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ABSTRACT

Three-Dimensional Numerical Study of Proton Exchange Membrane
Fuel Cell Design

by

Jianfei Wu

Dr. Yitung Chen, Examination Committee Chair 
Associate Professor of Department of Mechanical Engineering 

University of Nevada, Las Vegas

Performance of proton exchange membrane (PEM) fuel cells is dependent of a set of 

complex physical and chemical processes occurring simultaneously. Bipolar plates are 

important components o f PEM fuel cells because they are the first stage of the flow 

distribution system. A non-uniform flow distribution across the active reaction area 

within PEM fuel cells will probably lead to an unbalanced use of the precious catalyst, 

and a lower overall efficiency of the device than expected. A three-dimensional 

numerical model has been developed to evaluate the PEM fuel cell including the current 

collectors, flow channels, gas diffusion layers, and membrane. This model takes into 

account the multi-component fluid flow in porous medium, electrochemical kinetics and 

water transport across membrane by electro-osmosis, diffusion and convection. Different 

fuel cell design cases, associated with their own bipolar plate designs, have been studied. 

Numerical results from the developed model show that the predicted polarization curve is 

in very good agreement with the experimental data. Results also show that the fluid flow 

distribution in the baseline design is very non-uniform, which is not favorable for the use
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of catalyst and the high efficiency fuel cell. In order to improve the fuel cell efficiency, 

the bipolar plate design has been optimized, which then greatly increases the current 

density or power of fuel cell under the same operating conditions compared with the 

baseline design. Parametric study of the fuel flow rate on the current density has also 

been performed. Results reveal that the flow rate of fuel or air greatly influences the 

water content distribution within the proton exchange membrane, thus significantly 

impacting the performance of the PEM fuel cell. Generally, uniform fluid flow inside the 

entire plates and the proper humidity of the fuel cell are significantly important to the 

high performance PEM fuel cell.
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CHAPTER 1 

INTRODUCTION

IT Background and History

Due to the increasing demand for energy consumption and the energy related 

environmental pollution problems, renewable energy has become one of the hottest topics 

in the 21st century. It is very important to one nation’s future energy dependence and to 

the dependence of industry and economic development in the long run. There are many 

renewable energy forms, such as solar, wind, hydraulic, geothermal and tidal energy. 

However, the accomplishment is still very limited due to the current techniques and 

hence they are not widely used yet.

Hydrogen, as an energy carrier, is considered to be a very promising method to use 

renewable energy, and to solve the energy demand and environmental pollution 

problems. Hydrogen can be produced from water, biomass, or natural gas molecules 

through steam reforming and electrolysis. It can be used in almost every application 

where fossil fuel is being used today, without harmful emissions. It becomes the choice 

of fuel for many energy applications due to its high reactivity with an appropriate 

catalyst, and a wide range of production from other energy sources.

A fuel cell is an electrochemical device that can convert the chemical energy of a 

reaction directly into electrical energy. It is deemed as a promising pathway towards



renewable energy system. In 1838-1842, Sir William Grove and Christian Friedrich 

Schonbein invented the first fuel cell as an electrical energy conversion device [1]. It has 

many advantages, such as low to zero emission power generation, high theoretical 

efficiency, adaptable features, reliability and quiet operation. It can continuously produce 

electricity as long as supplied with the fuel and oxidant [2].

1.2 Fuel Cell Review

Fuel cells can be generally classified into several types, depending on the used 

electrolyte and catalyst and their operating temperatures [3]:

•  Alkaline Fuel Cell (AFC)

•  Molten Carbonate Fuel Cell (MCFC)

•  Phosphoric Acid Fuel Cell (PAFC)

•  Proton Exchange Membrane Fuel Cell (PEMFC)

•  Solid Oxide Fuel Cell (SOFC).

The alkaline fuel cell (AFC) was developed in the early 1960’s, under the Apollo 

project by U.S. National Aeronautics and Space Administration (NASA) [3]. AFC’s 

electrolyte is a potassium hydroxide (KOH) solution, which operates between 65 and 

250°C. It has the excellent performance compared to other candidate fuel cells due to its 

active electrode kinetics and its flexibility to use a wide range of catalysts. However, 

AFC requires the high purity fuel and oxidant, which limits its application in many areas.

Molten carbonate fuel cell (MCFC) uses alkali carbonate, such as potassium, sodium 

and lithium salts as its electrolyte, operating from 600 °C to 700 °C [3]. The MCFC uses



a cheaper nickel catalyst rather than other expensive metals. However, its electrolyte is 

very corrosive, so that stainless steel is required for the cell hardware.

The phosphoric acid fuel cell (PAFC) is one of the well developed fuel cells, which 

uses 100% phosphoric acid (H 3 PO4 ) as the electrolyte and operates from 150 °C to 220 

°C [3]. It has thermal, chemical and electrochemical stability advantages, which makes it 

one the first type of fuel cells to be commercialized. However, the PAFC is not very 

efficient at generating electricity alone and it is less powerful than other fuel cells. 

Therefore, PAFC is typically used for stationary power generation or some large vehicles.

The solid oxide fuel cell (SOFC) uses a non-porous metal oxide electrolyte, which 

operates in the range 650 °C to 1000 °C [3]. The solid electrolyte feature allows its 

flexible shape, and has no corrosion problem compared to liquid electrolyte, as well as no 

flooding problem. However the operating temperature is significantly high and the 

preheating of the inlet air is necessary. The difference of thermal expansion between each 

parts of the cell cause many problems, such as the sealing and choice of material. Finally, 

it leads to lower performance than other cells.

The proton exchange membrane fuel cell (PEMFC), also known as the solid polymer 

or polymer electrolyte fuel cell, has received increasing attention. A PEMFC uses a 

proton exchange membrane as the electrolyte, which has high proton conductivity when 

it is properly hydrated. A PEMFC generally uses hydrogen as the fuel and air as the 

oxidant and the product is purely water and it operates around 50 °C to 80 °C. Of the 

different types of fuel cells, PEMFC has the advantages of low operating temperature and 

high power density. So it has been considered the leading candidate for use as a non­

polluting power source, especially for transportation and automotive applications. The



PEMFC has already attracted lots of research interest. Currently the thermal and water 

management is the key issue to the cell performance [4]. Under low operating 

temperature it has the low CO tolerance, which is the CO poisoning problem of the 

catalyst. The membrane also needs to be hydrated to keep the high conductivity for the 

protons but excess water can cause tbe membrane to flood, which then prevents the fuel 

and air transport to the catalyst layer.

1.3 PEMFC

PEMFC is primarily composed of nine parts and elements: two current collectors, 

two gas channels, two gas diffusion layers, two catalyst layers and the polymer 

electrolyte membrane, as is shown in Fig. 1.1.

Electrolyte is one of the most important parts in various types of fuel cells. The 

PEMFC has an acidic polymeric membrane, which allows the protons to pass but repels 

electrons. Usually, Nation® from DuPont is selected as the membrane material, wbich

consists of the fluoro-carbon backbone, attached with sulfonic acid (SO 3 ") groups [5]. So, 

the higher the fixed-charge concentration, the better the protonic conductivity. It is also 

very important to keep the membrane humidified while operating, because tbe 

conductivity is directly related to tbe water content. Another important parameter is tbe 

membrane thickness. It should be kept very tbin in order to decrease tbe obmic losses and 

typically, the membrane thickness is kept in the range of 5-200 pm [6].

It is necessary to use a catalyst in order to enhance the electrochemical reaction in 

the low operating temperature PEMFC. The catalyst is usually the platinum supported by 

tbe carbon particles. Tbose particles are normally mixed witb some electrolyte material to



ensure the migration process through the catalyst layer. The chemical reactions depend 

on surface area, and the higher porosity provides more surface area, a larger surface is 

better.

The gas diffusion layer (GDL) or gas diffusion electrode is characterized by its 

thickness and porosity. It usually consists of the carbon paper or carbon cloth, where the 

gas is transports to the catalyst layer and electrons are carried out.

\+

M em brane 
Electrode ^

A ssem bly (MEA)

Electrode

'+4H+

w .\  \  \  Proton E xchange
\  \  \  M em brane (PEM)

\  \  C atalyst Layer

Og+4e
+4H+
2H „0

\ \
G as Diffusion Layer(GDL)

G as C hannel C urrent Collector

Fig. I .l  Schematic of the PEMFC [7]

Bipolar plate is used to support and separate different cells in fuel cell stack. Its gas 

channels deliver the fuel or air to the gas diffusion layers. It is obvious that the channel’s



area should be large, which can increase the fuel diffusion. However considering the 

conductive limitation of the electrons through the bipolar plate, this is not always the true, 

because thin rims will increase the system electric resistance.

1.4 Fundamentals of Fuel Cell

Fuel cell is a complicated energy converting device, with coupled mass and heat 

transport, chemical, and electrochemical processes. In order to obtain the high 

performance fuel cell, lots of designing issues need to be taken into account, such as the 

channels dimensions, temperature distribution, humidity level, water management, gas 

transport through porous media, catalyst material and membrane conductivity.

The electrochemical reactions (reduction and oxidization) taking place at the 

electrode can be expressed as:

aA<-^ cC + Mg' (oxidation) (1-1)

bB + ne dD (reduction) (1-2)

During the reaction, the change of the standard free energy is AG” , which is 

expressed as [3]:

AG” = - u F £ ” (1-3)

where F is the Faraday constant (96487 C/mol), is standard potential under the 

standard state (25 °C and I atm). Generally, the cell potential is defined by the Nemst 

equation:

' - ' • - f ' - S



Where R is the gas constant, T is the operating temperature, and A ^, Bg, and 

Dg are the species activities.

For a PEMFC, the reactants are hydrogen and air. Hydrogen flows through the anode 

side channels and diffuses into the anode gas diffusion layer, then contacts with the anode 

side catalyst layer, where it splits into protons and electrons:

2H2(g)^— ►dH^+de (1-5)

Then H^ ions migrate through the membrane, arrive at the cathode catalyst layer, and 

react with the oxygen, which is from the cathode side gas diffusion layer.

4H++4e +02 (g)^— ► 2 H 2O (1) ( 1 -6)

The overall reaction could be expressed as:

2 H2 (g) +O2 ( g ) ^ ^  2 H2O (1) (1-7)

The standard free energy for this reaction is AG”= -237.1 kJ/mol [8] and the

standard potential is =1.229 V. It is calculated by the Nemst equation by taking partial

pressure and temperature into account.

Each energy conversion device has an efficiency, and the traditional thermal power 

generator’s efficiency is limited by the theoretical Carnot cycle efficiency (less than 

50%). In order to get the high efficiency, a high temperature difference is required for 

those thermal power generators. The efficiency definition <p is the amount of useful 

energy produced, which is AG, divided by the change in the stored chemical energy, that 

is A //.

( 5 - —  (1-8)
A //



Under the standard condition (25 °C, 1 atm), AH  equals to 285.8 kJ/mol according 

to the thermodynamics data. Then for the H2/O2 fuel cell, the ideal efficiency under the 

standard conditions is:

^ , = ^ ^  = 83% 
' 285.8

(1-9)

This’s much higher than any thermal cycle efficiency, even though the actual 

efficiency will be lower than q)̂ , due to the irreversible losses. is expressed as:

(Pa.
cell x83% ( 1- 10)

Where is the actual cell voltage, is the idea cell voltage or the open circuit

cell voltage, which is determined by the Nemst equation. Generally, there are three main 

losses:

(1) Activation polarization ,,

The activation energy barrier has to be overcome for the electrochemical reaction. 

