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ABSTRACT

Update to ANSI/ANS-6.4.3-1991 for High-Z Materials 
and Review of Particle Transport Theory

by

Lawrence P. Ruggieri

Dr. Charlotta Sanders, Examination Committee Co-Chair 
Professor of Nuclear Engineering 
University o f Nevada, Las Vegas

Dr. Robert Boehm, Examination Committee Co-Chair 
Professor o f Mechanical Engineering 

University o f Nevada, Las Vegas

The ANSl/ANS-6.4.3-1991 Standard (ANSl/ANS-6.4.3, 1991), Gamma-Ray 

Attenuation Coefficients and Buildup Factors for Engineering Materials, presents 

evaluated gamma-ray elemental attenuation coefficients and single material buildup 

factors for selected engineering materials for use in shielding calculations. Since its last 

publication, new particle transport codes and cross-sectional data have become available. 

Therefore, this study was conducted for the purpose of updating gamma-ray buildup 

factors for high-Z materials that are presented in ANSI/ANS-6.4.3-1991 by using 

ENDF/B-V1.8 photo-atomic cross-section library data in MCNPX. The results from 

MCNPX were relatively in good agreement with those of ANSI/ANS-6.4.3-1991, which 

were calculated using PALLAS-ID (Vll). A sample problem was run in both MCNPX 

and PALLAS and the results were in good agreement. New buildup factor and mass 

attenuation coefficient data tables are included in this paper along with the sample
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calculation results used to compare MCNPX and PALLAS as well as the PHOTX and 

ENDF/B-V1.8 cross-section data libraries.
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CHAPTER 1

INTRODUCTION 

Purpose of the Study 

The ANSI/ANS-6.4.3-1991 Standard (ANSl/ANS-6.4.3, 1991), Gamma-Ray 

Attenuation Coefficients and Buildup Factors for Engineering Materials, (to be herein 

referred to as ANS Standard) presents evaluated gamma-ray elemental attenuation 

coefficients and single material buildup factors for selected engineering materials for use 

in shielding calculations. Since the publication of the ANS Standard, new cross-sectional 

data has become available. The current status of the ANSI/ANS-6.4.3-1991 is 

“withdrawn” due to the failure to meet the requirement o f the American Nuclear Society 

to have standards updated every ten years to be considered active documents. The ANS 

Standard may become active again and shed its withdrawn status if it is updated. 

Therefore, this study was conducted for the purpose of updating gamma-ray buildup 

factors for high-Z engineering materials that are presented in the current ANS Standard. 

The information provided in the ANS Standard is often used in the nuclear industry for 

photon shielding applications, specifically, dose rate calculations. Having a current ANS 

Standard is essential to performing the most accurate analyses possible.

Research Questions 

Understanding what has been previously done to generate buildup factors and 

generating new buildup factors is far from trivial. Certain questions must be asked to
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develop meaningful results. The focus o f this study was to answer the following 

questions.

1. How will the data generated in this study be useful to the ANSI/ANS-6.4.3 

working group?

2. What are buildup factors and why are they important?

3. How are buildup factors calculated?

4. What is the transport equation and how is it used?

5. What methods were used to develop buildup factors for high Z-materials for the 

ANS Standard?

6. How do PALLAS-ID (VII) and MCNPX differ?

7. What effect will changing the cross-section data libraries used have on the 

results of the buildup factors?

8. How do the MCNPX results compare with the ANS Standard?

Significance of the Studv 

The buildup factor values that are provided in ANSI/ANS-6.4.3-1991 are derived 

from data that is at least seventeen years old. Within the last seventeen years new data 

have been generated to provide the nuclear community with more reliable values. Since 

1991, computer technology has significantly improved, allowing for more complicated 

(detailed), computationally demanding codes to be utilized. Consequently, new codes 

model radiation transport more accurately than older codes. Providing new buildup 

factor data allows for validation o f published values and may increase the accuracy of the 

information that is available. This study was performed for the ANS-6.4.3 working 

group as discussed by Ruggieri and Sanders (2008) and the results will be reviewed for



possible inclusion in the next revision o f the ANS Standard. Providing more accurate 

data to the nuclear community can result in safer and possibly more cost effective 

designs. Ultimately, the values chosen for the ANS Standard will be the decided by the 

ANS working group. Traditionally, the ANS working group has chosen the values that 

were the most conservative for safety reasons.

Definition of Terms (Not Defined Elsewhere in this Study)

Absorption -  Process in which photons, as they pass through a material, are absorbed in 

the material.

Annihilation photons -  Positrons (positive electrons), generated either from the positron 

decay o f radionuclides or from pair production interactions induced by high energy 

photons, lose energy as a result o f collisions with atoms in the surrounding medium. 

After the positron has slowed down to very low energies, it combines with a negatron 

(negative electron), the two particles disappear, and two photons are produced. The two 

photons that are produced are the annihilation radiation or annihilation photons.

Attenuation -  Combination of absorption and scattering processes in which photons, as 

they pass through material, are either stopped, or diverted from straight and forward 

travel. Total attenuation, depending on photon energy, is caused by photoelectric 

absorption, coherent and incoherent scattering, and pair production.



Bremsstrahlung -  Bremsstrahlung, literally “braking radiation”, is the electromagnetic 

radiation emitted by a charged particle when it is rapidly decelerated by deflection in the 

electric field o f an atom.

Compton scattering -  Photon attenuation process in which a photon transfers part of its 

energy and momentum to an orbital electron o f the attenuating material and continues to 

travel through the material at an angle to the original photon direction at a reduced 

energy.

Dose (Absorbed) -  A measure o f the amount o f energy from an ionizing radiation 

deposited in a mass o f some material.

Exposure (photon) -  A radiation measurement quantity which is proportional to the 

electric charge o f either sign that is created in air as a result o f ionization by secondary 

charged particles resulting from photon interactions in a unit mass o f air. (Shultis & Faw, 

2000)

Fluorescence -  The emission of characteristic secondary (or fluorescent) photons (X- 

rays) from atoms that have been excited by bombardment o f high-energy (higher) X-rays 

or gamma-rays. The term is applied to phenomena in which the absorption o f higher- 

energy radiation results in the re-emission o f lower-energy radiation.



Isotropic radiation -  Radiation which is emitted by a source in all directions with equal 

intensity, or which reaches a location from all directions with equal intensity.

Linear attenuation coefficient -  Constant used to describe the degree of photon 

attenuation per unit path length in a specified medium. It is a function o f particle energy 

and is usually expressed in units of cm"'.

Pair production -  An absorption process for photons of energies greater than 1.02 MeV, 

in which the photon transforms into a pair o f particles (an electron and a positron).

Photoelectric absorption -  An absorption process in which the photon loses all o f its 

energy to an atomic electron. The electron leaves its atomic orbit and continues to move 

through the material.

Photon -  The quantum of electromagnetic energy, regarded as a discrete particle having 

zero rest mass and no electric charge which travels in a vacuum at only the speed of light. 

Examples o f photons in decreasing order o f energy are gamma-rays. X-rays, ultraviolet 

light, visible light, and infrared light.

Point source -  The most fundamental type o f radiation source which is theoretical but is 

often used as an approximation to a real source provided that the real source’s volume is 

sufficiently small compared to the volume o f the attenuating medium and there is 

negligible interaction of radiation with the matter in the source volume. A point source



does not have any volume and is modeled as a point in space. In general, it can be 

characterized as being dependent on energy, direction, and time. (Shultis & Faw, 2000)

Buildup Factors

The buildup factor is used in radiation calculations as a correction factor to account 

for effects that are not considered in calculations that use values for only uncollided 

particles. The buildup factor is defined as the ratio o f the total value o f a specified 

radiation quantity at any point to the contribution to that value from uncollided radiation 

as it relates to the passage of radiation through a medium. (Harima, 1993) For a point 

isotropic source of monoenergetic photons in an infinite homogeneous medium, it can be 

shown that the buildup factor depends spatially only on the number o f mean free paths 

separating the source and the point o f interest. The present study shall observe buildup 

factors in materials up to 40 mean-ffee-paths (mfp).

Buildup Factor Calculations 

Mean-free-path length is defined as the average distance X that a radiation particle 

streams from the point o f its birth to the point at which it makes its first interaction. 

(Shultis & Faw, 2000) Mathematically, the mfp is described by the equation 

X = l / [ i ,  (1.1)

where p, is the linear interaction coefficient or linear attenuation coefficient. The linear 

interaction coefficient can be described as the probability per unit path length of an 

interaction, p is always a function o f the energy of the particle and can also be a 

function o f the energy of the particle after scattering, the energy of the recoil atom or 

electron, the angles o f deflection of the scattered radiation and the recoil atom or electron, 

and the angles o f emission of secondary particles depending on the nature of the



interaction. This study focuses on photons, in particular gamma-rays, so when the term 

“energy” is used, it is meant as the total energy of the photon, which can be described by 

E = hv,  (1.2)

where h is Planck’s constant and u is the frequency o f the electromagnetic wave 

associated with the photon. In general, the linear interaction coefficient can be described 

by the equation

p -  # x a  (1.3)

where N  is the atomic density and a  is the microscopic cross-section. The atomic 

density N  for a medium composed o f a single element is

V  = (1.4)

where A is the atomic mass o f the element, p is the density o f the element, and is

Avogadro’s number.

The microscopic cross-section, a  , is an effective cross-sectional area presented by the 

target atom or electron to the incident particle for a given interaction, a  has dimensions 

similar to those o f physical area (cm^) but equivocating it to a physical area is not a very 

accurate analogy. The microscopic cross-section is material specific and is dependent 

upon the energy of the incident particle, and for a crystalline material, the particle 

direction. (Shultis & Faw, 2000) In radiation shielding calculations, a  is often drawn 

from a file known as a cross-section data library, which is a tabulation o f microscopic 

cross-sections which are material specific and are dependent on the energy of the incident 

particle and type o f interaction. The cross-section data library used in this study is



ENDF/B-VI.8, which is distributed by National Nuclear Data Center (NNDC), which is 

part o f Brookhaven National Laboratory.

A form of the linear interaction coefficient commonly presented is the mass

interaction coefficient, which is — . Once again p is the density of the medium in which
P

the photon is traveling or interacting. In this study, mass interaction coefficients or more

specifically, mass energy-absorption coefficients , are used in response function
V P y

calculations. The response function or detector response provides an analytical 

relationship between fluence and dose. This study utilized two types o f response 

functions: absorbed dose and exposure. The response function for absorbed dose, in units 

Gy cm^, is

(1 .5)

which calculates the absorbed dose in the attenuating medium as a function of energy and 

is specific to the medium material. The exposure response function, in units R cm^, is

'Fe,XE)9 1 ^ ( E )  =  1 . 8 3 5 x l O ““E ( 1.6)
/  air

which is proportional to the absolute value o f the electric charge that is created in air as a 

result of ionization by secondary charged particles resulting from photon interactions in a 

unit mass of air.

