, Hyderabad, India

August 2005

A thesis submitted in partial fulfillment o f the 
requirements for the

Master of Science Degree in Computer Science 
Department of Computer Science 

Howard R. Hughes College of Engineering

Graduate College 
University of Nevada, Las Vegas 

December 2008



UMI Number: 1463524

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 
submitted. Broken or indistinct print, colored or poor quality illustrations and 
photographs, print bleed-through, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1463524 

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 E. Eisenhower Parkway 

PC Box 1346 
Ann Arbor, Ml 48106-1346



Thesis Approval
The Graduate College 
University of Nevada, Las Vegas

December 01_______  ̂20 08

The Thesis prepared by

Revanth Pamballa

Entitled

A Study of Monge Matrices with Applications to Scheduling

is approved in partial fulfillment of the requirements for the degree of 

M aster o f  S c ie n c e  in  Computer S c ie n c e .

Examimiann Committee Member

Examination Committee Member

. ( /
Graduate College Faculty Representative

Examination Chmm Chair

Dean o f the Graduate College

1017-53 11



ABSTRACT

A Study of Monge Matrices with Applications to Scheduling

by

Revanth Pamballa

Dr. Wolfgang Bein, Thesis Advisor, Examination Committee Chair 
Associate Professor, Department o f Computer Science 

University o f Nevada, Las Vegas

In this study of Monge properties 1 summarize a few aspects of the rich material 

based on these properties. Monge properties are related to the theory o f convexity and 

just as convexity is important in classical Mathematics so is the theory of Monge 

properties important in Computer Science. In this thesis 1 will summarize a few aspects 

of Monge properties. 1 compare some o f the different properties and show how that they 

all go back to Gaspard Monge’s original ideas. 1 will highlight a number o f new results in 

scheduling and show how Monge properties and Monge-like properties play a role. The 

thesis will also give results that come from implementing a linear time algorithm for 

scheduling which is based on Monge properties. 1 focus especially on batching problems, 

which are important for TCP/IP acknowledgement.

The contribution of my thesis is a summary of important results regarding 

Monge as well a new implementation of a heuristic for an NP-hard scheduling 

problem. The main part of my program is a linear time subroutine which is based on 

a Monge-like property, called the “product property”.

Ill



TABLE OF CONTENTS 
ABSTRACT.................................................................................................................................. iii

LIST OF FIGURES............................................   v

ACKNOWLEDGMENTS.......................................................................................................... vi

CHAPTER 1 INTRODUCTION................................................................................................. 1

CHAPTER 2 LITERATURE REVIEW .....................................................................................3
2.1 Monge Properties....................................................................................................... 3
2.2 Examples of Common Monge A rrays.................................................................... 7
2.3 Monotone M atrix..................................................................................................... 10
2.4 Usefulness o f Monge Property for Solving Computer Science Problems 13

CHAPTER 3 APPLICATIONS................................................................................................. 14
3.1 Transportation Problem .......................................................................................... 14
3.2 Assignment Problem.................................  16
3.3 Traveling Salesman Problem..................................................................................18
3.4 All Farthest Points....................................................................................................20

CHAPTER 4 BATCHING PROBLEMS................................................................................. 22
4.1 Batching Problem.....................................................................................................22
4.2 Product Property...................................................................................................... 27
4.3 Queue-Process Algorithm.......................................................................................29
4.4 Simulated Annealing................................................................................................30

CHAPTER 5 COMPUTER IMPLEMENTATION................................................................31
5.1 Variables and Data Used in the C ode................   31
5.2 Functions Used......................................................................................................... 33
5.3 Code...........................................................................................................................35

BIBLIOGRAPHY....................................................................................................................... 49

VITA..............................................................................................................................................51

IV



LIST OF FIGURES
Figure 1. A 2 x 2 Sub-M atrix  ....................................................................................3
Figure 2. The 3- dimensional Monge Property.......................................................................6
Figure 3. Monge Matrix is Totally M onotone.......................................................................11
Figure 4. Minima in Totally Monotone M atrix .....................................................................12
Figure 5. A Divide and Conquer Approach for Row M inima.............................................13
Figure 6. The Transportation Problem................................................................................... 14
Figure 7. The Solution Matrix for the Transportation Problem......................................... 15
Figure 8. Different Positions.................................................................................................... 19
Figure 9. Different Positions....................................................................................................20
Figure 10. Farthest Points...........................................................................................................21
Figure 11. Approximation of Batching problem to Shortest Path Problem..........................26



ACKNOWLEDGEMENTS 

I am greatly thankful to my thesis advisor Dr. Wolfgang Bein, for his guidance, 

support, patience and encouragement throughout the research work. 1 will always be 

indebted to him for introducing me to Monge matrices and in giving me a greater insight 

into the concept of Theoretical Computer Science, his knowledge and passion has 

inspired me greatly and it was a great privilege working with him.

1 am fortunate to have benefited from other committee members. Dr. Ajoy K. 

Datta, Dr. Lawrence Larmore and Dr. Muthukumar Venkatesan. 1 express my gratitude 

for their support and guidance through the two years of my M.S. study.

VI



CHAPTER 1 

INTRODUCTION

Monge arrays get their name from the French mathematician Gaspard Monge 

(1746-1818) who first observed the property in the study of certain geometric problems. 

His noted memoir “Sur la théorie des déblais et des remblais" (Mém. de Facad. de Paris, 

1781), gave seminal results in the theory of the curvature of a surface. In more modem 

times in 1961 Hoffman [11] used the property to solve certain transportation problems. 

Hoffman showed that if the cost matrix satisfies the Monge property then the 

transportation problem can be solved with a greedy approach in linear time. Hoffman 

attached Monge’s name to such arrays as the underlying idea of solving the problem 

comes from the idea noticed by Monge in 1781.

After Hoffman’s work, Monge properties were not studied much until the 1980s 

when there was renewed interest and Monge properties wee studied extensively in 

Computer Science. Monge properties have been observed and used in computational 

geometry, to speed up linear programs, and in many optimization problems. Also, there 

are now many generalizations o f Monge properties and many Monge-like properties, 

w hich  are inspired by the original M onge property definition but w hich  are not identical 

to the original property. In 1996, Burkhard [10] et al. published a first survey paper on 

Monge properties specifically for



optimization problems. Regarding dynamic programming speedup there is a Ph.D. thesis 

by Park [13]

In this study of Monge properties 1 summarize a few aspects of the rich material 

based on these properties. Monge properties are related to the theory of convexity and 

just as convexity is important in classical Mathematics so is the theory of Monge 

properties important in Computer Science. In this thesis 1 will summarize a few aspects 

o f Monge properties. 1 compare some of the different properties and show how that they 

all go back to Gaspard Monge’s original ideas. 1 will highlight a number of new results in 

scheduling and show how Monge properties and Monge-like properties play a role. The 

thesis will also give results that come from implementing a linear time algorithm for 

scheduling which is based on Monge properties. 1 focus especially on batching problems, 

which are important for TCP/IP acknowledgement.

