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ABSTRACT

Density Functional Calculations 
of Rubidium under Pressure

by

Anthony J. Zukaitis

Dr. Tao Pang, Examination Committee Chair 
Associate Professor of Physics 

University of Nevada, Las Vegas

With developments in X-ray dif&actometry, experimentalists have been able 

to resolve the complex structures that had eluded them in the past. One area of 

this interest is in the regime of alkali metals under pressure. For years, the alkali 

metals have been viewed as simple systems whose properties can be understood 

with fairly simple ideas. Under pressure, things get interesting and one observes 

complex crystal structures in all of the alkali metals under high enough pressure. 

What is more interesting is that there appears to be many similarities in the phase 

diagrams of the alkali metals. This hints that this complexity is related to the 

similarities in the electronic structure of the different alkali metals. Fundamentally, 

one would like to know more about the electronic structure and its relation to the 

complex structures observed. This involves solving the Schroedinger equation for 

the particular system. Unfortunately, this equation is very difficult to solve exactly

iii
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for more than two particles and the systems of interest are macroscopic containing 

on the order of 10^ electrons and nuclei.

Since the development of quantum mechanics in 1918, much research has been 

done on simplifying the many-body Schroedinger equation. In many cases, the 

simplification of the Schroedinger equation involves making approximations that 

may or may not be applicable to every system. For the systems of high and nearly 

uniform density, one of the best approximations is Density-FNinctional theory. This 

theory has been used successfully in many calculations of the properties of various 

systems. Unfortunately, it has also been known to fail as well.

It is my goal in this dissertation to use the density functional method to study 

solid rubidium at different and extremely high pressures on the order of 10  ̂ atmo

spheres. In Chapter 1, the complicated structures of the alkaU metals K, Rb, and 

Cs at high pressure will be discussed. The density functional method and some of 

the related theories preceding it will be summarized in Chapter 2. Next, in Chap

ter 3, the pseudopotential approximation, which will be used in conjunction with 

the density functional method, is described. In Chapter 4, some of the details and 

theory about implementing both density functional theory and the pseudopotential 

approximation are highlighted. Finally, in Chapters 5 and 6, the details of the cal

culations will be discussed. The final conclusions and discussion will be given in 

Chapter 7.

IV
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CHAPTER 1

ALKALI METALS UNDER HIGH PRESSURE

Rubidium is one of the alkali metals in the first column of the periodic table. Alkali 

metals are considered to be simple since they have only one electron in the valence 

shell. In the past few years, complex structures have been observed and identified in 

these simple metals under high pressure [1-7] and it is quite unusual. Many of these 

complex crystal structures have been observed in the heavy alkali metals potassium, 

rubidium, and cesium. Although complex structures have also been identified in 

lithium [1], they do not appear to be related to the structures seen in the heavier 

alkalis. However, in K, Rb, and Cs, there do appear to be similarities among their 

phase diagrams. I will highlight some of these similarities here and make some 

general comparisons among these three alkalis. The current understanding of the 

physics behind these structures will be discussed toward the end of this chapter.

1.1 Rubidium

At atmospheric pressure and room temperature, it is understood that the alkali 

metals have the body-centered cubic (bcc) structure. Under increased pressure, the 

alkali metals K, Rb, and Cs, have a phase transition from the bcc structure to the

1
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Phase Transition Transition Pressure (GPa)
bcc -> fee 7
fee ? (Ill) 12

? (Ill) —)• 74/mcm (IV) 17
I4/mcm  (IV) —> lAi/amd (V) 20
lAi/amd  (V) -> Cmca (IV) 46

Table 1.1: A list of the known phases and the corresponding pressure points for the 
structural transitions of rubidium at room temperature. Each phase is identified in 
this table be the space group associated with the structure.

face centered cubic (fee) structure. These structures is favored because of the spher

ically symmetric s orbitals of the outermost electrons. Since they are spherically 

symmetric atoms, they would favor the structures that have the highest packing 

fractions like the fee or hexagonal closed packed (hep) structures. It turns out that 

under a further increase in pressure, the systems favor low symmetry structures 

which have small packing fractions.