Based on experimental investigations, the current i and voltage , has an exponential

relation. The Tafel equation describes the semi-empirical relationship [9]:

9 ^  =  a  4-6 log f (1-11)

Where a is the constant, b is the Tafel slope, and i is the current. However this 

simple relation is not valid at low overpotential (less than 50 mV). A more accurate 

expression for the current and overpotential relation is the Butler-Volmer equation [9]:

I  =  I ,. exp a a -e x p - a /  pol

RT
(1-12)



Where is the reference exchange current density, and are the anode and

cathode transfer coefficients, which refer to the symmetry of the energy barrier; F  is 

Faraday constant; and R and T are the gas constant and cell temperature, respectively.

(2) Ohmic heat

There exists ion transport resistance inside of the electrolyte and the electrode so that 

the ohmic loss is expressed as:

Where the R, î is the total cell resistance including the electronic and contact 

resistances.

(3) Mass transport limitation

When the reactant consumption rate is very high, which exceeds the transport limit 

from the bulk to the electrode surface, the reactant concentration will decrease, which 

then leads to the potential loss. So improving the diffusion rate of the reactant species 

through the porous media is critical to lower the mass transport limit losses.

Fig. 1.2 shows the polarization curve for a single PEMFC. The current density of 

the fuel cell decreases when the actual cell voltage increases. There are three regions for 

different losses. In Region I, the activation polarization loss is significant, which is 

controlled by the electrode kinetics of the reaction; in Region II, which is generally the 

fuel cell operating region, the ohmic loss dominates, and the ohmic loss is proportional to 

the current density. This is due to the cell resistance of the ions in electrolyte; in Region 

III, where the current density is very high, the mass transport of reactants to the electrode 

reaches its limit, and then the concentration limit loss becomes the predominant factor. 

Finally, the actual cell potential could be summarized as:



K c f  =  K e l l  - ^  p o l,a  ^  pol -yi.m as,a \ lm a s ,c ■kohm \ (1-14)

Open-drcuit potential

Kinetic losses

Ohmic losaee
g

M ass-transport limitations

C urrent density

Fig. 1.2 Fuel cell polarization curve [10]

1.5 Thesis Motivation

Enhancing fuel cell efficiency and reducing fuel cell cost are two key objectives in 

research and development of fuel cell technologies. Due to the fuel cell’s complexity and 

highly reactive environment, it is difficult to perform detailed investigations during its 

operation. It is crucially important to understand the physics inside the fuel cell in order 

to improve its performance. While the experiments are expensive to implement and 

subject to practical limitations, cost effective numerical modeling and simulation can 

provide such information and predict effects of different factors including bipolar plate 

designs, and various parameters, which leads to shorter design and optimization cycles.

Many numerical models have been developed to predict the cell performance. Some 

of them focus on the catalyst material, some focus on the membrane performance, while 

some others concentrate on the channels. However, there are few research publications on 

the overall PEMFC modeling, in particular, coupled with the bipolar plate design, heat

10



and mass transfer, electrochemical reaction, and water generation. This motivates the 

thesis author to develop a numerical model for the entire PEMFC and optimize the cell 

performance by the various bipolar plate designs and operating parameters. The 

developed model will give a clear view o f the PEMFCs, and help engineers to understand 

the effects of those parameters, which can significantly improve the cell performance.

1.6 Literature Review

There are many coupled processes simultaneously occurring in PEMFCs. Some of 

them are not fully understood. The developed models aim at giving a clear insight into 

the complex physical phenomena within PEMFCs. Due to the expensive experimental 

work and its physical limitations, the numerical method has played a very important role 

in the fuel cell research history. The computational fluid dynamics (CFD) modeling, 

coupled with an electrochemical model can predict the multi-species transport processes, 

and electrochemical reaction processes. A typical PEMFC is schematically shown in Fig. 

1.3. It primarily includes the bipolar plates (gas channel), gas diffusion layers, catalyst 

layers and membrane.

11



Computational Domain
Anode current collector

Anode GDL

( athode catalyst layer
Anode catalyst layer

Membrane

Cathode GDL

Cathode current collector

Fig. 1.3 Schematic view of a PEMFC and its computational domain [11]

A number of the numerical models have been reported during the last twenty years. 

Some of them focus on the specific parts, such as the catalyst layer [12], electrodes [13], 

the gas diffusion layer [14], and the membrane [15]. Then Bemardi and Verbrugge [16] 

and Springer et al. [17] developed a one-dimensional fuel cell model, by which the 

predicted V-1 curves agree with the experimental data in the low current density range. 

Later, some two-dimensional PEMFC models were developed, such as the published 

work by Kazim et al. [18], Gurau et al. [19] and He et al. [20]. These two-dimensional 

models can only simulate the plane perpendicular to the flow channels or plane with one 

flow direction and one direction through the membrane. In additional, these models are 

limited to provide two-dimensional temperature and reactants information in the actual 

three-dimensional problem.
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Dutta et al. [21], Beming et al. [22], and Jen et al. [23] developed three-dimensional 

models. Dutta et al. discussed the need to model three-dimensional flow in PEMFCs and 

developed an integrated flow and current density model to predict current density 

distributions in the membrane in a straight channel PEMFC. The geometrical model 

includes diffusion layers on both the anode and cathode sides and the numerical model 

solves the same primary flow related variables in the main flow channel and the diffusion 

layer. Predictions revealed that inclusion of a diffusion layer creates a lower and more 

uniform current density compared to cases without diffusion layers. The results also 

showed that the membrane thickness and cell voltage have a significant effect on the 

axial distribution of the current density and net rate of water transport.

Ramousse et al. [24] presented a fuel cell model that takes account of gas diffusion in 

the porous electrodes, water diffusion and electro-osmotic transport through the 

polymeric membrane, and heat transfer in both the membrane electrode assembly (MEA) 

and bipolar plates. This model was constructed by combining independent descriptions of 

heat and mass transfers in the cell with a third description of coupled charge and mass 

transfers in the electrodes, which are considered as porous media. The results showed that 

thermal gradients in the MEA could lead to thermal stresses at high current densities. The 

feeding gas temperature influence on the cell temperature is also important.

Meng [25] has developed a three-dimensional PEM fuel cell model with a consistent 

water transport treatment in the membrane electrode assembly (MEA). In this PEM fuel 

cell model, a conservation equation of the water concentration is solved in the gas 

channels, gas diffusion layers, and catalyst layers while a conservation equation of the 

water content is established in the membrane. Since all the other conservation equations
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are still developed and solved in the single-domain framework without resort to 

interfacial boundary conditions, this PEMFC model was termed as a mixed-domain 

method. Results from this mixed-domain approach showed good accuracy in terms of not 

only cell performance and current distributions but also water content variations in the 

membrane.

Mann et al. [26] proposed a generalized steady-state electrochemical model, which 

accepts as inputs not only values of the operating variables but also cell parameters 

including active area and membrane thickness. A further feature of this model is the 

addition of a term to account for membrane aging. This model is a useful tool that allows 

the addition of parameters for fuel cell geometry and membrane characteristics in the 

design process.

A three-dimensional CFD model of a PEMFC with serpentine flow field channels 

was presented by Nguyen et al. [27]. This comprehensive model accounts for the major 

transport phenomena in a PEMFC: convective and diffusive heat and mass transfer, 

electrode kinetics, and potential fields. A unique feature of the model is the 

implementation of a voltage-to-current (VTC) algorithm that solves for the potential 

fields and allows for the computation of the local activation over-potential. The coupling 

of the local activation over-potential distribution and reactant concentration makes it 

possible to predict the local current density distribution more accurately. The simulation 

results revealed current distribution patterns are significantly different from those 

obtained in studies assuming constant surface over-potential.
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1.6.1 Bipolar Plate

The bipolar plates typically have several functions: (1) to distribute the fuel and 

oxidant within the cell; (2) to facilitate water management within the cell; (3) to separate 

the individual cells in the stack; and (4) to carry current away from the cell. First o f all, 

one of the specific functions of a bipolar plate is to produce a uniformly distributed flow 

distribution over the catalyzed electrodes. A non-uniform flow distribution across the 

bipolar plate surface area will probably lead to an unbalanced use of the expensive 

catalyst such as platinum or other metals/alloys, and an overall efficiency of the device 

lower than expected. Therefore, bipolar plates of fuel cells must be properly designed to 

distribute reactant evenly across the catalyzed reaction surface area, to provide a pathway 

to collect reaction products, and to provide an electrical conduction path to the reaction 

sites [1 1 ].

A serpentine flow channel is one of the most common and practical channel layouts 

for a PEMFC. During the reactant flows along the flow channel, it can also leak or cross 

to neighboring channels via the porous gas diffusion layer due to the high pressure 

gradient caused by the short distance. A numerical and experimental study has been 

carried out by Park et al. [28] to investigate the cross flow in a PEMFC. Experimental 

measurements revealed that the pressure drop in a PEMFC is significantly lower than that 

without cross flow. Three-dimensional numerical simulation has been performed for wide 

ranges of flow rate, permeability and thickness of the gas diffusion layer to analyze the 

effects of those parameters on the resultant cross flow and pressure drop of the reactant 

streams. Considerable amount of cross flow through gas diffusion layer has been found in
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flow simulation and its effect on pressure drop becomes more significant as the 

permeability and the thickness of gas diffusion layer are increased.

Grigoriev et al. [29] have performed the numerical optimization of the dimensions of 

channels and current transfer ribs of bipolar plates as well as an analysis of the effects of 

thickness and porosity of gas diffusion layers. A mathematical model of the transfer 

processes in a PEMFC has been developed for this purpose. The results are compared 

with experimental data. Then they suggested some recommendations of the values of 

operating parameters and some design requirements to increase PEMFC efficiency.

Kumar et al. [30] studied steady state and transient performance of PEMFC stack 

using different flow field designs in bipolar plates. A three-dimensional transient 

numerical model of proton exchange membrane fuel cell was developed and the effect of 

gas flow-field design in the bipolar plates was tested. They also performed the 

simulations for different flow-field designs in the bipolar plates of PEMFC.

Another important area in bipolar plate design is material selection. Kuo et al. [31 ] 

reported a novel composite material for the bipolar plates of PEMFCs. Joseph et al. [32] 

reported the results of using stainless steel for PEMFC bipolar plates. In addition, as 

alternative bipolar plate materials for PEMFCs, two types of carbon composite were 

developed and characterized by Cho et al. [33].

1.6.2 PEM Membrane

In PEMFCs, a key component, the polymer electrolyte membrane, acts as both a 

separator and an electrolyte in the operating fuel cell. Beuscher et al. [34] discussed PEM 

membrane requirements in terms of two different parameters: temperature and relative 

humidity. In their work, effects of these two operating parameters on the proton
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conductivity of PEMFC membranes and the resulting effect on fuel cell performance 

were examined using experimental observations. Numerical simulations were used to 

assess the influence of water transport properties on the local hydration state of the 

membrane inside the running fuel cell. Finally, the challenge of longer membrane life is 

explored by examination of recent studies on reinforced and non-reinforced membranes. 

These results illustrate the benefit of reinforced membranes in terms of membrane 

durability and therefore cell lifetime.

The operating temperature of atmospheric PEMFC is limited to 80°C to maintain 

liquid water for proton transport. However, high temperature operation of a PEMFC 

(above 80°C) is desirable to reduce the effects of CO present in the reformed gas streams. 

Jalani et al. [35] developed a proton transport and sorption model, which was used to 

study the effect of different parameters like the number of acid sites and solvent sorption 

in the membrane as a function of relative humidity (RH). A phenomenological sorption 

model developed can predict the water and methanol sorption in the Nafion® membrane. 