The contribution of my thesis is a summary o f important results regarding Monge 

as well a new implementation of a heuristic for an NP-hard scheduling problem. The 

main part of my program is a linear time subroutine which is based on a Monge-like 

property, called the “product property”.



CHAPTER 2

LITERATURE REVIEW

2.1 Monge Properties:

Starting with the definition for a Monge matrix;

Monge matrix: {Definition): Any m x n, where m, n eZ% matrix T is called a Monge 

matrix if it satisfies the following condition,

T[ii, ji] + T[i2,j2] < T[ii,j2] + T[i2,ji], for all 1 < ii < i2 < m, 1 < ji < j 2 < n.

/ '1

□ □
Î2—V--------□  □

\  I  I ■2 ^ i 2

Figure 1: A 2 x 2 Sub-Matrix

In Figure I, the right diagram shows a situation that could give rise to the entries 

in the matrix on the left, if  the entries come from the Euclidian distance.



Equivalently, using transitivity, the following can be used as a definition for a 

Monge matrix:

Monge matrix {Definition)-. Any m^n, where m, n e Z \  matrix T is called a Monge 

matrix if it satisfies the following condition,

T[ i,j] + T [i+ l,j+ l] < T [i,j+ l]  + T[i+1, j], where 1 < i< m , 1 < j < n .

We note that if  in the inequality above “<” is replaced by “>” then we call a 

matrix reverse Monge.

If we consider the rows ii, i] and columns ji, j] and take the elements at the 

intersection, the sum of the elements lying on the regular diagonal is always smaller than 

the sum of the elements on the reverse diagonal.

Example:

Consider the following (6 x 8) Monge array:

Ji J2

47 46 45 44 43 42 41 40

46 44 42 40 38 36 34 32

i| 45 42 39 36 33 30 27 24

44 40 36 32 28 24 20 16

i] 43 38 33 28 23 18 13 8

42 36 30 24 18 12 6 0



Take a 2x2 sub-matrix formed from by taking the elements at intersection o f the rows ii, 

i2 and columns j i j 2 .

42 27

38 13

The sum of the elements on the original diagonal = 55 

The sum of the elements on the reverse diagonal = 65.

Clearly, the sum of elements on the original diagonal is less than the sum of the elements 

on the reverse diagonal.

The Monge property can be fully characterized in the following way [4]:

Given any Monge array T[i, j]: there exists vectors a[i], b[j] and a distribution array P[i, j] 

such that:

T [ i,j]= a [ i]+ b [ j] -P [ i,j] , where i = {l,2,3,....,m}, j = {l,2,3,....,n}

and m, n G

We note that a function P: NxN — R is called a distribution function if  it satisfies

i J

P[i. j] = X  Z  Pki for some pki > 0.
k = \  /= !

The above characterization can be used to randomly generate Monge test data, by 

randomly generating pki values.

More generally, the Monge property can be defined for an ordered commutative 

semi-group (H, A, «) where the semi-group operation A is compatible with the order 

relation “«” i.e., for all a, b, c in the semi-group a « b implies c A a « c A b. See [5,6]. 

Algebraic Monge matrix (Definition): Any mxn, where m, n eZ f, matrix T is called an 

algebraic Monge matrix if it satisfies the following condition,

T [ii,ji] A T[i2,j2] «T [ii,j2] A T[i2,ji], for all 1 < ii < i2 < m, 1 < ji < j 2 <n.



If the operation “A” is replaced by the max operation we say that array T has the 

bottleneck Monge property.

Monge arrays can be defined in higher dimensions, see [8]:

Any array with dimension d > 2,

ni X ri2 X H3 X Hd is said to be Monge if it satisfies the following relation

a [ s i ,  S2, S3, . . . .  Sd] T  a [ t i ,  t2 ,13 , ' ' " Id] — **• Id] ••••Jd]

where 1 < ik < nk, 1 < jk < Ok and

Sk = min {ik, jk} and tk = max{ik , jk}

We can deduce the relation for a two dimensional Monge array from the relation for the 

d- dimensional Monge array. Figure 2 illustrates the above definition in three dimensions.

Figure 2: The 3-dimensional Monge Property

Note that in three dimensions all two dimensional planes (i.e. “all slices of the cube”) are 

two-dimensional Monge matrices.



2.2 Examples of Common Monge Arrays:

Next we present examples of Monge arrays, with short explanations showing the Monge 

property:

1. c[i,j] = i + j

c [ i j ] = i+ j

c [ii,ji] + c[i2,j2]

= ii+ji+i2+j2 = ii+j2+i2+ji = c [ii,j2]+c[i2,ji]

Here the matrix is both Monge as well as reverse Monge; this is called “flat” .

2. c[i,j]=nm -ij

c[ii Ji]+c[i2j 2] + nm - iiji + n.m -12) 2.

L.H.S = 2nm-(iij 1+12)2)

R.H.S = 2nm -(i 1)2+12)1)

iij2 + i^ji ^  iiji + i^ 2, or. ii()2-ji) < i2Ü2-ji). Given ii < l2 the property follows.

3. c[i,j]=m ax{i,j}

c[ii Ji]+c[i2,j2] = max{ii,ji}+max{i2,j2} = L.H.S 

c[i2 ,ji]+c[ii,j2] = max{i2 ,ji}+max{ii,j2 } = R.H.S 

Given i|< l2, ji< j2 we have to consider a number of cases:



Case 1:

LH S= i]+Î2 

RHS = ii+i2 

LHS = RHS

Case 2:

LHS = ii + i2 

RHS=j2 + i2 

LHS < RHS

Case 3:

LHS — j ] + i2 

RHS = j2 + i2 

LHS < RHS



Case 4:

L H S = ji+ j2  

RHS = i2+j2 

LHS < RHS

Case 5:

LHS -  ji + j2 

RHS = i2+j2 

LHS < RHS

Case 6:

LHS = ji +j2 

R H S = j,+ j2  

LHS = RHS



4. For a positive integer n, given are po, wq, p„, Wn with po=0, wo=0 and pi, wi>0, 

Pn,Wn>0, as well as 8=1.

Let Pk = and Wk = ^  = o W k= l,. . n.