At pressures above that of the fee phase, extremely complex structures are ob

served in all of the alkali metals. In Table 1.1, a list of the known phase transitions 

of rubidium is shown. At 12 GPa, there is a phase transition to the currently uniden

tified structure which is referred to as Rb III [2|. It is believed that this structure 

may be similar to Rb III of potassium [8].

At 17 GPa, another phase transition is observed to the complex phase of Rb 

rV [4]. One solution to the structure is shown in Fig. 1.1. The symmetry of the 

structure has been experimentally identified to belong to the space group Mfmcm. 

Although the space group of the structure has been determined, the basis is not
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Figure LI: The structure of Rb IV. Here the Wyckoff 4b sites are fully occupied 
as indicated by the lighter spheres. The dark spheres occupy the Wyckoff 16k sites 
and form columns along the z axis. The bonds connecting the spheres highlight the 
elliptical set of atoms confining each 46 site.

quite resolved. The structure is estimated to have approximately 20 atoms per unit 

cell. Along the z axis are columns formed by alternating squares of rubidium atoms 

occupying the Wyckoff 16A: sites. In the channels are other rubidium atoms whose 

positions are not quite clear.

In Fig. 1.2 a cut of the Rb IV structure along the (110) direction is shown with 

next possible solution. Experimentally, the best fit to the data is half occupancy 

of the Wyckoff 8g sites. The next best fit, is a full occupancy of the Wyckoff 46 

sites which are sites centered in between the pairs of 8^ sites shown in Fig. 1.2. The 

fact that the experimental results are not conclusive leads to the possibility for the 

structure of Rb IV to be disordered, which has not been observed in any of the other
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Figure 1.2: Another view of the Rb IV structure along the (110) direction. The 
lighter spheres in this figure are the Wyckoff 8^ sites that are proposed to be half 
occupied [4|. The Wyckoff 46 sites are not shown but would be directly centered on 
each pair of 8g sites. The sizes of the spheres have been altered to give the reader 
a better view of the geometry of the sites.

alkali metals under pressure to date.

.\t 20 GPa a phase transition from Rb IV to a less complex phase with an 

orthorhombic structure with 4 atoms per unit cell [2] is experimentally observed 

and. Two views of the structure are shown in Figures 1.3 and 1.4. The structure 

of this phase belongs to the space group lAijamd. This structure has a large c/a 

of approximately 3.7 which is the ratio of the length of the z axis of the unit cell 

to the length of the x axis. The structure can be viewed as a set of layers of 

squares, with each layer slightly offset in the xy plane. There are four offset layers 

at 2  =  0.00c, 0.25c, 0.50c, 0.75c. This phase persists up to approximately 46 GPa 

where a transition to Rb VI, another complex structure, occurs.

The structure of the Rb VI phase belongs to the space group oC16 and has full
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Figure 1.3: A picture of Rb V whose structure is similar to Cs IV. The view point 
is along the (001) direction and the unit cell is repeated four fold along each of the 
X  and y  axis.

Figure 1.4: This is Rb V, Cs IV shown along the (100) direction. The darker planes 
are going into the page whereas the lighter planes are coming out.
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Figure 1.5: \  picture of Rb VI, which is similar to Cs V. The viewpoint of this 
figure is along the (001) direction. The small, light spheres signify the atoms in the 
8 / sites and the large spheres are the atoms in the Wyckoff 8d sites. The lighter 
8d spheres are coming out of the plane whereas the darker ones are going into the 
plane.

occupancy of the Wyckoff 8 / and 8d sites corresponding to 16 atoms per unit cell. 

The structure of the Rb VI phase is shown in Fig. 1.5. The structure viewed along 

the (001) direction is layered. The top layer formed by the 8 /  atoms forms a layer of 

buckled squares. Underneath this layer is another layer of the 8d atoms that buckles 

slightly along the z direction.

1.2 Cesium

The phase transitions observed in cesium closely follow the transitions seen in ru

bidium. Cesium is just one row below rubidium on the periodic table which gives
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Phase Transition Transition Pressure (GPa)
bcc —> fee 2.3
fee —► Collapsed fee 4.2

Collapsed fee lAi/amd  (IV) 4.3
lAi/amd (IV) -)• oCl6 (V) 10

oC16 (V) dhcp (VI) 72

Table 1.2: A list of the known phases and the corresponding pressure points for the 
structural phase transitions for cesium at room temperature. The phases are listed 
by their index and the space group of the structure.

it a similar valence electronic configuration but a larger mass. There are six known 

structural phase transitions which are listed in Table 1.2.