To calculate dose or exposure, the respective response function is multiplied by the 

fluence at the location of interest or detector. The fluence, O , is defined as the time- 

integrated flux of particles per unit area; usually from a pulse or burst o f radiation.



(Lamarsh & Baratta, 2001) In this study, and in many other examples, the particle fluence 

can be thought o f as the number of particles that, during some period o f time, penetrate a 

spherical surface o f interest. More specifically the term

is used to describe the uncollided fluence o f particles from a distance, r , from the source;

where is the source strength (particles emitted per unit time). To calculate the

uncollided dose from a point monoenergetic isotropic source embedded in an infinite 

homogenous medium characterized by the total interaction coefficient p ,

S  iR
D ''( r )  = - ^ e - ^ ,  (1.8)

Anr

is used, is referred to as the material attenuation term. The equation describing total 

dose is as follows;

D { r ) = \ " ' ^ { E ) ^ ^ { E ) d E ,  (1.9)

where E^ is the lower energy boundary and Ey is the upper energy boundary.

(ANSl/ANS-6.1.1, 1991)

To calculate the energy absorption buildup factors for a particular material, the total 

dose is divided by the uncollided dose as shown:



Boltzmann Transport Equation (Transport Equation)

The transport equation is solved by integrating along a flight path o f radiation in the 

direction o f motion at each discrete-ordinate angle. (Harima, 1993) The most common 

basic form of the Boltzmann transport equation is as follows: 

a  • V(|)(r, E, Q) + p(r, E>j)(r, E, Q) -

j  ( r ,E '->  E, Q ' -> Q>l)(r, E', Q ') + E(r, E, Q)  ̂̂  ‘ ̂   ̂̂
0

The form of the transport equation above is general and applies to any geometry, 

either photons or neutrons, and allows for all types o f particle-medium interactions, all of 

whose probabilities are encompassed by the interaction coefficients p and p^. It is

known as an “integrodifferential” equation because it contains both derivatives in space 

and time as well as integrals over angle and energy. (Duderstadt, 1976) The above 

equation can be interpreted as follows. If V is an arbitrary control volume, then the net 

flow rate o f the particles of the radiation field out o f V across S, the surface o f the 

volume, plus the rate at which particles interact in V is equal to the rate at which 

secondary particles o f energy E and direction Q are produced (scattered) plus the rate of 

production o f particles by sources in V. (j) is the fluence rate or flux density, which is the 

derivative with respect to time of the fluence. p(r,E)(|)(r,E ,Q ) is the “interaction term”, 

which describes the rate at which particles interact in the given volume.

j d E 'j (iQ'Pi ^  E, Q' —>• Q)(j)(r, E ', Q ') is the “scattering term”, which describes the
0

rate at which secondary particles o f energy E and direction Q are produced. E ' and Q' 

are used as initial energy and direction values while E  and Q are used to describe the new 

energy and direction after scattering occurs. S{r,E,Cl) is the “source term”, which

10



describes the rate o f produetion by sourees in the given volume. The “streaming term” of 

the equation, also known as leakage isQ -V (|)(r,E ,f2). (Duderstadt, 1976; Shultis & Faw, 

2000) The leakage is generally the most difficult term to express because of geometry 

and coordinate system considerations. The above information is simply a review o f the 

transport equation and is not meant to deseribe all of its forms or applieations. A detailed 

description of the various forms and applications of the transport code is beyond the 

scope of this study and shall not be ineluded.

The diseretization of the transport equation is often aeeomplished by diserete 

ordinates methods. PALLAS uses a modified discrete ordinate approaeh known as the 

integral form of the transport equation. (Takeuchi & Tanaka, 1984; Takeuchi & Tanaka, 

1981) The integral form o f the transport equation can treat much more anisotropie 

radiation fields than can, for example, the standard multigroup discrete-ordinates method. 

(Shultis & Faw, 2000) A detailed diseussion of the diserete ordinates method is outside of 

the scope of the present study and shall not be included.

Integral Form of the Transport Equation 

The steady-state version of the transport equation may be written 

~^isf{r,Çl)drdÇl + p(r)(ji(r,Q )JrJQ  = S{r,Q)drdQ (1.12)

where dR is the differential length along the direetion (i.e., Q.-V = d / dR) . This

equation may be integrated along the direetion Q from to r , to obtain

<^{r,Q)dr = + Jg -“'''''^E (r',Q )Jr' (1.13)

where a{r ' ,r )  is the total number o f mean-free path lengths along the direetion Q 

between r' and r :

11



a ( r ' , r ) =  |p ( E ) J E  . (1.14)

For an isotropic point source o f strength (particles/s) located at , the directional

flux outward through the cone dD. about direction Q is 5g(JQ /47r). The volume

element dr subtended by this cone at distance R = \ r - r ' \  away is AndClR^dR. The

directional flux at r  of uncollided particles from an isotropic point source at r '(such  that 

the direction from r ' to r is Q ) is given by

C  p - a ( , r , r ' )  a  ' - a ( R . O )

4,^(E) = 4 , ( | r - / | , n )  =  ^  - (Stacey ,2001) (1.15)
471 |r — r  I AnR

A detailed description o f the various forms and applications of the integral transport 

equation is beyond the scope o f this study and shall not be included.

PALLAS-ID (VII)

PALLAS-ID (VII) uses the method of direct integration o f the transport equation, in 

which the equation is integrated along the fight path o f radiation in the direction of 

motion at each discrete ordinate direction. The radiation flux is calculated at each energy 

mesh (n/cm^-sec- (sr) -MeV) without using any conventional iterative techniques used 

widely in Sn (angular segmentation) method for obtaining group flux at each energy 

group and the scattering calculations are made directly using the Klein-Nishina formula 

for gamma-rays. The Klein-Nishina formula provides an approximation o f incoherent 

scattering in which a differential cross-section is provided with respect to solid angle of 

scattering. Thus, a Legendre polynomial expansion approximation used widely in Sn 

method is not applied to the calculation of radiation scattering. As a result, PALLAS can 

provide always positive and physically meaningful angular and scalar fluxes. There is no

12



usage of an average flux. No convergence techniques are used for obtaining flux. 

PALLAS-ID (VII) can treat transport o f both neutrons and gamma-rays, in particular of 

secondary gamma-rays including the bremsstrahlung and the annihilation photons.

PALLAS was written in FORTRAN IV. The gamma-ray cross-sections are taken 

from the PALLAS gamma-ray library; however gamma-ray scattering cross-sections are 

not required due to the direct use o f the Klein-Nishina formula. Coefficients for linear 

attenuation, pair production and photoelectric effect of gamma-rays are interpolated for 

specified energies from the PALLAS gamma-ray library in the code, where the data for 

discrete energies from 0.01 to 20 MeV are given. Similarly, the flux to dose conversion 

factor for exposure dose, dose equivalent and absorbed dose also are interpolated. The 

differential electron production cross-sections relating to the pair production reaction are 

calculated within the code. The differential bremsstrahlung gamma-ray production cross- 

sections and the stopping power are calculated within the code.

A disadvantage o f PALLAS-ID (VII) code is that it has been written in the fixed 

dimensioning, which restricts the numbers o f energy meshes, material regions, nuclides, 

angular meshes, spatial meshes to be inputted.

At the time of its initial release PALLAS used what was considered to be a new 

technique for treatment o f the within-group scattering radiations instead of applying an 

iteration technique. The scattering within a certain small angle is approximated as being 

considered unscattered. PALLAS code calculates the within-group scattering radiations 

on the basis o f this approximation.

13



MCNPX

MCNPX is a general purpose Monte Carlo radiation transport code that tracks nearly 

all particles at nearly all energies. It is the next generation in the series o f Monte Carlo 

transport codes that began at Los Alamos National Laboratory in the mid-20‘'’ century. 

The MCNPX program began in 1994 as an extension o f MCNP4B and LAHET 2.8 in 

support o f the Accelerator Production o f Tritium Project (APT). (X-5 Monte Carlo Team, 

2003)

Monte Carlo methods systematically use samples o f random numbers to estimate 

parameters o f an unknown distribution by statistical simulation. Monte Carlo methods are 

often used when the complexity or dimensionality o f a problem is impossible or 

impractical to solve by conventional numerical solutions. The method is well-suited for 

computers and has become increasingly popular with advances in computer technology. 

There are advantages to using the Monte Carlo method for many applications; however, 

its disadvantages include potentially slow convergence and the difficulty o f estimating 

the statistical error o f the result(s).

The computational model for radiation transport problems includes geometry and 

material specifications. Object modeling is fundamental to perform photon transport 

effectively using the Monte Carlo method. Object modeling consists o f defining 

geometry as well as assigning material characteristics to the volume of the object. The 

material characteristics o f interest are the density and the interaction cross-sections.

The Monte Carlo method’s treatment o f photo-atomic interactions is perhaps best 

described by Zaidi (2000): “The relative ratios o f the cross-sections for photoelectric 

effect, incoherent and coherent scattering to the total cross-section are used to choose

14



randomly whiçh process occurs at each interaction vertex. The Klein-Nishina expression 

for the differential cross-section per electron for an incoherent interaction is used to 

sample the energy and polar angle o f the incoherently scattered photon taking into 

account the incoherent scattering factor. The coherent scattering results only in a change 

in the direction of the scattered photon since the momentum change is transferred to the 

whole atom. The random number composition and rejection technique is used to sample 

the momentum of the scattered photon and the scattering angle according to the form- 

factor distributions. Coherent scatter distributions are sharply forward-peaked and vary 

considerably with atomic number and energy. The path-length o f the interacting photon is 

randomly generated according to the exponential attenuation based on the interaction 

length. The total cross-section at the energy o f the interacting photon determines the 

interaction length o f the exponential distribution.”

Some o f the Differences between PALLAS-ID (VID and MCNPX 

Besides the obvious difference o f MCNPX being a Monte Carlo method code and 

PALLAS being a code that directly integrates the transport equation, there are other 

differences in methodology between the codes. PALLAS uses linear interpolation while 

MCNPX uses logarithmic interpolation by default but can also use linear interpolation if 

prompted to do so. Typically, logarithmic interpolation is considered more accurate than 

linear interpolation in most radiation shielding calculations. A point source is treated 

exactly by MCNPX. Within PALLAS, the point source is modeled by specifying a 

source uniformly distributed on a spherical shell of small diameter.
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Photon Interactions

The majority o f buildup-factor data is for point, isotropic, and monoenergetic sources 

of photons in infinite homogeneous media. Early data sets were based on moments- 

method calculations and accounted only for buildup of Compton-scattered photons. The 

buildup of annihilation photons was accounted for in subsequent moments-method 

calculations. Buildup-factor calculations using PALLAS code account for Compton- 

scattered photons, annihilation photons, and for fluorescence and bremsstrahlung. 