Consider matrix C = c[i, j], where i = 0,...,n  j=  l,.. . ,n  with

\{w „ -w .){s  + p . - p . )  i f  i < j
C[i,j]

00 else

Proof o f Monge property: C[i, j] + C[ i+1, j+1] < C[i, j+1] + C[i+1, j]

(i,j)

( W n - W i ) ( s + P j - P i )

(iJ+ 1 )

(W n -  W i)(s+ P j+ l -  P i)

(W n -  W i+ i)(s+ P j -  P i+i)

(i+1,j+1)

(W n — W i+l)(S+Pj+l — Pi+i)

LHS- RHS = (-p j) (w j) < 0

2.3 Monotone Matrix:

A Monge matrix is totally monotone, we define this term now:

Monotone matrix (Definition): A 2^2 matrix A is called monotone matrix if A [l,l]  > 

A [l,2] implies A[2,l] > A[2,2]. An mxn matrix (where m, n e is called totally 

monotone if every 2x2 sub-matrix is monotone.

10



Obviously, a Monge matrix A is totally monotone. To see this (e.f. Figure 3) 

assume A[ii j i ]  > A[ii,j2] and A[i2 ,ji] < A[i2,j2] (for some 1 < ii < i2 < m, 1 < ji < j 2 < n). 

But this would imply A[ii, ji] + A[i2,j2] > A[ii,j2] + A[i2,ji]. However not every totally 

monotone matrix is Monge.

ii

Figure 3: Monge Matrix is Totally Monotone

11



irdn

min

min

min

min

min

min

min

min

min

min

min

min

min

Figure 4; Minima in Totally Monotone Matrix.

As a result in a totally monotone matrix row minima veer to the right as one 

travels down the rows of the matrix (see Figure 4.) Below is a totally monotone matrix. 

The row minima are shown in bold. Note that the underlined elements show that this is 

not a Monge matrix

12 66 61 75 91 75 83 93 91 98 97 98 99

74 85 84 91 94 88 89 92 90 96 95 96 97

16 48 20 85 89 43 43 56 43 89 84 57 90

14 37 32 92 93 24 24 33 24 91 33 32 88

72 81 70 84 85 69 61 70 53 72 66 52 70

29 22 19 21 20 18 16 17 14 15 13 11 12

12



2.4 Usefulness o f Monge Property for Solving Computer Science Problems:

How is Monge property useful in solving Computer Science problems?

Many of the computer science problems in real life have similar properties or 

close to sub-properties o f Monge arrays. As I will describe next, there are a number of 

applications where Monge properties play an important role. Some of these depend on the 

fact that an underlying Monge property makes a greedy approach work. Other 

applications rely on fast matrix searching. One such problem will be locating minimum 

entry in a row. If one wants to find all row minima o f an nxn matrix this will take O(n^) 

time if no special structure is known. But if  the matrix is totally monotone one can 

immediately give an 0 (n  log n) using the divide and conquer approach suggested in 

Figure 5. For this one assumes that any element of the matrix can be queried in 0(1) 

time. This is a reasonable assumption because usually the elements o f the matrix are 

given by some closed form or oracle. A more complex algorithm by Aggarwal et al. [2] 

can accomplish this in 0(n).

min

Figure 5; A Divide and Conquer Approach for Row Minima

13



CHAPTER 3 

APPLICATIONS

3.1 Transportation Problem:

One of the first problems considered under a Monge matrix is the transportation 

problem. The Transportation problem can be explained with this simple example:

a i *
•  b i

•  b2

•  b

Figure 6: The Transportation Problem

Let the set of points on the left and right represent the ports on two different 

islands. (See Figure 6.) In the transportation problem one has to ship commodities from 

the left island to the right. The a values and b values give the number of units of supplies 

on the left side and the number o f units of demands on the right side.The cost to transport 

one unit from port i to port j is Cÿ, One assumes that supply matches demand, i.e.

14



Then the transportation problem can be written by as

Z Z '(=1 j=\
min 7 , 7 CyX.j

such that

fo r i= l,...,n
y = l

= bj fo rj= l,...,m
(=1

Figure 7 illustrates the array xy; all rows and columns of a solution must add up to the 

corresponding supply and demand.

bm

Figure 7: The Solution Matrix for the Transportation Problem

Hoffman showed in bis classical result that if the cost matrix is Monge then the optimal 

solution can be obtained by assigning the Xÿ values in lexicographical order using the

15



greedy algorithm. This algorithm fills up (1,1) as much as possible, then (1,2), then (1,3), 

..., (l,m ) and then (2,1), (2,2) and so forth. This rule is also known as the “North-West 

comer rule".

Instead of continuing with this example, in the following we will consider the related 

assignment problem:

3.2 Assignment Problem:

Consider a complete bipartite graph represented by, G = (Vi U V2 , Vi x V2)

where V i= { si, , Sn} and V2 = {ti,  tm} and let Cÿ be the cost of each mapping of

i* element from Vi to element o f V2 . In the assignment problem one is to find a one 

to one mapping which has the minimum cost. A solution of the assignment problem is 

represented as n^m matrix X=(xjj) over {0,1}. The presence of a 1 at the intersection of i 

and j indicates the assigning of the i*'’ node in V] to j*  node in V2.

The problem can thus be represented as

n m

;=1 j = \

such that

^   ̂ = 1 for 1=1,...,n

<1 fo rj= l,...,m
/=!

Xij G {0,1}, i = l,....n  and j = 1,...... ,m.

Theorem: Let C be a Monge array o f dimension n x m, where n < m and Cÿ < c,k when j < 

k, then optimal solution for the Assignment Problem will be:

16



fl when i -  j
Xij = i

[0 otherwise

Proof: Let y = yÿ be the optimal solution with ykk = 1 for k = 1,....... ,i, where i is as large

as possible. If  i = n then we have the solution, now let us assume i < n.

Then we have yi+i,i+i = 0, thus there exist some index t > i+1, such that yi+i,t =1,

Now we have two cases.

Case 1 : The (i+l)-st node on the right is taken by some yj,i+i=l.

We have Ci+ij+i + cj,t<Ci+i,t +cj,i+i. Thus we can simply switch the two “crossing edges”.

Thus if we set

  11 i f  r=5=/+l or r -  j  ,s=t
= j 0 if  r= i+ \,s - t or r= j,s= i+ \

[y» eke

Then ÿ» is optimal, contradicting the optimality o f i.

Case 2: The right node (i+1) is not taken, i.e yk,i+i = 0 for all k > i+1.

There exist a h > i+1 with yi+i,h = 1. We can get another optimal solution by moving the 

right end point from h to (i+1). The new solution is:

_  [l if
y r s  = j 0 if  r=i+\,s=h

[y»

Again, we have a contradiction.

