UNIVERSITY LIBRARIES

UNLV Retrospective Theses & Dissertations

1-1-2008

Minimization of residual stresses in the closure -weld region of the spent nuclear fuel canisters using induction annealing process

Zekai Ceylan University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation

Ceylan, Zekai, "Minimization of residual stresses in the closure -weld region of the spent nuclear fuel canisters using induction annealing process" (2008). *UNLV Retrospective Theses & Dissertations*. 2452. http://dx.doi.org/10.25669/5m24-aza2

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself.

This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

UMI®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

•

NOTE TO USERS

This reproduction is the best copy available.

UMI

MINIMIZATION OF RESIDUAL STRESSES IN THE CLOSURE-WELD REGION

OF THE SPENT NUCLEAR FUEL CANISTERS USING

INDUCTION ANNEALING PROCESS

by

Zekai Ceylan

Bachelor of Science Middle East Technical University, Ankara/Turkey 1991

> Master of Science University of Nevada, Reno 1993

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy Department of Mechanical Engineering Howard R. Hughes College of Engineering

> Graduate College University of Nevada, Las Vegas May 2001

UMI Number: 3016345

UMI°

UMI Microform 3016345

Copyright 2001 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

Dissertation Approval

The Graduate College University of Nevada, Las Vegas

Jan. 18th , 20 01

The Dissertation prepared by

Zekai Ceylan

Entitled

Minimization of Residual Stresses in the Closure-Weld Region

of the Spent Nuclear Fuel Canisters Using Induction Annealing

Process

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

N

Examination Committee Chair

Dean of the Graduate College

Examination Committee Member

ination C ittee Member **Examination Committee Member** Graduate College Faculty Representative

PR/1017-52/1-00

ii

ABSTRACT

Minimization of Residual Stresses in the Closure-Weld Region of the Spent Nuclear Fuel Canisters Using Induction Annealing Process

by

Zekai Ceylan

Dr. Mohamed B. Trabia, Examination Committee Chair Professor of Mechanical Engineering University of Nevada, Las Vegas

This dissertation presents a study of the spent nuclear fuel canisters for maximizing the compressive stress depth through the closure-weld region wall thickness. Induction coil heating technique can be used to relieve the residual stresses from the closure weld and induce a state of compression through the wall thickness. This technique involves localized heating of the material by the surrounding coils. The material is then cooled to the room temperature by quenching.

A three-dimensional finite element model was developed for the canister using the sequential method. This method consisted of a sequential thermal-stress analysis where nodal temperatures from the thermal analysis were applied as body force loads in the subsequent stress analysis. This model, which was computationally intensive, has been used to verify the results of the model developed in two-dimensions and ensure its accuracy. The effects of induction coil heating and subsequent quenching were also determined by using a two-dimensional axisymmetric finite element model of the canister. This model made use of the direct method. This method included only one type of analysis that uses coupled-field element type containing all necessary degrees of freedom for the heat transfer and the stress analyses. Direct coupling is advantageous when the coupled-field interaction is highly nonlinear and is best solved in a single solution using a coupled formulation. The results of the two-dimensional axisymmetric model were almost identical to the results of the three-dimensional model. Therefore, the computationally efficient two-dimensional axisymmetric model was used for the subsequent optimization problem.

The finite element results were validated using the results obtained from an experimental test. A canister mockup which consists of an outer shell and a support ring was manufactured. The mockup was subject to solution annealing process. At the end of the process, a compressive stress state developed on the shell outer surface. The stresses on the canister outer surface were obtained based on the readings of the strain gages that were attached to several points on the mockup. The results of the experimental test were consistent with the finite element solution.

The parameters of most promising designs were tuned to further maximize the depth of compressive stress through the wall thickness. This was handled as an optimization problem that was subject to geometrical and stress constraints. Two different solution methods were implemented for this purpose. First, ANSYS optimization subroutine was used to obtain an optimum solution. These results were subsequently improved using a successive heuristic quadratic approximation. This

routine provided the dimensions of the best design that result in the maximum compressive stress in the canister closure-weld region.

TABLE OF CONTENTS

ABSTRACT	iii
LIST OF FIGURES	iii
LIST OF TABLES	ix
ACKNOWLEDGMENTS	. x
CHAPTER 1 INTRODUCTION	. 1
CHAPTER 2LITERATURE REVIEW2.1Literature Review on Welded Structures, Residual Stresses, and Fabrication2.2Literature Review on Finite Element Modeling and Optimization	. 4
CHAPTER 3 DESCRIPTION OF SPENT NUCLEAR FUEL CANISTER DESIGN AND MATERIAL PROPERTIES	13
CHAPTER 4 THREE DIMENSIONAL FINITE ELEMENT MODEL CONSIDERATIONS	17
CHAPTER 5 TWO DIMENSIONAL AXISYMMETRIC FINITE ELEMENT MODEL CONSIDERATIONS	24
CHAPTER 6 VERIFICATION OF FINITE ELEMENT RESULTS WITH	
CHAPTER 7 OPTIMIZATION	39
 7.1.1 Minimization of Hoop Stress by Design Variables	48
 7.2 Optimization Using Successive Quadratic Approximation	59
7.5 Evaluation of Optimization Results for ANSYS Solutions and the Successive Heuristic Quadratic Approximation Solution	
CHAPTER 8 CONCLUSIONS	03

APPENDIX I MATERIAL PROPERTIES
APPENDIX II THREE DIMENSIONAL FINITE ELEMENT MODEL INPUT FILE (SEQUENTIAL METHOD)
APPENDIX III TWO DIMENSIONAL AXISYMMETRIC FINITE ELEMENT MODEL INPUT FILE (DIRECT METHOD)
APPENDIX IV THREE DIMENSIONAL FINITE ELEMENT MODEL INPUT FILE FOR THE SNF CANISTER MOCK-UP 135
APPENDIX V WASTE PACKAGE MOCK-UP EXPERIMENTAL TEST DOCUMENTATION, DESIGN SPECIFICATIONS, AND DRAWINGS
APPENDIX VI MATHCAD CALCULATION FILE FOR TRANSFORMATION OF PRINCIPAL STRESSES INTO HOOP STRESS
APPENDIX VII TWO DIMENSIONAL AXISYMMETRIC FINITE ELEMENT MODEL INPUT FILE FOR OPTIMIZATION USING ANSYS SOFTWARE
APPENDIX VIII MATHCAD CALCULATION FILES FOR OPTIMIZATION USING SUCCESSIVE QUADRATIC APPROXIMATION
APPENDIX IX FORTRAN 90 FILES USED TO DETERMINE THE MINIMUM POINT OF A QUADRATIC SURFACE BY MONTE CARLO PROGRAMMING TECHNIQUE
APPENDIX X MATHCAD CALCULATION FILES FOR OPTIMIZATION USING SUCCESSIVE HEURISTIC QUADRATIC APPROXIMATION
APPENDIX XI TWO DIMENSIONAL AXISYMMETRIC ANSYS SOFTWARE MULTIPLE DESIGN VARIABLE INPUT FILE FOR SUCCESSIVE HEURISTIC QUADRATIC APPROXIMATION
APPENDIX XII MATHCAD CALCULATION FILE FOR SENSITIVITY ANALYSIS OF THE BEST SOLUTION OBTAINED FROM THE SUCCESSIVE HEURISTIC QUADRATIC APPROXIMATION
APPENDIX XIII MATHCAD FILE FOR THE COMPRESSIVE STRESS PENETRATION DEPTH CALCULATIONS
BIBLIOGRAPHY
VITA

LIST OF FIGURES

15
16
18
19
21
23
25
27
29
31
33
34
y
35
37
43
45
46
55
57
58
60
63
69
70
85
5
88

LIST OF TABLES

Table 6.1	Experimental Test Results	- 38
Table 6.2	Comparison of Experimental Test Results and FEM Results	38
Table 7.1	Optimization Problem # 1	44
Table 7.2	Optimization Problem # 2	44
Table 7.3	Optimization Problem # 3	47
Table 7.4	Optimization Problem # 4	48
Table 7.5	Effect of Cooling Rate on Hoop Stress	49
Table 7.6	Solution from Successive Quadratic Approximation	57
Table 7.7	Numerical Values of Parameters Used in Successive Heuristic	
Quada	ratic Approximation Algorithm	67
Table 7.8	Solution from Successive Heuristic Quadratic Approximation	69
Table 7.9	Summary of Optimization Results	87
Table I.1	Material Property List for Alloy 22	108
Table I.2	Modulus of Elasticity for Alloy 22	108
Table I.3	Thermal Conductivity for Alloy 22	108
Table I.4	Specific Heat for Alloy 22	109

ACKNOWLEDGMENTS

I wish to express my gratitude to my advisor and graduate committee chair, Dr. Mohamed B. Trabia, for his guidance and support throughout this research. I also would like to thank Dr. Robert F. Boehm, Dr. Brendan O'Toole, Dr. Woosoon Yim, and Dr. Samaan Ladkany as the serving members of the graduate committee.

I also wish to acknowledge the support of the U.S. Department of Energy, Framatome Cogema Fuels, Lambda Research, and Nooter Fabricators, Inc. I gratefully acknowledge the contributions of Dr. Gerald M. Gordon, in his efforts to support the objective of this research. I also would like to thank my friend Dr. Mehmet Saglam for his earnest support on this study.

Lastly, I am truly grateful to my parents, sisters, and brother for their endless support and encouragement.

CHAPTER 1

INTRODUCTION

Spent Nuclear Fuel (SNF) canisters are being designed to last for 10,000 years. Corrosion may be one of the most critical factors determining the life of the canister in the emplacement-drift environment. An important related phenomenon is the stress corrosion cracking (SCC) [ASM International (1990)]. Three conditions are needed to take place simultaneously to induce the SCC in a structure: a corrosive environment, a material susceptible to corrosion, and a tensile stress. The problem of SCC can be eliminated by removing or reducing the effect of any one of these conditions. The scope of this dissertation is limited to minimizing the tensile stress in the region of the closureweld, and to the extent possible, maximizing the compressive stress depth through the wall thickness. A heat-treatment technique called "induction coil heating" [Avallone and Baumeister, Editors (1986)] is used to relieve the residual stresses from the closure-weld and induce a state of compression through the wall thickness. This technique involves localized heating of the material by surrounding coils. The material is then cooled to the room temperature by quenching. The resultant effect of this process will ensure that the canister outer surfaces will remain in state of compressive stress and, therefore, the canisters will not be breached due to SCC during their expected design-life.

A potential crack may propagate through the wall thickness if it is perpendicular to the tensile stress. Due to the canister cylindrical shell structure, the stress components in the radial and axial directions are not large enough to cause crack propagation, as will be shown in this study. The only remaining stress component that is perpendicular to any potential crack through the wall thickness is the hoop stress. Therefore, the most important stress component in this problem is the hoop stress, which will be studied in this research.

The literature review is provided in two sections in Chapter 2. The first section presents a review of the technical papers published in relation to the analyses of welded structures, residual stresses, and fabrication processes. The second part is focused on the literature of the finite element modeling and optimization. A description of the SNF canister design and its components in the closure-weld region is given in Chapter 3. Chapter 4 provides a detailed description of the three-dimensional (3-D) finite element model (FEM) developed for the canister using the "sequential method". This model, which is computationally intensive, is used to verify the results of the two-dimensional (2-D) axisymmetric model and ensure its accuracy. The 2-D axisymmetric FEM of the SNF canister is presented in Chapter 5. This model is developed to determine the effects of induction coil heating and subsequent quenching using ANSYS commercial software. This FEM uses the "direct method". The 2-D axisymmetric model can be used in subsequent optimization problem upon verification of its results with the 3-D model. The results of the finite element analyses (FEA) are verified by comparing with the results of an experimental test. Chapter 6 reports the verification process and results in terms of stresses obtained from the FEA and the tests. The parameters of most the promising

designs determined from 2-D FEM are adjusted to further maximize the depth of compressive stress through the wall thickness. This is an optimization problem, which is subject to geometrical constraints. Two different optimization methods are explained in Chapter 7. The first section in this chapter describes the solution method and the results obtained by the use of the ANSYS optimization subroutine. The second part includes a description of the successive heuristic quadratic approximation solution. The results and improvements of the heuristic approximation over ANSYS solution are also discussed in the second part of Chapter 7. Finally, the conclusions of this study are provided in Chapter 8.

CHAPTER 2

LITERATURE REVIEW

This section presents a review of the literature regarding the methods of reducing residual stresses in the welds and optimization techniques used to determine the best geometrical solution for stress mitigation. The ultimate goal of this research is, by virtue of mitigating weld residual stresses, to lower the potential for SCC and brittle fracture in the SNF canisters designed for a minimum service life of 10,000 years. The challenging aspect of the proposed research can be seen through the fact that no previous structural component was ever designed to last 10,000 years.

2.1 Literature Review on Welded Structures, Residual Stresses, and Fabrication

The first part of the literature survey includes a group of technical papers published in relation to the analyses of welded structures, residual stress improvement techniques, and low cost fabrication processing. Nickell et.al. (1973) performed thermal and mechanical analyses on welded structures. The numerical method described in their study was applied to an omega seal during the first pass of a multi-pass welding operation in order to examine the residual distortion and stress associated with this flexible geometry. An omega seal is an axisymmetric structure; the radial cross section has a circular geometry and it is welded at a small groove at the top. The details of the

4

radial cross section are provided in Figure 8 in the paper authored by Nickell et.al. (1973). Such structural configurations are in common use for forming flexible, gas-tight seals between support structures and infrequently replaced components. The thermal analysis of the seal was compared to the experimental evidence. The comparison between the predicted thermal history and the thermocouple measurement was favorable. However, predicted residual distortions compared poorly with experimental measurement because a portion of the seal was omitted in the mechanical analysis.

Umemoto et.al. (1980) investigated a different aspect of welds. Their paper presented a method to improve residual stresses in a pipe weld by means of induction heating a pre-flawed pipe. The results showed that the residual stress at the crack tip was successfully reduced by induction heating stress improvement process.

The estimation of welding residual stresses was also performed by Chien et.al. (1989). Their investigation method was, however, different than that of other scientific researchers. Simulated inherent strains were used to estimate the weld residual stresses. This paper made use of a semi-analytic method which combined the optimization technique, the FEM, and the experimental data. The subsequent residual stresses were estimated accurately. The validity of their proposed method was demonstrated by a case study: the residual stresses in slit-type butt welded rectangular plates were analyzed. The results indicated that the semi-analytic method was valid for simulating inherent strains and hence, the residual stress fields in the welded structures. Similar to this research, a technical study of the welding-induced residual stress analysis procedure was also performed by Wilkening (1993). Several 2-D axisymmetric analyses have been performed for pipe girth welds and for several multi-pass girth-like welds attaching

small nozzles to large, thick-walled pressure vessels. The numerical procedure used in this paper provided an effective method for selecting the welded joint design that minimized the potential for SCC failure by minimizing the tensile stress level on the wetted surface.

The welding of materials explained above constituted one mechanism for developing residual stresses in structures; a second type of fabrication process that resulted in residual stresses was mold casting. The research on this fabrication process is also included here since the residual stresses originate from thermal gradients inside the material and the finite element methods can be used for modeling purposes. Thermal stresses resulting from non-uniform cooling and hindering of shrinkage frequently cause cracks, which can lead to destruction of permanent mold casts. Fackeldey et.al. (1995) presented a 3-D FEM, which has been used to analyze the origin of thermal and residual stresses. By varying the initial temperature and the mold geometry, the process was evaluated for optimization and assessment of the mold life. A similar study was also performed by Chamis (1998) with a new approach for low cost fabrication processing. A coupled thermal structural behavior was simulated by using a coupled multi-disciplinary computer code. Through this approach, temperature gradients and the evolution of thermomechanical properties during cooling were simultaneously evaluated. This approach was applied to the casting process to fabricate several different components. The components were modeled by 3-D mixed finite element technique, which accommodates solidification, heat transfer, and stress analysis. The results showed that the temperature gradients were functions of the pouring ports. A method was suggested

for optimization of the mold pouring ports to minimize the thermal gradients which reduced residual stresses and thereby increased the part service life.

To solve the problem of high residual stresses, this dissertation uses a similar approach to one of the studies described above, authored by Umemoto et.al. (1980). While their scientific research was limited to reducing residual stresses at the crack tip in a pre-flawed pipe, this study will attempt to mitigate residual stress levels in the closureweld region of the SNF canister. The problem being investigated in this study is, therefore, substantially different in terms of the geometry and the size of the structural components. However, the scientific work carried out in the pre-flawed pipe suggested that the induction annealing of the SNF canister is feasible and is an effective method to reduce residual stresses in the region of the closure-weld.

As suggested by Fackeldey et.al. (1995), a 3-D finite element analysis is an accurate and cost-effective method of predicting the origin of thermal and residual stresses. A similar approach will be taken in this dissertation by developing the appropriate 3-D finite element models of the SNF canister and the canister mock-up. By varying the initial geometry of the canister, the process of induction annealing will be evaluated for optimization.

2.2 Literature Review on Finite Element Modeling and Optimization

The second part of the literature survey includes the technical papers published with regard to the finite element optimization of structures. Chen and Ho (1993) presented a new approach to developing a computer-aided optimum design system for mechanical structures. Their approach allowed the designer to implement design sensitivity analysis in commercial finite element programs without both the knowledge of its programming detail and access to its source code. The usefulness of their approach was demonstrated with examples and the proposed design system was suggested to enhance the role of structural optimization in designing mechanical structures.

A number of technical papers have been published in the area of shape optimization for structures. Schramm et.al. (1993), Le Riche et.al. (1998), Maute et.al. (1998), Hardee et.al (1999), Heller et.al. (1999), and Li et.al. (1999) presented several techniques to solve this problem. In all of these studies, finite element procedures were used to determine the optimized shape of structures to minimize stress concentration factors. The first one of these papers, Schramm et.al. (1993), provided a geometry based approach for coupling CAD with the finite element methods. Non-uniform rational bsplines were used to describe the shape of a structure. Spline curves and surfaces were used in design description and mapping of the finite elements for the parameterization of the structural shape optimization. A cross-sectional torsion problem was employed to demonstrate the proposed mapping techniques for finite element solution and the subsequent shape optimization. The results showed that the proposed technique was efficient. The advantage of the given approach was that the direct use of the CAD geometry description in the numerical model allowed the immediate use of the results of the optimization process for the design improvement in CAD.

In the next paper, Le Riche et.al. (1998) studied the shape optimization using another strategy, mixed heuristic and evolutionary optimization. Two heuristics for minimizing the weight of a structure were implemented: generalized and penalized biological growth. Generalized biological growth was a heuristic that removed and added material depending on the local state of stresses at the boundary. The penalized biological growth further penalized boundary displacements that remove material depending on the global constraints satisfaction of the current design. The results showed that mixing evolutionary search with biological growth improved the efficiency of the optimization.

The third paper mentioned above, written by Maute et.al. (1998), focused on optimization of elastoplastic structures. A procedure optimizing the ductility for given mass by adaptive material topology optimization was presented and verified by numerical examples for plane stress conditions. The results showed that it is important to consider the material non-linear structural response in the optimization process.

The next paper in its chronological order, authored by Hardee et.al. (1999), presented a computer aided design (CAD) based design sensitivity analysis and optimization method using Pro/Engineer software for shape design of structural components. The results of this study showed that an effective design optimization can be performed by the use of the Pro/Engineer software. Following this study, Heller et.al (1999) studied an iterative gradientless method for the shape optimization of stress concentrators to extend the fatigue life of structural components. The key feature of their approach was to achieve constant boundary stresses, in regions of interest, by moving nodes on the stress concentrator boundary by an amount dependent on the sign and magnitude of the local hoop stress obtained from a previous iteration of a standard finite element analysis. The results of an example problem were presented, which included the optimization of hole shapes in flat plates. It was found that significant stress reductions were achieved by local shape changes due to optimization. The method was considered an effective alternative to the use of more expensive and complex gradient-based finite element optimization softwares, which are available commercially.

The last paper mentioned above, written by Li et.al. (1999), included an evolutionary method. In this study, a stress based evolutionary structural optimization method was developed, in which the discrete variable method with the binary decision-making was used to decide the finite element's presence or absence. On the basis of the finite element analysis, a stress sensitivity number was derived to estimate the stress change due to element removal or addition. Following this optimization procedure, an optimal design with a minimized stress profile was achieved by removing or adding those elements which have the lowest or highest stress sensitivity numbers, respectively. A classical example of the fillet weld design was presented to demonstrate the capabilities of the proposed method for solving stress minimization problems.

Some of the scientific researches on shape optimization were conducted for specific structural components such as beams, plates, and shells. The results of structural optimization for such components have been recently reported by Grandhi et.al. (1992), Gotsis (1994), and Mota Soares et.al. (1994). Grandhi et.al. (1992) wrote a paper that presented the generalized compound scaling algorithm and its application to optimum weight design of plate structures. The optimum designs were reached by simply scaling the design variables to an optimum intersection of multiple constraints. A four-noded isoparametric plate element was used for modeling the structure. The procedure was demonstrated by example problems using stress and displacement constraints with side bounds on the design variables. The results showed that the optimization cost was significantly reduced using this algorithm. Gotsis (1994) worked on the structural

optimization of thin shell structures that were subjected to stress and displacement constraints. In order to accomplish this, a structural optimization computer program (DESAP1) was modified and improved. The simplification of the program input improved the accuracy of the analysis and saved computation time. In the optimization part of the program, the stress ratio formula, which redesigns the thickness of each finite element of the structure, was solved by an analytical method. This scheme replaced the iterative solution that was previously used in the program, thus increasing the accuracy and speed of the redesign. The modified program was used to design a thin, cylindrical shell structure with optimum weight. The results showed that aforementioned modifications improved the accuracy and efficiency of the program. Thin shells of revolution have also been studied for optimal design by Mota Soares et.al. (1994). Their paper presented the sensitivity analysis for the optimization of axisymmetric shells subjected to arbitrary loading. Thickness and shape design variables were considered. The objective of the design was the minimization of the volume of the shell material, the maximization of the fundamental natural frequency, the minimization of the maximum stresses, or the minimization of the maximum displacement. The constraint functions were displacements, stresses, enclosed volume of the structure, volume of the shell material, or the natural frequency of a specified mode shape. The design sensitivities were calculated analytically and also by global finite difference. The results indicated that sensitivity analysis of static and dynamic constraints of axisymmetric shells were efficiently and accurately obtained using the analytical method described.

The literature survey indicates that no structural component was ever optimized to prevent stress corrosion cracking using induction coil annealing process. Optimization of SNF canisters using two different methods will be explored in this dissertation. One of these methods will employ the optimization subroutines of ANSYS (a commercial FEA software). As described previously, Hardee et.al. (1999) and Schramm et.al. (1993) made use of commercially available softwares for optimization of structures. Consistent with their approach, an optimum solution to the problem of reducing residual stresses in SNF canisters will be obtained using ANSYS software. This optimization process will include the effects of non-linear material behavior, as its importance was pointed out by Maute et.al. (1998). A second method of solution will also be used by developing a successive heuristic quadratic approximation. The solution of this method will be used to verify the results of the first solution form ANSYS. This approach is consistent with the scientific work previously mentioned by Gotsis (1994).

CHAPTER 3

DESCRIPTION OF SPENT NUCLEAR FUEL CANISTER DESIGN AND MATERIAL PROPERTIES

The SNF canister [CRWMS M&O (2000a)] is essentially a right-circular cylinder (see Figure 3.1). It is comprised of two shells, an inner shell of stainless steel that provides structural support and an outer shell of high-nickel alloy (Alloy 22) that provides a corrosion-resistant barrier. The inner structural shell is inserted inside the outer corrosion-resistant shell to form a loosely fitting structure. There are two lower lids that are welded to the shells at the time of fabrication. There are three upper lids that are welded in place after the canisters are loaded with the appropriate waste forms.

The SNF assemblies are loaded into baskets that form a regular array of square apertures. The baskets are formed from interlocking sheets of structural steel and neutron-absorbing material for criticality control. Aluminum sheets are also added to create thermal shunts to enhance heat transfer to the shells of the canister.

Due to potential SCC concerns during its extended period of design life, the particular interest of this study in the canister is focused on the closure-weld region (see Figure 3.2). This region includes a small part of the outer shell and the two upper lids. These components are made of high-nickel alloy (Alloy 22). The objective of this study is to minimize the tensile stress in the region of the closure-weld, and to the extent possible, maximize the compressive stress depth through the wall thickness.

The material and corrosion properties of Alloy 22 are provided in Appendix I. These properties are used in finite element simulations and also in the discussion of results in subsequent chapters.

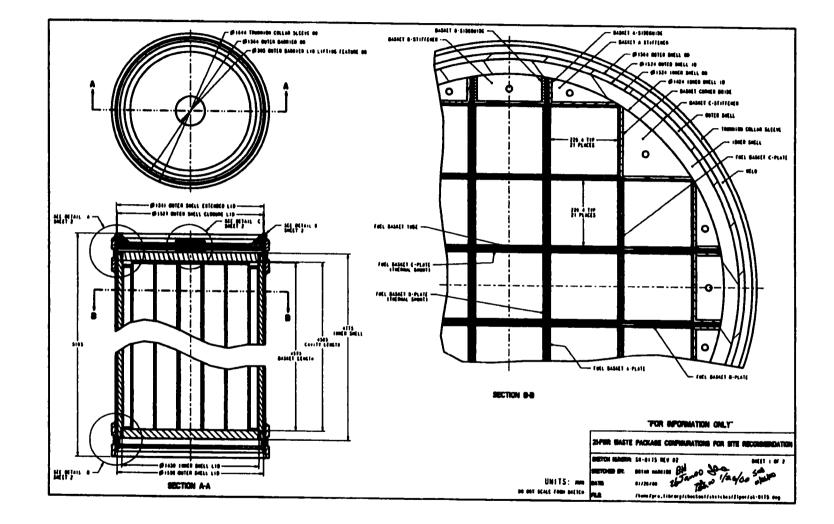


Figure 3.1. Spent Nuclear Fuel Canister Design Sketch (General View)

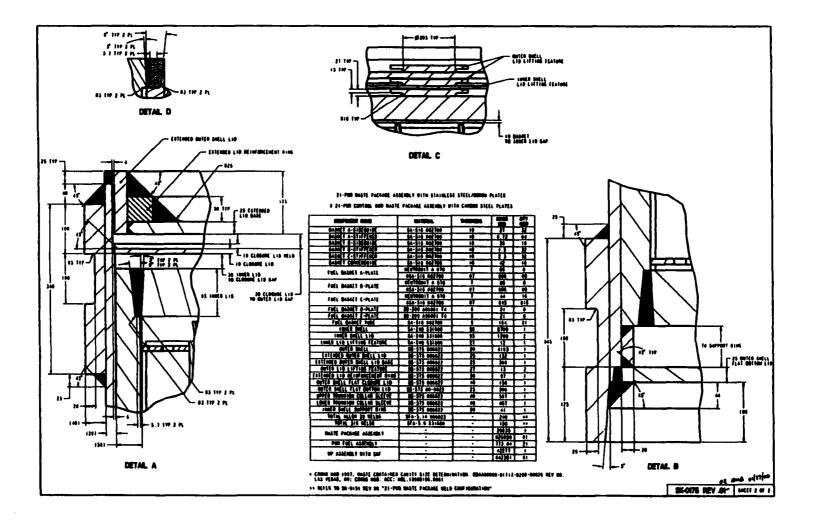


Figure 3.2. Spent Nuclear Fuel Canister Design Sketch (Closure-Weld Section)

CHAPTER 4

THREE DIMENSIONAL FINITE ELEMENT MODEL CONSIDERATIONS

A three-dimensional (3-D) 10° arc finite element model (FEM) of the SNF canister was developed to determine the effects of induction coil heating and subsequent quenching using ANSYS commercial software (see Figures 4.1, 4.2, and Appendix II). The geometry of the induction coil is a ring that covers the top surface of the SNF canister. Therefore, the problem is entirely axisymmetric. The 3-D model was developed by using a 10° arc section. The structural boundary conditions were such that zero-displacement constraints were applied in perpendicular direction to the cutting surfaces. Additionally, half-symmetry was used along the canister length since the canister is essentially symmetric about its mid-length. Although the thermal loading is not symmetric along the length of the canister, the use of the half-length of the canister is appropriate since the heat affected zone is only a small part of the canister in the region of the closure-weld and the displacements are almost zero at the mid-length of the canister.

17

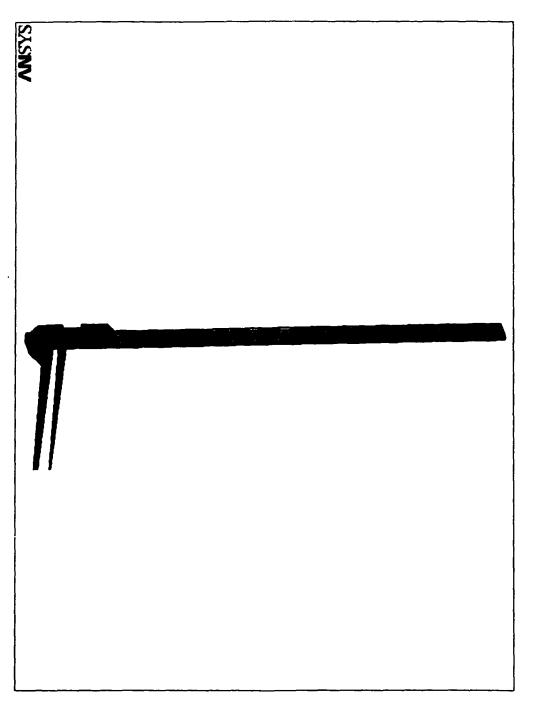


Figure 4.1. 3-D Finite Element Model of SNF Canister

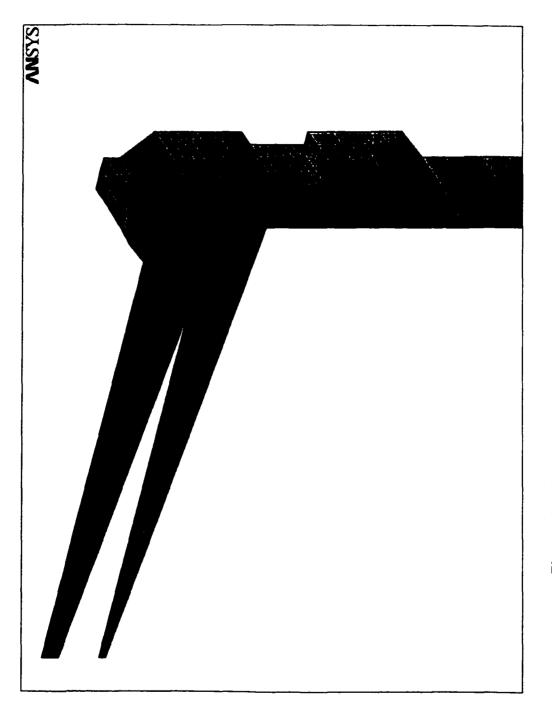


Figure 4.2. Closure-weld Section of the SNF Canister FEM

The solution was obtained using the "sequential method". This method involved two sequential analyses, each belonging to a different field; the two fields were coupled by applying "results" from the first analysis as "loads" for the second analysis [ANSYS, Inc. (1996)]. Using this method, the 3-D model included a sequential thermal-stress analysis where nodal temperatures from the thermal analysis were applied as body force loads in the subsequent stress analysis.

The heat treatment for induction anneal has been simulated using temperature boundary conditions at specific nodes in the finite element model. The canister was initially at room temperature (20 °C). Then, the temperature in the region (volume) of induction anneal was linearly increased to a maximum of 1120 °C, which is the annealing temperature of Alloy 22, in 35 seconds. Figure 4.3 shows the temperature boundary conditions at time equals to 35 seconds. The maximum temperature was 1120 °C at the top surface, the minimum was 20 °C at the bottom of the induction anneal region, and the temperature distribution between the two was linearly decreasing from the top to the bottom. This temperature was held constant for 10 seconds. Then, the canister outer surface in the region of induction anneal was quenched to room temperature in 30 seconds by assuming a linear fast cooling on the outer surface. The first two phases of the heat treatment were parts of an industry standard heat treatment; however, the cooling time in the last phase was the shortest time that resulted in maximum compression on the outer surface of the canister. It should be noted that the minimum hoop stress results on the annealing surface for different cooling rates are discussed in Section 7.1.2. All surfaces outside the region of induction annealing were insulated.

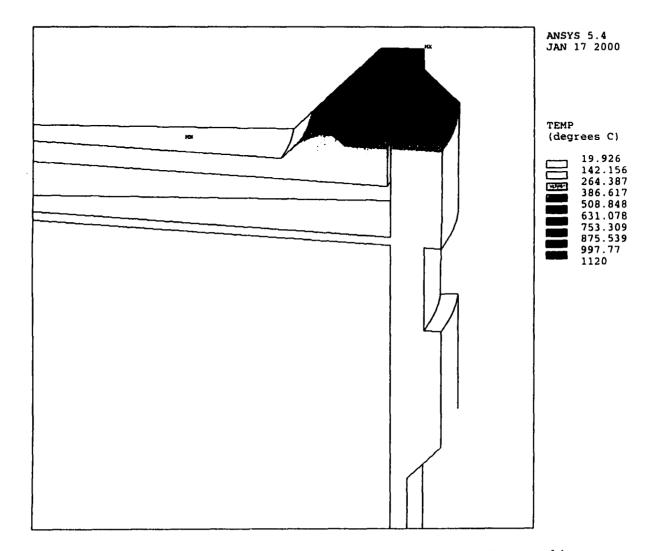


Figure 4.3. Temperature Distribution in the SNF Canister (Time: 35 seconds)

At the end of simulation, the residual stress distribution has been evaluated. The single component of stress important to this study was determined to be the hoop stress. In order for a potential crack to propagate through the wall thickness, the crack would have to be perpendicular to the tensile stress. The stress plots revealed that the radial and axial components of stress were not large enough to cause crack propagation. The hoop stress magnitudes were large compared to other stresses. However, the hoop stress was in compression on the outer surface and in tension on the inner sections of the material (see Figure 4.4). This phenomenon was an indication of the fact that the induction annealing process could not only be used to reduce tensile stresses but it could also be used to generate compressive stresses and, subsequently, prevent any potential stress corrosion cracking in the SNF canister.

The 3-D model, which was computationally intensive, was used to verify the results of the two-dimensional (2-D) model and ensure its accuracy. The problem with using 3-D FEM was determined to be the computer execution time. Two identical problems were solved in 3-D and 2-D in order to compare the central processing unit times in HP UNIX 9000 series J2240 workstation. The 3-D model required 24 hours for completion of the solution whereas it took only 10 hours for the 2-D model to finish the solution. This resulted in consideration of using 2-D model for the remaining part of the dissertation in which optimization will also be performed.

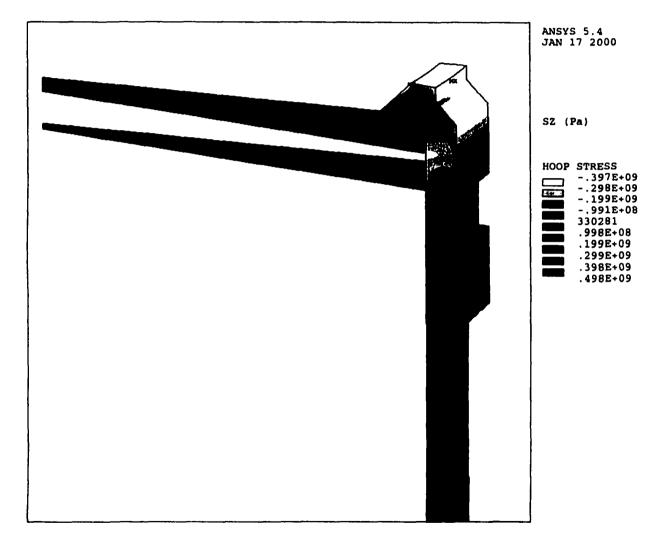


Figure 4.4. Residual Hoop Stress Distribution in the SNF Canister

CHAPTER 5

TWO DIMENSIONAL AXISYMMETRIC FINITE ELEMENT MODEL

CONSIDERATIONS

Since the 3-D model was computationally intensive, its use in subsequent optimization routine that consisted of a number of iteration loops would be infeasible. Therefore, a 2-D axisymmetric FEM was developed, later to be used in optimization (see Figure 5.1 and Appendix III). The 2-D axisymmetric FEM was developed using the "direct method". This method involved one type of analysis that used coupled-field element type containing all necessary degrees of freedom for the heat transfer and the stress analysis [ANSYS, Inc. (1996)]. Direct coupling was advantageous when the coupled-field interaction was highly nonlinear and was best solved in a single solution using a coupled formulation. The elements of this formulation were specifically formulated to solve these coupled-field interactions directly. The direct method and the sequential method both resulted in the same accuracy; however, the direct method was more efficient in terms of the time required for solving non-linear problems.

The boundary conditions and the finite element mesh used in the 2-D model were similar to the ones used in the 3-D model.

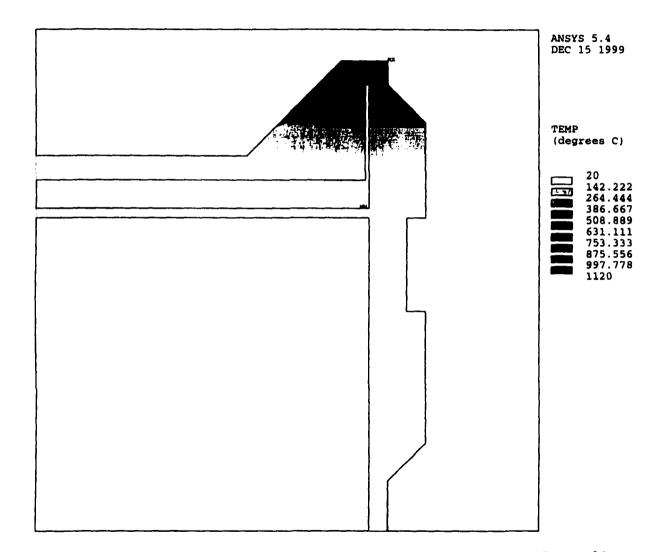


Figure 5.1. Temperature Distribution in the 2-D Axisymmetric FEM (Time: 35 seconds)

25

The results indicated that the stresses obtained from the 2-D axisymmetric FEM solution were almost identical to the stresses obtained from the 3-D FEM solution. The difference in maximum stresses between the two solutions was less than 1% and there was no significant difference in terms of the stress distribution through wall thickness (see Figure 4.4 and Figure 5.2). The results of the finite element solutions were, therefore, verified by using two different methods. The solution results were acceptable since the outer surface was in a state of compressive stress; however, it was not known if the original design was optimum. Therefore, it was also concluded that the computationally efficient 2-D model could be used for optimization.

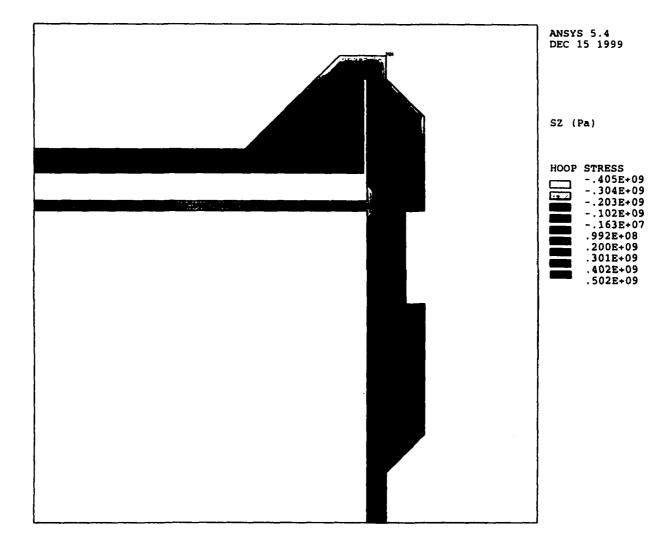


Figure 5.2. Residual Hoop Stress Distribution in the 2-D Axisymmetric FEM

CHAPTER 6

VERIFICATION OF FINITE ELEMENT RESULTS WITH EXPERIMENTAL TEST RESULTS

In order to verify that the finite element solution used in this study is appropriate for predicting residual stresses from annealing, an experimental test was conducted on a SNF canister mock-up (see Figure 6.1). This experimental test included solution annealing of the SNF canister mock-up rather than induction annealing. The difference between the two heat treatment techniques is that the solution annealing is applied to the structural component in its entirety, whereas the induction annealing is applied to one portion of a component that is to be heat treated locally. Since both techniques result in compressive stress on the outer surface of the structural component, substantiation of only one of these heat treatment methods using experimental and finite element methods is necessary to conclude that the annealing process can be properly simulated by the finite element method. Hence, the solution annealing of the canister mock-up and the results of both experimental and finite element studies are discussed in this section.

The SNF canister mock-up consisted of an outer shell and a bottom ring. After the plate was rolled into a cylindrical geometry, the two sides of the shell were welded (groove weld width was 1.25 inches). Then, the ring was welded onto the inner surface of the shell, close to the bottom end (fillet weld widths were 1 inches). All the weld

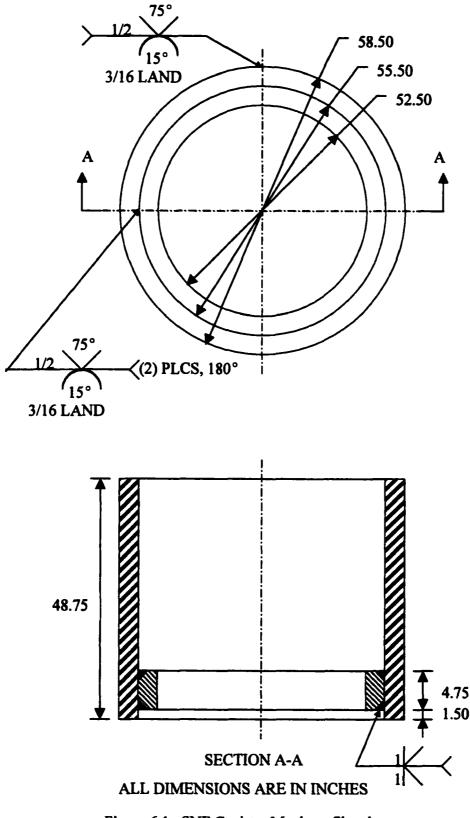


Figure 6.1. SNF Canister Mock-up Sketch

angles were maintained at 45°. Next, the mock-up was subject to solution annealing. At the end of the solution annealing process, the residual stresses were measured using "hole drilling method" [American Society for Testing and Materials (1992)]. Strain rosettes were placed on the outer surface of the shell at various locations and the stresses were recorded upon drilling a hole at the center of each strain rosette (Figure 6.2).

It should be noted that the induction annealing and solution annealing processes took place after all welds were completed in the SNF canister. As a result of this, any residual stress that might have been induced due to the welding process was relieved by the subsequent annealing process. Therefore, the analysis of the welding is not required in the finite element solutions provided in this study. However, one of the welds has been modeled in this study to validate the fact that the resulting stresses are the same at the end of the heat treatment, regardless of the simulation of the welding process prior to the annealing process.

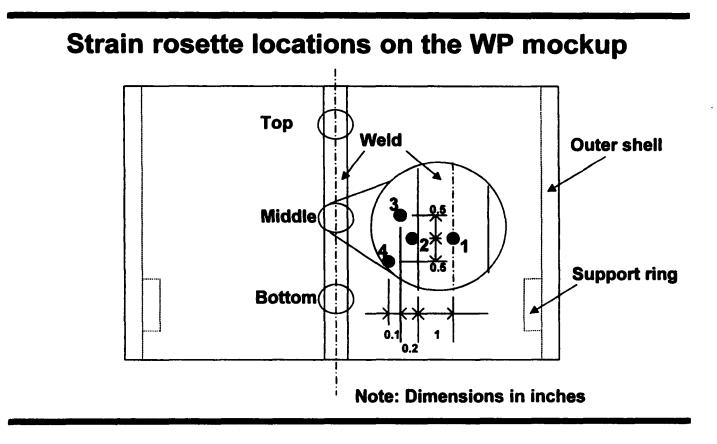


Figure 6.2. SNF Canister Mock-up and Strain Rosette Locations

In order to compare the results of this experimental test with the results of a finite element solution, the spent nuclear fuel canister mock-up welding and solution anneal heat treatment procedures have been simulated using ANSYS software (see Appendix IV). A three-dimensional half-symmetry model was developed (Figure 6.3). The weld seam consisted of three elements through the wall thickness and four elements along the circumference of the mock-up, which improved the accuracy obtained from the finite element solution. The mock-up was initially at 20 °C. The weld was assumed to remain in solid state throughout the simulation and the annealing temperature (1120 °C) was used as the peak welding temperature (see Figure 6.4). The basis for this assumption was that no significant effect on the base metal in terms of the change in stress-state was expected from the weld during the phase transformation from liquid to solid. Using this assumption, the weld seam temperature was increased to 1120 °C in 45 seconds to simulate the effect of the weld on the canister mock-up (Figure 6.4). It should be noted that the time for the weld seam to reach 1120 °C was inconsequential since the weld seam final temperature was essentially the same along the canister mock-up length. Then, the canister mock-up was cooled by conduction to simulate the effect of air cooling. The convection to air was not included since the conduction was expected to be the dominant mode of heat transfer during this process. As a result of air cooling, the maximum temperature decreased to 271 °C in 30 minutes. To ensure that the residual stresses would remain the same until the mock-up cooled down to room temperature, the hoop stress time history was obtained for two elements: one on the outer surface, another in the ring material. The stress evaluation at these two locations indicated that the steady-state values of stresses have been obtained (see Figure 6.5). This concluded the

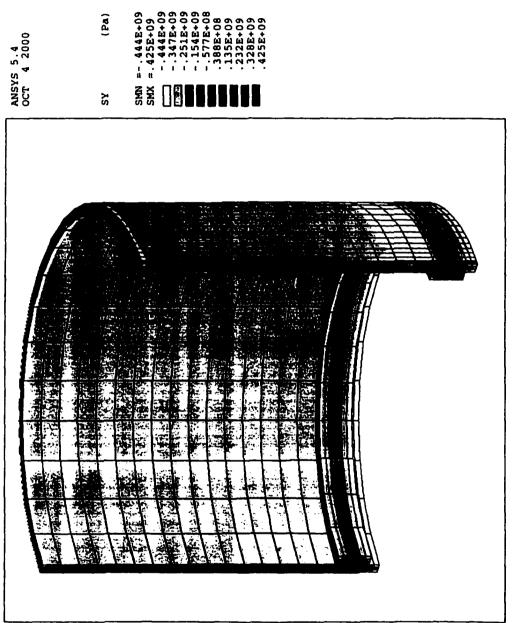
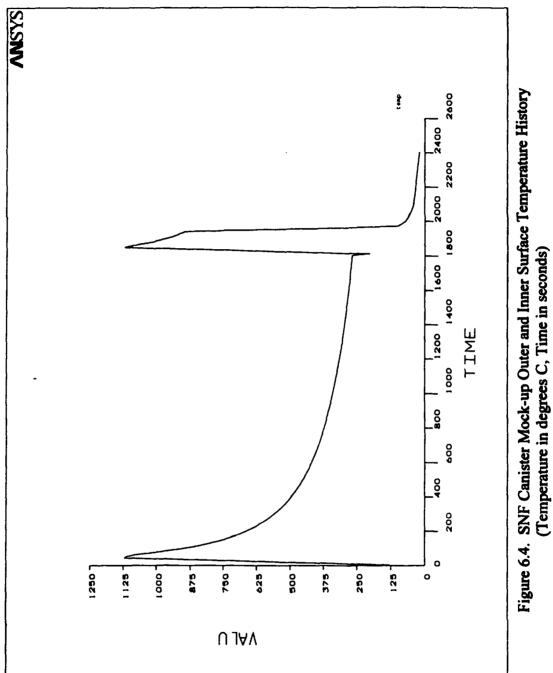




Figure 6.3. SNF Canister Mock-up 3-D FEM ~ Hoop Stress Plot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

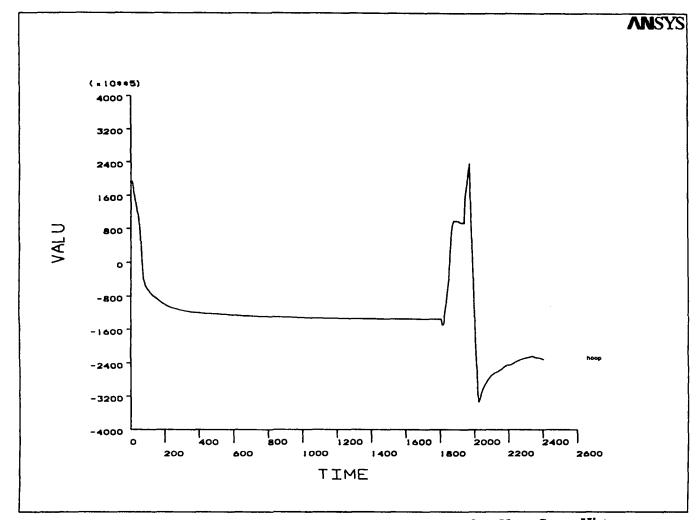


Figure 6.5. SNF Canister Mock-up Ring Area Outer Shell Surface Hoop Stress History (Hoop stress in Pa, Time in seconds)

part of the heat treatment for the welding process. Then, the heat treatment of this model was continued to determine the residual stresses subsequent to solution annealing. The entire volume of the canister was uniformly heated up to 1120 °C in 45 seconds. Then, using the temperature history from the thermocouples used in the experimental test, inner and outer surfaces were quenched to 20 °C in approximately 9 minutes.

The finite element solution indicated that there was variation in the stress values from node to node along the length of the canister mock-up. When the experimental results of the test mockup was compared to the finite element model, it was realized that the locations of some of the strain rosettes fell between the nodes. Therefore, the most appropriate method for reporting these results was to average the stress values for a certain number of nodes within the same distance. A length of approximately 8 cm along the canister mock-up was used in three different locations: top, middle, and bottom (see Figure 6.6). 8 cm covered two nodes at the locations top and the middle since the mesh was coarse in comparison to the bottom. However, the same distance covered five nodes at the bottom due to the large number of elements used. This method of averaging results was implemented in two different places along the circumference: one at the mid-weld and another adjacent to the weld seam.

In experimental tests, the residual stresses have been reported in terms of the maximum and minimum principal stresses and their directions from the circumferencial (hoop) direction (see Table 6.1 and Appendix V). To be able to compare the results of the experimental test with the results of the finite element model, all of the residual stresses obtained from the experimental test have been converted into hoop stresses using Mohr's circle for biaxial stress state. The calculations of this conversion are

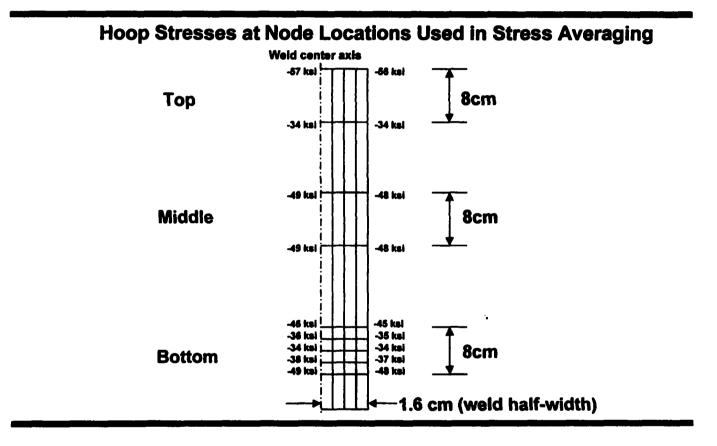


Figure 6.6. SNF Canister Mock-up Hoop Stresses at Nodes Used in Stress Averaging

documented in Appendix VI. Table 6.2 summarizes the results obtained from the test and the FEM in terms of hoop stress. Having the results of the experiment compared to the ones obtained from the finite element solution, it has been determined that the maximum difference between the two solutions was 11%. The difference has been attributed to possible welding distortions and uncertainty in strain gage readings.

Table 6.1. Experimental Test Results (Stress Magnitudes and Directions)

	Тор			Middle			Bottom		
	σ_1 (ksi)	𝔤₂(ksi)	θ(°)	σ_{i} (ksi)	σ_2 (ksi)	θ(°)	σ_{i} (ksi)	o ₂ (ksi)	θ(°)
Location # 1	-51	-62	+11	-72	-86	-54	-49	-54	-43
Location #2	-42	-48	-23	-37	-39	+1	-47	-52	+4
Location # 3	-39	-44	+42	-46	-51	0	-44	-50	+2
Location #4	-30	-53	+54	-46	-51	+9	-28	-43	+53

Note: σ_1 is the maximum principal stress, σ_2 is the minimum principal stress, and θ is the angle of the maximum principal stress form the direction of the hoop stress

Table 6.2.	Comparison	of Expe	imental 1	Test Results	and FEM Results
------------	------------	---------	-----------	--------------	-----------------

	Hoop Stress (ksi)									
	1	op	M	iddle	Bottom					
	Test Results	FEM Results (2 nodes)	Test Results	FEM Results (2 nodes)	Test Results	FEM Results (5 nodes)				
Location # 1	-51	-57 -34	-81	-49 -49	-51	-46 -36 -34 -38 -49				
Location #2	-43	-56	-37	-48	-47	-45				
Location # 3	-41	-34	-46	-48	-44	-35				
Location #4	-45		-46		-38	-34 -37 -48				
Average	-45	-45	-53	-49	-45	-40				
Difference	0	%	8	8%		11%				

Note: Middle and bottom locations show relatively larger difference between the test and the FEM results, possibly due to welding distortions or uncertainty in strain gage readings

CHAPTER 7

OPTIMIZATION

The design analyzed in 3-D and 2-D was acceptable in terms of the maximum stresses; however, it was not determined if the design solution was optimum. Therefore, the design needed to be optimized for further improvement of compressive stress on the outer surface.

7.1 Optimization Using ANSYS Optimization Code

7.1.1 Minimization of Hoop Stress by Design Variables

The problem of optimization was first solved using the commercially available ANSYS software. The following discussion provides the technique and the procedure used for design optimization.

The optimization technique used in ANSYS was "sub-problem approximation" method. This was an advanced zero-order method, which required only the values of the dependent variables, not their derivatives. The relation between the objective function (OF) and the design variables (DV) was established by curve fitting (least squares fit); the resulting curve was called "approximation". The state variables (SV) were handled the same way as the design variables. In this method, the approximation was minimized instead of the objective function. The constrained problem was converted into an

unconstrained one by adding "penalties" to the objective function approximation to account for the imposed constraints. This approach increased the efficiency of the solution. The convergence (termination) was made at the end of each optimization loop (iteration). The problem converges if any of the following conditions were satisfied for a feasible design:

- Change in objective function from the best feasible design to the current design is less than the objective function tolerance.
- Change in objective function between the last two designs is less than the objective function tolerance.
- Changes in all design variables from the current design to the best feasible design are less than their respective tolerances.
- Changes in all design variables between the last two designs are less than their respective tolerances.

The procedure used for design optimization consisted of four major steps:

- An analysis file was created to be used during looping. The model was built parametrically (see Appendix VII); the solution was obtained; the parameters that were used as objective function and state variables were defined.
- 2. Optimization module was called. At this step, the objective function, design variables, and state variables were declared; the optimization method and the maximum number of optimization loops were specified.
- 3. Optimization analysis was initiated.
- 4. The resulting design sets were reviewed and the results were post-processed.

The objective function for the SNF canister optimization problem was defined as follows: minimize maximum hoop stress on the outer surface of the closure-weld region. It should be noted that the surface was identified by selecting nodes on the outer surface boundary. The maximum hoop stress was determined among these nodes using appropriate commands in ANSYS software (see Appendix VII).

The original design and its dimensions were given on Figures 3.1 and 3.2. The design geometry was such that all the angles in the closure-weld region were either 90° or 45° . It should be noted that after annealing, this design without optimization resulted in 70 MPa in compression.