(Takeuchi & Tanaka, 1984; Takeuchi & Tanaka, 1981) Buildup factors in the ANS 

Standard exclude coherently scattered photons and treat Compton scattering according to 

the Klein-Nishina cross-section for photon scattering with free electrons. (ANSI/ANS- 

6.4.3, 1991; Shultis & Faw, 2000)

Dose to medium response functions used by PALLAS for the current ANS Standard 

shall be used in this study by both PALLAS and MCNPX; however, the cross-section 

data shall be from different sources. (ANSI/ANS-6.4.3, 1991; Takeuchi & Tanaka, 1984; 

Takeuchi & Tanaka, 1981)

Cross-Section Data Libraries 

Various cross-section data libraries are available for radiation transport computations. 

PHOTX cross-section data libraries (National Institute of Standards and Technology 

[NIST], n.d.) were used for the calculation o f buildup factors for high-Z materials (Z=42 

thru Z=92) that are listed in the ANS Standard. Originally, the PALLAS users chose 

Storm and Israel’s (1970) data for their calculations; however, it had been discovered that 

the Hubbell’s data (1969), NBS-29, and PHOTX data were more accurate; mostly due to 

their different method of treating Compton scattering. Since the publication o f the ANS
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Standard, new data libraries have been developed. Most notably, the END F formatted 

library collection has become adopted as the library format o f choice in North America 

and other regions. Evaluated Nuclear Data File (ENDF) is a core nuclear reaction 

database containing evaluated cross-sections, spectra, angular distributions, fission 

product yields, thermal neutron scattering, photo-atomic and other data, with emphasis on 

neutron-induced reactions. (Chadwick et al., 2006) The ENDF formats and libraries are 

decided by the Cross-Section Evaluation Working Group (CSEWG), a cooperative effort 

of national laboratories, industry, and universities in the U.S. and Canada, and are 

maintained by the National Nuclear Data Center (NNDC). ENDF/B data sets are revised 

or replaced only after extensive review and testing.
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CHAPTER 2

REVIEW OF RELATED LITERATURE 

Literature Review

The accuracy of buildup factors has been debated since their inception. A lack of 

experiments and wide range of results from numerical solutions make it difficult to 

identify the most accurate data. The necessity o f using a monoenergetic source is the 

single biggest constraint that is in the way o f gathering more data via experiments. As 

discussed by Harima (1993), experiments by White, Osanev et al., Miyasaka and Tsuruo, 

Takeuchi and Tanaka, Furuta et al., Tamura and Tsuruo, and Ahmed et al. have used Co- 

60 and Cs-137 sources; however, these two sources do not provide enough source 

energies to conduct a comprehensive analysis of experimental data versus data from 

simulated models. According to Harima (1993), there were fairly large differences 

between some measured and calculated results. Not only are there disagreements in 

results between measured and calculated results, there is also disagreement between the 

calculated results themselves. Harima (1993) states that even if the fluxes of energy 

spectra and the values o f buildup factors agree within tolerable deviations between 

different codes at distances close to the source, differences become large at deep depths, 

and it is difficult to determine which code is correct. The differences in the codes have 

often been due to assumptions made in the calculations rather than mathematical 

differences by themselves. In a study by Subbaiah et al. (1982), the significance of
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secondary sources o f photons as a result o f annihilation, bremsstrahlung, and 

fluorescence in gamma-ray transport calculations is discussed in detail. Prior to the 

study, most computations were performed using Compton-scattered sources only and 

annihilation, bremsstrahlung, and fluorescence were not taken into account. For low 

atomic number materials and low energy gamma-rays where the effects of secondary 

sources are marginal, this assumption can arguably be appropriate. However, when high- 

Z materials or high energy photons are being studied, this assumption is not valid and 

calculation results would be significantly inaccurate. In 1987, Subbaiah and Natarajan 

(1987) revisited the effects of fluorescence in buildup factor calculations but his time 

explored the effect in deep penetration o f gamma rays. Their study revealed that the 

inclusion o f fluorescence leads to a spectacular increase in buildup factors for source 

energies close to but above the K edge o f the medium. The increase was observed to 

grow with depth of penetration. Harima et al. (1991) studied the buildup factors o f high-Z 

materials with energies near the K edge. The K edge in lead is 0.0880045 MeV. 

Fluorescence can account for an increase in the buildup factor by as much as a factor of 

10 for source energies near the K edge; however, the great change in photoelectric cross- 

sections dominates in this energy range and results in a rapid increase o f the buildup 

factor in the order of lO'^ (lO'^ for lead in ANS Standard). The large values gradually 

lower with increasing energy above the K edge until reaching values that are “normal” at 

0.16 MeV.

Takeuchi and Tanaka (1984, 1981) also sought to increase the accuracy o f their 

calculations by including bremsstrahlung and annihilation, which was previously missing 

from their previous revision of PALLAS (PL,SP-Br). Many studies conducted prior to
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the ANS Standard’s release neglected coherent scattering. The argument for neglecting 

coherent scattering is that it does not lead to the degradation of the energy of the photon 

and is very forward directed. (Goldstein, 1954) Subbaiah et al. (1989) found that 

inclusion of coherent scattering in calculations is necessary and that data that had been 

generated by methods which excluded coherent scattering was inaccurate and could be 

corrected by adding a correction factor or recalculating the values with coherent 

scattering. Harima et al. (1987) examined the error o f the buildup factor due to the use of 

different cross-section data libraries. In particular, the photoelectric cross-section values 

of HubbelTs compilation (1969), Storm and Israel’s data (1970) and ENDF/B 

(Chadwick, 2006) were compared and fairly large differences were observed. The 

buildup factor steeply rises as the source energy approaches the K edge and 

discontinuously falls at the K edge. According to Tanaka and Takeuchi (1986), to obtain 

more accurate results for buildup factors in deep penetration, more accurate cross-section 

data are necessary. It is estimated that the uncertainty o f the cross-section for the energy 

region where the photoelectric absorption is dominant is approximately 10%. Shimizu 

(2004) confirmed that the variation of the photoelectric cross-section has a profound 

effect on the results o f buildup factor calculations. Shimizu (2004) observed 

discrepancies in the values generated by the method of invariant embedding compared to 

the ANS Standard for high-Z materials in the energy range above 1.5 MeV and in the 

vicinity o f the K edge. Shimizu (2004) argues that the discrepancies are a result o f the 

modeling o f secondary photons. The calculations for the ANS Standard used the 

assumption that all secondary photons are emitted in the same direction as the primary 

photon. The magnitude o f the discrepancy appears to increase with source energy. 10%
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to 30% difference is seen in the vicinity o f the K edge for all high-Z materials. Shimizu 

(2004) only provided exposure buildup factors but stated that the energy absorption 

buildup factors would be reported in the near future, but as of November 2008, the 

energy absorption buildup factors are not found in the literature. Chibani (2001) 

observed that at 10 MeV and above, discrepancies between the ANS Standard and the 

values generated by the EBUF Monte Carlo method code for lead were significant. 

Bozkurt and Tsoulfanidis (1996) were successful at calculating buildup factors for UO2 

up to 10 mfp using MCNP; however, they did not report whether or not they attempted to 

calculate buildup factors for greater than 10 mfp.
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CHAPTER 3

METHODOLOGY 

Literature Review Criteria 

Select articles referenced in the ANS Standard as well as more recent articles found 

within the WEB OF SCIENCE database was researched for relevant data. The literature 

found within the WEB OF SCIENCE was limited to English language publications 

between 1991 and 2008. Articles that were chosen to be included in this review were 

chosen based on pre-established inclusion criteria.

Inclusion criteria are as follows:

• Source is peer-reviewed journal or similar scholarly publication

• Discusses gamma-ray buildup factors, photon transport equation, PALLAS-ID, 

MCNP, MCNPX, and/or ANSI/ANS-6.4.3-1991.

• Publication occurred between 1991 and 2008 or is referenced in ANS Standard. 

Sources o f data, computer codes used, methodology, and results were reviewed for

each article. Textbooks and online sources o f data were used in addition to the scholarly 

articles. The online sources o f data were restricted to government or government related 

organizations such as national laboratories and international organizations.

Computations

This study focuses on gamma-ray buildup factor values for high-Z materials. The 

materials listed in the ANS Standard that are considered high-Z are Mo, Sn, La, Gd, W,
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Pb, and U. PALLAS data were used exclusively for the buildup factor calculations of 

high-Z materials in the ANS Standard. (ANSI/ANS-6.4.3, 1991) The techniques used in 

this study to calculate buildup factors may be applied to all of the aforementioned high-Z 

materials; however, lead (Pb) was the focus o f this study. Consistent with the ANS 

Standard, point, isotropic, and monoenergetic sources o f photons in infinite homogeneous 

media were modeled using MCNPX and PALLAS codes, respectively.

Photon mass attenuation coefficients (cm^/g) with and without coherent scattering 

were calculated using ENDF/B-VI.8 photo-atomic interaction cross-sections for energies 

within the range o f .010 to 30.000, which are consistent with the ANS Standard. Not 

only are these values included in the ANS Standard, they are also necessary for the 

calculation o f mean-free path values. A comparison between the new ENDF/B-VI.8 

photon mass attenuation coefficients and those o f the ANS Standard for lead without and 

with coherent scattering are provided in Appendix I and Appendix II, respectively.

In the current ANS Standard, the gamma-ray buildup factors for high-Z materials 

were generated by PALLAS-ID (VII) code using PHOTX cross-section libraries. 

(ANSI/ANS-6.4.3, I99I; Takeuchi & Tanaka, 1984) Early on in this study it was decided 

that ENDF/B-VII.0 would be the library o f choice for generating new data. ENDF/B- 

VII.O was chosen because it is the latest version of ENDF/B to be officially released. 

However, after researching the ENDF/B-VII.O data, it was found that the photo-atomic 

interaction data for ENDF/B-VII.O is identical to what is found in ENDF/B-VI.8. The 

photo-atomic interaction data used in ENDF/B-VI.8 are that of EPDL97 (Evaluated 

Photon interaction Data Library -  1997). (Cullen, 1997) ENDF/B-VI.8 was the first 

version of ENDF/B to use EPDL97 data, while the previous release used the data of
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EPDL89. The photo-atomic interaction data were not updated since the release of 

EPDL97 because there has not been much demand from the nuclear community. 

ENDF/B-VI.8 photo-atomic data was used in this study because it is equivalent to 

ENDF/B-VII.O and because the ENDF/B-VI.8 ACE-formatted (ASCII) files are readily 

available whereas ENDF/B-VII.O ACE-formatted files for photo-atomic interactions are 

not available.