If there are as many nodes on the right as there are on the left then an optimal 

solution is simply given by

Theorem: Let C be a Monge array o f dimension n x n, then optimal solution for the 

Assignment Problem will be:

17



Xij =
1̂1 wheni = j

10 otherwise

This follows because Case 2 does not occur if  n=m.

3.3 Traveling salesman problem (TSP):

Another example where Monge properties make solutions easier is the Traveling 

salesman problem; the following is from [12].

Traveling salesman problem (TSP); Given n, where n e  R, cities and cost matrix Cnxn, 

then the traveling salesman problem is to find a tour that starts and ends at a city i , where 

1< i < n, passing through all the cities exactly once, and has a minimum overall cost. The 

following notation gives the mathematical representation of TSP:

Find a permutation such that

( X  Cj,t(i) + Cn,i) is minimized
1=1

( t(i) denotes the successor of i in the permutation.)

In general, TSP is NP-hard. But there is a dynamic programming solution for shortest 

pyramidal tour in O(n^) time if the underlying cost matrix is Monge.

Definition: A  tour t is said to be pyramidal if, t is of the form 1, i l ,  i_2, i_ 3 ,..., n, j _ l , ... , 

j_{n-r-2}), where l<i_l<i_2<i_3<.... and j_l>j_2>j_3>...>j_{n-r-2}.

Definition: A peak in a tour lambda is a city j for which both the preceding f '( j)  and 

succeeding t(j) city’s labels are less than j and a valley is where both the preceding and 

succeeding city labels are greater than j.

Theorem: If T is a Monge Matrix then there exists an optimal tour which is pyramidal 

Proof: Proof by induction on the tour o f n cities.

18



Consider a tour o f 2 cities, this is inherently pyramidal as the only possible tours are (1,

2 )o rC ^ l) .

We assume that the tour on n-1 cities is pyramidal.

Now let the tour on n cities is not pyramidal, implies that the tour T has some 

peaks (We also assume that label of city at peaks is not equal to n). Let ‘j ’ be a peak and 

let i be the location right before j and k be the location right after j. We can replace the 

segments i, j, k by i, k resulting a sub-tour, which is no longer than the original tour. This 

is because we have 

T[i,k] + T Ü ,j]<T [i,j]+T[j,k]

i k

i i

Figure 8: Different Positions

(C [i_l,j_l] + C[i_2,i_2] < C[i_l,i_2] + C[i_2,j_l] applying Monge property at the peak)

Figure 9: Different Positions

19



Now we have two sub tours one having city j only and the other t ’ having n-1 cities. Now 

let us insert the city j into the tour t ’ such that i<j<t(i), f '( j)  = i and t(j)= t(i) resulting in a 

tour t ”  which is pyramidal, the overall cost o f the tour will be no greater than the initial 

tour.

We now give a dynamic program to find a pyramidal tour.

Let H[i, j] be the shortest Hamiltonian path from i to j on cities {1,2,3...max{i, 

j}}, satisfying the condition that the Hamiltonian path passes from i to 1 in descending 

order and through the remaining cities in ascending order i.e., from 1 to j. We can 

indicate the above scheme as follows:

H(i ,j -l )  + Cj., j fori<  j-1,  

m i n  k) -H } for i = j -1,
k<i

H (i- l , j )  + Cj..,fori> j + l, 

m i n  {H(k, j) + Ci J  for i = j -H1.
k<j

The length o f a shortest pyramidal tour is given by: 

min(H[n-l,n] + t„,n-i , H[n,n-1] + Cn-i,n}.

The dynamic program can be implemented in O(n^).

3.4 All Farthest Points:

The next application is from computational geometry. The problem is to find all farthest 

neighbors in a polygon. When we take the clockwise distances o f the polygon and insert 

these values into a matrix as in Figure 10 then the matrix is reverse Monge. Thus all 

maxima can be computed in linear time.

20



4

8

C L O C  

W I S E

- 3  - 2  0

\  - 4  - 3  - 2  - 1  0

Figure 10: Farthest Points

21



CHAPTER 4

BATCHING PROBLEMS 

The main chapter of this thesis deals with batching problems from the theory of 

scheduling. The outline of the chapter is as follows. First, I consider the s-list batch 

problem. Here the job order is given, and the algorithm has to decide how to batch. The 

algorithm can be made to run in linear time because of a Monge-like property. Indeed, 

the property is stronger than the Monge property, which makes it even easier to come up 

with a linear time algorithm. It is crucial that the order of jobs is given. The problem 

where the algorithm has to find the best order is NP-hard. This problem is called s-batch 

problem. As a heuristic for the s-batch problem I will describe an approach based on 

simulated annealing: For any given order the best batching can be found in linear time. 

The simulated annealing method searches through many orders. Eventually it finds an 

order with a solution close to optimal. For each order searched by simulated annealing 

the linear s-list batch algorithm is used as a subroutine.

First I describe what a batching problem is:

4.1 Batching Problem:

Grouping a set of jobs into batches and scheduled on a single machine is a 

batching problem. Jobs belonging to same batch are processed jointly. The completion 

time of each job is the completion time of the last job batch. Each batch needs a set-up

22



time before each batch is scheduled, which is assumed to be the same for all batches. 

Since the jobs are processed sequentially, the problem we are considering is denoted as s- 

batch problem. Consider a set of jobs J = {ji} with processing times P = {p,} and 

corresponding weights W = {w,}, where i = {1,...., n} to be arranged into batches B = 

{bj} where j={l,...,m } with a minimum amount o f total processing time. The Objective 

function for s-Batch problem is the overall completion time denoted by , where C;

denotes the completion time of ji in a particular schedule. In order to find the optimum 

scheduled we have to look for a schedule that has a minimum value of the objective 

function.

Consider the following example, a 6 -job problem where processing times are 

P i = l ,  P2= 3, P3=5 , P4=7 , P5=5 , P6=4, and weights are w i= l, w: =2, wg=3, W4 =3, ws=2, 

W 6 = l .

The batching problem we are considering schedules jobs sequentially, thus 

we refer to the batching problem more specifically as s-batch problem.

s Jl J2 s J3 s J4 s J5 s J6

s J2 J3 s J4 Jl s J5 s J6

C, = 194

23



s J3 J2 s J4 s J5 s J6 Jl

][w,Ci=200

EwiCi=242

As we can observe the value of the objective function varies with different 

batches. Batching of jobs ordered according some order of precedence is known as the s- 

list batch problem. Often the precedence criteria is taken as priority which is the value of 

W.
□ i = —-  where W, and Pi are the weight and processing time of a job h respectively.

But this order does not always give the optimal solution.