A bcc to fee transition which is also observed in Cs at a lower pressure point than 

the same transition observed in potassium and rubidium. The two phases above 4.3 

GPa, Cs IV and V correspond to the same structures of Rb V and VI respectively. 

The pressure points for the corresponding transitions in rubidium are in general 

much higher. For example, the Cs IV to Cs V transition pressure occurs at 10 GPa 

whereas in rubidium it is around 46 GPa. With such a similarity between Cs and Rb 

one might expect that Rb would have the double hexagonal closed packed (dhcp) 

structure in some higher pressure regime. Structures similar to the Rb III and Rb 

rV structures are not observed in cesium.

1.3 Potassium

There have only been two phase transitions observed in potassium. A list of the 

phase transitions in potassium is given in Table 1.3. The pressure point for the bcc
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Phase Transition Transition Pressure (GPa)
bcc (I) fee (II) 11.6
fee (II) lAmmm  ? (Ill) 23

Table 1.3; A list of the known phases and the corresponding pressures for the 
structural transitions for potassium at room temperature. The question mark for K 
III indicates that the structure for this phase is unknown.

to fee transition in potassium is 11.6 GPa. The pressure point for this transition is 

about 4 GPa higher than the pressure point for the same transition in Rb. Inter

estingly enough, the space group for K III has been identified, yet the structure has 

not [2]. It is also rumored that the Rb III structure is similar to that of K III [8]. 

This would not be unreasonable since the published X-ray data for the structures 

appears similar in these phases.

Theoretically, it is understood that all of these complex transitions are driven 

by changes in the electronic structure. One of the most important calculations that 

has been done to date on the alkali metals is the work by McMahan [13]. This work 

has provided some insight into the physics behind the complex phases seen in the 

alkali metals at high pressure.

1.4 s -> d transfer

In 1984, McMahan published some calculations on the compression of Cs. Rb and 

K [13]. Using the LMTO method [12], he was able to show how the orbitals, or 

bands, change under pressure. He was able to show that under increasing pressure.
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the valence s band rises above the valence d band in K, Rb, and Cs. As this occurs 

the occupation of the d band increases thus giving the metal a stronger d character 

under pressure.

McMahan’s work for cesium indicates that as the pressure is increased the 5d 

level becomes lower in energy than the 6s at about 15 GPa with the 6s band crossing 

the Fermi level. At this pressure, there is no occupation of the 6s band but a full 

occupation of the bd band. It is this transfer of electrons from the 6s band to the 

bd band that is believed to be the reason for the complex structures of Cs IV and 

Cs V. Under further compression, McMahan showed that the core 5p bands also 

becomes higher or comparable in energy to the bd bands. Since the bp bands are 

fully occupied, the Pauli repulsion is the driving mechanism for the dhcp phase at 

72 GPa.

McMahan also gave estimates for the pressure where the s —> d transfer would 

become complete. For Cs, Rb, and K the pressure points are at 15, 53, and 60 GPa, 

respectively. In Cs and Rb, this end of the transition corresponds to the Rb V to 

Rb VI transition and the same structural transition in Cs IV to Cs V.

At the time of his publication, nothing was known about the structures or lattices 

of the complex phases. All of his comparisons were done with the simple structures 

fee, bcc, and dhcp. Throughout all of the experimental work on K, Rb, and Cs the 

s d transition is always highlighted. In June of 2000, K. Takemura et al. [14] 

published calculations on the stability of the high pressure phases of cesium and
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10

confirmed the experimental observations.

There are other calculations and studies on the alkali metals with a focus on 

the bcc to fee transition [9, 10, 11]. Most of these results have demonstrated that 

first principles calculations can provide reasonable accuracy for the bcc to fee tran

sition pressure and equation of state parameters. Calculations for the complex, high 

pressure phases for rubidium and potassium have not been accomplished until now. 