To study the effects o f using the ENDF/B-VI.8 photo-atomic data instead of the 

PHOTX data, a sample problem, shown in Appendix VII, was run in PALLAS with both 

PHOTX and ENDF/B-VI.8 data for photo-atomic interactions. The ENDF/B-VI.8 data 

were converted into a format that is readable by PALLAS through elementary equations 

which convert cross-sections (bams) to attenuation coefficients (cm^/g). Table 4 of 

Appendix IV shows the percentage difference between the PHOTX data and the 

ENDF/B-VI.8 data at each energy value. Mass energy-absorption and mass energy- 

transfer coefficients using ENDF/B-VI.8 (or ENDF/B-VII.O) data were not found. To 

provide mass energy coefficient values that are more current than those previously used, 

data from the National Institute o f Standards and Technology (Hubbell & Seltzer, 2004) 

(n.d.) were used. The NIST values were used directly in the PALLAS data library.

To study the effects o f using two different computational codes, the PALLAS sample 

problem was duplicated in MCNPX using the ENDF/B-VI.8 data, which is given in the 

data library, mcplib04, which is provided by the Radiation Safety Information 

Computational Center (RSICC) with MCNPX. The NIST values for the mass energy 

coefficients were used indirectly in MCNPX via the dose card which incorporates the 

NIST data in its derivation. Ideally, ENDF/B-VI.8 values would be used for the mass
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energy coefficients to be consistent; however, ENDF/B-VI.8 mass energy coefficients are 

not yet available and the NIST values are the most current that were found. The results 

from the sample problem using ENDF/B-VI.8 data in PALLAS and ENDF/B-VI.8 in 

MCNPX were compared and are shown in Table 5 of Appendix V.

After examining some of the differences between ENDF/B-VI.8 and PHOTX and 

MCNPX and PALLAS, MCNPX was used to calculate a new table o f buildup factors for 

lead (Pb). The energies examined were the same as those used in the ANS Standard; 

ranging from 0.03MeV up to 15 MeV. Elemental lead (Pb) was chosen as the material of 

interest and mfp thickness values from 0.5 to 40 were used, which is consistent with what 

had been done in the ANS Standard. All mfp values were calculated using the total 

microscopic cross-section data from ENDF/B-VI.8. An isotropic monoenergetic point 

source was used in all input files. The variance reduction technique known as importance 

mapping, specifically geometry splitting (Los Alamos National Laboratory [LANL], 

2005), was used to improve statistics. Hirayama (1995) found that particle splitting is an 

effective variance reduction technique for calculation o f buildup factors up to 40 mfp 

using the Monte Carlo method. Total absorbed dose and uncollided absorbed dose 

calculations were performed simultaneously by the use o f energy bins. The same method 

may be used for total exposure and uncollided exposure calculations. Absorbed dose card 

values were calculated using NIST values and can be seen in Table 3 o f Appendix III.

The values used in the absorbed dose cards are for the energy range o f .001 MeV through 

20 MeV and are logarithmically interpolated when values fall between the discrete values 

that are given in the cards. To provide acceptable statistics without excessively long run 

times, 10  ̂source particle histories were run for each input card. In a few instances where
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the source energy was either near the k-edge energy range or above 10 MeV, more source 

particle histories were run to improve results. Due to the number o f mean-ffee-paths 

used, surface tallies were used to calculate fluence rather than point detectors or ring 

detectors. Next event estimators such as point and ring detectors are known to be 

unreliable when calculating the fluence at large numbers of mean-ffee-paths in scattering 

medium. If next event estimators are used, the user risks under-sampling coherent 

scattering which is characterized by many low scores to the detector when the photon 

trajectory is away from the detector and a very few, enormously large scores when the 

trajectory is nearly aimed at the detector. Such under-sampled events cause a sudden 

increase in both the tally and the variance, and a failure to pass the statistical checks for 

the tally. (X-5 Monte Carlo Team, 2003) Concentric spheres were used with the point 

source located at the origin (0 0 0). The radii of the spheres were assigned mfp values. 

Additional spheres were added between mfp values to ensure that the difference in 

importance between cells never exceeded a factor of four. The thickness of the material 

extended beyond 40 mfp and then became a void to simulate an infinite homogeneous 

medium. An example o f an input file used to calculate the total absorbed dose and 

uncollided absorbed dose is included in Appendix VIII. Once all o f the desired values for 

total and uncollided dose were calculated, those values were used to calculate their 

respective buildup factors.

The values generated by MCNPX were compared with the published values 

(PALLAS) in the ANS Standard and are provided in Tables 6a through 6ae of Appendix 

VI. MCNPX was chosen to be the primary code used for this study because it is currently 

supported by the Radiation Safety Information Computational Center (RSICC) and is
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widely used by professionals in the nuclear industry whereas PALLAS is unsupported 

and there are currently no known users. PALLAS has been included in the study for use 

as a comparative tool and to provide a starting point for the transition to a more current 

code (MCNPX).

Fitting Functions

Generated buildup factor data are commonly fitted to curves to provide a method of 

determining buildup factor values that fall between generated data points. Buildup factor 

coefficients using both geometric progression and Taylor fitting function coefficients 

were presented in data tables in the ANS Standard. Consistent with the ANS Standard, 

the data generated by MCNPX shall be curve fitted using geometric progression and 

Taylor fitting function coefficients or similar techniques. (ANSI/ANS-6.4.3, 1991) Curve 

fitting shall be completed by members of the ANS-6.4.3 working group and shall not be 

included in this study. The values generated by MCNPX shall be compared with the 

published values in the ANS Standard
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CHAPTER 4

FINDINGS OF THE STUDY 

Analysis o f Data

There was a maximum percentage difference of 1.14% (at 0.080 MeV) and a 

minimum percentage difference o f 0.01% (at 20.000 MeV) between the ENDF/B-VI.8 

photon mass attenuation coefficients with coherent scattering for lead, which was used to 

calculate mfp values for MCNPX, compared to those o f the ANS Standard.

There was a maximum percentage difference of 2.01% (at 0.080 MeV) and a 

minimum percentage difference o f 0.04% (at 30.000 MeV) between the ENDF/B-VI.8 

photon mass attenuation coefficients without coherent scattering for lead, which was used 

to calculate mfp values for MCNPX, compared to those o f the ANS Standard.

There was a maximum percentage difference o f 12.86% (at 10.0 mfp) and a minimum 

percentage difference o f 0.16% (at 3.0 mfp) between the energy absorption buildup 

factors calculated in the PALLAS sample problem using ENDF/B-VI.8 and PHOTX 

cross-section data libraries, respectively.

There was a maximum percentage difference o f 13.36% (at 10.0 mfp) and a minimum 

percentage difference o f 2.93% (at 0.5 mfp) between the energy absorption buildup 

factors calculated in PALLAS and MCNPX using ENDF/B-VI.8 data library cross- 

sections.
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The percentage difference in the range of 0.500 to 40.000 mean-free paths at various 

energies in the range o f 0.03 MeV to 15.000 MeV were calculated to compare the energy 

absorption buildup factors calculated in MCNPX with those of the ANS Standard. The 

maximum and minimum percentage differences are shown in Table A. The energy 

absorption buildup factors calculated within MCNPX and from the ANS Standard are 

provided along with their percentage differences in Tables 6a through 6ae in Appendix 

VI. At certain mean-free path lengths for particular source energies, buildup factors 

could not be calculated using MCNPX data.
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VI o p p p p p p p p p p p p p p p p p p VI p VI VI VI p p p p p p
o o o o o 'o o o o o o *o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

I
<

ifi
ff

HtC9  l-r>

si!
e .'O .S’
I  ^ <^  s  e*

^ s

H
o*

B-Cï

I
w

§*G.
%
tri
B)

w$

i

2 .

3c
3
hd

Im
g
g



CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Discussion of Results 

The photon mass attenuation coefficients derived from ENDF/B-VI.8 for the case 

when coherent scattering is considered as well as the case where coherent scattering is 

ignored showed surprisingly good agreement with the values o f the ANS Standard. The 

percentage difference between the values was relatively small (2.01% or less); however, 

these relatively small differences can produce large differences in the final results. 

Perhaps the clearest example of the effect that the differences in mass attenuation 

coefficients is the PALLAS sample problem results where both libraries’ values were 

used but no other variables were modified. There was up to a 12.86% difference in 

values and the study only went to 10.0 mfp. It is expected that the difference would 

become greater with increase in mfp because of the stack-up of differences in values.

The 13.36% difference at 10.0 mfp between PALLAS and MCNPX when both codes 

used the ENDF/B-VI.8 values demonstrates that the solution methods o f the codes 

themselves cause results to vary. Some o f these differences can be accounted for in the 

physics models used by each code while others are probably due to differences in the 

computational techniques.

For the most part, the energy absorption buildup factors calculated in MCNPX had 

good agreement (<I0%) with those o f the ANS Standard. There were large relative
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errors for values near the k-edge energy range as well as at 15 MeV at deep mean-free 

path lengths. The large relative errors can at least partially be explained by the stack-up 

o f uncertainty as particles scatter within the medium and travel to deeper mfp depths.

Near the K-edge energy range there is a significant increase in the photoelectric cross- 

section. The increase in the photoelectric cross-section is proportional to an increase in 

the number o f interactions. There is uncertainty associated with each interaction and with 

more interactions comes more uncertainty. Due to the large relative errors, some buildup 

factors could not be calculated. Buildup factors could not be calculated when the 

uncollided dose value is equal to zero. MCNPX generated uncollided dose values o f zero 

which would indicate that there were issues with the results. The calculation method 

used was suggested and reviewed by some o f the active members of the X-5 Monte Carlo 

team, known experts. They suggested that the number of particle histories be increased 

to resolve the zero flux issue. This was done but did not significantly improve the results. 

They had no other immediate suggestions. Becoming an expert user o f Monte Carlo 

codes was not part o f the scope of this study and no further attempts were made at 

improving the results for these problematic cases. Should additional studies be 

conducted using MCNPX to generate buildup factor data, new techniques and/or methods 

should be implemented to resolve the current issues. There were no general trends 

noticed in the calculated values except that on average the MCNPX values were greater 

than those o f the ANS Standard.

Conclusions

Updating the ANS Standard buildup factors using current cross-section libraries 

provides nuclear professionals with more accurate data and serves well as a verification
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of previously published data. Increased buildup factor accuracy enables nuclear 

professionals to design safer structures and may result in decreased cost of new shielding 

designs. The differences between the energy absorption buildup factors calculated in this 

study and those o f the ANS Standard can easily be explained by differences in cross- 

section data libraries, calculation methods, and physics assumptions. While some 

inaccuracies were observed in the new data, it is believed that most o f the new values 

(other than those previously noted as being inaccurate) are more accurate than those 

published in the ANS Standard. MCNPX performs calculations with much greater detail 

and resolution than PALLAS. The combination of using more a detailed computational 

code with more accurate cross-section data than was used in the ANS Standard justifies 

the proposed use o f the data in ANS Standard.