I now turn to the problem where the order o f the jobs is given, i.e. the s-list batch 

problem. In this case the problem can be reduced to a special case o f shortest path 

problem:

Consider an arbitrary job sequence S = J 1J2J3J4  Jn for a given batching

problem, the goal is to minimize the overall processing time represented by the relation

E =  2^

Solution for an s-batch problem will be o f the form

B = Jo S J i i  J i 2 - l S J i 2  J i3- l S ..................... S J k ............ Jn

Where k is the number o f batches and n is the number o f jobs.

The completion time of each batch is given by

24



>j+l

Pj = s + X P k
k=ii

The relation for the shortest path can be represented for the batching problem as

E (B )  =  ± a j ,
1 = 1

The above equation is equal to the processing sum of the processing times of all the 

batches,

j= \  y v = , j  y  v = / j /

In order to solve the batching problem, we have to find k and a series o f indices i,, i2,

i3,..... , in, so as to minimize the objective function. This problem can be reduced to

shortest path problem of the form:

B  =  Jo S J ii  Ji2-lSJi2 J i3-lS  SJk Jn

each batch represents a path, whose cost can be given by the relation

Cij =  ( W n - W i ) ( s  +  P j - ? 0

Cij is the cost of the path between Ji and the batch containing Jj+i Jj.i

Solution for a list batch problem can be reduced to that of a shortest path algorithm, 

which has the following cost equation for a path between two jobs i and j.

Cij =  (W n - W i)(s  +  Pj - Pi)

where W n=2]w ,. Wi = 22'^k ,
1 = 0  k = 0

s is the set up time.

k= 0 k = 0

25



Cij are the costs o f the paths between the first job o f each batch f ,  f+ i, , Jk-i.

Figure 11: Reduction of Batching Problem to a Shortest Path Problem

In order to find the optimum schedule we just have to find the minimum path from 1 to n, 

in which a new batch is formed at each node on the path. For example, if  we have a 

minimum cost path as 0-2-3-4-5, then the jobs will be batched as following:

s Jl J2 s J3 s J4 s J5

Let E[A:] represents the minimum cost of the path from node 0 to ‘k ’, then objective 

function for the S-Batch problem would be to find minimum of E[«].

E[^] =
[min{E[i] + Ci|j }, when k # 0 

[O, when k = 0

where Cik is the cost of the path from i to k.

26



E[0]+Coi

E[0]+C o2 E[1]+C,2

E[0]+ Co3 E [l]+  C23 E[2]+ C23

E[0]+ Co4 E [1]+C ,4 E[2]+ C24 E[3]+ C34

E[0]+Con E [l]+  Cln E[2]+ C2n E[3]+ C3n E[n-l]+Cn-ln

As we can see that the cost matrix is the lower half of a nxn matrix, and to find the 

minimum cost path in each row and to find E[n] has a worst case of O(n^). In order to 

improve the algorithm we use the inherent Monge property of the cost matrix.

4.2 Product Property;

In fact the matrix has a stronger property. The cost matrix also represents a special case 

of shortest path problem which is:

C[i, 1] -  C[i, k] = f(i) h(k,l), where h(k,l) > 0 V i<k<l 

where f(i) is a non-increasing function.

The mentioned property is called the Product property. Following is the proof that the 

above property satisfies the Monge property:

We know, the Monge property is

C[i,j] + C[k,l]< C[i,l] + C[k,j]

Now by rearranging the terms we get,

C [i ,j] -C [ i , l ]< C [k ,j ] -C [k ,  1]

27



By applying product property we get, 

f( i)h (l,j)< f(k )h (l,j)

By canceling out the common terms we get, 

f(i) < f(k) which is given.

Hence the C is a Monge matrix.

Our matrix

Cij =  (W n - W i)(s  +  Pj - Pi) 

has the product property:

C[i, 1] -  C[i, k] = (Wn -  W i)(s  +  P, - P i) - (Wn -  W i)(s  +  Pk - Pi)

= ( W n - W i )  (Pi - P k )  = f(i)h(k,l)

with

f(i) = (Wn -  Wi) non-increasing,

and

h(k,l) = (P,  - P k ) > 0 .

We now describe an algorithm which exploits this property and is linear time. 

The algorithm is taken from [3] and [9].

Let

F(i) be the length of a shortest path from i to n for i<n.

Set

F {i,k) = C; J. + F{k) fo r  i < k.

Furthermore define

y ( k , \ )  = k<i.
&(&,/)

Without proof we note:

28



Fact 1: Assume that V(k,l) < f(i) for some l<i<k<l<n. Then F(j,k) < F(j,l) holds for all 

j= l,...,i.

Fact 2: Assume that V(i,k) < V(k,l) for some l<i<k<l<n. Then for each j= l,... ,i  we have

F (j,i)< F (j,k )o rF (j,l)< F (j,k ).

The proof of the two facts is in [9].

4.3 Queue-Process Algorithm:

Then the following algorithm “Queue-Process” finds the shortest path in linear time [3,8]. 

Algorithm Queue-Process

1. g  :={«}; F(«) := 0;

2. FOR i := n-\  DOWN TO 1 DO 

BEGIN

3. WHILE head(g) ^ tail(g) and/ ( / )  > V  (next(head(g)), head(g)) DO

delete head(g) from the queue;

4. SUCC(i) :=head(Q);

5. j : = S U C C ( i ) ;

6. F  ( 0  := c,y +  F  ( /j;

7. WHILE head(g) ^ tail(g) and V  (/, tail(g)) < V  (tail(g), previous (tail(g))) DO

delete tail(g) from the queue;

8. Add i to the queue 

END

In the next chapter I describe my implementation o f this algorithm. The program is very 

fast. If  the order of the jobs is given, then the optimal batching can be generated fast even 

for a very large number of jobs.

29



However, if  we also are allowed to change the job order, then the problem is NP- 

hard. We use simulated annealing to search the space of all orders; for each specific order 

we use the program Queue-Process as a subroutine.

4.4 Simulated Annealing:

I will now describe simulated annealing (SA). SA is inspired by annealing in metallurgy, 

a technique involving cooling of a material to increase the stability o f formed metal. One 

starts with some permutation as the current solution (cur). Then one generates a neighbor: 

A neighbor is any permutation that can be obtained by swapping two elements o f the 

permutation. If the new permutation (new) has a lower value, then we accept that solution 

as the new current solution, but if  it is worse (larger) it is not always rejected. It is 

accepted with probability [accept new] given below. The probability P̂  ̂ is

depended on the “temperature” Ck. Initially, a high value means that worse solutions are 

accepted with relatively large probability. As the simulation progresses the temperature is 

lowered and acceptance probability for worse solutions is smaller.

P̂  [accept new] -
1 i f  f  (new) < f  (cur)

n „ e w )  y
Ck

The different values of k are called the phases of the simulation.