Both water management and thermal management in proton conducting membrane are 

very important to the performance of PEMFCs. It is of significant importance that the 

CFD model can accurately simulate these heat and mass transports so that the developed 

model can be used to identify the optimum operating conditions and guide the PEMFC 

design.

Carnes et al. [36] analyzed numerical predictions of a recently proposed rational 

model for transport of protons and water in a PEMFC. The effects of coupling partially 

saturated gas diffusion electrodes (GDLs) with the membrane are studied in both ID and 

2D contexts. Their numerical results predict a higher current density and more uniform

17



membrane hydration using a dry cathode instead of a dry anode, and illustrate that the 

strongest 2D effects are for water vapor transport.

1.6.3 Gas Diffusion Layer and Catalyst

Gostick et al. [37] have performed an experiment to measure the absolute gas 

permeability of several common gas diffusion layer materials for polymer electrolyte 

membrane fuel cells. Most materials were found to display higher in plane permeability 

than through-plane permeability. The permeability in the two perpendicular in-plane 

directions was found to display significant anisotropy. In-plane permeability was also 

measured as the GDL was compressed to different thicknesses. Typically, compression of 

a sample to half its initial thickness resulted in a decrease in permeability by an order of 

magnitude.

Tungsten nitride supported on carbon black was prepared by Zhong et al. [38] from 

temperature-programmed reaction (TPR) process and is proposed as a catalyst for the 

oxygen reduction reaction (ORR) in PEMFCs. The as-prepared catalyst was 

characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) 

techniques. The ORR activities of the catalyst were studied by electrochemical 

measurements and single cell tests, respectively. The results indicated that the tungsten 

nitride electrocatalyst exhibited attractive catalytic activity and stability for the ORR in 

PEMFCs. It is expected to be a promising cathode electrocatalyst for PEMFCs, especially 

for the comparatively high temperature proton exchange membrane fuel cells.

Numerical simulations were performed by Cheng et al. [39] to investigate the effect 

on PEMFC performance of Nafion® loading in the catalyst layer. The investigation also 

considered variations of geometric parameters. A model that accounts for the volume
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fractions of Nafion®, the solid catalyst particles, and the void space inside the catalyst 

layers was incorporated into a three-dimensional computational fluid dynamics code, 

capable of resolving three-dimensional mass, momentum, and species transport 

phenomena as well as the electron- and proton-transfer processes in PEMFCs. Numerical 

results were first compared with experiments, showing close agreement between 

predictions and measurements. A parametric study on the effects of Nafion® loading and 

geometric parameters variation was carried out to evaluate the performance of PEMFCs 

for various parameter combinations.

Electrode material durability is an important factor in limiting the commercialization 

of PEMFCs. They typically use carbon supported nanometer sized Pt and/or Pt alloy 

catalysts for both anode and cathode. Electro catalyst surface area loss is due to the 

growth of platinum particles. Particle size growth is accelerated by potential cycling 

whether due to artificial potential cycling or by cycling during fuel cell operation. 

Catalysts were analyzed by X-ray diffraction (XRD) to determine the degree of electro 

catalyst sintering by Borup et al.[40]. Cathode Pt particle size growth is a function of 

temperature, test length and potential. The largest increase in cathode Pt particle size was 

observed during potential cycling experiments and increased with increasing potential. 

During cycling measurements, catalyst coarsening rates exhibited a linear increase with 

temperature. Low relative humidity decreased platinum particle growth, but substantially 

increased carbon loss. Carbon corrosion of the electrode catalyst layer was found to 

increase with increasing potential and decreasing humidity.

Yong et al. [41] reported that biosynthesis of nano-scale platinum and palladium was 

achieved via enzymatically mediated deposition o f metal ions from solution. The bio-
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accumulated Pt(0) and Pd(0) crystals were dried, applied onto carbon paper and tested as 

anodes in a polymer electrolyte membrane (PEM) fuel cell for power production. Up to 

100% and 81% of the maximum power generation was achieved by the bio-Pt and bio-Pd 

catalysts, respectively, compared to commercial fuel cell grade Pt catalyst. Elence, bio­

mineralization could pave the way for economical production of fuel cell catalysts since 

previous studies have shown that precious metals can be bio-recovered from wastes into 

catalytically active bio-nanomaterials.

1.6.4 Water and Elumidity

Ludlow et al. [42] have performed neutron scattering experiments on a proton 

exchange membrane fuel cell to assess the ability to quantify water in the membrane and 

electrode or gas diffusion layers. This study demonstrated the resolution of water content 

changes within the membrane electrode assembly and membrane alone.

Flooding of the membrane electrode assembly (MEA) and dehydrating of the 

polymer electrolyte membrane have been the key problems to be solved for PEMFCs. 

Zhan et al. [43] reported that under steady-state conditions, the liquid water flux through 

the GDL increases as contact angle and porosity increase and as the GDL thickness 

decreases. A GDL with a gradient of porosity is more favorable for liquid water 

discharge from catalyst layer into the gas channel. For the GDL with the same equivalent 

porosity, the larger the gradient is, the more easily the liquid water is discharged.

Jiao et al. [44] presented a numerical investigation of air-water flow in micro- 

parallel-channels with PEMFC stack inlet and outlet manifolds for the cathode, using the 

commercial CFD software package Fluent®. Various air-water flow behaviors inside the 

straight micro-parallel-channels with inlet and outlet manifolds were simulated and
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discussed. The results showed that excessive and unevenly distributed water in different 

single PEMFCs could cause blockage of airflow or uneven distribution of air along the 

different flow channels. It was found that for a design with straight-channels, water in the 

outflow manifold could be easily blocked by air/water streams from the gas flow 

channels; the airflow could be severely blocked even if there was only a small amount of 

water in the gas flow channels.

Wood et al. [45] investigated the effectiveness of the direct liquid water injection 

scheme and the interdigitated flow field design towards providing adequate gas 

humidification to maintain membrane optimal hydration and alleviating the mass 

transport limitations of the reactants and electrode flooding. It was found that the direct 

liquid water injection used in conjunction with the interdigitated flow fields as a 

humidification technique is an extremely effective method of water management. The 

forced flow-through-the-electrode characteristic of the interdigitated flow field ( 1) 

provides higher transport rates of reactant and products to and from the inner catalyst 

layers, (2 ) increases the hydration state and conductivity of the membrane by bringing its 

anode/membrane interface in direct contact with liquid water and (3) increases the cell 

tolerance limits for excess injected liquid water, which could be used to provide 

simultaneous evaporative cooling.

Jang et al. [46] presented that, due to the water management problem, the effects of 

inlet humidity of reactant fuel gases on both anode and cathode sides on the cell 

performance are considerable. In their work, due to the blockage effects in the presence 

of the baffles, more fuel gas in the flow channel can be forced into the gas diffuser layer 

(GDL) and catalyst layer (CL) to enhance the chemical reactions and then augment the
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performance of the PEMFC systems. The effect of liquid water formation on the reactant 

gas transport was taken into account in the numerical modeling. Predictions showed that 

the local transport of the reactant gas, the local current density generation and the cell 

performance can be enhanced by the presence of the baffles. Results revealed that, at low 

voltage conditions, the liquid water effect is especially significant and should be 

considered in the modeling. The cell performance can be enhanced at a higher inlet 

relative humidity, by which the occurrence of the mass transport loss can be delayed with 

the limiting current density raised considerably.

Yan et al. [47] theoretically studied the water transport phenomena in PEMFCs, 

mainly investigating the transient behavior in the gas diffusion layer (GDL), catalyst 

layer (CL) and PEM. In the PEM, both diffusion and electro-osmosis processes were 

considered, while in the GDL and CL, only the diffusion process was taken into account. 

The process of water uptake was employed to account for the water transport at the 

interface between the PEM and CL. The results indicate that the water content in the 

PEM and the time for reaching the steady state in the start-up process are influenced by 

the humidification constant, k, the humidification, and the thickness of PEM. The rise of 

the k increases the water content in the membrane and shortens the time for reaching 

steady state. Insufficient humidification causes relatively small water content and long 

steady time. When the PEM is thinner, the water is more uniformly distributed, the water 

content gets higher, and the time for reaching the steady state is distinctly shorter.

To determine the net electro-osmotic drag coefficient of Nafion 115 and Hanwha 

membrane, Choi et al. [48] measured the fluxes of water discharged from the anode and 

cathode at different current densities. Also, they investigated the contribution of water
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supply for the membrane from the anode and cathode. When the cathode was humidified, 

water supply for the membrane at low current densities was achieved via the cathode, but 

the contribution of the anode became more important as current density gradually 

increased. The net electro-osmotic drag coefficient decreased sharply with current 

density, but it had a nearly constant value over 200 mA cm'^. When the cathode was not 

humidified, at low current densities, most of water generated at cathode was supplied for 

the membrane, but water supply from the cathode at high current densities decreased 

proportionately, and the net electro-osmotic drag coefficient showed larger value.

1.7 Research Objectives

The PEMFC is a very complicated electrochemical device. In order to achieve the 

high fuel cell performance, improved fluid flow, good thermal management and proper 

humidity level are the promising pathways. During the operation of PEMFC, significant 

variation o f the local current density could exist across the membrane, due to the non- 

uniform velocity. It can cause a sharp temperature and stress gradient and leads to 

membrane degradation. In this thesis, four research objectives are pursued, which are 

listed below:

•  Create a single fuel cell model, including the bipolar plates, gas channels, 

gas diffusion layers, catalyst layers and membrane.

•  Simulate the hydrodynamic, heat transfer and electrochemical phenomena to 

obtain the fuel cell performance information.

•  Redesign the bipolar plates in order to achieve the uniform fluid flow in 

channels and to improve the fuel cell performance.

23



•  Perform the parametric study of different fuel flow rates, to obtain better 

operating parameters for the PEMFC.

1.8 Outline of Thesis

In this thesis, the three-dimensional CFD model has been developed and a parametric 

study is performed. Chapter 2 will discuss the PEMFC modeling including the 

fundamentals of the electrochemistry and fuel cells. This model is validated using a three- 

dimensional single channel PEMFC case. Chapter 3 discusses the baseline design of the 

single unit PEM fuel cell. Different velocity, temperature, and water content distributions 

are investigated. Influence of the flow rate on the fuel cell current density distribution has 

also been studied. Chapter 4 focuses on the improved design case with the uniform 

velocity distribution in channels. The improvement in current density and other 

performance is discussed by comparing with the baseline design case. Chapter 5 

concludes the current research, and some recommended future work is summarized.
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CHAPTER 2 

PEMFC MODEL AND VALIDATION

2.1 PEMFC Model

A schematic view of the PEMFC is shown in Fig. 2.1. A PEMFC can be divided into 

nine zones: bipolar plates (anode/cathode current collectors), anode/cathode gas channels, 

anode/cathode gas diffusion layers, anode/cathode catalyst layers and membrane. The 

hydrogen gas mixture flows through the anode gas channels. Then it diffuses into the 

porous gas diffusion layers and contacts with active surface in the catalyst layer. In the 

anode catalyst layer, hydrogen is split into the hydrogen ions and electrons. Under the 

influence of the electrical field inside the PEMFC, hydrogen ions migrate through the 

polymer electrolyte membrane while electrons are transferred back to the anode current 

collector through the anode gas diffusion layer. Then electrons pass through the external 

circuit and reach the cathode current collector. In cathode side, the oxygen mixture flows 

through the cathode gas channel and diffuses through the cathode GDL. After that, 

oxygen contacts the active surface in the cathode catalyst layer. In the cathode catalyst 

layer, oxygen, electrons and hydrogen ions combine and form the water. The chemical 

reactions can be expressed as:

At anode: 2Hz (g)-*— ► 4H"^+ 4e'

At cathode: 4H^+4e+O2 (g)^— ► 2 H2O (1)
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Fig. 2.1 Schematic View of PEMFC model [49]

In order to model PEMFCs, it is necessary to understand the mass, momentum and 

energy transport, electrochemical reactions and charge balance inside the fuel cell. 