Seven independent design variables have been identified as shown on Figure 7.1. The lower and upper limits for these design variables have been specified as follows:

85 mm < V1 < 150 mm

10 mm < V2 < 25 mm

30 mm < V3 < 60 mm

10 mm < V4 < 60 mm

10 mm < V5 < 50 mm

10 mm < V6 < 80 mm

10 mm < V7 < 80 mm

These independent design parameters have been determined based on the design geometry including the inner and outer shells, lids, the lifting feature, and the manufacturing requirements. The minimum values were estimated based on the minimum plate sizes that can be ordered from the manufacturers. Similarly, the maximum sizes were estimated by considerations of the realistic plate sizes that can be used to fabricate the SNF canister structural components. No other independent design parameters were identified in relation to the optimization of the induction anneal region since the rest of the dimensions were constrained by other design requirements such as lifting, handling, and emplacement.

In this study, four different optimization problems, starting from simple to more complex, have been considered. First three problems have the same initial geometry. The dimensions of the initial design variables are given in Tables 7.1, 7.2, and 7.3. The fourth problem is identical to the third problem except that it used the final answer of the third problem as an initial guess. The fourth problem also includes additional constraints.

The first optimization problem included only one design variable, which was used to obtain a simple solution to the problem as an initial attempt to determine the feasibility of the solution method. In this problem, the design variable defined as the sum of V3 and V4 was replaced with one design variable, V0. The lower and upper limits for this design variable have been specified as follows: 50 mm < V0 < 120 mm. This parameter represents the total height of the induction annealing region from the closure lid. Table 7.1 shows the initial guess value and the optimized solution in terms of the design variable and the objective function values. The results of the first solution attempt indicated that the resulting stress magnitude can be improved to 75 MPa (see Table 7.1 and Figure 7.2).

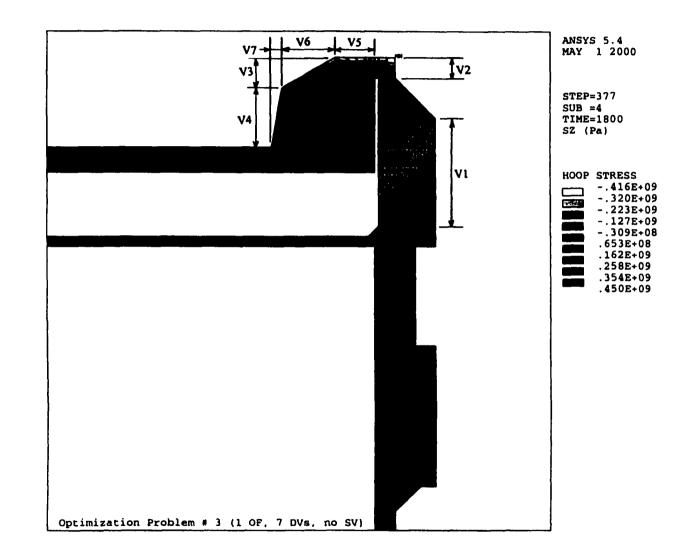


Figure 7.1. Optimization Problem #3 – Optimum Design Variables

Design Variable	V0 = V3 + V4
Initial Value of Design Variable (mm)	100
Optimized Value of Design Variable (mm)	97
Optimized Objective Function Value	
(Maximum Compressive Hoop Stress) (MPa)	-75
Number of Function Evaluations	5

 Table 7.1. Optimization Problem # 1 (1 OF, 1 DV, no SV)
 Image: state state

The second optimization problem was solved using three design variables (see Figure 7.3). It has been concluded from the results of this study that the compressive stress can be further improved to 98 MPa. The inputs and the results are summarized in Table 7.2.

Table 7.2. Optimization Problem # 2 (1 OF, 3 DVs, no SV)

Design Variables	V2	V5	V7
Initial Values of Design Variables (mm)	25	25	50
Optimized Values of Design Variables (mm)	44	28	37
Optimized Objective Function Value		• ·=• =-	•
(Maximum Compressive Hoop Stress) (MPa)	-98		
Number of Function Evaluations		6	

.

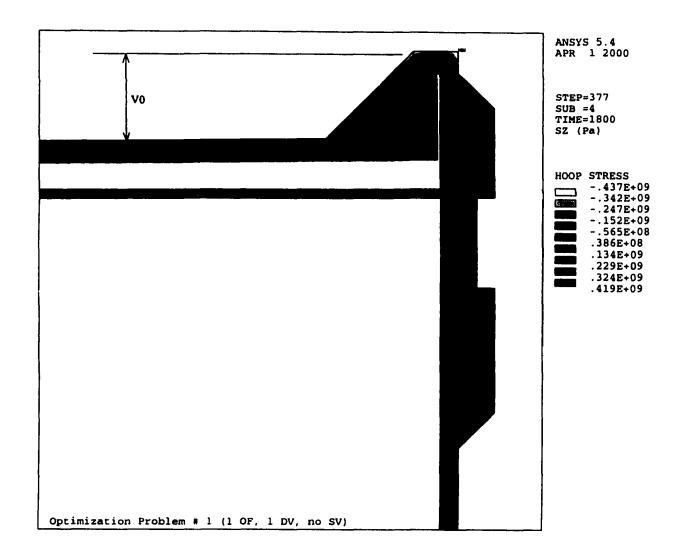


Figure 7.2. Optimization Problem #1 – Optimum Design Variable

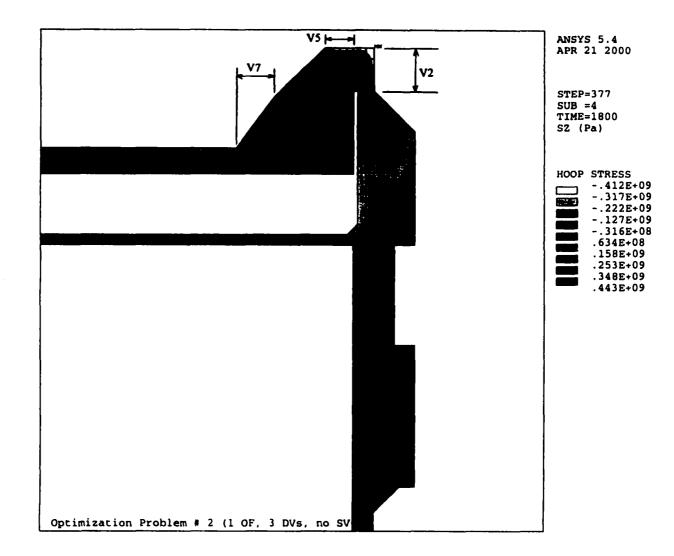


Figure 7.3. Optimization Problem #2 – Optimum Design Variables

The third optimization problem was performed using seven design variables shown in Figure 7.1. The results have clearly shown that the compressive stress can still be improved up to 130 MPa (see Table 7.3).

Design Variables	V 1	V2	V3	V4	V5	V6	V7
Initial Values of Design Variables (mm)	90	25	50	50	25	50	50
Optimized Values of Design Variables	107	21	31	59	39	53	10
Deptimized Objective Function Value Maximum Compressive Hoop Stress) -130 MPa)							
Number of Function Evaluations		17					

Table 7.3. Optimization Problem # 3 (1 OF, 7 DVs, no SV)

First three problems mentioned above had the same initial geometry. To ensure that the third problem provided the best solution, the fourth problem used the final dimensions of the third problem as initial guess values. The fourth problem also included the following six state variables:

Dimensional constraints (four defined):

 $(V1 + V2) - (V3 + V4) \ge 5 \text{ mm}$

 $V5 + V6 + V7 \le 200 \text{ mm}$

 $V3 - V2 \ge 3 \text{ mm}$

 $V3 + V4 \le 150 \text{ mm}$

The first constraint ensured that the gap between the two lids was greater than 30 mm. The second constraint set an upper limit to the summation of three design variables. The third constraint was defined by the geometry of the problem. Finally the fourth constraint set an upper limit to the summation of the two design variables. Stress constraints (two defined):

Maximum radial stress ≤ 0.20 * Yield strength of the canister material

Maximum axial stress ≤ 0.20 * Yield strength of the canister material

These constraints were set to ensure that the maximum stresses in radial and axial directions did not exceed 20% of the material yield strength, which was the threshold limit for stress corrosion cracking [CRWMS M&O (2000b)].

After the state variables were added and the solution was obtained, it has been determined that the results of the third optimization problem remained the same (see Table 7.4).

Table 7.4. Optimization Problem # 4 (1 OF, 7 DVs, 6 SVs)

Design Variables	V1	V2	V3	V4	V5	V6	V7
Initial Values of Design Variables (mm)	107	21	31	59	39	53	10
Optimized Values of Design Variables		21	31	59	39	53	10
Optimized Objective Function Value (Maximum Compressive Hoop Stress) (MPa)				-130		•	<u> </u>
Number of Function Evaluations		11					

In summary, aforementioned results showed that all three solutions improved the initial design. The best result was obtained from the third solution, which improved the resultant compressive hoop stress by 86% compared to the original design which was not optimized.

7.1.2 Minimization of Hoop Stress by Changing the Cooling Rate

The effect of different cooling rates on the residual stresses is determined using optimization problem #3, given in previous section. Five different cooling time periods

are considered for this problem: 300 seconds, 90 seconds, 60 seconds, 35 seconds, and 30 seconds. The results of the finite element solutions are summarized in Table 7.5. The results clearly indicate that the faster cooling rate results in lower hoop stress. Therefore, a minimum practically possible cooling rate of 30 seconds is selected for the heat treatment process. The finite element solution file supporting this analysis is documented in Appendix III.

Cooling Rate	Minimized Maximum Hoop Stress in the Region of Annealing
300 seconds	38 MPa
90 seconds	-63 MPa
60 seconds	-84 MPa
35 seconds	-119 MPa
30 seconds	-130 MPa

Table 7.5. Effect of Cooling Rate on Hoop Stress

7.2 Optimization Using Successive Quadratic Approximation

The problem of optimization discussed in previous section resulted in higher compressive hoop stress in the close-weld region than the stress obtained from the original design. However, the solution obtained from ANSYS subroutine can be further improved by using a separate solution. In order to accomplish this, the problem has been solved using a successive quadratic approximation.

The methodology used in the successive quadratic approximation is summarized in the flowchart in Figure 7.4. Using this approach, optimization of the currently available finite element models of canisters was performed. The results indicate that the compressive stress on the closure-weld outer surface can be further improved in comparison with the stress that has already been obtained from ANSYS optimization module.

The first step to solving this optimization problem is to determine a second degree polynomial surface with seven independent variables. For this purpose, the objective function should be evaluated for "m" data points using ANSYS. The minimum number of data points are determined from the following relation:

$$m > \left[\frac{(n+k-1)\cdot(n+k-2)}{k!}\right] \cdot \frac{n+k}{n} \qquad [MathSoft, Inc. (1997)]$$

$$[MathSoft, Inc. (1997)]$$

where "n" is the number of independent variables, "k" is the degree of the desired polynomial, and "m" is the number of data points. In this study, "n" is 7, "k" is 2. Solving for the equation given above, "m" should be greater than 36:

m > (8*7 / (2!)) * ((7+2) / 7)

m > 36

Therefore, a total of thirty-seven data points are used.

The same upper and lower bounds, L_j and U_j , respectively, of the previous section are used here. These bounds were defined on page 42.

Thirty-six initial data points are generated using the steps given below:

- Generate six (given as "s" in Figure 7.4) equally-spaced values for seven design variables.
- 2. The first set of design variable values to calculate the first function value consists of the first data point of the first design variable and the third data points of all other design variables. Then, the second set of design variable values to calculate the second function value consists of the second data point of the first design

variable and the third data points of all other design variables. The third, fourth, fifth, and the sixth set of design variable values follow the same pattern.

3. The seventh set of design variable values to calculate the seventh function value consists of the first data point of the second design variable and the third data points of all other design variables. Following the same pattern described in step #2, except for the common set of values on the third data point, five sets of design variable values are created by using the equally-spaced values of the second design variable. The same procedure is repeated for the third, fourth, fifth, sixth, and seventh design variables to create in total of thirty-six initial data points. All sets of data points created by this procedure are clearly given on the second page in Appendix VIII.

The calculation of the design variable values required to generate the thirty-six initial data points is mathematically described below:

Number of data points, i

Number of design variables, j

Number of equally-spaced intervals, s

Design variable values, V

Size of intervals, Δ

 $\Delta_{j} = (U_{j} - L_{j}) / (s - 1)$ (j = 1 ... 7)

Using the parameters defined above, the following algorithm specifies the required sets of design variable values for the thirty-six initial data points:

```
start
for
         i = 1 ... 6
         V_{i1} = L_1 + \Delta_1 (i - 1)
         for
                i = 2 ... 7
                   V_{ii} = L_i + \Delta_i (2)
         end
end
         i = 1 ... 6
for
                  i = 1 \dots 5
         for
                   ii = (i - 1) 5 + i + 6
                   V_{ii1} = L_1 + \Delta_1 (2)
                            k = 2 ... 7
                   for
                            if
                                      k = i + 1
                                      V_{ii\,k} = L_k + \Delta_k (k-2)
                            else V_{iik} = L_k + \Delta_k (2)
                   end
         end
end
stop
```

The finite element solution for all data points are obtained using ANSYS. The best solution obtained by ANSYS optimization are added to these data points to increase the total number of data points to thirty-seven. Then, a quadratic polynomial is fitted to these data points (see Appendices VIII and X). The minimum point of the quadratic surface is found using Monte Carlo Programming Technique (see Appendix IX). This solution is then input into ANSYS to obtain the actual value of the hoop stress.

The next step in this algorithm is to identify the maximum hoop stress among all function evaluations performed (σ_{max}). The termination criterion depends on the comparison of the minimum hoop stress obtained from ANSYS solution (σ) with the maximum hoop stress value (σ_{max}). If the calculated minimum hoop stress is less than the maximum hoop stress value among all function evaluations, then the maximum hoop

stress is replaced with the minimum hoop stress value and the process feeds back to the point of determining approximate objective function by fitting a second degree polynomial to the new set of data points. However, if the calculated minimum hoop stress is more than or equal to the maximum hoop stress value among all function evaluations, then the minimum of all function evaluation values is determined to be the optimum solution.

For this problem, the termination criterion was reached after a total number of fourteen iterations in addition to the initial data points (see Figure 7.5 and Appendix VIII, pp. 214-242). The results of this optimization algorithm are given in terms of the minimum quadratic and function values in Figure 7.5. In this figure, the minimum quadratic and function values are depicted by diamonds and squares, respectively. It is noted that the maximum compressive hoop stress increased to 136 MPa at iteration number four, when the minimum quadratic value exceeded the initial minimum function value. The subsequent values of the minimum quadratic curve also indicate that a better minimum function value cannot be obtained; having met the previously set termination criterion, the program is terminated after iteration number fourteen.

A resulting compressive stress of 136 MPa is 5% better than the compressive stress obtained from ANSYS subroutine. This solution is also 94% better than the original design. For this solution, the maximum compressive hoop stress and the corresponding values of design variables are given in Table 7.6. The optimum design solution using successive quadratic approximation with stress distribution is shown in Figure 7.6. A comparison of the optimized design variable values between the ANSYS solution (Table 7.4) and the successive quadratic approximation solution (Table 7.6) showed that the change in V1, V5, and V6 did not have a significant effect on the optimized objective function value.

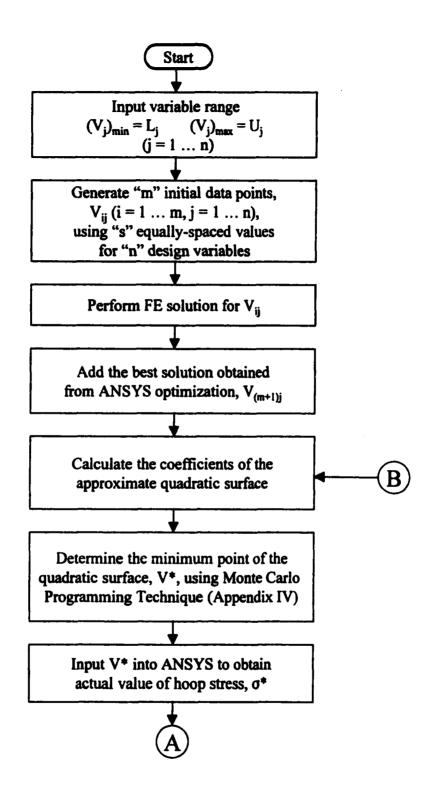


Figure 7.4. Flowchart for Successive Quadratic Approximation

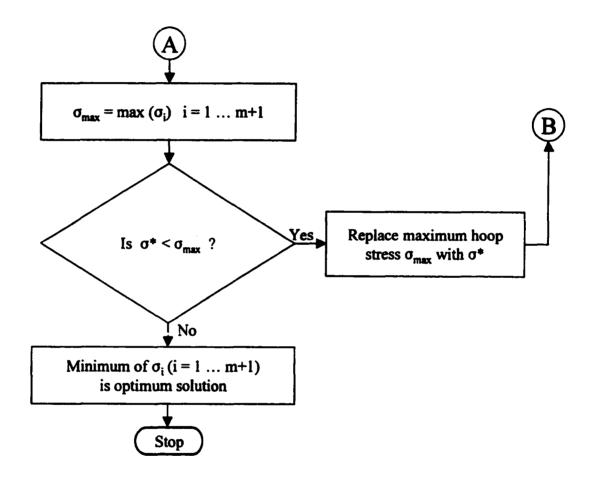


Figure 7.4. Flowchart for Successive Quadratic Approximation (continued)

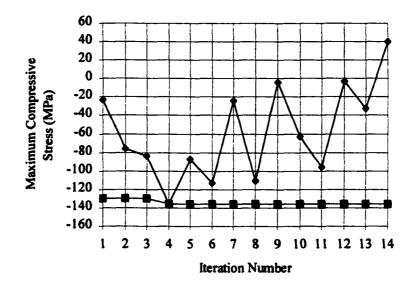


Figure 7.5. Quadratic Approximation Minimum Values (Diamonds) and Overall Function Minimum Values (Squares) for the Successive Quadratic Approximation

Design Variables		V2	V3	V4	V5	V6	V7
Optimized Values of Design Variables		24	31	58	14	79	12
Optimized Objective Function Value (Maximum Compressive Hoop Stress) (MPa)	-136						
Number of Function Evaluations	14						

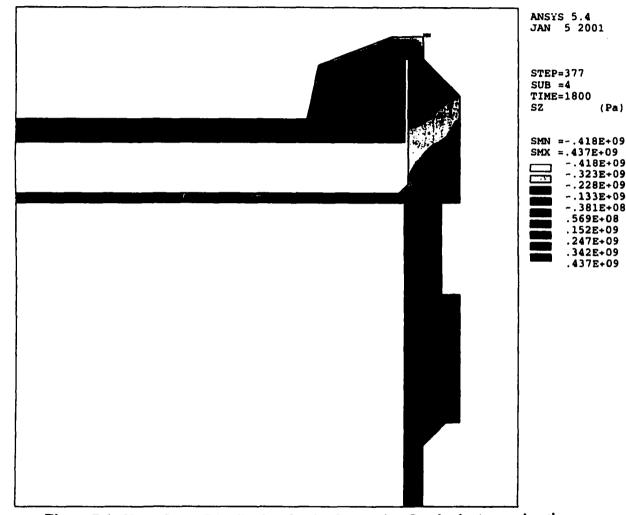


Figure 7.6. Hoop Stress Distribution for the Successive Quadratic Approximation Solution (Time: 1800 seconds)

7.3 Optimization Using Successive Heuristic Quadratic Approximation

Successive quadratic approximation, presented in previous section, resulted in higher compressive hoop stress in the close-weld region than the stress obtained from ANSYS subroutine. However, it is worthy of note to determine if the results can still be improved by using a separate solution. Therefore, the problem has been solved using a novel method, which is labeled the successive heuristic quadratic approximation.

The methodology used in the successive heuristic quadratic approximation is illustrated in Figure 7.7, for the case of a two-variable problem. The solution starts in the first domain identified as #1. A quadratic polynomial is fitted to the data points in this domain. Then, the minimum point of the quadratic surface is determined using Monte Carlo Programming Technique. This solution is then input into ANSYS to obtain the actual value of the hoop stress. The next domain is generated around "K" number of points with the lower function value. These points are complemented by "m-K" that are randomly generated. Next, the point corresponding to the minimum function value of the quadratic curve fitting is added to the current set of data points. This process is repeated as shown in Figure 7.7. The solution is terminated only when one of the termination criteria is satisfied as outlined in Figure 7.8.

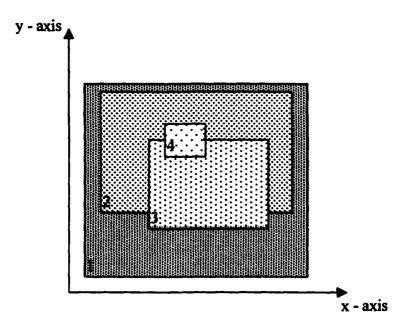


Figure 7.7. Two Dimensional Illustration of Optimization Algorithm

The following steps are used in the successive heuristic quadratic approximation method:

1. The same upper and lower bounds, L_j and U_j, respectively, of the previous section are also used here. "m" number of initial data points are generated using "s" equally-spaced values for "n" design variables between the bounds as described in the previous section. The finite element solution for these data points are obtained using ANSYS. The best solution obtained by ANSYS optimization are added to these data points. Then, a quadratic polynomial is fitted to these data points (see Appendix X). The minimum point of the quadratic surface is found using Monte Carlo Programming Technique (see Appendix IX). This solution is then input into ANSYS to obtain the actual value of the hoop stress.

- 2. The second part of this algorithm incorporates a different method of convergence to the optimum solution (see Figure 7.8). First, the range of the function values for all data points is identified. Then, the points in the lower half of the function value range are selected. New upper and lower bounds of the design variables are identified based on these points. The new bounds are expanded by a factor "α" to avoid over-constraining the search. Additional (m-K) data points are randomly generated. The function values of these data points are determined by an input file that uses multiple design variable values (see Appendix XI). These (m-K) data points replace the ones outside the new bounds. At the end of this process, the point corresponding to the minimum function value of the quadratic curve fitting is added to the current set of data points. The difference between the maximum and minimum values of all design variables and also the minimum function value among the "m+1" data points are recorded for subsequent data processing.
- 3. At this point in the algorithm, specific criteria are checked for termination:
 - a. If the minimum function value recorded in the current loop is less than the function value recorded in the previous loop, the second termination criterion has to be checked for termination. If the current function value is more than or equal to the previously recorded value, then the previously recorded minimum function value is the optimum solution.
 - b. The second termination criterion is based on the comparison of the calculated design variable intervals with an acceptable set of design variable intervals. The acceptable set of design variables was determined

by dividing the original intervals (see Section 7.1) by two. The acceptable set of design variable intervals are given in Appendix X, page 265. These intervals are monitored to ensure their convergence to desired values (indicated as "D" on Figure 7.8). If this criterion is not satisfied, the program then returns to the point where the approximate objective function was determined by quadratic curve fitting. However, if it is met, then the third termination criterion is checked.

- c. The third criterion enforces completion of the algorithm if the maximum number of iterations, " I_{max} ", is reached. If the third termination criterion is not satisfied, the program again returns to the point where the approximate objective function was determined by quadratic curve fitting. However, if this criterion is met, the fourth and the final criterion is checked for termination.
- d. The final criterion requires the calculation of the ratio of the standard deviation of the function evaluations to their average value, as indicated in Figure 7.8. If this ratio is larger than "€", the program again returns to the point where the approximate objective function was determined by quadratic curve fitting. If the ratio is less than "€", then the last recorded minimum function value is the optimum solution.

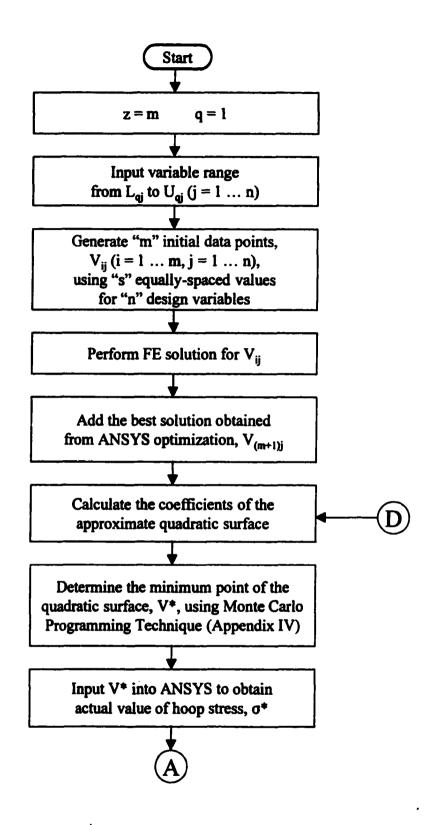


Figure 7.8. Flowchart for Successive Heuristic Quadratic Approximation

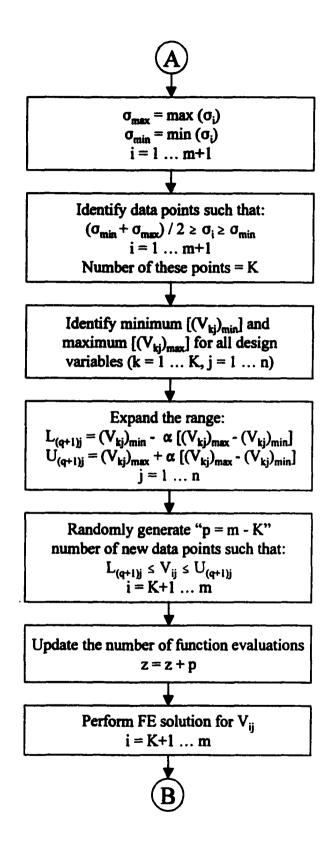


Figure 7.8. Flowchart for Successive Heuristic Quadratic Approximation (continued)

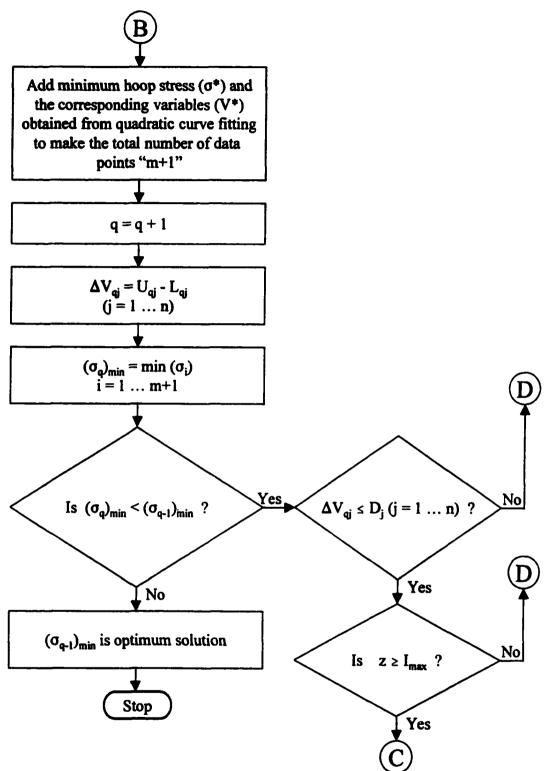


Figure 7.8. Flowchart for Successive Heuristic Quadratic Approximation (continued)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

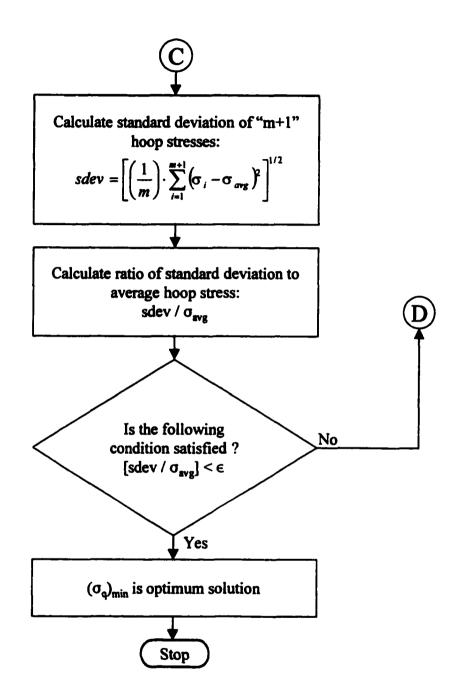


Figure 7.8. Flowchart for Successive Heuristic Quadratic Approximation (continued)

The numerical values of all parameters defined for this optimization problem are given in Table 7.7.

Parameter Description	Numerical Value
Number of Initial Data Points, m	36
Number of Equal-Size Spaces between Data Points, s	6
Number of Independent Variables, n	7
Factor of Expansion for the Range of Design Variables, α	0.2
Maximum Number of Iterations, Imax	100
Ratio of the Standard Deviation of the Function	
Evaluations to Their Average Value, ϵ	0.3

 Table 7.7. Numerical Values of Parameters Used in Successive Heuristic Quadratic Approximation Algorithm

The total number of function evaluations for this optimization is 124. The calculations for each function evaluation are provided in Appendix X. The termination criterion was reached after a total number of four iterations (see Figure 7.9). The results of this optimization algorithm are given in terms of the minimum quadratic and function values in Figure 7.9. In this figure, the minimum quadratic and function values are depicted by diamonds and squares, respectively. It is noted that the minimum quadratic value did not improve the minimum function value. Having met the previously set termination criterion, the program is terminated after iteration number four. As a result of these iterations in accordance with the algorithm given in Figure 7.8, the final optimum solution is determined to provide a minimum hoop stress of 158 MPa. The corresponding dimensions of the design variables are given in Table 7.8. For this "best" solution, the distribution of temperature and the hoop stress at different time steps are given in Figures 7.10 through 7.23. These figures indicate that the hoop stress on the

outer surface of the induction annealing region is initially tensile because of the fast cooling of the outer surface as opposed to the inner section. As the cooling of the inner sections of the material takes place, the layer of tensile stress moves away from the outer surface of the closure-weld into the deep section of the material volume. This behavior is explained by the shrinking of the inner sections, and therefore, forming a compressive stress layer on the outer surface, later in the cooling process.

The results of the successive heuristic quadratic approximation indicate that the minimum hoop stress is improved by 22% compared to the solution obtained form ANSYS optimization. When compared to the original design (see Section 7.1.1), the improvement is 126%. The optimum design solution with stress distribution is shown in Figure 7.23.

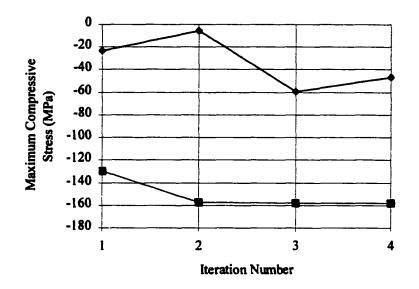


Figure 7.9. Quadratic Approximation Minimum Values (Diamonds) and Overall Function Minimum Values (Squares) for the Successive Heuristic Quadratic Approximation

Design Variables		V2	V3	V4	V5	V6	V7
Optimized Values of Design Variables		21	31	57	47	75	10
Optimized Objective Function Value (Maximum Compressive Hoop Stress) (MPa)	-158		<u> </u>				
Number of Function Evaluations	124						

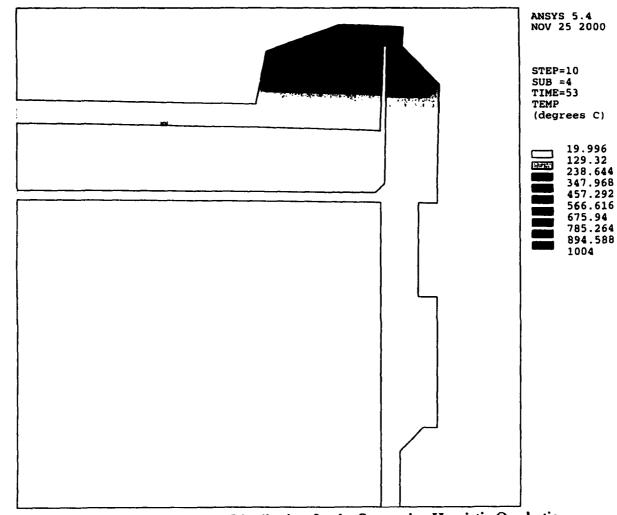


Figure 7.10. Temperature Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 53 seconds)

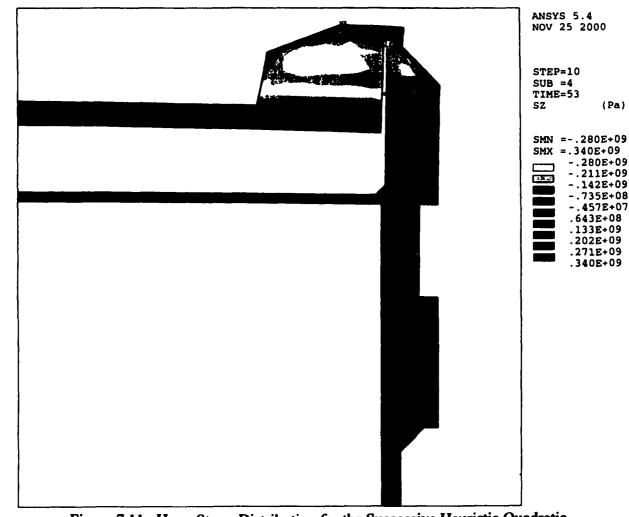


Figure 7.11. Hoop Stress Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 53 seconds)

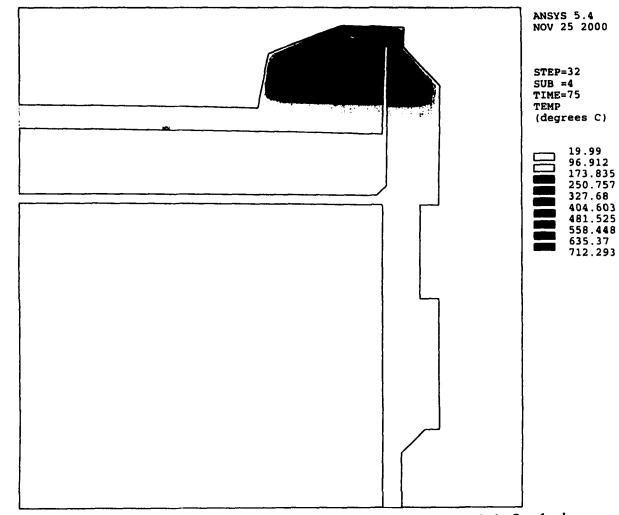


Figure 7.12. Temperature Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 75 seconds)

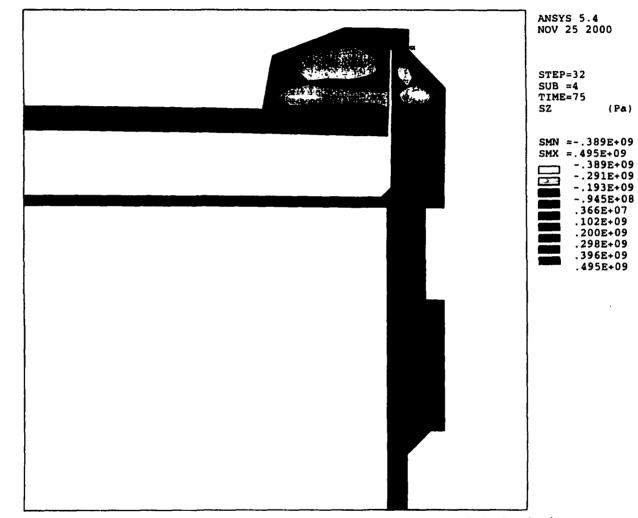


Figure 7.13. Hoop Stress Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 75 seconds)

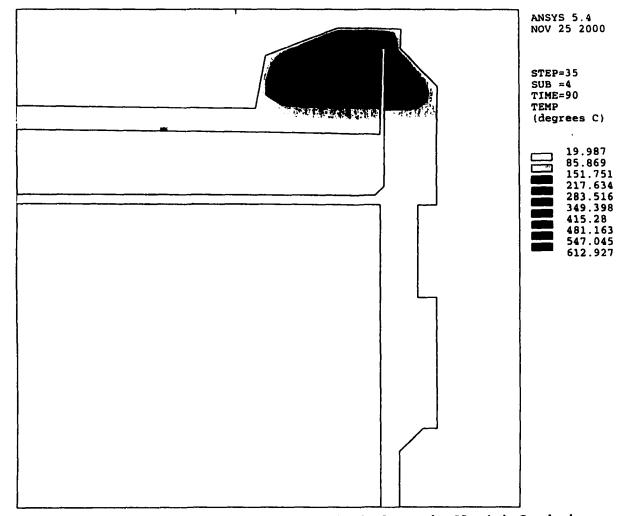


Figure 7.14. Temperature Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 90 seconds)

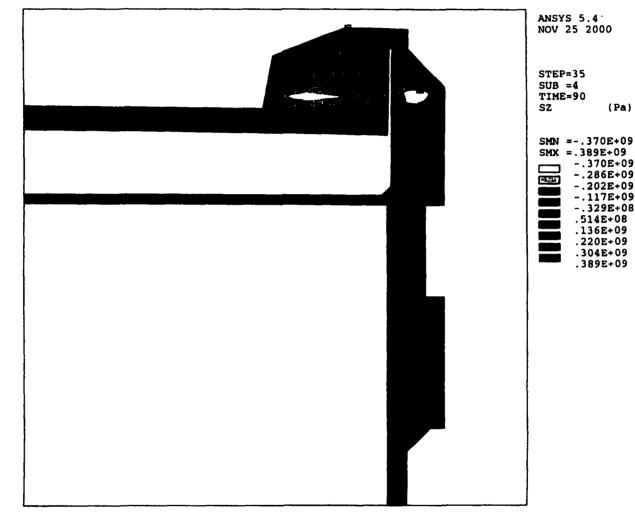


Figure 7.15. Hoop Stress Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 90 seconds)

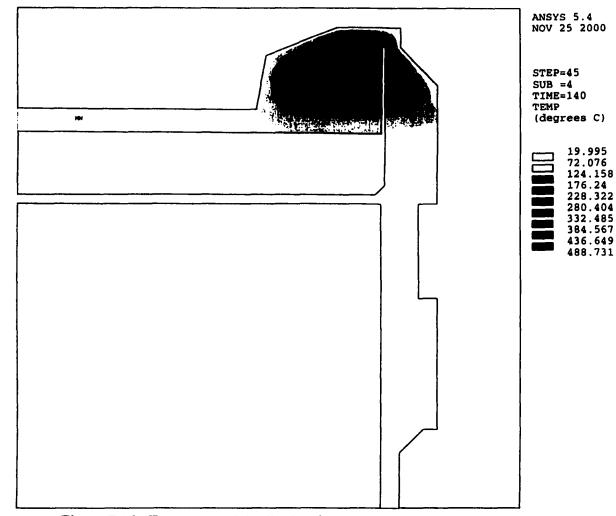


Figure 7.16. Temperature Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 140 seconds)

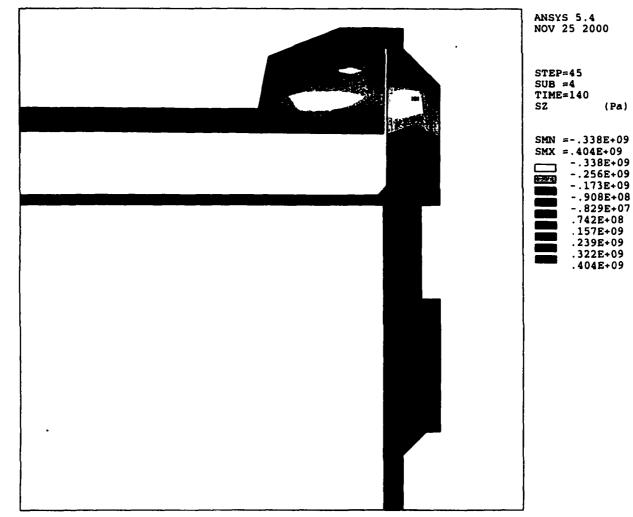


Figure 7.17. Hoop Stress Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 140 seconds)

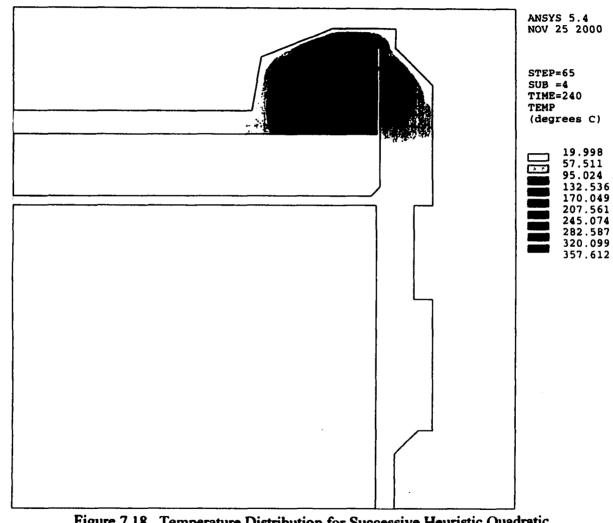


Figure 7.18. Temperature Distribution for Successive Heuristic Quadratic Approximation Solution (Time: 240 seconds)

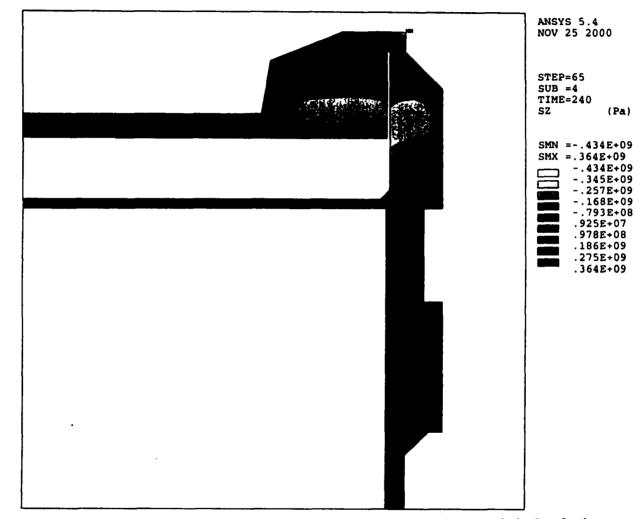


Figure 7.19. Hoop Stress Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 240 seconds)

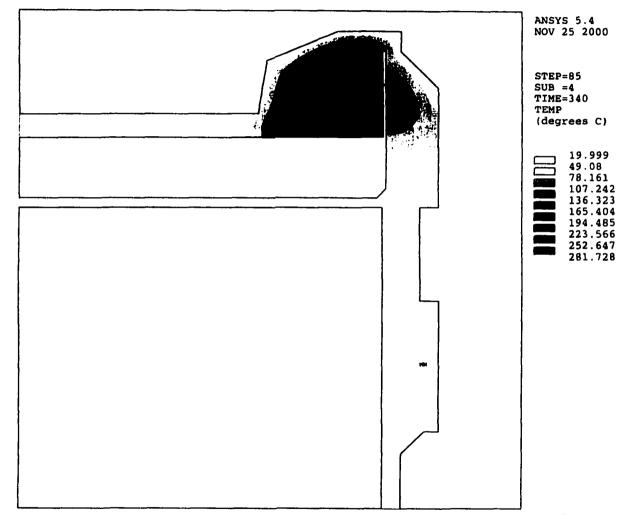


Figure 7.20. Temperature Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 340 seconds)

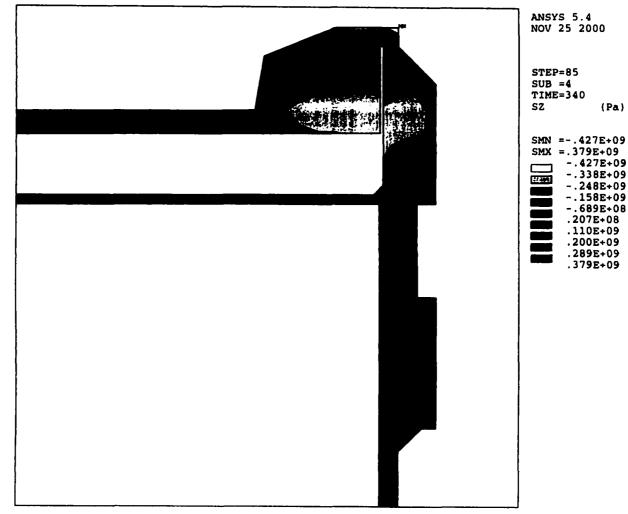


Figure 7.21. Hoop Stress Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 340 seconds)

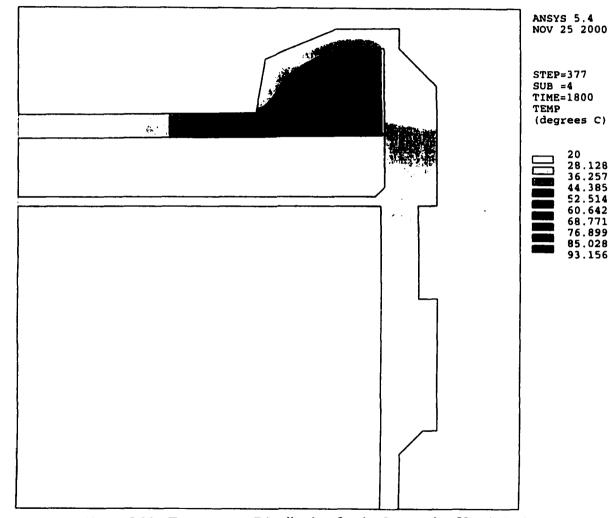


Figure 7.22. Temperature Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 1800 seconds)

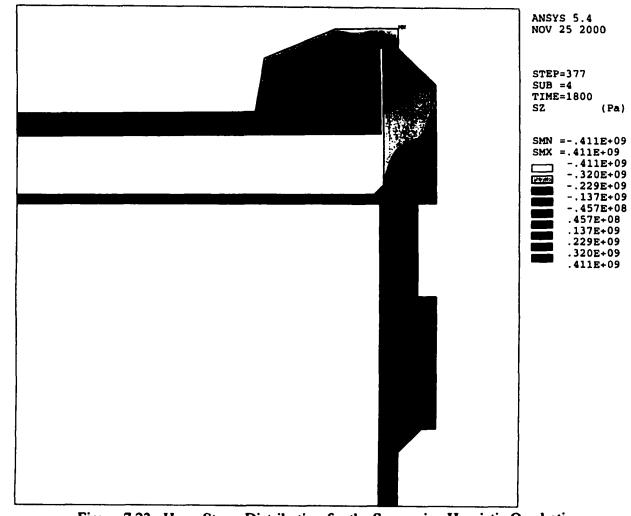


Figure 7.23. Hoop Stress Distribution for the Successive Heuristic Quadratic Approximation Solution (Time: 1800 seconds)

7.4 Sensitivity Analysis of the Best Solution and the Design Variables

Tables 7.4, 7.6, and 7.8 indicate the results obtained from three different optimization solutions. A comparison of these results suggest that the change in variable V1 has the least significant effect on the results. The reason for this is the fact that V1 is the dimension from the upper end of the lifting trunnion collar to the inner closure lid weld (see Figure 7.1), which is essentially outside the closure-weld region. Therefore, this is an expected behavior from variable V1. These tables also show that the system response to the change in variables V2, V3, and V4 are slightly more pronounced than the system response to the change in variables V5 and V6. This can be explained by the fact that all three variables, V2, V3, and V4 determine the height of the closure-weld region whereas the two dimensions, V5 and V6 relate to the radial distance of the closure-weld region. In other words, the change in height of the weld has slightly more effect on the results than the change in the radial distance. Although there is a small difference in the system response to change in the radial distance of the significance of the sign variables V2 through V6 are still considered to remain almost the same.

In addition to the analysis described above, a sensitivity analysis of all seven design variables was conducted by changing one variable while holding the rest as constant values (see Appendix X, page 253). This evaluation showed that although all seven variables affect the results for a certain extent, the most sensitive design variables are V2, V3, V4, V5, and V6. The effect of change of these sensitive design variables on the resulting residual stresses is significantly larger than that of the rest of the design variables. Therefore, any potential design change in SNF canisters should consider the sensitivity of these specific design variables.

To ensure that the solution obtained from the successive heuristic quadratic approximation is a minimum, it should be surrounded by higher hoop stress values. For this reason, six different function evaluations, including the best solution obtained from the successive heuristic quadratic approximation are considered. V4 and V6 are the two design variables selected for varying the value of the objective function. The reason for selecting these two variables is that they are the most sensitive. All design variable values and resulting hoop stress magnitudes are given in Appendix XII, pp. 279-280. A graphical representation of the change in V4 and V6 indicated that the best function value was surrounded by higher values in terms of the hoop stress (see Figure 7.24). Therefore, it is concluded that 158 MPa is the minimum optimized hoop stress obtained form the successive heuristic quadratic approximation.

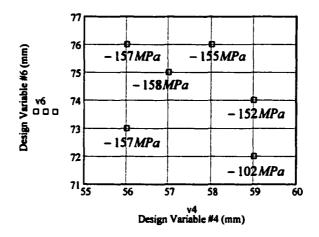
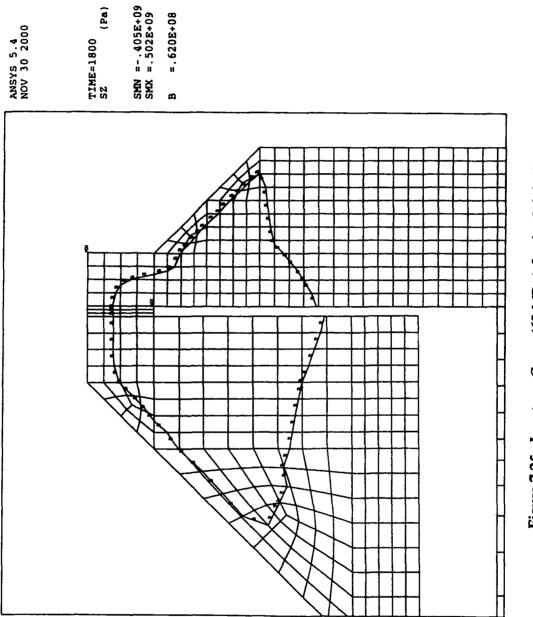


Figure 7.24. Sensitivity Analysis of the Best Solution

7.5 Evaluation of Optimization Results for ANSYS Solutions and the Successive Heuristic Quadratic Approximation Solution

The results of optimization, including the original design, are summarized in Table 7.9. The second column in this table gives the penetration depths of compressive stress up to a limit of 0.2*Sy (62 MPa). These penetration depths are obtained by defining stress paths along the perpendicular directions to the outer surface at the locations where the penetration is minimum. Figures 25 through 39 show iso-stress curves and the stress paths defined to determine these penetration depths. The first stress path (path #1) is in a location where the iso-stress curve is closest to the outer surface. However, the second path is located only in the region of the closure-weld, perpendicular to the top surface. The results given in the second column of the same table is obtained using the stress profile along the second path. The third column of the same table shows the results of the minimized values of the maximum hoop stresses among the nodes selected 2.72 mm from the outer surface of the canister. This is the amount of corrosion of Alloy 22 outer shell in 10,000 years (see Appendix I).

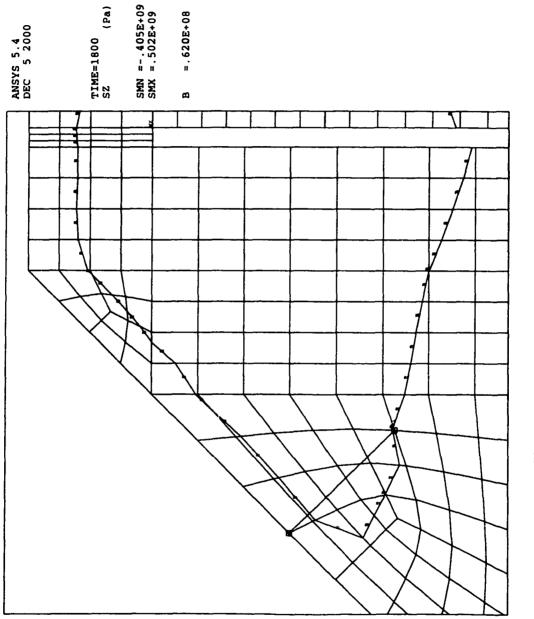
The results indicate that all compressive stress depths are more than 2.72 mm, which is the amount of general corrosion for Alloy 22 in 10,000 years. The results also show that all design concepts provide a layer of compressive stress of more than 6.8 mm from the top closure-weld surface. More importantly, the third column in the same table indicates that the largest design margin to prevent SCC within 2.72 mm form the outer surface of the outer shell is obtained with a compressive stress magnitude of 158 MPa. All the nodes within a layer of 2.72 mm from the outer surface were selected to be included in the optimization process as previously explained in this chapter. Since this


optimization process resulted in a maximum compression of 158 MPa, the best design is deemed to be the design given in Table 7.8.

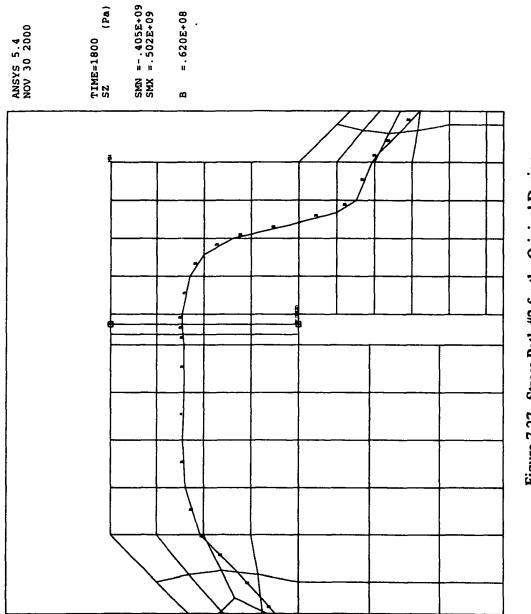
	Compressive Stress Penetration		
	Minimum Distance between the Outer Surface and the 62 MPa Iso-Stress Curve	Distance between the Top Closure-Weld Outer Surface and the 62 MPa Iso-Stress Curve	Minimized Maximum Hoop Stress within a 2.72 mm Thick Layer from the Outer Surface
Original design	5.8 mm > 2.72 mm*	9.7 mm > 6.8 mm**	-70 MPa < 62 MPa
Optimization Problem #1	6.3 mm > 2.72 mm*	7.8 mm > 6.8 mm**	-75 MPa < 62 MPa
Optimization Problem #2	3.9 mm > 2.72 mm*	11.7 mm > 6.8 mm**	-98 MPa < 62 MPa
Optimization Problem #3	4.7 mm > 2.72 mm*	8.5 mm > 6.8 mm**	-130 MPa < 62 MPa
Successive Heuristic Quadratic Approximation	4.6 mm > 2.72 mm*	9.4 mm > 6.8 mm**	-158 MPa < 62 MPa

Table 7.9.	Summar	of Optimization	Results
------------	--------	-----------------	---------

* Alloy 22 general corrosion rate including microbial influenced corrosion (MIC)


** Alloy 22 general corrosion rate including MIC and also the thermal aging effect in the closure weld Note: Penetration depth calculations are provided in Appendix XIII

.