This dissertation provides one of the very first attempts to calculate the energies to 

analyze the stabilities of the high pressure phases of Rb from first principles calcu

lations. From these results we will attempt to obtain a theoretical explanation for 

the complex crystal structures observed in recent X-ray experiments.
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CHAPTER 2

DENSITY FUNCTIONAL THEORY

Density functional theory is a method to reduce a many-body Hamiltonian a set 

of equations which are effectively one electron Schroedinger equations. I will focus 

on some of the related history leading to density functional theory(DFT) because 

many techniques used in DFT had been introduced in some other previous methods 

to study a many-body Hamiltonian.

I will start the discussion with the time-independent Schroedinger equation for 

a system of electrons and nuclei:

^ ( r ,  R) ^„(r, R) = »»(r, R), (2.1)

where H is the Hamiltonian operator, E„ is the energy eigenvalue, and ̂ „ (r,R )

is the corresponding eigenfunction of the Hamiltonian. Here r  is defined as the

complete set of electron coordinates and spins.

r  =  {rio-i, r2<72,..., rx(Tv} (2.2)

Similarly, R  the complete set of nuclei coordinates.

11
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12

In general, the Hamiltonian for a many-body system is complicated, to which a 

solution is usually unavailable. The Hamiltonian operator for a system of electrons 

and nuclei, expressed in the Hartree units {h =  1, =  1/2, =  2), is

where the summations are carried over all of the electrons, and their spin through 

index i and J  for the nuclei. I will use the following convention throughout this 

dissertation: summations over lower-case indices are for electrons and summations 

over upper-case indices are for the nuclei. In Eq. (2.3), Mj is the mass of the nuclei, 

Vee represents the potential energy operator for the electron electron interactions, 

VeN is the potential energy operator for the electrons-nucleus interaction and V/vjv 

is the potential energy between the nuclei. The interaction terms in Eq. (2.3) are 

two-body Coulomb interactions:

and

ijij 1^/

where Z[ is the nuclear charge of the /{/, nucleus.
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So far we have made no approximations to the Schroedinger equation. It has 

been stated in order to present the root of the many-body problem. This equation 

is almost impossible to solve analytically for more than two particles. For more

particles, one must resort to an elaborate scheme, typically numerical, to diago-

nalize the Hamiltonian and it usually becomes an enormous task even by today’s 

computational standards.

2.1 T he Born-O ppenheim er A pproxim ation

In many of the approximations to the many-body Schroedinger, one can approxi

mate the many-body wave function ^^(r, R) as fully separable. This is the so-called 

Bom-Oppenheimer approximation which is also referred to as the adiabatic approx

imation. This assumes the wave function,^„(r,R), can be written as

'k„(r.R) = $ (r ,R )r(R ) (2.7)

where r  and R  are the coordinates and spins of the electrons and nuclei respectively. 

Using this form of the wave function, one can split up the Hamiltonian into two parts 

and as a consequence, we need to solve the following two equations:

Â r,$ (r,R )= e$ (r,R ) (2.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

and

^nucr(R) =  €„ucr(R). (2.9)

These Hamiltonians are defined as

=  — ^  Vf +  Vee +  Vyve (2.10)
i

and

H nuc  =  -  n  ( 2 . 11 )

where the corresponding eigenvalues of the Hamiltonians are e and c„uc, respectively. 

Normally, one would consider $(r, R) a function of r  alone for fixed R, but we 

will leave this dependence in for the moment. In the above approximation, it was 

assumed that the following term could be neglected:

This term can be approximated to be of the order [15]. The result is that the 

electronic system is assumed to always be in the ground-state, independent of the 

motion of the nuclei yet dependent of their position. In other words, the system is 

adiabatic and no heat is allowed to be exchanged between the electrons and nuclei. 