Flowever, it is impossible to take every single detail of the whole process into account. 

Some basic assumptions are necessary to simplify the PEM model, including:

•  Non-isothermal operation

•  Ideal gas mixtures

•  Steady-state operation

•  Isotropic electrodes and membrane

•  Neglect contact resistance of current collector and MEA

•  Incompressible flow

•  Laminar flow
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2.1.1 Electrochemical Equations

In PEMFCs, some of the most important parts are the catalyst layers, where the 

electrochemical reactions take place. The driving force of the electrochemical reaction is 

the over-potential, which is the potential difference of the solid phase potential and the 

electrolyte phase potential. Since there are two potential fields: Equation (2-1) accounts 

for the electron transport in the solid conductive material; and Equation (2-2) solves the 

protonic transport through the membrane.

= 0  (2-1)

= 0  (2-2)

Where and are the electrical conductivity (1/ohm-m) in the solid phase and 

the membrane phase, and is the electric potential (V), and i is the volumetric 

transfer current (A/m^). The membrane electric conductivity is not constant as other fuel 

cell parts. It depends on the water content and the temperature [50]:

12681 ' '

^ „ = d 0 . 5 1 4 2 - 0 . 3 2 6 >  (2-3)

Where T is the water content, £ is the membrane porosity and T  is the absolute 

temperature of the membrane (K).

To solve these two field equations, the boundary conditions are specified as shown in 

Fig. 2.2. Electrons pass through the anode and cathode current collectors to the external 

electric circuit. At the anode side, the electrode voltage is usually set as OV, while at the

cathode side, the electrode voltage is set as the cell voltage. For the electric field, the

boundary conditions are:

(t>soi = 0 (anode) (2-4)
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(caAode) (2-5)

For the protonic field, there are no protons transferring through any current collector. 

The boundary conditions are:

dn
0

Where n  is the unit vector, pointing outward on the boundaries.
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Fig. 2.2 Boundary conditions for and [49]
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The source terms of Equations (2-1) and (2-2) are non-zero only at the anode and 

cathode catalyst layers. In the anode catalyst layer, protons and electrons are produced, 

while they are consumed in the cathode catalyst layer. The production and consumption 

rate depends on the electrochemical reaction rate, which is indicated by the current 

density.
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For the solid phase,
hoi hn

h o i h a t

For the membrane phase.
7 — I
mem an

Z “ ”Zmem cat

Where and i^ai are the exchange current densities (A/m^). These exchange 

current densities can be described by the Butler-Volmer kinetic equations, which relate 

the over-potential ^  and current density 1 in electrochemical reactions [9];

^an J  an
re f

[ H ^ \ y

RT
cat̂ Ran ^

RT
(2-7)

i -cat J c a t
J o J

V A L y

ĉat̂ ĉat ^

(2-8)

Where is volumetric reference exchange current density (A/m^), the symbols

[ ] and [ represent the local species concentration, and reference value (kg-mol/m^), 

Y  is concentration dependence (dimensionless), (X is transfer coefficient 

(dimensionless), and F  is the Faraday constant (96487 C/g-mol).

During the chemical reaction, the driving force is the over-potential between the

solid phase (j>soi and the membrane phase , which is also known as the activation 

loss. The over-potentials at the anode side and 77̂ ,̂ at the cathode catalyst side are 

calculated as:

Ian -  Ao/ - (2-9)
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leal -  ŝol ~ ^mem ~ Kc (2'  10)

Where, is the thermodynamic open circuit potential for the overall 

electrochemical reaction. It is governed by the Nemst equation [50]. For PEMFCs, it is

calculated as:

= 1 .2 2 9 -0 .9 x l0 - d r -2 9 8 )+ 2 .3 — log(p^_p„j (2-11)

Where R is the gas constant, T  is the absolute temperature (K), p  is the gas 

pressure (Pa), and F is the Faraday’s constant.

The open circuit potential depends on the operating temperature and pressure. 

Different operating conditions will lead to different open circuit potential values.

2.1.2 Mass Conservation Equation

In this developed three-dimensional model, the mass conservation equation has 

different source terms in different cell zones. Generally, the mass conservation equation 

is expressed as:

(2 - 12)

Where, /?, is the density, U. is the velocity vector, and is the source term. In 

the gas channel, as well as the gas diffusion layers and membrane, the source term Ya®

is set to zero. In catalyst layer, there are hydrogen/oxygen consumption and water 

formation. The mass sink and source rates depend on the electrochemical reaction rates. 

Thus, they can be calculated by:

s„ , = - ^ L  (2-13)
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S o , = - ^ L .  <2-14)

<2-15)

Where, is the molecule weight.

2.1.3 Momentum Conservation Equation

In the porous media regions, such as the gas diffusion layer and membrane, the 

momentum equation has to be modified as:

—r---- r V ■ Y ) + ~T,-----\ ^  ) + Y  (2-16)
£•(1 -  X j £-(1 -  X)

Where s  is the liquid water saturation and 6  is the porosity. The source term is

set to be zero at the gas channel and membrane zones. In the diffusion layer and the 

catalyst layer, it is calculated based on the absolute permeability K  and relative

permeability [50]:

(2-17)
r

For the liquid, K,. is:

(2-18)

For the gas phase, W,. is:

A:, = ( i - ^ y  (2-19)

2.1.4 Species Conservation

For the PEMFC, in order to model the multi-species transport, the Maxwell-Stefan 

equation is a proper one to analyze those kinds of phenomena [52]:
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(2-20)

Where C is the molar concentration (g-mole/cm^), N  is the molar flux vector (g- 

mole/cm^-s), x, and x . are the mole fractions of components i and j  . To determine the

binary diffusivity (cm^/s), the reference diffusivity has been referred [53]:

f  \
Pa

/  ^  \l-5

Tv-'o y
(2-21)

Here the reference diffusivity D̂ . is the property based on reference pressure 

101325 Pa and reference temperature 300 K.

Fluid flow in porous media is model by Darcy’s law since the gas diffusion layer and 

catalyst layer are assumed to be the homogeneous porous media.

(2-22)
u , = —

Pi

Where Æ is permeability (m^) and //. is gas viscosity (kg m ''s '') .

The species balance in the porous gas diffusion electrode can be solved by the 

following equation:

V- 0
(2-23)

Where w is the weight fraction, p  is the mixture density (kg/m ), which can be

calculated by:

P RT (2-24)
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Where, ■ is the molecular weight, R is the gas constant, T is the absolute 

temperature (K), x- is the mole fraction of component i .

2.1.5 Energy Conservation

During the electrochemical reaction, the heat source includes the ohmic heat and 

reaction heat. In different zones, the heat source is different, such as in cathode catalyst, 

the reaction heat is the primary part; while in membrane, ohmic heat is the main heat 

source. The energy equation can be written as:

V . kT /,T ) = V . (A:^Vr)+ .9̂  (2-25)

Where, is the effective heat conductivity

(W/m-K), I  is the electric current (A), R is the electric resistance (ohm).

2.1.6 Water Model

PEMFC usually works under 100 °C, and the water is produced during the 

electrochemical reaction. In order to keep the membrane’s high conductivity, the 

membrane should be hydrated in an appropriate level. Therefore, the inlet gas mixture 

humidity needs to be adjusted. It is critical to keep the membrane under the proper water 

content. Water flood can block the fuel diffusion and reduce the effective reacting surface 

area. On the other hand, dry membrane will cause the high electric resistance and 

increase the ohmic loss. A saturation model [54] can be used to model the water 

formation and transport:

f W + v .
dt dS

= (2-26)

33



Where is the liquid water viscosity, the s is the liquid water saturation, K  is the 

absolute permeability, is the capillary pressure, the subscript / stands for liquid water.

and r is the condensation rate:

= c, max P s a t

RT
M.w,H.O (2-27)

Where M^, is the water molecular weight, -  1 OOs- , and the capillary pressure

p^ is computed as a function of s [55]:

P c  =

acosP,
f  (l.417(1 - 5 )-2.12(1 - s f + l .263(1 - s f )  0^< 90"

<T COS 6,
^ ( 1 .4 1 7 5 - 2 .1 2 5 "+ 1 .263^ ')-------6»̂ >90"

(2-28)

Here £ is the porosity, <r is the surface tension (N/m ) and 6̂  is the contact angle.

The water content À is obtained by Springer et al’s correlation [51]: 

T = 0.043+ 17.18a-39.85a" + 36a" when a < 1 

T = 14 + 1 .4 (a - l)  when a >1

And the water activity a is defined as [56]:

(2-29)

(2-30)

a = ^  + 25 (2-31)

Where the water vapor pressure is computed based on the vapor molar fraction and 

the local pressure p^^ = ^ h oP-

34



2.2 Numerical Method

Finite volume method has been applied to simulate the transport phenomena in 

PEMFCs. In the finite volume method, the computational domain is discretized into a 

number of continuous finite volumes. The partial differential governing equations are 

integrated over each control volume into a set of discretized equations. In the current 

simulations, the commercial software Hypermesh® is used to generate the computational 

mesh. Then it is loaded into the CFD software Fluent ®.

2.2.1 Computational Domain

In order to validate the developed PEMFC numerical model, a single channel, 

three-dimensional numerical model has been created with nine zones, which are 

anode/cathode current collectors, anode/cathode gas channels, anode/cathode gas 

diffusion layers, anode/cathode catalyst layers and PEM membrane (see Fig. 2.1). The 

model dimensions are listed in Figure 2.3 and Table 2.1, which are chosen based on the 

work by Tao et al. [11], who has conducted a parametric study about single channel 

PEMFC performance. Similar single channel PEMFC problems have been adopted by 

other researchers [5]. Normally the top channel is set as the anode side and the bottom 

channels as the cathode side. The current collector contacts with the gas diffusion layer 

while the gas mixtures flow through the inner channels surrounded by the current 

collector. The MEA locates at the center of PEMFC with five layers.
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Table 2.1 Dimensions of single channel PEMFC model

Dimensions Value

Gas channel length 40 mm

Gas channel width 0.762 mm

Gas channel height 0.762 mm

Diffusion layer height 0.254 mm

Catalyst layer height 0.029 mm

Membrane height 0.23 mm

Current collector width 1.524 mm

C urren t collector height 0.862 mm

■OW
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o

Fig. 2.3 Front view of single channel PEMFC (Unit: mm)

From Fig 2.3, the membrane electrode assembly, including the anode/cathode gas 

diffusion layers, the anode/cathode catalyst layers and the membrane, has a sandwich
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structure. The catalyst layer is very thin and its thickness is only one tenth of the gas 

diffusion layer. The current collector contacts with the GDL’s outer surfaces. Based on 

the assumption of the periodic conditions between each channels, it is reasonable to 

simulate only a single channel computational domain. In the real fuel cell active areas, 

there are thirty or more channels. Those channels are relatively long, compared to the 

channels’ width and height. Usually the transport phenomenon is similar between those 

channels. Another reason is the computational power limitation of current research 

techniques. PEMFC model contains many transport equations and each of them is 

coupled with another, such as the energy equation coupled with the hydrodynamics 

equations, the species transport equation coupled with the electrochemical equation, etc. 

Many properties have been approximated based on velocity, temperature, pressure and 

other variables. Those require a huge amount of computing tasks. So that this single 

channel PEMFC model is reasonable and affordable. After the model validation for the 

single channel PEM fuel cell, it will be very straightforward to apply it to PEMFCs with 

other geometries and design cases.