Recommendations for further Studv 

It is essential to the success o f the newest revision o f the ANS Standard that mass 

energy-absorption and mass energy-transfer coefficients from ENDF/B-VI.8 data be 

calculated. Seltzer’s method (1993) should be reviewed to see if it is applicable for use 

with ENDF/B-VI.8 cross-sections. Calculation of these values from ENDF/B-VI.8 will 

provide the most accurate data available for buildup factor calculations and consequently 

will increase the accuracy of results as well as show good consistency in the calculation 

method. When new mass energy-absorption and mass energy-transfer coefficients that 

are derived from ENDF/B-VI.8 (EPDL97) data become available, the calculations 

performed in this study should be repeated to improve their consistency and accuracy. 

Curve fitting should be performed using geometric progression or Taylor fitting function 

coefficients or both.
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A comparison between the data from this study should be made with data from recent 

studies (studies performed after the 1991 ANS Standard was published) which include 

new codes such as EBUF (a new Monte Carlo code) and new methods o f calculating 

buildup factors such as the Method o f Invariant Embedding and the Angular Eigenvalue 

Method. (Chibani, 2001; Shimizu, 2004; Shimizu, 2000)

Data should be generated for some o f the “new” shielding materials that are not 

included in the ANS Standard. Many o f these “new” materials are used in the medical 

industry and it would be o f great value to have them added to the ANS Standard. 

Examples of “new” materials include tungsten polymers and high density concretes.

Recently, much work has been focused on layered shields. The ANS working group 

should consider adding values for layered shields or approximation methods to the next 

revision o f the ANS Standard.
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APPENDIX II

Table 2 Photon Mass Attenuation Coefficients for Lead 
Coherent Scattering Included

E nergy (MeV)

MCNPX P hoton  
M ass 

A ttenuation  
C oefficient 

(cnri/g)

ANS-6.4.3-1991  
P hoton  M ass  
A ttenuation  
C oefficient 

(cm^/g) (Lead)

% D ifference

0.010 1.299E+02 1.306E+02 0.55%
0.015 1.113E+02 1.116E+02 0.29%
0.020 8.601E+01 8.637E+01 0.42%
0.030 3.029E+01 3.032E+01 0.10%
0.040 1.433E+01 1.436E+01 0.24%
0.050 3.001E+00 8.041 E+00 0.50%
0.060 4.979E+00 5.020E+00 0.81 %
0.080 2.370E+00 2.419E+00 2.01 %
0.100 5.545E+00 5.549E+00 0.07%
0.150 2.006E+00 2.015E+00 0.42%
0.200 9.968E-01 9.986E-01 0.28%
0.300 4.012E-01 4.032E-01 0.49%
0.400 2.310E-01 2.323E-01 0.58%
0.500 1.603E-01 1.613E-01 0.61 %
0.600 1.239E-01 1.248E-01 0.69%
0.800 8.813E-02 3.870E-02 0.65%
1.000 7.064E-02 7.102E-02 0.54%
1.500 5.197E-02 5.222E-02 0.49%
2.000 4.590E-02 4.606E-02 0.35%
3.000 4.221 E-02 4.234E-02 0.31 %
4.000 4.188E-02 4.197E-02 0.21 %
5.000 4.264 E-02 4.272E-02 0.18%
6.000 4.383 E-02 4.391 E-02 0.18%
8.000 4.669 E-02 4.675E-02 0.13%
10.000 4.967E-02 4.972E-02 0.10%
15.000 5.653E-02 6.668E-02 0.08%
20.000 6.202 E-02 6.206E-02 0.07%
30.000 7.019 E-02 7.022E-02 0.04%
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APPENDIX IV

T ab le  4 C om par ison  of PHOTX and  ENDF/B-VI.8 in PALLAS-1 D fVHI

Energy
(MeV)

nifp
(Lead)

PHOTX 
E nergy A bsorption  

Buildup Factor

ENDF/B-VI.8 
Energy A bsorption  

Buildup Factor
% D ifference

15 0.5 1.3220E-+00 13116E +00 0.79%
15 1.0 1.5299E+00 E5146E+00 1.00%
15 2.0 1.9096E-H30 1 9008E400 0.46%
15 3.0 2 4334E+00 2.4372E+00 0.16%
15 4.0 3.1588E-HD0 3J997E + 00 1.29%
15 5.0 4J6GOE+00 4.2794E400 2.72%
15 10.0 1 7439E+01 1 9681E+01 12.86%
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APPENDIX V

T ab le  5 C om parison  of PALLAS-1D IVIII an d  MCNPX Using ENDF/B-VI.8 Data

Energy
(MeV)

mfp
(Lead)

PALLAS 
Energy A bsorption  

Buildup Factor

MCNPX 
E nergy A bsorption  

Buildup Factor
% D ifference

15 0.5 E 3116E +00 1.3500E+00 2.93%
15 1.0 1.5146E+00 1.5800E+00 4.32%
15 2.0 1.9008E+00 2.0500 E+00 7.85%
15 3.0 2.4372E+00 2.6900 E+00 10.37%
15 4.0 3 1997E+00 3.5500 E-rOO 10.95%
15 5.0 4.2794E-H30 4.4700 E-rOO 4.45%
15 10.0 1.9681 E+01 2.2310 E+01 13.36%
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APPENDIX VI

Table 6a MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.03 0.500 1.16 1.01 15.05%
0.03 1.000 1.17 1.01 16.04%
0.03 2.000 1.16 1.01 15.26%
0.03 3.000 1.16 1.01 14.63%
0.03 4.000 1.15 1.01 14.29%
0.03 5.000 1.16 1.01 14.46%
0.03 6.000 1.15 1.01 14.32%
0.03 7.000 1.16 1.01 14.46%
0.03 8.000 1.16 1.02 13.25%
0.03 10.000 1.15 1.02 12.99%
0.03 15.000 1.16 1.02 13.47%
0.03 20.000 1.16 1.02 13.38%
0.03 25.000 1.15 1.02 13.21%
0.03 30.000 1.16 1.02 13.31 %
0.03 35.000 1.15 1.02 12.95%
0.03 40.000 1.16 1.02 13.52%

Figure 6a

0.03 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6b MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Biiiidup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.04 0.500 1.12 1.01 10.86%
0.04 1.000 1.12 1.01 10.66%
0.04 2.000 1.12 1.02 9.67%
0.04 3.000 1.12 1.02 9.84%
0.04 4.000 1.12 1.02 9.84%
0.04 5.000 1.12 1.02 9.92%
0.04 6.000 1.12 1.03 8.92%
0.04 7.000 1.12 1.03 8.96%
0.04 8.000 1.12 1.03 9.07%
0.04 10.000 1.12 1.03 8.95%
0.04 15.000 1.12 1.04 7.90%
0.04 20.000 1.12 1.04 7.86%
0.04 25.000 1.13 1.04 8.20%
0.04 30.000 1.12 1.04 8.02%
0.04 35.000 1.13 1.05 7.21%
0.04 40.000 1.13 1.05 7.20%

Figure 6b

0.04 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6c MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6,4.3-1991

% Difference

0.05 0.500 1.10 1.02 7.55%
0.05 1.000 1.10 1.02 8.07%
0.05 2.000 1.10 1.03 7.21%
0.05 3.000 1.11 1.04 6.63%
0.05 4.000 1.11 1.04 6.90%
0.05 5.000 1.11 1.04 6.94%
0.05 6.000 1.11 1.05 5.63%
0.05 7.000 1.11 1.05 5.85%
0.05 8.000 1.11 1.05 6.05%
0.05 10.000 1.12 1.05 6.26%
0.05 15.000 1.12 1.06 5.53%
0.05 20.000 1.12 1.06 5.54%
0.05 25.000 1.12 1.07 4.65%
0.05 30.000 1.12 1.07 4.88%
0.05 35.000 1.12 1.08 4.08%
0.05 40.000 1.12 1.08 3.93%

Figure 6c

0.05 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6d MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

O.OG 0.500 1.09 1.02 6.71%
0.06 1.000 1.10 1.04 5.60%
0.06 2.000 1.10 1.05 5.20%
0.06 3.000 1.11 1.06 4.82%
0.06 4.000 1.11 1.06 4.78%
0.06 5.000 1.11 1.06 4.91 %
0.06 6.000 1.11 1.07 4.06%
0.06 7.000 1.12 1.07 4.62%
0.06 8.000 1.12 1.08 3.95%
0.06 10.000 1.13 1.08 4.38%
0.06 15.000 1.13 1.09 3.40%
0.06 20.000 1.13 1.10 2.52%
0.06 25,000 1.13 1.11 1.81%
0.06 30.000 1.14 1.11 2.32%
0.06 35.000 1.13 1.12 1.33%
0.06 40,000 1.14 1.12 1.51%

Figure 6d
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T able 6e MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6,4.3-1991

% Difference

0.08 0.500 1.10 1.05 4.29%
0.08 1.000 1.11 1.08 2.73%
0.08 2.000 1.13 1.10 2.94%
0.08 3.000 1.14 1.11 2.27%
0.08 4.000 1.14 1.12 2.16%
0.08 5.000 1.15 1.13 1.70%
0.08 6.000 1.15 1.14 1.15%
0.08 7.000 1.16 1.15 0.62%
0.08 8.000 1.16 1.16 0.14%
0.08 10.000 1.17 1.17 0.36%
0.08 15.000 1.18 1.19 1.21%
0.08 20.000 1.18 1.21 2.12%
0.08 25.000 1.19 1.22 2.68%
0.08 30.000 1.20 1.24 3.38%
0.08 35.000 1.20 1.25 4.12%
0.08 40.000 1.20 1.26 5.02%

Figure  6 e

0.08 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6 f MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buiidiip Factor New

Energy Absorption Buiidiip Factor 
ANS-6.4.3-1991

% Difference

0.088 0.500 1.08 1.07 0.82%
0.088 1.000 1.09 1.10 0.64%
0.088 2.000 1.11 1.12 0.71%
0.088 3.000 1.13 1.14 1.30%
0.088 4.000 1.13 1.15 1.80%
0.088 5.000 1.14 1.16 1.60%
0.088 6.000 1.15 1.18 2.80%
0.088 7.000 1.15 1.19 3.19%
0.088 8.000 1.16 1.19 2.75%
0.088 10.000 1.16 1.21 3.92%
0.066 15.000 1.18 1.24 4.97%
0.088 20.000 1.18 1 26 6.00%
0.088 25.000 1.19 1.28 6.79%
0.088 30.000 1.20 1.30 7.88%
0.088 35.000 1.21 1.31 7.97%
0.088 40.000 1.21 1.32 8.54%