If the approximation is appropriate, the resulting problem is to solve Eq. (2.8) which 

represents a system of electrons in the field of a set of fixed nuclei.
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2.2 The Hartree-Fock Approximation

For future reference, the functional dependence on R  will not be given explicitly, 

with the understanding of its role as stated above. Further more, the notation r  now

pertains to a single coordinate. In 1928, Hartree proposed a simple approximation

with the many electron wave function $(r) written as a product of single electron 

wave functions [16, 17],

<^(ri,F2,r3, ....)=  n®«(ri)- (2.13)
t

Using the Variational approach to the ground-state energy of the system with 

respect to < î(rj), one finds that the ground state energy is minimized by a set of 

equations similar to the Schroedinger equation for a single-electron moving in an 

external field

{-V ^ 4- V„t(r) 4- Vff(r)} éi{t) =  €i(^i(r), (2.14)

where VH(r) is the Hartree potential

and V^t(r) is the potential field arising from the nuclei or any other static, 

external potential. p(r) is the electron density function
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P(r) = Z l é j ( r ) l \ (2 . 16)

which is just the sum of the probability densities of the individual one electron 

states. In some approximations, the self interaction of a state with itself is subtracted 

in the form

+  K i t ( r )  +  Vff(r) -  J  I ̂ i ( r )  =  Ci0 t ( r ) -  (2 .17)

where

/ \<f>i{T')\̂ dT'
I r - r ' l (2 .18)

is the self interaction term. The above approximation is the Hartree approximation. 

This approximation does not include any Fermi statistics and a couple years later 

they were incorporated into the Hartree approximation to give the Hartree-Fock 

approximation [16, 17]. This approximation follows the same path as the Hartree 

approximation except that one applies the variational principle to a wave function 

of the form of a slater determinant:

*^(ri,r2,r3, ....,rjv) =

M ^ i )  M r i )  ... M ti)

0l(r2) <h{^2) ... <t>N{T2)

<^i(r^) <^(r^) . . .

(2 .19)
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The slater determinant is a compact way to represent the full antisymmetric form 

the electronic wave function. In this equation, N  is the number of electrons. After 

the variational principle is applied, one finds that there is an additional term to the 

Hartree equation stated earlier in Eq. (2.14). This additional term is the exchange 

energy which is defined as

V«(r) =  - 2  ^  5 { a i ,  c T j ) < t > j { T )  f  (2.20)

where (7, is the spin component of spin of the ith electron. This term is called the 

exchange interaction between electrons of the same spin. This term produces a 

spatial separation between electrons of the same spin and thus reduces the Coulomb 

energy of the system. As a result the Hartree Fock approximation gives

{ - V  +  +  V'H(r)} A(r) + V„{t)A{r) = (2.21)

It is known that the energy of the system can be reduced below it’s minimum 

Hartree-Fock energy if electrons of opposite spin are also spatially separated. This 

is is referred to the Correlation Energy. The Correlation Energy is defined as the 

difference between the exact many body energy and Hartree Fock energy of an 

electronic system. This means that to find the correlation energy of the system, 

one must already have the exact solution which can only be obtained by directly 

diagonalizing the full Hamiltonian of Eq. (2.10).
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2.3 The Thomas-Fermi Model

Around 1927, Thomas and Fermi came up with the idea to simplify the many-body 

Hamiltonian even further [18, 19]. The main idea is to focus on the local electron 

density and not the wavefunctions themselves. The Thomas-Fermi approximation 

for the energy of an electron density in an external potential is

^TF[p(r)] = C f j  -  j  p(r)%z«(r)dr + (2 22)

and

Cf =  ^(37t2)2/3 = 2.871. (2.23)

This energy is minimized under the constraint

j  p(r)dr =  jVg, (2.24)

where Ne is the total number of electrons in the system. In this model, all of the 

Coulomb interactions are treated classically and the kinetic energy of the electrons, 

Cp /  p^/^(r)dr, is derived using Fermi statistics. .Although model is rather simplified, 

it does lead to an important idea: minimizing the total energj* with respect to the 

electron density point-to-point in the entire space.
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2.4 The Kohn-Sham Hamiltonian

In 1964, Hohenberg and Kohn proved that there exists a one-to-one mapping be

tween exact ground-state electron density distribution and the exact ground-state 

energy of the system [20]. Their proof showed that two different external, local 

potentials cannot be minimized be the same electron density distribution. This 

means that one can minimize an expectation value of the exact many body Hamil

tonian to its ground state by varying the electron density distribution alone. The 