Fig 2.4 shows the computational mesh with 772,500 cells and 773,832 nodes, which 

is created by using the Hypermesh® software. It includes the aforementioned nine zones. 

The hexahedral type mesh is applied, because the computational domain is rectangular. 

The mesh density is high at the channels’ inlet and outlet sections along their flow 

direction, where significant changes in velocity, temperature and current density are 

expected. In the current collector zone, there are only the electric field and heat 

conduction, so the mesh size is larger here than in other zones. For gas channel zones, the 

gas mixture will develop the laminar inner duct velocity distribution and it has the
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convection heat transfer. Then the middle size mesh is applied. In the gas diffusion layer, 

a porous material is used. The diffusion of the gas mixture, the heat transfer and the 

transport of electrons are simulated. Middle size mesh in GDL is necessary for accuracy 

requirement. For the catalyst layers, the mesh size is smallest, because the catalyst layer’s 

thickness is one tenth of the gas diffusion layer or membrane. The electrochemical 

reactions happen including the electrons and protons transfer, water production, and 

phase change in the catalyst layers. For the proton exchange membrane, it is 

characterized by the water content and electric conductivity. Only protons and water 

transfer through it so that the mesh size is adopted between the gas diffusion layers’ and 

catalyst layers’.

Fig. 2.4 Computational mesh
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2.2.2 Boundary Conditions

(1) Mass Inlet

In this single channel PEMFC model, there are two inlets: hydrogen mixture inlet 

(anode), air inlet (cathode). The mass inlet velocity is applied by the Equation (2-32) and 

(2-33) [11]:

Where and g  ̂ are the reactant stoichiometric flow ratio for the anode and cathode 

side. They are defined as the ratio of the amount of reactant supplied to the amount of 

reaction to generate the specified reference current density f  . (A W ) [22]. Usually the

stoichiometric flow ratio is set in the range of 1 to 3, which means the inlet gas mixture 

provides 1 to 3 times the hydrogen or oxygen needs for the current reference current 

density f  (m^) is the channel cross-sectional area of the gas channel; (m^) is

the geometrical area of the membrane. 7], (K) and (K) are the inlet temperatures.

X  is the molar fraction of the hydrogen or oxygen, and p.„ (Pa) is the inlet pressure.

The inlet fluid in the PEMFC is the gas mixture. At the anode side, the gas 

components are hydrogen and water vapor, while in the cathode side, it contains the 

oxygen, water vapor and nitrogen. The different molar factions of water vapor lead to 

different inlet humidity. In this validation model, it is set at the normal conditions, around 

30% relative humidity. The mass fraction is set as 0.8 for hydrogen and 0.2 for water 

vapor in anode fuel mixture, 0.2 for oxygen and 0.1 for water vapor in cathode air.
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(2) Thermal Boundary Conditions

The energy equation is solved to obtain the temperature distribution within the PEM 

fuel cell. Heat is generated by the electrochemical reaction in the catalyst layers and the 

current flow in the MEA. The “coupled” heat transfer is solved between the fluid zones 

(fluid in gas channels, gas diffusion layers, catalyst layers and membrane) and the solid 

zone (the current collectors). The inlet fuel and air temperature is set as 323K, which is 

the operating condition used by Ticinalli et al. [58]. The side walls of the fuel cell are 

considered as adiabatic since it is assumed as the periodic conditions of parallel channels. 

There is convection heat transfer between the anode/cathode current collectors and the 

ambient air. According to the Costamagna’s work [57], the heat transfer coefficient is 

estimated as 20 W/m^-K and the ambient temperature is 323K.

(3) Fluid Flow

The gas mixture is assumed as incompressible fluid. At the wall boundary, a non-slip 

boundary condition is assumed. The inlet mass flow rate of the gas mixture is set 

according to Equations (2-32) and (2-33). The outlet boundary condition is the pressure 

outlet with 0 Pa gauge pressure.

(4) Fluid and Solid Zones

The current collector is the solid zone, while the others are different types of fluid 

zones. The gas diffusion layers, catalyst layers and membrane are also porous zones, the 

gas channels are the normal fluid zone. In the current collector zones, for the energy 

equation, the source term is the ohmic heat source. For the catalyst layers, they are fluid 

zones and the gas mixture will diffuse through them. The catalyst layers have three 

source terms for different equations: electric potential field Equation (2-1), protonic
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potential field Equation (2-2) and mass conservation Equation (2-12). In the catalyst 

layers, the source term o f the energy equation needs the additional term, which accounts 

for the chemical reaction heat generation. In gas diffusion layers, there are only two 

source terms: one is used in energy equation and the other used in electric potential field 

equation. The membrane is the fluid porous zone. The ohmic heat generation is used in 

the energy equation.

2.2.3 PEM Model

The interpreted PEM module is loaded into Fluent® with predefined user-defined 

function (UDF). To set up a PEMFC module, functions of Joule heating, reaction heating, 

Bui tier-Volmer rate and membrane water transport are used. There are many parameters 

to be set properly. In the published literature, different research groups have used 

different sets of parameters based on the materials, temperatures and the fuel cell 

operating conditions. In order to validate the PEMFC model, the parameters are carefully 

set according to the physical properties in the experimental work by Ticianelli et al. [58], 

other physical properties reported from Tao et al. [11] and Bernadi et al. [16] for the 

missing parameters in Ticianelli’s report. The total PEMFC parameters are listed in Table 

2.2, which include the electrochemical reaction, species transport and heat transfer 

parameters. They are properly approximated to match Ticianelli’s PEMFC experiment 

[58]. The electrochemical boundary conditions are set by assigning the user-defined 

scalars (UDS) value at the two terminal walls, which are located at outside of the 

anode/cathode current collectors.
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Table 2.2 PEMFC parameters

Parameter Value Reference

Anode ref. current density 5x10^ [11]

Anode ref. concentration 0.0564 kmol/m^

Anode concentration exponent 0.5

Anode exchange coefficient 2

Cathode ref. current density [11]

Cathode ref. concentration 3.39 X10^ kmol/m^

Cathode concentration exponent 1

Exchange coefficient 1

Open-circuit voltage 1.15 V

Reference diffusivity hydrogen 9.15x10"^ ^22;

Reference diffusivity oxygen 2.2x10"^ ^22;

Reference diffusivity water 2.56x10'^ /s ^22;

Reference diffusivity other species 3x10^ /s

Diffusion layer porosity 0.3 [61]

Diffusion layer viscous resistance 5.68x10'^ 7/m̂ [19]

Catalyst layer porosity Ü2&

Catalyst layer viscous resistance 5.68x10'"
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Catalyst layer surface-to-volume 

ratio

Membrane equivalent weight 1100 kg/kmol

MEA projected area 6.096x10 ^

Absolute permeability K 1.76x10 " [19]

Current collector/GDL/catalyst 

conductivity
120 s/m

Membrane conductivity 17 s/m

Current collector/GDL/catalyst 

thermal conductivity
750 lE/yM-A:

[19]

Membrane thermal conductivity 0.95 W/m-K [19]

Fuel/air stoichiometric flow  ratio 3 /^2^

2.2.4 Numerical Techniques

There are several coupled equations, such as the electrochemical, electric and 

protonic equations, so that the under-relaxation factors are adjusted to ensure the 

convergence of the numerical simulation. In Fluent®, the default under-relaxation 

parameters are set to values that are near the optional largest possible number. The higher 

the under-relaxation factor, the faster the calculation reaches the convergence. Usually 

low under-relaxation factors can provide stable iteration process. For this PEMFC model, 

the factor for the pressure correction equation is set as 0.7, and 0.3 for the momentum
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equation. The protonic potential and water content are set as 0.95. The others use the 

default value 1.0 to obtain the possible fast converged solutions.

The implicit formulation is applied while the solver is set as pressure based. The 

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) scheme is selected to 

treat the pressure-velocity coupling, and the discretization scheme is chosen as the 

“standard” for the pressure and “second order upwind” for the others: density, 

momentum, energy, species and potential fields. The “first order upwind” scheme cannot 

provide the converged solution under this model. There are 4 user-defined scalars (UDS): 

electric potential, protonic potential, water saturation and water content and 15 user- 

defined memories (UDM): the current flux density, ohmic heat source, reaction heat, 

overpotential, liquid water activity, etc. They are coupled with the governing equations to 

solve for the velocity, temperature, voltage and current density.

A grid independent study is performed hy increasing the mesh density for the single 

channel case. The results are shown in Fig. 2.5. In this case, the PEMFC works under 

0.8V cell voltage. While the mesh density increases, the numerical results of current 

density approach to converged value. Based on the results of this gird independent study, 

the element size of the third case is selected for further mesh generation for other cases.
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Fig. 2.5 Grid independent Study

2.3 PEMFC Model Validation

2.3.1 Available Published Experimental Work

Ticianelli et al. [58] have conducted the experimental optimization work by using 

only one-tenth of previous platinum loading (4 mg/cm"). They prepared the experiment 

basically by (1) brushing a 5% Nation solution (Nation® 117) onto the Prototech gas 

diffusion electrodes (0.35 mg Pt/cm"); (2) evaporation of the solvent from the Nation 

solution in the electrode under ambient conditions, followed by vacuum drying at 70 °C 

for 1 hour; (3) hot-pressing a pair of these electrodes on both sides of a Nation® 

membrane.

The experimental work was carried out in the fuel cell made with carbon end plates. 

The fuel cell is equipped with a reversible hydrogen reference electrode. The graphite end 

plates contain gas feed inlets and outlets, ribbed channels for gas flow behind the porous 

gas diffusion electrodes, and holes for cartridge heaters and for a thermocouple. After
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positioning the MEA between two gaskets and graphite plates, the latter is clamped 

between stainless steel plates that are insulated from the cell body with 

polytetrafluorethylene (PTFE) sheets. The active electrode area in this cell is 5 cm". 

Humidification of reactant gases is carried out by passing the gases through stainless steel 

bottles containing water at about 5-15 °C above the cell temperature. The schematic of a 

single cell is shown in Fig 2.6 [58].

TEFLON PLUG
-PLATINUM MESH CONTACT (REFEREN CE ELECTRODES 

y — GRAPHITE BLOCK

a
M&E ASSEMBLY

/-G R A P H IT E  BLOCK

Fig. 2.6 Schematic of single cell [58]

The experiment result data are shown in Fig. 2.7. These are the V-I curves under 50 

°C and 1 atmospheric pressure operation conditions. The A and C cases use Nation- 

impregnated and as received Prototech electrodes and B case uses GE/HS-UTC 

membrane and electrode assembly (4 mg Pt/cm"). The solid lines are curve fitting plots 

and the Xs are is the experimental points.
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Fig. 2.7 Cell V-I curves for PEMFC at 50 °C, 1 atm: A and C cells with Nation- 

impregnated and asreceived Prototech electrodes (0.35 mg Pt/cm2, respectively; B cell 

with GE/HS-UTC membrane and electrode assembly (4 mg Pt/cm2) [58]

The result shows that the activation loss is significant when cell works with current 

densities from 0 to 40 mA/cm^. Since there is only the data under 200 mA/cm^, the mass 

concentration polarization loss is not shown in Fig. 2.7.

2.3.2 CFD Data from Other Research Groups

A comprehensive, three-dimensional analysis of a PEMFC has been developed by 

Baca et al. [63] to study the performance of a PEMFC under different operating 

conditions. This steady-state analysis is single-phase and non-isothermal. Their model 

includes the conservation equations for species, energy, charge, mass and momentum. 

Different boundary conditions were applied to a computational domain to simulate a 

single channel PEM fuel cell.