Figure 7.25. Iso-stress Curve (62 MPa) for the Original Design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

÷

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

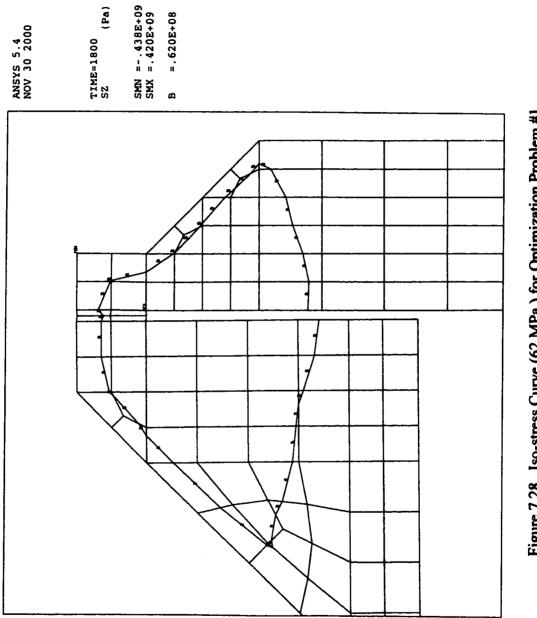
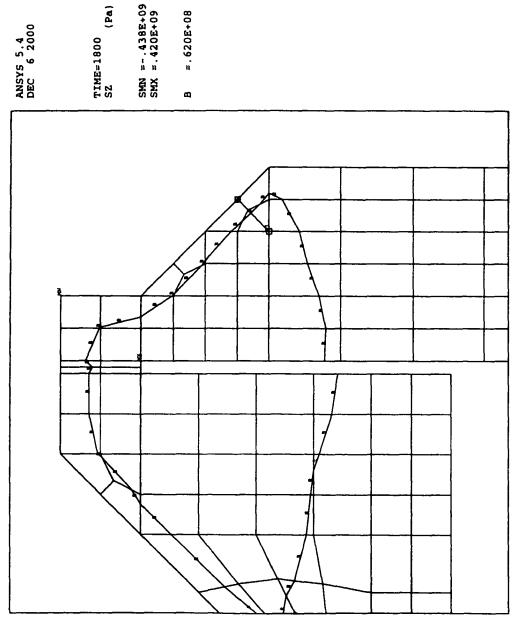
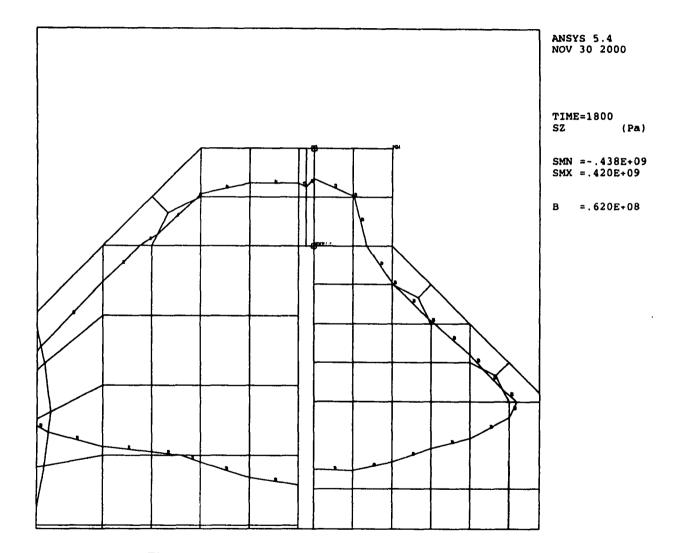



Figure 7.28. Iso-stress Curve (62 MPa) for Optimization Problem #1

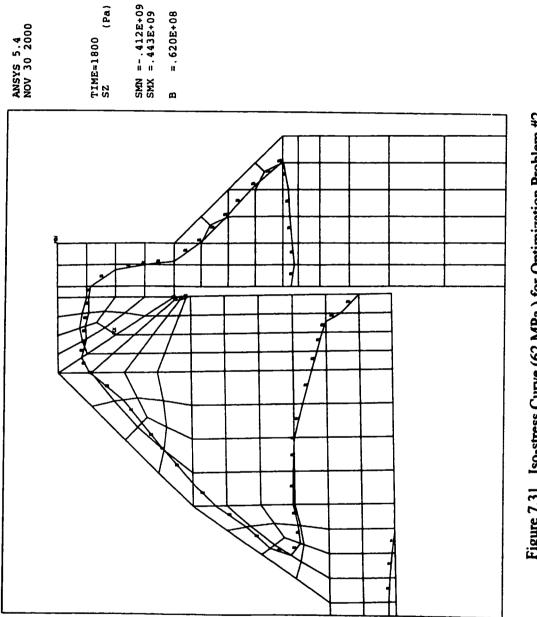
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•

Figure 7.29. Stress Path #1 for Optimization Problem #1

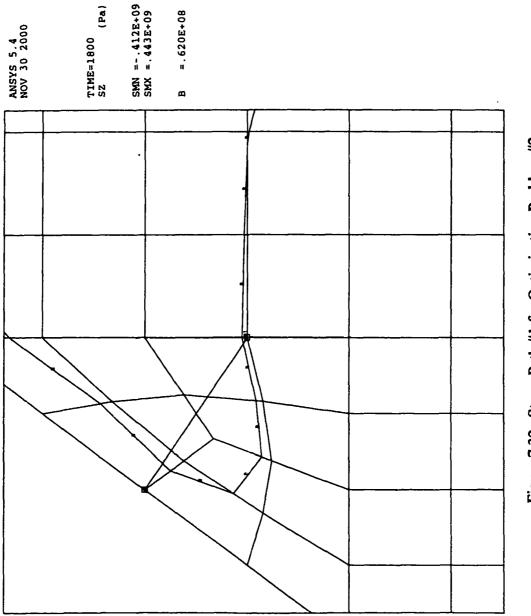
•


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

Figure 7.30. Stress Path #2 for Optimization Problem #1

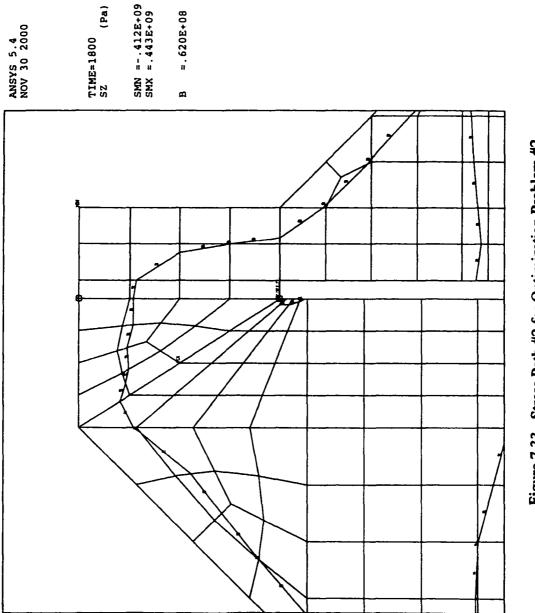
.



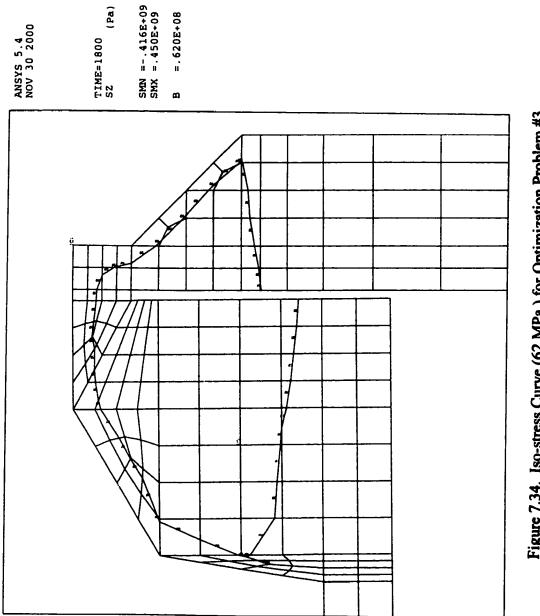
2

.

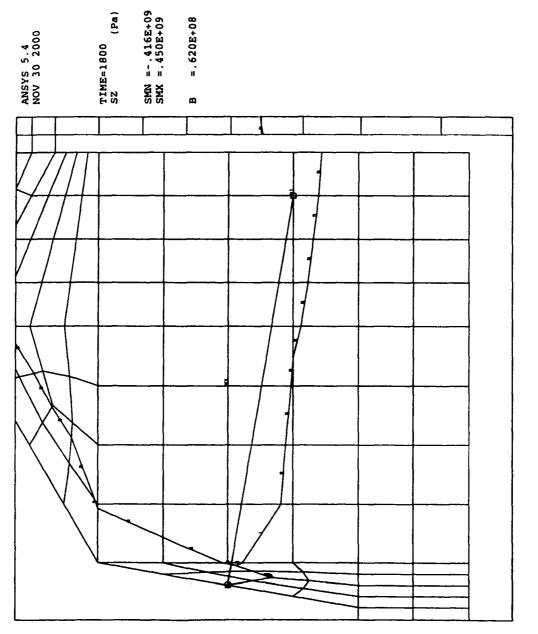
Figure 7.31. Iso-stress Curve (62 MPa) for Optimization Problem #2


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

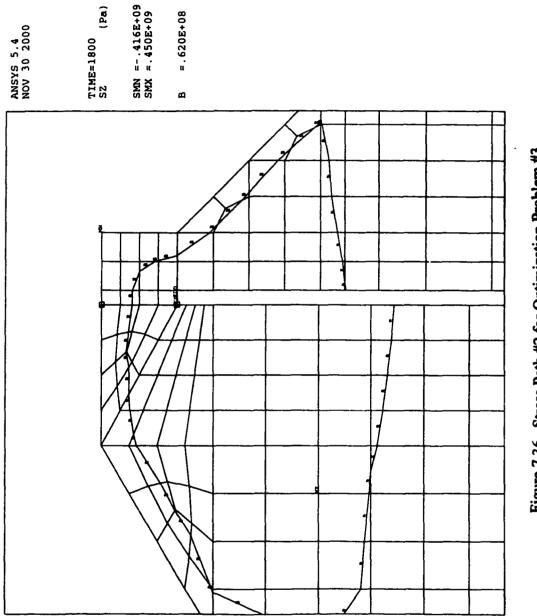

Figure 7.32. Stress Path #1 for Optimization Problem #2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

Figure 7.34. Iso-stress Curve (62 MPa) for Optimization Problem #3


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

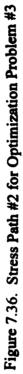
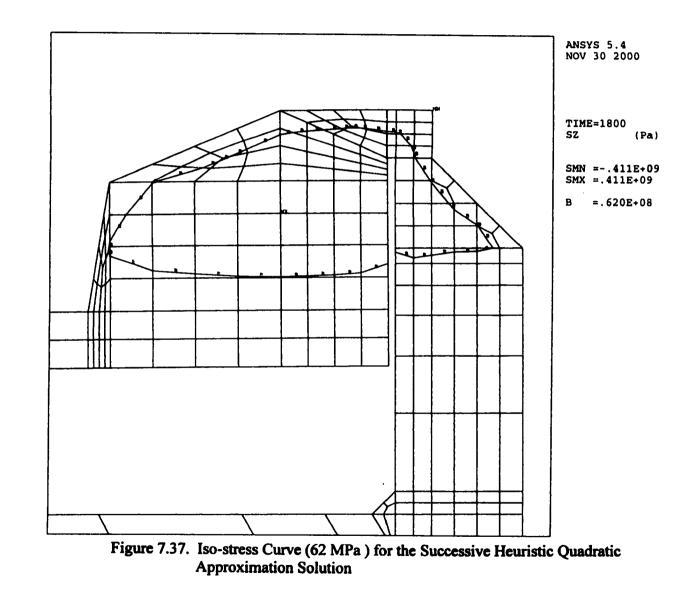
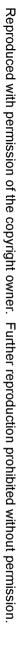

.

Figure 7.35. Stress Path #1 for Optimization Problem #3


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

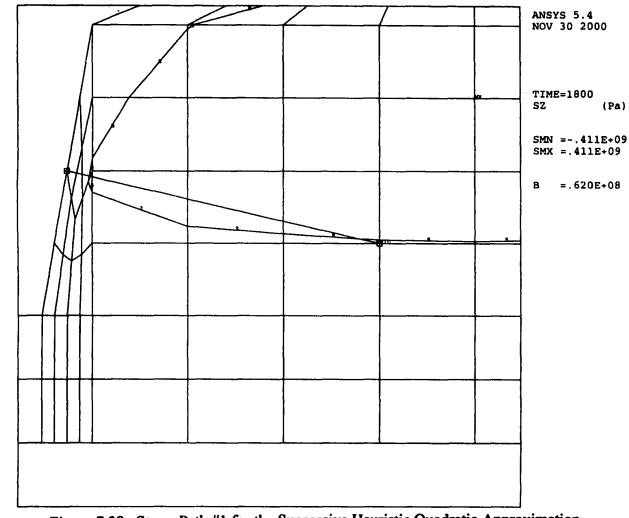
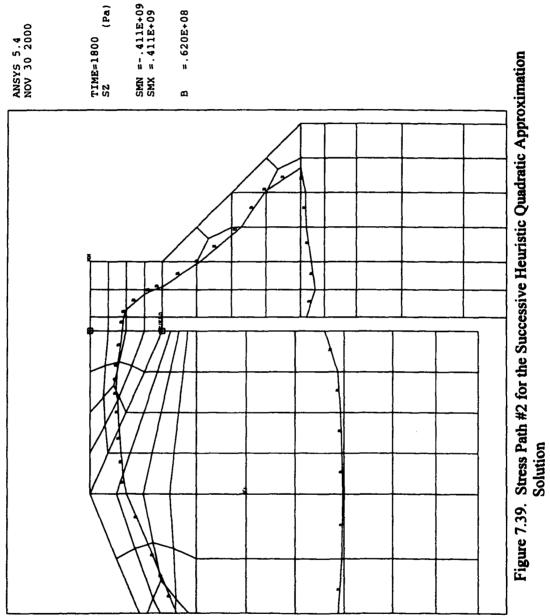



Figure 7.38. Stress Path #1 for the Successive Heuristic Quadratic Approximation Solution

.

CHAPTER 8

CONCLUSIONS

This dissertation presented a study of the SNF canisters for maximizing the compressive stress on the outer surface of the closure-weld region. Induction coil heating technique was used in order to relieve the residual stresses from the closure weld and induce a state of compression through the wall thickness. This technique involved localized heating of the material by surrounding coils. The material was then cooled to room temperature by quenching.

A three-dimensional finite element model was developed for the canister using the sequential method. This method consisted of a sequential thermal-stress analysis where nodal temperatures from the thermal analysis were applied as body force loads in the subsequent stress analysis. This model, which was computationally intensive, has been used to verify the results of the model developed in two-dimensions and ensure its accuracy.

A two-dimensional axisymmetric finite element model of the canister was developed. This model made use of the direct method. This method included only one type of analysis that used coupled-field element type containing all necessary degrees of freedom for the heat transfer and the stress analyses. Direct coupling was advantageous when the coupled-field interaction was highly nonlinear and was best solved in a single solution using a coupled formulation. The results obtained from 3-D and 2-D finite element models were almost identical, indicating that the solution methods were appropriate and highly accurate.

The finite element results were validated using the results obtained from an experimental test. A canister mock-up which consisted of an outer shell and a support ring was manufactured. The mock-up was subject to solution annealing process. At the end of the process, a compressive stress state developed on the shell outer surface. The stresses on the canister outer surface were obtained based on the readings of the strain gages that were attached to several points on the mock-up. The results of the experimental test were consistent with the finite element solution; therefore, the method of solution has been validated.

The parameters of most promising designs were tuned to further maximize the compressive stress through the wall thickness. This was handled as an optimization problem that was subject to geometrical constraints. This optimization problem was first solved using commercially available ANSYS software. The optimization results provided the dimensions of a better design to result in maximum compressive stress in the canister closure-weld region. It was concluded that the resultant compressive hoop stress has been improved by 86%.

A second method of optimization was developed by using successive quadratic approximation algorithm. Using this approach, optimization was performed using a separate optimization routine and the results of this method have shown that the resultant compressive hoop stress was improved by 94% in comparison to the original design. This method of solution was concluded to provide an additional 5% improvement over the solution obtained from ANSYS optimization.

A third method of optimization was developed by using a successive heuristic quadratic approximation. The methodology used in the successive heuristic quadratic approximation implemented two processes of optimization into one algorithm: selfimprovement of the results by iteratively converging to the best solution within specific solution intervals and a quadratic curve-fit to an expected functional behavior. In this unique, improved optimization algorithm, a quadratic polynomial was fitted to the data points in the first domain of solution. Then, the minimum point of the quadratic surface was determined using Monte Carlo Programming Technique. This solution was then input into ANSYS to obtain the actual value of the hoop stress. The next domain was generated around a sub-set of data points with the lower function value. The complement of these points were then randomly re-generated. Finally, the point corresponding to the minimum function value of the quadratic curve fitting was added to the original set of data points. This process was repeated until one of the termination criteria has been satisfied. The results of this method have shown that the resultant compressive hoop stress was improved by 126% in comparison to the original design. This method of solution was concluded to provide an additional 22% improvement over the solution obtained from ANSYS optimization.

A sensitivity analysis of all seven design variables showed that although all seven variables affect the results for a certain extent, the most sensitive design variables were V2, V3, V4, V5, and V6. The effect of change of these sensitive design variables on the resulting residual stresses was significantly larger than that of the rest of the design variables. Therefore, any potential design change in SNF canisters should consider the sensitivity of these specific design variables.

Additional future studies on optimization of the SNF canisters can be performed by using different methods available in the literature such as the simplex method or genetic algorithms. These studies may also include investigation of different geometries of the SNF canister closure-weld region in order to minimize residual stresses. APPENDIX I

MATERIAL PROPERTIES

Material Property	Value	Reference
Density	8690 kg/m ³	ASTM (1997)
Yield Strength	310 MPa (20 °C)	ASTM (1997)
	214 MPa (760 °C)	Haynes International (1997)
Tensile Strength	690 MPa (20 °C)	ASTM (1997)
	524 MPa (760 °C)	Haynes International (1997)
% Elongation	62 (20 °C)	Haynes International (1997)
	68 (760 °C)	Haynes International (1997)
Poisson's Ratio	0.278 (20 °C)	American Society for
		Metals (1980)
Melting Temperature	1357 °C	Haynes International (1997)
Mean Coefficient of	12.4 * 10 ⁻⁶ m / m K	Haynes International (1997)
Thermal Expansion	(24 °C - 93 °C)	
	$16.2 * 10^{-6} \text{ m/m K}$	Haynes International (1997)
	(24 °C - 982 °C)	

Table I.1. Material Property List for Alloy 22 (SB-575 N06022) (ASTM B 575) (Outer Shell Material, see Figure 3.1)

Table I.2. Modulus of Elasticity for Alloy 22 [Haynes International (1997)]

Temperature (°C)	Modulus of Elasticity (GPa)
20	206
871	154
982	145

Table I.3. Thermal Conductivity for Alloy 22 [Haynes International (1997)]

Temperature (°C)	Thermal Conductivity (W / m K)
48	10.1
100	11.1
200	13.4
300	15.5
400	17.5
500	19.5
600	21.3

Temperature (°C)	Specific Heat (J / kg K)
52	414
100	423
200	444
300	460
400	476
500	485
600	514

Table I.4. Specific Heat for Alloy 22 [Haynes International (1997)]

The finite element solutions include elastic and plastic deformations for all materials. When the materials are driven into the plastic range, the slope of the stress-strain curve continuously changes. Thus, a simplification for this curve is needed to incorporate plasticity into the finite element solution. A standard approximation is commonly used in engineering by using a straight line segment that connects the yield point to the ultimate tensile strength point of the material. The following parameters are used in subsequent calculations:

 $S_y =$ Yield strength of the material

 $S_u = Ultimate tensile strength$

 $e_1, e_2, e_3 =$ Strain magnitudes

E = Elastic modulus (slope of the line in the elastic region)

 E_1 = Tangent modulus (slope of the line in the plastic region)

v = Poisson's ratio

The slope, E_1 is determined by:

 $e_1 = S_y / E$ and $e_2 = e_3 - e_1$ where $e_3 =$ elongation specified for material. Hence, for SB-575 N06022:

 $E_1 = (S_u - S_y) / e_2 = (0.690 - 0.310) / (0.45 - (0.310 / 203)) = 0.847 \text{ GPa}$

Linear interpolation and extrapolation are used in the following calculations:

E (at 1120 °C) =
$$154 - ((1120 - 871) * (154 - 145) / (982 - 871)) = 134$$
 GPa
v (at 1120 °C) = $0.5 - ((1357 - 1120) * (0.5 - 0.278) / (1357 - 20)) = 0.46$ (note that
Poisson's ratio of a solid material approaches to 0.5 at melting temperature)
S_y (at 1120 °C) = $214 - (214 * (1120 - 760) / (1357 - 760)) = 85$ MPa (note that the

yield strength approaches to zero as the temperature approaches to melting temperature) S_u (at 1120 °C) = 524 - (524 * (1120 - 760) / (1357 - 760)) = 208 MPa (note that the ultimate tensile strength approaches to zero as the temperature approaches to melting temperature)

$$e_3 (at 1120 \text{ °C}) = 0.62 + ((1120 - 20) * (0.68 - 0.62) / (760 - 20)) = 0.71$$

$$E_1$$
 (at 1120 °C) = (0.208 - 0.085) / (0.71 - (0.085 / 134)) = 0.173 GPa

Corrosion properties of Alloy 22 are given below:

Long term structural performance of the SNF canisters depends to a large extent on the general corrosion rate of Alloy 22. The general corrosion rate takes place independent of the stress state inside the material. However, the stress corrosion cracking is a function of the stress inside a material. An earlier study [CRWMS M&O (2000b)] indicates that Alloy 22 is susceptible to SCC if the tensile stress is more than 20% of the yield strength of the material (0.2 * 310 MPa = 62 MPa). Once this stress threshold is exceeded, the crack propagation is significantly faster than the general corrosion rate of Alloy 22.

To ensure that SCC does not take place, the canister should have a compressive outer layer with a minimum thickness equal to the amount of the general corrosion in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10,000 years. The general corrosion rate of Alloy 22 is obtained from CRWMS M&O 2000c and 2000d as follows:

General corrosion rate = 73 nm/year = 0.73 mm/10,000 years [CRWMS M&O (2000c)] General corrosion rate correction for the maximum bias due to silica scale deposit formation = 0.063 μ m/year = 0.63 mm/10,000 years [CRWMS M&O (2000d)]

Therefore:

General corrosion rate = 0.73 + 0.63 = 1.36 mm/10,000 years

There is one additional factor that needs to be added to this corrosion rate for the base metal. This factor is called the microbial influenced corrosion (MIC). A factor of multiplication of 2 was determined for this effect [CRWMS M&O (2000c)]. Including the factor of MIC, the general corrosion rate of the base metal Alloy 22 increases up to 2.72 mm/10,000 years (2 * 1.36 = 2.72 mm/10,000 years).

For the welded sections of Alloy 22 in the SNF canister, there is one more factor that needs to be considered: thermal aging of Alloy 22. A factor of multiplication of 2.5 was determined to include this effect [CRWMS M&O (2000c)]. Thus, a general corrosion rate of 6.8 mm/10,000 years (2.5 * 2.72 = 6.8 mm/10,000 years) is applicable for the welded but not fully annealed section of the SNF canister. This section is the final closure-weld section in the SNF canister.

APPENDIX II

THREE DIMENSIONAL FINITE ELEMENT MODEL INPUT FILE (SEQUENTIAL METHOD)

/config,nres,10000 /config,nproc,2 /units,si /prep7 /title, Residual Stresses from Induction Annealing - Sequential Method /vcon,,0 et,1,solid70 ! 3-D thermal solid element for the outer shell mp, dens, 1, 8690.0 ! Alloy 22 ! Thermal properties of Alloy 22 /COM, Define conductivity MPTEMP MPTEMP, 100, 200, 300, 400, 500, 1, 48, MPTEMP. 7, 600, MPDATA, KXX, 1, 1, 10.1, 11.1, 13.4, 15.5, 17.5, 19.5, MPDATA, KXX, 1, 7, 21.3, /COM, /COM, Define specific heat MPTEMP, 1, 52, 100, 200, 300, 400, 500, MPTEMP. 7, 600, MPDATA, C, 1, 1, 414, 423, 444, 460, 476, 485, MPDATA, C, 1, 7, 514, /com, Define Parameters osor=.782 ! Outer shell outer radius ost=.02 ! Outer shell thickness ist=.05 ! Inner shell thickness ost1=5.035 ! Outer shell total length oslid=.025 ! Outer shell lid thickness islid=.095 ! Inner shell lid thickness osbr=.1 ! Outer shell bending radius gap=.03 ! Gap between the lids oswh=.025 ! Outer shell weld height trbe=.475 ! Trunion ring bottom end trte=.025 ! Trunion ring top end trt=.04 ! Trunion ring thickness tct=.02 ! Trunion collar thickness tcue=.195 ! Trunion collar upper end from WP end tcle=.295 ! Trunion collar upper end from WP end gols=.004! Gap between the outer lid and outer shell plth=.01 ! Plate thickness (first outer lid) /com, Define keypoints csys,0 k, 1, osor-ost-ist, k,2,osor-ost, k, 3, osor, k,4,osor-ost-ist,ostl/2-trbe k, 5, osor-ost, ostl/2-trbe k, 6, osor, ostl/2-trbe k,7,osor-ost-ist,ostl/2-trbe+trt-tct k,8,osor-ost,ostl/2-trbe+trt-tct k, 9, osor, ostl/2-trbe+trt-tct k, 10, osor+trt-tct, ostl/2-trbe+trt-tct k, 11, osor-ost-ist, ostl/2-trbe+trt k, 12, osor-ost, ostl/2-trbe+trt k, 13, osor, ostl/2-trbe+trt k, 14, osor+trt-tct, ostl/2-trbe+trt k, 15, osor+trt, ostl/2-trbe+trt k, 16, osor-ost-ist, ostl/2-tcle

```
k, 17, osor-ost, ostl/2-tcle
k,18,osor,ostl/2-tcle
k, 19, osor+trt-tct, ostl/2-tcle
k,20,osor+trt,ostl/2-tcle
k,21,0,ostl/2-osbr-oslid-gap-islid
k, 22, osor-ost-ist, ostl/2-osbr-oslid-gap-islid
k,23,osor-ost,ostl/2-osbr-oslid-gap-islid
k,24,osor,ostl/2-osbr-oslid-gap-islid
k, 25, osor+trt-tct, ostl/2-osbr-oslid-gap-islid
k, 26, osor+trt, ostl/2-osbr-oslid-gap-islid
k, 27, 0, ostl/2-tcue
k,28,osor-ost-ist,ostl/2-tcue
k,29,osor-ost,ostl/2-tcue
k,30,osor.ostl/2-tcue
k, 31, osor+trt-tct, ostl/2-tcue
k, 32, osor+trt, ostl/2-tcue
k,33,0,ostl/2-tcue+plth
k, 34, osor-ost-ist, ostl/2-tcue+plth
k, 35, osor-ost, ostl/2-tcue+plth
k, 36, osor, ostl/2-tcue+plth
k, 37, osor+trt-tct, ostl/2-tcue+plth
k, 38, osor+trt, ostl/2-tcue+plth
k, 39, 0, ostl/2-osbr-oslid
k,40,osor-ost-gols-oslid-osbr,ostl/2-osbr-oslid
k,41,osor-ost-gols-oslid-oswh,ostl/2-osbr-oslid
k,42,osor-ost-gols-oslid,ostl/2-osbr-oslid
k,43,osor-ost-gols,ostl/2-osbr-oslid
k,44,0,ostl/2-osbr
k, 45, osor-ost-gols-oslid-osbr, ostl/2-osbr
k,46,osor-ost-gols-oslid-oswh,ostl/2-osbr
k,47,osor-ost-gols-oslid,ostl/2-osbr
k,48,osor-ost-gols,ostl/2-osbr
k,49,osor-ost,ostl/2-trte-trt
k, 50, osor, ostl/2-trte-trt
k, 51, osor+trt-tct, ostl/2-trte-trt
k, 52, osor+trt, ostl/2-trte-trt
k,53,osor-ost,ostl/2-trte-trt+tct
k,54,osor,ostl/2-trte-trt+tct
k, 55, osor+trt-tct, ostl/2-trte-trt+tct
k, 56, osor-ost-gols-oslid-oswh, ostl/2-oswh
k, 57, osor-ost-gols-oslid, ostl/2-oswh
k, 58, osor-ost-gols, ostl/2-oswh
k, 59, osor-ost, ostl/2-trte
k,60,osor,ostl/2-trte
k, 61, osor-ost-gols-oslid, ostl/2
k,62,osor-ost-gols,ostl/2
k,63,osor-ost,ostl/2
k,64,osor,ostl/2
csys,0
/com, Horizontal lines in inner shell
1,1,2
1,4,5
1,7,8
1,11,12
1,16,17
1,22,23
1,28,29
```

1,34,35 /com, Horizontal lines in inner lid 1,21,22 1,27,28 1,33,34 /com, Horizontal lines in outer shell 1,2,3 1,5,6 1,8,9 1,12,13 1,17,18 1,23,24 1,29,30 1,35,36 1,49,50 1,53,54 1,59,60 1,63,64 /com, Horizontal lines in trunion ring and verticals in triangular areas 1,4,7 1,5,8 1,6,9 1,6,10 1,9,10 1,13,14 1,18,19 1,24,25 1,30,31 1,36,37 1,50,51 1,54,55 1,55,60 1,54,60 1,53,59 1,7,11 1,8,12 1,9,13 1,10,14 1,10,15 1,14,15 1,19,20 1,25,26 1,31,32 1,37,38 1,51,52 1,52,55 1,51,55 1,50,54 1,49,53 /com, Horizontal lines in the outer lid inner region 1,39,40 1,44,45 /com, Horizontal and vertical lines in the outer lid 45 degree section 1,40,41 1,45,46 1,45,56

1,46,56 1,47,57 1,48,58 /com, Vertical lines in the outer weld section 1,41,42 1,46,47 1,56,57 1,56,61 1.57.61 1,58,62 1,59,63 1,60,64 /com, Horizontal lines in the outer lid outer radius 1,42,43 1,47,48 1,57,58 1,61,62 /com, Vertical lines in shells starting from symmetry axis lsel, none 1,1,4 1,2,5 1,3,6 lesize,all,,,16,.5,1 alls /com, Vertical lines in the region two levels below inner lid 1,11,16 1,12,17 1,13,18 1,14,19 1,15,20 /com, Vertical lines in the region below inner lid 1,16,22 1,17,23 1,18,24 1,19,25 1,20,26 /com, Vertical lines in the region of inner lid lower section 1,21,27 1,22,28 1,23,29 1,24,30 1,25,31 1,26,32 /com, Vertical lines in the region of inner lid upper section lsel, none 1,27,33 1,28,34 1,29,35 1,30,36 1,31,37 1,32,38 lesize,all,,,2,1,1 alls /com, Vertical lines in trunion ring upper section lsel, none 1,35,49 1,36,50

1,37,51 1,38,52 lesize,all,,,8,1,1 alls /com, Vertical lines in outer lid 1,39,44 1,40,45 1,41,46 1,42,47 1,43,48 /com, Horizontal lines in the gap lsel, none 1,58,59 1,62,63 lesize, all, , , 2, 1, 1 alls /com, Define areas starting from the region close to bottom symmetry plane allsel al,1,75,2,74 al, 12, 76, 13, 75 al,2,25,3,24 al,13,26,14,25 al,26,27,28 al,3,40,4,39 al, 14, 41, 15, 40 al,28,42,29,41 al,42,43,44 al,4,78,5,77 al,15,79,16,78 al,29,80,30,79 al,44,81,45,80 al,5,83,6,82 al,16,84,17,83 al, 30, 85, 31, 84 al,45,86,46,85 al,9,88,10,87 al,6,89,7,88 al,17,90,18,89 al,31,91,32,90 al,46,92,47,91 al,10,94,11,93 al,7,95,8,94 al,18,96,19,95 al, 32, 97, 33, 96 al,47,98,48,97 al,19,100,20,99 al,33,101,34,100 al,48,102,49,101 al,20,52,21,53 al, 34, 51, 35, 52 al,49,50,51 al,21,37,22,38 al,35,36,37 al,22,69,23,68 al,108,68,109,67 al,54,104,55,103

al, 56, 105, 57, 104 al,62,106,63,105 al,70,107,71,106 al, 57, 59, 58 al,63,60,64,59 al,71,61,72,60 al,64,66,65 al,72,67,73,66 /com, Outer shell and lid mesh asel,s,,,2 asel,a,,,4,5 asel, a, , , 7, 9 asel, a, , , 11, 13 asel, a, , , 15, 16 asel, a, , , 20, 21 asel, a, , , 23, 46 /com, Create volumes by rotating areas about two keypoints defining the axis of rotation arcang=10 esize,,4 vrotat, all, , , , , 39, 44, arcang, 1 type,1 ! solid70 mat,1 ! Alloy 22 mshkey,1 vmesh, all allsel save /nerr,,100000 /SOLU ANTYPE, TRAN, NEW, NROPT, FULL, , ON, TRNOPT, FULL, ALLS TIME, 35 /COM, Thermal initial boundary condition for the WP at 20 degrees C TUNIF,20 /COM, Apply loads and solve for 0 to 35 seconds nsel, s, loc, y, ostl/2-oswh/2, ostl/2 ! Select volume of first HAZ from coil induction D, ALL, TEMP, 1120 nsel, s, loc, y, ostl/2-((trte+oswh)/2), ostl/2-(.00001+oswh/2) ! Select volume of second HAZ from coil induction D, ALL, TEMP, 750 nsel,s,loc,y,ostl/2-trte-trt-.00001,ostl/2-(.00001+((trte+oswh)/2)) ! Select volume of third HAZ from coil induction D, ALL, TEMP, 500 nsel, s, loc, y, ostl/2-osbr+.00001, ostl/2-trte-trt-.00001 ! Select volume of fourth HAZ from coil induction D, ALL, TEMP, 250 /COM, Set time integration parameters for the first time interval ALLS NSUBST, 5, 10, 4, ON, KBC,0 AUTOTS, ON OUTRES, ALL, ALL

```
SOLVE
*get,ls1ss,active,0,solu,ncmss
L
t
/COM,
                  Solve from 35 to 45 seconds
TIME,45
nsel, s, loc, y, ostl/2-oswh/2, ostl/2
                                        ! Select volume of first HAZ from
coil induction
D, ALL, TEMP, 1120
nsel, s, loc, y, ostl/2-((trte+oswh)/2), ostl/2-(.00001+oswh/2)
                                                                   ! Select
volume of second HAZ from coil induction
D, ALL, TEMP, 750
nsel, s, loc, y, ostl/2-trte-trt-.00001, ostl/2-(.00001+((trte+oswh)/2))
! Select volume of third HAZ from coil induction
D, ALL, TEMP, 500
nsel,s,loc,y,ostl/2-osbr+.00001,ostl/2-trte-trt-.00001  ! Select
volume of fourth HAZ from coil induction
D, ALL, TEMP, 250
ALLS
OUTRES, ALL, ALL
SOLVE
*get,ls2ss,active,0,solu,ncmss
1
1
/COM,
                 Solve from 45 to 75 seconds
nsel,all
DDELE, ALL, TEMP
                                        ! Delete previously set boundary
conditions
TM START=46
TM END=75
TM INC=1
ALLS
*DO, TM, TM_START, TM_END, TM_INC
         TIME, TM,
! Select first surface area for quenching
nsel, s, loc, y, ostl/2-oswh/2, ostl/2
FLST, 5, 75, 1, ORDE, 26
FITEM, 5, 2618
FITEM, 5, 2620
FITEM, 5, -2625
FITEM, 5, 2627
FITEM, 5, -2628
FITEM, 5, 2630
FITEM, 5, -2631
FITEM, 5, 2633
FITEM, 5, -2634
FITEM, 5, 2636
FITEM, 5, -2657
FITEM, 5, 2728
FITEM, 5, -2737
FITEM, 5, 3388
FITEM, 5, 3392
FITEM, 5, -3395
FITEM, 5, 3409
FITEM, 5, -3410
FITEM, 5, 3412
FITEM, 5, -3415
```

FITEM, 5, 3417 FITEM, 5, -3418 FITEM, 5, 3420 FITEM, 5, -3421 FITEM, 5, 3458 FITEM, 5, -3472 NSEL,R, , ,P51X cm, bcnode1, node D, ALL, TEMP, 1120-((1000/29)*(TM-46)) ! Select second surface area for quenching nsel, s, loc, y, ostl/2-((trte+oswh)/2), ostl/2-(.00001+oswh/2) FLST, 5, 20, 1, ORDE, 16 FITEM, 5, 2468 FITEM, 5, 2472 FITEM, 5, -2475 FITEM, 5, 2619 FITEM, 5, 2626 FITEM, 5, 2629 FITEM, 5, 2632 FITEM, 5, 2635 FITEM, 5, 3163 FITEM, 5, 3167 FITEM, 5, -3170 FITEM, 5, 3408 FITEM, 5, 3411 FITEM, 5, 3416 FITEM, 5, 3419 FITEM, 5, 3422 NSEL,R, , ,P51X cm, bcnode2, node D, ALL, TEMP, 750 - ((730/29) * (TM-46))! Select third surface area for quenching nsel, s, loc, y, ostl/2-trte-trt-.00001, ostl/2-(.00001+((trte+oswh)/2)) FLST, 5, 48, 1, ORDE, 22 FITEM, 5, 2078 FITEM, 5, 2086 FITEM, 5, -2089 FITEM, 5, 2338 FITEM, 5, 2342 FITEM, 5, -2345 FITEM, 5, 2418 FITEM, 5, -2432 FITEM, 5, 2568 FITEM, 5, -2572 FITEM, 5, 2574 FITEM, 5, -2575 FITEM, 5, 2577 FITEM, 5, -2582 FITEM, 5, 3184 FITEM, 5, -3185 FITEM, 5, 3187 FITEM, 5, -3190 FITEM, 5, 3192 FITEM, 5, -3193 FITEM, 5, 3195 FITEM, 5, -3196 NSEL,R, , ,P51X

```
cm, bcnode3, node
D, ALL, TEMP, 500-((480/29)*(TM-46))
! Select fourth surface area for quenching
nsel,s,loc,y,ostl/2-osbr+.00001,ostl/2-trte-trt-.00001
FLST, 5, 15, 1, ORDE, 15
FITEM, 5, 2084
FITEM, 5, -2085
FITEM, 5, 2095
FITEM, 5, -2096
FITEM, 5, 2102
FITEM, 5, -2103
FITEM, 5, 2109
FITEM, 5, -2110
FITEM, 5, 2116
FITEM, 5, -2117
FITEM, 5, 3183
FITEM, 5, 3186
FITEM, 5, 3191
FITEM, 5, 3194
FITEM, 5, 3197
NSEL,R, , ,P51X
cm, bcnode4, node
D, ALL, TEMP, 250-((230/29)*(TM-46))
         ALLS
         NSUBST, 2, 4, 1, ON,
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
*get,ls3ss,active,0,solu,ncmss
*get,ls3ls,active,0,solu,ncmls
1
1
/COM.
                  Solve from 75 to 1800 seconds
nsel,s,,,bcnode1
nsel, a, , , bcnode2
nsel, a, , , bcnode3
nsel, a, , , bcnode4
D, ALL, TEMP, 20
TM_START=80
TM END=1800
TM INC=5
ALLS
*DO, TM, TM START, TM END, TM INC
         TIME, TM,
         NSUBST, 2, 4, 1, ON,
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
*get,ls4ss,active,0,solu,ncmss
*get,ls4ls,active,0,solu,ncmls
1
1
FINISH
physics, clear
/prep7
                      ! Switch to 3-D structural solid element for the
et,1,solid45
outer shell
```

```
mp, dens, 1, 8690.0
                      ! Alloy 22
t
mptemp, 1, 20, 1120
mpdata, ex, 1, 1, 206e9, 134e9 ! Alloy 22 Elastic Modulus
mpdata, nuxy, 1, 1, 0.278, 0.46 ! Alloy 22 Poisson's ratio
! Material properties of outer shell
tb, biso, 1
tbtemp,20
tbdata,,310e6,0.847e9 ! Alloy 22
tbtemp,1120
tbdata,,85e6,0.173e9
                          ! Alloy 22
I
mpdata, alpx, 1, 1, 12.4e-6, 16.2e-6
                                    ! Alloy 22
alls
/com, Apply displacement/symmetry constraints
csys,0
nsel,s,loc,y,0
d,all,uy,0
local, 11, 1, , , , , -90,
nsel,s,loc,y,0
nsel, a, loc, y, arcang
nrot, all
d,all,uy,0
nsel,s,loc,x,0
d, all, ux, 0
alls
save
finish
/solu
ANTYPE, TRAN, NEW,
NROPT, FULL, , ON,
TRNOPT, FULL,
ALLS
/COM,
                  Solve from 0 to 35 seconds
TM=35
*DO, ss, 1, ls1ss, 1
         TIME, (TM/1s1ss)*ss,
         ldread, temp, 1, ss, , , seqarc1, rth
         AUTOTS, OFF
         NSUBST, 1, , , off
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
ł
/COM.
                  Solve from 35 to 45 seconds
TM=45
*DO, ss, 2, ls2ss, 1
         TIME, 35+((TM-35)/1s2ss)*ss,
         ldread, temp, 1, ss, , , seqarc1, rth
         AUTOTS, OFF
         NSUBST, 1, , , off
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
I
1
```

```
/COM.
                 Solve from 45 to 75 seconds
TM=75
*DO, 1s, 3, 1s31s, 1
        *DO,ss,1,1s3ss,1
               TIME, 45+((TM-45)/(1s3ls-2))*(ls-2)+(ss/ls3ss)
               ldread,temp,ls,ss,,,seqarc1,rth
               AUTOTS, OFF
               NSUBST, 1, , , off
               OUTRES, ALL, ALL
               SOLVE
        *ENDDO
*ENDDO
ŗ
ł
/COM.
                 Solve from 75 to end of simulation
TM=1800
*DO,ls,ls3ls+1,ls4ls,1
        *DO,ss,1,1s4ss,1
               TIME, 75+((TM-75)/(ls4ls-ls3ls))*(ls-ls3ls)+((TM-
75)/(ls4ls-ls3ls))*(ss/ls4ss)
               ldread,temp,ls,ss,,,seqarc1,rth
               AUTOTS, OFF
               NSUBST, 1, , , off
               OUTRES, ALL, ALL
               SOLVE
        *ENDDO
*ENDDO
1
l
FINISH
/EXIT, NOSA
/EOF
```

APPENDIX III

TWO DIMENSIONAL AXISYMMETRIC FINITE ELEMENT MODEL INPUT FILE (DIRECT METHOD)

/config,nres,2000 /config,nproc,2 /units,si /prep7 /title, FEA to determine residual stresses due to induction coil heating of closure welds /vcon,,0 et,1,plane13,4,,1 ! Axisymmetric model for the outer shell et,2,plane13,4,,1 ! Inner shell is not meshed; it's geometry developed for future use mptemp, 1, 20, 1120 mpdata, ex, 1, 1, 206e9, 134e9 ! Alloy 22 Blastic Modulus mpdata,ex,2,1,195e9,195e9 ! 316 Stainless Steel Blastic Modulus at room temperature mpdata, nuxy, 1, 1, 0.278, 0.46 ! Alloy 22 Poisson's ratio mpdata, nuxy, 2, 1, 0.298, 0.298 ! 316 SS Poisson's ratio ! Material properties of outer shell tb, biso, 1 tbtemp,20 tbdata,,310e6,0.847e9 ! Alloy 22 tbtemp,1120 tbdata,,85e6,0.173e9 ! Alloy 22 ! Material properties of inner shell (316 SS temperature does not significantly change ! during quenching. No change in material properties required) tb, biso, 2 tbtemp,20 tbdata,,207e6,0.777e9 ! 316 SS tbtemp, 1120 tbdata,,207e6,0.777e9 ! 316 SS ł mp, dens, 1, 8690.0 ! Alloy 22 mp, dens, 2, 7980.0 ! 316 SS mpdata, alpx, 1, 1, 12.4e-6, 16.2e-6 ! Alloy 22 mpdata, alpx, 2, 1, 15.2e-6, 15.2e-6 ! 316 SS ! Thermal properties of Alloy 22 /COM, Define conductivity MPTEMP MPTEMP, 1, 48, 100, 200, 300, 400, 500, MPTEMP, 7, 600, MPDATA, KXX, 1, 1, 10.1, 11.1, 13.4, 15.5, 17.5, 19.5, MPDATA, KXX, 1, 7, 21.3, /COM, Define specific heat /COM, 1, 52, MPTEMP, 100, 200, 300, 400, 500, MPTEMP, 7, 600, MPDATA, C, 1, 1, 414, 423, 444, 460, 476, 485, MPDATA, C, 1, 7, 514, ! Thermal properties of 316L SS (To be modified for 316 SS) /COM, Define K and C for materials 80 21.11, MPTEMP, 1, 37.78, 65.56, 93.33, 121.11, 148.89, MPTEMP, 7, 176.67, 204.44, 232.22, 260.00, 287.78, 315.56, 371.11, 398.89, 426.67, MPTEMP, 13, 343.33, 454.44, 482.22, MPTEMP, 19, 510.00, 537.78, 565.56, 593.33, 621.11, 648.89, MPTEMP, 25, 676.67, 704.44, 732.22, 760.00, 787.78, 815.56, MPDATA, KXX, 2, 1, 13.33, 13.67, 14.19, 14.54, 15.06, 15.58,

```
MPDATA, KXX, 2, 7, 15.92, 16.44, 16.96, 17.31, 17.83,
                                                              18.17.
MPDATA, KXX, 2,13, 18.52, 19.04, 19.38, 19.90, 20.25, 20.77,
MPDATA, KXX, 2,19, 21.11, 21.46, 21.98, 22.33, 22.67, 23.02,
MPDATA, KXX, 2,25, 23.54, 23.88, 24.23, 24.58, 24.92, 25.27,
MPDATA,
        C, 2, 1, 483.04, 488.08, 499.30, 500.73, 511.39, 521.75,
MPDATA,
         C, 2, 7, 522.32, 528.67, 538.26, 538.80, 544.52, 544.63,
MPDATA,
        C, 2,13, 548.35, 553.62, 553.56, 558.56, 558.69, 566.50,
MPDATA,
        C, 2,19, 566.33, 566.33, 573.82, 573.70, 576.34, 576.19,
MPDATA,
         C, 2,25, 583.19, 582.69, 585.35, 587.96, 587.41, 589.93,
/com, Define Parameters
osor=.782
             ! Outer shell outer radius
ost=.02
               ! Outer shell thickness
ist=.05
               ! Inner shell thickness
185=.05
ostl=5.035
              ! Outer shell total length
oslid=.025
              ! Outer shell lid thickness
islid=.065
              ! Inner shell lid thickness
osbr=.1 ! Outer shell bending radius
gap=.03 ! Gap between the lids
gap=.03 ! Gap between the lids
oswh=.025 ! Outer shell weld height
trbe=.445
              ! Trunion ring bottom end
! Trunion ring top end
trte=.025
trt=.04
               ! Trunion ring thickness
tct=.02
                ! Trunion collar thickness
tcue=.165
               ! Trunion collar upper end from WP end
tcle=.265
               ! Trunion collar upper end from WP end
gols=.004
              ! Gap between the outer lid and outer shell
plth=.01
               ! Plate thickness (first outer lid)
/com, Define local cylindrical coordinate system for the lid curved
section
! local, 11, 1, osor-ost-gols-oslid-osbr, ostl/2, ! for future use
/com, Define keypoints
CSVS.0
k, 1, osor-ost-ist,
k,2,osor-ost,
k, 3, osor,
k,4,osor-ost-ist,ostl/2-trbe
k, 5, osor-ost, ostl/2-trbe
k, 6, osor, ostl/2-trbe
k,7,osor-ost-ist,ostl/2-trbe+trt-tct
k,8,osor-ost,ostl/2-trbe+trt-tct
k,9,osor,ostl/2-trbe+trt-tct
k, 10, osor+trt-tct, ostl/2-trbe+trt-tct
k, 11, osor-ost-ist, ostl/2-trbe+trt
k, 12, osor-ost, ostl/2-trbe+trt
k,13,osor,ostl/2-trbe+trt
k, 14, osor+trt-tct, ostl/2-trbe+trt
k, 15, osor+trt, ostl/2-trbe+trt
k, 16, osor-ost-ist, ostl/2-tcle
k,17,osor-ost,ostl/2-tcle
k,18,osor,ostl/2-tcle
k, 19, osor+trt-tct, ostl/2-tcle
k,20,osor+trt,ostl/2-tcle
k,21,0,ostl/2-osbr-oslid-gap-islid
k,22,osor-ost-ist,ostl/2-osbr-oslid-gap-islid
k,23,osor-ost,ostl/2-osbr-oslid-gap-islid
k,24,osor,ostl/2-osbr-oslid-gap-islid
k, 25, osor+trt-tct, ostl/2-osbr-oslid-gap-islid
```

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

```
k, 26, osor+trt, ostl/2-osbr-oslid-gap-islid
k,27,0,ostl/2-tcue
k,28,osor-ost-ist,ostl/2-tcue
k,29,osor-ost,ostl/2-tcue
k, 30, osor, ostl/2-tcue
k, 31, osor+trt-tct, ostl/2-tcue
k, 32, osor+trt, ostl/2-tcue
k, 33, 0, ostl/2-tcue+plth
k, 34, osor-ost-ist, ostl/2-tcue+plth
k, 35, osor-ost, ostl/2-tcue+plth
k, 36, osor, ostl/2-tcue+plth
k, 37, osor+trt-tct, ostl/2-tcue+plth
k, 38, osor+trt, ostl/2-tcue+plth
k,39,0,ostl/2-osbr-oslid
k,40,osor-ost-gols-oslid-osbr,ostl/2-osbr-oslid
k,41,osor-ost-gols-oslid-oswh,ostl/2-osbr-oslid
k,42,osor-ost-gols-oslid,ostl/2-osbr-oslid
k,43,osor-ost-gols,ostl/2-osbr-oslid
k,44,0,ost1/2-osbr
k,45,osor-ost-gols-oslid-osbr,ostl/2-osbr
k,46,0sor-ost-gols-oslid-oswh,ostl/2-osbr
k,47,osor-ost-gols-oslid,ostl/2-osbr
k,48,osor-ost-gols,ostl/2-osbr
k,49,osor-ost,ostl/2-trte-trt
k, 50, osor, ostl/2-trte-trt
k, 51, osor+trt-tct, ost1/2-trte-trt
k, 52, osor+trt, ostl/2-trte-trt
k,53,osor-ost,ostl/2-trte-trt+tct
k, 54, osor, ostl/2-trte-trt+tct
k, 55, osor+trt-tct, ost1/2-trte-trt+tct
k, 56, osor-ost-gols-oslid-oswh, ostl/2-oswh
k, 57, osor-ost-gols-oslid, ostl/2-oswh
k, 58, osor-ost-gols, ostl/2-oswh
k,59,osor-ost,ostl/2-trte
k,60,osor,ostl/2-trte
k, 61, osor-ost-gols-oslid, ostl/2
k,62,osor-ost-gols,ost1/2
k,63,osor-ost,ostl/2
k, 64, osor, ost1/2
csys,0
/com, Horizontal lines in inner shell
1,1,2
1,4,5
1,7,8
1,11,12
1,16,17
1,22,23
1,28,29
1,34,35
lesize,all,,,5,1,1
lsel, none
/com, Horizontal lines in inner lid
1,21,22
1,27,28
1,33,34
lesize,all,,,16,.0625,1
```

```
lsel, none
```

128

/com, Horizontal lines in outer shell 1,2,3 1,5,6 1,8,9 1,12,13 1,17,18 1,23,24 1,29,30 1,35,36 1,49,50 1,53,54 1,59,60 1,63,64 lesize,al1,,,4,1,1 lsel, none /com, Horizontal lines in trunion ring and verticals in triangular areas 1,4,7 1,5,8 1,6,9 1,6,10 1,9,10 1,13,14 1,18,19 1,24,25 1,30,31 1,36,37 1,50,51 1,54,55 1,55,60 1,54,60 1,53,59 1,7,11 1,8,12 1,9,13 1,10,14 1,10,15 1,14,15 1,19,20 1,25,26 1,31,32 1,37,38 1,51,52 1,52,55 1,51,55 1,50,54 1,49,53 lesize,all,,,4,1,1 lsel, none /com, Horizontal lines in the outer lid inner region 1,39,40 1,44,45 lesize,all,,,16,.0625,1 lsel, none /com, Horizontal and vertical lines in the outer lid 45 degree section 1,40,41 1,45,46

1,45,56 1,46,56 1,47,57 1,48,58 lesize, all, , , 8, 1, 1 lsel, none /com, Vertical lines in the outer weld section 1,41,42 1,46,47 1,56,57 1,56,61 1,57,61 1,58,62 1,59,63 1,60,64 lesize, all, , , 4, 1, 1 lsel, none /com, Horizontal lines in the outer lid outer radius 1,42,43 1,47,48 1,57,58 1,61,62 lesize, all, , , 4, 1, 1 lsel, none /com, Vertical lines in shells starting from symmetry axis 1,1,4 1,2,5 1,3,6 lesize, all, , , 24, .06, 1 lsel, none /com, Vertical lines in the region two levels below inner lid 1,11,16 1,12,17 1,13,18 1,14,19 1,15,20 lesize, all, , , 6, 1, 1 lsel,none /com, Vertical lines in the region below inner lid 1,16,22 1,17,23 1,18,24 1,19,25 1,20,26 lesize, all, , , 7, 1, 1 lsel, none /com, Vertical lines in the region of inner lid lower section 1,21,27 1,22,28 1,23,29 1,24,30 1,25,31 1,26,32 lesize, all, , , 8, 1, 1 lsel, none

```
/com, Vertical lines in the region of inner lid upper section 1,27,33
```

1,28,34 1,29,35 1,30,36 1,31,37 1,32,38 lesize, all, , , 3, 1, 1 lsel, none /com, Vertical lines in trunion ring upper section 1,35,49 1,36,50 1,37,51 1,38,52 lesize,all,,,16,1,1 lsel, none /com, Vertical lines in outer lid 1,39,44 1,40,45 1,41,46 1,42,47 1,43,48 lesize,all,,,5,1,1 lsel, none /com, Horizontal lines in the gap 1,58,59 1,62,63 lesize,all,,,3,1,1 /com, Define areas starting from the region close to bottom symmetry plane allsel al,1,75,2,74 al, 12, 76, 13, 75 al,2,25,3,24 al,13,26,14,25 al,26,27,28 al,3,40,4,39 al, 14, 41, 15, 40 al,28,42,29,41 al,42,43,44 al,4,78,5,77 al,15,79,16,78 al,29,80,30,79 al,44,81,45,80 al,5,83,6,82 al, 16, 84, 17, 83 al,30,85,31,84 al,45,86,46,85 al,9,88,10,87 al,6,89,7,88 al,17,90,18,89 al, 31, 91, 32, 90 al,46,92,47,91 al,10,94,11,93 al,7,95,8,94 al,18,96,19,95 al, 32, 97, 33, 96 al,47,98,48,97

al,19,100,20,99

al, 33, 101, 34, 100 al,48,102,49,101 al,20,52,21,53 al, 34, 51, 35, 52 al,49,50,51 al,21,37,22,38 al,35,36,37 al,22,69,23,68 al,108,68,109,67 al, 54, 104, 55, 103 al, 56, 105, 57, 104 al, 62, 106, 63, 105 al,70,107,71,106 al, 57, 59, 58 al,63,60,64,59 al,71,61,72,60 al,64,66,65 al,72,67,73,66 /com, Outer shell and lid mesh asel, s, , , 2 asel, a, , , 4, 5 asel, a, , , 7, 9 asel, a, , , 11, 13 asel, a, , , 15, 16 asel,a,,,20,21 asel,a,,,23,46 type,1 ! plane13 mat,1 ! Alloy 22 smrt, off mshkey,1 amesh, all /com, Inner shell and lid mesh !asel,s,,,1,3,2 !asel,a,,,6,10,4 !asel,a,,,14 !asel,a,,,18,19 !asel,a,,,23,24 !type,2 ! plane13 1mat,2 ! 316 SS !amesh,all /com, Apply displacement/symmetry constraints nsel,s,loc,y,0 d,all,uy,0 nsel,s,loc,x,-.001,.001 d, all, ux, 0 allsel save /nerr,,100000 /SOLU ANTYPE, TRAN, NEW, NROPT, FULL, , ON, TRNOPT, FULL, ALLS TIME, 35 /COM, Thermal initial boundary condition for the WP at 20 degrees C TUNIF,20