Figure 6f

0.088 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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Table 6q MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buiidiip Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.089 0.500 1.93 1.48 30.52%
0.089 1.000 2.69 2.01 33.93%
0.089 2.000 4.71 3.54 33.00%
0.089 3.000 8.19 6.39 28.17%
0.089 4.000 1.46E-tC1 1.22E+01 19.84%
0.089 5.000 2.66E-HD1 2.41E-HD1 10.50%
0.089 6.000 4.99E-HD1 4.85E-H31 2.96%
0.089 7.000 9.56E+01 9.38E-HD1 1.92%
0.089 8.000 1.83E-HD2 1.79E402 2.47%
0.089 10.000 6.98E+02 6.71 E402 4.08%
0.089 15.000 2.41 E-Æ4 2.00E-H34 20.57%
0.089 20.000 8.83E-Æ5 6.71E-H35 31.54%
0.089 25.000 * NO VALUE 2.44E-HD7
0.089 30.000 * NO VALUE 9.36E+08
0.089 35.000 * NO VALUE 3.74E+10
0.089 40.000 * NO VALUE 1.53E+12

‘ The relative error ill MCNPX w as veiy  high and Uncollided D ose was equal to zero

Figure 6a

0.089 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able Gh MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANSÆ.4.3-1991

% Difference

0.090 0.500 1.91 1.48 29.10%
0.090 1.000 2.65 2.00 32.58%
0.090 2.000 4.62 3.49 32.30%
0.090 3.000 7.93 6.24 27.10%
0.090 4.000 1.39E-HD1 1.18E401 18.04%
0.090 5.000 2.51 E401 2.31E-HD1 8.72%
0.090 6.000 4.63E-HD1 4.59E-HD1 0.90%
0.090 7.000 8.G8E+01 8.78E401 1.09%
0,090 8.000 1.65E402 1.66E-HD2 0.77%
0.090 10.000 6.08E-HD2 G.11E402 0.57%
0.090 15.000 1.73E404 1.75E-HD4 1.22%
0.090 20.000 5.25E405 5.66E+05 7.27%
0.090 25.000 1.45E+07 1.99E+07 26.97%
0.090 30.000 7.86E-HD8 7.40E-HD8 6.24%
0.090 35.000 *N0 VALUE 2.86E+10
0.090 40.000 *N0 VALUE 1.13E+12

* The relative error In MCNPX was very high and Uncollided D ose was equal to zero

Figure Gh

0.09 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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Table 6i MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.100 0.500 1.75 1.44 21.22%
0.100 1.000 2.33 1.89 23.39%
0.100 2.000 3.73 3.05 22.40%
0.100 3.000 5.81 4.92 18.13%
0.100 4.000 9.18 8.25 11.23%
0.100 5.000 1.48E-+01 1.44E-+01 3.10%
0.100 6.000 2.45E-HD1 2.54E-HD1 3.64%
0.100 7.000 4.16E-HD1 4.50E-HD1 7.58%
0.100 8.000 7.15E+01 7.67E+01 6.82%
0.100 10.000 2.18E-HD2 2.32E+02 6.01%
0.100 15.000 4.46E-HD3 4.33E-HD3 3.06%
0.100 20.000 1.77E-HD5 9.54E-HD4 85.90%
0.100 25.000 'NO VALUE 2.33E+06
0.100 30.000 'NO VALUE 6.02E-HD7
0.100 35.000 'NO VALUE 1.61E-HD9
0.100 40.000 'NO VALUE 4.35E+10

‘ The relative error in MCNPX was very high and Uncollided D ose was equal to zero

Figure 61

0.10 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 61 MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
A N S4.4.31991

% Difference

0.110 0.500 1.73 1.45 19.19%
0.110 1.000 2.27 1.88 20.98%
0.110 2.000 3.40 2.85 19.37%
0.110 3.000 4.86 4.20 15.70%
0.110 4.000 6.92 6.30 9.79%
0.110 5.000 9.99 9.71 2.92%
0.110 6.000 1.47E401 1.52E401 3.08%
0.110 7.000 2.19E-t01 2.41E-t01 9.20%
0.110 8.000 3.37E401 3.77E401 10.70%
0.110 10.000 8.37E401 9.20E401 9.03%
0.110 15.000 1.02E4Û3 1.08E4O3 5.37%
0.110 20.000 1.09E-tO4 1.55E-t04 29.96%
0.110 25.000 1.34E4Û5 2.49E-t05 46.23%
0.110 30.000 *N0 VA.UE 4.19E-t06
0.110 35.000 *N0 VALUE 7.20E4Û7
0.110 40.000 ’NO VALUE 1.25E-t09

' The relatK/e error in MCNPX w as very high and Uncoilided D ose was equai to zero

Figure 6j

0.11 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6k MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.120 0.500 1.71 1.46 17.28%
0.120 1.000 2.21 1.85 19.38%
0.120 2.000 3.10 2.62 18.16%
0.120 3.000 4.05 3.52 15.09%
0.120 4.000 5.24 4.71 11.26%
0.120 5.000 6.76 6.40 5.67%
0.120 6.000 8.82 8.77 0.56%
0.120 7.000 1.16E4C1 1.23E4C1 5.45%
0.120 8.000 1.58E4C1 1.72E-H31 8.39%
0.120 10.000 3.03E-HD1 3.39E-HD1 10.68%
0.120 15.000 2.01 E4C2 2.34E-HD2 14.15%
0.120 20.000 1.82E-HD3 2.06E-H33 11.41%
0.120 25.000 1.64E4C4 2.01E-f04 18.21%
0.120 30.000 1.09E-HD5 2.04E-H35 46.42%
0.120 35.000 *N0 VALUE 2.10E-H36
0.120 40.000 'NO VALUE 2.18E-HD7

The relative error in MCNPX w as very high and Uncoliided D ose was equal to zero

Figure 6k
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T able 61 MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.13 0.500 1.70 1.46 16.26%
0.13 1.000 2.13 1.81 17.58%
0.13 2.000 2.80 2.41 16.11%
0.13 3.000 3.39 2.96 14.48%
0.13 4.000 3.97 3.59 10.68%
0.13 5.000 4.63 4.33 7.02%
0.13 6.000 5.39 5.23 3.08%
0.13 7.000 6.37 6.41 0.68%
0.13 8.000 7.57 7.98 5.10%
0.13 10.000 1.12E-f01 1.22E-f01 7.94%
0.13 15.000 4.05E-HD1 4.57E-HD1 11.39%
0.13 20.000 1.9GE-K32 2.20E-K32 10.98%
0.13 25.000 1.10E-HD3 1.19E-H33 7.32%
0.13 30.000 6.03E-K33 6.68E-H33 9.79%
0.13 35.000 2.31E-HD4 3.85E-KD4 40.00%
0.13 40.000 1.30E-HD5 2.25E-HD5 42.12%

Figure 61

0.13 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6m  MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.14 0.500 1.68 1.45 15.74%
0.14 1.000 2.04 1.77 15.33%
0.14 2.000 2.53 2.20 14.84%
0.14 3.000 2.85 2.52 13.09%
0.14 4.000 3.12 2.81 11.12%
0.14 5.000 3.37 3.10 8.65%
0.14 6.000 3.64 3.39 7.29%
0.14 7.000 3.88 3.72 4.42%
0.14 8.000 4.22 4.11 2.63%
0.14 10.000 4.98 5.14 3.14%
0.14 15.000 8.91 9.52 6.37%
0.14 20.000 1.97E-r01 2.17E-T01 9.21 %
0.14 25.000 5.10E-r01 5.66E-T01 9.97%
0.14 30.000 1.43E-KD2 1.60E-K12 10.54%
0.14 35.000 4.24E-r02 4.73E-HD2 10.41%
0.14 40.000 1.29E-T03 1.44E+03 10.39%

Figure 6m

0.14 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able Gn MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.15 0.500 1.65 1.45 13.50%
0.15 1.000 1.97 1.72 14.28%
0.15 2.000 2.30 2.03 13.22%
0.15 3.000 2.47 2.20 12.28%
0.15 4.000 2.58 2.32 11.20%
0.15 5.000 2.65 2.42 9.39%
0.15 6.000 2.71 2.49 8.67%
0.15 7.000 2.76 2.56 7.76%
0.15 8.000 2.81 2.64 6.47%
0.15 10.000 2.92 2.80 4.23%
0.15 15.000 3.25 3.28 0.85%
0.15 20.000 3.67 3.85 4.77%
0.15 25.000 4.25 4.50 5.55%
0.15 30.000 5.06 5.45 7.17%
0.15 35.000 6.30 6.89 8.60%
0.15 40.000 8.05 9.10 11.55%

F ig u re  Gn

0.15 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able Go MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) nifp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANSÆ.4.3-1991

% Difference

0.16 0.500 1.65 1.45 13.66%
0.16 1.000 1.91 1.69 13.12%
0.16 2.000 2.14 1.91 12.21%
0.16 3.000 2.21 2.00 10.53%
0.16 4.000 2.25 2.05 9.63%
0.16 5.000 2.25 2.08 8.37%
0.16 6.000 2.26 2.09 8.22%
0.16 7.000 2.26 2.10 7.57%
0.16 8.000 2.27 2.11 7.57%
0.16 10.000 2.26 2.13 6.32%
0.16 15.000 2.25 2.15 4.85%
0.16 20.000 2.25 2.16 4.27%
0.16 25.000 2.24 2.16 3.75%
0.16 30.000 2.23 2:17 2.92%
0.16 35.000 2.23 2.17 2.99%
0.16 40.000 2.24 2.18 2.62%

Figure Go

0.16 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able Go MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.20 0.500 1.60 1.47 8.69%
0.20 1.000 1.72 1.60 7.66%
0.20 2.000 1.76 1.66 6.13%
0.20 3.000 1.76 1.68 4.93%
0.20 4.000 1.78 1.69 5.27%
0.20 5.000 1.79 1.70 5.28%
0.20 6.000 1.80 1.72 4.61%
0.20 7.000 1.81 1,73 4.52%
0.20 8.000 1.82 1.75 3.91%
0.20 10.000 1.83 1.77 3.25%
0.20 15.000 1.85 1.83 1.32%
0.20 20.000 1.89 1.87 0.84%
0.20 25.000 1.89 1.91 0.92%
0.20 30.000 1.91 1.94 1.57%
0.20 35.000 1.92 1.97 2.64%
0.20 40.000 1.93 1.99 3.13%

Figure 6p

0.20 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6 g MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991 % Difference

0.30 0.500 1.50 1.43 5.07%
0.30 1.000 1.56 1.51 3.52%
0.30 2.000 1.65 1.61 2.28%
0.30 3.000 1.72 1.67 2.95%
0.30 4.000 1.78 1.72 3.55%
0.30 5.000 1.81 1.76 2.86%
0.30 6.000 1.85 1.80 2.89%
0.30 7.000 1.88 1.84 2.21 %
0.30 8.000 1.90 1.87 1.72%
0.30 10.000 1.96 1.92 2.05%
0.30 15.000 2.04 2.03 0.30%
0.30 20.000 2.10 2.12 0.79%
0.30 25.000 2.13 2.19 2.62%
0.30 30.000 2.20 2.25 2.20%
0.30 35.000 2.22 2.30 3.42%
0.30 40.000 2.26 2.35 3.91 %