Figs. 2.8 (a) and (b) show the oxygen and hydrogen mass fraction at the 0.37 V cell 

voltages. In each cutting plane, it includes the channels and gas diffusion layers for both
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anode and cathode side. The oxygen and hydrogen consumptions along the flow direction 

can be found. The low oxygen mass fraction appears at the shoulder area of the gas 

diffusion layer. Because the oxygen has to pass by the center area in gas diffusion layer 

then diffuse into the shoulder area. Most of the oxygen is consumed at the center area 

where has the high current density. On the other hand, the hydrogen concentration 

experiences little change in a single plane of the anode side, which indicates that the 

hydrogen has the higher diffusivity than oxygen. Another reason is that, on anode side, 

there is rarely flooding problem at the high current density operating conditions.

(a)
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Fig. 2.8 Oxygen (a) and hydrogen (b) mass fraction at a 0.37 cell voltage [63]

2.3.3 PEMFC Model Validation

Numerical simulations of the single channel PEMFC have been conducted under 

several cases with different cell voltages, ranging from 0.9 to 0.6 V. Each simulation has 

obtained the converged solution with the iteration residue of energy less than 1x10”̂ . 

After the converged solution is achieved, the current density based on the projected 

membrane area is calculated. The V-I curve is one of the PEMFC’s important 

characteristics, which shows the fuel cell’s performance under certain operating 

conditions. Ticianelli’s report [58] does not provide the detail geometry data and each 

single material property. However, the parameters, which are used in this model, are set 

according to the published data from other related research work, and those parameters 

provide reasonable approximation to the Ticianelli’s fuel cell experiment. Comparisons 

of the computed polarization curve with Ticianelli et al.’s measurements [58] are shown 

in Fig. 2.9. It can be seen that, the simulated V-I curve shows a good agreement with the
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compared experimental data. This good agreement indicates that the current PEMFC 

model has been validated by Ticianelli et al.’s experimental work [58].

By comparing Fig 2.8 and Fig. 2.10, a similar oxygen concentration distribution is 

observed. Fig. 2.10 shows the simulated result from the present PEMFC model. Similar 

to Baca’s result [63], along the air flow direction the oxygen mass fraction decreases in 

the similar pattern from gas channel to GDL. On each single plane shown in Fig. 2.10, 

oxygen diffuses through the gas diffusion layer and the low oxygen concentration appears 

at the shoulder area.

1
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Fig. 2.9 Comparison of the V-I curves with experiment data
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Fig. 2.10 Oxygen mass fraction in gas channel and GDL

In summary, a PEMFC model was developed and a set of coupled governing 

equations are solved. The developed PEMFC model has been validated in a single 

charmel case, and the simulated numerical data are compared with Ticianelli et al.’s 

experimental work [58]. The numerical result shows (Fig. 2.9) a good agreement in a 

reasonable range. This numerical result is also similar to Baca’s [63] by comparing the 

oxygen mass fraction distribution in PEMFC cathode side. These prove that developed 

numerical PEMFC model in this thesis works well under this type of PEMFC with the 

specific materials and operating conditions.
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CHAPTER 3

BASELINE DESIGN OF PEMFC 

In this chapter, the baseline design of the bipolar plate has been implemented and 

studied in the proposed PEMFC model. The three-dimensional simulation has been 

performed. Numerical results are discussed to evaluate the performance of this kind of 

PEM design. The velocity distribution along channels and temperature distribution have 

also been studied. The electrochemical performance is investigated by considering the 

current density distribution within the catalyst layers and hydrogen/oxygen mass fraction 

and water content in membrane.

3.1 Design Description

A three-dimensional PEMFC model has been developed and implemented into the 

single fuel cell stack which is different from the single channel PEMFC design. This 

model contains the whole size bipolar plates (also recognized as the current collectors), 

the gas channels and the membrane electrode assembly. A schematic view of this single 

fuel cell pack model is illustrated in Fig 3.1. From the top to the bottom those are anode 

current collector, anode gas channel, anode gas diffusion layer, anode catalyst layer (very 

thin), membrane, cathode catalyst layer, cathode gas diffusion layer, cathode gas channel, 

and cathode current collector. In bipolar plates, the traditional parallel channel layout is
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implemented in order to investigate the PEMFC system performance. The bipolar plate 

top view is shown in Fig 3.2 (a) with fourteen channels at the center area and small sized 

cubes at the two side header areas which are designed for supporting the bipolar plate in 

fuel cell stack.

Cathode gas channel
Anode bipolar plate

Anode gas channe

Cathode bipolar plate

Fig. 3.1 Schematic view of single pack PEMFC

Channel

Header

Header

Fig. 3.2 (a) Top view of bipolar plate
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Inlet

Outlet

Fig. 3.2 (b) Top view of gas channel
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Fig. 3.2 (c) Assembly view of bipolar plate, gas channel and membrane

Fig. 3.2 (b) is the top view of the gas charmel which corresponds to the bipolar plate 

in Fig.3.2 (a). The gas mixture flows into channels from the inlet then spreads to the 

header area. After passing through the fourteen channels, it leaves in the direction as 

shown in Fig. 3.2 (b). Fig. 3.2 (c) is the assembly view of the bipolar plate and 

membrane. The membrane is placed at the center of the gas channels and it has 

dimensions o f 4 in x 5 in, located at the center position of the bipolar plate. Dimensions
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of the designed bipolar plate are shown in Fig. 3.3, where the unit is inch. The bipolar 

plate thickness is 0.1 in with 6 in x 6 in width and length. The channel width is 0.2 in and 

the channel rib is 0.2 in wide and 0.05 in height. The cube in the header area is 0.2 inx 

0.2 inx 0.05 in. The inlet diameter is 0.7 in. The gas diffusion layer height, catalyst 

height and membrane thickness are used based on the validated case, the single channel 

PEMFC in Chapter 2.

A three-dimensional computational mesh has been generated with 735,050 cells 

and 427,859 nodes, which is shown in Fig 3.4. At the edge of the bipolar plates, shown in 

Fig. 3.4 (a), there is only heat conduction and electron transfer, therefore a coarse mesh 

with the large elements is used in order to save computational cost. For the header area 

and channel area, the denser mesh with small elements is necessary, where there are the 

heat transfer and fluid flow and diffusion and high gradations are expected to exist. The 

electrochemical reactions occur inside MEA. The finest mesh is chosen to ensure the 

accuracy of numerical computation. Fig. 3.4 (a) shows the computational mesh of the 

bipolar plate and its gas channels. Fig. 3.4 (b) shows that the MEA is placed on the top 

gas channel and in the center of the domain. Fig. 3.4 (c) shows the whole domain mesh of 

the single pack PEMFC. The anode gas channel and the cathode gas channel are parallel 

with counter flow configuration.
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Fig. 3.3 Dimensions of bipolar plate design (unit: in)

Fig. 3.4 (a) Computational mesh of bipolar plate and gas channel
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Fig. 3.4 (b) Computational meshes of bipolar plate, gas channel and MEA

Fig. 3.4 (c) Computational mesh o f the whole single pack fuel cell

3.2 Boundary Conditions

The commercial CFD software Fluent® is used as the computational tool. The 

PEMFC model is loaded with the user-defined functions in order to model the physical 

and electrochemical processes within PEMFCs. All the electrochemical parameters are 

specified as the same as the validated PEMFC model. The PEMFC operates at 50 °C
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ambient air with convection heat transfer, which boundary conditions are specified the 

same as the validation model.

(1) Mass inlet

The inlet boundary conditions are mass flow rates, which are defined in Chapter 2

by:

Where the is set as 400 mA/cm^. The parametric study will be conducted by 

varying the stoichiometric flow ratios and from 1 to 25. This represents the flow 

rate change in gas channel.

(2) Cell voltage

The PEMFC normally works between the 0.4V and 0.8V. When it’s at 0.8V, the 

current density is low and the hydrogen and oxygen consumption rate is also low. While 

the PEMFC operates at 0.4V, the fuel cell has the high loading and its current density is 

high. Under this high current density condition, the electrochemical reaction rate can not 

increase by increasing the fuel supply due to the mass transport limitation in GDL. The 

0.8V and 0.4V operating conditions have been simulated to study the PEMFC 

performance based on different cell voltage conditions.
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3.3 Results and Discussion

The converged numerical results of this baseline design simulation are obtained. The 

velocity distribution and temperature distribution are investigated. The electrochemical 

phenomena are also examined by hydrogen/oxygen mass fraction, water content and 

current density distribution.

3.3.1 Velocity Distribution

The velocity distribution at the middle length o f the channels is investigated. The 

distribution between the channels is non-uniform, which is the same as the results 

reported by Martin et al. in 2007 [64]. Basically the high velocity appears at the 

beginning and ending channels, the relatively low velocity is at the middle channels. The 

bar chart of the velocity distributions are illustrated in Fig. 3.5 (a) (b) for the g = 1 and ç 

= 25. Since the velocity inlet is different in these two cases. Fig. 3.5 shows the 

normalized velocity by dividing its own inlet velocity. By comparing the velocity 

distribution, it is found that the high flow rate can increase the velocity in lateral 

channels. The velocity at center channels is decreased. That leads to the worse non- 

uniform velocity distribution.
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Fig. 3.5 Velocity distribution between channels

3.3.2 Temperature Distribution

The temperature distribution is analyzed in bipolar plate, gas channel and catalyst 

layers. The heat source is the reaction heat and ohmic heat. The parametric study is 

performed to study relationship between the flow rate and fuel cell temperature. In this 

model, there are no specific cooling channels, so that the heat is transferred into outside 

by the convection from the bipolar plate into the ambient and the convection from gas 

channel into the exhaust gas.

3.3.2.1 Bipolar Plate

The temperature of bipolar plate has increased by 2-1 OK above the ambient 

temperature (323K). Due to the high conductivity of the bipolar plate, the temperature 

different is within IK throughout the whole plate. In the operating condition of 0.4V, the 

cell current density is at a high level. A large amount of reaction heat and ohmic heat is 

generated. It is transferred to the bipolar plate by conduction through the GDL. The
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convection heat transfer from bipolar plate to the ambient air is noticeably large. The 

inlet gas mixture’s temperature is 323K (the ambient temperature). The hot bipolar plate 

can also heat up the gas mixture. When the flow rate is high, heat transfer between the 

bipolar plate and gas mixtures becomes significant. On the other hand, when the flow rate 

is low, the gas mixture temperature is close to the temperature of bipolar plate and the 

inside channel convection heat transfer can be ignored. Fig. 3.6 shows the anode bipolar 

plate temperature contour for the operating condition of 0.4V cell voltage. The hydrogen 

mixture flows along the negativex-axis, from x = 0.07 to x= -0.03m. When g = l ,  in Fig. 

3.6 (a), the highest temperature appears at x=0.07m, which is the beginning o f the 

hydrogen channel position. For this condition ( g = l  = 0.4F ), the hydrogen flow does

not provide enough fuel. Most of the hydrogen is consumed at the channels’ upstream. 

Increasing ç  from 1 to 3, which is shown in Fig. 3.6 (b), results in the noticeable increase 

in the bipolar plate’s temperature. The highest temperature moves from the upstream to 

the center region. While ç  is further increased to a value higher than 5, the temperature 

starts to decrease and the relative low temperature appears at the two sides of the plate 

(y=± 0.07 m). It is important to know that the hydrogen velocity distribution is non- 

uniform and the velocity in the two side channels is very high. The heat transfer from 

plate into exhaust gas mixture becomes significant. This “gas flow cooling” effect causes 

the decreasing of the bipolar plate’s temperature. In Fig. 3.6 (d), the 328K contour line is 

not symmetric. The temperature at y=0.08m is lower than other places. This is the 

because of the high velocity at this region.