/COM, Apply loads and solve for 0 to 35 seconds nsel,s,loc,y,ostl/2-oswh/2,ostl/2 ! Select volume of first HAZ from coil induction D, ALL, TEMP, 1120 nsel, s, loc, y, ostl/2-((trte+oswh)/2), ostl/2-(.00001+oswh/2) ! Select volume of second HAZ from coil induction D.ALL, TEMP, 750 nsel,s,loc,y,ostl/2-trte-trt-.00001,ostl/2-(.00001+((trte+oswh)/2)) ! Select volume of third HAZ from coil induction D, ALL, TEMP, 500 nsel,s,loc,y,ostl/2-osbr+.00001,ostl/2-trte-trt-.00001 ! Select volume of fourth HAZ from coil induction D, ALL, TEMP, 250 /COM, Set time integration parameters for the first time interval ALLS NSUBST, 5, 10, 4, ON, KBC,0 AUTOTS . ON OUTRES, ALL, ALL SOLVE I. ł /COM, Solve from 35 to 45 seconds TIME,45 nsel,s,loc,y,ostl/2-oswh/2,ostl/2 ! Select volume of first HAZ from coil induction D, ALL, TEMP, 1120 nsel,s,loc,y,ostl/2-((trte+oswh)/2),ostl/2-(.00001+oswh/2) ! Select volume of second HAZ from coil induction D, ALL, TEMP, 750 nsel, s, loc, y, ostl/2-trte-trt-.00001, ostl/2-(.00001+((trte+oswh)/2)) ! Select volume of third HAZ from coil induction D, ALL, TEMP, 500 nsel,s,loc,y,ostl/2-osbr+.00001,ostl/2-trte-trt-.00001 ! Select volume of fourth HAZ from coil induction D, ALL, TEMP, 250 ALLS OUTRES, ALL, ALL SOLVE I Ł /COM, Solve from 45 to 75 seconds nsel,all DDELE, ALL, TEMP ! Delete previously set boundary conditions TM START=46 TM END=75 TM INC=1 ALLS *DO, TM, TM START, TM END, TM INC TIME, TM, ! Select first surface area for quenching FLST, 5, 16, 1, ORDE, 10 FITEM, 5,834 FITEM, 5,836 FITEM, 5, -841

```
FITEM, 5,857
FITEM, 5, -859
FITEM, 5, 1182
FITEM, 5, 1187
FITEM, 5, -1188
FITEM, 5, 1196
FITEM, 5, -1198
NSEL,S, , ,P51X
D, ALL, TEMP, 1120-((1000/29)*(TM-46))
! Select second surface area for quenching
FLST, 5, 4, 1, ORDE, 4
FITEM, 5,804
FITEM. 5.835
FITEM, 5, 1067
FITEM, 5, 1186
NSEL,S, , , P51X
D, ALL, TEMP, 750-((730/29)*(TM-46))
! Select third surface area for quenching
FLST, 5, 12, 1, ORDE, 8
FITEM, 5, 694
FITEM, 5, 778
FITEM, 5, 794
FITEM, 5, -796
FITEM, 5, 824
FITEM, 5, -826
FITEM, 5, 1078
FITEM, 5, -1081
NSEL,S, , ,P51X
D, ALL, TEMP, 500-((480/29)*(TM-46))
! Select fourth surface area for quenching
FLST, 5, 7, 1, ORDE, 4
FITEM, 5, 706
FITEM, 5, -709
FITEM, 5, 1075
FITEM, 5, -1077
NSEL,S, , , P51X
D, ALL, TEMP, 250-((230/29)*(TM-46))
         ALLS
         NSUBST, 2, 4, 1, ON,
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
1
/COM,
                  Solve from 75 to 1800 seconds
FLST, 5, 39, 1, ORDE, 21
FITEM, 5, 694
FITEM, 5, 706
FITEM, 5, -709
FITEM, 5, 778
FITEM, 5, 794
FITEM, 5, -796
FITEM, 5,804
FITEM, 5,824
FITEM, 5, -826
FITEM, 5,834
```

FITEM, 5, -841

FITEM, 5,857 FITEM, 5, -859 FITEM, 5, 1067 FITEM, 5, 1075 FITEM, 5, -1081 FITEM, 5, 1182 FITEM, 5, 1186 FITEM, 5, -1188 FITEM, 5, 1196 FITEM, 5, -1198 NSEL,S, , , P51X D, ALL, TEMP, 20 TM START=80 TM_END=1800 TM_INC=5 ALLS *DO, TM, TM START, TM END, TM INC TIME, TM, NSUBST, 2, 4, 1, ON, OUTRES, ALL, ALL SOLVE *ENDDO l l FINISH /EXIT, NOSA /EOF

APPENDIX IV

THREE DIMENSIONAL FINITE ELEMENT MODEL INPUT FILE FOR THE SNF CANISTER MOCK-UP

```
T.
      3-D model for the WP mockup
1
1
      Simulation of both welding and subsequent solution anneal
      Solution anneal cooling time is obtained from Lambda Research
1
      SEQUENTIAL METHOD - TWO STEP SOLUTION
ł.
1
/config,nres,100000
/units,si
/prep7
/title, FEA to determine residual stresses due to induction coil
heating of closure welds
/vcon, 0
et,1,solid70
                   ! 3-D thermal solid element for the outer shell
mp, dens, 1, 8690.0
                  ! Alloy 22
! Thermal properties of Alloy 22
/COM.
        Define conductivity
MPTEMP
MPTEMP,
         1, 48,
                    100, 200, 300, 400, 500,
MPTEMP,
         7, 600,
MPDATA, KXX, 1, 1, 10.1, 11.1, 13.4, 15.5, 17.5, 19.5,
MPDATA, KXX, 1, 7, 21.3,
/COM,
/COM,
         Define specific heat
MPTEMP,
        1, 52, 100, 200,
                                 300, 400, 500,
MPTEMP,
         7, 600,
MPDATA, C, 1, 1, 414, 423, 444, 460, 476, 485,
MPDATA, C, 1, 7, 514,
/com, Define Parameters
1
! Local cylindrical coordinate system to be used in "vrotate"
1
local, 11, 1, 0, 0, 0, 0, -90
I
! Parameters along x-axis
ł
                  ! Outer shell outer radius
ro=1.4859/2
osth=0.0381
                  ! Outer shell thickness
ri=ro-osth
                 ! Outer shell inner radius
rgth=0.0381
                  ! Ring thickness
rgr=ri-rgth
                  ! Ring inner radius
wdw=0.03175/2
                     ! Weld width (half-symmetry)
1
! Parameters along y-axis
ł
lth=1.23825
                  ! Length of the mockup
roff=0.0381
                   ! Ring offset from the bottom end
rlt=0.12065
                   ! Ring length
1
! Number of elements
1
neos=3
                  ! number of elements through outer shell thickness
                  ! number of elements through ring thickness
nerg=3
narc1=4
                     ! number of elements along arc length in the weld
seam
narc2=17
                     ! number of elements along arc length #2
narc3=8
                     ! number of elements along arc length #3
1
```

```
! Arc angles (degrees)
ł
arcweld= (wdw/ro) *180/3.14159
arc90=90-arcweld
/com, Define keypoints
csys,0
k,1,ri
k, 2, ro
k, 3, rgr, roff
k,4,ri,roff
k, 5, ro, roff
k,6,rgr,roff+rlt
k,7,ri,roff+rlt
k,8,ro,roff+rlt
k,9,ri,lth
k,10,ro,1th
k,11,0,0
                    ! Symmetry axis point #1
k,12,0,1th
                    ! Symmetry axis point #2
/com, Horizontal lines in the outer shell
1,1,2
1,4,5
1,7,8
1,9,10
lesize,all,,,neos,1,1
lsel, none
/com, Horizontal lines in the ring
1,3,4
1,6,7
lesize,all,,,nerg,1,1
lsel, none
/com, Vertical lines, region 1 from the bottom end
1,1,4
1,2,5
lesize, all,,,2,1,1
lsel, none
/com, Vertical lines, region 2 from the bottom end
1,3,6
1,4,7
1,5,8
lesize, all, , , 6, 1, 1
lsel, none
/com, Vertical lines, region 3 from the bottom end
1,7,9
1,8,10
lesize,all,,,16,1,1
lsel, none
/com, Define areas starting from the region close to bottom end
allse1
al,1,8,2,7
al,5,10,6,9
al,2,11,3,10
al,3,13,4,12
/com, Rotate areas to obtain volumes, starting from the weld seam
alls
vrota, all, , , , , 11, 12, arcweld, 1
csys,11
asel, s, loc, y, arcweld
```

vrota, all, , , , , 11, 12, arc90, 1 asel, s, loc, y, 90 vrota, all, , , , , , 11, 12, 90, 1 /com, Define number of line divisions along three arc-lengths lsel,s,loc,y,arcweld/2 lesize,all,,,narc1,1,1 lsel,s,loc,y,arcweld+(arc90/2) lesize,all,,,narc2,8,1 lsel, s, loc, y, 135 lesize,all,,,narc3,1,1 /com, Outer shell and ring mesh alls type,1 ! solid70 ! Alloy 22 mat,1 smrt, off mshkey,1 vmesh, all allsel gave /nerr,,100000 1 Start solution I 1 /SOLU ANTYPE, TRAN, NEW, NROPT, FULL, , ON, TRNOPT, FULL, ALLS NEQIT, 150 TIME, 44.99 /COM, Thermal initial boundary condition for the WP at 20 degrees C TUNIF,20 /COM, Apply loads and solve for 0 to 45 seconds, welding simulation vsel,s,,,1,4 nslv,s,1 D, ALL, TEMP, 1120 /COM, Set time integration parameters for the first time interval ALLS NSUBST, 10, 10, 10 KBC,0 AUTOTS, ON OUTRES, ALL, ALL SOLVE 1 1 /COM, Solve from 44.99 to 45 seconds nsel,all DDELE, ALL, TEMP ! Delete previously set boundary conditions TIME,45 ALLS NSUBST, 1, 1, 1 OUTRES, ALL, ALL SOLVE

```
I
/COM,
                 Solve from 45 to 1805 seconds
nsel,all
DDELE, ALL, TEMP
                                        ! Delete previously set boundary
conditions
TM START=55
TM END=1805
TM INC=10
ALLS
NEQIT, 150
*DO, TM, TM_START, TM_END, TM_INC
         TIME, TM,
         ALLS
         NSUBST, 1, 1, 1
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
Ł
1
TIME, 1850
/COM,
                 Solution anneal starts here
TUNIF, 20
/COM,
                 Apply loads and solve from 1805 to 1850 seconds
D, ALL, TEMP, 1120
/COM,
                 Set time integration parameters for the first time
interval
ALLS
NSUBST, 6, 6, 6
KBC,0
AUTOTS, ON
OUTRES, ALL, ALL
SOLVE
1
1
/COM,
                 Solve from 1850 to 1850.01 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TIME, 1850.01
ALLS
NSUBST, 1, 1, 1
OUTRES, ALL, ALL
SOLVE
ł
1
/COM,
                 Solve from 1850.01 to 1880 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TM START=1851
TM END=1880
TM_INC=1
ALLS
NEQIT, 150
*DO, TM, TM START, TM END, TM INC
        TIME, TM,
```

ł

139

```
! Identify and group all surface nodes for quenching
         asel, s, , , 1, 4
         asel, a, , , 7, 11, 2
         asel, a, , , 14
         asel,a,,,16,17
         asel, a, , , 21
         asel, a, , , 24, 28, 2
         asel, a, , , 31, 33, 2
         asel, a. . . 34
         asel, a, , , 38
         asel, a, , , 41, 45, 2
         asel, a, , , 48
         asel, a, , , 50, 51
         asel, a, , , 55
         asel, inve
         nsla,s,1
         cm,s_nodes,node
         D, ALL, TEMP, 1120-((103/29)*(TM-1851))
         ALLS
         NSUBST, 1, 1, 1
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
!
!
/COM,
                  Solve from 1880 to 1910 seconds
nsel,all
DDELE, ALL, TEMP
                                          ! Delete previously set boundary
conditions
TM_START=1881
TM END=1910
TM INC=1
ALLS
NEQIT, 150
*DO, TM, TM_START, TM_END, TM_INC
         TIME, TM,
         ! Re-select all surface nodes for continued cooling
         nsel, s, , , s nodes
         D, ALL, TEMP, 1017-((76/29)*(TM-1881))
         ALLS
         NSUBST, 1, 1, 1
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
!
/COM,
                  Solve from 1910 to 1940 seconds
nsel,all
DDELE, ALL, TEMP
                                          ! Delete previously set boundary
conditions
TM START=1911
TM END=1940
TM INC=1
ALLS
NEQIT, 150
*DO, TM, TM START, TM END, TM INC
         TIME, TM,
```

```
! Re-select all surface nodes for continued cooling
        nsel, s, , , s nodes
        D, ALL, TEMP, 941-((45/29)*(TM-1911))
        ALLS
        NSUBST, 1, 1, 1
        OUTRES, ALL, ALL
        SOLVE
*ENDDO
1
1
/COM,
                 Solve from 1940 to 1970 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TM START=1941
TM END=1970
TM INC=1
ALLS
NEQIT, 150
*DO, TM, TM START, TM END, TM INC
        TIME, TM,
        ! Re-select all surface nodes for continued cooling
        nsel,s,,s_nodes
        D, ALL, TEMP, 896-((795/29)*(TM-1941))
        ALLS
        NSUBST, 1, 1, 1
        OUTRES, ALL, ALL
        SOLVE
*ENDDO
1
1
/COM,
                 Solve from 1970 to 2000 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TM_START=1971
TM END=2000
TM INC=1
ALLS
NEQIT, 150
*DO, TM, TM_START, TM_END, TM_INC
        TIME, TM,
        ! Re-select all surface nodes for continued cooling
        nsel,s,,s_nodes
        D, ALL, TEMP, 101 - ((29/29) * (TM - 1971))
        ALLS
        NSUBST, 1, 1, 1
        OUTRES, ALL, ALL
        SOLVE
* ENDDO
!
I
/COM,
                 Solve from 2000 to 2030 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TM_START=2001
```

```
TM END=2030
TM INC=1
ALLS
NEQIT, 150
*DO, TM, TM_START, TM_END, TM_INC
         TIME, TM,
         ! Re-select all surface nodes for continued cooling
         nsel,s,,,s_nodes
         D, ALL, TEMP, 72-((12/29)*(TM-2001))
         ALLS
        NSUBST, 1, 1, 1
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
1
/COM,
                 Solve from 2030 to 2060 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TM START=2031
TM END=2060
TM INC=1
ALLS
NEQIT,150
*DO, TM, TM_START, TM_END, TM_INC
         TIME, TM,
         ! Re-select all surface nodes for continued cooling
        nsel,s,,s_nodes
        D, ALL, TEMP, 60 - ((11/29) * (TM - 2031))
        ALLS
        NSUBST, 1, 1, 1
        OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
1
/COM,
                 Solve from 2060 to 2090 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TM START=2061
TM END=2090
TM INC=1
ALLS
NEQIT, 150
*DO, TM, TM START, TM END, TM INC
         TIME, TM,
         ! Re-select all surface nodes for continued cooling
        nsel, s, , , s nodes
        D, ALL, TEMP, 49-((7/29)*(TM-2061))
        ALLS
        NSUBST, 1, 1, 1
        OUTRES, ALL, ALL
        SOLVE
*ENDDO
1
```

l /COM, Solve from 2090 to 2405 seconds nsel,all DDELE, ALL, TEMP ! Delete previously set boundary conditions TM_START=2091 TM END=2405 TM INC=1 ALLS NEOIT, 150 *DO, TM, TM START, TM_END, TM INC TIME, TM, ! Re-select all surface nodes for continued cooling nsel,s,,,s_nodes D, ALL, TEMP, 42-((22/314)*(TM-2091)) ALLS NSUBST, 1, 1, 1 OUTRES, ALL, ALL SOLVE *ENDDO FINISH physics, clear /prep7 ! Switch to 3-D structural solid element et,1,solid45 mp,dens,1,8690.0 ! Alloy 22 1 mptemp, 1, 20, 1120 mpdata, ex, 1, 1, 206e9, 134e9 ! Alloy 22 Elastic Modulus mpdata, nuxy, 1, 1, 0.278, 0.46 ! Alloy 22 Poisson's ratio ! Material properties of outer shell tb, biso, 1 tbtemp,20 tbdata,,310e6,0.847e9 ! Alloy 22 tbtemp, 1120 tbdata,,85e6,0.173e9 ! Alloy 22 mpdata, alpx, 1, 1, 12.4e-6, 16.2e-6 ! Alloy 22 alls /com, Apply displacement/symmetry constraints csys,0 nsel,s,loc,z,0 d,all,uz,0 alls save finish /solu ANTYPE, TRAN, NEW, NROPT, FULL, , ON, TRNOPT, FULL, ALLS /COM, Solve from 0 to 44.99 seconds TM=44.99 *D0,ss,1,10,1 TIME, (TM/10) * ss, ldread, temp, 1, ss, , , mock3d, rth AUTOTS, OFF NSUBST, 1, , , off

```
OUTRES, ALL, ALL
         SOLVE
*ENDDO
!
1
/COM,
                  Solve from 44.99 to 45 seconds
TIME,45
ldread, temp, 2, 1, , , mock3d, rth
AUTOTS, OFF
NSUBST, 1, , , off
OUTRES, ALL, ALL
SOLVE
1
1
/COM,
                  Solve from 45 to 1805 seconds
TM=1805
*D0,1s,3,178,1
         TIME, 45+(TM-45)*(ls-2)/176,
         ldread, temp, ls, 1, , , mock3d, rth
         AUTOTS, OFF
         NSUBST, 1, , , off
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
1
/COM,
                  Solve from 1805 to 1850 seconds
TM=1850
*DO,88,1,6,1
         TIME, 1805+((TM-1805)/6)*ss,
         ldread, temp, 179, ss, , , mock3d, rth
         AUTOTS, OFF
         NSUBST, 1, , , off
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
1
/COM,
                  Solve from 1850 to 1850.01 seconds
TIME, 1850.01
ldread, temp, 180, 1, , , mock3d, rth
AUTOTS, OFF
NSUBST, 1, , , off
OUTRES, ALL, ALL
SOLVE
1
1
/COM,
                  Solve from 1850.01 to 2405 seconds
TM=2405
*DO,1s,181,735,1
         TIME, 1850+(TM-1850) * (1s-180) /555,
         ldread, temp, ls, 1, , , mock3d, rth
         AUTOTS, OFF
         NSUBST, 1, , , off
         OUTRES, ALL, ALL
         SOLVE
*ENDDO
```

! ! FINISH /EXIT,NOSA /EOF

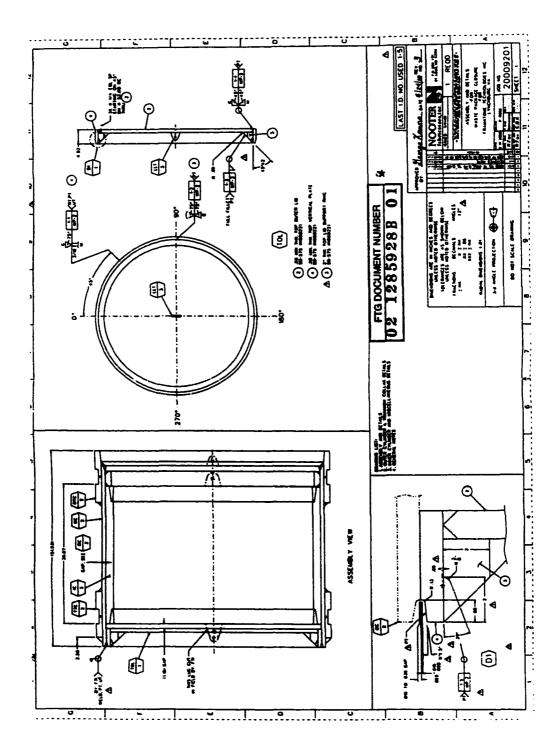
APPENDIX V

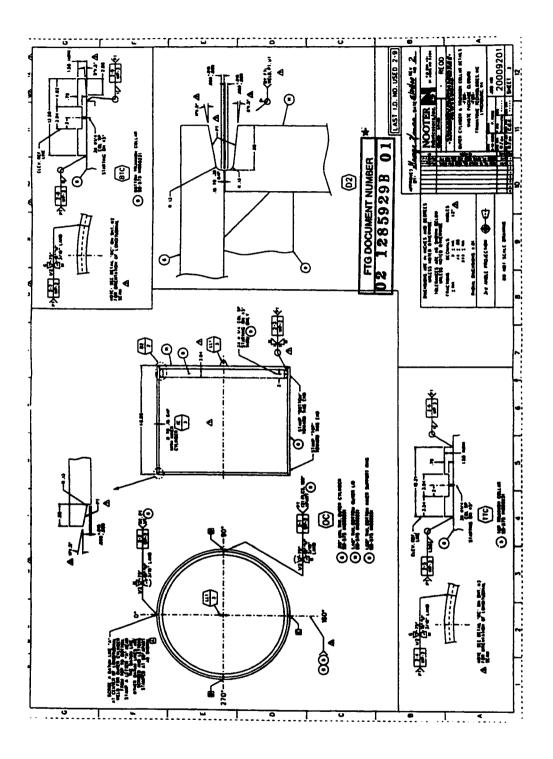
WASTE PACKAGE MOCK-UP EXPERIMENTAL TEST DOCUMENTATION, DESIGN SPECIFICATIONS, AND DRAWINGS

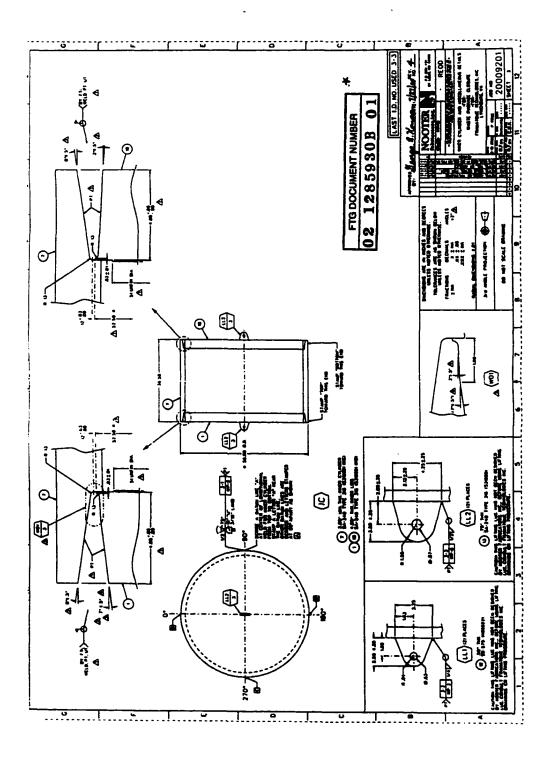
FRAMATOME COGEMA FUELS

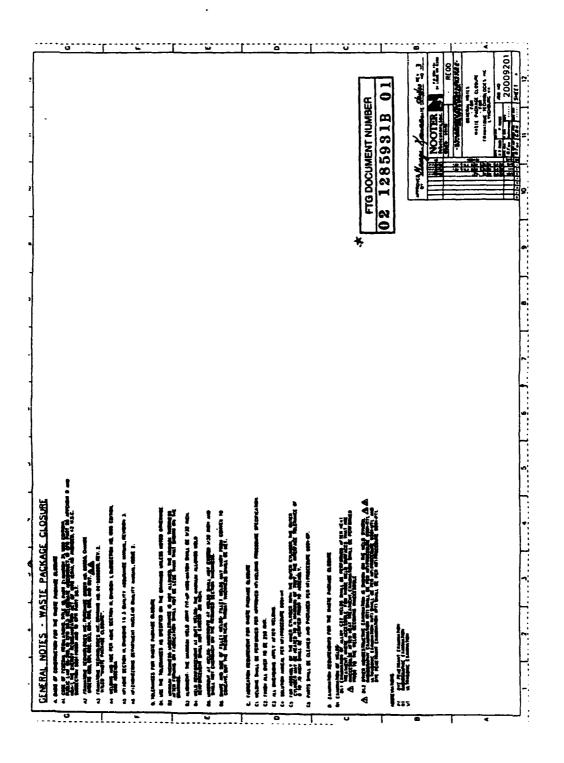
10/30/00

The finite element modeling work on the solution annealing and induction annealing of the spent nuclear fuel (SNF) canister mock-up has been initiated by Zekai Ceylan, who is an engineer of the Framatome Cogema Fuels, Civilian Radioactive Waste Management System, Management and Operating Contractor. Mr. Ceylan has also been a principal participator in experimental studies. Mr. Ceylan organized the design, processed the results, and drew conclusions to give directions to the SNF canister design development.

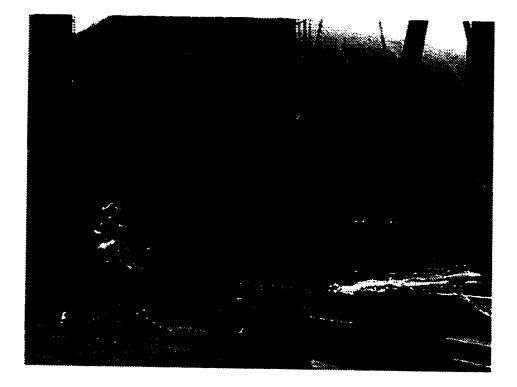

Should there be any questions on this matter, I can be reached at (702) 295-5494.

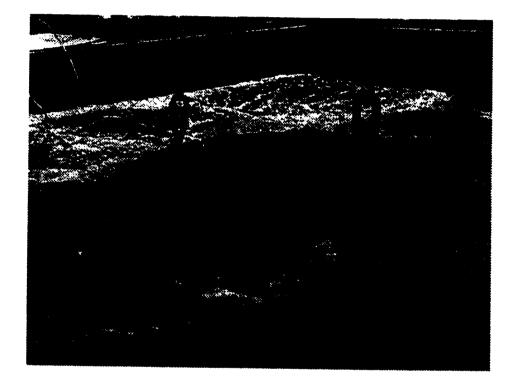

Michael J. Anderson


Manager, Waste Package Design Section


//-

Framatome Cogema Fuels




151

SNF Canister Mock-up Picture (Canister is being removed from the furnace)

SNF Canister Mock-up Picture (Canister is being quenched)

SNF Canister Mock-up Picture (Canister is being quenched)

			22176 (3/96)
FRAMATO		TE OF CONFORMAN	
Customer/Plant Site:	YUCCA MT.	Data Pkg. No.:	23-5009877-00
Customer Order No.:	NOT ISSUED	Customer C.O. No.(s):	N/A
FTI Technical Docume	nt No.: 50-5007991-00, 50-1182272-00		
FTI Contract No.:	3992000	Task No.:	N/A
FTI Order No.:	N/A	FTI C.O. No.(s):	N/A
FTI Quality Assurance	Program 56-1201212 Rev. 04		
Equipment or Service I	Description:		
Quantity Shipped			Part / Mark No.
1 50 LBS	Waste Package Mockup with 4 Welc 0.045 DIA. SFA 5.14 ERNICrMo-10	led Lids	N/A N/A
150 LBS	0.045 DIA. SFA 5.9 ER316L		N/A
			N/A
			N/A
This QA data package	ifications and purchase order requirements (has been reviewed by FTI QA and found a ts may result in equipment being released to to requirements:	cceptable, except as noted be	low. Nonconformance to
<u>Nonconformence(s).</u> N/A	will be / was resolved by:		
<u>Revision / Descriptio</u> N/A	0;		
Wind	FTI Quelity Assuration	9/27	<u>Z000</u>

Nooter Fabricators, Inc. 1400 South Third St. St. Louis, Missouri, 63104 Customer Name: Framatome Customer P.O. No. <u>\$8855</u> Revision No. <u>00000010</u> Line Item No. <u>1</u> Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name: Manuel M	Nooter Fabricators, Inc. 1400 South Third St. St. Louis, Missouri, 63104 Customer Name: Framatome Customer P.O. No. <u>88855</u> Revision No. <u>00000010</u> Line Item No. <u>1</u> Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000.	fabricators, inc	RTIFICATE OF C	ONFORMANCE
 1400 South Third St. St. Louis, Missouri, 63104 Customer Name: Framatome Customer P.O. No. <u>\$8855</u> Revision No. <u>00000010</u> Line Item No. 1 Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name: Wath Wath Wath Wath Wath Wath Wath Wath	 1400 South Third St. St. Louis, Missouri, 63104 Customer Name: Framatome Customer P.O. No. <u>\$8855</u> Revision No. <u>00000010</u> Line Item No. 1 Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name: Manual Manual Manual Control Control			
Customer P.O. No. <u>\$8855</u> Revision No. <u>00000010</u> Line Item No. <u>1</u> Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name: <u>Purchase Purchase</u>	Customer P.O. No. <u>\$8855</u> Revision No. <u>00000010</u> Line Item No. <u>1</u> Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name:	1400 South Third St.		
Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name:	Component Description: (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name:	Customer Name: Framaton		
 (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name: We way the second secon	 (1) Waste Package Closure in accordance with Framatome Technologies Inc. Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name: We way the second secon	Customer P.O. No. 88855	Revision No. <u>00</u>	00010 Line Item No. 1
Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name:	Drawing 02-5006890E-01 and the requirements of the Purchase Order. We certify that the material and workmanship of the above referenced component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name:	Component Description:		
component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name:	component(s) conform(s) to all the requirements of the above referenced Purchase Order and was controlled in accordance with Nooter Fabricators Quality System Manual, Revision 4, dated April 17, 2000. Name:			
Name: Tune to Tune	Name: <u>A. A. Date: 09/05/2000</u> Position: <u>Q. A. A. A. Date: 09/05/2000</u>	component(s) conform Purchase Order and wa	(s) to all the requin is controlled in acc	ements of the above reference ordance with Nooter Fabrica
	Position: Q.A. Congineer Date: 09/05/2000	Name: Dung	Jun	
Position: <u>Q.A. myinen</u> Date: <u>09/05/2000</u>		Position: Q.A.	finea.	Date: 09/05/300

I ANN SMRTH Therd Strept - Surne Funes, Alessander, B.C.M. C. S.A. Smelong Address, P.D. Kus, a St. Sanne Funes, Messander, B.C.B.S. S. S. Telephuar, i Gras B.Z. Sinni Fus, i Gras, a 22, "S.Sir, - E. Must, splesbaumer, sum

PURCHASE ORDER for MATERIAL

REVISION LOG						
Rev. No.	Description of Revision	Date				
0	Initial Submittal of Documents					

REU :

9201 1 DATE 04/27/2000

NOOTER ^rıbricators, inc. PG 842 451 St. Louis. Missoure 6.1766 Telepanne (314) 621-6000 Fax: (314) 421-760 E-mail sales@anotes com

VENDOR CUSTOMER MATERIAL

SHIP TO 1500 SOUTH SECOND STREET ST. LOUIS. MO 63104

P.O NO PAGE

BUMER

2400

,

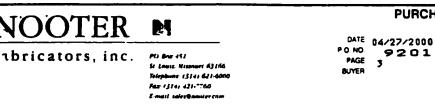
EIGHT	SHIP DATE	DOCUMENTATION	JOB NO.	REQUEST	ED BY
		FURNISH MATERIAL TEST		1	
LOWED		REPORTS WITH SHIPMENT			RSE/MINCEMEYER
EM IQUANTI	m v [1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Service Scription and Anna Scription	2 A. M. A. A. A. A.	BMNO	PRICE 155
	· ·				
1	*******		**********		
		REVISION4	1		
					1
	REVISION T	O ADD ITEMS 3 AND 4 TO THIS	00050		
		************************	*********		
1	THIS	ORDER SHOULD NOW READ AS FO	LLOWS:		
1		************************			
1					
	- NFI SE	CTION III QUALITY SYSTEM AP	PLIES • •		
		CUSTOMER MATERIAL			
1					
	e	ILL TEST REPORTS REQUIRED			
	69-676 INC	N06022 HAST C-22			
		IN ACCORDANCE WITH ATTACHED	FRAMATIME		
1		ES INC. PURCHASE ORDER 8620			
1	ORDER 3, D	ATED 2/21/00.			
	*******		*******		
1	2 1.5" × 96.			2	
•		FRAMATOME PURCHASE		6	
	ORDER.				
					1

INVOICE IN DUPLICATE

APPRQVED. . . CONTINUED NOOTER FABRICATORS, INC. ٠ PER

NOOTER	M				CHASE OR	DE
NOOTER	50		DATE	04/27/20		-
abricators, inc.	PC Bar 451 St Louis, Vissouri 6,1166 Telephone (314) 621-0000 Faz: (314) 131- Ke E-mail salet@ennice.com		P O NO PAGE BUYER	2	1 REV	1
VENDOR CUSTOMER MATERIAL		SHIP TO	1500 SOUTH St. Louis. 63104		TREET	

2400


REIGHT		SHIP DATE	DOCUMENTATION		JOB NO.	REQUEST	ED BY	
	_		FURNISH MATERIAL TES					MEVED
ALLOWE			REPORTS WITH SHIPHEN				RSE/MINCE	
			• • CONTINUE			AB IN NU 12	1941 <u>א</u> ר צע איי איין 	LL, 1(1)
				•				_
2	1	2" X 37" X ITEM 46 ON ORDER.	207" FRAMATOME PURCHASE			3		E
		FURNISHED	STAINLESS STEEL IN ACCORDANCE WITH FR ES PURCHASE ORDER 8619 ATED 4/26/00.		••			
3	1	4.5" X 61" ITEM 42 ON ORDER	X 180" FRAMATOME PURCHASE			1		E
4	1	2.25" X 66' ITEM 61 ON ORDER	' X 210" FRAMATOME PURCHASE			7		E
		THIS PURCH	NSE ORDER 15 FOR THE S	SOLE PURPOSE	OF			

INVOICE IN DUPLICATE

• • • • • • • • CONTINUED • • • • • • • •

NOOTER FABRICATORS, INC.

ren Angdel _____

PURCHASE ORDE

REU 1

.

VENDOR CUSTOMER MATERIAL

SHIP TO 1500 SOUTH SECOND STREET ST. LOUIS. MO 63104

2400

,

REIGHT	SHIP DATE	DOCUMENTATION	JOB NO.	REQUEST	ED BY
LLOWED	04272000	FURNISH MATERIAL TEST REPORTS WITH SHIPMENT	9201	PESKOP	RSE/MINCEMEYER
	RECEIVING (NO DIRECT (RESPONSIBIL	• CONTINUED CONTINUED CUSTOMER FURNISHED MATERIA CONTACT WITH THE MATERIAL ITY FOR MATERIAL QUALITY OF THE ATTACHED PURCHASE	L. NFI HAS SUPPLIER. IS HELD BY	 ■ 1* NO 	PRICE (17)
		X APPLICABLE. SALE NUMBER: 16551435			

INVOICE IN DUPLICATE

NOOTER FABRICATORS, INC.

Ra. PER

•

NOOTER FABRICATORS, INC. Subcontracted On-Site Calibration Services Verification

. 🗣

Supplier of Calil	bration Services: Honeywell Inc.
Applicable NFI	Purchase Order Number(s): P.O. 33389
Description of M	Acasuring and Test Equipment to be Calibrated:
Extensometer	rs
Hardness Tes	APPROVED
K Heat Treat To	emperature Recorders QUALITY ASSURANCE
Impact Tester	n Runt Run
Optical Comp	parator
Tensile Teste	n DATE U 1/06 / Jean
Other:	
Other:	
	ems are required for subcontracted calibration activities (Check-off when etain verifying documentation):
	ulity Program of Calibration Services Subcontractor 17 CalSys dated Sept. 17, 1996 Revision: 1
	Iardware Support Service Program Revisios: 12/01/99
	Alibration Procedure(s) of Subcontractor. Identify Procedures: Calibration Procedure Manual; July 26, 1996
Review of Qu Name:	ulification Records of Subcontractor Personnel. Identify Personnel: <u>Robert Leyton, Level III Certified Control Systems Technician (CCST)</u> <u>Certificate No. 10478; Expiration Date March 15, 2002</u>
x Review of Ca Standard: Standard:	Sibration Records of Standards. Identify Standards and NIST Trace: 7100909 Model 2020
x Sign Calibrati x Forward Calib	ion Records bration Records to QA for Review
I certify that the activities and here	above checked requirements have been met; and I have witnessed the calibration are found them to be carried out in a satisfactory manner.
Signed:	Dury Auge Date: as/34/340
QA Review:	Deter 7. Angr Dete: 2/24/00
Ferm \$1-108-1	

.

						_			
	and Control			ci Number		Tak Nanker		in all in share	<u> </u>
	TE & MATERL	AI. REPORT		5641	•		39374		1278
one Contected					<u> </u>				
	Bill Lather		he		d 6			Cont. mater	er Truskis Salars
	Cull Date	Cer Mil		11	î Han	OT Heres	N/S Hours	Rentine Call	Truste Cal
917 St. Los			<u>n</u>		16.0	<u> </u>	<u></u>	X	
des Representit		Approv	H 87			Customer Order	Na. 89 _ Rev. 0	Campini	- Incomplete
e Call Rec. By I	Leyten	ine Tech Called	Casterne	Time Tech	at file	MITE	ey K.t.	1.1.18	- I
Autor									
er met	Noner P	sbricators la	K.			1400 S. Second			
						St. Lonis, MO	014		
Canalat	d Scheduled Pro	and ation bio		Calibration	for Calence			20100	
		<u></u>				PRI COLVINS / C			
Emile	at is being cable	nied per Hen	ovell Calibr	tion Proced	re 917-Call	THE July 26, 19	*		
Curiosa	r reports an prob	ians à Chit t							
Dati I -	er regensts that i	the second second second	175 a Manage	init Terror			74711110	<u> </u>	
	andy marved						0. 24 (4.33) 100	<u> </u>	
Bill Luck	er recreats that	antropent #3	367. a Haney		iture Record	er with Seriel N	ie. 7811-8-052	46001	
Bill Late be param	er requests that I acady reasoned :	antropant #3 from Californi	367, e Hanry ian Schedule	well Tamper	stare Record				
Bill Lath be param	er requests that I acatly removed :	instrument (†) Fran Califerat	367, e Honey ion Schedule.	well Tamper	sture Record				
Bill Lath be parma	er requests that I nearly reasoned :	instrument (1) From Califernt	367, e Hanry ian Schedule	well Tamper	stare Record				
Bill Lath be parma	er requests that i acatly reasoned i	instrument () from Calibrat	367, a Hanry ian Schedule	well Tamper	stare Racord				
Bill Lach be permi	er requests that i acatly removed :	instrument (73 from Califerat	367, a Haney ian Schedule.	well Tamper	ature Racord	74	PROV		
Bill Lach be param	er requests that i accely removed s	instrument (73 from Calibrat	367, a Hanry ian Schedule	well Tamper	atare Record	74	PROV		
Bill Lath be parase	er requests that i acady removed (from Calibrat	367, a Hanry ian Schedule.	well Tamper			PROV		
Bill Lath be parata	er requests that i nextly removed :	indresset (7) Iros Cabilinat	367, a Hanry ian Schedule.	well Tamper		74	PROV		· · · · · · · · · · · · · · · · · · ·
Bill Leth be parted	er requests that I accely removed :	instrument (7) from Calibrat	367, s Hanry an Schedule	well Tamper	stere Record	Af	PROV III ASS IIII ASS IIII ASS IIII ASS IIII ASS		
Bill Leth be permit	er requests that i accely removed	instrument (7) from Calibrat	367, s Hansy in Schedule	well Tamper	stere Record	Af	PROV III ASS IIII ASS IIII ASS IIII ASS IIII ASS		
Bill Leth	er requests that i acatly reacted (instrument (1) from Calibrat	397, a Hanry ian Schadule	well Tamper		Af	PROV		
				well Tamper	stare Record	Af	PROV III ASS IIII ASS IIII ASS IIII ASS IIII ASS		
	entity resorted i	itom Californi		well Tatipen			IN ISS	ED Marstelle A Jones	
		itom Californi		well Tatipen	ature Record		PROV III ASS IIII ASS IIII ASS IIII ASS IIII ASS	ED Marstelle A Jones	
	entity resorted i	itom Californi		well Tatipen			IN ISS	ED Marstelle A Jones	
be parate	analy resorted : (Number of Tail 1 2000 California	ingen Californi Californi California Califor		reli Tatigan	d Der Jas (IN ISS	ED Marstelle A Jones	
be parata be parata bed and fast Heary and Test Equip	entity resorted i	ingen Californi Californi California Califor		reli Tatigan	d Der Jas (IN ISS	ED Marstelle A Jones	
be parata be parata bed and fast Heary and Test Equip	ensity resorved : i Nusber of Tari B 2020 Calibrator sumst bring und i	ingen Californi Californi California Califor		reli Tatigan	d Der Jas (IN ISS	ED Marstelle A Jones	
be parate be parate be and bet Heat and bet Heat Cari of Fort Link	ensity resorved : i Nusber of Tari B 2020 Calibrator sumst bring und i	ingen Californi Californi California Califor		reli Tatigan	d Der Jas (IN ISS	ED Marstelle A Jones	
be parata be parata bedd and date Heatrice Test East to Para Unit. Mase Unit.	ensity respond : i Number of Test 1 2000 Calibrator securit bring qual i	irom Californi Californi Georgeover Unde Seriel M Seriel M	a. 7160109 Hearywell Pre	ci Tangen	d Date Jue II albyn Rowi	A.C. CIUM cilia ci	IN ISS	ED Marstelle A Jones	
be parata be parata bedd and dark Historywd Tost Easi o Para Unat Mase Unat	ensity respond : i Number of Test 1 2000 Calibrator securit bring qual i	irom Californi Californi Georgeover Unde Seriel M Seriel M	a. 7160109 Hearywell Pre	ci Tangen	d Date Jue II albyn Rowi	A.C. CIUM cilia ci	IN ISS	ED Marstelle A Jones	
be parate be parate be defined and fast Heavy and Test Lawin Para Unit Mare Unit	analy resorted : I Number of Tar 2 2000 Calibrater sector VE appear a sector VE appear a	irom Californi Californi Georgeover Unde Seriel M Seriel M	a. 7160109 Hearywell Pre	ci Tangen	d Date Jac I adlyn Rowl	4.7 (1))) (2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))	Der Dein An		
be parate be parate be defined and fast Heavy and Test Lawin Para Unit Mare Unit	analy resorted : I Number of Tar 2 2000 Calibrater sector VE appear a sector VE appear a	içalganar Und Şariyanır Und Sarid H Sarid H Sarid H	a. 7160109 Hearywell Pre	erell Tattigen Ga antige 917-C	d Date Jac I adlyn Rowl	A.C. C.L. C.L. C.C. S. Socio B. 2000 B. 2000 Bage 17, 1996.	Der Dein An	ED Marstelle Allowe	
be parate be parate be defined and fast Heavy and Test Lawin Para Unit Mare Unit	analy resorted : I Number of Tar 2 2000 Calibrater sector VE appear a sector VE appear a	içalganar Und Şariyanır Und Sarid H Sarid H Sarid H	a. 7160109 Hearywell Pre	erell Tattigen Ga antige 917-C	d Date Jac I adlyn Rowl	4.7 (1))) (2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))((2 c))	Der Dein An		
be parata be parata be parata be bere Neary well Toot Equi- to Port Chat Near Unit Near Unit Near Unit Sector Unital Sector Unit Sector Un	d Number of Tail 1 2020 Calibratur 2020 Calibr	in an initial per	n file covies of	G	d Date Jac I albys Rovi J se esting to the	4.7 (1)1) (2) (2) (2) (2) (2) (2) (2) (2	Dee Date An		
be parata be parata be parata be bere Neary well Toot Equi- to Port Chat Near Unit Near Unit Near Unit Sector Unital Sector Unit Sector Un	analy resorted : I Number of Tar 2 2000 Calibrater sector VE appear a sector VE appear a	in an initial per	n file covies of	G	d Date Jue I albys Rovi I abys Rovi I be added to the are	4 (())) () () () () () () () ()	Der Das Jas	ED Solution Solution 10, 2001	•••••
be parata be parata be parata be for a fast Reserved Test Equi- tor Fore Chart Mass Use Mass Use Mass Use Mass Use	d Number of Tail 1 2020 Calibratur 2020 Calibr	in an initial per	n file covies of	G	d Date Jue I albys Rovi I abys Rovi I be added to the are	4 (())) () () () () () () () ()	Der Das Jas	ED Solution Solution 10, 2001	•••••
be parata be parata be parata be bere Neary well Toot Equi- to Port Chat Near Unit Near Unit Near Unit Sector Unital Sector Unit Sector Un	d Number of Tail 1 2020 Calibratur 2020 Calibr	in an initial per	n file covies of	G	d Date Jue I albys Rovi I abys Rovi I be added to the are	4 (())) () () () () () () () ()	Der Das Jas	ED Solution Solution 10, 2001	•••••
be parate be parate be and fast Recover Tool East Para Unit Nace Unit Nace Unit State	d Number of Tail 1 2020 Calibratur 2020 Calibr	in an initial per	n file covies of	G	d Date Jue I albys Rovi I abys Rovi I be added to the are	4 (())) () () () () () () () ()	Der Das Jas		•••••

•

•.

08	-		
		**	

		_				_		_	·						-	
											_		RD Nes			_
	ties and Casted				a select	Number			Tak N						-	
	ICE & MATE	UAL	THOSE IN COL	т <u> </u>		9	6410			126-	31374		Į		<u> </u>	
Permit Contested	-				ſ								(
	<u> </u>				Tur	2	<u> </u>	4	•					-		
Locales	Call Da		Cir Mi	ha	Ligna		ST Here		Jor Man	n	NA ST		Kanta		Trui	de Cal
917 St. La	ets 2/1		I		_				I			_		Χ		
Carvlet Represent	tve		-	ol By					Cutom	e Order 1	Na.		Ce	şêrîs 🛛	- Jane	-
	ob Layten					_			1					X		
Time Call Hot. By	Disputch	Time To	nh Calle	i Cusiona		Time T	rak en Sili		MT.TJ				T.T.T.R.			
						1			1				i			
Curioner									•.•							
Name and	Nonter	Fabric	stors li	ĸ					14015	Second	Street					
Address		-							St. Los	IL MO	C164	_				
Deace	intian .			iller de	n an Fe					Colline of	in a k			Televen	044	(der titler
							/ Bending						Realing	+/-		Aulat
I Furnant He	arrest Terrest	in the		la drum	ni Me. (160	Loris I Ma	9709-7	2105374	415-14						
	Chernel #1			1200							1201	2300	2301	3		T
	Channel #5		101	1200		2000		_	101	1200		2300	2301	3		1
	Current (?)		101	1,200		2300				1200		2300	2362	3		
	Channel #16		102	1200		2300	2362			1300		2300	2562	3		T
																<u> </u>
2 Farmer H.	neywell Temper	in la	ander .	lastron	al Ha	161 1	latial No.	9708.7	2106344	45-12					<u> </u>	T
	Channel #1		101			2300		100		1200	1200	2300	2501	3		1
	Channel #5		101	1200		2300	2300	100		1200		2300	2100	3		
4 Furnant Ha	anywell Temper	in la	and at	(antropy)	No.	162 1	larial No	9704.7	1105144	-				T		1
	Cheven (1)			1200		2300		100		1200	1200	2300	2300	3		1
	Channel (5		100	1200	_	2300		-100		1200		2300	2300	1		
833 Fernant	Henry all Tens	and the local division of	land in	lastro	and No	1173	Seriel 1	IT al	104							T
		(00)		1200		2300		100		1300	1199	2300	2342	10		
					÷											
278 Furnes	Honeywell Tenn	anture I	lacarda	lastro	ment No	1368	Seriel 1	No. 010	0304900					T		T I
		100					2300				1196	2300	2300	10	1	
Plates :																
	Menerature : 1		ur Di	and F (ALET	-	andes es	und have	Transfer 1	h. 6164	addad in	a T The	-			
2																
3.						_										
Ant Merical and Dec	fal Party of Ton	Levipe	na Ved	1											_	
Hencym	al 2020 Cullunt			. 71009	09		Cel De	n Jan I	1, 2000		Des De	1 84 26	1, 2001			
															_	
tanàn Parts Unit																
Note Up																
												_			_	
The anniants chevin The annuals shows	beine ull appen		inter la	er thán curi	to al.											
far annan dern Teist Leber	a parate de sel linde I				وروا الا	Teleb in		ing to the	Trade		_		Trated Inc	nie Ame	_	_
											linight sta	ა		t instals to		
	1					1			<u>г</u>			-	r			
					_ 1	1			1				}			
THE SERVICE N		S RAS 1	ËEN KA	VOLID I	Y YOU	-		TVE	A	ACTO	RY MAI	163				
_	-		_		-										,	
<	$ \ge $.6	\bigcirc	•					• •	6		-		~	A.	a lea
	Kun	15	DU	u.				THE	<u> , </u>	6	Yh	un	/	200 0	-110	100
	/ 7	17									0					,
	r ()	/ /														

.

473973(1/96)

	•		•
٠		٠	•

Honeywell

Forms Castanted London 917 St. Lou		ļ.		Project I	lunker		Tel Number		RCD Head	ber .		
Person Contented London 917 St. Lou	Ectential Antenantes and Casted <u>TELD SERVICE & MATERIAL REPORT</u> Forms Castedia				564	10	820-39374		61278			
917 St. Lau												
917 St. Lau		ther		Par	3	<u>at 4</u>				à ratia a	r Trentin Bele	
	Carb		Cer Miles	Capeton		IT Herin	OT Heres	H/S Hours	Read	n Cal	Trustile	
Carton Represents	11 2	16/00							1	K _		_
	Cortine Representive		Appress By				Customer Order No.		Campier		larangiste	
Bob Layten						<u> </u>		X _				
The Call Res. By I	Dispatch	Time To	nt Calud Castan		Time Test) an Altr	M.T.T.R.		T.T.T.R.			
Custamer Name and	Mart		nten Tee									
Address	Nexter Fabricators Lac. 1400 S. Second Street St. Louis, MO (3106											
Descrip		T	California	n as Fe			Caller	tion on Laft		Televen	Out of Tel	
		Sager /				Louis Segue	Reading Ingest	/ Reading lagest	Realing	+/-	Penal /	-
Dectrosics	Centrels Det										┝───┥	
		140	/06.5 1200	1199.7	2200	2208.5 100	/00.5 1200	1199.7 2200	2200.5	1	L.	
A 0	but In the store	-			-	<u> </u>					T	
ab Omega Dig			-/01/1					/04.2 500		2	$ \rightarrow +$	
			-1347.4 1 546	100.3			-1997.4 100	10011 300			L	-
Ab Yekagawa	Testarti		Instantal Ma	6165	Cariel Ma	437008107						
		1 100	NU 1200	1201	2300	230/ 1 100	/0/ 1200	/20/ 2300	2301	3		
											••	
artable Houry	well Tempera	un Loui	ter lastransi	No. 399) Sarial	No. FE231001	6 01					
								//# 2300	2299	10	X	
			•	•	•							•
artable Henry	well Temperat	in Los	for instrument	No. 337	7 Serial	No. 8711880	001			L		. •
			/# 1200			2360 1 100	/#0 1200		2300	10	I	_
arabic Hoory			4			No. 0461000		<u> </u>			<u>г т</u>	
								1/99 2300		10	┟╧╍┿	
			1.1.44					1110 1 4000				
Nata -												
1. Units of h	(manual :	Terret	ant During F			in mut he	runant No. 6164	which is a T The		a)		
2. Intrast	nt No. 3374 be	a base de	and to instrum	mt Ma. S	PPP Lange	an Contemer re	pland broken d	ner that had such	ابيكر و			
1												
4.												
Jat Maria and Rat												
Hearywel	THE CAR		Satial No. 7100			al Date Jan 11	1, 2000	Des Dets Jac 1				
												•
andre Paris Linet:	-											
				_								
Near Use												
Heat Use	beire vill app		lereine for this or	ten al								
Heat Use		ntada any a Tirang bia			visit neg Tatel Salt	the added to the	Tradition		Trend Ser	nin Ann		
Near Ues	beire de aut is						ITAL Lawrence.	Finisht etc.)		t insiste i		
Near Ues	tales de set t						r				· · · •	
Near Ues	<u>telev de art b</u>						1					
Heat Use The exempts down The exempts down and Labor									<u> </u>			
				BY YOU					<u> </u>			<u> </u>
Ness Use The same down The same down Fail Laker		US BAS I	-						<u> </u>	-		
Ness Use Te same dere Te same dere Te same dere Te same dere		US BAS I	-								10	-
Ness Use Te same dere Te same dere Te same dere Te same dere		US BAS I	an weld					DRY HANNER	ـــــــــــــــــــــــــــــــــــــ	3 -1-1	10	ko

Honeywell

Person Contumed	CE & MATE								_							
Person Contumed					Project	Number			Tank Nu				RD Main			
Leveles		RIAL P	EPOR	1		56	410			626-3	1374			11	178	
	Bitt Lat			_	Page	4	. ef .	_4						é refie e		
	Call Di	łe	Car Mi	in.	Lipma		St Heer		OT New	*	X/S Have			e Cal	Truck	le Calt
<u>917 St. La</u>		0/00	L						L					K		
Service Represent	ine ,		Approx	et By					Castana	Order I			Cee	plate .	Lacus	agiste -
B	th Layton		<u> </u>											κ	L	
Time Cal Rec. By	Disputh	The T	ich Culle	Custome	1	Time Te	cà es file		MT.TJ				1.1.1.R			
						[
Castemer																
Name and	Neste	r Fabria	inters 🕯	K.					1408 5.							
Address				_					R. Los	MO	63164					
		_														
Duct	inden.			bibrote	n as Fe		_			Calibrat	ins os La	R		Televen	Outofi	
		Sugar 1	Leader	lagest /	Realing	tages /	Reading	logest /	Renting	laget /	Reading	lagest /	Realing	+1-	Feed	As Left
					_											
Pertable Hear	well Temperati	ere Rame	der le	-	Ne. 337	1 Seri	al No. O	619071	<u>001</u>							
		100		1200						1200	1195	2300	2501	10		
Partable Hour	well Temperate	in Room	der le		No. 337	6 Seri	al No. 85	4959								
		100	100	1000	1002	1900	/100	100	100	1000	1002	1900	[900	10		
Pertable Hear	well Temperets	m Leve	der la	-	No. 603	3 Seri	al No. 90	508057	61-0001							
	Cheesed #1		100			2300	2300		/00	1200	1190	2300	2300	5		
	Channel #1		100	1200	1200	2300	2300	100	100	1200	1200	2300	2300	3		
	Channel #	100	100	1300	1199	2300	2340	100	/00	1200	1199	2300	2300	3		
	Canad #13	100	101	1200	1200		2501	100	101	1200	1200	2300	230/	3		
	Changed #17	100	100	1200	1200	2300	2300	100	100	1200	1200	2300	2300	3		
	Channel #21	100	/00	1200	1200	2300	2300	100	100	1200	1200	2300	2500	3		
							•									
Pertable Hear	real Trapport	n Louis	der Ja	tireners)	No. 603	4 Seri	al No. O	7794979	014							
	Chund #1			1200	1100	2300	2300	100	/00	1200	1100	2300	2300	3		
	Chessed #5	100	100	1200	1100	2300	2300	100	100	1200	1199	2300	2300	3		
	Channel #		100	1200	1200	2300	2300	100	100	1200	1200	2300	2300	3		
Notes :						_										
I. Unin of	Menument :	Temper	terr- Di	gros F	ABET	Lingeri	uglas au	inger laute	Vines N	n. 6164	which is	TT		(II)		
2.												_				
3.																
4.																
List Model and Bar																_
	a 2030 Cullina			a. 71001	ÓÐ		Cal Dat	e Jun 11	, 2000		Der De	in Jun J	8, 2001			
Handar Parts Unit:																
None Un	4		_													_
	beine vill appre		inter i	e this car	der est.										_	
The same in direct	i inter de sal ber		and the second s		tal teem		The off	ad in the	irrein. I Tani Ci				1	with Alber		
The summin deriv		Test M				Total Se					liniski etc	•		مرتقة معتود يا عليداني ع		
The assesses deep The assesses deep Total Labor		t i				1			ſ' ~ Ľ			-				
The summin deriv									1							
The summin deriv		[1							
The constants descent Total Labor				HOLED	ily yet			TTYE IN	A SATH		TY MAR	PICR.	1			
The summin deriv	QUESTED BY			VOLD	iy you	R REPR							<u> </u>			
The constants descent Total Labor						R REPA							1			
The constants descent Total Labor	Rustin Br					R REPR								Date (110	100

 $\langle \rangle$

7

(73973(84%)

R

NOOTER FABRICATORS, INC. Subcontracted On-Site Calibration Services Verification

.