Hohenberg-Kohn theorem allows one to define a density functional:

f:[Xr)] =  r[p (r)]  -h E ^ [ p { t )]  + £;'-'*“ [p(r)] +  £*‘=[p(r)] +  (2.25)

where E is the total energy of the system, T*[p(r)] is the kinetic energy of the 

non-interacting electrons, is the Hartree energy, is the exchange-correlation 

energy, and jg interaction energy among the nuclei, which is already

assumed to be independent of the electron density under the Bom-Oppenheimer 

approximation. Here the exchange and correlation energies of the electrons are 

combined into one term fJ^‘̂ [p(r)]. This functional can be evaluated exactly, provided 

the correct form of £'*‘̂ [p(r)] is known.
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2.5 The Kohn-Sham Eigenstates

In this section we will obtain the Kohn-Sham eigenstates [21]. First the one-body 

electron density is defined as

P(r) =  5 l!0 ,(r) |^  (2.26)
i

Again the variational approach is taken with respect to the <pi(r) and one arrives 

at an equation similar to the Hartree-Fock equation. This gives

Hks\(f>i) = e M ,  (2.27)

where the Kohn-Sham [21] Hamiltonian Hks is defined as

Hks = — + Vext(r) +  V/f(r) 4- Vxc(r). (2.28)

This single-particle Hamiltonian is very similar to the Hartree-Fock Hamiltonian 

except projected to one state. Now we have combined the exchange and correlation 

terms in to Vic(r). This still leaves one at the point where one does not know 

the Correlation Energy. The exchange energy can be evaluated exactly, but it is 

computationally expensive to calculate [22]. Therefore in many approximations, 

these contributions are treated together to simplify the calculation. For example, 

one may want to approximate the exchange interaction to make it a local operator.
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This can be done as long as one knows the gross error that is caused by such an 

approximation.

As far as the correlation energy goes, there is no easy way out. To get the cor

relation energy, we need to know the exact total energy of the system. However, we 

may make a few more drastic, yet viable approximations. One route is to calculate 

the exchange-correlation energy exactly in one system and then apply the result to 

another system.

2.6 T he Local—Density Approxim ation

Many approximations exist for the exchange-correlation energy of a system of in

teracting electrons. The most popular and simplest approximation is the local- 

density approximation. The approximation begins by assuming that the exchange- 

correlation energy for the electrons is independent of the environment or potential. 

Or in other words, the exchange-correlation energy of any electron density, is the 

same as that for a homogenius electron gas. Let %(r) be the exchange correlation 

energy for a single electron at a point r in the gas at the same local density. Then 

the exchange-correlation energy of the total system is given by

£’xc[p(r)] = j  x(r)p(r)dr, (2.29)
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that can be used to obtain the exchange-correlation potential

Then as a requirement from the functional variation,

(5£xc[p(r)] ^  <^[p(r)]x(r) 
Sp{r) Sp{r) (2.31)

Of the many approximations for %(r), we will be using the results of Ceperly and 

Alder [23], which are fitted to the parameterization of Perdew and Zunger [24]. 

This is done by computing both the Hartree-Fock energy and the exact energy of an 

interacting electron gas. Once the difference is obtained the result is parameterized 

in the following manner. First we define an average radius of an electron in the 

system, r,, with

"  = 1 ^ 3  (-3^)
3 s

where n is the average electron density. The parameterization of Perdew and 

Zunger [24] in terms of the plasma radius is

x(rj) — -'li logr, 4- {Bi — -Ai)  4- logr, 4- -(2D, — (2.33)

where Ai, Bi, Q , A  are parameters chosen to fit the exchange and correlation energy 

obtained from quantum Monte Carlo simulations done by Ceperly and Alder [23].
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2.7 The Car-Parrinello Method

To find the solutions of the Kohn-Sham Hamiltonian, one must solve them selfcon- 

sistantly. This means choosing an electron density, diagonalizing the Hamiltonian to 

find the Kohn-Sham eigenstates that are consistent to the electron density chosen. 

The electron density is then redefined in terms of the Kohn-Sham eigenstates. This 

process is repeated over and over again until the electron density is stationary or at 

least converged within some tolerance.