When the fuel cell is at = 0 .8F , the oxygen consumption rates become low and 

the current density is small. The heat generation is in low level. In Fig. 3.7 (a), the whole
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plate’s temperature only increased by 1.6K. From the temperature contour, it indicates 

that the oxygen supply is more than demanding. As ç increases, the increased oxygen 

supply is wasted in the exhaust gas mixture. Due to the “gas flow cooling” effect, the 

bipolar plate’s temperature starts to decrease, as is shown in Fig. 3.7 (b) (c).
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Fig. 3.6 Anode bipolar plate temperature at 0.4V
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Cathode Bipolar Plate Temperature
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Cathode Bipolar Plate Temperature
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Fig. 3.7 Cathode bipolar plate temperature at 0.8V

3.3.2.2 Gas Channel Temperature

A parametric study about the gas mixture temperature inside the channels is 

performed by varying flow rates under low/high current density conditions. The gas 

temperature is mainly related to the electrochemical reaction. The heat is transferred from 

the bipolar plate and the GDL. Fig. 3.8 shows the gas mixture temperature at all 

channels’ middle length. In Fig. 3.8 (a), the fuel cell operates at = 0.4F condition.

The temperature difference between the channels is small compared to the velocity 

distribution. When ç  increases from 1 to 2, temperature increases by 4K, which means 

electrochemical reaction rate increases significantly. When ç  is greater than 3, the heat 

generation in the fuel cell reaches its limitation due to the electrochemical reaction 

mechanism. The hydrogen mixture temperature starts to decrease until it approaches
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327K. There is an optimum flow rate according to the fuel cell operating voltage. By 

comparing Fig. 3.8 (a) and Fig. 3.8 (b), the anode channel temperature distributions are 

similar to the cathode’s under the same operating cell voltage.

At low current density condition, -  0 .8F , the heat generation is small. The “gas

flow cooling” effect dominants the heat transfer. Increasing flow rate leads to the 

temperature decreasing of the oxygen gas mixture. Increasing flow rate further, the 

temperature decreases to 323.6K value. This trend is shown in Fig. 3.8 (c) and Fig. 3.8 

(d).
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Fig. 3.8 Gas channel temperature

3.3.2.3 Catalyst Temperature

The catalyst temperature is directly related to the electrochemical reaction. At the 

high current density condition, V̂ ,̂i = 0.4F , the oxygen demanding is high. When the 

flow rate g=\ ,  high temperature spots appear at the upper stream of the catalyst layer 

(x=0.07m), which is shown in Fig. 3.9 (a). At the end of the catalyst (x= -0.02m), the 

temperature is uniform along the y-axis direction, which means the oxygen concentration 

is at low level in all gas channels. The hot spots pattern at the upper stream is the result of 

the parallel channel layout design. The temperature difference in catalyst is around 1K. 

The highest temperature is 328K at the spot region as shown in Fig. 3.9 (a). By increasing 

the flow rates, the catalyst temperature increases when g < 3 and decreases when g > 3 . 

The relative low temperature appears at the two sides of the catalyst layer (y = -0.01 m

68



and y = 0.08 m), where the channel velocity is high. This is the effect of “gas flow 

cooling”. On the other hand, by investigating the water content in the catalyst layer, it is 

found that the low relative humidity (30%) gas flow can take water vapor out of fuel cell. 

This “channel flow drying” effect becomes strong when g is high. The dehydrated 

membrane leads to the high proton resistance, low current density and heat generation.

Fig. 3.10 shows the catalyst layer temperature at low current density = 0.8K). 

The temperature only increased 1.5K when g=\ .  The temperature distribution pattern 

shows that the fuel supply under this operating condition is already sufficient at the point. 

When g increases from 1 to 25, the catalyst temperature keeps decreasing. It is only 0.7K 

above the ambient temperature when g =25.
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Cathode Catalyst Layer Temperature
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Fig. 3.9 Cathode catalyst layer temperature at 0.4V
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Fig. 3.10 Cathode catalyst temperature at 0.8V
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3.3.3 Hydrogen Mass Fraction

Hydrogen mass fraction at the anode catalyst layer reflects the hydrogen supply and 

the relative humidity level. The hydrogen stream flows along the positive X-axis 

direction from x -  -0.02m to x = 0.08m. Fig. 3.11 shows the hydrogen mass fraction at 

anode catalyst layer when PEMFC works under high current density = 0 .4 F . When 

Ç =1, the hydrogen mass fraction ranges from 0.275 to 0.525, which indicates that 

hydrogen supply is not enough. The water, which is produced in cathode catalyst layer, 

diffuses to the anode catalyst layer under the concentration gradient. The irregular 

hydrogen mass fraction contour is the result of non-uniform hydrogen supply and water 

diffusion at the catalyst layers. When the ç increases to 8, the hydrogen mass fraction 

contour is near elliptic shape, as is shown in Fig. 3.11 (c). High hydrogen mass fraction at 

lateral region (y = 0.08 m and y = -0.01m) reflects the high velocity in lateral channels.

The anode side channel hydrogen mass fraction is shown in Fig. 3.12 (a). As the ç 

increases from 1 to 25, the hydrogen mass fraction increases to near 0.8. Due to the non- 

uniform velocity distribution as discussed before, it is reasonable that the hydrogen mass 

fractions are lower in center channels than as in the lateral channels. However, when ç  is 

less than 3, the hydrogen mass fraction is almost uniformly distributed between those 

channels. This indicates that when ^ < 3, the hydrogen supply is not enough under

ĉeii -  operating condition. Similar patterns are shown in Fig. 3.12 (b) for fuel cell 

operating under = 0.8F . The pattern in Fig. 3.12 (b) indicates that the hydrogen 

supply is enough when^ > 2.
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Anode Catalyst Layer Hydrogen Fraction
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Anode Catalyst Layer Hydrogen Fraction
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Fig. 3.11 Anode catalyst hydrogen mass fraction at 0.4V
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Fig. 3.12 Anode gas channel hydrogen mass fraction

3.3.4 Oxygen Mass Fraction

The oxygen mass fraction at cathode catalyst layer directly influences the 

electrochemical reaction rate. Fig. 3.13 shows the oxygen mass fraction in cathode 

catalyst layer operating under = OAV. The inlet oxygen mass fraction is 0.2. As 

discussed above, the oxygen supply is not enough when ^ is less than 3. Under ç=l ,  

oxygen mass fraction drops from 0.2 to 0.03 sharply at the upper stream area. After ç

increases from 1 to 3, as is shown in Fig. 3.13 (b), the oxygen mass fraction at two sides 

increases more than the center area. This is the result of the non-uniform velocity 

distribution.

Fig. 3.14 shows the oxygen mass fraction in the cathode side channels, under two 

operating conditions = 0.4F and = 0.8V . It is similar to the hydrogen mass
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fraction in anode channels. The oxygen fraction is low in the center channels and high in 

the lateral channels. The desired ç  values range from 3 to 8 for = OAV and from 1 to

3 for V̂ îi = 0.8F because in these ranges the oxygen supply and consumption is almost 

in the equilibrium state.
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Cathode Catalyst Layer Oxygen Fraction
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Fig. 3.13 Cathode oxygen mass fraction at 0.4V

78



C a th o d e  C h a n n e l O xyg en  F r a c t i o n

0.6u.

S 0.4

0.2

0.02 0.08

(a)

Cathode Oxygen Mass fraction

0.8

V=0.8V

g  0.4Ol

0.02 0.08

(b)

Fig. 3.14 Cathode gas channel oxygen mass fraction
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3.3.5 Water Content

In PEMFCs, the water content is very important. The membrane needs to be 

hydrated in order to get the high protonic conductivity. Fig. 3.15 illustrates the catalyst 

water content when fuel cell operated under = 0 .4F . By comparing Fig. 3.15 (a), (b)

and (c), it is found that the high flow rate can dehydrate the catalyst layer. In other words, 

the water content decreases as flow rate increases. As discussed above, the 

electrochemical reaction rate cannot keep increasing by increasing the inlet flow rate due 

to the operating conditions and the mass transport limitation. The water production is 

limited under each operating conditions. The high flow rate in channels will then lead to 

the low relative humidity. This will create a large water concentration gradient between 

the catalyst layers and gas channels. Extremely high flow rate will cause the high 

resistance of ME A with low water content and low current density even with high fuel 

and oxygen supply. This can significantly lower the fuel cell performance.

Fig. 3.16 shows the water mass fraction in the cathode gas channels. As discussed 

above, the high velocity comes with the low relative humidity. It is found in Fig. 3.16 that 

the center channels have the higher water content than the lateral channels. This reflects 

the non-uniform velocity distribution in cathode gas channels. The “gas channel drying” 

effect becomes strong when ç reaches 8. This “gas channel drying” effect is observed by 

investigating the gas mixture relative humidity at the inlet and outlet which is shown in 

Table 3.1. The inlet relative humidity is 32.5% for the anode gas mixture and 22.5% for 

the cathode air. When ç= l the water is produced at the cathode catalyst layer then it is 

evaporated and transported to the gas channels. The relative humidity increases to 277%
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for anode side outlet and 61.6% for cathode side. When ç further increases to 25, the 

relative humidity decreases to the value which is near the inlet relative humidity.
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Fig. 3.15 Cathode catalyst water at 0.4V
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Fig. 3.16 Cathode gas channel water mass fraction at 0.4V
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Table 3.1 Inlet and outlet humidity at anode/cathode gas mixtures

? Inlet Outlet

1
cathode 32.5% 277.2%

anode 22.5% 61.6%

5
cathode 325% 164.9%

anode 22.5% 35.01%

25
cathode 32.5% 35.49%

anode 225%6 223%&

3.3.6 Current Density

The current density of PEMFC reflects the fuel cell performance and how much 

power it provides to the outside circuit. A parametric study is performed by varying the 

inlet flow rates to find its effect on current density at both low ( = 0.4F ) and high

(Ke// = 0.8F ) cell voltage operating conditions.

Fig. 3.17 shows the relation between the flow rate and normalized fuel cell 

current density. Under = 0 .4 F , the current density will increase significantly with

increasing flow rate. However, further increasing of flow rate leads to the current density 

decreasing. Because when ç is larger than 5, the “gas channel drying” effect becomes 

significant, which downgrades the membrane and causes the high proton resistance. The 

fuel demanding is low under high cell voltage operating condition = 0.8F ), so that 

the increasing flow rate only brings the poor performance.
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Fig. 3.17 Current density flow rate curves at 0.4V and 0.8V
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CHAPTER 4

AN IMPROVED DESIGN OF PEMFC 

In this chapter, an improved design is presented. The three-dimensional PEMFC 

simulation is performed. From the results of the velocity, temperature and current density 

distribution, it is found that the fuel cell performance has been improved significantly 

compared to the baseline design. The parametric study of the flow rate is also performed 

to study the effects of channel flow rate to the temperature, water content and current 

density.

4.1 Design Description

The new design of PEMFC is similar to the baseline design with the same size active 

electrochemical area. The difference is that the new design has the improved bipolar plate 

design with four inlets instead of one inlet in baseline design. This design aims to 

improve the channel flow distribution. The schematic view of the bipolar plate is shown 

in Fig. 4.1. The dimensions of drawing are in inches. The inlet diameter is 0.5 in and they 

are separated from each other with 0.5 in distance. The header area contains the 0.2 in 

diameter cylinders instead of the cubes found in the baseline design. In the channel 

region, the channel width, height and rim width are applied as the same as in the baseline 

design. The MEA dimensions including the thickness are all the same. With the newly
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designed header area and four inlets, the new bipolar plate is a little longer than the 

baseline one, which dimensions are 8 in long and 5 in wide. Fig. 4.2 shows the 3-D 

configuration of the new design, which includes the anode channel fluid, MEA and 

cathode bipolar plate from the top to the bottom.