•• . •• .

Supplier of Calibration Services: HONEYWELL, INC.
Applicable NFI Purchase Order Number(s): P.O. 33389
Description of Measuring and Test Equipment to be Calibrated:
Extensometers APPROVED
Hardness Testers QUALITY ASSURANCE
x Heat Treat Temperature Recorders
x Heat Treat Temperature Recorders SY Truck Impact Testers DATE 0 1/0 6 / 3res
Optical Comparator DATE_07/06/37842
Tensile Testers
Other:
Other:
The following items are required for subcontracted calibration activities (Check-off when completed and retain verifying documentation):
X Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Suproce Support Revision: 1
Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Support Service Program Revision: 12/01/99 X Review of Calibration Procedure(s) of Subcontractor. Identify Procedures: Procedure: Calibration Procedure Manual; July 26, 1996 X Review of Qualification Records of Subcontractor Personnel. Identify Personnel: Name: Robert Layton, Level III Certified Control Systems Technician (CCST)
Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Support Service Program Revision: 12/01/99 X Review of Calibration Procedure(s) of Subcontractor. Identify Procedures: Procedure: Calibration Procedure Manual; July 26, 1996 X Review of Qualification Records of Subcontractor Personnel. Identify Personnel: Identify Personnel:
Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Support Service Program Revision: 12/01/99 X Review of Calibration Procedure(s) of Subcontractor. Identify Procedures: Procedure: Calibration Procedure Manual; July 26, 1996 X Review of Qualification Records of Subcontractor Personnel. Identify Personnel: Name: Robert Layton, Level III Certified Control Systems Technician (CCST) Certificate No. 10478; Expiration Date: March 15, 2002 X Review of Calibration Records of Standards. Identify Standards and NIST Trace:
Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Support Service Program Revision: 12/01/99 [X] Review of Calibration Procedure(s) of Subcontractor. Identify Procedures: Procedure: Calibration Procedure Manual; July 26, 1996 [X] Review of Qualification Records of Subcontractor Personnel. Identify Personnel: Name: Robert Layton, Level III Certified Control Systems Technician (CCST) Certificate No. 10478; Expiration Date: March 15, 2002 [X] Review of Calibration Records of Standards. Identify Standards and NIST Trace: Standard: 7100909 Model 2020 [X] [X]
Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Support Service Program Revision: 12/01/99 X Review of Calibration Procedure(s) of Subcontractor. Identify Procedures: Procedure: Calibration Procedure Manual; July 26, 1996 X Review of Qualification Records of Subcontractor Personnel. Identify Personnel: Name: Robert Layton, Level III Certified Control Systems Technician (CCST) Certificate No. 10478; Expiration Date: March 15, 2002 X Review of Calibration Records of Standards. Identify Standards and NIST Trace: Standard: 7100909 Model 2020 X Sign Calibration Records to QA for Review I certify that the above checked requirements have been met; and I have witnessed the calibration activities and have found them to be carried out in a satisfactory manner.
Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Support Service Program Revision: 12/01/99 X Review of Calibration Procedure(s) of Subcontractor. Identify Procedures: Procedure: Calibration Procedure Manual; July 26, 1996 X Review of Qualification Records of Subcontractor Personnel. Identify Personnel: Name: Robert Layton, Level III Certified Control Systems Technician (CCST) Certificate No. 10478; Expiration Date: March 15, 2002 X Review of Calibration Records of Standards. Identify Standards and NIST Trace: Standard: 7100909 Model 2020 X Sign Calibration Records to QA for Review I certify that the above checked requirements have been met; and I have witnessed the calibration activities and have found them to be carried out in a satisfactory manner.
Program: 917 CalSys dated Sept. 17, 1996 Revision: 1 Program: Hardware Support Service Program Revision: 12/01/99 Image: Calibration Procedure(s) of Subcontractor. Identify Procedures: Procedure: Calibration Procedure(s) of Subcontractor. Identify Personnel: Image: Calibration Records of Subcontractor Personnel. Identify Personnel: Name: Robert Layton, Level III Certified Control Systems Technician (CCST) Certificate No. 10478; Expiration Date: March 15, 2002 Image: Standard: 7100909 Model 2020 Image: 7100909 Model 2020 Sign Calibration Records to QA for Review I certify that the above checked requirements have been met; and I have witnessed the calibration activities and have found them to be carried out in a satisfactory maner.

								·· · · · · · · · · · · · · · · · · · ·	Honey	well
	antina and Contro	-		Project	Number		Task Number	,	RID Number	
	VICE & MAT	ERIAL R	EPORT	I	56410			10-39374	113	249
weile Castact	vi Bill Leti				1					
			ar Miles	Page Lagran		<u>r 5</u> Kain	IOT Been	18/5 Bears	Clash realise of Realise Call	Treaks Balan Treaks Call
917 SL L4	oute 5/3	1/00							x	
vise Represent			spraval By				Customer Or		Complete	Incomplete
Bob Laylor In Call Rec. 1	(314)-569		Called Caster		Time Tech o		POU 3	1389 Rev. 0	X T.T.T.R.	
							~			
stemer									· · · · · · · · · · · · · · · · · · ·	
ne and	Neste	r Pabrica	ters lac.				1400 E. Sec			
dren	L						St. Look, h			
Comple	ted Schebuled P	reventative	Maintenance	and Cal	ibration for i	May per Se	rvice Agreem	nt dated 12/01/99		
Equipu	east is being cali	braicd per	Hansywell Ca	وونابهات	Procedure !	17-CalPre	: July 26, 19	6		
·					·····	· · · ·				
Custom		bians at t	is time.					4		
·		····				·		PPROV	<u>EV</u>	
							A	1221 1	IRDNCL	
							OW	LITY ASSU	P.I.	
								que		
							¥		12000	· · · · ·
								E 01/06		
									·····	
•										
							-			
							-			
				_						
	······································					•				
			······································							
	rid Namber of To					· · · ·				
	rta Number of Te		nt Uned: rial No. 71001		Cal	Date Jan 1	8, 2000	Des Dats Im	18, 2001	
					Cel	Dute Jea 1	8, 2000	Dee Date Jam	18, 2001	
Hearym 	ell 2020 Calibra Apreset being un	ter Se							[8, 2001	
Hensym Text Ege Ir Parts Uni	ull 2020 Calibra algorant being un f:	ter Se	rial No. 71001						[8, 2001	
Hearym Test Ege	ull 2020 Calibra algorant being un f:	ter Se	rial No. 71001						18, 2001	
Hansyon Teat Ege te Parts Unit Name Unit	ell 2020 Calibra demant being un le ed	ter Sa and is curtif	ial No. 71001 Int per Hausy	nai Pa	cedare 917-	CalSys R	19-1 Sept 17,		18, 2001	
Hansyon Text Equ In: Parts Unit Name Unit	ell 2020 Calibra demant being un le ed	ter Sa and is curtif	ial No. 71001 Int per Hausy	nai Pa	cedare 917-	CalSys R	19-1 Sept 17,		18, 2001	
Heasyw Test Ege Ier Parts Unit Name Un	ell 2020 Calibra demant being un le ed	ter Sa and is curtif	ial No. 71001 Int per Hausy	nai Pa	cedare 917-	CalSys R	T-I Sept 17,	1996.)Tead breter An	
Heasyw Test Ege Ier Parts Unit Name Un	ull 2020 Calibra algorant being un f:	ter Sa and is curtif	ial No. 71001 Int per Hausy	nai Pa	cedare 917-	CalSys R	19-1 Sept 17,	1996.		
Hanryw Test Egy New Parts Unit News Unit News Unit News down	all 2000 Caliby signatu being un in in in in in in being val appro- in being do pat in in being do pat in in	ter Se ned is cartif we en pute date age po Tatel Mater	ind per Haney ind per Haney irrates for this entrol general id		A Food Baffron	CalSys Re	T-1 Sept 17,	1996. 	Total brotice An (Coun as include	
Hanryw Tast Egy Are Purt Das Name Da Name Da	all 2000 Caliby signatu being un in in in in in in being val appro- in being do per in in being do per in	ter Se ned is cartif we en pute date age po Tatel Mater	ind per Haney ind per Haney irrates for this entrol general id		A Food Baffron	CalSys Re	T-1 Sept 17,	1996.	Total brotice An (Coun as include	
Hanryw Test Egy New Parts Unit News Unit News Unit News down	All 2000 Californ Approach Lucing of a tai and a Lucing of a bolton of a part in Account of a part in	ter Se ned is cartif we en pute date age po Tatel Mater	ind per Hansy ind per Hansy mater for the sphraf generation of the Action of the sphraf generation		A Food Baffron	CalSys Re y be added	Tell Sept 17, Tell Color (Tell Color (Tell Equation)	1996.	Total brotice An Ocus at include	
Hanryw Test Egy Ine Parte Uni News Uni News University down	all 2000 Caliby signatu being un in in in in in in being val appro- in being do per in in being do per in	ter Se ned is cartif we en pute date age po Tatel Mater	ind per Haney ind per Haney irrates for this entrol general id		A Food Baffron	CalSys Re	Tell Sept 17, Tell Color (Tell Color (Tell Equation)	1996. 	Total brotice An Ocus at include	

•

<u></u>														E	loney	well	
Industrial And	and an	Centre	1			Project	Number			Task No	ber			ND Ne	der i		
FIELD SEI		MAT	<u>ERIAL</u>	REPO	RT		56	410		i	820-	39374		L	113	249	
Trease Castle		iii Leth															••
Longing				Car M		Lapan	2	er IST Ber	<u>,</u>	OT Be		LA Re		Real	rontine e ne Cali	Trust	i Cal
917 SL	Lenis	5/	/80						-						Ľ		
Service Repre				-	el By					Customer Order No.			Cumplete		Sacragate.		
Beb Lay															٢	L	
Time Call Ret.	. By Dispatz	•	Time To	reh Calle			The To	d a S		NLT.T.M	L			T.T.T.R	•	•	
Customer																	
Name and		Neoter	: Fabri	cators i	lec.					1400 5.							
Address						· · · · ·	<u> </u>			St. Los	4, MO	61101					
Des	cristics			ā	libratie	n as Pa	-				alibrat	en es L				04.0	
			hand /	Reading				Renilier	·					Realize			
#1 Furnace	Honeywel	Tep	intere l	Loorder	<u>hinter</u>	mant N	ia. 6160	Scrie	No. 97	7-7210	344-05	5-16					1
		ned f1		101			2300		100		1200		2300	2301	37		
		and #5		101	1200	1200		2301 2301	100	101	1200	1200	2300	2301	77	 	
		nd #16		102	1200	1201	2300	2302	100	<u>101</u> 102	1200	1201	_	2301	37		
							1		1.00							L	
#2 Furness							o. 6161			79-7210						[
	Cha			101	1200		2300	2505	100	101	1200	1202		2303	77	<u> </u>	<u> </u>
	Chi	canel #S	100	101	1200	1201	2300	2302	100	101	1200	1201	2300	2302	37		!
44 Furnace	Honeywei	Tempe	abre 1	lacorder	lastr	mactor N	0. 6162	Serie	No. 97)9-7210	1144-05	5-06	r –			r	1
	Cha	and fl	100	100					100		1200		2300	2300	37		Î.
	Che	nnel (15	100	100	1200	1200	2300	2300	160	100	1200	1200	2300	2300	317	[
1833 Furnes	Manage	all Tax		Daaraa			N. 99		del Me	104	· · ·		1			r	
1633 FEIER	م ر <u>م</u> ند ا		100		1200							1200	2300	2501	107		i -
					1.		1										·
4278 Furnese	Heary	ell Tea															
			100	100	1200	119	2300	2300	100	100	1200	1100	2300	2300	107F	L	!
Notes :		_															
	of Measur	and :	Tempi	utere- I	Degrade	F (All 1	C There	ocrupie		lastrain.	ant No.	6164 74	ich is a	T There	and the)	
2.		-															
3.										_							_
Lint Medal and	rential Plan			Seriel N		-		Call		8, 2000		DenD	-	18, 2001			
(Canada	-		0. 7100	~	-			e, 2000				10, 2001			
		being w	nd is co	rtified p	er Hans	mell h	scedure	917-Ce	Sys Re	-1 50	<u>r 17, 1</u>	196.					
Nomine Parts C																	
Near	Ueed																
														·····			
	in beine	vill appa	-	ar tarvela	fur des	aurvice o	d.										
The assessments of Total Labor	ann beirr	do ant in	teda or Tabl M	7 Pagadra	a geven	namiai t	Tabl	<u>b may b</u>	added t	o din Lov 1 Taul C	<u>.</u>		_	Trank 1	reden Ad		
												Freight etc	F)		a inte		
												-					
A REVCI	-	1			-	-										<u></u>	
	- mayora		_	_		T (N.J. BULK	AIIVE	14 A 14				•			
	2	ノ.	5	i) Au	· .					<u> . A</u> .			•				6.1
Section .	in	ul	24	Au	li.				The (<u>L.A.</u>	0	ru	un	<u></u>	See (2/	51/6

The G.A. Communi Gudi____

168

· <u></u>														I	loney	well	
Industrial Aster	uden auf	Centrel	1			Project	Namber	,		Test N	-			RID Nu	der i]
FIELD SERV		MAT	ERIAL	REPO	RT		5	410			826-	9374			113	249	
¹⁹ oration Cambook		iii Luth					•								h rentine a		1
Location				Cur M	la	Page Lapan		er IST Res	<u>,)</u>	IOT Be		16 Le	5			Truck	
917 SL LA		5/31	1/00	_											K		
Gervier Represent		·		Approv	nd By 🗌					Customer Order No.				and and a second second		-	
Bob Laylan	(3)	<u>1)-569-</u>	5493		Cuta		1	ech en S		MITI				1.1.1.1	X		
) suppose	-					 .			1					•		
Customer						÷	<u>. </u>										
Name and		Nester	Febri	calors	lac.						Second						
Address										St. La	ii , <u>M</u> O	GIH					
Descr	ipties			G		i as Fe									Talaytan	0441	
			input / l	In the second	inent/	-	iner/	Realing	iner/	Reading	ingent /	Periling.	Inerst /	Reading	+/-		-
		ala Deri	_														
Lab Electron								2/98.4		98.5	1200.4	1198.3	2200.0	2198.4	37		<u>ب</u>
		_															
Lab Oraces I	Ngilal In	dicater			. 6164	_	No. 70				· ·						
		I	-200	-199	100	100	500	500	-300	-199	100	100	500	500	27		<u> </u>
Lab Yokogew	va Tempe	inatare I	lecarder	het	remont N	la. 6165	Seri	l No. 43	TODE	17			Γ				
			100	101	1200	1200	2300	2300	100	101	1200	1200	2300	2500	37		
Portable Hon	event Tr		er Lan	-	here	mt No.	5999	Seriel N	FRIT	1001001					<u> </u>	r	
<u>p</u>			100	N	1200		2300			101	1200	1199	2300	2300	10"F	X	
Portable Hon					lastron.				-						T	1	r
FORGOLE MON	cywell To		100	140	[200	/ No.		<u>Seriel N</u> 2300			1200	1200	2300	2300	10%	}	<u>├</u> ──
				_													
Portable Hoa	syneli Te		ire Rays 100		1200			Serial N 2390			1200	1199		2300	10"F	┨────	<u> </u>
			100	100		1199	2300	2500	100	100	1.000	1100	1 2300	2540			L
Keim: 1. Units of	Mean					7 /A 1 1	-			-		-		T There	-		
2. Intrus	mt No. 3	374 344	han d	inged t		nut Ne	5999 1			r region		a dear f		ander (find.	L	
3.																	
Line Niedal and Se	vill 2020				ie. 7100			Call D	e Jan 1			DeeD	ie Jan	8 2001			<u> </u>
															·		
Test Eq		being th	el is eg	و اجتلاد	e Hans	nel h	ecolure	917-Ca	Bys Re	-1_Se	n 17, 1	% .				_	
Name Vote Vote	_			·													
				_													
The assessed days The assessed days	na balana d	le set les	tale ag		d genera	université la	nak Mara vijak	d may be	t addad (n the law							
Total Labor		ľ	i atal. Ma	initi i			Total &			Total C			L)		rivelan Az 15 inches		
ļ										ſ' '			-	<u> </u>			
IT SERVICE R											-			L	_		
						- 51 TQ						-					
0	\mathbf{S}	14	0 [×						Q.A	جر ,	5	•		-	25/2	la
	- og	1	×	¥ -7 9	al					Y.H	- Jes	-ga	-	~		43	77
	/	(*	0					,

· · · ·													F	loney	well
Industrial Astenation on	d Canto				Project	Number			Test N	mber		· · · · · ·	RID No	aber	
FIELD SERVICE	<u>e mat</u>	ERIAL	REP	ORT	-	5	6410				39374			113	249
Persona Contected									· · · · · ·						
	ill Led				Inge	4_	ef	5							Treats Beier
Location		-	Car M	Bet .	Line		ST Bee	n	OT Be	1	25 Re			ROT.	Treak Call
917 St. Louis	50	1/00												κ	
Service Representive			Appro	vel By					Current	er Order	No.			glate	larempiete
Bob Layton (3) Time Call Rec. By Dispat	14)-567					1	ech an Bi		MLT.T				1.1.1.2	K	
I THE CAN HAVE BY DEPEN									ME1.11	L			1	•	
Castemer						L		_	L				1		
Name and	Nontes	r Fabri	calera	lac.					1466 5	Second	Street				1
Address										nin, MO					1
								-							
Description			C	alibratie	n as fe	ad			(alibrati	ins as L	ift.		Televan	Out of Television
		In all	Lastin	here /	<u>Laitz</u>	i Japan (Realing	ingent /	(and in a	l Ingent /	Reading.	lagest /	Reading	+1-	As Formed As Lot
Portable Honeywell			-	-			R								
CALLOR DESIGNED		100	91 11	1 1200		3378	Seriel N	100		1200	1145	2300	2500	107	
				1		1		100		1 1240	1100				<u> </u>
Portable Hanaywell?	Campein	are Ran	artar	heren	ant No. 1	3376	Seriel N	a. 8549	59						:
		100	100	1000	999	1900	1899	100	100	1000	999	1900	1899	10'F	
Portable Honeywell				to at a second		(499	Rendal 17							r	
			brder 99	1200	nit No. (1199	_	Sarial No 2299	a. 90500 100	<u>99</u>	<u>3001</u> 1 1200	1199	2300	2299	39	<u> </u>
	med #5		100	1200	1199		2300	100	100	1200	1199	2300	2300	37	
C	mand #7	100	100	1200	1199		2300	100	100	1200	1199	2300	2300	39	
	nel (13		100	1200	1200	2300	2300	100	100	1200	1200	2300	2300	37	
	nd #17		100	1200	1200	2300	2300	100	100	1200	1300	2300	2300	77	
C	nei #21	100	100	1200	1199	2300	2300	100	100	1200	1199	2300	2300	314	
Portable Honeywell T		are Rec	a der	Just the second	unt Nie. (5034	Sariel N	0779	4979014					r –	<u> </u>
	and fi		"	1200	1199		2299	100		1200	1199	2300	2299	37	
	1 1		19	1200	1200	2300	2300	100	<u> </u>	1200	1300	2300	2360	34F	
<u>Cu</u>	and #	100	101	1200	1200	2300	2300	100	101	1200	1200	2300	2300	34	
Natas :														_	
1. Units of Means	ement :	Tener		Deservice				Catheral		cut No. (5164 mb		T There	ecomie	
2.															
3.															
List Model and Bertal Num Hourywell 2020				nd: 10. 7100			0.1 0.1							_	
				4. /1001			Cal De		, 2000		Dest		18, 2001		
Test Equipment	being u	ed is ce	ر اعلان	er Haury	and Pr	acadar.	917-Cal	Sys Re	r-1 Se	x 17, 19	96.				
Hemine Parts Used:															
New: Used				· _											
The amounts shares below			r İsraia	a fir this											
The emogeth diarea balane Total Labor	de est in	ردو بالبيل	and the second second	d genera	ية أخارجين	na uti	d my be	alded t							
	ſ	Tatel Ma				Total Si			Teni O	ther spense, 1	مادر مشرقيا	3		rrides Am a induis	
									r			•	[
									L						
ER SERVICE REQUES		UE BAS (ieen e		BY YO	UR REI					_				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	)	0	5						-	. 6		•			<u>5/s,/a</u>
tere	and a	Ð	The.	<u>r</u>				Thie i	<u>0,                                    </u>	.0	14	KEL	<u> </u>	m	5/31/4
7	7	17								7	7				man
	<u>`</u>	//								-					

•

.

							Honey	well
Industrial Astronation and Contro	i	4	reject Namber		Test Number		RID Number	
FIELD SERVICE & MAT	ERIAL REI	ORT	5	5410	820	J9374	113	249
Pervis Contacted Bill Lati				_ r			Charle reatility of	Touchts Bature
Louis Cal De		Niles E	Page 5	of 5	OT Seen	E/S Bears	Renter Col	Treable Call
917 St. Louis SA	1/00		·				X	
Service Representive		ovel By			Customer Orde	r Na.	Complete	<b>lacumpiete</b>
Bob Layton (314)-569- Thue Call Res. By Disputch	SHU3   Time Tesh Ci	Red Contemp	Time T	erh en lite	MITE		X T.T.T.R.	
Customer								
Name and Noote:	r Fabricator	a Lac.			1400 S. Secon St. Lonis, MO			
					a. 1963, 197			
Description		Calibration				ine es Left		Out of Television
	inget / Reads	ng Ingent / Re-	uting i Japan /	Paning Jugar	/Realing Inent	Reading Ingent /	Rooting +/-	As Pound As Lot
Portable Omega Handheid Te	approture ind	licetar Mod	el No. 18421	Serial No. T-	116317 (NC351	J)		
						1200.1 2300.0	2299.J 6T	
Portable Omega Handheid Te		inter Mari		14 Casial Ma	20022 010 444	0		
Contraction (Contraction of the	100.0 /00.	7 1200 /	200 2300	2302 100.0	20022 (RC 335 ) /00.7   1200	1200 2300	2502 64	
Portable Omega Handheid To					20025 (NC 555 ) 101.3 1200		2302 6%	
	100.0 101.	1 1200 1	207   2500	2342 1 100.1	141.3   1200	1201 1 4500		
·				·				
L								
						· · · · ·		
			<u></u>			·····		
Notes :			·					
1. Units of Monstrument :	Temperature	Degrees F (	AH T There					
			ALL A LINE	scetples can	( Instrument No.	6164 which is a	T Thermocouple)	
2. Instrument No. 3374 has	tess charges	to Instrume	nt No. 5999 b	economic Caston	t Instrument No. a replaced broke	6164 which is a a door that had a	T Thermoscopic) under affinel.	·
2. Instrument No. 3374 has 3. List Modul and Sorial Number of To	tess charged at Reviews 1	to herman	n No. 5999 b	energies curry energies Caston	t lastronant No. er replaced breke	6164 which is a a door that had a	T Thermocouple) under affinied.	· · · · · · · · · · · · · · · · · · ·
2. Instrument No. 3374 hos	tess charged at Reviews 1	to herman	nt No. 5999 b	Cal Date Jan	e replaced brek	6164 which is a a door that had a Due Date Jan	unber affinei.	
2. Intrument No. 3374 has 3. Lint Model and Sortal Number of To Honeywell 2020 Californi	teen charges at Rectaurant t ter Serial	l to Instrument Uned:   No. 7100909	nt No. 5999 h	Cal Date Jan	er replaced broke	n door that had n Due Date Jan 1	unber affinei.	
2. Instrument No. 3374 has 3. Liet Medid and Soriel Number of To Heavywell 2020 Californ Test Equipment being or Josefer Furt Used:	teen charges at Rectaurant t ter Serial	l to Instrument Uned:   No. 7100909	nt No. 5999 h	Cal Date Jan	er replaced broke	n door that had n Due Date Jan 1	unber affinei.	
2. Instrument No. 3374 has 3. Lint Michal and Sortal Number of To Honeywell 2020 Californ Test Egespment being un	teen charges at Rectaurant t ter Serial	l to Instrument Uned:   No. 7100909	nt No. 5999 h	Cal Date Jan	er replaced broke	n door that had n Due Date Jan 1	unber affinei.	
2. Instrument No. 3374 has 3. Lint Minist and Sortal Number of Tr Homywell 2020 Californi Test Equipment being un Number Parts Used: None Used	tess charged at Retyrong I ar Serial ad is certified	l to Instrument Uned: I No. 7100901 I per Hemoyon	nt No. 5999 b 9 ell Procedure	Cal Date Jan 917-CalSys R	ar replaced broke 18, 2000 er-1 Sept 17, 1	n door that had n Due Date Jan 1	unber affinei.	
2. Instrument No. 3374 has 3. Lint Minist and Sortal Number of Tr Homywell 2020 Californi Test Equipment being un Number Parts Used: None Used	tess charged at Retyrong I ar Serial ad is certified	l to Instrument Uned: I No. 7100901 I per Hemoyon	nt No. 5999 b 9 ell Procedure	Cal Date Jan 917-CalSys R	ar replaced broke 18, 2000 er-1 Sept 17, 1	n door that had n Due Date Jan 1	unber affinei.	
2. Instrument No. 3374 has 3. Liet Medid and Sorial Number of To Henrywell 2020 Californ Test Equipment being or Josefer Furt Used:	tess charged at Retyrong I ar Serial ad is certified	l to Instrument Uned: I No. 7100901 I per Hemoyon	nt No. 5999 b 9 ell Procedure	Cal Date Jan 917-CalSys R	er replaced broke 18, 2000 et+1 Sept 17, 1 6 die teretes Freid Other	n deer that had n	R, 2001	
2. Instrument No. 3374 has 3. Lint Minist and Sortal Number of Tr Homywell 2020 Californi Test Equipment being un Number Parts Used: None Used	tess charged at Retyrong I ar Serial ad is certified	l to Instrument Uned: I No. 7100901 I per Hemoyon	nt No. 5999 b 9 ell Procedure	Cal Date Jan 917-CalSys R	ar replaced broke 18, 2000 er-1 Sept 17, 1	n deer that had n	8, 2001	
2. Instrument No. 3374 has 3. Lint Minist and Sortal Number of Tr Homywell 2020 Californi Test Equipment being un Number Parts Used: None Used	tess charged at Retyrong I ar Serial ad is certified	l to Instrument Uned: I No. 7100901 I per Hemoyon	nt No. 5999 b 9 ell Procedure	Cal Date Jan 917-CalSys R	er replaced broke 18, 2000 et+1 Sept 17, 1 6 die teretes Freid Other	n deer that had n	R, 2001	
2. Instrument No. 3374 has 3. Lint Minist and Sortal Number of Tr Homywell 2020 Californi Test Equipment being un Number Parts Used: None Used	Less charges at Response i ter Serial ed is certified at a pour loss date any reset (and Masterial	l to Instrument Uned: No. 7100909 I per Hemeryon Ins für dels sor red gevernment	ni No. 5999 b 9 ell Procedure relev ed. point case with Total Se	Cal Date Jan 917-CalSys R 9 ung bradded diman	er replaced breke 18, 2000 et-1 Sept 17, 1 b dec terretes. Tretel Other (TAL Express.) E DI A GATIBIAC	Der Date Jan 1 Der Date Jan 1 1995. Prigt ac.) TORY MARKER	R, 2001	
2. Instrument No. 3374 has     3.     Lief Medid and Soriel Number of To     Homeywell 2020 Californ     Test Equipment being us     Instants Parts Used:     None Used     The assessin doors below will appen     The assessin doors below will appen     Test Labor     R SERVICE REQUESTED BY (	Less charges at Residence I ar Serial ad is certified and is certified and service I read National (seal Manipulation (seal Manipulation) (seal Manipulation)	l to Instrument Uned:   No. 7100909   per Hemerywe hen for this ser red gevernment RANDLED (*	ni No. 5999 b 9 ell Procedure relev ed. point case with Total Se	Cal Date Jan 917-CalSys R 9 ung bradded diman	er replaced breke 18, 2000 et-1 Sept 17, 1 b dec kordes. Total Other (TAL Expanse. E DI A GATIBIAC	Der Date Jan 1 Der Date Jan 1 1995. Prigt ac.) TORY MARKER	R, 2001	
2. Instrument No. 3374 has 3. Lief Medid and Sorial Number of To Homeywell 2020 Californ Test Equipment being un Damins Party Unol: None Unol The assemute down below off appart Total Labor	Less charges at Residence I ar Serial ad is certified and is certified and service I read National (seal Manipulation (seal Manipulation) (seal Manipulation)	l to Instrument Uned:   No. 7100909   per Hemerywe hen for this ser red gevernment RANDLED (*	ni No. 5999 b 9 ell Procedure relev ed. point case with Total Se	Cal Date Jan 917-CalSys R 9 ung bradded diman	er replaced breke 18, 2000 et-1 Sept 17, 1 b dec kordes. Total Other (TAL Expanse. E DI A GATIBIAC	Due Date Jan 1 Due Date Jan 1 1995.	R, 2001	

•

NOOTER fabricators, igc.	FORMING PROCEDURE FOR CYLINDERS	PROCEDURE: PAGE: REVISION: DOCUMENT PUBLISHER: APPROVED. QA APPROVED: EFFECTIVE DATE:	9201FRM1 1 OF 2 0 TDT EDM 03/16/2000
1.0 SCOPE:	i i	*	

#### 1.0 SCOPE:

This procedure describes the process utilized to form cylinders from plate for job 20009201

- 2.0 REFERENCE: ASME Section III Divisions 1 & 3 Quality Assurance Manual Section 9 "Control of Special Processes" Framatome's Purchase Order 88855 dated 02/14/00
- 3.0 Definition: None
- 4.0 Procedure:
  - All items shall be cold formed. 4.1
  - 4.2 Material being formed is SB-575-UNS N06022 and SA 240 Type 316 (S31600)(NG).
  - 4.3 Forming procedure qualification tests per paragraph NB-4213 are not required since the material is exempt from impact testing per paragraph NB-4213.1 (c).
  - 4.4 Minimum material thickness shall be as shown on the fabrication drawings.
  - 4.5 The machine operator shall visually examine plate edges prior to forming, checking for potential stress risers. Questionable areas must be blend ground with adjacent material to eliminate the risk of material failure during forming. The operator shall form the cylinder to the size shown on the departmental requisition.
  - 4.6 When tacks are used to secure the plate edges they shall be made on the outside surface at the bottom of the bevel by qualified welders using approved job specific weld procedures.

Use of temporary attachments is not permitted; however, if temporary attachments must be used, permission must be obtained from the Quality Assurance Department before their use.

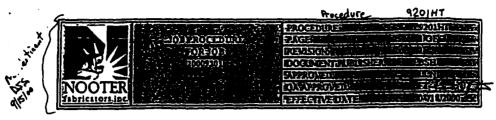
4.7 The machine operator shall perform a preliminary examination of the formed material for diameter variation and thickness to assure the formed material can be released for further processing.

The maximum acceptable limits for diameter variation at all cross sections except those with openings, shall be determined as follows. The difference in inches between the maximum and minimum diameters at any cross section shall not exceed the smaller of



NOOTED D	FORMING PROCEDURE	PROCEDURE:	9201FRM1
NOOTER A	FOR	PAGE:	2 OF 2
	CYLINDERS	REVISION	0

(D+50)/200 and D/100, where D is the nominal <u>inside</u> diameter, in inches, at the cross section under consideration. If measured on the outside, the diameters shall be corrected for plate thuckness at the cross section under consideration.


- 48 After welding the longitudinal seam, the cylinder shall be examined to verify it satisfies the job requirements. If required, rework the cylinder until it meets the acceptable limits for diameter variation. Cylinders meeting the acceptance criteria shall be forwarded to the next operation.
- 4.9 Training

Machine operators shall be trained to use standard forming skills common to the pressure vessel industry through on the job training.

5.0 Attachments

None

.



1.0 SCOPE

This procedure describes the equipment and defines the requirements for.

- A. Full solution annealing of a Hastelloy C-22 waste package closure.
- B. Intermediate quench ennealing of parts following forming or welding operations as specified in the fabrication procedure.

14

- 2.0 REFERENCES: ASME SB-575 UNS N06022
- 3.0 DEFINITIONS: None
- 4.0 PROCEDURE
  - 4.1 Preparation for Heat Treatment

Prior to heat treatment, all surfaces (both inside and outside) shall be thoroughly cleaned to remove oil, paint, grease, etc. Local areas may be cleaned, as needed, with a chloride and sulphur free solvent which will not leave a residue.

4.2 Equipment

The parts will be heat treated in an enclosed furnace of the car bottom, over-firing type, operating at a slight positive pressure.

- 4.3 Burners
  - 4.3.1 Burners are natural gas fired and operate on the excess air side of the stoichiometric ratio.
  - 4.3.2 The burners are baffled so as to avoid direct flame impingement on the furnace charge.
- 4.4 Fuel
- 1

The fuel shall be natural gas. Maximum sulfur limit is 0.200 grimel.

FT	G DOCUMENT NUM	BER
08	1289763	00

NOOTR BEER	COBPACEDURE PROCEDURE MARCHINE PROCEDURE AND
	TO LOB
STATES OF THE PARTY OF THE PART	- TOODED A CONTRACT OF THE OWNER AND THE PARTY OF THE PAR

# 4.5 Temperature Recording

- 4.5.1 The furnace is equipped with a multipoint strip chart recorder (Honeywell Electronik Model 15), which prims out thermocouple temperatures of the item being heat treated.
- 4.5.2 The strip chart recorder and furnace controls are maintained and calibrated on a regular basis by an outside contractor. Copies of the calibration certificates will be furnished.

# 4.6 Thermocouples

- 4.6.1 Temperatures are measured by Chromel-Ahumel (Type K) thermocouples. The hot junction, as well as all leads, are Chromel-Ahumel.
- 4.6.2 Thermocouples will be placed directly on the work so that the temperature recorded will be actual work temperatures, not furnace temperatures. One thermocouple will be welded on the part to monitor cooling temperature during the quench.
- 4.7 Quenching
  - 4.7.1 Immersion quenching
    - 4.7.1.1 Parts shall be quenched by immersion in water in a quench tank. Compressed air is forced through spargers built into the bottom of the tank. The rising air creates turbulence to break up steam envelopes sometimes encountered in quench annealing.
    - 4.7.1.2 Using an overhead crane, the items to be quenched are immersed. The maximum elapsed time from 2050° F to 700° F shall be 13 minutes.

# 4.8 Furnace Loading

- 4.8.1 The parts will be supported on bolsters for the heat treatment. These bolsters support approximately 120° of circumference and are 9° wide. A row of soft, insulating firebrick is used to line the bolster and isolate the Hastelloy C-22 shell from the steel bolsters.
- 4.8.2 Subssemblies and parts will be loaded on bolsters or supports with firebrick spacers and in no case will the Hastelloy C-22 material contact any carbon steel during heat treatment.

	NED BOBPROCEDURE	PROCEDURES	STREET, SALES 9201347
NOOTER DU		Plot	
	70009201	LEVISION S	

## j 4.9 Temperature Control

ł

- 4.9.1 Thermocouple locations are as shown on the loading diagrams.
- 4.9.2 A heat treat coupon will be heat treated with each furnace load.
- 4.9.3 The furnace will be at ambient temperature at the start of the cycle.
- 4.9.4 The rate of heating will not be restricted and will be as rapid as possible.
- 4.9.5 The soak temperature shall be  $2050 \pm 50^{\circ}$ F.
- 4.9.6 The hold time shall be 1/2 hour for the outer cylinder and 1 hour for the completed outer cylinder and the completed top cover assembly.
- 4.9.7 The parts will be water quenched as described in paragraph 4.7.
- 4.10 Sample Examination

The test coup on will be sent to the Metallurgical Laboratory for examination after solution annealing.

- 4.11 Reports
- Subsequent to the solution anneal and quench, the following will be provided:
  - A. Copies of the heat treating charts, as printed by the multipoint recorder
  - B. Furnace loading diagrams
  - C. Copies of the calibration records for the equipment being used
  - D. A report on the heat treat coupon microstructure
- 5.0 ATTACHMENTS
  - 5.1 Attachment 1 (20009201-1) "Preliminary Outer Cylinder"
  - 5.2 Artachment 2 (20009201-2) "Completed Outer Cylinder"
  - 5.3 Anachment 3 (20009201-3) "Completed Top Cover Assembly"

	State State	PROCEDURE: MET 9201-HT-AD
		PAGE: I of 2 3
		REVISION: CAR AND COLOR OF THE
2.5		DOCUMENT-PUBLISHER
	ADDENDUM TO THE	"APPROVED SIMILAR AND BSH WARE
NOOTER	HEAT, TREAT PROCEDURE AT	OA APPROVED: SAME SAME SALASSICION
Jabricators inc	JOB 20009201	EFFECTIVE DATES DE CONTRACTOR DE 6/20/2000

1.0 <u>SCOPE</u>

- A. This procedure is an addendum to NFI Procedure 9201-HT, Revision 1. It is to be applied to the Heat Treatment and Cooling of the Top Outer Lid assembly for the Waste Package Closure.
- B. This Heat treatment procedure is being used for experimental purposes to determine cooling rate based on forced air cooling.
- C. Heat treatment & cooling is to be performed as described in NFI procedure 9201HT, revision 1, except as noted below
- 2.0 PREPARATION FOR HEAT TREATMENT Per Procedure 9201HT
- 3.0 EQULPMENT
  - 3.1 3.3 Per Procedure 9201HT.
  - 3.4 Thermocouples
    - 3.4.1 Per Procedure 9201HT.
    - 3.4.2 Thermocouples will be placed directly on the work so that the temperature recorded will be actual work temperatures, not furnace temperatures. Two thermocouples will be welded on the part to monitor cooling temperature during the forced air cooling that will be attached to a Data Logger to record the cooling curve. One thermocouple will be located on the OD of the shell, mid height. One thermocouple located on the weld build up on the ID of the shell, mid height.

Ϋ́τ

- 3.5 Quenching Forced Air Cooling
  - 3.5.1 Forced Air Cooling
    - 3.5.1.1 Part will be removed from the furnace, suspended by a crane and cooled by blowing forced air on the part.
    - 3.5.1.2 Target cooling rate is a drop from 2050° F to 930° F in 8 minutes.

FT	G DOCUMENT NUME	BER
03	1289764	00

	ADDENDUM TO	PROCEDURE:	5201-HT-AD
NOOTER DA	HEAT TREAT PROCEDURE	PAGE:	2 of 2
	JOB 20009201	REVISION:	0

_

- 40 FURNACE LOADING Per Procedure 9201HT.
- 5.0 THERMOCOUPLE LOCATIONS Per Procedure 9201HT.
- 6.0 PROCEDURE
  - 6.1 6.5 Per Procedure 9201HT.
  - 6.6 The parts will be forced air cooled as described in paragraph 3.5
- 7.0 <u>SAMPLE EXAMINATION</u> Per Procedure 9201HT.
- 8.0 <u>REPORTS</u> Per Procedure 9201HT.

	· · · · · · ·	PROCEDURE:	9201-CP
	- CLEANING AND PACKAGING	PAGE	1 OF 2
	THE PROCEDURE FOR	REVISION:	0
1 3 2 1	WASTE WASTE	DOCUMENT FUELISHER:	KTL
	ZE PACKAGE CLOSURE	AFFRONED:	ग
NOOTER	AT THE	QA APPROVED:	TETED   FT
fibricators,iac		EFFECTIVE DATE:	Sino

# 1 SCOPE

达

This procedure provides the details for cleaning and packaging of the Waste Package Closure.

2 REFERENCE

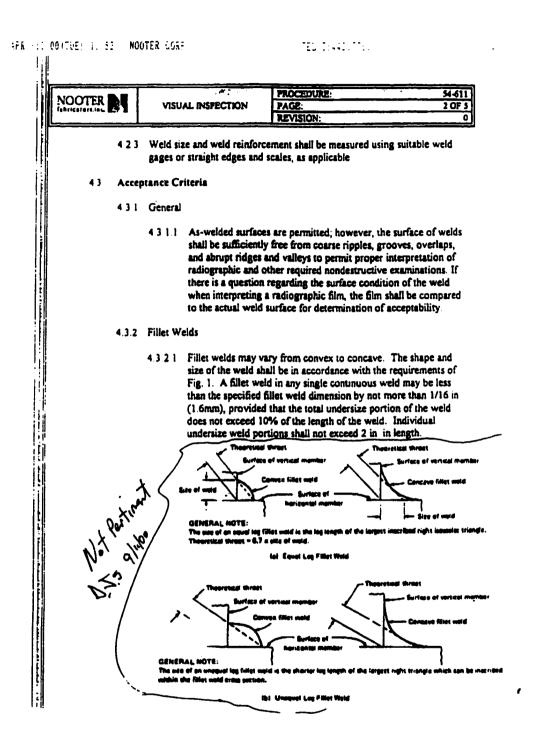
Section III Quality Assurance Manual Quality Assurance Department Manual Procedure #52-006 "Final Inspection" SSPC-SP6 (NACE -3)

3 DEFINITIONS

None

- 4 PROCEDURE
  - 4.1 Cleaning Requirements for the Waste Package Closure
    - 4.1.1 All alloy surfaces of the completed Waste Package Closure, including the Inner Shell Assembly, and Top Outer Lid shall be free of grease, oil, paint, weld spatter, crayon marks and all other gross contaminants.
    - 4.1.2 All components shall be solvent cleaned with "Turko Remover #3" to remove all contaminants. Hastelloy C-22 components shall be cleaned prior to solution anneal per NFI procedure #9201-HT.
    - 4.1.3 After solvent cleaning, rinse with potable water and a mild detergent such as "Sweetheart" or "Joy" dishwashing detergent to remove all solvent residue.
    - 4.1.4 Visually examine all components after cleaning to ensure that they are in compliance with step #4.1.1.
    - 4.1.5 After solution annealing the Hastelloy C-22 components, sandblast to remove oxide using DuPont "Starblast" media to SSPC-SP6 (commercial blast).

FT	G DOCUMENT NUM	BER
03	1289766	00


	CLEANING PROCEDURE	PROCEDURE	9201-CP
fabricatore, lac	FOR WASTE	PAGE:	2 OF 2
	PACKAGE CLOSURE	REVISION:	0

# 4.2 Packaging Requirements for the Waste Package Closure

- 4.2.1 The completed Waste Package Closure/Inner Shell, Top Inner Lid and Top Outer Lid Assemblies shall be wrapped in plastic to protect from environmental contaminants. The components shall be placed on skids and tied down to the trailer for shipment.
- 4.2.2 The completed Closure shall be identified with a waterproof tag attached for shipment. The tag shall be marked with the purchase order number and a description of the components. The tag shall be securely attached with corrosion resistant wire at the Closure lift lug.
- 4.3 Personnel implementing this procedure shall be trained in accordance with the Quality Assurance Department Manual Procedure #51-019 "Indoctrination and Training".
- 4.4 Upon completion of the Waste Package Closure, Inner Shell Assembly, Top Inner Lid and Top Outer Lid Assemblies, the assigned Q.A. personnel shall final inspect for cleanliness per Procedure #52-006 of the Quality Assurance Department Manual. After acceptance, the assigned Q.A. personnel shall sign and date the applicable sign off step(s) in the NIS Router. This information will be included in the final data package.

VISUAL INSPECTION       PROCEDURE       9201-V/ PAGE:         MUSUAL INSPECTION       DOCUMENT FUBLISHER:       DLF         APROVED:       Jackson       Jackson         All visual weld examination shall be performed in accordance with NFI Procedure 54-611, F         With the following additions:         Add to 2 0, Reference:         Applicable edition of the ASME Code is the 1995 Edition with 1996 Addenda         Image: Complexity of the ASME Code is the 1995 Edition with 1996 Addenda         Image: Complexity of the ASME Code is the 1995 Edition with 1996 Addenda         Image: Complexity of the ASME Code is the 1995 Edition with 1996 Addenda         Image: Complexity of the ASME Code is the 1995 Edition with 1996 Addenda				
VISUAL INSPECTION       IOF 1 REVISION:       0         DOCUMENT FUBLISHER:       DLF         APPROVED:       IIII         APPROVED:       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				1301 \ M
VISUAL INSPECTION       Image: Control of the control of		•		
VISUAL INSPECTION           DOCUMENT PUBLISHER:         DLF           APPROVED:         FT           QA APPROVED:         Ga APPROVED:           Image: Contract of the				
Apricators inc		VISUAL INSPECTION	DOCI MENT BITH ICUM	
All visual weld examination shall be performed in accordance with NFI Procedure 54-611, F with the following additions: Add to 2 0, Reference: Applicable edition of the ASME Code is the 1995 Edition with 1996 Addenda ().				
Abricators.iac. <u>EFFECTIVE DATE: 04/11/2</u> All visual weld examination shall be performed in accordance with NFI Procedure 54-611, F with the following additions: Add to 2 0, Reference: Applicable edition of the ASME Code is the 1995 Edition with 1996 Addenda	NOÓTER	-		
All visual weld examination shall be performed in accordance with NFI Procedure 54-611, F with the following additions: Add to 2 0, Reference: Applicable edition of the ASME Code is the 1995 Edition with 1996 Addenda CE	fabricators,inc.			
with the following additions: Add to 2 0, Reference: Applicable edition of the ASME Code is the 1995 Edition with 1996 Addenda EFTE DOCUMENT NUMBER				
FTG DOCUMENT NUMBER				
FTG DOCUMENT NUMBER	Applicable	edition of the ASME Code is t	the 1995 Edition with 1996	Addenda
FTG DOCUMENT NUMBER				
FTG DOCUMENT NUMBER				
			()÷	
54 1289768 00		_		
		Г	FTG DOCUMENT	NUMBER
		5		
		5		

#### APR -11:00 (TUE, E1 S) NOOTER LORP 8 202 PROCEDURE 54-611 NDE DEPARTMENT PAGE: 1 OF S QUALITY MANUAL REVISION: ۵ DOCUMENT PUBLISHER DLF AFTROVED: TA NOOTER VISUAL INSPECTION ank? QA APPROVED fabricators inc EFFECTIVE DATE 04/11/2000 SCOPE 1.0 This document defines the procedure and acceptance ontena for performing visual examination of welds. The techniques described herein meet the requirements of the ASME Code Section III. 2.0 REFERENCES ASME Code Section V, Article 9 ASME Code Section NB4000 DEFINITIONS 30 FTG DOCUMENT NUMBER None i li 1027099 54 00 PROCEDURE 40 Ψ**.** Requirements 41 4 1.1 The requirements of this procedure shall be implemented when visual weld examination is called for by the referencing documents 4.1.2 When performing visual inspection, a drop light or hand held light shall be used to assure adequate interpretation 4 1.3 Prior to examination, the surfaces to be inspected shall be free of any extraneous matter that would obscure surface openings or otherwise interfere with the examination. 42 Examination 4.2.1 Direct visual examination shall be performed in such a manner as to place the eye within twenty-four inches of the surface being examined and at an angle not less than 30 degrees to the surface being examined. The minimum light level shall be 50 foot candles 4.2.2 Examination of surfaces where the direct method is not feasible or access is limited shall be performed only when specifically delineated in the fabrication or erection procedure. In such cases, mirrors may be utilized

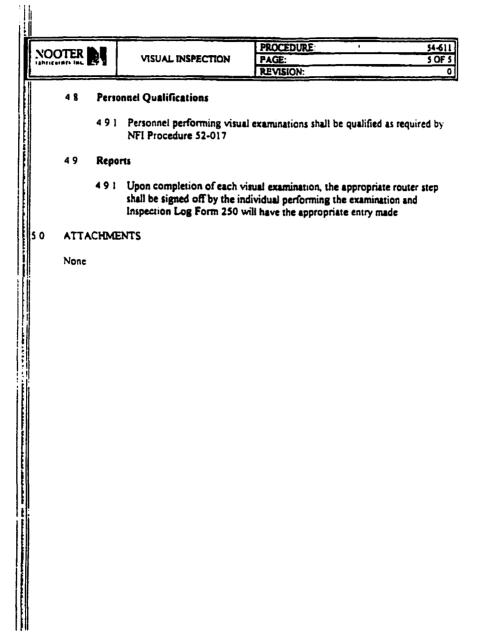


# APR -11' OD (TUE) 11 52 NOOTER CORP. TEL 1:441. *: સન્લા PROCEDURE: NOOTER PAGE: VISUAL INSPECTION 2 OF 5 REVISION 0 423 Weld size and weld reinforcement shall be measured using suitable weld gages or straight edges and scales, as applicable Acceptance Criteria 43 431 General 4.3.1.1 As-welded surfaces are permitted; however, the surface of welds shall be sufficiently free from coarse ripples, grooves, overlaps, and abrupt ridges and valleys to permit proper interpretation of radiographic and other required nondestructive examinations. If there is a question regarding the surface condition of the weld when interpreting a radiographic film, the film shall be compared to the actual weld surface for determination of acceptability 4.3 2 Fillet Welds 4.3.2.1 Fillet welds may vary from convex to concave. The shape and size of the weld shall be in accordance with the requirements of Fig. 1. A fillet weld in any single continuous weld may be less than the specified fillet weld dimension by not more than 1/16 in. (1.6mm), provided that the total undersize portion of the weld does not exceed 10% of the length of the weld. Individual undersize weld portions shall not exceed 2 in. in length. ial threat i shrant Not Porture Not aller GENERAL NOTE: e of an unjust log filles wold is the skal throat = 0.7 a site of wold. ħ of last filles used in the (a) Equal Las Fillet Weld GENERAL NOTE: nds of on ung Al tree section

•

NOOTER D.				PROCEDURE		54-611
NOOTER	VISU	AL INSPECT	TON	PAGE:		JOFS
<b> </b>		· · ·		REVISION:		0
433	Butt We	elds				
	A weld that:	shall be acc	eptable b	y visual examination	n if the examination s	hows
	4.3.3 1	The weld	has no ci	racks	-	
	4.3.3.2	The weld	has com	plete fusion and pen	etration	
	4333	All craters	s are fille	d to the full cross se	ction of the weld	
	433.4	Undercuts required s			d shall not encroach c	on the
	4.3.3.5	The weld	shali be f	ree of porosity		
	4336	Reinforce	ment of V	Welds		
		43361	The sur joints ir the base height o	e vessels, pumps and e material or may ha of reinforcement on	cement for Vessels ement of all butt weld i valves may be flush ive uniform crowns. each face of the weld the following tabulat	with The shall
				Nominal Thickness, in	Maximum Reinforcement, 1	n
l l				Up to 1, uncl.	3/32	
				Over 1 to 2, incl. Over 2 to 3, incl	1/8 5/32	
				Over 2 to 3, the Over 3 to 4, incl	7/32	
				Over 4 to 5, incl.	1/4	
				Over 5	5/16	
		4.3.3 6.2	Thickne	ess of Weld Reinfor	cement for Piping	
			reinford tabulati outside joints, ti to the is Column	ement given in Colu on shall apply separ surfaces of the join he reinforcement gives aside surface and the	nts, the limitation on i umn 1 of the followin ately to both inside an t. For single-welded ven in Column 2 shall e reinforcement given ted from the higher of	8 nd butt apply Lin

•


.

			PROCEDURI		
NOOTER		VISUAL INSPECTION			
			REVISION:		
			Material	Maxir	
			Nominal	Reinfor	
			Thickness,	Thickne	
		-	in.	Column I	Colum
		Մե	o to 1/8, incl.	3/32	3/32
			rer 1/8 to 3/16, incl.	1/8	3/32
			ver 3/16 to 1/2, incl.	5/32	1/8
			ver 1/2 to 1, incl	3/16	5/32
			ver 1 to 2, incl.	1/4	5/32
		01	ver 2	Greater of	5/32
				1/4 in or 1/8 times	
				the width	
				of the weld.	
				in inches	
44	Rejec 4 4.1	evaluation by grinding such conditioning rende	or filing. Additiona	i rework shall l	be perform
4 4	44.1	Surface indications and evaluation by grinding	or filing. Additiona are the part to be out part shall be re-exa	il rework shall i utside the specia mined in accord	be perform fied dance with
	441	Surface indications and evaluation by grinding such conditioning rende characteristics. After conditioning, the procedure. If the indica relevant indications ren	or filing. Additions are the part to be or part shall be re-exa tion still appears re	I rework shall i utside the specia mined in accord levant, it shall i	be perform fied dance with be repaired
4 4	4 4 1 4 4 2 Repai	Surface indications and evaluation by grinding such conditioning rende characteristics. After conditioning, the procedure. If the indica relevant indications ren	or filing. Additions ars the part to be or part shall be re-exa tion still appears re tain, the part shall t	I rework shall i utside the specia mined in accorr levant, it shall i se considered a	be perform fied dance with be repaired cceptable
	4 4 1 4 4 2 Repai	Surface indications and evaluation by grinding such conditioning rende characteristics. After conditioning, the procedure. If the indica relevant indications ren	or filing. Additions ars the part to be or part shall be re-exa tion still appears re tain, the part shall t	I rework shall i utside the specia mined in accorr levant, it shall i se considered a	be perform fied dance with be repaired cceptable
	4 4 1 4 4.2 Repai 4 5 1	Surface indications and evaluation by grinding such conditioning rende characteristics. After conditioning, the procedure. If the indica relevant indications ren	or filing. Additions ars the part to be or part shall be re-exa tion still appears re tain, the part shall t	I rework shall i utside the specia mined in accorr levant, it shall i se considered a	be perform fied dance with be repaired cceptable
4 5	4 4 1 4 4.2 Repai 4 5 1	Surface indications and evaluation by grinding such conditioning rende characteristics. After conditioning, the procedure. If the indica relevant indications ren rs Repairs shall be visually cal Qualifications	or filing. Additions ars the part to be or part shall be re-exa- tion still appears re- sain, the part shall be re-examined in ac the visual inspection hat the candidate h reading Jaeger num	I rework shall i itside the specii mined in accorr levant, it shall i se considered a cordance with t shall have an a as natural or co	be perform fied dance with be repaired cceptable this proced unsual eye proced ne
4 5	4 4 1 4 4 2 Repai 4 5 1 Physic 4.6.1	Surface indications and evaluation by grinding such conditioning rende characteristics. After conditioning, the procedure. If the indicat relevant indications ren rs Repairs shall be visually cal Qualifications All personnel performint examination to assure to visual acuity capable of	or filing. Additions ars the part to be or part shall be re-exa- tion still appears re- sain, the part shall be re-examined in ac the visual inspection hat the candidate h reading Jaeger num	I rework shall i itside the specii mined in accorr levant, it shall i se considered a cordance with t shall have an a as natural or co	be perform fied dance with pe repaired cceptable this proced nnual eye proced ne
4 5 4 6	4 4 1 4 4 2 Repai 4 5 1 Physic 4.6.1	Surface indications and evaluation by grinding such conditioning rende characteristics. After conditioning, the procedure. If the indicat relevant indications ren rs Repairs shall be visually cal Qualifications All personnel performing examination to assure to visual acuity capable of distance of not less that dure Qualifications	or filing. Additiona ars the part to be or part shall be re-exa- tion still appears re- tain, the part shall be y re-examined in ac- ng visual inspection hat the candidate he reading Jaeger nur- a twelve inches.	I rework shall h staide the specia mined in accorr levant, it shall h cordance with t shall have an a as natural or co nber 1 letters (r	be perform fied dance with be repaired cceptable this proced whis proced whis proced nual eye wrected ne

# APR -11 DO(TUE) 11 53 NOOTER CORP.

# and a construction of the second s

: •



LAME	IDA ARCH
RESE	ARCH

5521 FAIR LANE

# FAX TRANSMISSION

www.lambda-research.com

PUBLICATIONS AVAILABLE AT

227-3401 3

------

CINCINNATT, OHIO 45227-3401 PHONE: (513) 561-0883 FAX: (513) 561-0886 customer_service@iambda-research.com

DATE:	May 24, 2000
TO: AFFILIATION:	Mr. Daniel Smith Framatome Technologies, Inc.
FAX NO.: PHONE NO.:	(804) 832-3177 (804) 832-2960
FROM:	Melissa Bowen, Customer Service Cathleien Bowin
REFERENCE:	Lambda Research Report No. 624-9312

### Dear Mr. Smith:

Enclosed plasse find a copy of the final report for Lambda Research Project No. 824-9312. Three copies of the final report will follow shortly via U.S. Mail.