30



CHAPTER 5

COMPUTER IMPLEMENTATION

5.1 Variables and Data Used in the Code:

The objective o f the code is to find a minimum schedule by continuously 

improving the Objective function. The user has only to enter the number of jobs and the 

required data i.e. the processing times and weights are produced using myrand() function. 

We are generating random processing times in the range (.001 -  1.5) and random weights 

in the range of (1-9). The initial order in which the jobs are to be processed/scheduled is 

taken as the sequential order from (1-n), and the value of the Objective function as a 

result of the scheduling the jobs in the initial order will be initial minimum. As was 

discussed earlier we use “Simulated Annealing” to arrive at a better solution. In order to 

process the jobs using simulated annealing we will need a constant that is reduced by a 

factor after each step. We generate the Constant (Temperature in Simulated Annealing of 

metals) by taking the square root o f the number of jobs, this constant is reduced to 70% 

percent at each stage. The number of trials is set to 200 for each constant, at each 

iteration we swap elements o f the two randomly generated indexes and jobs are 

processed / scheduled in the n ew ly  generated order. The cost o f  the path for the current 

schedule is compared to the previous value and is accepted if it is found to improve the 

Objective function. Once the jobs are scheduled, the order is changed to the one which 

has better schedule. If  the new schedule does not improve the objective function, new

31



schedule is discarded and we go back to the schedule which has previous best. The 

exception for the above rule is that we sometimes accept the worse value based on the 

following relation.

Prob = 100* e(Current_minimum _ value-Worse_value/C) > myrand(l,100)

By accepting the worse values sometimes we are avoiding the risk of getting trapped in 

the local minima, in order to find the global minima, which is the optimum value for the 

Objective function in our case. This process is continued till we reach a threshold value 

for the constant which we have set as 10% of the initial value for the constant.

Integer pointer pw: Stores the processing times and corresponding weight for the given 

jobs.

Integer pointer PS; Stores the partial sums o f processing times and weights.

For example PS[i][l] = ^ /»w [y ][l] and PS[i][2] =
y=0 y=0

Integer pointer PERM: Stores the order in which jobs have to be considered.

NUM TRIAL: Number of trials for each constant.

C: We take square root of the number of jobs to be scheduled and this value is reduced to 

70% once we repeat the process o f finding the minimum schedule for set number of 

times.

Float pointer F: Stores the minimum value in each row and the column number in which 

the minimum is found.

Character pointer LIST: Stores the T for (True) and F for (false), a T in ith position 

indicates that the job at that position has a setup time before that and a F indicates that it 

does not have a set up time before it.

32



Structure indexq: track is used to maintain a circular queue to calculate the minimum of 

each row.

5.2 Functions Used:

Function ij_to_k(int , int, int): Function ij_to_k() is used to dynamically access the 

elements of an array. Function ij to k() takes in three integer arguments i, j and n, where 

i and j give the position of an element in the array and n is the number of columns in the 

array. It returns an integer index which gives the position o f the current element an array 

if  stored in a single dimension.

Function myrand(int, int): mrand() generates a random integer between the two integer 

arguments passed to it.

Function costij(int, int, int): costij() calculates the cost o f the path from i to j. We assume 

setup time s=l.

Function compf(): compf() calculates the value of the equation f(n) = W[n]-W[i], where 

n is the number of jobs , W[n] is the sum of weights of n jobs and W[i] is the sum of the 

weights o f jobs from 1 to i.

Function compvQ: compvQ calculates the value o f the equation v=(F(k)-F(l))/(P[l]-P[k]), 

where F(k) and F(l) are the minimum values in the kth and 1th row respectively and P[l] 

and P[k] are the partial sums o f the processing times, i.e, P[k]= P[n]-P[k].

Function add(int, int): add() adds elements to the circular queue. A queue is used as a 

support to find minimum value in a row. It takes two integer arguments one is the column 

number to be added and the other number o f jobs.

Function newperm(int, int): newpermQ swaps two elements of an array.

33



Function altlist(); altlist() calculates the minimum value in each row. In order to do this it 

starts with a for loop from n (number of jobs) until 0. The first while loop deletes head of 

the queue until it satisfies the condition: head(Q)!=tail(Q) and f(i)>=v(next(head(Q)), 

head(Q)). Second while loop deletes the tail of the queue if it satisfies the condition: 

head(Q)!=tail(Q) and v(i, tail(Q)) <= v(tail(Q), previous(tail(Q))

Function Quick_sort(int,int): Quick_sort() is used to sort the processes in a priority order 

which is non-increasing order o f wi/pi, where w, is the weight and p, is the processing 

time.

Function partition(int,int,int): partiotion() creates a partition by taking the first element in 

the structure array pw, and finding the right position in the array.

Function main(): On running the following code it asks for the number o f jobs to be read 

and rest o f the data for processing time and corresponding weights will be generated 

automatically. Initial temperature is set to the square roof of the number jobs given and 

number o f trials for each reduction o f temperature is set as a constant value for 200. 

Initial order of the jobs is set as (1, 2, 3,.... , n) in that order. So initial batch with that 

order is calculated, the initial minimum and batch are set. Now, while the initial Constant 

value C is greater than threshold we look improve on the initial minimum value obtained.

The way we improve on the solution is as follows: We take the initial order, 

generate two random indices and swap elements at these places to generate a new order 

for the jobs.

The jobs are then processed in the new order and a new minimum value and a new batch 

is calculated. The new value calculated is then compared to the current minimum value 

and

34



5.3 Code;

#include<stdio.h>

#include<iostream.h>

#include<stdlib.h>

#include<math.h>

//Number of trials for each constant 

const int NUM_TRIAL=200;

//integer pointer for the order of jobs 

int *PERM;

//float pointer for processing times, weights and partial sums 

float *pw, *PS; 

int *E min, *work;

//float pointer to the moge array 

float *F;

//Character array for the final schedule 

char *LIST;

//structure to calculate the minimum in each row 

struct indexq { 

int *col; 

int head, rear, n;

} track;

struct processtim eweight {

35



float time; 

float weight; 

float priority;

};

processtime weight *pw;

//function ij to k () returns the location of the current element in the given array 

int ij_to_k(int i, int j, int n)

{

return i*n+j;

}

//function myrand() returns a random number between lower and upper integers sent 

int myrand(int lower, int upper)

{

return (lower+rand()%(upper-lower+1 ));

}

// function costijQ computes cost o f path from i to j 

float costij(int k, int 1, int n)

{

int s=l;

retum((PS[ij_to_k(n, 2, 2)]-PS[ij_to_k(k, 2, 2)])*(s+PS[ij_to_k(l,l, 2)]-PS[ij_to_k(k, 1, 

2)]));

}

// function compf() computes the value of f(i) = (W[n]-W[i])