Figure 6q

0.30 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6 r MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
A N S^.4.3-1991

% Difference

0.40 0.500 1.49 1.45 2.47%
0.40 1.000 1.61 1.58 1.78%
0.40 2.000 1.78 1.76 1.23%
0.40 3.000 1.89 1.88 0.58%
0.40 4.000 1.99 1.98 0.55%
0.40 5.000 2.07 2.06 0.40%
0.40 G.OOO 2.15 2.15 0.04%
0.40 7.000 2.21 2.22 0.37%
0.40 0.000 2.27 2.28 0.54%
0.40 10.000 2.37 2.41 1.59%
0.40 15.000 2.55 2.66 3.99%
0.40 20.000 2.69 2.87 6.25%
0.40 25.000 2.78 3.04 8.60%
0.40 30.000 2.89 3.18 9.00%
0.40 35.000 2.97 3.30 10.00%
0.40 40.000 3.03 3.41 11.20%

F igu re  6 r

0.40 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6s MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.50 0.500 1.52 1.48 2.74%
0,50 1.000 1.68 1.67 0.67%
0.50 2.000 1.93 1.92 0.61%
0.50 3.000 2.12 2.11 0.39%
0.50 4.000 2.28 2.26 0.91%
0.50 5.000 2.40 2.40 0.02%
0,50 6.000 2.53 2.53 0.11%
0.50 7.000 2.62 2.65 1.03%
0.50 8.000 2.72 2,76 1.62%
0.50 10.000 2.89 2.97 2.70%
0.50 15,000 3.22 3.41 5.62%
0.50 20.000 3.48 3.77 7.62%
0.50 25.000 3.66 4.07 9.99%
0.50 30.000 3.86 4.33 10.81%
0.50 35.000 4.04 4.56 11.45%
0.50 40.000 4.17 4.76 12.46%

Figure 6s

0.50 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6t MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) nifp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

0.60 0.500 1.54 1.36 13.43%
0.60 1.000 1.74 1.56 11.71%
0.60 2.000 2.06 1.85 11.58%
0.60 3.000 2.32 2.07 11.98%
0.60 4,000 2.54 2.25 13.04%
0.60 5.000 2.73 2.41 13.18%
0.60 6.000 2.90 2.58 12.35%
0.60 7.000 3.06 2.72 12.50%
0.60 8.000 3.19 2.85 11.85%
0.60 10.000 3.45 3.11 10.93%
0.60 15.000 3.95 3.65 8.13%
0.60 20.000 4.38 4.08 7.24%
0.60 25.000 4.72 4.44 6.38%
0.60 30.000 5.06 4.75 6.44%
0.60 35.000 5.31 5,03 5.61%
0.60 40.000 5.51 5.28 4.29%

Figure 6t
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T able 6 u MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
A N S^.4.3-1991

% Difference

0,80 0.500 1.58 1.43 10.46%
0.60 1.000 1.85 1.70 8.78%
0.00 2.000 2.29 2.09 9.49%
0.60 3.000 2.67 2.43 9.78%
0.80 4.000 2.99 2.70 10.66%
0.60 5.000 3.29 2.95 11.48%
0.80 6.000 3.57 3.22 10.77%
0.80 7.000 3.88 3.45 12.32%
0.80 8.000 4.07 3.67 10.82%
0.60 10.000 4.49 4.10 9.56%
0.80 15.000 5.45 5.03 8.34%
0.80 20.000 6.29 5.82 8.13%
0.80 25.000 6.97 6.49 7.34%
0.80 30.000 7.57 7.09 6.73%
0.80 35.000 8.16 7.64 6.86%
0.80 40.000 8.65 8.13 6.44%

Figure 6u

0.80 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6v MCNPX Energy Absorption Buildup Factor Compared to ANS-G.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

1.00 0.500 1.59 1.46 8.91 %
1.00 1.000 . 1.90 1.76 7.77%
1.00 2.000 2.42 2.23 8.50%
1.00 3.000 2.89 2.64 9.30%
1.00 4.000 3.29 2.99 10.19%
1.00 5.000 3.68 3.32 10.94%
1.00 6.000 4.04 3.68 9.66%
1.00 7.000 4.37 4.00 9.14%
1.00 8.000 4.72 4.30 9.80%
1.00 10.000 5.31 4.90 8.35%
1.00 15.000 6.70 6.26 7.10%
1.00 20.000 8.00 7.44 7.54%
1.00 25.000 8.99 8.48 6.03%
1.00 30.000 1.00E+01 9.41 6.48%
1.00 35.000 1.09E+01 1.03E+01 6.10%
1.00 40.000 1.17E+01 I.IIE-HDI 5.02%

Figure 6v

1.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6w MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS.6.4.3-1991

% Difference

1.50 0.500 1.61 1.43 12.74%
1.50 1.000 1.96 1.75 12.01%
1.00 2.000 2.57 2.29 12.02%
1.00 3.000 3.14 2.82 11.21%
1.00 4.000 3.70 3.31 11.76%
1.00 5.000 4.24 3.81 11.21%
1.00 6.000 4.75 4.34 9.43%
1.00 7.000 5.29 4.85 9.07%
1.00 8.000 5.80 5.36 8.15%
1.00 10.000 6.82 6.40 6.58%
1.00 15.000 9.30 9.08 2.42%
1.00 20.000 1.18E-K31 1.18E-H31 0.26%
1.00 25.000 1.43E401 1.46E+01 2.03%
1.00 30.000 1.68E-K31 1.72E-H31 2.09%
1.00 35.000 1.94E-K31 1.97E-K31 1.48%
1.00 40.000 2.18E-K31 2.22E-HD1 1.89%

F igu re  6 w

1.50 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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Table 6x MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Biiiidiip Factor 
ANS-6.4.3-1991

% Difference

2.00 0.500 1.62 1.48 9.61%
2.00 1.000 1.95 1.78 9.64%
2.00 2.000 2.54 2.28 11.52%
2.00 3.000 3.13 2.82 10.83%
2.00 4.000 3.72 3.35 11.15%
2.00 5.000 4.36 3.90 11.71%
2.00 6.000 4.97 4.50 10.39%
2.00 7.000 5.61 5.08 10.40%
2.00 8.000 6.26 5.68 10.13%
2.00 10.000 7.54 6.95 8.46%
2.00 15.000 1.11E401 1.03E401 8.03%
2.00 20.000 1.50E-H31 1.39E-H31 7.90%
2.00 25.000 1.91E-H31 1.77E-H31 7.93%
2.00 30.000 2.33E-H31 2.15E401 8.60%
2.00 35.000 2.77E-HD1 2.55E401 8.51%
2.00 40.000 3.15E-H31 2.94E401 7.03%

Figure 6x

2.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6y MCNPX Energy Absorption Buildup Factor Compared to AHS-6.4.3-1991

Energy (MeV) nifp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS^.4.3-1991

% Difference

3.00 0.500 1.57 1.49 5.33%
3.00 1.000 1.83 1.71 7.24%
3.00 2.000 2.32 2.11 9.72%
3.00 3.000 2.84 2.56 10.88%
3.00 4.000 3.39 3.03 12.04%
3.00 5.000 3.99 3.55 12.46%
3.00 6.000 4.60 4.12 11.73%
3.00 7.000 5.26 4.72 11.35%
3.00 8.000 5.97 5.34 11.78%
3.00 10.000 7.54 6.73 12.01%
3.00 15.000 1.22E-KD1 1.08E-KD1 13.25%
3.00 20.000 1.79E-KD1 1.57E401 14.05%
3.00 25.000 2.40E-KD1 2.12E-KD1 13.39%
3.00 30.000 3.12E-HD1 2.74E-KD1 13.77%
3.00 35.000 4.01E-HD1 3.41E401 17.62%
3.00 40.000 4.99E-KD1 4.14E-HD1 20.44%

F ig u re  6v

3.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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Table 6z MCNPX Energy Absorption Buildup Factor Com pared  to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

4.00 0.500 1.51 1.43 5.55%
4.00 1.000 1.73 1.60 8.14%
4.00 2.000 2.13 1.91 11.73%
4.00 3.000 2.57 2.28 12.80%
4.00 4.000 3.04 2.68 13.61%
4.00 5.000 3.58 3.12 14.68%
4.00 6.000 4.19 3.61 15.97%
4.00 7.000 4.81 4.15 16.02%
4.00 8.000 5.50 4.73 16.33%
4.00 10.000 7.12 6.06 17.46%
4.00 15.000 1.22E401 1.04E-M31 17.11%
4.00 20.000 1.96E-HD1 1.64E-HD1 19.68%
4.00 25.000 2.90E-M31 2.43E-M31 19.40%
4.00 30.000 4.16E-HD1 3.44E-HD1 20.88%
4.00 35.000 6.0GEO1 4.70E-M31 28.88%
4.00 40.000 8.45E-HD1 6.24E-HD1 35.49%

Figure 6z

4.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6aa MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Biiiidup Factor New

Energy Absorption Biiiidiip Factor 
ANS-6.4.3-1991

% Difference

5.00 0.500 1.47 1.44 1.97%
5.00 1.000 1.66 1.62 2.69%
5.00 2.000 2.01 1.89 6.60%
5.00 3.000 2.40 2.22 8.32%
5.00 4.000 2.84 2.59 9.69%
5.00 5.000 3.34 3.00 11.25%
5.00 6.000 3.91 3.48 12.33%
5.00 7.000 4.55 4.02 13.08%
5.00 8.000 5.23 4.60 13.75%
5.00 10.000 6.79 6.01 12.95%
5.00 15.000 1.28E401 1.11E4C1 15.25%
5.00 20.000 2.19E-H31 1.91E-H31 14.82%
5.00 25.000 3.54E-T01 3.13E-H31 12.98%
5.00 30.000 5.64E-T01 4.93E-H31 14.48%
5.00 35.000 B.25E401 7.51 E4C1 9.84%
5.00 40.000 1.17E-H32 1.11E-H32 5.38%

Figure Gaa

5.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able Sab MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991 % Difference

6.00 0.500 1.44 1.41 1.83%
6.00 1.000 1.62 1.58 2.38%
6.00 2.000 1.94 1.84 5.56%
6.00 3.000 2.33 2.15 8.39%
6.00 4,000 2.76 2,50 10.34%
6.00 5.000 3.27 2.91 12.41%
6.00 6.000 3.83 3.40 12.68%
6.00 7,000 4.49 3.94 13.89%
6.00 8.000 5.21 4.56 14.23%
6.00 10.000 7.03 6.08 15.59%
B.OO 15.000 1.42E+01 1.21E-t{l1 17.44%
6.00 20.000 2.6BE-KD1 2.31 E-mi 16.02%
6.00 25.000 5.14E-HD1 4.26E-HD1 20.63%
6.00 30.000 B.B7E-KD1 7.57E-mi 17.22%
6.00 35.000 1.65E-HD2 1.31E-t{l2 25.87%
6.00 40.000 2.B6E-HD2 2.21E-HD2 29.63%