Please don't hesitate to contact us should you require additional information or have any questions.

Sincerely,

Melin Born

Melissa Bowen Customer Service

THE COVER SHEET AND 10 PAGES ARE BEING TRANSMITTED IN THE EVENT OF A TRANSMISSION FAILURE, PLEASE CONTACT OUR RECEPTIONIST AT (513) 561-0583.

THE MESSAGE AND THE FOLLOWING MORE TRANSMITTED HEREINTH ARE PAYLEDGED AND CONTROMITION, DEPONDENTION ANTENDED ONLY FOR THE FERENCES MAKED ABOVE. DESEMBLITION, ABSTRUETTON, OR CONTROL OF THE COMMUNICATION BY ANYONE OTHER THAN THE FERENCES MAKED ABOVE AS PROVIDENTED. IF YOU HAVE RECEIVED THE COMMUNICATION BY ANYONE NOTIFY HE MANDDATELY BY TELEVICINE AND RETURN THE ORIGINAL MESSAGE TO US VALUE. MAL. THANK YOU.

this Research is an independent testing laboratory founded in 1977, providing s-ray estion and relead testing services. Lemisde Research is accredited by the American solution for Laboratory Accreditation in accordance with ISOREC Guide 25. The laboratory fly assumate system is registered to the ISO 8002 (ANSWARCC GIZ).

lso
ROOE

**.** -



CINCINNATI, OHIO 45287

PHONE: \$13(\$51-0863

FAX: \$13/61-066

• • • • •

Framatome Technologies, Inc. 3315 Old Forest Mall Stop Lynchburg, VA 24506-0935

ON-SITE HOLE ORILLING DETERMINATION OF THE PRINCIPAL RESIDUAL STRESSES IN ONE C22-HASTELLOY CANISTER MOCKUP

------

REPORT: 824-9312 DATE: May 24, 2000

Mr. Daniel Smith ATTN: AUTHORIZATION: 91616

INTRODUCTION

On-site center hole-drilling measurements were made on a canister mockup at Nooter Fabrication for the purpose of determining the principal residual stresses resulting from weiding before and atter host treatment. The cylinder was reportedly manufactured from C22-Hastelloy. The cylinder was nominally 85 in. (O.D.) x 45 in. (height).

sheck idual Stress Laboratory Re

White L

Quality Assurance



is. Las á A -1.0 is the f -

-----

**...** 

#### TECHNIQUE

The near-surface principal residual stresses were determined using the center hole drilling method per the ASTM E837 procedure. The residual stress measurements were made at three positions on the outside diameter along the weld and at four locations at each position both before and after heat treatment for a total of 24 locations, as shown in Figure 4. The three positions were near the top, centered through the well of the reinforcement band, at mid-length of the weld, and nominally 5 in. from the bottom. The four locations per position were at the weld center, adjacent to the fusion line, 0.2 in. from the fusion line, and 0.3 in. from the fusion line. The measurements after heat treatment were made at an axial distance of 0.2 in. from the

Rectangular electrical resistance strain gages (Micro-Measurements type CEA-06-062UM-120), were installed at the locations adjacent to the fusion line. Rectangular electrical resistance strain gages (Micro-Measurements type EA-06-062RE-120) were installed at all other measurement locations. A hole was machined at the geometric center of the strain gage rosette to a depth of nominally 40 percent of the grid centerline diameter. The hole was machined with a high speed air turbine assembly employing a carbide outlar. The strain relaxation was recorded and the principal residual strasses were computed per ASTM E 837 at the full depth of cut.

#### **RESULTS AND DISCUSSION**

The principal residual stresses obtained by hole drilling on the canister mockup are listed in Tables I, II, and III and shown graphically as a function of distance from the weld centerline in Figures 1, 2, and 3. It should be noted that the actust measurement locations for any given position do not lie on a single circumferential ring but are, in fact, staggered laterally as shown in Figure 4.

The maximum stress direction is defined by the angle phi, which is taken to be a positive angle counterclockwise from the hoop direction. The number one gage direction was the hoop direction for this analysis. Compressive stresses are shown as negative values, tensile as positive, in units of ksi ( $10^9$  pel).

The residual stresses calculated using the hole drilling method that exceed 50% of the yield stress of the material may be overestimated (Reference: ASTM E 837-85 Determining Residual Stresses by the Hole-Drilling Strain-Gage Method). Because the stress intensity factor for a hole in a plate is nominally 2, introduction of a hole into a stress field higher then nominally one-half the yield stress will cause yielding at the edge of the hole. The underlying equations for stress calculation are based upon linear elasticity and will be increased in error as the zone of yielding increases. The calculated residual stresses will tend to be exaggerated if yielding does occur.

### CONCLUSIONS

The principal residual stresses are presented in Tables I, II, and III and Figures 1, 2, and 3. Before the heat treatment and quench, the results indicate that the highest tensile stresses are found at the Top position. The maximum residual stresses at the four locations at the Top

Lambda Research

Page 2 of 3

824-9312

LABBUA RESEARCE

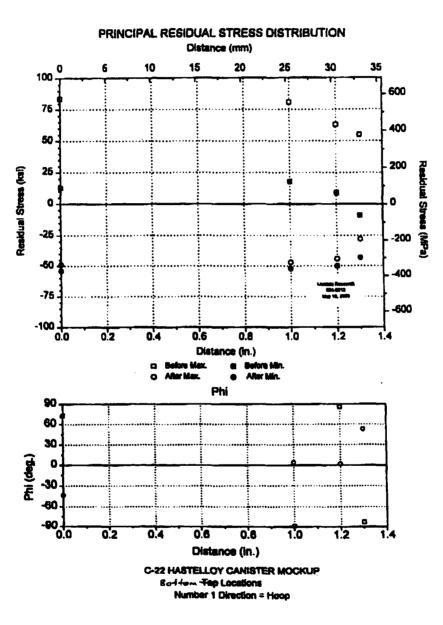
position range from +65 to +84 ksi, and the minimum residual stresses range from -9 to +18 kzi. The maximum residual stresses for the Mid-Weld and Bottom positions range from +31 to +7 ksi, and the minimum residual stresses range from -57 to +16 kai. The fact that there is a welded reinforcement bend on the inside diameter of the Top position locations may be the reason for the higher tensile stresses at these locations.

The data after the heat treatment and quench show that all of the locations are in compression in all directions. The maximum principal residual stresses range from -28 to -72 ksi and the minimum residual stresses range from -39 to -86 ksi. At each position the most compressive residual stresses are found at the weld center location. Of all the locations, the Mid Weid Center location is the most compressive.

The right hand columns of Tables I, II, and III list the directions of the maximum principal residual stresses. These data are also plotted at the bottoms of Figures 1, 2, and 3. Before the heat treatment and quench, for the Top position the maximum principal stresses are fairly close to the axial direction. The direction of the maximum residual stresses at the other two positions range from 1 to 77 deg. from the axial direction.

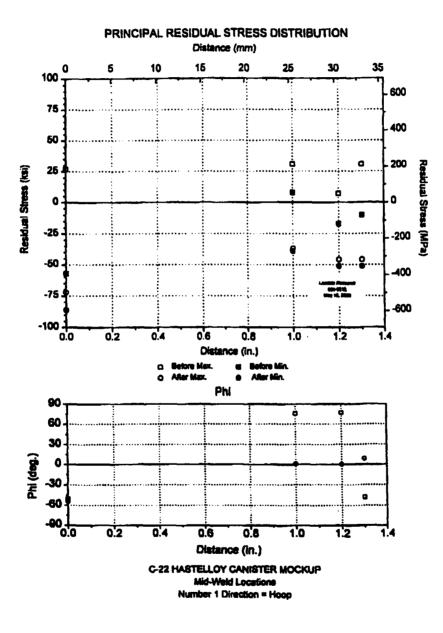
After the heat treatment and quench, the maximum and minimum principal residual stresses for a given location tend to be very similar. Therefore, the direction of the maximum principal residual stress is not well defined.

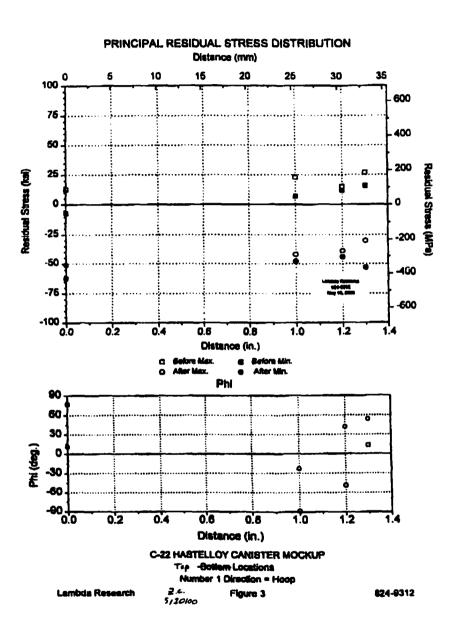
[holedril.fm 10.97]


Lambda Research

Page 3 of 3

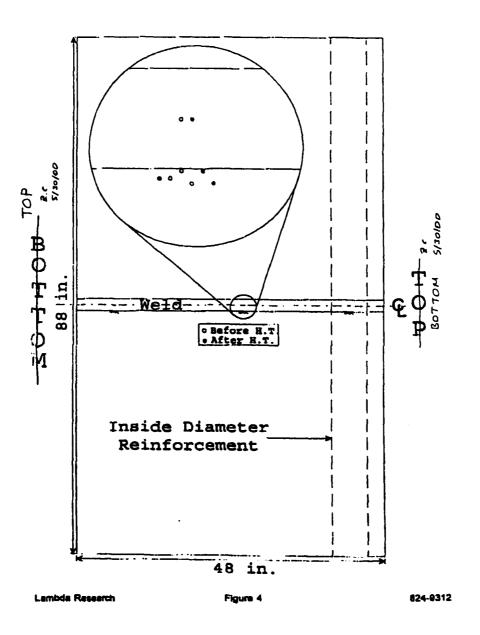
824-9312


1004






....








.....





----

		C-ZZ HAST Latter 2 C No	C-22 HASTELLOY CANISTER MOCKUP betwee <b>Tap Locations</b> No. 1 Direction = Hoop 57000	ockup		
Distance from Weld		Residual S	Residual Strees (Ics!)		Phi (dea )**	1.1
	<u> Afindimum</u>		Minimum			
	Reform Hasel Trans Alber Hasel Trans	After Heat Treet	Before Heat Treat	Betore Heat Trees After Heat Trees	Before Heat Treat	After Heat Treet
Center	Ą	9	51+	Ş	et:	ą
Adjacent	I.	L¥	8L+	ង	<u>8</u>	T
0.2 h.	<b>19</b> •	Ŧ	۰ ۹	Ş.	Ş	<b>5</b>
0.3 h.	\$	Ŗ	ę	7	ġ	+53

(a) Phi is taken as the angle positive counterclockwise from the hoop direction.

-----

Lembda Research

824-9312

****

Table |

.

#### PRINCIPAL RESIDUAL STRESSES C-22 HASTELLOY CANISTER MOCKUP Mid-Weld Locations No. 1 Direction = Hoop

Distance from Weld	Residuel Stress (kpl)				Phi (deg.)**		
	Maximum		Michnum				
	Before Heat Treat	After Heat Treat	Before Heat Treat	After Heat Treat	Before Hest Treat	After Heat Treat	
Center	+27	-72	-57	-85	-50	-54	
Adjacent	+31	-37	+8	-39	+78	+1	
0.2 in.	+7	-48	-17	-61	+17	0	
0.3 in,	+31	-46	-10	-51	-48	+9	

(a) Phi is taken as the angle positive counterclockwise from the hoop direction.

Lambda Research

Table II

824-9312

10, 11, 10

-----

ε

L'ARRA

2

E CAC

.

.

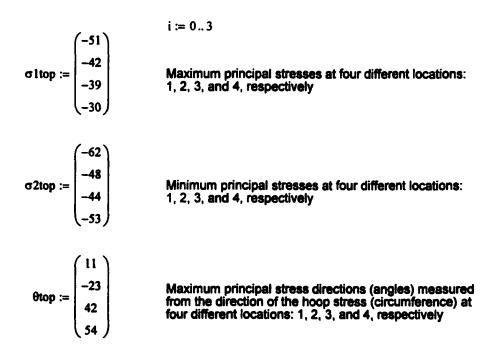
•

Table III

Lambda Research

824-9312

-


# APPENDIX VI

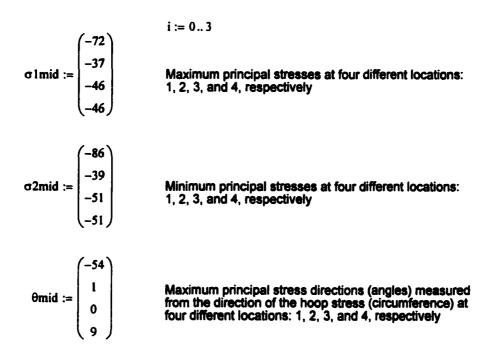
# MATHCAD CALCULATION FILE FOR TRANSFORMATION OF PRINCIPAL STRESSES INTO HOOP STRESS

# **Transformation of Principal Stresses into Hoop Stress**

All principal stresses and their corresponding directions in terms of angles are obtained from the documents given in Appendix V  $\!\!\!$ 

Hoop stresses at the top locations in the canister mock-up:

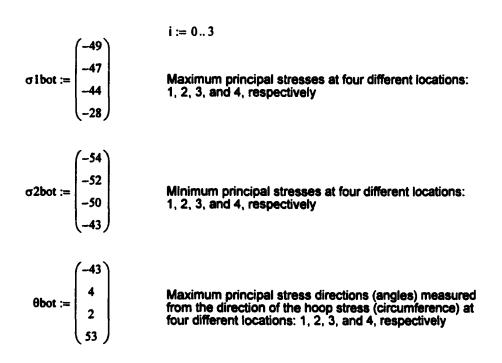



The magnitudes of the hoop stresses are obtained using the following relation from the Mohr's circle for biaxial stress state:

$$\sigma \text{hoop}_i := \left[\frac{(\sigma \text{ltop}_i + \sigma 2\text{top}_i)}{2}\right] + \left[\frac{(\sigma \text{ltop}_i - \sigma 2\text{top}_i)}{2}\right] \cdot \cos\left(2 \cdot \theta \text{top}_i \cdot \frac{\pi}{180}\right)$$

Therefore: σhoop_i =

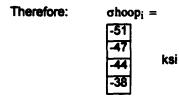
-51 -43 -41 ksi -45


Hoop stresses at the middle locations in the canister mock-up:



The magnitudes of the hoop stresses are obtained using the following relation from the Mohr's circle for biaxial stress state:

$$\sigma hoop_i := \left[ \frac{\left(\sigma \, 1 \, mid_i + \sigma 2 mid_i\right)}{2} \right] + \left[ \frac{\left(\sigma \, 1 \, mid_i - \sigma 2 mid_i\right)}{2} \right] \cdot \cos\left(2 \cdot \theta mid_i \cdot \frac{\pi}{180}\right)$$


Therefore: σhoop_i = -81 -37 -46 -46 -46



Hoop stresses at the bottom locations in the canister mock-up:

The magnitudes of the hoop stresses are obtained using the following relation from the Mohr's circle for biaxial stress state:

$$\sigma hoop_i := \left[\frac{\left(\sigma \, l \, bot_i + \sigma 2 b ot_i\right)}{2}\right] + \left[\frac{\left(\sigma \, l \, bot_i - \sigma 2 b ot_i\right)}{2}\right] \cdot \cos\left(2 \cdot \theta b ot_i \cdot \frac{\pi}{180}\right)$$



## APPENDIX VII

## TWO DIMENSIONAL AXISYMMETRIC FINITE ELEMENT MODEL INPUT FILE FOR OPTIMIZATION USING ANSYS SOFTWARE

```
1
      Coarse mesh 2-D axisymmetric model for induction aneealing
1
1
      Obective function: Maximum compression on the outer surface
      State variable: None
Ł
      Design variables: Defined below
1
1
/config,nres,2000
/units,si
1
                     SET INITIAL VALUE OF DESIGN VARIABLES
1
var1=0.09
                  ! Trunnion collar upper section length (variable #1)
var2=0.025
                  ! Outer lid closure weld length (variable #2)
var3=0.05
                  ! Extended lid outer fillet weld base length
(variable #3)
var4=0.05
                  ! Extended lid inner fillet weld base length
(variable #4)
var5=0.025
                  ! Extended outer shell lid thickness (variable #5)
                  ! Reinforcement ring (variable #6)
var6=0.05
                  ! Ring weld section - inner (variable #7)
var7=0.05
1
1
/prep7
/title, FEA to determine residual stresses due to induction coil
heating of closure welds
/vcon, 0
et,1,plane13,4,,1 ! Axisymmetric model for the outer shell
1
mptemp, 1, 20, 1120
mpdata, ex, 1, 1, 206e9, 134e9 ! Alloy 22 Elastic Modulus
mpdata, nuxy, 1, 1, 0.278, 0.46 ! Alloy 22 Poisson's ratio
! Material properties of outer shell
tb, biso, 1
tbtemp,20
tbdata,,310e6,0.847e9 ! Alloy 22
tbtemp, 1120
tbdata,,85e6,0.173e9
                       ! Alloy 22
mp, dens, 1, 8690.0
                   ! Alloy 22
mpdata, alpx, 1, 1, 12.4e-6, 16.2e-6
                                  ! Alloy 22
! Thermal properties of Alloy 22
/COM,
        Define conductivity
         1, 48,
MPTEMP,
                    100, 200,
                                 300, 400, 500,
         7, 600,
MPTEMP,
MPDATA, KXX, 1, 1,
                    10.1, 11.1, 13.4, 15.5, 17.5, 19.5,
MPDATA, KXX, 1, 7, 21.3,
/COM,
        Define specific heat
         1, 52,
MPTEMP,
                   100, 200,
                                 300, 400,
                                           500,
MPTEMP,
        7, 600,
MPDATA, C, 1, 1, 414, 423, 444, 460, 476, 485,
MPDATA, C, 1, 7,
                 514,
/com, Define Parameters
I
! Parameters along x-axis
osir=0.762
             ! Outer shell inner radius
osip=0.004
               ! Outer shell inner part
osop=0.016
               ! Outer shell outer part
tcti=0.02
                ! Trunnion collar thickness - inner
```

```
! Trunnion collar thickness - middle
tctm=0.005
tcto=0.015
                 ! Trunnion collar thickness - outer
               ! Gap between extended outer shell lid and outer shell
gap=0.004
1
! Parameters along y-axis
cav=4.775+0.03+0.01+0.03+0.07
                                 ! Distance between outer shell lid
inner surfaces
              ! Half distance between outer shell lid inner surfaces
hcav=cav/2
trl=0.1
                 ! Trunnion ring length
tcl=0.14
                 ! Trunnion collar length
tcbi=0.005
                ! Trunnion collar bottom - innner region
tcbo=0.02
                 ! Trunnion collar bottom - outer region
             ! Closure lid thickness
clth=0.01
clw=0.01
             ! Closure lid weld
tcui=0.02
                ! Trunnion collar upper section - inner part of the
fillet weld
tcuo=0.02
                ! Trunnion collar upper section - outer part of the
fillet weld
olid=0.025 ! Extended lid base
/com, Define keypoints
csys,0
k,1,osir,
k,2,osir+osip,
k, 3, osir+osip+osop,
k,4,osir,hcav-trl-tcl-tcbi-tcbo
k, 5, osir+osip, hcav-trl-tcl-tcbi-tcbo
k, 6, osir+osip+osop, hcav-trl-tcl-tcbi-tcbo
k,7,osir,hcav-trl-tcl-tcbi
k,8,osir+osip,hcav-trl-tcl-tcbi
k,9,osir+osip+osop,hcav-trl-tcl-tcbi
k, 10, osir+osip+osop+tcti, hcav-trl-tcl-tcbi
k, 11, osir, hcav-trl-tcl
k,12,osir+osip,hcav-trl-tcl
k, 13, osir+osip+osop, hcav-trl-tcl
k, 14, osir+osip+osop+tcti, hcav-trl-tcl
k, 15, osir+osip+osop+tcti+tctm, hcav-trl-tcl
k, 16, osir+osip+osop+tcti+tctm+tcto, hcav-trl-tcl
k, 17, osir, hcav-trl
k,18,osir+osip,hcav-trl
k, 19, osir+osip+osop, hcav-trl
k,20,osir+osip+osop+tcti,hcav-trl
k,21,osir+osip+osop+tcti+tctm,hcav-trl
k,22,osir+osip+osop+tcti+tctm+tcto,hcav-trl
k,23,0,hcav
k,24,osir,hcav
k,25,osir+osip,hcav
k, 26, osir+osip+osop, hcav
k,27,osir+osip+osop+tcti,hcav
k,28,osir+osip+osop+tcti+tctm+tcto,hcav
k,29,0,hcav+clth
k, 30, osir+osip-clw, hcav+clth
k, 31, osir+osip, hcav+clth
k, 32, osir+osip+osop, hcav+clth
k,33,osir+osip+osop+tcti,hcav+clth
k, 34, osir+osip+osop+tcti+tctm+tcto, hcav+clth
k,35,osir+osip,hcav+clth+clw
```

k, 36, osir+osip+osop, hcav+clth+clw k, 37, osir+osip+osop+tcti, hcav+clth+clw k, 38, osir+osip+osop+tcti+tctm+tcto, hcav+clth+clw k, 39, osir+osip, hcav+clth+clw+var1 k,40,osir+osip+osop,hcav+clth+clw+var1 k,41,osir+osip+osop+tcti,hcav+clth+clw+var1 k,42,osir+osip+osop+tcti+tctm+tcto,hcav+clth+clw+var1 k,43,osir+osip,hcav+clth+clw+var1+tcui k,44,osir+osip+osop,hcav+clth+clw+var1+tcui k,45,osir+osip+osop+tcti,hcav+clth+clw+var1+tcui k,46,osir+osip,hcav+clth+clw+var1+tcui+tcuo k,47,osir+osip+osop,hcav+clth+clw+var1+tcui+tcuo k,48,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2 k,49,osir+osip-gap,hcav+clth+clw+var1+tcui+tcuo+var2 k, 50, osir+osip, hcav+clth+clw+var1+tcui+tcuo+var2 k,51,osir+osip+osop,hcav+clth+clw+var1+tcui+tcuo+var2 k, 52, osir+osip-gap, hcav+clth+clw+var1+tcui+tcuo k,53,osir+osip-gap-var5-var6,hcav+clth+clw+var1+tcui+tcuo+var2-var3 k,54,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2-var3 k,55,osir+osip-gap,hcav+clth+clw+var1+tcui+tcuo+var2-var3 k,56,0,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4 k,57,osir+osip-gap-var5-var6-var7,hcav+clth+clw+var1+tcui+tcuo+var2var3-var4 k,58,osir+osip-gap-var5-var6,hcav+clth+clw+var1+tcui+tcuo+var2-var3var4 k,59,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4 k,60,osir+osip-gap,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4 k,61,0,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4-olid k,62,osir+osip-gap-var5-var6-var7,hcav+clth+clw+var1+tcui+tcuo+var2var3-var4-olid k,63,osir+osip-gap-var5-var6,hcav+clth+clw+var1+tcui+tcuo+var2-var3var4-olid k,64,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4olid k,65,osir+osip-gap,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4-olid /com, Horizontal lines in inner (first) part of the outer shell 1,1,2 1,4,5 1,7,8 1,11,12 1,17,18 1,24,25 1,30,31 1,30,35 1,31,35 1,32,36 1,33,37 1,34,38 lesize, all, , , 2, 1, 1 lsel, none /com, Horizontal lines in second part of the outer shell 1,2,3 1,5,6 1,8,9 1,12,13 1,18,19 1,25,26

1,31,32 1,35,36 1,39,40 1,43,44 1,46,47 1,50,51 lesize, all, , , 2, 1, 1 lsel, none /com, Horizontal lines in inner part of the trunnion collar 1,7,4 1,8,5 1,9,6 1,10,6 1,9,10 1,13,14 1,19,20 1,26,27 1,32,33 1,36,37 1,40,41 1,44,45 1,47,45 1,44,47 1,43,46 lesize, all, , , 2, 1, 1 lsel, none /com, Horizontal lines in the thin section of the lower trunnion collar 1,11,7 1,12,8 1,13,9 1,14,10 1,15,10 1,14,15 1,20,21 lesize, all, , , 2, 1, 1 lsel, none /com, Horizontal lines in the thick section of the lower trunnion collar 1,15,16 1,21,22 lesize,all,,,1,1,1 lsel, none /com, Horizontal lines in the outer part of the upper trunnion collar 1,27,28 1,33,34 1,37,38 1,41,42 1,45,42 1,41,45 1,40,44 1,39,43 lesize,all,,,2,1,1 lsel, none /com, Horizontal lines in the gap 1,52,46 1,49,50 lesize, all, , , 1, 1, 1

lsel, none /com, Horizontal lines in the extended outer shell lid 1,64,65 1,59,60 1,54,55 1,48,52 1,48,49 1,49,52 1,50,46 1,51,47 lesize, all, , , 4, 1, 1 lsel, none /com, Horizontal lines in the extended lid reinforcement ring 1,63,64 1,58,59 1,53,54 1,53,48 1,48,54 1,52,55 lesize, all, , , 4, 1, 1 lsel, none /com, Horizontal lines in the extended lid reinforcement ring - left side section 1,62,63 1,57,58 1,57,53 1,53,58 1,54,59 1,55,60 lesize, all, , , 4, 1, 1 lsel,none /com, Horizontal lines in the outer lid 1,61,62 1,56,57 lesize,all,,,6,.0625,1 lsel, none /com, Horizontal lines in the closure lid 1,23,24 1,29,30 lesize,all,,,6,.0625,1 lsel, none /com, Vertical lines above the symmetry line 1,1,4 1,2,5 1,3,6 lesize, all, , , 6, .06, 1 lsel, none /com, Vertical lines in the lower part of the trunnion collar 1,11,17 1,12,18 1,13,19 1,14,20 1,15,21 1,16,22 lesize, all, , , 2, 1, 1 lsel, none /com, Vertical lines in the middle part of the trunnion collar

1,17,24 1,18.25 1,19,26 1,20,27 lesize, all, , , 2, 1, 1 lsel, none /com, Vertical lines in the closure lid 1,23,29 1,24,30 1,25,31 1,26,32 1,27,33 1,28,34 lesize, all, , , 1, 1, 1 lsel, none /com, Vertical lines in the upper part of the trunnion collar 1,35,39 1,36,40 1,37,41 1,38,42 lesize,all,,,6,.2,1 lsel, none /com, Vertical lines in the outer lid 1,61,56 1,62,57 1,63,58 1,64,59 1,65,60 lesize, all, , , 2, 1, 1 lsel, none /com, Define areas starting from the region close to bottom symmetry plane allsel al,1,84,2,83 al,13,85,14,84 al,2,26,3,25 al, 14, 27, 15, 26 al,27,28,29 al,3,41,4,40 al,15,42,16,41 al,29,43,30,42 al,43,44,45 al,4,87,5,86 al,16,88,17,87 al, 30, 89, 31, 88 al,45,90,46,89 al,47,91,48,90 al,5,93,6,92 al, 17, 94, 18, 93 al, 31, 95, 32, 94 al,81,97,82,96 al,6,98,7,97 al,18,99,19,98 al, 32, 100, 33, 99 al,49,101,50,100 al,7,9,8

al,19,10,20,9

al, 33, 11, 34, 10 al, 50, 12, 51, 11 al,20,103,21,102 al, 34, 104, 35, 103 al,51,105,52,104 al,21,55,22,56 al,35,54,36,55 al, 52, 53, 54 a1,22,38,23,39 al, 36, 37, 38 al,23,66,24,65 al, 57, 65, 58, 64 al,62,64,63 al,69,71,70 al,61,72,62,71 al,74,76,75 al,68,77,69,76 al,60,78,61,77 al,79,107,80,106 al,73,108,74,107 al,67,109,68,108 al, 59, 110, 60, 109 /com, Outer shell and lid mesh alls type,1 ! plane13 mat,1 ! Alloy 22 smrt, off mshkey,1 amesh, all /com, Apply displacement/symmetry constraints nsel,s,loc,y,0 d, all, uy, 0 nsel, s, loc, x, -.001, .001 d, all, ux, 0allsel save /nerr,,100000 /SOLU ANTYPE, TRAN, NEW, NROPT, FULL, , ON, TRNOPT, FULL, ALLS TIME, 35 /COM, Thermal initial boundary condition for the WP at 20 degrees C TUNIF,20 /COM, Apply loads and solve for 0 to 35 seconds nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t cui+tcuo+var2 ! Select volume of first HAZ from coil induction D, ALL, TEMP, 1120 nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo, hcav+clth+clw+var1+tcui+tcuo+ (var2/2) - 0.0001! Select volume of second HAZ from coil induction D, ALL, TEMP, 750 nsel, s, loc, y, hcav+clth+clw+var1, hcav+clth+clw+var1+tcui+tcuo-0.0001 ! Select volume of third HAZ from coil induction D, ALL, TEMP, 500

```
nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3-
var4+0.0001,hcav+clth+clw+var1-0.00001 ! Select volume of fourth HAZ
from coil induction
D, ALL, TEMP, 250
/COM.
                 Set time integration parameters for the first time
interval
ALLS
NSUBST, 5, 10, 4, ON,
KBC,0
AUTOTS, ON
OUTRES, ALL, ALL
SOLVE
ł
Ł
/COM,
                 Solve from 35 to 45 seconds
TIME,45
nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t
cui+tcuo+var2 ! Select volume of first HAZ from coil induction
D, ALL, TEMP, 1120
nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo, hcav+clth+clw+var1+tcui+tcuo+
(var2/2) - 0.0001
                 ! Select volume of second HAZ from coil induction
D, ALL, TEMP, 750
nsel, s, loc, y, hcav+clth+clw+var1, hcav+clth+clw+var1+tcui+tcuo-0.0001
! Select volume of third HAZ from coil induction
D, ALL, TEMP, 500
nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3-
var4+0.0001,hcav+clth+clw+var1-0.00001 ! Select volume of fourth HAZ
from coil induction
D, ALL, TEMP, 250
ALLS
OUTRES, ALL, ALL
SOLVE
1
1
/COM,
                 Solve from 45 to 75 seconds
nsel,all
DDELE, ALL, TEMP
                                       ! Delete previously set boundary
conditions
TM START=46
TM END=75
TM INC=1
ALLS
*DO, TM, TM START, TM END, TM INC
        TIME, TM,
! Identify and group all surface nodes for quenching
lsel,s,,,75
lsel,a,,,70
lsel, a, , , 63
lsel,a,,,58
lsel, a, , , 24
lsel, a, , , 66
lsel,a,,,37
lsel,a,,,53
lsel,a,,,105
nsll,s,1
cm,s_nodes,node
alls
```

```
! Select first set of surface nodes for quenching
nsel,s,,,s nodes
nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t
cui+tcuo+var2
cm, surf1, node
D, ALL, TEMP, 1120-((1000/29) * (TM-46))
! Select second surface area for quenching
nsel,s,,,s nodes
nsel, r, loc, y, hcav+clth+clw+varl+tcui+tcuo, hcav+clth+clw+varl+tcui+tcuo+
(var2/2) - 0.0001
cm, surf2, node
D, ALL, TEMP, 750-((730/29)*(TM-46))
! Select third surface area for quenching
nsel,s,,,s nodes
nsel,r,loc,y,hcav+clth+clw+var1,hcav+clth+clw+var1+tcui+tcuo-0.0001
cm, surf3, node
D, ALL, TEMP, 500-((480/29)*(TM-46))
! Select fourth surface area for quenching
nsel, s, , , s nodes
nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3-
var4+0.0001,hcav+clth+clw+var1-0.00001
cm, surf4, node
D, ALL, TEMP, 250-((230/29)*(TM-46))
        ALLS
        NSUBST, 2, 4, 1, ON,
        OUTRES, ALL, ALL
         SOLVE
*ENDDO
I
1
/COM,
                 Solve from 75 to 1800 seconds
nsel, s, , , surf1
nsel, a, , , surf2
nsel, a, , , surf3
nsel, a, , , surf4
D, ALL, TEMP, 20
TM_START=80
TM END=1800
TM INC=5
ALLS
*DO, TM, TM START, TM END, TM INC
         TIME, TM,
        NSUBST, 2, 4, 1, ON,
        OUTRES, ALL, ALL
         SOLVE
*ENDDO
1
FINISH
/POST1
SET, LAST
alls
! Select first surface area for quenching
nsel,s,,s_nodes
nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t
cui+tcuo+var2
cm, surf1, node
! Select second surface area for quenching
```

nsel, s, , , s_nodes nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo, hcav+clth+clw+var1+tcui+tcuo+ (var2/2) - 0.0001cm.surf2.node ! Select third surface area for quenching nsel,s,,s_nodes nsel, r, loc, y, hcav+clth+clw+var1, hcav+clth+clw+var1+tcui+tcuo-0.0001 cm, surf3, node ! Select fourth surface area for quenching nsel,s,,,s_nodes nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3var4+0.0001, hcav+clth+clw+var1-0.00001 cm, surf4, node nsel, s, , , surf1 nsel, a, , , surf2 nsel, a, , , surf3 nsel, a, , , surf4 nsort, s, z, 0, 0, 1 *get,sz_max,sort,,max ! Z-STRESS (COMPRESSION) MAXIMUM REAL VALUE comp_mx=200e6+sz_max ! OBJECTIVE FUNCTION: MAXIMUM COMPRESSION ł POSITIVE NUMBER FOR MINIMIZATION OBTAINED 1 USING 200 MPa OFFSET FINISH /OPT OPVAR, comp mx, OBJ, , , .01 ! OBJECTIVE FUNCTION **OPVAR, var1**, **DV**, 0.085, 0.15, .002 ! DESIGN VARIABLE #1 OPVAR, var2, DV, 0.01, 0.025, .002 ! DESIGN VARIABLE #2 OPVAR, var3, DV, 0.03, 0.06, .002 ! DESIGN VARIABLE #3 OPVAR, var4, DV, 0.01, 0.06, .002 ! DESIGN VARIABLE #4 OPVAR, var5, DV, 0.01, 0.05, .002 ! DESIGN VARIABLE #5 OPVAR, var6, DV, 0.01, 0.08, .002 ! DESIGN VARIABLE #6 OPVAR, var7, DV, 0.01, 0.08, .002 ! DESIGN VARIABLE #7 OPSAVE, INITIAL, OPT ! SAVE INITIAL DESIGN OPTYPE, SUBP ! OPT METHOD IS SUBPROBLEM APPROX. OPSUBP, 30 ! OPTIMIZE FOR 30 ITERATIONS (MAX) OPEXE ! PERFORM SUB-PROBLEM APPROX. OPTIMIZATION OPLIST, ALL, , 1 ! LIST DESIGN SETS FINISH /EXIT, NOSA /EOF

## APPENDIX VIII

## MATHCAD CALCULATION FILES FOR OPTIMIZATION USING SUCCESSIVE QUADRATIC APPROXIMATION

	( 36616568
37 data points: Mxy gives the values of 7 variables;	22200656
vz gives the corresponding hoop stresses from ANSYS	37097322
	31736332
0.085 0.016 0.042 0.03 0.026 0.038 0.038	28339273
0.098 0.016 0.042 0.03 0.026 0.038 0.038	26399543
0.111 0.016 0.042 0.03 0.026 0.038 0.038	
0.124 0.016 0.042 0.03 0.026 0.038 0.038	36493172
0.137 0.016 0.042 0.03 0.026 0.038 0.038	23698965
	40064955
0.111 0.01 0.042 0.03 0.026 0.038 0.038 0.038 0.0111 0.013 0.042 0.03 0.026 0.038 0.038	17111637
0.111 0.019 0.042 0.03 0.026 0.038 0.038	134211136
0.111 0.022 0.042 0.03 0.026 0.038 0.038	93672103
0.111 0.025 0.042 0.03 0.026 0.038 0.038	36448620
0.111 0.016 0.03 0.03 0.026 0.038 0.038	16928727
0.111 0.016 0.038 0.03 0.026 0.038 0.038	45893010
0.111 0.016 0.048 0.03 0.026 0.038 0.038 0.111 0.016 0.054 0.03 0.026 0.038 0.038	
	50971165
0.111 0.016 0.042 0.01 0.026 0.038 0.038	140489329
0 1110 016 0 042 0 02 0 026 0 038 0 038	68229458
Mxy = 0.0111   0.016   0.042   0.04   0.026   0.038   0.038   vz :=	= 860031
0.111 0.016 0.042 0.05 0.026 0.038 0.038	-23459964
0.111 0.016 0.042 0.06 0.026 0.038 0.038	6217825
0.111 0.016 0.042 0.03 0.01 0.038 0.038	64502322
0.111 0.016 0.042 0.03 0.018 0.038 0.038 0.111 0.016 0.042 0.03 0.034 0.038 0.038	50194254
0.111 0.016 0.042 0.03 0.042 0.038 0.038	
0.111 0.016 0.042 0.03 0.05 0.038 0.038	24701456
0.111 0.016 0.042 0.03 0.026 0.01 0.038	12184933
0.111 0.016 0.042 0.03 0.026 0.024 0.038	-741879
0.111 0.016 0.042 0.03 0.026 0.052 0.038	72349661
	53812611
0.111 0.016 0.042 0.03 0.026 0.08 0.038	21389186
0.111 0.016 0.042 0.03 0.026 0.038 0.024	6461343
0.111 0.016 0.042 0.03 0.026 0.038 0.052	-7376020
0.111 0.016 0.042 0.03 0.026 0.038 0.066	
0.111 0.016 0.042 0.03 0.026 0.038 0.08	14713633
0.107 0.021 0.031 0.059 0.039 0.053 0.01	34878853
Minimum 0.085 0.010 0.030 0.010 0.010 0.010 0.010	36262139
Maximum 0.150 0.025 0.060 0.060 0.050 0.080 0.080	37176709
	38547459
	-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

The objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -299,382,000 Pa

Corresponding design variables: x1 = 92 mm

x1 = 92 mm x2 = 15 mm x3 = 41 mm x4 = 60 mm x5 = 49 mm x6 = 77 mm x7 = 12 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -23,409,699 Pa

									(	36616568
37 dat	a points: I	Mxy giv	ves the	value	s of 7	ariable	<b>3</b> \$;			22200656
vz givi	es the con	respon	aing n	oop sti	resses	Trom A	NSYS			37097322
		999 - 194 - 1			. 489 201	jane di sa		1		31736332
	0.085	0.016	0.042	0.03	0.026	0.083	0.038			28339273
			0.042		0.026					26399543
1	0.111	0.016	0.042	0.03	0.026	0.038	0.038			
	1	0.016			0.026					36493172
	- 7688 c	0.016			0.026					23698965
	136 e A	0.016	0.042		0.026					40064955
	0.111	0.013			0.026	1	1			17111637
	2010 I	0.019			0.026					134211136
	2.000	0.022			0.026					93672103
	0.111	0.025	0.042		0.026	E Contraction of the second se				36448620
	0.111	0.016	0.03	0.03	0.026	0.038	0.038			
		0.016			0.026					16928727
	200202	0.016			0.026					45893010
		0.016	L	_	0.026					50971165
		0.016			0.026				Ì	-23409699
		0.015 0.016			0.049					68229458
Mxy =		0.016			0.028			VZ	:=	860031
		0.016		_	0.026					-23459964
		0.016			0.026					
	0.111	0.016	0.042	0.03	0.01	0.038	0.038			6217825
	0.111	0.016	0.042	0.03	0.018	0.038	0.038			64502322
		0.016			0.034					50194254
		0.016			0.042					24701456
	0.111			0.03		0.038				12184933
		0.016	0.042		0.026 0.026		0.038			-741879
			0.042		L	l	0.038			
			0.042		0.026					72349661
			0.042		0.026					53812611
	0.111	0.016	0.042	0.03	0.026	0.038	0.01			21389186
	0.111	0.016	0.042	0.03	0.026	0.038	0.024			6461343
		0.016			0.026					-7376020
		0.016			0.026					14713633
	100 A 10	0.016			0.026					34878853
	0.107	0.021	0.031	0.059	0.039	0.053	0.01			
Vinimum	0.085	5 0.010	0.030	0.01	0 0 01	0 0 01	0 0 01	0	1	36262139
Maximum			0.060							37176709
										38547459
										-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -337,154,000 Pa

Corresponding design variables: x1 = 150 mm

x1 = 150 mm x2 = 17 mm x3 = 39 mm x4 = 58 mm x5 = 48 mm x6 = 77 mm x7 = 10 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -76,166,379 Pa

		(	36616568
37 da	ata points: Mxy gives the values of 7 variables; ves the corresponding hoop stresses from ANSYS		22200656
vz gi	ves the corresponding hoop suesses from ANSTS		37097322
			31736332
	0.085 0.016 0.042 0.03 0.026 0.038 0.038		28339273
	0.098 0.016 0.042 0.03 0.026 0.038 0.038		26399543
	0.111 0.016 0.042 0.03 0.026 0.038 0.038		36493172
	0.124 0.016 0.042 0.03 0.026 0.038 0.038		
	0.137 0.016 0.042 0.03 0.026 0.038 0.038		23698965
	0.15 0.016 0.042 0.03 0.026 0.038 0.038 0.111 0.01 0.042 0.03 0.026 0.038 0.038		40064955
	0.111 0.013 0.042 0.03 0.026 0.038 0.038		17111637
	0.111 0.019 0.042 0.03 0.026 0.038 0.038		-76166379
	0.111 0.022 0.042 0.03 0.026 0.038 0.038		93672103
	0.15 0.017 0.039 0.058 0.048 0.077 0.01		36448620
	0.111 0.016 0.03 0.03 0.026 0.038 0.038		16928727
	0.111 0.016 0.036 0.03 0.026 0.038 0.038		
	0.111 0.016 0.048 0.03 0.026 0.038 0.038		45893010
	0.111 0.016 0.054 0.03 0.026 0.038 0.038		50971165
	0.111 0.016 0.08 0.03 0.026 0.038 0.038 0.092 0.015 0.041 0.06 0.049 0.077 0.012		-23409699
	0 111 0 016 0 042 0 02 0 026 0 038 0 038		68229458
Mxy =	0.111 0.016 0.042 0.04 0.026 0.038 0.038	¥2 :=	860031
	0.111 0.016 0.042 0.05 0.026 0.038 0.038		-23459964
	0.111 0.016 0.042 0.06 0.026 0.038 0.038		6217825
	0.111 0.016 0.042 0.03 0.01 0.038 0.038		
	0.111 0.016 0.042 0.03 0.018 0.038 0.038		64502322
	0.111 0.016 0.042 0.03 0.034 0.038 0.038		50194254
	0.111 0.016 0.042 0.03 0.042 0.038 0.038 0.111 0.016 0.042 0.03 0.05 0.038 0.038		24701456
	0.111 0.016 0.042 0.03 0.05 0.038 0.038 0.111 0.016 0.042 0.03 0.026 0.01 0.038		12184933
	0.111 0.016 0.042 0.03 0.026 0.024 0.038		-741879
	0.111 0.016 0.042 0.03 0.026 0.052 0.038		72349661
	0.111 0.016 0.042 0.03 0.026 0.066 0.038		53812611
	0.111 0.016 0.042 0.03 0.026 0.08 0.038		
	0.111 0.016 0.042 0.03 0.026 0.038 0.01		21389186
	0.111 0.016 0.042 0.03 0.026 0.038 0.024		6461343
	0.111 0.016 0.042 0.03 0.026 0.038 0.052		-7376020
			14713633
	0.111 0.016 0.042 0.03 0.026 0.038 0.08 0.107 0.021 0.031 0.059 0.039 0.053 0.01		34878853
			36262139
Minimum	0.085 0.010 0.030 0.010 0.010 0.010 0.010		37176709
<u>Maximum</u>	0.150 0.025 0.060 0.060 0.050 0.080 0.080		38547459
		(	-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -236,905,000 Pa

Corresponding design variables:

x1 = 95 mm x2 = 24 mm x3 = 38 mm x4 = 58 mm x5 = 49 mm x6 = 14 mm x7 = 10 mm

Next, ANSYS solution for the values of design. variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -83,654,169 Pa

	f	<b>36616568</b>
37 data points: Mxy gives the values of 7 variables; vz gives the corresponding hoop stresses from ANSYS		22200656
vz gives the corresponding noop stresses from Aras 13		37097322
		31736332
0.085 0.016 0.042 0.03 0.026 0.038 0.038		28339273
0.098 0.016 0.042 0.03 0.026 0.038 0.038		26399543
0.111 0.016 0.042 0.03 0.026 0.038 0.038 0.038 0.038 0.038		36493172
0.124 0.016 0.042 0.03 0.026 0.038 0.038 0.137 0.016 0.042 0.03 0.026 0.038 0.038		23698965
0.15 0.016 0.042 0.03 0.026 0.038 0.038		40064955
0.111 0.01 0.042 0.03 0.026 0.038 0.038	i	17111637
0.111 0.013 0.042 0.03 0.026 0.038 0.038		
0.111 0.019 0.042 0.03 0.026 0.038 0.038		-76166379
0.111 0.022 0.042 0.03 0.026 0.038 0.038 0.038 0.038 0.038 0.039 0.059 0.058 0.048 0.077 0.01		-83654169
0.095 0.024 0.038 0.058 0.049 0.014 0.01		36448620
0.111 0.016 0.036 0.03 0.026 0.038 0.038		16928727
0.111 0.016 0.048 0.03 0.026 0.038 0.038		45893010
0.111 0.016 0.054 0.03 0.026 0.038 0.038		50971165
0.111 0.016 0.06 0.03 0.026 0.038 0.038		-23409699
0.092 0.015 0.041 0.06 0.049 0.077 0.012		68229458
$\mathbf{Mxy} = \begin{bmatrix} 0.111 & 0.016 & 0.042 & 0.02 & 0.026 & 0.038 \\ \hline 0.111 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.011 & 0.016 & 0.042 & 0.04 & 0.048 & 0.048 \\ \hline 0.011 & 0.016 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 \\ \hline 0.011 & 0.016 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 \\ \hline 0.011 & 0.016 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 \\ \hline 0.011 & 0.016 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 \\ \hline 0.011 & 0.016 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.048 & 0.0$	<b>vz</b> :=	860031
0.111 0.016 0.042 0.05 0.026 0.038 0.038		-23459964
0.111 0.016 0.042 0.06 0.026 0.038 0.038		6217825
0.111 0.016 0.042 0.03 0.01 0.038 0.038		64502322
0.111 0.016 0.042 0.03 0.018 0.038 0.038 0.038 0.011 0.016 0.042 0.03 0.034 0.038 0.038	[	50194254
0.111 0.016 0.042 0.03 0.042 0.038 0.038		
0.111 0.016 0.042 0.03 0.05 0.038 0.038		24701456
0.111 0.016 0.042 0.03 0.026 0.01 0.038		12184933
0.111 0.016 0.042 0.03 0.026 0.024 0.038		-741879
0.111 0.016 0.042 0.03 0.026 0.052 0.038		72349661
0.111 0.016 0.042 0.03 0.026 0.066 0.038 0.011 0.016 0.042 0.03 0.026 0.08 0.038		53812611
0.111 0.016 0.042 0.03 0.026 0.038 0.01		21389186
0.111 0.016 0.042 0.03 0.026 0.038 0.024		6461343
0.111 0.016 0.042 0.03 0.026 0.038 0.052		-7376020
0.111 0.016 0.042 0.03 0.026 0.038 0.066		14713633
		34878853
0.107 0.021 0.031 0.059 0.039 0.053 0.01		36262139
Minimum 0.085 0.010 0.030 0.010 0.010 0.010 0.010		37176709
Maximum 0.150 0.025 0.060 0.060 0.050 0.080 0.080		
		38547459
		-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -196,155,000 Pa

Corresponding design variables: x1 = 97 mm x2 = 24 mm

x1 = 97 mm x2 = 24 mm x3 = 31 mm x4 = 58 mm x5 = 14 mm x6 = 79 mm x7 = 12 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -135,790,023 Pa

	1	36616568
37 data points: Mxy gives the values of 7 variables; vz gives the corresponding hoop stresses from ANSYS		22200656
		37097322
		31736332
0.085 0.016 0.042 0.03 0.026 0.038 0.038		28339273
0.098 0.016 0.042 0.03 0.026 0.038 0.038		26399543
0.111 0.016 0.042 0.03 0.026 0.038 0.038 0.038 0.038 0.038		36493172
0.137 0.016 0.042 0.03 0.026 0.038 0.038		23698965
0.15 0.016 0.042 0.03 0.026 0.038 0.038		40064955
0.111 0.01 0.042 0.03 0.026 0.038 0.038		17111637
0.111 0.013 0.042 0.03 0.026 0.038 0.038		-76166379
		-83654169
0.15 0.017 0.039 0.058 0.048 0.077 0.01		36448620
0.095 0.024 0.038 0.058 0.049 0.014 0.01		16928727
		45893010
0.111 0.016 0.048 0.03 0.026 0.038 0.038		50971165
0.111 0.016 0.06 0.03 0.026 0.038 0.038		-23409699
0.092 0.015 0.041 0.06 0.049 0.077 0.012		
Mxy = 0.111   0.016   0.042   0.02   0.026   0.038   0.038		68229458
0.111 0.016 0.042 0.04 0.026 0.038 0.038	vz :=	860031
0.111 0.016 0.042 0.06 0.026 0.038 0.038		-23459964
0.111 0.016 0.042 0.03 0.01 0.038 0.038		6217825
0.111 0.016 0.042 0.03 0.018 0.038 0.038		64502322
0.111 0.016 0.042 0.03 0.034 0.038 0.038		50194254
0.111 0.016 0.042 0.03 0.042 0.038 0.038 0.038 0.038 0.038 0.038		24701456
0.097 0.024 0.031 0.058 0.014 0.079 0.012		12184933
0.111 0.016 0.042 0.03 0.026 0.024 0.038		741879
0.111 0.016 0.042 0.03 0.026 0.052 0.038		-13579002
0.111 0.016 0.042 0.03 0.026 0.066 0.038		53812611
0.111 0.016 0.042 0.03 0.026 0.08 0.038 0.111 0.016 0.042 0.03 0.026 0.038 0.01		21389186
0.111 0.016 0.042 0.03 0.026 0.038 0.024		6461343
0.111 0.016 0.042 0.03 0.026 0.038 0.052		-7376020
0.111 0.016 0.042 0.03 0.026 0.038 0.066		14713633
0.111 0.016 0.042 0.03 0.026 0.038 0.08		34878853
		36262139
linimum 0.085 0.010 0.030 0.010 0.010 0.010 0.010		37176709
Inimum         0.085         0.010         0.030         0.010         0.010         0.010         0.010           Iaximum         0.150         0.025         0.060         0.060         0.050         0.080         0.080		37176709 38547459

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -199,218,000 Pa

Corresponding design variables:

x1 = 145 mm x2 = 24 mm x3 = 32 mm x4 = 56 mm x5 = 50 mm x6 = 12 mm x7 = 11 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -87,555,938 Pa

		1	<b>36616568</b>
37 da	ata points: Mxy gives the values of 7 variables; ves the corresponding hoop stresses from ANSYS		22200656
vz gr	ves the convesponding hoop stresses from ANSYS		37097322
			31736332
	0.085 [0.016 [0.042 ] 0.03 [0.026 [0.038 [0.038]		28339273
	0.098 0.016 0.042 0.03 0.026 0.038 0.038		26399543
	0.111 0.016 0.042 0.03 0.026 0.038 0.038		36493172
	0.124 0.016 0.042 0.03 0.026 0.038 0.038		23698965
	0.137 0.016 0.042 0.03 0.026 0.038 0.038 0.15 0.016 0.042 0.03 0.026 0.038 0.038		
	0.111 0.01 0.042 0.03 0.026 0.038 0.038		40064955
	0.111 0.013 0.042 0.03 0.026 0.038 0.038		17111637
	0.111 0.019 0.042 0.03 0.026 0.038 0.038		-76166379
	0.111 0.022 0.042 0.03 0.026 0.038 0.038		-83654169
	0.15 0.017 0.039 0.058 0.048 0.077 0.01		36448620
	0.095 0.024 0.038 0.058 0.049 0.014 0.01		16928727
	0.111 0.016 0.036 0.03 0.026 0.038 0.038		45893010
	0.111 0.016 0.048 0.03 0.026 0.038 0.038		
	0.111 0.016 0.054 0.03 0.026 0.038 0.038 0.038 0.038 0.038		50971165
	0.092 0.015 0.041 0.06 0.049 0.077 0.012		-23409699
••			-87555938
Mxy =	0.111 0.016 0.042 0.04 0.026 0.038 0.038	vz :=	860031
	0.111 0.016 0.042 0.05 0.026 0.038 0.038		-23459964
	0.111 0.016 0.042 0.06 0.026 0.038 0.038		6217825
	0.111 0.016 0.042 0.03 0.01 0.038 0.038		64502322
	0.111 0.016 0.042 0.03 0.018 0.038 0.038		
	0.111 0.016 0.042 0.03 0.034 0.038 0.038 0.038 0.038 0.038		50194254
	0.111 0.016 0.042 0.03 0.05 0.038 0.038		24701456
	0.097 0.024 0.031 0.058 0.014 0.079 0.012		12184933
	0.111 0.016 0.042 0.03 0.026 0.024 0.038		741879
	0.111 0.016 0.042 0.03 0.026 0.052 0.038		-135790023
	0.111 0.016 0.042 0.03 0.028 0.068 0.038		53812611
	0.111 0.016 0.042 0.03 0.026 0.08 0.038		21389186
	0.111 0.016 0.042 0.03 0.026 0.038 0.01		
	0.111 0.016 0.042 0.03 0.026 0.038 0.024		6461343
	0.111 0.016 0.042 0.03 0.026 0.038 0.052		-7376020
	0.111 0.016 0.042 0.03 0.026 0.038 0.066 0.0111 0.016 0.042 0.03 0.026 0.038 0.08		14713633
	0.107 0.021 0.031 0.059 0.039 0.053 0.01		34878853
			36262139
Minimum	0.085 0.010 0.030 0.010 0.010 0.010 0.010		37176709
Maximum	0.150 0.025 0.060 0.060 0.050 0.080 0.080		38547459
			-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -177,281,000 Pa

Corresponding design variables:

x1 = 132 mm x2 = 25 mm x3 = 30 mm x4 = 54 mm x5 = 35 mm x6 = 79 mm x7 = 11 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -113,421,927 Pa

									( 36616568
37 da	ata points: ves the co	Mxy giv	ves the	value	s of 7 v	ariable	BS;		22200656
vz giv	ves the co	rrespon	iaing h	oop str	esses	ITOM A	NSYS		37097322
			i ang Digata		test an general	and tops:		1	31736332
	In total	0.016	002	0.03	0.026	0.038	0.038		28339273
	1000	0.016		1	•		0.038		26399543
	0.111	0.016	0.042		0.026	1			
		0.016		0.03	0.026	0.038	0.038		36493172
		0.016			0.026				23698965
	1	0.016					0.038		40064955
	0.111		0.042			I	0.038		17111637
		0.013		I	0.026		0.038		-76166379
		0.022			0.026				-83654169
		0.017							36448620
		0.024		ł	F				
	0.111	0.016	0.036	0.03	0.026	0.038	0.038		16928727
		0.016	1	1	0.026				45893010
	15	0.016			0.026				50971165
		0.016			0.026				-23409699
		0.015					0.012		-87555938
Mxy =		0.024					0.011	vz :	= 860031
		0.016			0.026				-23459964
		0.016					0.038		
		0.025		0.054					6217825
	0.111	0.016	0.042	0.03	0.018	0.038	0.038		-113421927
	0.111	0.016	0.042	0.03	0.034	0.038	0.038		50194254
	N	0.016			-		0.038		24701456
		0.016	L	0.03		0.038			12184933
		0.024							-741879
		0.016					0.038 0.038		
		0.016					0.038		-135790023
		0.016		1			0.038		53812611
	0.111	0.016	0.042	0.03	0.026	0.038	0.01		21389186
	0.111	0.016	0.042	0.03	0.026	0.038	0.024		6461343
		0.016					0.052		-7376020
		0.016	1				0.066		14713633
		0.016	1		0.026				34878853
	0.107	0.021	0.031	0.059	0.039	0.053	0.01	]	
Minimum	0.08	5 0.010	0.03	0.01	0 0.01	0 0 01	0 0 01	0	36262139
Maximum		0 0.025							37176709
									38547459
									-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -312,935,000 Pa