The three-dimensional computation meshes are generated in Hypermesh® by 

tetrahedral meshes with 2,311,626 cells and 1,265,365 nodes. The meshes of anode 

channel fluid, MEA and cathode bipolar plate are shown in Fig. 4.3. The boundary 

conditions for the hydrodynamic, heat transfer and electrochemical simulation are the 

same as the baseline design.

Fig. 4.1 Schematic view of bipolar plate design
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Anode fluid

Cathode bipolar plate

Fig. 4.2 Improved design of PEMFC

%

Fig. 4.3 Computational mesh-part view

4.2 Results and Discussion

4.2.1 Velocity Distributions

Fig. 4.4 shows the velocity distribution of the anode side at the middle length of the 

channel where the velocity profile is already fully developed. The velocity distribution 

between channels is much better than the base design result, as shown in Fig. 3.5. It gives 

an almost uniform velocity distribution in each channel. When the inlet flow rate

87



increases, the veloeity in these channels will inerease in the same ratio and the same 

amount. This uniform veloeity distribution is true for the investigated flow rate range. 

Due to the non-symmetrie header area design, the velocity in lateral ehannels is slightly 

lower than the middle ones. This kind of velocity distribution is favorable to the fuel eell 

performance beeause the flow rate adjustment will not bring extremely high veloeity in 

the lateral ehannels. A uniform-veloeity distribution can provide a better adjustment of 

fuel supply whieh will lead to the fuel eelTs high efficiency. On the other hand, it also 

brings the uniform temperature distribution, uniform eleetroehemieal reaction rate in 

eatalyst layers and efficient usage of expensive catalyst.
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Fig. 4.4 Velocity distribution between ehannels

4.2.2 Temperature distributions

Temperature distributions in the bipolar plate, gas channel and eatalyst are also 

investigated. The temperature difference within single bipolar plate is less than 1.5K. The
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temperature varies along the x-axis and the temperature differenee is small along they- 

axis. The high temperature appears at the oxygen inlet side when flow rate is small.

While flow rate increases, the high temperature area moves to the MEA center part. The 

“gas channel cooling” still exists in this new design. However its impaet on the fuel cell 

performanee is not as significant as on the baseline design.

4.2.2.1 Bipolar Plate

The bipolar plate temperature is examined. At the high eurrent density situation 

( ̂ ceii -  0 4E ), the temperature of bipolar plate is 4.5K higher than the ambient 

temperature when the ç= \ ,  as is shown in Fig. 4.5 (a). Similar to the baseline design, the 

inereased flow rate leads to a higher bipolar plate temperature while further increasing 

will decrease its temperature. After the ç  inereases to 5, the average temperature of 

bipolar plate is around 7K higher than the baseline design ease which means the new 

design use the fuel more efficiently under the same flow rate value ç  . The high 

temperature area moves from the upper stream to the channel eenter when ^ is 5 which is 

shown in Fig. 4.5 (a) to (d). When ç  =1, the oxygen supply is not enough, so that a high 

eleetroehemieal reaction rate happens at the upper stream area where the oxygen 

concentration is high. After flow rate increases, the “gas flow cooling” effect becomes 

signifieant. The temperature at two sides (y=0.02m, y=0.12m) are lower than as at the 

channel eenter.

Fig. 4.6 shows the anode bipolar plate temperature under the low current density 

eondition ( = 0.8V ). Similarly to the high eurrent density condition, temperature

inereases with inereasing ç . When ^=5, the temperature is 1.2K higher than the baseline 

design case. The temperature at the center(y=0.08) is slightly higher than that at two side
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sides(y=0.02, y=0.12). This is not caused by the “gas flow cooling” effect because the 

velocity distribution is uniform. The MEA is smaller than the bipolar plate so that there is 

no heat source at the two sides (y=0.02, y=0.12). However, the heat is still transferred to 

the ambient air by convection. That is the reason why the temperature at two sides is 

lower than the temperature at center area.
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Fig. 4.5 Cathode bipolar plate temperature at 0.4V
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Fig. 4.6 Anode bipolar plate temperature at 0.8V

4.2.2.2 Catalyst Temperature

The temperature distribution in the catalyst layer is almost uniform while a big 

temperature difference appears at the baseline design along the y-axis which is shown in 

Fig. 3.9 (a) and Fig. 4.7 (a). Generally, the catalyst temperature at the new design case is
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2 to 3 K higher than the baseline case. For the high flow rate, the temperature variation 

within the catalyst layer in the new design case as shown in Fig. 4.7 (c) is even smaller 

than in the baseline design case as illustrated in Fig. 3.9 (d). When it is under the low 

current density condition ( = 0.8F ), the “gas flow cooling” effect becomes weak. Fig.

4.8 shows that the temperature has only slight decrease when flow rate increases.
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Fig. 4.7 Cathode catalyst temperature at 0.4V
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Fig. 4.8 Cathode catalyst temperature at 0.8V
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4.2.3 Hydrogen Mass Fraction 

• From Fig. 3.11(a) and Fig. 4.9 (a), it an be seen that the hydrogen mass fraction 

distribution is uniform along the y-axis direction, which is better than the complicated 

distribution shown in the baseline design case. The contour line has the wave-like shape 

which is the effect of the channel and rim configuration. The mass fraction is relatively 

large under the channels while it is small under the rims. It is noticed that the hydrogen 

mass fraction decreases and then increases along the gas flow direction (positive X) at 

q =1. And it keeps decreasing along flow direction at g =8. From Fig. 4.10, the water 

content level changes with flow rate in the catalyst layer. The water content is high at the 

upper stream and center area (x= -0.04m and x=Om) for g =1. This causes the low mass 

fraction of hydrogen at upper stream and center area. As ç =8, the “gas flow drying” 

effect strongly removes the water from catalyst layer into the gas channels. The water 

content of catalyst layer becomes low and its effect on the hydrogen mass fraction 

decreases. Generally, the hydrogen distribution in the new design is better than the 

complicated distribution in the baseline design.
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Fig. 4.9 Anode catalyst hydrogen mass fraction at 0.4V

99



C a t h o d e  C a t a l y s t  W a t e r  M a s s  F r a c t i o n

2 6 7 8 8 1011121314151617

H y d ro g en  f lo w  d ir e d i

0.1:

(a)

Cathode Catalyst Water Mass Fraction

H,o
V = 0 . 4 v
^ ___

H y d ro g en  flo w  d

-0.04

- 0.02

0.02
0.04

0.06
0.08

0.04
0.12

(b)

100



C a t h o d e  C a t a l y s t  W a t e r  M a s s  F r a c t i o n

V = 0 . 4 v
L=S

H y d ro g en  f lo w  direct mti

-0.04

- 0.02

0.02
0.04 0.02

0.06
0.08

0.04
0.12

(c)

Fig. 4.10 Cathode catalyst water mass fraction at 0.4V

4.2.4 Current Density

The most important improvement for the new design, compared with the base design, 

is the increased current density, i.e. power, under the same fuel cell operating conditions. 

Fig. 4.11 shows the normalized current density under different ç values. When fuel cell 

operates under high current density condition ( -  0.4F ), the current density will

increase by increasing the flow rate ç . However, further increase in ç  will decrease the 

current density because o f the “gas flow drying” effect which downgrades the membrane. 

The new design case has up to 60% higher current density under the same flow rate. Even 

when flow rate is high, the amount of current density decreasing is less than that in the 

baseline design. When the fuel cell operates under low current density condition 

( ĉeii -  ), the new design case also has higher current density. When the flow rate is

high, the current density only decreases within 10% compared to around 50% decreasing
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in baseline design. Based on the above analysis, the uniform velocity can significantly 

improve the PEMFC performance with higher power output. The improved new design 

of PEMFC has better performance compared to baseline design for the different gas flow 

rates.

4:5
B a s e  D e s i g n  0 . 4 v  
B a s e  D e s i g n  0 . 8v

■H

•O 3 .5 New D e s i g n  0 .8 v

l ^ j = 4  0 0 A / m *

2.5

Fig. 4.11 Normalized current density under different ç
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A three-dimensional PEMFC model has been studied and numerical methods have 

been applied to solve this model. This PEMFC model includes the current collectors, gas 

channels, gas diffusion layers, catalyst layers and proton exchange membrane. The single 

unit PEM fuel cell is modeled for the simultaneously occurring hydrodynamics, heat 

transfer, multi-species diffusion, and electrochemical reaction within it.

This model is validated in the single channel fuel cell case by comparing the 

numerical results of current density, mass fraction distribution with the published 

experimental data in the literature. The obtained numerical results are in good agreement 

with the available experimental data. All the validated parameters are then applied to the 

single unit PEM fuel cell. A baseline design and an improved design are both studied and 

simulated, and it is found a great improvement of the fuel cell performance is achieved, 

under the same operating conditions. A parametric study is conducted by varying the gas 

flow rates at the anode and cathode inlets. The fuel cell performance is investigated under 

both high and low current density eonditions.

PEMFC is a very complicated energy conversion device. The fuel cell performance 

can be affected by flow rate, water content level, temperature, and geometric design etc.
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It is found that the improved design has the better performance tban the baseline design 

case:

•  A uniform velocity distribution is obtained in the improved design for the 

parallel channel layout. The baseline design bas a very non-uniform velocity distribution: 

bigh at tbe lateral channels and low at the center channels.

•  When flow rate increases, the non-uniform velocity distribution becomes 

worse in the baseline design case. The velocity in lateral channels reaches extremely high 

value. However, in the improved new design case, the velocity between channels keeps 

the uniform distribution as the flow rate increases.

•  The fuel cell temperature change is based on tbe heat generation, and heat loss. 

When the gas flow rate increases, more fuel supply leads to the higher current density and 

heat generation. Then the fuel cell temperature increases. However, when the gas flow 

rate reaches certain high value the electrochemical reaction rate will not increase due to 

the mass transport limitation. In this situation, the convection heat transfer from the fuel 

cell to the gas mixture becomes significant. The temperature will decrease.

•  The fuel cell water content will increase then decrease as the inlet flow rate 

increases from ç= l to ç=25.  The relative humidity in gas channel is lower than in the 

MEA. The increased flow rate can lead to the “gas flow drying” effect to the MEA which 

can significantly increase the membrane protonic resistance.

•  The improved design case has a much better velocity and temperature 

distribution compared witb tbe baseline design. Its performance is more robust to the 

disturbance of the flow rate changes. When flow rate is high, it can have the higher 

current density than baseline design under the same operating conditions.
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To sum up, in the improved design, the current density has increased by 60%-80% 

under the same operating conditions compared to the baseline design. Its uniform 

velocity distribution provides the better performance under both high and low flow rate 

operating conditions.

5.2 Recommendations

Many fuel cell designs and operating parameters are directly influencing the fuel cell 

performance. Most of them are coupled and related to each other, such as the flow rate 

and fuel cell temperature, the water content and inlet relative humidity, the operating 

pressure and diffusivity, etc. Further parametric study is needed in order to obtain the 

optimized fuel cell performance such as the study about the channels geometric design, 

the purity of fuel with the GDL porosity and thickness, membrane conductivity, and the 

inlet relative humidity with fuel cell current density. The single stack performance can 

not be simply applied to the fuel cell stack performance because the fuel cell stack has 

more complicated fuel and temperature distributions and water management issues. The 

three-dimensional fuel cell stack simulation in the system level is also important for the 

future research to achieve the high performance fuel cell stack.
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