36



float compf(int i, int n)

{

return ((PS[ij_to_k(n, 2, 2)] - PS[ij_to_k(i, 2, 2)]));

}

// function compv() computes the value o f v=(F(k)-F(l))/(P[l]-P[k]) 

float compv( int prevhead, int head)

{

return ( ( (F[ij_to_k(prevhead, 1 ,2 )] -  F[ij_to_k(head, 1, 2)])/(PS[ij_to_k(head, 1, 

2)]-PS[ij_to_k(prevhead, 1, 2)])));

}

//function add() adds a new element to the queue 

void add(int i, int n)

{

int t;

t = (track.rear+l)%n; 

if(t == track.head) 

cout«"\nQ ueue Overflow\n"; 

else 

{

track.rear=t;

track.col[track.rear]=i;

}

}

37



/*Function for partitioning the array*/ 

int Partition(int low,int high)

{

int i; 

float

high_vac=0,low_vac=0,pivot=0,pivot_time=0,pivot_weight=0,high_time=0,high_weight 

=0,low_time=0,low_weight=0; 

pivot=pw[low] .priority; 

p ivo ttim e = pw[low].time; 

p ivotw eight = pw[low]. weight; 

while(high>low)

{

high_vac=pw[high] .priority; 

high time =pw[high].time; 

h ighw eight = pw[high] .weight; 

while(pivot>=high_vac)

{

if(high<=low) break; 

high-;

high_vac=pw[high] .priority; 

high_time=pw[high] .time; 

h ighw eight = pw[high]. weight;

}

38



pw[low] .time=high_time; 

pw[low] .weight=high weight; 

pw[low] .priority=high vac ; 

low vac=pw[low] .priority; 

low time = pw[low].time; 

low weight =pw[low].weight; 

while(pivot<low_vac)

{

if(high<=low) break;

I0W + + ;

low_vac=pw[low] .priority;

low time = pw[low].time;

low w eight = pw[low]. weight;

}

pw[high].time=low_time; 

pw[high]. weight = low w eight; 

pw[high] .priority = low vac;

}

pw[low] .priority=pivot; 

pw[low].time = p ivottim e; 

pw[low] .weight = pivotw eight; 

return low;

}

39



void Quick sort(int low,int high)

{

int Piv index,i; 

if(low<high)

{

P iv_index=Partition(low,high) ;

Quick_sort(low,Piv_index-1 ) ;

Quick_sort(Piv_index+1 ,high) ;

}

}

//function altlist() calculates the minimum in each row of the array 

void altlist(int n){ 

int i;

track.n=n;

track. head=track. rear=0 ;

PS = new float[n*2+n];

F = new float[n*2+n];

PS[ij_to_k(0, 1, 2)]= 0;

PS[ij_to_k(0, 2,2)]=0; 

track.col = new int[n+l];

for(i=l ;i<=n ; i++)//calculating partial sums of weights and processing times

{

PS[ij_to_k(i, 1, 2)]= PS[ij_to_k(i-l, 1, 2)]+

40



pw[ijJo_k(PERM [ij_to_k(i,l,l)], 1, 2)]; 

PS[ij_to_k(i, 2, 2)] = PS[ij_to_k(i-l, 2, 2)]+

pw[ij_to_k(PERM[ij_to_k(i,l,l)], 2, 2)];

}

track.col[track.head]=track.col[track.rear]=n;

F[ij_to_k(n, 1, 2)]=0; F[ij_to_k(n, 2, 2)]=0;

//code to find the shortest path

//First while loop deletes head o f the queue until it satisfies the condition: 

head(Q)!=tail(Q) and f(i)>=v(next(head(Q)), head(Q))

//Second while loop deletes the tail o f the queue if it satisfies the condition: 

head(Q)!=tail(Q) and v(i, tail(Q)) <= v(tail(Q), previous(tail(Q)) 

for( i -  n-1; i>=0; i—)

{

int temp= track.head+1 ;

while (track.col[track.head] != track.col[track.rear] && compf(i, n) >= 

compv( track.col[temp], track.col[track.head])) 

track.head = (track.head + l)%n; 

int j = track.col[track.head];

F[ij Jo_k (i, 1,2)] = costij(i, j, n) + F[ij_to_k(j, 1, 2)];

F[ij_to_k(i, 2 ,2 ) ]= j;  

int temp2 = track.rear-1 ;

while(track.col[track.head] != track.col[track.rear] && 

compv(i, track.col[track.rear]) <=

41



compv(track.col[track.rear], track.col[temp2])) 

track.rear = (track.rear-1 )%n; 

add(i, n);

}

}

//function batch() batches the jobs based on the minimum array calculated 

void batch(int n) { 

int i;

float temp;

LIST = new char[n4-10]; 

i=l;

temp = F[ij_to_k(0,2,2)];

LIST[ij_to_k(0,l,l)]=T’;

while(i<n)

{

if(temp!=F[ij_to_k(i,2,2)])

{

LIST[ij_to_k(i,l,l)]=T;

temp=F[ij_to_k(i,2,2)];

}else

{

LIST[ij_to_k(i,l,l)]='F;

}

42



i++;

}

}

//function newperm() swaps two elements in the PERM[] to generate a new order 

void newperm(int index_i,int index j){  

int temp = PERM[index_i];

PERM [index i] =PERM [index j  ] ;

PERM [index J  ]=temp ;

}

int main(){ 

float C;

char anotherorder;

int n,i=0,j=0,index_i=0,indexJ=0;

int no_of_trials=0;

float cur value;

char *cur_batch;

int *cur_perm;

float threshold;

c o u t« " \n  Enter number of jobs"; 

c in » n ;

no_of_trials = N U M TRIA L;

C = sqrt(n);

43



threshold=.l*C; 

cur batch = new char[n+10]; 

cur_perm = new int[n+10]; 

pw = new float[n*2+n];

PERM = new int[n+10]; 

srand(time(NULL));

pw[ij_to_k(0, 1, 2)]=0; pw[ij_to_k(0, 2, 2)]=0; 

for(i=l; i<=n ;i++)

{

pw[ij_to_k(i, 1, 2)]= myrand(l, 1500)/1000; 

pw[ij_to_k(i,2,2)]=myrand(l,9);

}

PERM[ij_to_k(0,l,l)]=0;

for(i=l;i<=n;i++)

PERM [ij_to_k(i,l,l)] = i;//intial order o f the jobs

altlist(n);

batch(n);

cu rva lue  = F[ij_to_k(0,l,2)];

co u t« " \n  Initial minimum value is "« c u r_ v a lu e « " \t Initial list is: 

cur_perm[ij_to_k(0,1,1 )]=0; 

for(i=0;i<n;i++){ 

cout«LIST[ij_to_k(i, 1,1)];

cur_perm[ij_to_k(i+1,1,1)] = PERM[ij_to_k(i+1,1,1)];