Corresponding design variables: x1 = 149 mm x2 = 23 mm x3 = 59 mm x4 = 29 mm x5 = 49 mmx6 = 79 mm

xo = 79 mm x7 = 79 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -23,960,716 Pa

			36616568
37 da vz giv	a points: Mxy gives the values of 7 v the corresponding hoop stresses f	ariables; from ANSYS	22200656
ve 9.			37097322
			31736332
	0.085 0.016 0.042 0.03 0.026		28339273
	0.098 0.016 0.042 0.03 0.026		26399543
	0.111 0.016 0.042 0.03 0.026 0.124 0.016 0.042 0.03 0.026	1 1	36493172
	0.137 0.016 0.042 0.03 0.026	1 1	23698965
	0.15 0.016 0.042 0.03 0.026		40064955
	0.111 0.01 0.042 0.03 0.026		17111637
	0.111 0.013 0.042 0.03 0.026		-76166379
	0.111 0.019 0.042 0.03 0.026 0.111 0.022 0.042 0.03 0.026		-83654169
	0.15 0.017 0.039 0.058 0.048		36448620
	0.095 0.024 0.038 0.058 0.049		16928727
	0.111 0.016 0.036 0.03 0.026		45893010
	0.111 0.016 0.048 0.03 0.026 0.111 0.016 0.054 0.03 0.026		
	0.111 0.016 0.06 0.03 0.026	I I	50971165
		0.077 0.012	-23409699
Mxy =		0.012 0.011	-87555938
-	0.111 0.016 0.042 0.04 0.026 0.111 0.016 0.042 0.05 0.026		860031
	0.111 0.016 0.042 0.05 0.026 0.111 0.016 0.042 0.06 0.026		-23459964
	0.132 0.025 0.03 0.054 0.035		6217825
	0.111 0.016 0.042 0.03 0.018		-11342192
	0.111 0.016 0.042 0.03 0.034		50194254
	0.111 0.016 0.042 0.03 0.042 0.111 0.016 0.042 0.03 0.05		24701456
	0.097 0.024 0.031 0.058 0.014		12184933
	0.149 0.023 0.059 0.029 0.049		-741879
	0.111 0.016 0.042 0.03 0.026		-13579002
	0.111 0.016 0.042 0.03 0.026		-23960716
	0.111 0.016 0.042 0.03 0.026 0.111 0.016 0.042 0.03 0.026		21389186
	0.111 0.016 0.042 0.03 0.026		6461343
	0.111 0.016 0.042 0.03 0.026	0.038 0.052	-7376020
	0.111 0.016 0.042 0.03 0.026		14713633
	0.111 0.016 0.042 0.03 0.026 0.107 0.021 0.031 0.059 0.039		34878853
		0.000 0.01	36262139
linimum	0.085 0.010 0.030 0.010 0.010		37176709
Maximum	0.150 0.025 0.060 0.060 0.050	0.080 0.080	38547459
			-129570000

229

The values in "coeff" are written out to the file "data" in the D:\unlv2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -199,748,000 Pa

Corresponding design variables:

x1 = 87 mm x2 = 25 mm x3 = 30 mm x4 = 37 mm x5 = 48 mm x6 = 80 mm x7 = 17 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -110,954,614 Pa

Maximum 0.150 0.025 0.060 0.060 0.050 0.080 0.080 37176709 38547459										( 36616568
Miximum         0.085         0.046         0.042         0.033         0.026         0.038         0.038         2339273           0.086         0.016         0.042         0.03         0.026         0.038         0.038         24399543           0.137         0.016         0.042         0.03         0.026         0.038         0.038         24399543           0.137         0.016         0.042         0.03         0.026         0.038         0.038         24599565           0.111         0.016         0.042         0.03         0.026         0.038         0.038         111111111111111111111111111111111111	37 da	ata points:	Mxy giv	ves the	value	s of 7 v	ariable	es;		22200656
Minimum         0.085         0.016         0.042         0.03         0.026         0.038         0.038         26339273           0.098         0.016         0.042         0.03         0.026         0.038         0.038         26399543           0.111         0.016         0.042         0.03         0.026         0.038         0.038         26399543           0.137         0.016         0.042         0.03         0.026         0.038         0.038         26499155           0.111         0.016         0.042         0.03         0.026         0.038         0.038         26499155           0.111         0.013         0.042         0.03         0.026         0.038         0.038         76166379           0.111         0.013         0.042         0.03         0.026         0.038         0.038         76166379           0.111         0.016         0.038         0.038         0.038         0.038         76166379           0.111         0.016         0.038         0.038         0.038         0.038         76166379           0.111         0.016         0.042         0.03         0.028         0.038         0.038         7416639	vz gi	ves the co	rrespon	iding h	oop str	'esses	from A	NSYS		37097322
Minimum         0.098         0.016         0.042         0.03         0.026         0.038         0.038         26399543           0.111         0.016         0.042         0.03         0.026         0.038         0.038         36493172           0.137         0.016         0.042         0.03         0.026         0.038         0.038         36493172           0.137         0.016         0.042         0.03         0.026         0.038         0.038         40064955           0.111         0.018         0.042         0.03         0.026         0.038         0.038         -76166379           0.111         0.018         0.042         0.03         0.026         0.038         0.038         -76166379           0.111         0.018         0.038         0.038         0.038         0.038         -76166379           0.111         0.018         0.038         0.038         0.038         0.038         -76166379           0.111         0.016         0.042         0.031         0.026         0.038         0.038         -76166379           0.111         0.016         0.042         0.031         0.026         0.038         0.038         -76166379      <		Attention of				ogaan saas	to to grip.		1	31736332
Minimum         0.098         0.016         0.042         0.03         0.026         0.038         0.038         26399543           0.111         0.016         0.042         0.03         0.026         0.038         0.038         36493172           0.137         0.016         0.042         0.03         0.026         0.038         0.038         36493172           0.137         0.016         0.042         0.03         0.026         0.038         0.038         40064955           0.111         0.018         0.042         0.03         0.026         0.038         0.038         -76166379           0.111         0.018         0.042         0.03         0.026         0.038         0.038         -76166379           0.111         0.018         0.038         0.038         0.038         0.038         -76166379           0.111         0.018         0.038         0.038         0.038         0.038         -76166379           0.111         0.016         0.042         0.031         0.026         0.038         0.038         -76166379           0.111         0.016         0.042         0.031         0.026         0.038         0.038         -76166379      <		0.08	10.016	0.042	0.03	0.026	0.038	0.038		28339273
Minimum         0.016 0.042         0.03 0.026 0.038 0.038         36493172           0.137 0.016 0.042         0.03 0.026 0.038 0.038         2369865           0.137 0.016 0.042         0.03 0.026 0.038 0.038         40064955           0.111 0.013 0.042         0.03 0.026 0.038 0.038         17111637           0.111 0.013 0.042         0.03 0.026 0.038 0.038         -76166379           0.111 0.012 0.042         0.03 0.026 0.038 0.038         -76166379           0.111 0.012 0.032 0.058 0.048 0.077 0.01         36448620           0.111 0.016 0.042         0.03 0.026 0.038 0.038         -76166379           0.111 0.016 0.042 0.03 0.026 0.038 0.038         -75166379           0.111 0.016 0.042 0.03 0.026 0.038 0.038         -75166379           0.111 0.016 0.042 0.03 0.026 0.038 0.038         -75166379           0.111 0.016 0.042 0.03 0.026 0.038 0.038         -116954514           0.087 0.028 0.038 0.058 0.049 0.077 0.017         -23409699           0.145 0.024 0.032 0.058 0.036 0.038 0.038         -11954614           0.087 0.028 0.03 0.037 0.048 0.037 0.012         -87555938           0.145 0.024 0.032 0.058 0.038 0.038         -11954614           0.087 0.028 0.03 0.054 0.038 0.038         -23459964           0.111 0.016 0.042 0.03 0.026 0.038 0.038         -11954614           0.145 0.024 0.03 0.058 0.03										
Mixy =         0.132         0.016         0.042         0.03         0.026         0.038         0.038         23698965           0.137         0.016         0.042         0.03         0.026         0.038         0.038         111         0.013         0.042         0.03         0.026         0.038         0.038         111         0.013         0.042         0.03         0.026         0.038         0.038         1111         111         0.013         0.042         0.03         0.026         0.038         0.038         1111         111         111         111         111         0.013         0.042         0.03         0.026         0.038         0.038         171116.37           0.111         0.016         0.042         0.03         0.026         0.038         0.038         -3654169           0.111         0.016         0.042         0.03         0.026         0.038         0.038         -3654169           0.111         0.016         0.032         0.036         0.038         0.038         0.038         -3654169           0.111         0.016         0.032         0.036         0.038         0.038         0.038         -110954614         -37555938         -110954614		0.111	0.016	0.042	0.03	0.026	0.038	0.038		
Mrxy = 0.15             0.016             0.042             0.03             0.026             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038             0.038		2020			1		1.			
Mixy =         0.111         0.01         0.042         0.03         0.026         0.038         0.038           0.111         0.013         0.042         0.03         0.026         0.038         0.038         17111637           0.111         0.013         0.042         0.03         0.026         0.038         0.038         -76166379           0.111         0.012         0.042         0.03         0.026         0.038         0.038         -76166379           0.15         0.017         0.039         0.058         0.048         0.071         0.011         36448620           0.085         0.017         0.038         0.038         0.038         0.038         -76166379           0.111         0.016         0.038         0.038         0.038         0.038         -119954614           0.087         0.042         0.03         0.037         0.048         0.038         0.038         -119954614           0.082         0.015         0.041         0.08         0.049         0.077         0.012         -3459964           0.111         0.016         0.042         0.03         0.038         0.038         -23459964           0.111         0.016		20000								
Mixy =         0.111         0.013         0.042         0.03         0.026         0.038         0.038           0.111         0.019         0.042         0.03         0.026         0.038         0.038         -76166379           0.111         0.019         0.024         0.03         0.026         0.038         0.038         -36654169           0.111         0.016         0.038         0.026         0.038         0.038         -36654169           0.111         0.016         0.038         0.026         0.038         0.038         -36654169           0.111         0.016         0.038         0.026         0.038         0.038         -36654169           0.111         0.016         0.048         0.03         0.026         0.038         0.038         -110954614           0.087         0.022         0.036         0.038         0.038         -338         -110954614           0.087         0.025         0.032         0.056         0.038         0.038         -110954614           0.087         0.025         0.032         0.056         0.038         0.038         -11355938           0.111         0.016         0.042         0.03         0.038					1					40064955
Mixy =         0.111         0.019         0.022         0.038         0.038         -76166379           0.111         0.022         0.024         0.038         0.038         0.038         -33654169           0.15         0.017         0.039         0.026         0.038         0.038         0.038         36448620           0.095         0.024         0.038         0.038         0.038         0.038         16928727           0.111         0.016         0.048         0.03         0.026         0.038         0.038         16928727           0.111         0.016         0.048         0.03         0.026         0.038         0.038         119928727           0.011         0.016         0.024         0.03         0.026         0.038         0.038         119928727           0.011         0.016         0.024         0.03         0.038         0.038         119954614           0.062         0.015         0.041         0.06         0.049         0.077         0.012         -31499699           0.111         0.016         0.042         0.036         0.038         0.038         -33459964           0.111         0.016         0.042         0.036 </td <td></td> <td>2020-00</td> <td></td> <td>L .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17111637</td>		2020-00		L .						17111637
Mixy =         0.15         0.017         0.039         0.058         0.048         0.077         0.011         36448620           Mixy =         0.111         0.016         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038 <td< td=""><td></td><td>2016 C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-76166379</td></td<>		2016 C								-76166379
Misy =         0.095         0.024         0.038         0.058         0.049         0.014         0.01           0.111         0.016         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.0		0.111	0.022	0.042	0.03	0.026	0.038	0.038		-83654169
Mxy =         0.111         0.016         0.036         0.03         0.026         0.038         0.038           Mxy =         0.111         0.016         0.048         0.03         0.026         0.038         0.038           0.111         0.016         0.025         0.03         0.026         0.038         0.038         0.038           0.087         0.025         0.03         0.037         0.048         0.08         0.017           0.082         0.015         0.041         0.08         0.012         0.011         -23496699           0.145         0.024         0.032         0.056         0.038         0.038         0.038         0.038           0.111         0.016         0.042         0.040         0.026         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.										36448620
Mixy =         0.111         0.016         0.048         0.03         0.026         0.038         0.038         45893010           Mixy =         0.011         0.016         0.054         0.03         0.026         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038										16928727
Mxy =         0.111         0.016         0.054         0.03         0.026         0.038         0.038         -110954614           0.087         0.025         0.03         0.037         0.048         0.08         0.017         -23409699           0.092         0.015         0.041         0.06         0.049         0.077         0.012         -0119           0.111         0.016         0.042         0.04         0.026         0.038         0.038         -23409699           0.111         0.016         0.042         0.05         0.026         0.038         0.038         0.38         vz :=         860031           0.111         0.016         0.042         0.05         0.026         0.038         0.038         0.038         0.038         6217825           0.132         0.025         0.03         0.034         0.038         0.038         0.038         6217825         -113421927           0.111         0.016         0.42         0.03         0.034         0.038         0.038         6138         50194254           0.111         0.016         0.42         0.03         0.026         0.038         0.038         12184933         -741879			1					÷··		45893010
Mxy =         0.087         0.025         0.03         0.037         0.048         0.08         0.017           0.082         0.015         0.041         0.06         0.049         0.077         0.012           0.145         0.024         0.032         0.056         0.05         0.012         0.011           0.111         0.016         0.042         0.04         0.026         0.038         0.038           0.111         0.016         0.042         0.05         0.026         0.038         0.038         0.038           0.111         0.016         0.042         0.05         0.026         0.038         0.038         0.038           0.132         0.025         0.03         0.034         0.038         0.038         0.038         0.038           0.111         0.016         0.42         0.03         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.038         0.011         0.114         0.114         0.016         0.42         0.03         0.026         0.038         0.012        113421927           0.111         0.016         0.42         0.03		1221223								-110954614
Mxy =         0.082 0.015 0.041 0.08 0.049 0.077 0.012 0.145 0.024 0.032 0.056 0.05 0.012 0.011 0.111 0.016 0.042 0.04 0.026 0.038 0.038 0.111 0.016 0.042 0.05 0.026 0.038 0.038 0.111 0.016 0.042 0.05 0.026 0.038 0.038 0.111 0.016 0.042 0.03 0.054 0.035 0.079 0.011 0.111 0.016 0.042 0.03 0.054 0.038 0.038 0.111 0.016 0.042 0.03 0.034 0.038 0.038 0.111 0.016 0.042 0.03 0.042 0.038 0.038 0.111 0.016 0.042 0.03 0.042 0.038 0.038 0.097 0.024 0.031 0.058 0.014 0.079 0.012 0.111 0.016 0.042 0.03 0.026 0.052 0.038 0.111 0.016 0.042 0.03 0.026 0.058 0.014 0.111 0.016 0.042 0.03 0.026 0.038 0.01 0.111 0.016 0.042 0.03 0.026 0.052 0.038 0.111 0.016 0.042 0.03 0.026 0.038 0.01 0.111 0.016 0.042 0.03 0.026 0.038 0.024 0.111 0.016 0.042 0.03 0.026 0.038 0.01 0.111 0.016 0.042 0.03 0.026 0.038 0.024 0.111 0.016 0.042 0.03 0.026 0.038 0.052 0.111 0.016 0.042 0.03 0.026 0.038 0.038 0.010 0.111 0.016 0.042 0.03 0.					· · ·					
Mxy =       0.145 0.024 0.032 0.058 0.058 0.0512 0.011       0.011 0.011       0.011 0.016 0.042 0.04 0.026 0.038 0.038       0.038 0.038       vz :=       860031         0.111 0.016 0.042 0.05 0.026 0.038 0.038       0.038 0.038       0.038       0.038       0.038       6217825         0.132 0.025 0.03 0.054 0.035 0.079 0.011       0.111 0.016 0.042 0.03 0.018 0.038 0.038       0.038       0.038       0.111 0.114 0.016 0.042       0.111 0.016 0.042 0.03 0.038       0.038       0.038       0.111 0.114 0.016 0.042 0.03 0.034 0.038       0.038       0.038       0.111 0.016 0.042 0.03 0.034 0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038       0.038		0.092	2 0.015	0.041	0.06	0.049	0.077	0.012		
0.111         0.016         0.042         0.04         0.026         0.038         0.038         0.028           0.111         0.016         0.042         0.05         0.026         0.038         0.038         0.038         -23459964           0.111         0.016         0.042         0.06         0.026         0.038         0.038         -23459964           0.111         0.016         0.042         0.03         0.018         0.038         0.038         -113421927           0.111         0.016         0.042         0.03         0.034         0.038         0.038         0.038         0.018         0.018         0.018         0.018         0.018         0.018         0.038         0.011         -113421927           0.111         0.016         0.042         0.03         0.055         0.038         0.038         0.038         0.038         0.038         0.049         0.079         0.012         -113421927           0.111         0.016         0.042         0.03         0.056         0.038         0.038         0.038         0.038         12184933         -741879         -741879         -135790023         -135790023         -135790023         -135790023         -135790023 <t< td=""><td>Miv =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Miv =									
0.111         0.016         0.042         0.06         0.026         0.038         0.038           0.132         0.025         0.03         0.054         0.035         0.079         0.011           0.111         0.016         0.042         0.03         0.018         0.038         0.038         -113421927           0.111         0.016         0.042         0.03         0.034         0.038         0.038         -113421927           0.111         0.016         0.042         0.03         0.034         0.038         0.038         -113421927           0.111         0.016         0.042         0.03         0.042         0.038         0.038         -113421927           0.111         0.016         0.042         0.03         0.056         0.038         0.038         -113421927           0.111         0.016         0.042         0.03         0.056         0.038         0.038         -135790023           0.0597         0.024         0.03         0.026         0.038         0.038         -23960716           0.111         0.016         0.042         0.03         0.026         0.038         0.024         -23960716           0.111         0.016		0.111							vz :=	860031
0.132         0.025         0.03         0.054         0.035         0.079         0.011           0.111         0.016         0.042         0.03         0.018         0.038         0.038           0.111         0.016         0.042         0.03         0.018         0.038         0.038         0.038           0.111         0.016         0.042         0.03         0.042         0.038         0.038         0.038           0.111         0.016         0.042         0.03         0.042         0.038         0.038         0.038           0.111         0.016         0.042         0.03         0.05         0.038         0.038         0.038           0.057         0.024         0.031         0.058         0.014         0.079         0.012         -741879           0.111         0.016         0.042         0.03         0.026         0.038         0.038         -23960716           0.111         0.016         0.042         0.03         0.026         0.038         0.024         -23960716           0.111         0.016         0.042         0.03         0.026         0.038         0.024         -7376020           0.111         0.016										-23459964
0.111       0.016       0.042       0.03       0.018       0.038       0.038       -113421927         0.111       0.016       0.042       0.03       0.034       0.038       0.038       50194254         0.111       0.016       0.042       0.03       0.042       0.038       0.038       24701456         0.111       0.016       0.042       0.03       0.055       0.038       0.038       24701456         0.111       0.016       0.042       0.03       0.055       0.038       0.038       12184933         0.097       0.023       0.059       0.029       0.049       0.079       0.079       -741879         0.111       0.016       0.042       0.03       0.026       0.038       0.038       -135790023         0.111       0.016       0.042       0.03       0.026       0.038       0.014       23960716         0.111       0.016       0.042       0.03       0.026       0.038       0.014       23960716         0.111       0.016       0.042       0.03       0.026       0.038       0.01       6461343         0.111       0.016       0.042       0.03       0.026       0.038 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>6217825</td></t<>			1							6217825
0.111         0.016         0.042         0.03         0.042         0.038         0.038         24701456           0.111         0.016         0.042         0.03         0.05         0.038         0.038         12184933           0.097         0.024         0.031         0.058         0.014         0.079         0.012         -741879           0.111         0.016         0.042         0.03         0.026         0.052         0.038         -741879           0.111         0.016         0.042         0.03         0.026         0.052         0.038         -741879           0.111         0.016         0.042         0.03         0.026         0.052         0.038         -135790023           0.111         0.016         0.042         0.03         0.026         0.038         0.01           0.111         0.016         0.042         0.03         0.026         0.038         0.01           0.111         0.016         0.042         0.03         0.026         0.038         0.02           0.111         0.016         0.042         0.03         0.026         0.038         0.052         -7376020           0.111         0.016         0.042 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-113421927</td>										-113421927
0.111         0.016         0.042         0.03         0.05         0.038         0.038         12184933           0.097         0.024         0.031         0.058         0.014         0.079         0.012         -741879           0.111         0.016         0.042         0.03         0.026         0.038         0.079         -741879           0.111         0.016         0.042         0.03         0.026         0.038         -73790023           0.111         0.016         0.042         0.03         0.026         0.038         0.038           0.111         0.016         0.042         0.03         0.026         0.038         0.038           0.111         0.016         0.042         0.03         0.026         0.038         0.038           0.111         0.016         0.042         0.03         0.026         0.038         0.014           0.111         0.016         0.042         0.03         0.026         0.038         0.024         -7376020           0.111         0.016         0.042         0.03         0.026         0.038         0.026         -7376020           0.111         0.016         0.042         0.03         0.026		0.111	0.016	0.042	0.03	0.034	0.038	0.038		50194254
0.097         0.024         0.031         0.058         0.014         0.079         0.012           0.149         0.023         0.059         0.029         0.049         0.079         0.079         -741879           0.111         0.016         0.042         0.03         0.026         0.052         0.038         -135790023           0.111         0.016         0.042         0.03         0.026         0.066         0.038         -23960716           0.111         0.016         0.042         0.03         0.026         0.038         0.01         -23960716           0.111         0.016         0.042         0.03         0.026         0.038         0.038         -23960716           0.111         0.016         0.042         0.03         0.026         0.038         0.01         6461343           0.111         0.016         0.042         0.03         0.026         0.038         0.024         -7376020           0.111         0.016         0.042         0.03         0.026         0.038         0.086         14713633           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.111										24701456
0.097       0.024       0.031       0.058       0.014       0.079       0.012         0.149       0.023       0.059       0.029       0.049       0.079       0.079       -741879         0.111       0.016       0.042       0.03       0.026       0.052       0.038       -135790023         0.111       0.016       0.042       0.03       0.026       0.066       0.038       -23960716         0.111       0.016       0.042       0.03       0.026       0.08       0.038       21389186         0.111       0.016       0.042       0.03       0.026       0.038       0.024       6461343         0.111       0.016       0.042       0.03       0.026       0.038       0.052       -7376020         0.111       0.016       0.042       0.03       0.026       0.038       0.066       14713633         0.111       0.016       0.042       0.03       0.026       0.038       0.08       14713633         0.111       0.016       0.042       0.03       0.026       0.038       0.08       14713633         0.111       0.016       0.042       0.03       0.026       0.038       0.08       1471										12184933
0.113       0.023       0.023       0.075       0.075       0.075         0.111       0.016       0.042       0.03       0.026       0.052       0.038       -135790023         0.111       0.016       0.042       0.03       0.026       0.066       0.038       -23960716         0.111       0.016       0.042       0.03       0.026       0.08       0.038       -23960716         0.111       0.016       0.042       0.03       0.026       0.038       0.01       6461343         0.111       0.016       0.042       0.03       0.026       0.038       0.024       -7376020         0.111       0.016       0.042       0.03       0.026       0.038       0.052       -7376020         0.111       0.016       0.042       0.03       0.026       0.038       0.066       14713633         0.111       0.016       0.042       0.03       0.026       0.038       0.08       34878853         0.111       0.016       0.042       0.03       0.026       0.038       0.08       34878853         0.111       0.016       0.042       0.03       0.026       0.038       0.08       34878853										
0.111       0.016       0.042       0.03       0.026       0.066       0.038       -23960716         0.111       0.016       0.042       0.03       0.026       0.08       0.038       21389186         0.111       0.016       0.042       0.03       0.026       0.038       0.01       6461343         0.111       0.016       0.042       0.03       0.026       0.038       0.024       6461343         0.111       0.016       0.042       0.03       0.026       0.038       0.024       6461343         0.111       0.016       0.042       0.03       0.026       0.038       0.052       -7376020         0.111       0.016       0.042       0.03       0.026       0.038       0.066       14713633         0.111       0.016       0.042       0.03       0.026       0.038       0.08       34878853         0.111       0.016       0.042       0.03       0.026       0.038       0.08       34878853         0.111       0.016       0.025       0.060       0.050       0.080       0.080       37176709         Minimum       0.085       0.025       0.060       0.050       0.080       0.										
0.111         0.016         0.042         0.03         0.026         0.08         0.038         21389186           0.111         0.016         0.042         0.03         0.026         0.038         0.01           0.111         0.016         0.042         0.03         0.026         0.038         0.01           0.111         0.016         0.042         0.03         0.026         0.038         0.01           0.111         0.016         0.042         0.03         0.026         0.038         0.024         6461343           0.111         0.016         0.042         0.03         0.026         0.038         0.052         -7376020           0.111         0.016         0.042         0.03         0.026         0.038         0.066         14713633           0.111         0.016         0.042         0.03         0.026         0.038         0.08         34878853           0.107         0.021         0.031         0.059         0.039         0.053         0.01         36262139           Minimum         0.085         0.010         0.060         0.060         0.080         0.080         38547459            0.025         0.060 <td></td>										
0.111         0.016         0.042         0.03         0.026         0.038         0.01           0.111         0.016         0.042         0.03         0.026         0.038         0.024         6461343           0.111         0.016         0.042         0.03         0.026         0.038         0.024         6461343           0.111         0.016         0.042         0.03         0.026         0.038         0.052         -7376020           0.111         0.016         0.042         0.03         0.026         0.038         0.066         14713633           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.111         0.016         0.042         0.03         0.026         0.038         0.066           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.107         0.021         0.031         0.059         0.039         0.053         0.01           Minimum         0.085         0.010         0.060         0.050         0.080										
0.111         0.016         0.042         0.03         0.026         0.038         0.052           0.111         0.016         0.042         0.03         0.026         0.038         0.052         -7376020           0.111         0.016         0.042         0.03         0.026         0.038         0.066         14713633           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.107         0.021         0.031         0.059         0.039         0.053         0.01           36262139         36262139         37176709         37176709         38547459		0.111	0.016	0.042	0.03	0.026	0.038	0.01		
0.111         0.016         0.042         0.03         0.026         0.038         0.066         14713633           0.111         0.016         0.042         0.03         0.026         0.038         0.066         14713633           0.111         0.016         0.042         0.03         0.026         0.038         0.08         34878853           0.107         0.021         0.031         0.059         0.039         0.053         0.01         36262139           Minimum         0.085         0.010         0.060         0.050         0.080         0.080         37176709           38547459         38547459         38547459         38547459         38547459         38547459				·						6461343
0.111         0.016         0.042         0.03         0.026         0.038         0.08           0.107         0.021         0.031         0.059         0.039         0.053         0.01         34878853           36262139         0.085         0.010         0.030         0.010         0.010         0.010         37176709           Maximum         0.150         0.025         0.060         0.050         0.080         0.080         38547459										-7376020
Minimum         0.085         0.010         0.030         0.010         0.010         0.010         34878853         36262139         36262139           Minimum         0.085         0.010         0.010         0.010         0.010         0.010         37176709         38547459		2211.0								14713633
Minimum         0.085         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         <										34878853
Maximum         0.150         0.025         0.060         0.050         0.080         0.080         3/1/6/09         38547459									1	36262139
Maximum 0.150 0.025 0.060 0.060 0.050 0.080 0.080 38547459	Minimum									37176709
	Maximum	0.15	0.025	0.06	0.06	0.050	<u>. U.U8</u>	<u>u u.uð</u>		
										-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -201,030,000 Pa

Corresponding design variables:

x1 = 85 mm x2 = 24 mm x3 = 31 mm x4 = 60 mm x5 = 14 mm x6 = 14 mm x7 = 12 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -4,347,296 Pa

									36616568
37 da	ata points: ves the co	Mxy giv	ves the	value	s of 7	<b>ariable</b>	BS;		22200656
vz gr		respon	ang n	oop su	62262		11313		37097322
		in de la seconda d	- jaditi			- 44 B		1	31736332
	0.085	0.016	0.042	0.03	0.026	0.038	0.038		28339273
		0.016		0.03	0.026	0.038	0.038		26399543
	1 M 1 M	0.016		L	0.026				36493172
		0.016			0.026				23698965
	144	0.016			0.026				
	0.15		0.042		0.026				40064955
		0.013		-	0.026				17111637
	1	0.019			0.026				-76166379
	0.111	0.022	0.042	0.03	0.026	0.038	0.038		-83654169
		0.017							36448620
		0.024							16928727
	14.5	0.016			0.026	_			45893010
	1.000	0.016			0.026		1 1		
	100 C	0.016		0.03			0.038		-110954614
	1	0.025					0.017 0.012		-23409699
	0 145	0.024				0.012			-87555938
Mxy =		0.016			0.026			vz :=	860031
		0.016		_			0.038		-23459964
	0.111	0.016	0.042	0.06	0.026	0.038	0.038		6217825
	0.132	0.025	0.03	0.054	0.035	0.079	0.011		
		0.024					0.012		-113421927
		0.016			0.034				-4347296
		0.016			0.042				24701456
		0.016		0.03			0.038		12184933
		0.024					1 1		-741879
		0.016			0.026				-135790023
		0.016					0.038		-23960716
	0.111	0.016	0.042	0.03	0.026	80.0	0.038		
	0.111	0.016	0.042	0.03	0.026	0.038	0.01		21389186
		0.016			0.026	[ .			6461343
		0.016			0.026				-7376020
		0.016					0.066	1	14713633
	1 M M M M M M M M M M M M M M M M M M M	0.016		F			0.08		34878853
	0.107	0.021	0.031	0.059	0.039	0.053	0.01	l	36262139
Minimum	0.08	5 0.010	0.03	0.01	0 0.01	0.01	0 0.01	0	
Maximum_	0.15	0 0.025	<u>0.06</u>	0.06	0 0.05	0.08	0 0.08	0	37176709
									38547459
									-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -329,016,000 Pa

Corresponding design variables:

x1 = 147 mm x2 = 10 mm x3 = 30 mm x4 = 60 mm x5 = 10 mm x6 = 71 mm x7 = 13 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -63,177,822 Pa

									( 36616568
37 da	ita points:	Mxy giv	ves the	value	s of 7 v	ariable	es;		22200656
vz gi	ies the co	rrespon	aing n	oop sti	esses	ITOM A	NSYS		37097322
					ad allow the set				31736332
	0034	0.016	0.042	0.03	0.026	0.038	0.038		28339273
		0.016		L	0.026	_			26399543
	0.111	0.016	0.042	0.03	0.026	0.038	0.038		
		0.016	1		0.026				36493172
	2	0.016			0.026	-			23698965
	10.00.000	0.016			0.026				40064955
	0.111	0.01	0.042		0.026				17111637
	2.232	0.019			0.020	-			-76166379
		0.022			0.026				-83654169
	0.15	0.017	0.039	0.058	0.048	0.077	0.01		36448620
	0.095	0.024	0.038	0.058	0.049	0.014	0.01		16928727
		0.016	-	-	0.026				
		0.016			0.026	-			-63177822
	0.147	0.01	1	0.06		0.071	0.013		-110954614
		0.025			0.048		L		-23409699
	0 175	0.024				0.012			-87555938
Mxy =		0.016			0.026			vz :=	860031
	0.111	0.016	0.042	0.05	0.026	0.038	0.038		-23459964
	0.111	0.016			0.026				6217825
		0.025		0.054					-113421927
		0.024	1		0.014				
		0.016			0.034				-4347296
		0.016		0.03	0.042	0.038			24701456
		0.010							12184933
		0.023							-741879
	0.111	0.016	0.042	0.03	0.026	0.052	0.038		-135790023
		0.016		0.03	0.026	0.066	0.038		-23960716
		0.016	1 _		0.026				21389186
		0.016			0.026				6461343
		0.016			0.026		1 1		
		0.016			0.026 0.026				-7376020
		0.016	E .		0.026				14713633
		0.021							34878853
			L	<b></b>		L	L	I	36262139
Minimum		5 0.010							37176709
Maximum	0.13	0 0.025		<u></u> 0	0.0.03	<u>a</u>	<u>v v.vo</u>		38547459
									-129570000

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -481,532,000 Pa

Corresponding design variables:

x1 = 87 mm x2 = 25 mm x3 = 30 mm x4 = 58 mm x5 = 42 mm x6 = 57 mm x7 = 80 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -95,536,865 Pa

								( 36616568 )
37 data points: vz gives the cor	Mxy give	s the	values	s of 7 v	ariable	BS;		22200656
vz gives the con	respondi	ng no	op su	62962		11313		37097322
							l ·	31736332
0.085	0.016 0.	.042	0.03	0.026	0.038	0.038		28339273
0.098	0.016 0.	.042			0.038			26399543
	0.016 0.				0.038			36493172
	0.016 0.				0.038			
	0.016 0.				0.038 0.038			23698965
0.11					0.038			-95536865
24 B.C	0.013 0.				0.038			17111637
0.087	0.025	0.03			0.057			-76166379
0.111	0.022 0.	042	0.03	0.026	0.038	0.038		-83654169
	0.017 0.				·	· · ·		36448620
	0.024 0.							16928727
	0.016 0.				0.038			-63177822
0.147		0.03	0.03		0.038 0.071			-110954614
				0.048		0.017		
	0.015 0.		_		0.077			-23409699
0 145	0.024 0.				0.012			-87555938
Mxy = 0.111	0.016 0.	042	0.04	0.026	0.038	0.038	vz :=	860031
	0.016 0.				0.038			-23459964
	0.016 0.				0.038			6217825
	0.025 (				0.079 0.014			-113421927
	0.024 0.				0.014			-4347296
	0.016 0.	· •			0.038			
	0.016 0.				0.038			24701456
0.097	0.024 0.	031 0						12184933
0.149	0.023 0.	059 0	0.029	0.049	0.079	0.079		-741879
	0.016 0.							-135790023
	0.016 0.				0.066			-23960716
	0.016 0. 0.016 0.	1			0.08	1 1		21389186
	0.016 0.				0.038 0.038			6461343
	0.016 0.		1		0.038			-7376020
	0.016 0.	1			0.038			
	0.016 0.				0.038			14713633
0.107	0.021 0.	031 0	0.059	0.039	0.053	0.01		34878853
							•	36262139
	50.010 ( 00.025 (							37176709
							**	38547459
								-129570000

D:\univ2\data

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -459,349,000 Pa

Corresponding design variables: x1 = 150 mm

x1 = 150 mm x2 = 24 mm x3 = 59 mm x4 = 33 mm x5 = 11 mm x6 = 78 mm x7 = 73 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -3,646,239 Pa

	( 36616568
37 data points: Mxy gives the values of 7 variables;	22200656
vz gives the corresponding hoop stresses from ANSYS	37097322
	31736332
0.085 0.016 0.042 0.03 0.026 0.038 0.038	28339273
0.098 0.016 0.042 0.03 0.026 0.038 0.038	26399543
0.111 0.016 0.042 0.03 0.026 0.038 0.038	
0.124 0.016 0.042 0.03 0.026 0.038 0.038	36493172
0.137 0.016 0.042 0.03 0.026 0.038 0.038	23698965
0.15 0.016 0.042 0.03 0.026 0.038 0.038 0.038 0.0111 0.01 0.042 0.03 0.026 0.038 0.038	-95536865
0.111 0.01 0.042 0.03 0.026 0.038 0.038 0.038 0.011 0.013 0.042 0.03 0.026 0.038 0.038	17111637
0.087 0.025 0.03 0.058 0.042 0.057 0.08	-76166379
0.111 0.022 0.042 0.03 0.026 0.038 0.038	-83654169
0.15 0.017 0.039 0.058 0.048 0.077 0.01	36448620
0.095 0.024 0.038 0.058 0.049 0.014 0.01	16928727
0.111 0.016 0.036 0.03 0.026 0.038 0.038	
0.111 0.016 0.048 0.03 0.026 0.038 0.038	-63177822
0.147 0.01 0.03 0.06 0.01 0.071 0.013 0.087 0.025 0.03 0.037 0.048 0.08 0.017	-110954614
0.092 0.015 0.041 0.06 0.049 0.077 0.012	-23409699
	-87555938
$Mxy = \begin{bmatrix} 0.111 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \end{bmatrix}$ vz :=	860031
0.111 0.016 0.042 0.05 0.026 0.038 0.038	-23459964
0.111 0.016 0.042 0.06 0.026 0.038 0.038	6217825
0.132 0.025 0.03 0.054 0.035 0.079 0.011	-113421927
0.085 0.024 0.031 0.08 0.014 0.014 0.012	
0.111 0.016 0.042 0.03 0.034 0.038 0.038 0.038 0.038 0.0111 0.016 0.042 0.03 0.042 0.038 0.038 0.038	-4347296
0.111 0.016 0.042 0.03 0.05 0.038 0.038	24701456
0.097 0.024 0.031 0.058 0.014 0.079 0.012	12184933
0.149 0.023 0.059 0.029 0.049 0.079 0.079	-741879
0.111 0.016 0.042 0.03 0.026 0.052 0.038	-135790023
0.111 0.016 0.042 0.03 0.026 0.066 0.038	-23960716
0.111 0.016 0.042 0.03 0.026 0.08 0.038	21389186
	6461343
0.111 0.016 0.042 0.03 0.026 0.038 0.024	
0.111 0.016 0.042 0.03 0.026 0.038 0.052	-7376020
0.15 0.024 0.059 0.033 0.011 0.078 0.073	14713633
0.107 0.021 0.031 0.059 0.039 0.053 0.01	34878853
	36262139
Minimum 0.085 0.010 0.030 0.010 0.010 0.010 0.010 Maximum 0.150 0.025 0.060 0.060 0.050 0.080 0.080	37176709
	-3646239
	-129570000

D:\univ2\data

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -817,799,000 Pa

Corresponding design variables:  $x_1 = 139 \text{ mm}$ 

x1 = 139 mm x2 = 15 mm x3 = 34 mm x4 = 60 mm x5 = 50 mm x6 = 10 mmx7 = 78 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = -32,639,757 Pa

									( 36616568
37 da	ita points:	Mxy giv	ves the	value	s of 7	ariable	9 <b>5</b> ;		22200656
vz giv	es the co	respor	iaing n	oop str	<b>esse</b> s	trom A	NSYS		37097322
					i zz		in Réclamation	I	31736332
	0.085	0.016	0.042	0.03	0,026	0.038	0.038		28339273
		0.016				0.038			26399543
		0.016			L	0.038			36493172
	8.03	0.016				0.038			
	10.20	0.016				0.038			23698965
	0.15		0.042			0.038 0.038			-95536865
	1.3	0.013		L		0.038			17111637
		0.025		0.058					-76166379
	0.111	0.022	0.042	0.03	0.026	0.038	0.038		-83654169
		0.017				1	0.01		36448620
	· · · · · · · · · · · · · · · · · · ·	0.024					0.01		16928727
		0.016	l i	[	L	0.038			-63177822
	0.147		0.040	0.05	L	0.038			-110954614
		0.025		0.037			0.017		
	0.092	0.015	0.041	0.06	0.049	0.077			-23409699
Mxy =	N 12	0.024	_	1		0.012			-87555938
	0.111	0.016	-			0.038		vz :	= 860031
		0.016				0.038			-23459964
		0.016		0.054		0.038			6217825
		0.024				0.014			-113421927
		0.016				0.038			-4347296
	0.111	0.016	0.042	0.03	0.042	0.038	0.038		24701456
		0.016		0.03		0.038			12184933
		0.024							-741879
		0.023					0.079		
		0.016				0.066			-135790023
		0.016	4		0.026		0.038		-23960716
	0.111	0.016	0.042	0.03	0.026	0.038	0.01		21389186
		0.016				0.038			6461343
		0.016				0.038			-7376020
		0.015		0.06			0.078		14713633
		0.024							34878853
	0.107		<u></u>	0.000	0.000	0.000	0.01		36262139
Minimum		5 0.010							-32639757
<u>Maximum</u>	0.15	0 0.025	0.06	<u>0.06</u>	0 0.05	0.08	0_0.08	0	-3646239
									(-129570000

D:\univ2\data

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

First, the objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": Approximate minimum hoop stress = -649,567,000 Pa

Corresponding design variables:  $x_1 = 87 \text{ mm}$ 

x1 = 87 mm x2 = 24 mm x3 = 59 mm x4 = 57 mm x5 = 25 mm x6 = 11 mm x7 = 79 mm

Next, ANSYS solution for the values of design variables given above (x1 through x7) are obtained: Actual minimized hoop stress = 40,284,471 Pa

## APPENDIX IX

# FORTRAN 90 FILES USED TO DETERMINE THE MINIMUM POINT OF A QUADRATIC SURFACE BY MONTE CARLO PROGRAMMING TECHNIQUE

```
ł
1
      Monte Carlo Programming
1
ł
      Read coefficients from data file
!
      dimension c(36), xi(7), y(7), x(7), Z(7), R(7)
      open(10,file='data')
      do i=1,36
      read(10,'(f25.5)') c(i)
      end do
      close(10)
ł
ł
      Read lower limits of all design variables
1
      open(11,file='lower')
      do i=1,7
      read(11,'(f5.3)') Z(i)
      end do
      close(11)
1
Ī
      Read range of all design variables
1
      open(12,file='range')
      do i=1,7
      read(12,'(f5.3)') R(i)
      end do
      close(12)
1
1
      7 design variables defined
I
      pmin=9999999.0
      do 1 i=1,10000000
1
      define minimum and maximum values of design variables
1
1
I
      set design variable values; generate random dimensions where
applicable
1
      do j=1,7
      x(j) = (R(j) * rand()) + Z(j)
      end do
I
      define objective function for minimization
I
1
      p=c(1)*x(1)*x(7)+c(2)*x(2)*x(7)+c(3)*x(3)*x(7)+c(4)*x(4)*x(7) \in C
+c(5) *x(5) *x(7) +c(6) *x(6) *x(7) +c(7) *x(7) *x(7) +c(8) *x(7) +c(9) *x(1) *x(6)
£
      +c(10) *x(2) *x(6) +c(11) *x(3) *x(6) +c(12) *x(4) *x(6) +c(13) *x(5) *x(6)
£
      +c(14) *x(6) *x(6) +c(15) *x(6) +c(16) *x(1) *x(5) +c(17) *x(2) *x(5) =
      +c(18) *x(3) *x(5) +c(19) *x(4) *x(5) +c(20) *x(5) *x(5) +c(21) *x(5) &
      +c(22) *x(1) *x(4) +c(23) *x(2) *x(4) +c(24) *x(3) *x(4) +c(25) *x(4) *x(4)
£
+c(26) *x(4) +c(27) *x(1) *x(3) +c(28) *x(2) *x(3) +c(29) *x(3) *x(3) +c(30) *x(3)
£
```

```
+c(31) *x(1) *x(2) +c(32) *x(2) *x(2) +c(33) *x(2) +c(34) +c(35) *x(1) &
   +c(36)*x(1)*x(1)
   if(p.lt.pmin) go to 2
   go to 1
2 continue
   do 6 m=1,7
6 xi(m) = x(m)
  pmin≠p
1 continue
   open(8,file='results.out')
   write(8,*) 'Optimized values for the design variables:'
   write(8,*)'x1= ',xi(1),' m'
   write(8,*)'x2= ',xi(2),' m'
   write(8,*)'x3= ',xi(3),' m'
   write(8,*)'x4= ',xi(4),' m'
   write(8,*)'x5= ',xi(5),' m'
   write(8,*)'x6= ',xi(6),' m'
   write(8,*)'x7= ',xi(7),' m'
   write(8,*)'Minimum hoop stress value (pmin) = ',pmin,' Pa'
   close(8)
   stop
   end
```

! Input file "data" that contains the coefficients "c(i)" -11357899923.136808 12969185152.092247 -31376155986.570736 79883454388.56168 35839288778.38199 41388842723.27731 -999522962.6249875 -2139550492.8222687 5572905159.830531 -8334057497.072403 15421267715.515356 -43618645775.58822 -19535055607.283867 11873910577.68694 -3042531400.4525332 4700517963.664221 -7085553309.342083 13457992852.888754 -37756320685.95624 31104311072.908985 -3852048353.274278 10137651892.921741 ~15226659389.14586 30462734893.138264 93676314855.89244 -11931257968.203974 -6689377714.943879 4165108680.611187 219706386886.0258 -20711393665.17791 -539769083.9075795 776076173307.2313 -22588362570.563152 1143742756.019714 -673910654.7738097 2956202642.474992

```
! Input file "lower" that contains the lower limits "Z(i)"
0.085
0.01
0.03
0.01
0.01
0.01
```

- 0.01
- 0.01

- 0.07
- 0.07

! Output file "results.out" that contains the results Optimized values for the design variables: x1= 9.16534E-02 m x2= 1.51475E-02 m x3= 4.05489E-02 m x4= 5.97101E-02 m x5= 4.87860E-02 m x6= 7.69588E-02 m x7= 1.17495E-02 m Minimum hoop stress value (pmin)= -2.99382E+08 Pa

## APPENDIX X

# MATHCAD CALCULATION FILES FOR OPTIMIZATION USING SUCCESSIVE HEURISTIC QUADRATIC APPROXIMATION

## **Extracting Coefficients from Multi-Variate Regression (#1)**

Multi-variable second degree polynomial regression is used to fit a function to 37 data points. The regression function is used to solve the coefficients of the polynomial.

Define matrices that include the values of 7 independent variables:

	0.085	0.016	0.042	0.03	0.026	0.038	0.038
	0.098	0.016	0.042	0.03	0.026	0.038	0.038
	0.111	0.016	0.042	0.03	0.026	0.038	0.038
	0.124	0.016	0.042	0.03	0.026	0.038	0.038
:	0.137	0.016	0.042	0.03	0.026	0.038	0.038
	0.15	0.016	0.042	0.03	0.026	0.038	0.038
<b>Axy</b> :=	0.111	0.01	0.042	0.03	0.026	0.038	0.038
	0.111	0.013	0.042	0.03	0.026	0.038	0.038
	0.111	0.019	0.042	0.03	0.026	0.038	0.038
	0.111	0.022	0.042	0.03	0.026	0.038	0.038
	0.111	0.025	0.042	0.03	0.026	0.038	0.038
	0.111	0.016	0.03	0.03	0.026	0.038	0.038

1	0.111	0.016	0.036	0.03	0.026	0.038	0.038
	0.111	0.016	0.048	0.03	0.026	0.038	0.038
	0.111	0.916	0.054	0.03	0.026	0.038	0.038
	0.111	0.016	0.06	0.03	0.026	0.038	0.038
	0.111	0.016	0.042	0.01	0.026	0.038	0.038
Barry v.	0.111	0.016	0.042	0.02	0.026	0.038	0.038
Bry :=	0.111	0.016	0.042	0.04	0.026	0.038	0.038
	0.111	0.016	0.042	0.05	0.026	0.038	0.038
	0.111	0.016	0.042	0.06	0.026	0.038	0.038
	0.111	0.016	0.042	0.03	0.01	0.038	0.038
	0.111	0.016	0.042	0.03	0.018	0.038	0.038
	0.111	0.016	0.042	0.03	0.034	0.038	0.038

1	0.111	0.016	0.042	0.03	0.042	0.038	0.038
	0.111	0.016	0.042	0.03	0.05	0.038	0.038
	0.111	0.016	0.042	0.03	0.026	0.01	0.038
	0.111	0.016	0.042	0.03	0.026	0.024	0.038
	0.111	0.016	0.042	0.03	0.026	0.052	0.038
	0.111	0.016	0.042	0.03	0.026	0.066	0.038
Cxy :=	0.111	0.016	0.042	0.03	0.026	0.08	0.038
	0.111	0.016	0.042	0.03	0.026	0.038	0.01
	0.111	0.016	0.042	0.03	0.026	0.038	0.024
	0.111	0.016	0.042	0.03	0.026	0.038	0.052
	0.111	0.016	0.042	0.03	0.026	0.038	0.066
	0.111	0.016	0.042	0.03	0.026	0.038	0.08
	0.107	0.021	0.031	0.059	0.039	0.053	0.01 )

Stack A, B, and C matrices to obtain Mxy:

ABxy := stack(Axy,Bxy)

Mxy := stack(ABxy,Cxy)

		36616568
37 data points: Mxy gives the values of 7 variables; vz gives the corresponding hoop stresses from ANSYS		22200656
vz gives the corresponding hoop stresses from ANSTS		37097322
		31736332
0.085 0.016 0.042 0.03 0.026 0.038 0.038		28339273
0.098 0.016 0.042 0.03 0.026 0.038 0.038		26399543
0.111 0.016 0.042 0.03 0.026 0.038 0.038		36493172
0.124 0.016 0.042 0.03 0.026 0.038 0.038		
0.137 0.016 0.042 0.03 0.026 0.038 0.038 0.038 0.038 0.038		23698965
		40064955
0.111 0.013 0.042 0.03 0.026 0.038 0.038		17111637
0.111 0.019 0.042 0.03 0.026 0.038 0.038		134211136
0.111 0.022 0.042 0.03 0.026 0.038 0.038		93672103
0.111 0.025 0.042 0.03 0.026 0.038 0.038		36448620
0.111 0.016 0.03 0.03 0.026 0.038 0.038		16928727
0.111 0.016 0.036 0.03 0.026 0.038 0.038		
0.111 0.016 0.048 0.03 0.026 0.038 0.038		45893010
		50971165
0.111 0.016 0.06 0.03 0.026 0.038 0.038 0.111 0.016 0.042 0.01 0.026 0.038 0.038		1 <b>40489329</b>
		68229458
$Mxy = \begin{bmatrix} 0.111 & 0.016 & 0.042 & 0.026 & 0.038 & 0.038 \\ \hline 0.111 & 0.016 & 0.042 & 0.04 & 0.026 & 0.038 & 0.038 \\ \hline 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0.038 & 0$	vz :=	860031
0.111 0.016 0.042 0.05 0.026 0.038 0.038		-23459964
0.111 0.016 0.042 0.06 0.026 0.038 0.038		6217825
0.111 0.016 0.042 0.03 0.01 0.038 0.038		
0.111 0.016 0.042 0.03 0.018 0.038 0.038		64502322
0.111 0.016 0.042 0.03 0.034 0.038 0.038		50194254
0.111 0.016 0.042 0.03 0.042 0.038 0.038		24701456
0.111 0.016 0.042 0.03 0.05 0.038 0.038		12184933
0.111 0.016 0.042 0.03 0.026 0.01 0.038		-741879
0.111 0.016 0.042 0.03 0.026 0.052 0.038		72349661
0.111 0.016 0.042 0.03 0.026 0.066 0.038		
0.111 0.016 0.042 0.03 0.026 0.08 0.038	:	53812611
0.111 0.016 0.042 0.03 0.026 0.038 0.01		21389186
0.111 0.016 0.042 0.03 0.026 0.038 0.024		6461343
0.111 0.016 0.042 0.03 0.026 0.038 0.052		-7376020
0.111 0.016 0.042 0.03 0.026 0.038 0.066		14713633
0.111 0.016 0.042 0.03 0.026 0.038 0.08		34878853
0.107 0.021 0.031 0.059 0.039 0.053 0.01		36262139
Minimum 0.085 0.010 0.030 0.010 0.010 0.010 0.010		
Maximum 0.150 0.025 0.060 0.060 0.050 0.080 0.080		37176709
Difference 0.065 0.015 0.030 0.050 0.040 0.070 0.070		38547459
		-129570000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The 'Mxy' matrix holds the independent variables and the 'z' matrix holds the dependent variables. The degree of the polynomal is 'n'.

#### n := 2 vs := regress(Mxy,vz,n)

	(1990)	
		3
		3
		2
		-1.1 <b>36</b> ·10 ¹⁰
		1.297.10 10
		-3.138.10 10
	X X	7.988.10 10
		3.584.10 10
		4 120.10 10
	ľ.	4.139.10
		-9.995·10 ⁸
		-2.14·10 ⁹
		5.573·10 ⁹
		-8.334.109
		1.542.10 10
		4 362-10 10
		1 054.10 10
		-1.954-10 10
		1.187.10
		-3.043-109
_		4.701-109
=		-7.086.109
	1. 1. 2. 2	1.348.10 10
		3 778-10 10
		3 11.10 10
	190	3.11.10.0
		-3.852·10*
		1.014.10 10
		-1.523.10 10
		3.046.10 10
		9.368-10 10
		1 193-10 10
		A 290.409
		-0.000-10-
		4.165.10*
		2.197.10
		-2.071-10 10
		-5.398·10 ⁸
		7.761-10 11
		-2.259.10 10
		1.144.109
		-6.739·10 ⁸
		2.956·10 ⁹

٧S

The first three elements of the output vector contain information for the interp function. The values after that are the coefficients of the fitting polynomial. For multi-dimensional fitting, the program below is used to match the coefficients with the terms.