Figure Gab

6.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6ac MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS^.4.3-1991

% Difference

8.00 0.500 1.39 1.40 0.36%
8.00 1.000 1.57 1.59 1.09%
8.00 2.000 1.91 1.89 0.92%
8.00 3.000 2.29 2.24 2.09%
8.00 4.000 2.76 2.66 3.83%
8.00 5.000 3.33 3.17 5.14%
8.00 6.000 4.00 3.79 5.48%
8.00 7.000 4.82 4.53 6.33%
8.00 8.000 5.75 5.41 6.34%
8.00 10.000 8.17 7.76 5.23%
8.00 15.000 2.05E401 1.90E-K11 7.78%
8.00 20.000 5.03E-U31 4.59E-U31 9.67%
8.00 25.000 1.16E402 1.08E-K12 7.50%
8.00 30.000 2.57E-H02 2.49E+02 3.19%
8.00 35.000 6.05E-K32 5.62E-K32 7.63%
8.00 40.000 9.63E-H02 1.24E-H03 22.35%

Figure 6ac

8.00 MeV Source; MCNPX vs. ANS 6.4.3-1991 for Lead
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T able 6ad MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Buildup Factor New

Energy Absorption Buildup Factor 
ANS-6.4.3-1991

% Difference

10.00 0.500 1.37 1.35 1.77%
10.00 1.000 1.56 1.54 1.39%
10.00 2.000 1.92 1.88 2.02%
10.00 3.000 2.36 2.30 2.56%
10.00 4.000 2.90 2.05 1.74%
10.00 5.000 3.60 3.54 1.81%
10.00 6.000 4.45 4.40 1,14%
10.00 7.000 5.54 5.50 0.67%
10.00 8.000 6.88 6.87 0.17%
10.00 10.000 1.07E-MD1 I.OSE-rOI 1.12%
10.00 15.000 3.28E-MD1 3.38E-KD1 3.02%
10.00 20.000 1.02E-MD2 1.05E-T02 2.90%
10.00 25.000 3.30E-MD2 3.19E-KD2 3.60%
10.00 30.000 9.71E-MD2 9.44E-KD2 2.89%
10.00 35.000 2.28E-KD3 2.73E-KD3 16.53%
10.00 40.000 1.19E-KD4 7.75E-KD3 53.65%

Figure Bad

10.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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I  able Gae MCNPX Energy Absorption Buildup Factor Compared to ANS-6.4.3-1991

Energy (MeV) mfp
(Lead)

Energy Absorption 
Biiiidiip Factor New

Energy Absorption Biiiidiip Factor 
ANS-6.4.3-1991

% Difference

15.00 0.500 1.35 1.32 2.53%
15.00 1.000 1.58 1.55 1.66%
15.00 2.000 2.05 1.99 3.08%
15.00 3.000 2.69 2.58 4.20%
15.00 4.000 3.55 3.42 3.81%
15.00 5.000 4.74 4.61 2.76%
15.00 6.000 6.40 6.26 2.18%
15.00 7.000 8.80 8.56 2.82%
15.00 8.000 11.97 11.80 1.48%
15.00 10.000 2.23E+01 2.26E+01 1.27%
15.00 15.000 1.10E402 1.17E402 6.32%
15.00 20.000 5.03E+02 5.94E+02 15.24%
15.00 25.000 3.20E403 2.93E-HD3 9.36%
15.00 30.000 1.96E+04 1.41E+04 38.78%
15.00 35.000 *N0 VALUE 6.62E+04
15.00 40.000 *N0 VALUE 3.05E-HD5

' The relative error in MCNPX was very high and Uncollided D ose was eqiiai to zero

Figure Gae

15.00 MeV Source: MCNPX vs. ANS 6.4.3-1991 for Lead
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APPENDIX VIT 

PALLAS-ID (VII) Sample Input File

60 38 44
# PB 15 MEV , POINT ISOTROPIC SOURCE PAL3.(PB15AA)
4 0 0 0 
2 10 1 I 1 
44
4 38 0 0 
10 0 0 0
15.00 0.50 1.0 0.05
11 10 633
0.35225 1.2067 1.609 12.872
1 1 1 1  
1 1 1 1  
LEAD 
820
11.34 0.088
0.03296 0.0 
8 1 1 1 0  0 
1 15 21 27 32 36 40 60
0.0310 0.5 1.0 2.0 3.0 4.0 5.0 10.0
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APPENDIX VIII

MCNPX Sample Input File

C LEAD INFINITE MEDIUM 0.15 MEV UP TO 40 MFP
1 1 -11.34 -1 SINNER SPHERE I; SOURCE CELL
2 1-11.34 1 -2$SHELL2
3 1 -11.34 2 -3 $SHELL3
4 1 -11.34 3 -4 $SHELL4
5 1 -11.34 4-5 $SHELL5
6 1 -11.34 5 -6 $SHELL6
7 1 -11.34 6-7$SHELL7
8 1 -11,34 7 -8 $SHELL8
9 1 -11.34 8 -9 $SHELL9
10 1 -11.34 9-10 SSHELL 10
11 1-11.34 10-11 SSHELL 11
12 1 -11.34 11 -12SSHELL 12
13 1-11.34 12-13 SSHELL 13
14 1 -11.34 13 -14SSHELL 14
15 1-11.34 14-15 SSHELL 15
16 1-11.34 15-16$SHELL 16
17 1-11.34 16-17 SSHELL 17
18 1-11.34 17-18 SSHELL 18
19 1-11.34 18-19 SSHELL 19
20 1 -11.34 19 -20 SSHELL 20
21 1-11.34 20-21 SSHELL 21
22 1 -11.34 21 -22 SSHELL 22
23 1 -11.34 22 -23 SSHELL 23
24 1 -11.34 23 -24 SSHELL 24
25 1 -11.34 24-25 SSHELL 25
26 1 -11.34 25 -26 SSHELL 26
27 1 -11.34 26-27 SSHELL 27
28 1 -11.34 27-28 SSHELL 28
29 1 -11.34 28 -29 SSHELL 29
30 1 -11.34 29 -30 SSHELL 30
31 1 -11.34 30 -31 SSHELL 31
32 1 -1 1.34 31 -32 SSHELL 32
33 1 -11.34 32 -33 SSHELL 33
34 1 -11.34 33 -34 SSHELL 34
35 1 -11.34 34-35 SSHELL 35
36 1 -11.34 35 -36 SSHELL 36
37 1 -11.34 36 -37 SSHELL 37
38 1 -11.34 37 -38 SSHELL 38
39 1 -11.34 38 -39 SSHELL 39
40 1 -11.34 39 -40 SSHELL 40
41 1 -11.34 40 -41 SSHELL 41
42 0 41 -42 SOUSIDE OF MATERIAL BUT WITHIN LIMIT OF SPACE
43 0 42 SOUTSIDE SPACE LIMIT

76



c ALL MFP @ 0.15MEV IN PB
1 SO 0.021956 $0.5 MFP
2 SO 0.043912 $I MFP
3 SO 0.087823 $2MFP
4 SO 0.13173 $3 MFP
5 SO 0.17565 $4 MFP
6 SO 0.21956 $5 MFP
7 SO 0.26347 $6 MFP
8 SO 0.30738 $7 MFP
9 SO 0.35129 $8 MFP
10 SO 0.395200 $CELL ADDITION
11 SO 0.43912 $10 MFP
12 SO 0.475700 SCELL ADDITION
13 SO 0.512300 $CELL ADDITION
14 SO 0.548900 SCELL ADDITION
15 SO 0.585500 SCELL ADDITION
16 SO 0.622100 SCELL ADDITION
17 SO 0.65867 $15 MFP
18 SO 0.695300 SCELL ADDITION
19 SO 0.731900 SCELL ADDITION
20 SO 0.768500 SCELL ADDITION
21 SO 0.805000 SCELL ADDITION
22 SO 0.841600 SCELL ADDITION
23 SO 0.87823 $20 MFP
24 SO 0.922100 SCELL ADDITION
25 SO 0.966100 SCELL ADDITION
26 SO LOI000 SCELL ADDITION
27 SO 1.05400 SCELL ADDITION
28 SO 1.0978 $25 MFP
29 SO 1.15300 SCELL ADDITION
30 SO 1.20800 SCELL ADDITION
31 SO 1.26200 SCELL ADDITION
32 SO 1.3173 $30 MFP
33 SO 1.37200 SCELL ADDITION
34 SO 1.42700 SCELL ADDITION
35 SO 1.48200 SCELL ADDITION
36 SO 1.5369 $35 MFP
37 SO 1.59200 SCELL ADDITION
38 SO 1.64700 SCELL ADDITION
39 SO 1.70200 SCELL ADDITION
40 SO 1.7565 $40 MFP
41 SO 3.0 S3CM OF LEAD
42 SO 4.0 SLIMIT OF SPACE

MODEP
IMP:P 10 15 18 40 97 244 619 1576 4029 10271 26250 66775 

145577 318150 694715 1516718 3312169 7218410 15746795 
34323068 74850011 162675387 354041396 774480755 
1967938990 5011705808 12687990047 32194568706 81647595140 
262166775066 836146931211 2609188925750 8338987191255 
26337906834259 83335799613621 263484942557841 
829768753836972 2620043484444200 8214169962537140 
25719394832372500 80320316337438800 0 0

C
Ml 82000.04P 1.
CMl 82000 1.
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c
SDEF POS 0 00 ERGO. 15 
C
FC2 DOSE AT VARIOUS MFP BY ENERGY GROUPING
F2:P I 2 3 4 5 6 7 8 9 II 17 23 28 32 36 40
E2 .14999 10 T
FQ2FU
C
C GAMMA DOSE FUNCTION FROM CALCULATIONS 
DE 0.001 0.0015 0.002 0.003 0.004 0.005 0.006 

0.008 O.OI 0.015 0.020 0.030 0.040 0.050 
0.060 0.080 O.IO 0.15 0.20 0.30 0.40 
0.50 0.60 0.80 I.OO 1.50 2.00 3.00
4.00 5.00 6.00 8.00 lO.O 15.0 20.0

C
DE 8.326-10 5.633-10 4.082-10 9.194-10 7.824-10 5.706-10 4.370-10 

2.828-10 1.998-10 2.I87-I0 2.2I0-I0 1.2I9-I0 7.760-11 5.399-11 
3.988-11 2.456-11 3.166-11 2.538-11 1.881-11 1.180-11 8.779-12 
7.312-12 6.554-12 5.952-12 5.854-12 6.344-12 7.561-12 1.116-11 
1.569-11 2.083-11 2.638-11 3.831-11 5.096-11 8.358-11 1.152-10

C
PRDMP 2J 1 
PRINT 
NPS 1000000 
PHYS;P
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