44



}

delete track.col; 

delete PS; 

delete F; 

delete LIST;

//Repeat the process till the constant reaches a threshold value 

while(C > threshold) {

cout«"*********************The current value o f the constant is:

for(i=0;i<no_of_trials;i++)

{

index_i=myrand(2 ,n) ; 

do{

index J=m yrand(2 ,n) ;

} while(index J  ==index_i) ; 

newperm(index_i,index J ) ;  

altlist(n); 

batch(n);

float outcome 1 = 100 * exp(((cur_value-F[ij_to_k(0,l,2)]))/C); 

float outcome2 = prob(l,100);

// cout «  endl;

// cout «  "here" «  endl;

//cout «  100 * exp(((cur_value-F[ij_to_k(0,l,2)]))/C) «  endl;

45



// cout «  "here" «  endl; 

if(F[ij_to_k(0,1,2)]<=cur_value) { 

cout «  endl;

cout «"IM PR O V ED  SOLUTION-------------------------------------------

«  endl;

cou t«"\nT he new minimum value is and the order and batch is\n"; 

cu rva lue  = F[ij_to_k(0,l,2)]; 

co u t« cu r_value«"\n"  ; 

forO=l;j<=n;j++)

{

cur_perm[ij_to_k(j ,1,1 )]=PERM[ij_to_k(j ,1,1)]; 

cur_batch[ij_to k(j-1,1,1)] = LIST[ij_to_k(j-l,l,l)];

}

forO‘=l;j<=n;j++)

{

cout«cur_perm[ij_to_kO‘ ,1,1)];

}

cou t«"\n";

forO=0;j<n;j++){

cout«cur_batch[ij_to_k(j, 1,1 )] ;

}

}else if (outcome2 < outcome 1)

{

46



yy********************************* 

cout «  endl;

cout «"W O R S E  ACCEPTED-------------------------------------------

«  endl;

cout «  "Temperature; " «  C «  endl;

cout«"\nT he new (worse) value is and the order and batch is\n"; 

cu rva lue  = F[ij_to_k(0,l,2)];

« c u r_ v a lu e « " \n "  ; 

for(j=l;j<=n;j++)

{

cur_perm[ij_to_k(j ,1,1 )]=PERM[ij_to_k(j ,1,1)]; 

cur_batch[ij_to_k(j-1,1,1)] = LIST[ij_to_k(j-l,l,l)];

}

forO'=l;j<=n;j++){

cout«cur_perm[ij_to_k(j ,1,1)];

}

cou t«"\n";

for(j=0;j<n;j++){

cout«cur_batch[ij_to_k(j ,1,1)];

}

}else{

for(j=l;j<=n;j++)

PERM[ij_to_k(j ,1,1 )]=cur_perm[ij_to_k(j ,1,1)];

47



}

delete track.col; 

delete PS; 

delete F; 

delete LIST;

}

C=.7*C;}}

48



BIBLIOGRAPHY

[1] E. Aarts, J.K. Lenstra, Local Search in Combinatorial Optimization, Wiley, 1997.

[2] A. Aggarwal, M. Klawe, S. Moran, P. Shor and R. Wilber, Geometric applications of 

a matrix searching algorithm, Algorithmica 2, pp. 195-208 (1987).

[3] S. Albers, P. Brucker, The complexity o f one-machine batching problems. Discrete 

Applied Mathematics 47, 87-107, (1993).

[4] W. Bein, P. K. Pathak. A Characterization o f the Monge Property and its Connection 

to Statistics, Demonstration Mathematica, Vol. XXIX, No. 2, 451-457 (1996).

[5] W. Bein, P. Brucker, L. L. Larmore., J. K. Park. The Algebraic Monge Property and 

Path Problems. Discrete Applied Mathematics, 145(3): 455-464 (2005).

[6] W. Bein, P. Brucker, L. L. Larmore., J. K. Park. Fast Algorithms with Algebraic 

Monge Properties. In Proceedings of the 27th International Symposium on Mathematical 

Foundations of Computer Science (MFCS 2002) Warsaw, Poland, August 2002,

[7] W. Bein, P. Brucker, A. J. Hoffman. Series parallel composition of greedy linear 

programming problems. Mathematical Programming, 62: 1-14 (1993). Reprinted in: A. J. 

Hoffman (Author), Charles A. Micchelli (Editor), Selected Papers o f Alan Hoffman: 

With Commentary. World Scientific Publishing Company, 353 - 366, (2003)

[8] W. Bein, P. Brucker, P. K.Park, P.K Pathak. A Monge Property for the d- 

Dimensional Transportation Problem. Discrete Applied Mathematics, 58: 97-109 Lecture 

Notes in Computer Science, Volume 2420, Springer Verlag (2002), 104-117.

[9] P. Brucker, Scheduing, 5th Edition, Springer Verlag, 2007.

49



[10] R.E. Burkhard, B Klinz, R. Rudolf, Perspectives o f Monge properties in 

optimization. Discrete Applied Mathematics 70, 95-161 (1996).

[11] A. J. Hoffman, On simple linear programming problems, Proc. Symposia in Pure 

Mathematics VII, 317-327, Amer. Math. Soc. (1963). Reprinted in: A. J. Hoffman 

(Author), Charles A. Micchelli (Editor), Selected Papers of Alan Hoffman: With 

Commentary. World Scientific Publishing Company, (2003)

[12] E. L. Lawler, J. K. Lenstra, A. H. G. Rnnooy Kan, D. B. Shmoys, The Traverling 

Salesman Problem, Wiley, 1985.

[13] J.K. Park, The Monge array: an abstraction and its application, Ph.D. Thesis, MIT, 

Masachusetts, 1991

50



VITA

Graduate College 
University of Nevada, Las Vegas

Revanth Pamballa

Address:
4224, Cottage Circle, Apt # 4 
Las Vegas, NV 89119, USA.

Degree:
Bachelor o f Technology, Computer Science and Information Technology, 2005 
Jawaharlal Nehru Technological University, Hyderabad, India

Thesis Title: “A Study of Monge Matrices with Applications to Scheduling”

Thesis Examination Committee:
Committee Chairperson, Dr. Wolfgang Bein, Ph. D.
Committee Member, Dr. Ajoy K. Datta, Ph. D.
Committee Member, Dr. Lawrence L. Larmore, Ph. D.
Graduate College Representative, Dr. Vekantesan Muthukumar, Ph. D.

51


	A study of Monge matrices with applications to scheduling
	Repository Citation

	ProQuest Dissertations