The coefficients can be extracted from the vector "vs"

The coefficients are: coeff := submatrix  $(vs, 3, last(vs^{(0)}), 0, 0)$ 

J

U

Program for Coefficients

A polynomial in nvar variables of degree deg has a number of terms given by the function Nterms:

Nterms(nvar,deg) :=  $\frac{nvar + deg!}{deg! \cdot nvar!}$ 

The number of variables of the polynomial is: Nvars := cols(Mxy)

The number of data points is: Ndata := rows(Mxy)

 $Nterms(Nvars, n) \leq Ndata$ 

Nterms(Nvars, a) = 36

The ordering of the coefficients employed by regress for a given number of variables and degree can be determined by using the programs below.

```
\begin{aligned} Step(v, Nvar, deg) &:= \begin{cases} \text{for } i \in 0.. \ deg & \text{if } Nvar = 1 \\ v_{i,0} \leftarrow v_{i,0} + i \\ \text{for } i \in 0.. \ Nvar - 1 & \text{if } deg = 1 \\ v_{i,i} \leftarrow v_{i,i} + 1 \\ \text{otherwise} \\ & \text{inc} \leftarrow Nterms(Nvar, deg - 1) \\ \text{for } i \in 0.. \ \text{inc} - 1 \\ v_{i, Nvar - 1} \leftarrow v_{i, Nvar - 1} + 1 \\ v \leftarrow stack(Step(submatrix(v, 0, \text{inc} - 1, 0, \text{cols}(v) - 1), Nvar, deg - 1), Step(sab) \\ v \end{aligned}
```

COrder(Nvar, deg) := | V_{Nterms}(Nvar, deg)-1, Nvar-1 ← 0 Step(v, Nvar, deg)

Program for Coefficients

For the data above: Nvar := cols(Mxy)

Compute the "identity"	matrix for the coefficients:
I := COrder(Nvar, deg	rows(1) = 36

deg := n

Independent variables

x1	x2	x3	<b>x4</b>	x5	<b>x6</b>	<b>x</b> 7

			1.80	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	<b>.</b>	i de la come		
		1	0	0	0	0	0	1
	5.22.5 5.24.5	0	1	0	Ō	Ō	0	-1
		0	0	1	0	0	0	1
		0	0	0	1	0	0	1
	X	0	0	0	σ	1	0	1
		0	0	0	Ō	0	1	1
		0	0	0	0	0	0	2
		0	0	0	0	0	0	1
		1	0	0	0	0	1	0
		0	1	0	0	0	1	0
		0	0	1	0	0	1	0
		0	0	0	1	0	1	0
		0	0	0	0	1	1	0
		0	0	0	0	0	2	0
		0	0	0	0	0	1	0
		1	0	0	0	1	0	0
_		0	1	0	0	1	0	0
I =		0	0	1	0	1	0	0
		0	0	0	1	1	0	0
		0	0	0	0	2	0	0
		0	0	0	0	1	0	0
		1	0	0	1	0	0	0
		0	1	0	1	0	0	0
		0	0	1	1	0	0	0
		0	0	0	2	0	0	0
	• *	0	0	0	1	0	0	0
	•	1	0	1	0	0	0	0
		0	0	1	0	0	0	0
		0	0	2	0	0	0	0
		-1	1	0	0	0	0	0
		-0	2	0	0	0	0	0
		-0	2	0	0	0	0	0
		-0	0	0	0	0	0	0
		-1	0	0	0	0	0	0
		-2	0	0	0	0	0	0
		-	<b>v</b>	<u> </u>		v	U	<u> </u>

		6·10 ¹⁰
	FEB SECTOR	7.10 10
	333 R	8.10 10
	7.98	8.10 10
	3.58	4·10 ¹⁰
		9.10 10
		95·10 ⁸
	100 March 100	14·10 ⁹
		73·10 ⁹
		34.109
		2.10 10
	-4.36	
	-1.95	4.10 10
		7.10 10
		43·10 ⁹
		01·10 ⁹
	54 A 67 A 6	86·109
coeff =		6·10 10 6·10 10
		1.10 10
	1.10	52.109
		4.10 10
		3.10 10
		6·10 ¹⁰
		8.10 10
		3.10 10
		89.109
		65·109
	2.19	7.10 11
	-2.07	
	-5.3	98·10ª
	7.76	1-10 11
	-2.25	9.10 10
	1.1	44-108
	-6.7	39·10 ⁸
	2.9	56·10 ⁹

$$p(x1, x2, x3, x4, x5, x6, x7) := \sum_{i = 0}^{iast(coeff)} coeff_{i} \cdot x1^{l_{i,0}} \cdot x2^{l_{i,1}} \cdot x3^{l_{i,2}} \cdot x4^{l_{i,3}} \cdot x5^{l_{i,4}} \cdot x6^{l_{i,5}} \cdot x7^{l_{i,6}}$$

The following best solution from ANSYS will be used as an example to test the function value:

$$p(0.107, 0.021, 0.031, 0.059, 0.039, 0.053, 0.01) = -1.2957 \times 10^8$$
 (consistent with actual point value)

Next, objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": minimum hoop stress = -299,382,000 Pa

Corresponding design variables:

x1 = 92 mm x2 = 15 mm x3 = 41 mm x4 = 60 mm x5 = 49 mm x6 = 77 mm x7 = 12 mm

ANSYS solution for the values of design variables given above (x1 through x7) = -23,409,699 Pa

D:\univ2\data	The values in "coeff" are written out to the file "data" in
	the D: Vunlv2 directory

coeff

The customized stand-alone optimization algorithm steps are applied below to determine the range of hoop stress considering all data points: Stress range : From -129,570,000 Pa to 140,489,329 Pa

Then, the lower half of the stress range is selected: Lower half: From -129,570,000 Pa to 5,459,665 Pa

	<b>V</b> 1	V2	V3	V4	V5	<b>V6</b>	<b>V</b> 7
Minimum	0.107	0.016	0.031	0.030	0.026	0.038	0.010
<u>Maximum</u>	0.111	0.021	0.042	0.059	0.050	0.080	0.038
Difference	0.004	0.005	0.011	0.029	0.024	0.042	0.028
Expanded minimum	0.107	0.015	0.030	0.027	0.024	0.034	0.010
Expanded maximum	0.111	0.022	0.043	0.060	0.050	0.080	0.041

			68663056
37 da	Ita points: Mxy gives the values of 7 variables; ves the corresponding hoop stresses from ANSYS		-18623241
vz giv			53275572
			76842884
	0.107 0.015 0.03 0.027 0.024 0.034 0.01		41493887
	0.111 0.022 0.043 0.06 0.05 0.08 0.041		26171269
	0.108 0.016 0.03 0.028 0.024 0.035 0.013 0.109 0.022 0.035 0.038 0.038 0.038	1	-82747934
	0.103 0.022 0.035 0.035 0.020 0.038 0.038		-58488139
	0.11 0.021 0.037 0.037 0.031 0.041 0.02		-48558463
	0.11 0.017 0.031 0.055 0.048 0.05 0.025	1	18599673
			-58836042
	0.108 0.021 0.038 0.059 0.04 0.065 0.035		26066154
	0.107 0.016 0.041 0.035 0.049 0.08 0.041		-154626854
	0.111 0.018 0.034 0.036 0.034 0.051 0.016		
	0.107 0.021 0.031 0.058 0.046 0.076 0.01		-68405480
	0.109 0.02 0.032 0.042 0.045 0.075 0.011		-153782728
	0.107 0.017 0.04 0.038 0.029 0.042 0.017		-30743855
	0.108 0.018 0.028 0.034 0.032 0.052 0.014		-25406901
Mxy =	0.11 0.018 0.042 0.057 0.028 0.039 0.031		-39074544
NERY -	0.111 0.016 0.042 0.04 0.026 0.038 0.038	vz :=	860031
	0.111 0.016 0.042 0.05 0.026 0.038 0.038 0.107 0.015 0.033 0.029 0.025 0.053 0.014		-23459964
	0.107 0.021 0.031 0.058 0.041 0.054 0.016		9494100
	0.107 0.017 0.039 0.03 0.032 0.066 0.032	I	-127380157
	0.107 0.015 0.043 0.034 0.037 0.071 0.022		2834275
	0.107 0.021 0.031 0.056 0.048 0.073 0.01		-31573362
	0.111 0.016 0.042 0.03 0.05 0.038 0.038 0.038 0.038 0.038	ĺ	-156817999
	0.108 0.02 0.033 0.031 0.037 0.072 0.014		-741879
	0.109 0.022 0.035 0.035 0.036 0.074 0.017		-44348423
	0.109 0.021 0.034 0.037 0.034 0.073 0.014		-78384532
			-56857964
	0.107 0.017 0.041 0.051 0.048 0.08 0.01 0.107 0.019 0.04 0.053 0.05 0.078 0.011		-28219569
	0.108 0.021 0.039 0.057 0.049 0.079 0.011		-7376020
	0.108 0.015 0.037 0.059 0.047 0.076 0.012		-82445815
	0.092 0.015 0.041 0.06 0.049 0.077 0.012		-82845264
	0.107 0.021 0.031 0.059 0.039 0.053 0.01		
Minimum	0.092 0.015 0.030 0.027 0.024 0.034 0.010 0.111 0.022 0.043 0.060 0.050 0.080 0.041		-83927901
Maximum Difference	0.019 0.007 0.013 0.033 0.026 0.046 0.031		-67138974
-marchive			-23409699
			(-129570000)

$$p(x1, x2, x3, x4, x5, x6, x7) := \sum_{i = 0}^{last(coeff)} coeff_i \cdot x1^{l_{i,0}} \cdot x2^{l_{i,1}} \cdot x3^{l_{i,2}} \cdot x4^{l_{i,3}} \cdot x5^{l_{i,4}} \cdot x6^{l_{i,5}} \cdot x7^{l_{i,6}}$$

The following best solution from ANSYS will be used as an example to test the function value:

 $p(0.107, 0.021, 0.031, 0.059, 0.039, 0.053, 0.01) = -1.279553064 \times 10^8$  (consistent with actual point value)

Next, objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": minimum hoop stress = -1,540,010,000 Pa

Corresponding design variables: x1 = 107 mm

x1 = 107 mm x2 = 22 mm x3 = 43 mm x4 = 28 mm x5 = 49 mm x6 = 35 mm x7 = 39 mm

ANSYS solution for the values of design variables given above (x1 through x7) = - 5,472,892 Pa

D:\univ2\data The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

The customized stand-alone optimization algorithm steps are applied below to determine the range of hoop stress considering all data points:

of hoop stress considering all data points: Stress range : From -156,817,999 Pa to 76,842,884 Pa

Then, the lower half of the stress range is selected: Lower half: From -156,817,999 Pa to -39,987,558 Pa

	V1	V2	V3	V4	V5	<b>V6</b>	<b>V7</b>
Minimum <u>Maximum</u>	0.107 0.111	0.015	0.030 0.041	0.028 0.059	0.033 0.050	0.050 0.080	0.010 _0.041
Difference	0.004	0.007	0.011	0.031	0.017	0.030	0.031
ed minimum ed maximum	0.107 0.111	0.015 0.022	0.030 0.042	0.025 0.060	0.031 0.050	0.047 0.080	0.010 0.044

									( -2997440 `
37 da	ita points: I les the con	Mxy giv	ves the	value:	s of 7 v	ariable			-18490060
vz giv		respon	ang n	oop su	62262	Irom A	11313		-82057416
								1	-70185365
	0.108	0.015	0.036	0.03	0.049	0.073	0.015		-66814434
	0.111	0.022	0.042	0.06	0.05	0.08	0.044		-94661249
	0.11				0.043		-		-82747934
	0.11				0.033	1			
	0.109	0.022			0.034				-58488139
		0.02	L				0.025		-48558463
		0.016				0.06			-103952383
	0.108	0.021	0.038	0.059	0.04	0.065	0.035		-58836042
	0.108	0.019	0.031	0.057	0.044	0.065	0.015		-156679548
		0.016	ſ				0.041		-154626854
	0.107			1					-68405480
	0.107	0.021			0.045				-153782728
		0.019	1			F			-95010402
		0.019		r	ł				
	0.107	0.019	0.032	0.059	0.046	0.077	0.012		-93180318
Mxy =		0.019			0.048			6.	-68870157
<b>.</b>	0.107	0.019						vz :=	-83526732
		0.016			0.049	1			-6678775
		0.021		-					-151712231
		0.016							-127380157
		0.017			0.046				-11565982
	0.107	0.021	0.031	0.056	0.048	0.073	0.01		-37259671
		0.021							-156817999
		0.018							
	0.108				0.037				-158272820
		0.022					0.017		-44348423
		0.021					F I		-78384532
		0.017							-56857964
	0.107	0.019	0.04	0.053	0.05	0.078	0.011		-94068927
		0.021							-128998472
		0.015		I	· -				-82445815
		0.022							-82845264
		0.021	L	L	L	L		1	-83927901
Minimum <u>Maximum</u>	0.107	7 0.015 1 0 022		0.02	5 0.03 [.] 0 0 06.		7 0.01 0_0.04	0	
Difference							<u>0 0.04</u> 3 0.03		-67138974
	v.v <b>u</b> -		U.V 14					<b>T</b>	-5472892
									-129570000

$$p(x1, x2, x3, x4, x5, x6, x7) := \sum_{i = 0}^{last(coeff)} coeff_i \cdot x1^{I_{i,0}} \cdot x2^{I_{i,1}} \cdot x3^{I_{i,2}} \cdot x4^{I_{i,3}} \cdot x5^{I_{i,4}} \cdot x6^{I_{i,5}} \cdot x7^{I_{i,6}}$$

The following best solution from ANSYS will be used as an example to test the function value:

 $p(0.107, 0.021, 0.031, 0.059, 0.039, 0.053, 0.01) = -1.2975886773 \times 10^{3}$  (consistent with actual point value)

Next, objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": minimum hoop stress = -846,447,000 Pa

Corresponding design variables:

x1 = 111 mm x2 = 15 mm x3 = 31 mm x4 = 50 mm x5 = 32 mm x6 = 80 mm x7 = 44 mm

ANSYS solution for the values of design variables given above (x1 through x7) = - 59,527,399 Pa

	es in "coeff" are written out to the file "data" in lv2 directory
--	----------------------------------------------------------------------

coeff

The customized stand-alone optimization algorithm steps are applied below to determine the range of hoop stress considering all data points:

of hoop stress considering all data points: Stress range : From -158,272,820 Pa to -2,997,440 Pa

Then, the lower half of the stress range is selected: Lower half: From -158,272,820 Pa to -80,635,130 Pa

		<b>V1</b>	V2	V3	V4	V5	<b>V6</b>	<b>V7</b>
	Minimum <u>Maximum</u>	0.107 <u>0.111</u>	0.017 0.021	0.030 <u>0.041</u>	0.045 0.059	0.036 0.050	0.049	0.010 0.040
	Difference	0.004	0.004	0.011	0.014	0.014	0.031	0.030
Expande Expande	d minimum d maximum	0.107 0.111	0.017 0.021	0.030 0.042	0.044 0.060	0.035 0.050	0.046 0.080	0.010 0.043

									(-102618374`
37 da	ita points:	Mxy gi	ves the	e value	<b>s of 7</b> \	ariable	es;		-59791608
vz giv	ves the co	respor	ding h	oop str	esses	from A	NSYS		-82057416
		anta ng t			8-6		300 D. 192509		-82283207
	0.107	0.017	01035	0.058	001014	0.07	0.01		-85856049
		0.018		0.044					-94661249
	0.11			0.055					-82747934
	F355555	0.019							
	0.107		1	0.048		L			-107500227
		0.02					0.02		-87846516
	- 25. A TO	0.021				· · · · · ·			-103952383
	0.108	0.021	0.035	0.056	0.049	0.049	0.02		-65656479
		0.019							-156679548
	Activity of the second s	0.02						j –	-154626854
		0.021	I						-89164536
		0.021					0.039	4	-153782728
		0.019						4	-95010402
	0.108	0.019	0.033	0.058	0.047	0.075	0.011		-93180318
		0.019							-94865311
Mxy =		0.021							-83526732
		0.019		1	0.049		0.01	1	
	12	0.021	_					•	-44584059
	100	0.021							-151712231
	0.107	0.021	0.042	0.06	0.043	0.076	0.01	1	-127380157
		0.017					0.01	j	-79295732
		0.021					0.01		-75127038
		0.021					0.01	1	-156817999
		0.021						1	-158272820
	0.111	0.02	0.031	0.056	0.046	0.08	0.014		-73550472
		0.018						l	-84364636
		0.021							-149281963
		0.017						1	-94068927
		0.021	_					]	-128998472
		0.019				1			
	0.111	0.015	0.031	0.05	0.032	0.08	0.044		-82445815
	0.107	0.021	0.031	0.059	0.039	0.053	0.01	]	-82845264
Minimum		7 0.017							-83927901
Maximum		<u>1 0.021</u>							-147940978
Difference	0.00	4 0.004	0.012	2 0.01	5 0.01	0.03	4 0.03	13	-59527399
									-129570000

$$p(x1, x2, x3, x4, x5, x6, x7) := \sum_{i=0}^{last(coeff)} coeff_i \cdot x1^{l_{i,0}} \cdot x2^{l_{i,1}} \cdot x3^{l_{i,2}} \cdot x4^{l_{i,3}} \cdot x5^{l_{i,4}} \cdot x6^{l_{i,5}} \cdot x7^{l_{i,6}}$$

The following best solution from ANSYS will be used as an example to test the function value:

 $p(0.107, 0.021, 0.031, 0.059, 0.039, 0.053, 0.01) = -1.29480206 \times 10^8$  (consistent with actual point value)

Next, objective function given above as polynomial "p" is minimized using "Monte Carlo Programming": minimum hoop stress = -1,623,110,000 Pa

Corresponding design variables: x1 = 107 mm

x1 = 107 mm x2 = 17 mm x3 = 42 mm x4 = 46 mm x5 = 40 mm x6 = 46 mmx7 = 42 mm

ANSYS solution for the values of design variables given above (x1 through x7) = - 46,531,710 Pa

The values in "coeff" are written out to the file "data" in the D:\univ2 directory

coeff

The customized stand-alone optimization algorithm steps are applied below to determine the range of hoop stress considering all data points: Stress range : From -158,272,820 Pa to -44,584,059 Pa

Then, the lower half of the stress range is selected: Lower half: From -158,272,820 Pa to -101,428,440 Pa

	<b>V1</b>	V2	V3	V4	V5	V6	<b>V</b> 7
Minimum	0.107	0.017	0.030	0.053	0.039	0.046	0.010
<u>Maximum</u>	<u>0.111</u>	0.021	0.033	0.059	0.048	0.080	0.016
Difference	0.004	0.004	0.003	0.006	0.009	0.034	0.006
d minimum	0.107	0.017	0.030	0.052	0.038	0.043	0.010
d maximum	0.111	0.021	0.033	0.060	0.049	0.080	0.017

			(-102618374)
37 da vz giv	Ita points: Mxy gives the values of 7 variables; ves the corresponding hoop stresses from ANSYS		-80490163
·- 9··			-88024012
			-93954191
	0.107 0.017 0.031 0.056 0.044 0.07 0.01		-101580312
	0.107 0.017 0.03 0.052 0.038 0.043 0.01		-102816185
	0.107 0.017 0.03 0.053 0.039 0.045 0.011		-109114420
	0.108 0.018 0.031 0.055 0.04 0.053 0.012		107500227
	0.108 0.018 0.031 0.055 0.041 0.056 0.013		-136812565
	0.109 0.019 0.032 0.055 0.042 0.059 0.013		-103952383
	0.107 0.021 0.033 0.053 0.048 0.046 0.016		1
	0.11 0.02 0.032 0.056 0.043 0.063 0.01		-101631971
	0.108 0.019 0.031 0.057 0.044 0.065 0.015 0.111 0.021 0.033 0.057 0.046 0.067 0.014		-156679548
	0.107 0.021 0.031 0.056 0.045 0.076 0.014		-154626854
	0.107 0.021 0.031 0.058 0.046 0.076 0.01		-91933278
	0.111 0.02 0.033 0.058 0.045 0.075 0.015		-153782728
	0.111 0.019 0.029 0.056 0.044 0.077 0.012		-85157929
	0.107 0.017 0.03 0.058 0.044 0.076 0.016		-81999183
	0.107 0.017 0.031 0.058 0.046 0.077 0.016 0.017 0.016		-79598642
Mxy =	0.107 0.018 0.031 0.059 0.047 0.079 0.01	vz :=	-94440811
	0.11 0.018 0.032 0.06 0.048 0.08 0.01		-88554076
	0.107 0.021 0.031 0.059 0.048 0.074 0.01		-151712231
	0.107 0.021 0.031 0.058 0.041 0.054 0.016		-127380157
	0.108 0.02 0.032 0.058 0.048 0.073 0.011		-98053739
	0.107 0.021 0.031 0.057 0.047 0.075 0.01		-101351077
	0.107 0.021 0.032 0.059 0.048 0.072 0.011		-156817999
	0.109 0.017 0.031 0.058 0.047 0.071 0.013		-158272820
	0.111 0.02 0.031 0.056 0.046 0.08 0.014		-101667129
	0.107 0.017 0.033 0.059 0.046 0.07 0.014		-91253783
	0.11 0.021  0.03 0.055 0.042 0.053  0.01 0.107 0.017 0.031 0.052 0.046 0.069  0.01		-149281963
	0.109 0.017 0.031 0.054 0.045 0.068 0.01		-79919850
	0.109 0.017 0.031 0.055 0.048 0.066 0.01		-128998472
	0.11 0.019 0.031 0.055 0.046 0.075 0.01		-127703683
	0.107 0.017 0.042 0.046 0.04 0.046 0.042		1
	0.107 0.021 0.031 0.059 0.039 0.053 0.01		-113013381
Minimum	0.107 0.017 0.030 0.046 0.038 0.043 0.010		-111084660
Maximum_ Difference	<u>0.111 0.021 0.042 0.060 0.049 0.080 0.042</u> 0.004 0.004 0.012 0.014 0.011 0.037 0.032		-147940978
Dillerence	0.004 0.004 0.012 0.014 0.011 0.037 0.032		-46531710
			(-129570000)

Difference between the minimum and maximum values of design variables (second termination criterion, approximately half the value of the initial DV intervals):

< 30 mm
< 10 mm
< 15 mm
< 25 mm
< 20 mm
~ 35 mm
< 35 mm

Total number of iterations = 124

124 > maximum number of iterations (Imax =100) (third termination criterion)

Calculate standard deviation of data points:

aum := 36

Number of data points after final iteration

1

vsum :=  $\sum_{i=0}^{35} vz_i$  vavg :=  $\frac{vsum}{num}$ 

$$vavg = -1.1128476344 \times 10^8$$

Average value of "num" data points

sdev := 
$$\left[\left(\frac{1}{num-1}\right)\cdot\sum_{i=0}^{35} (vz_i - vavg)^2\right]^{\frac{1}{2}}$$

 $sdev = 2.8185836294 \times 10^7$ 

Standard deviation of data points

 $pdev := \left(\frac{sdev}{vavg}\right) \cdot (-1)$ 

Standard deviation devided by the average value of data points

pdev = 0.2532766879

pdev < 0.3 (fourth termination criterion, ratio of standard deviation to average hoop stress)

The minimum hoop stress is the same as the one obtained in the previous loop (-158,272,820 Pa). Therefore, the first termination criterion, as outlined in the program algorithm, has been satisfied.

The best solution is given below:

x1 = 107 mm x2 = 21 mm x3 = 31 mm x4 = 57 mm x5 = 47 mm x6 = 75 mm x7 = 10 mm

Minimum hoop stress = -158,272,820 Pa

## APPENDIX XI

# TWO DIMENSIONAL AXISYMMETRIC ANSYS SOFTWARE MULTIPLE DESIGN VARIABLE INPUT FILE FOR SUCCESSIVE HEURISTIC QUADRATIC APPROXIMATION

266

```
/BATCH, LIST
1
1
      2-D axisymmetric model for induction aneealing
Т
      Obective function: Maximum compression on the outer surface
      State variable: None
ţ
I
      7 design variables
/config, nres, 10000
/units,si
1
1
*do,nit,1,10,1
n = 10
                       ! Number of iterations = array size
*dim, vx1, array, n, 1
*dim, vx2, array, n, 1
*dim, vx3, array, n, 1
*dim, vx4, array, n, 1
*dim, vx5, array, n, 1
*dim, vx6, array, n, 1
*dim, vx7, array, n, 1
vx1(1) = 0.107, 0.111, 0.108, 0.109, 0.111, 0.11, 0.11, 0.107, 0.108, 0.11
vx2(1)=0.015,0.022,0.016,0.022,0.02,0.021,0.017,0.016,0.021,0.022
vx3(1)=0.03,0.043,0.03,0.035,0.036,0.037,0.031,0.034,0.038,0.032
vx4(1) = 0.027, 0.06, 0.028, 0.03, 0.035, 0.037, 0.055, 0.057, 0.059, 0.031
vx5(1) = 0.024, 0.05, 0.024, 0.026, 0.03, 0.031, 0.048, 0.035, 0.04, 0.042
vx6(1)=0.034,0.08,0.035,0.038,0.04,0.041,0.05,0.06,0.065,0.07
vx7(1) = 0.01, 0.041, 0.013, 0.038, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04
1
Ł
                  SET INITIAL VALUE OF DESIGN VARIABLES
var1=vx1(nit)
                       ! Trunnion collar upper section length (variable
#1)
var2=vx2(nit)
                       ! Outer lid closure weld length (variable #2)
var3=vx3(nit)
                       ! Extended lid outer fillet weld base length
(variable #3)
var4=vx4(nit)
                      ! Extended lid inner fillet weld base length
(variable #4)
var5=vx5(nit)
                      ! Extended outer shell lid thickness (variable
#5)
var6=vx6(nit)
                      ! Reinforcement ring (variable #6)
var7=vx7(nit)
                     ! Ring weld section - inner (variable #7)
I.
1
/prep7
/title, FEA to determine residual stresses due to induction coil
heating of closure welds
/vcon,,0
et,1,plane13,4,,1 ! Axisymmetric model for the outer shell
1
mptemp, 1, 20, 1120
mpdata, ex, 1, 1, 206e9, 134e9 ! Alloy 22 Elastic Modulus
mpdata,nuxy,1,1,0.278,0.46 ! Alloy 22 Poisson's ratio
! Material properties of outer shell
tb, biso, 1
tbtemp,20
tbdata,,310e6,0.847e9 ! Alloy 22
tbtemp, 1120
tbdata,,85e6,0.173e9 ! Alloy 22
```

```
1
mp, dens, 1, 8690.0
                   ! Alloy 22
mpdata, alpx, 1, 1, 12.4e-6, 16.2e-6
                                  ! Alloy 22
! Thermal properties of Alloy 22
/COM.
         Define conductivity
         1, 48,
                    100, 200,
MPTEMP,
                                 300, 400, 500,
MPTEMP,
         7, 600,
MPDATA, KXX, 1, 1,
                    10.1, 11.1, 13.4, 15.5, 17.5, 19.5,
MPDATA, KXX, 1, 7,
                   21.3,
        Define specific heat
/COM,
MPTEMP,
          1, 52,
                    100, 200,
                                 300, 400, 500,
MPTEMP, 7, 600,
MPDATA, C, 1, 1, 414, 423, 444, 460, 476, 485,
MPDATA, C, 1, 7, 514,
/com, Define Parameters
1
! Parameters along x-axis
               ! Outer shell inner radius
osir=0.762
osip=0.004
               ! Outer shell inner part
osop=0.016
               ! Outer shell outer part
tcti=0.02
                ! Trunnion collar thickness - inner
tctm=0.005
                 ! Trunnion collar thickness - middle
tcto=0.015
                 ! Trunnion collar thickness - outer
gap=0.004
               ! Gap between extended outer shell lid and outer shell
1
! Parameters along y-axis
cav=4.775+0.03+0.01+0.03+0.07
                                 ! Distance between outer shell lid
inner surfaces
hcav=cav/2
               ! Half distance between outer shell lid inner surfaces
trl=0.1
                 ! Trunnion ring length
tcl=0.14
                 ! Trunnion collar length
tcbi=0.005
                ! Trunnion collar bottom - innner region
tcbo=0.02
                 ! Trunnion collar bottom - outer region
clth=0.01
               ! Closure lid thickness
clw=0.01
              ! Closure lid weld
tcui=0.02
                 ! Trunnion collar upper section - inner part of the
fillet weld
tcuo=0.02
                 ! Trunnion collar upper section - outer part of the
fillet weld
olid=0.025
               ! Extended lid base
٠
/com, Define keypoints
CSYS,0
k,1,osir,
k,2,osir+osip,
k, 3, osir+osip+osop,
k,4,osir,hcav-trl-tcl-tcbi-tcbo
k, 5, osir+osip, hcav-trl-tcl-tcbi-tcbo
k, 6, osir+osip+osop, hcav-trl-tcl-tcbi-tcbo
k,7,osir,hcav-trl-tcl-tcbi
k,8,osir+osip,hcav-trl-tcl-tcbi
k,9,osir+osip+osop,hcav-trl-tcl-tcbi
k, 10, osir+osip+osop+tcti, hcav-trl-tcl-tcbi
k, 11, osir, hcav-trl-tcl
k, 12, osir+osip, hcav-trl-tcl
k, 13, osir+osip+osop, hcav-trl-tcl
k, 14, osir+osip+osop+tcti, hcav-trl-tcl
```

k, 15, osir+osip+osop+tcti+tctm, hcav-trl-tcl k, 16, osir+osip+osop+tcti+tctm+tcto, hcav-trl-tcl k, 17, osir, hcav-trl k, 18, osir+osip, hcav-trl k, 19, osir+osip+osop, hcav-trl k,20,osir+osip+osop+tcti,hcav-trl k,21,osir+osip+osop+tcti+tctm,hcav-trl k,22,osir+osip+osop+tcti+tctm+tcto,hcav-trl k,23,0,hcav k,24,osir,hcav k,25,0sir+osip,hcav k,26,osir+osip+osop,hcav k, 27, osir+osip+osop+tcti, hcav k,28,osir+osip+osop+tcti+tctm+tcto,hcav k,29,0,hcav+clth k, 30, osir+osip-clw, hcav+clth k, 31, osir+osip, hcav+clth k, 32, osir+osip+osop, hcav+clth k, 33, osir+osip+osop+tcti, hcav+clth k, 34, osir+osip+osop+tcti+tctm+tcto, hcav+clth k,35,osir+osip,hcav+clth+clw k, 36, osir+osip+osop, hcav+clth+clw k, 37, osir+osip+osop+tcti, hcav+clth+clw k, 38, osir+osip+osop+tcti+tctm+tcto, hcav+clth+clw k,39,osir+osip,hcav+clth+clw+var1 k,40,osir+osip+osop,hcav+clth+clw+var1 k,41,osir+osip+osop+tcti,hcav+clth+clw+var1 k,42,osir+osip+osop+tcti+tctm+tcto,hcav+clth+clw+var1 k,43,osir+osip,hcav+clth+clw+var1+tcui k,44,osir+osip+osop,hcav+clth+clw+var1+tcui k, 45, osir+osip+osop+tcti, hcav+clth+clw+var1+tcui k,46,osir+osip,hcav+clth+clw+var1+tcui+tcuo k,47,osir+osip+osop,hcav+clth+clw+var1+tcui+tcuo k,48,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2 k,49,osir+osip-gap,hcav+clth+clw+var1+tcui+tcuo+var2 k, 50, osir+osip, hcav+clth+clw+var1+tcui+tcuo+var2 k, 51, osir+osip+osop, hcav+clth+clw+var1+tcui+tcuo+var2 k, 52, osir+osip-gap, hcav+clth+clw+var1+tcui+tcuo k,53,osir+osip-gap-var5-var6,hcav+clth+clw+var1+tcui+tcuo+var2-var3 k,54,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2-var3 k, 55, osir+osip-gap, hcav+clth+clw+var1+tcui+tcuo+var2-var3 k, 56, 0, hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4 k, 57, osir+osip-gap-var5-var6-var7, hcav+clth+clw+var1+tcui+tcuo+var2var3-var4 k,58,osir+osip-gap-var5-var6,hcav+clth+clw+var1+tcui+tcuo+var2-var3var4 k,59,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4 k,60,osir+osip-gap,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4 k, 61, 0, hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4-olid k,62,osir+osip-gap-var5-var6-var7,hcav+clth+clw+var1+tcui+tcuo+var2var3-var4-olid k,63,osir+osip-gap-var5-var6,hcav+clth+clw+var1+tcui+tcuo+var2-var3var4-olid k,64,osir+osip-gap-var5,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4olid k,65,osir+osip-gap,hcav+clth+clw+var1+tcui+tcuo+var2-var3-var4-olid /com, Horizontal lines in inner (first) part of the outer shell

1,1,2 1,4,5 1,7,8 1,11,12 1,17,18 1,24,25 1,30,31 1,30,35 1,31,35 1,32,36 1,33,37 1,34,38 lesize, all, , , 2, 1, 1 lsel, none /com, Horizontal lines in second part of the outer shell 1,2,3 1,5,6 1,8,9 1,12,13 1,18,19 1,25,26 1,31,32 1,35,36 1,39,40 1,43,44 1,46,47 1,50,51 lesize,all,,,2,1,1 lsel, none /com, Horizontal lines in inner part of the trunnion collar 1,7,4 1,8,5 1,9,6 1,10,6 1,9,10 1,13,14 1,19,20 1,26,27 1,32,33 1,36,37 1,40,41 1,44,45 1,47,45 1,44,47 1,43,46 lesize,all,,,2,1,1 lsel, none /com, Horizontal lines in the thin section of the lower trunnion collar 1,11,7 1,12,8 1,13,9 1,14,10 1,15,10 1,14,15 1,20,21 lesize,all,,,2,1,1 lsel, none

/com, Horizontal lines in the thick section of the lower trunnion collar 1,15,16 1,21,22 lesize,all,,,1,1,1 lsel, none /com, Horizontal lines in the outer part of the upper trunnion collar 1,27,28 1,33,34 1,37,38 1,41,42 1,45,42 1,41,45 1,40,44 1,39,43 lesize, all, , , 2, 1, 1 lsel, none /com, Horizontal lines in the gap 1,52,46 1,49,50 lesize,all,,,1,1,1 lsel, none /com, Horizontal lines in the extended outer shell lid 1,64,65 1,59,60 1,54,55 1,48,52 1,48,49 1,49,52 1,50,46 1,51,47 **lesize**, all, , , 4, 1, 1 lsel, none /com, Horizontal lines in the extended lid reinforcement ring 1,63,64 1,58,59 1,53,54 1,53,48 1,48,54 1,52,55 lesize,all,,,4,1,1 lsel, none /com, Horizontal lines in the extended lid reinforcement ring - left side section 1,62,63 1,57,58 1,57,53 1,53,58 1,54,59 1,55,60 lesize, all, , , 4, 1, 1 lsel, none /com, Horizontal lines in the outer lid 1,61,62 1,56,57 lesize,all,,,6,.0625,1 lsel, none

/com, Horizontal lines in the closure lid 1,23,24 1,29,30 lesize,all,,,6,.0625,1 lsel, none /com, Vertical lines above the symmetry line 1,1,4 1.2.5 1,3,6 lesize, all, , , 6, .06, 1 lsel, none /com, Vertical lines in the lower part of the trunnion collar 1,11,17 1,12,18 1,13,19 1,14,20 1,15,21 1,16,22 lesize, all, , , 2, 1, 1 lsel, none /com, Vertical lines in the middle part of the trunnion collar 1,17,24 1,18,25 1,19,26 1,20,27 lesize,all,,,2,1,1 lsel, none /com, Vertical lines in the closure lid 1,23,29 1,24,30 1,25,31 1,26,32 1,27,33 1,28,34 lesize, all, , , 1, 1, 1 lsel, none /com, Vertical lines in the upper part of the trunnion collar 1,35,39 1,36,40 1,37,41 1,38,42 lesize, all, , , 6, .2, 1 lsel, none /com, Vertical lines in the outer lid 1,61,56 1,62,57 1,63,58 1,64,59 1,65,60 lesize, all, , , 2, 1, 1 lsel, none /com, Define areas starting from the region close to bottom symmetry plane allsel al,1,84,2,83 al,13,85,14,84 al,2,26,3,25

al,14,27,15,26 al,27,28,29 al,3,41,4,40 al,15,42,16,41 al,29,43,30,42 al,43,44,45 al,4,87,5,86 al,16,88,17,87 al,30,89,31,88 al,45,90,46,89 al,47,91,48,90 al, 5, 93, 6, 92 al, 17, 94, 18, 93 al, 31, 95, 32, 94 al,81,97,82,96 al,6,98,7,97 al,18,99,19,98 al, 32, 100, 33, 99 al,49,101,50,100 al,7,9,8 al,19,10,20,9 al,33,11,34,10 al, 50, 12, 51, 11 al,20,103,21,102 al,34,104,35,103 al, 51, 105, 52, 104 al,21,55,22,56 al,35,54,36,55 al, 52, 53, 54 al,22,38,23,39 al,36,37,38 al,23,66,24,65 al, 57, 65, 58, 64 al,62,64,63 al,69,71,70 al,61,72,62,71 al,74,76,75 al,68,77,69,76 al,60,78,61,77 al,79,107,80,106 al,73,108,74,107 al,67,109,68,108 al,59,110,60,109 /com, Outer shell and lid mesh alls type,1 ! plane13 mat,1 ! Alloy 22 smrt, off mshkey,1 amesh,all /com, Apply displacement/symmetry constraints nsel,s,loc,y,0 d,all,uy,0 nsel,s,loc,x,-.001,.001 d,all,ux,0 allsel /nerr,,100000

finish /SOLU ANTYPE, TRAN, NEW, NROPT, FULL, , ON, TRNOPT, FULL, negit,100 ALLS TIME,35 /COM, Thermal initial boundary condition for the WP at 20 degrees C TUNIF,20 /COM, Apply loads and solve for 0 to 35 seconds nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t cui+tcuo+var2 ! Select volume of first HAZ from coil induction D, ALL, TEMP, 1120 nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo, hcav+clth+clw+var1+tcui+tcuo+ (var2/2)-0.0001 ! Select volume of second HAZ from coil induction D, ALL, TEMP, 750 nsel, s, loc, y, hcav+clth+clw+var1, hcav+clth+clw+var1+tcui+tcuo-0.0001 ! Select volume of third HAZ from coil induction D, ALL, TEMP, 500 nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3var4+0.0001, hcav+clth+clw+var1-0.00001 ! Select volume of fourth HAZ from coil induction D, ALL, TEMP, 250 /COM, Set time integration parameters for the first time interval ALLS NSUBST, 5, 10, 4, ON, KBC,0 AUTOTS, ON OUTRES, ALL, ALL SOLVE 1 1 /COM, Solve from 35 to 45 seconds TIME,45 nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t cui+tcuo+var2 ! Select volume of first HAZ from coil induction D, ALL, TEMP, 1120 nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo, hcav+clth+clw+var1+tcui+tcuo+ (var2/2)-0.0001 ! Select volume of second HAZ from coil induction D, ALL, TEMP, 750 nsel, s, loc, y, hcav+clth+clw+var1, hcav+clth+clw+var1+tcui+tcuo-0.0001 ! Select volume of third HAZ from coil induction D, ALL, TEMP, 500 nsel, s, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3var4+0.0001,hcav+clth+clw+var1-0.00001 ! Select volume of fourth HAZ from coil induction D, ALL, TEMP, 250 ALLS OUTRES, ALL, ALL SOLVE t ł /COM, Solve from 45 to 75 seconds nsel,all

! Delete previously set boundary

conditions TM START=46 TM END=75 TM INC=1 ALLS *DO, TM, TM START, TM END, TM INC TIME, TM, ! Identify and group all surface nodes for quenching lsel,s,,,75 **lsel**,**a**,,,70 lsel,a,,,63 **lsel**, a, , , 58 lsel, a, , , 24 lsel,a,,,66 lsel, a, , , 37 lsel,a,,,53 lsel,a,,,105 nsll,s,1 cm, s nodes, node alls ! Select first set of surface nodes for quenching nsel, s, , , s nodes nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t cui+tcuo+var2 cm, surf1, node D, ALL, TEMP, 1120 - ((1000/29) * (TM - 46))! Select second surface area for quenching nsel, s, , , s nodes nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo, hcav+clth+clw+var1+tcui+tcuo+ (var2/2) - 0.0001cm, surf2, node D, ALL, TEMP, 750-((730/29)*(TM-46)) ! Select third surface area for quenching nsel,s,,,s_nodes nsel,r,loc,y,hcav+clth+clw+var1,hcav+clth+clw+var1+tcui+tcuo-0.0001 cm, surf3, node D, ALL, TEMP, 500 - ((480/29) * (TM - 46))! Select fourth surface area for quenching nsel,s,,,s_nodes nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3var4+0.0001,hcav+clth+clw+var1-0.00001 cm, surf4, node D, ALL, TEMP, 250-((230/29) * (TM-46)) ALLS NSUBST, 2, 4, 1, ON, OUTRES, ALL, ALL SOLVE *ENDDO 1 1 /COM. Solve from 75 to 1800 seconds nsel,s,,,surf1 nsel, a, , , surf2 nsel, a, , , surf3 nsel, a, , , surf4 D, ALL, TEMP, 20

DDELE, ALL, TEMP

```
TM START=80
TM END=1800
TM INC=5
ALLS
+DO, TM, TM START, TM END, TM INC
        TIME, TM,
        NSUBST, 2, 4, 1, ON,
        OUTRES, ALL, ALL
         SOLVE
*ENDDO
finish
1
/POST1
SET, LAST
alls
! Select first surface area for quenching
nsel, s, , , s nodes
nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+(var2/2), hcav+clth+clw+var1+t
cui+tcuo+var2
cm, surf1, node
! Select second surface area for quenching
nsel,s,,,s_nodes
nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo, hcav+clth+clw+var1+tcui+tcuo+
(var2/2) - 0.0001
cm, surf2, node
! Select third surface area for quenching
nsel, s, , , s nodes
nsel,r,loc,y,hcav+clth+clw+var1,hcav+clth+clw+var1+tcui+tcuo-0.0001
cm, surf3, node
! Select fourth surface area for quenching
nsel,s,,,s_nodes
nsel, r, loc, y, hcav+clth+clw+var1+tcui+tcuo+var2-var3-
var4+0.0001, hcav+clth+clw+var1-0.00001
cm, surf4, node
nsel,s,,,surf1
nsel, a, , , surf2
nsel, a, , , surf3
nsel, a, , , surf4
nsort, s, z, 0, 0, 1
*get,sz_max,sort,,max
                                 ! Z-STRESS (COMPRESSION) MAXIMUM REAL
VALUE
1
! ********** PRINT STATUS OF ALL DVs and MAXIMUM COMPRESSIVE STRESS
*********
1
*status,var1
*status, var2
*status, var3
*status, var4
*status, var5
*status,var6
*status, var7
*status,sz_max
1
· *********
                 Clear database for next iteration *********
Ł
finish
```

/clear ! *ENDDO ! /EXIT,NOSA

.

# APPENDIX XII

# MATHCAD CALCULATION FILE FOR SENSITIVITY ANALYSIS OF THE BEST SOLUTION OBTAINED FROM THE SUCCESSIVE HEURISTIC QUADRATIC APPROXIMATION

#### Sensitivity Analysis of the Best Solution Obtained from the Customized Stand-Alone Optimization Algorithm

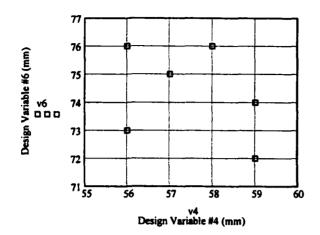
The following previously obtained sets of optimization solutions are used for sensitivity analysis of the best solution. Six different sets are used for this analysis:

Solution set #1: V1 = 107 mm, V2 = 21 mm, V3 = 31 mm, V4 = 56 mm, V5 = 45 mm, V6 = 76 mm, V7 = 10 mm Minimum hoop stress = -156.679.548 Pa

Solution set #2: V1 = 107 mm, V2 = 21 mm, V3 = 31 mm, V4 = 58 mm, V5 = 46 mm, V6 = 76 mm, V7 = 10 mm Minimum hoop stress = -154,626,854 Pa

Solution set #3: V1 = 107 mm, V2 = 21 mm, V3 = 31 mm, V4 = 59 mm, V5 = 48 mm, V6 = 74 mm, V7 = 10 mm Minimum hoop stress = -151,712,231 Pa

Solution set #4: V1 = 107 mm, V2 = 21 mm, V3 = 31 mm, V4 = 56 mm, V5 = 48 mm, V6 = 73 mm, V7 = 10 mm Minimum hoop stress = -156,817,999 Pa


Solution set #5: V1 = 107 mm, V2 = 21 mm, V3 = 31 mm, V4 = 57 mm, V5 = 47 mm, V6 = 75 mm, V7 = 10 mm Minimum hoop stress = -158,272,820 Pa

Solution set #6:

V1 = 107 mm, V2 = 21 mm, V3 = 32 mm, V4 = 59 mm, V5 = 48 mm, V6 = 72 mm, V7 = 11 mm

Minimum hoop stress = -101,667,129 Pa Two design variables are selected for the sensitivity analysis: V4 and V6. The rest of the variables do not significantly change among the six different sets of solutions given above. A graphical representation of the function evaluations for V4 and V6 is determined below:

v4 :=	(56.0)	mm		(76.0)	
	58.0			<b>76</b> .0	0 mm
	59.0		v6 :=	74.0	
	56.0			73.0	
	57.0			75.0	
	(59.0)			(72.0)	)



The design variable plot given above indicates that the minimum stress value (-158,272,820 Pa corresponding to V4 = 57 mm, V6 = 75 mm), is surrounded by higher stress values. Therefore, the minimum stress value (-158,272,820 Pa) is an optimum solution.

# APPENDIX XIII

# MATHCAD FILE FOR THE COMPRESSIVE STRESS PENETRATION DEPTH

# CALCULATIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#### **Compressive Stress Penetration Depth Calculations**

The hoop stress results that are given in Appendix II are used below to determine the compressive hoop stress penetration depth by linear interpolation.

#### **Original Design:**

Calculation of the penetration depth from the induction annealing surface:

depth1 := 5.65 mm stress1 := 58.1 MPa depth2 := 5.95 mm stress2 := 68.6 MPa

stress := 0.2·310 MPa 20% of Alloy 22 yield strength (310 MPa) is the threshold stress, see Chapters 3 and 7

depth := depth1 + 
$$\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$$

depth = 5.8 mm

Calculation of the penetration depth from the closure-weld surface:

depth1 := 9.5 mm stress1 := 51.1 MPa  
depth2 := 9.75 mm stress2 := 68.8 MPa  
depth := depth1 + 
$$\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$$

depth = 9.7 mm

#### **Optimization Problem #1:**

Calculation of the penetration depth from the induction annealing surface:

depth1 := 5.66 mmstress1 := 36.6 MPadepth2 := 6.36 mmstress2 := 63.8 MPastress := 0.2.310 MPa20% of Alloy 22 yield strength (310 MPa) is the threshold<br/>stress, see Chapters 3 and 7

depth := depth1 +  $\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 6.3 mm

Calculation of the penetration depth from the closure-weld surface:

depth1 := 7.75 mm stress1 := 58.5 MPa depth2 := 8.0 mm stress2 := 68.6 MPa

depth := depth1 +  $\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 7.8 mm

#### **Optimization Problem #2:**

Calculation of the penetration depth from the induction annealing surface:

depth1 := 3.8 mm stress1 := 56.3 MPa depth2 := 4.02 mm stress2 := 69.3 MPa  $stress := 0.2 \cdot 310 \text{ MPa} 20\% \text{ of Alloy 22 yield strength (310 MPa) is the threshold stress, see Chapters 3 and 7$   $depth := depth1 + \left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 3.9 mm

Calculation of the penetration depth from the closure-weld surface:

 depth1 := 11.44 mm
 stress1 := 52.9 MPa

 depth2 := 11.88 mm
 stress2 := 66.1 MPa

depth := depth1 +  $\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 11.7 mm

#### **Optimization Problem #3:**

Calculation of the penetration depth from the induction annealing surface:

 depth1 := 4.42 mm
 stress1 := 43.3 MPa

 depth2 := 4.72 mm
 stress2 := 65.5 MPa

 stress := 0.2·310 MPa
 20% of Alloy 22 yield strength (310 MPa) is the threshold stress, see Chapters 3 and 7

 [
 (depth2 = depth1)]

depth := depth1 +  $\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 4.7 mm

Calculation of the penetration depth from the closure-weld surface:

depth1 := 8.4 mm stress1 := 58.6 MPa

depth2 := 8.61 mm stress2 := 72.1 MPa

depth := depth1 +  $\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 8.5 mm

#### **Customized Stand-Alone Optimization:**

Calculation of the penetration depth from the induction annealing surface:

 depth1 := 4.4 mm
 stress1 := 46.2 MPa

 depth2 := 4.61 mm
 stress2 := 66.6 MPa

 stress := 0.2·310 MPa
 20% of Alloy 22 yield strength (310 MPa) is the threshold stress, see Chapters 3 and 7

depth := depth1 +  $\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 4.6 mm

Calculation of the penetration depth from the closure-weld surface:

depth1 := 9.24 mm stress1 := 50.9 MPa

depth2 := 9.45 mm stress2 := 63.6 MPa

depth := depth1 +  $\left[ (stress - stress1) \cdot \frac{(depth2 - depth1)}{(stress2 - stress1)} \right]$ 

depth = 9.4 mm

## **BIBLIOGRAPHY**

- ANSYS, Inc. 1996. <u>ANSYS Coupled-Field Analysis Guide</u>. 2nd Edition. SAS IP, Inc. p. 1-1.
- American Society for Testing and Materials 1992. "Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method". <u>ASTM Designation: E 837 – 92.</u>
- American Society for Testing and Materials 1997. "Standard Specification for Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Plate, Sheet, and Strip". ASTM Designation: B 575 – 97.
- American Society for Metals 1980. "Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Metals". <u>Metals Handbook</u>. Ninth Edition. Volume 3.
- 5. ASM International 1990. "Properties and Selection: Nonferrous Alloys and Special-Purpose Materials". <u>Metals Handbook</u>. Tenth Edition. Volume 2. p. 432.
- Avallone, Eugene A., Editor and Baumeister III, Theodore, Editor 1986. "Mark's Standard Handbook for Mechanical Engineers". Ninth Edition. p. 7-63.

287

- Chamis, Christos C. 1998. "Thermostructural Approach for Low Cost Fabrication Processing". <u>Materials and Process Affordability: Keys to the Future</u>. SAMPE. v 43 n 1. pp. 665-677.
- Chen, J.L. and Ho, J.S. 1993. "Developing a Computer-Aided Optimum Structural Design System by Using Commercial Finite Element Programs". <u>Advances in Engineering Software</u>. v 17 n 2. pp. 79-86.
- Chien, Chi-Hui, Chen, Horng-Jyh, Chiou, Yii-Tay 1989. "Estimation of Welding Residual Stresses by Using Simulated Inherent Strains". <u>Transactions of the</u> <u>Japan Welding Society</u>. v 20 n 1. pp. 52-59.
- Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a. "Design Analysis for UCF Waste Packages". Document Identifier: ANL-UDC-MD-000001 REV 00. <u>CRWMS</u> <u>M&O Analysis/Model Document</u>.
- CRWMS M&O 2000b. "Threshold Stress Level for Initiation of Stress Corrosion Cracking". Input Tracking Number: WP-WP-00031.T. <u>CRWMS M&O Input</u> <u>Transmittal Document</u>.
- CRWMS M&O 2000c. "General Corrosion and Localized Corrosion of Waste Package Outer Barrier". Document Identifier: ANL-EBS-MD-000003 REV 00. <u>CRWMS M&O Analysis/Model Document</u>. pp. 102, 103, and 108.
- CRWMS M&O 2000d. "Waste Package Degradation Process Model Report".
   Document Identifier: TDR-WIS-MD-000002 REV 00 ICN 01. <u>CRWMS M&O</u> <u>Technical Document Report</u>. pp. 3-114, 3-115, and 3-121.

- 14. Fackeldey, M., Guan, J., Helling, V., Sahm, P.R. 1995. "Thermal Stress Analysis in Permanent Mold Processing Determining Mold Life and Utilizing A Combined Thermomechanical Finite Element Model". <u>Proceedings of the 1995</u> <u>7th Conference on Modeling of Casting, Welding and Advanced Solidification</u> <u>Processes</u>. Minerals, Metals and Materials Society. pp. 233-240.
- Gotsis, P.K. 1994. "Structural Optimization of Shell Structures". <u>Computers and</u> <u>Structures, Published by Pergamon Press Inc</u>. v 50 n 4. pp. 499-507.
- 16. Grandhi, Ramana V., Venugopal, Narayana, S., Venkayya, Vipperla B. 1992.
  "Generalized Compound Scaling Algorithm and Application to Minimum Weight Design of Plate Structures". <u>AIAA Journal</u>. v 30 n 10. pp. 2532-2539.
- Hardee, Edwin, Chang, Kuang-Hua, Tu Jian, Choi, Kyung K., Grindeanu, Iulian, Yu, Xiaoming 1999. "CAD-Based Design Parameterization for Shape Optimization of Elastic Solids". <u>Advances in Engineering Software, Elsevier</u> <u>Science Ltd.</u> v 30 n 3. pp. 185-199.
- Haynes International 1997. "Hastelloy C-22 Alloy". Kokomo, Indiana: Haynes International.
- Heller, M., Kaye, R., Rose, L.R.F. 1999. "Gradientless Finite Element Procedure for Shape Optimization". Journal of Strain Analysis for Engineering Design. Pp. 323-336.
- Le Riche, R. and Cailletaud, G. 1998. "Mixed Evolutionary/Heuristic Approach to Shape Optimization". <u>International Journal for Numerical Methods in</u> <u>Engineering</u>. v 41 n 8. pp. 1463-1484.

- Li, Qing, Steven, Grant P., Querin, Osvaldo M., Xie, Y.M. 1999. "Evolutionary Shape Optimization for Stress Minimization". <u>Mechanics Research</u> <u>Communications, Elsevier Science Ltd.</u> pp. 657-664.
- 22. MathSoft, Inc. 1997. "Mathcad User's Guide, Mathcad 7 Professional".
- Maute, K., Schwartz, S., Ramm, E. 1998. "Adaptive Topology Optimization of Elastoplastic Structures". <u>Structural Optimization</u>, <u>Sringer-Verlag GmbH and</u> <u>Company KG</u>. v 15 n 2. pp. 81-91.
- Mota Soares, C.M., Mota Soares, C.A., Barbosa, J. Infante 1994. "Sensitivity Analysis and Optimal Design of Thin Shells of Revolution". <u>AIAA Journal</u>. v 32 n 5. pp. 1034-1042.
- Nickell, R.E. and Hibbitt, H.D. 1973. "Thermal and Mechanical Analysis of Welded Structures". <u>Earthquake Engineering and Structural Dynamics</u>. pp. 16.
- 26. Schramm, Uwe and Pilkey, Walter D. 1993. "Coupling of Geometric Descriptions and Finite Elements Using NURBs – A Study in Shape Optimization". <u>Finite Elements in Analysis and Design</u>. v 15 n 1. pp. 11-34.
- Umemoto, T., Yoshida, K., Okamoto, A. 1980. "Residual Stress Improvement for Pipe Welds by Means of Induction Heating Pre-Flawed Pipe". <u>Mechanical</u> <u>Publications, Ltd., for the Institution of Mechanical Engineers, London, England</u>. Vol. 1. pp. 131-137.
- Wilkening, W.W. and Snow, J.L. 1993. "Analysis of Welding-Induced Residual Stresses with the ADINA System". <u>Computers and Structures</u>. v 47 n 4-5. pp. 767-786.

# VITA

# Graduate College University of Nevada, Las Vegas

## Zekai Ceylan

## Home Address:

8600 Starboard Drive, Apt. 2074 Las Vegas, Nevada 89117

## Degrees:

Bachelor of Science, Mechanical Engineering, 1991 Middle East Technical University, Ankara/Turkey

Master of Science, Mechanical Engineering, 1993 University of Nevada, Reno

## **Publications:**

Ceylan, Z., Evrensel, C. A. 1994. "Dynamic Modeling of Tractor-Trailer-Cask System Used in Nuclear Waste Transportation". <u>The Fifth Annual International</u> <u>High-Level Radioactive Waste Management Conference</u>. Vol. 2. pp. 934-941. American Nuclear Society, Inc. May 22-26, 1994. Las Vegas, Nevada.

Ceylan, Z., Thompson, A. O. 1995. "Finite Element Analysis of Rock Drop Dynamic Loading on Metallic Multi-Barrier Waste Package". <u>The Sixth Annual</u> <u>International High-Level Radioactive Waste Management Conference</u>. pp. 668-670. American Nuclear Society, Inc. April 30-May 5, 1995. Las Vegas, Nevada.

Ceylan, Z., Bennett, S. M., Doering, T. W. 1995. "Seismic Structural Analyses of Conceptual Waste Package Designs for Disposal of High Level Nuclear Waste in a Geologic Repository". <u>Methods of Seismic Hazards Evaluation Focus '95</u>. pp. 195-199. American Nuclear Society, Inc. September 18-20, 1995. Las Vegas, Nevada.

Bennett, S. M., Ceylan, Z., Doering, T. W. 1996. "Three-Dimensional Nonlinear Transient Dynamic Accident Analyses of Waste Packages". <u>The Seventh Annual</u> <u>International High-Level Radioactive Waste Management Conference</u>. pp. 382-384. American Nuclear Society, Inc. April 29-May 3, 1996. Las Vegas, Nevada. Bennett, S. M., Ceylan, Z., Doering, T. W. 1997. "Elastic-Plastic Design Evaluations for Thick-Walled Spent Nuclear Fuel Canisters". <u>The 1997 ASME</u> <u>Pressure Vessels and Piping Conference</u>. pp. 35-41. The Pressure Vessels and Piping Division. American Society of Mechanical Engineers. PVP-Vol. 348. July 27-31, 1997. Orlando, FL.

Dissertation Title: Minimization of Residual Stresses in the Closure-Weld Region of the Spent Nuclear Fuel Canisters Using Induction Annealing Process

**Dissertation Examination Committee:** 

Chairperson, Dr. Full Professor Mohamed B. Trabia, Ph.D. Committee Member, Dr. Assistant Professor Brendan O'Toole, Ph.D. Committee Member, Dr. Associate Professor Woosoon Yim, Ph.D. Committee Member, Dr. Full Professor Robert F. Boehm, Ph.D. Graduate Faculty Representative, Dr. Full Professor Samaan Ladkany, Ph.D.