For a large basis set, the diagonalization of the Hamiltonian becomes very de

manding, computationally. The Car-Parrinello method [25] is a unique scheme in 

finding the Kohn-Sham eigenstates without the need to directly diagonalize the 

Hamiltonian. The Car-Parrinello method defines a Lagrangian for the Kohn-Sham 

eigenstates and treats the eigenstates as dynamical variables that evolve under a 

fictitious time variable. The Lagrangian for the Kohn-Sham eigenstates <j>i is

L = p -  f^[p(r)] (2.34)
t

where p is a fictitious mass and E[p(r)] is the energy functional of Eq. (2.25). is 

the fictitious time derivative of the state 0 ». This Lagrangian does not describe the 

true dynamics of the eigenstates, rather it describes the fictitious dynamics of a set 

of trial wavefunctions that are forced to evolve to the ground-state wavefunction. 

This is also referred to as simulated annealing. One must impose one additional
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constraint on the solutions to keep all of the states out of the ground state; that is. 

they must be orthogonal to each other,

— ^ij- (2.35)

Otherwise, every solution would evolve directly to the ground state. The equations 

of motion of the eigenstates are derived from the Lagrange equation of motion.

£  ( É L \  - (2.36)

If one evaluates the derivatives, one obtains

= -Hks(f>i +  Y i  (2.37)
j

where Ajj are the Lagrange multipliers corresponding to the orthornormality con

straint of Eq. (2.35) and Hks is the Kohn-Sham Hamiltonian of Eq. (2.28). Because 

of the complications of evaluating of each Lagrange multiplier, orthogonality is han

dled by either the Graham-Schmidt method or the Car-Parrinello method at every 

fictitious time step. In first case case, the states should always be orthogonalized in 

order of increasing energy to improve efficiency of the iterative scheme. The second
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method subtracts off half the overlap of each state with the other states,

Wi) = \<f>i) -  % (2.38)

Here the new state |0J) at each step is generated from the old state \<f>i) minus 1/2 

the overlap of itself with the other states. After the orthogonalization is carried out, 

one must also renormalize each state.

2.8 A Quick Example

The Car-Parrinello method seems a bit abstract. In this section, I will use a simple 

example to show how this iterative process works. One of the most fundamental 

problems in quantum mechanics is the one-dimensional infinite square well. For this 

problem, I will use a single electron to avoid complicating the problem with electron- 

electron interactions. One can start from the time-independent Schroedinger equa

tion

(P
- ^ 0 n ( x )  4- V{x)(j>n{x) = En<i>n{x) (2.39)
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which we have expressed in Hartree units. For the potential

0, if 0 < z < 1;
V(z) =   ̂ (2.40)

0 0 . otherwise

the eigenstates are

<t>n{x) =  v^sinnTTz. (2.41)

Here the length of the square well is 1 bohr. This potential is exactly solvable, so 

to make things more interesting, the potential is changed to

40z, if 0 < z < 1;
V{x) = { (2.42)

oo, otherwise

which is a sloped square well sloped to the left. One way to solve this problem is 

to calculate the matrix of the Hamiltonian on the basis of Eq. (2.41) and diagonalize

it directly. For a small basis set this is quite fast but the point here is to demonstrate

how the Car-Parrinello method works

We will use only four basis functions which corresponds to an energy cutoff of 

167t̂  Ht. .Again, for simplicity, we will only look at the ground state. First we expand 

the ground-state eigenfunction ipo{x) in the basis set established by Eq. (2.41).

4

I
1 = 1

to{x) (2.43)
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To integrate the fictitious equation of motion for the eigenstate, the Veriet algo

rithm [26, 27] is used. After some simplification, the equation of motion for each Ci

I S

where

Ci{t + 6t) =  2ci(t) -  a{t -  St) 4- X{t)d{t) -  St^ Y  (2.44)
j=i

and

«J

In Figure 2.1, the evolution of the trial wavefunction to the exact ground state is 

shown. The St =  0.316 was used for the fictitious time and the wavefunctions are 

shown at every time step. As one can see the exact solution for the ground state is 

obtained at t =  10 within any visible error.
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2.5 t = Q

( =  10
0.5

-0.5
0.2  0 .4  0 .6  0.8

X

Figure 2.1: A figure showing the convergence of the trial wavefunction at ( =  0 to 
the nearly exact wavefunction at ( =  10.
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CHAPTER 3

PSEUDOPOTENTIALS

In general, density functional calculations are computationally demanding for real 

materials with many electrons and nuclei. The calculations carried out here adopt 

a plane wave basis. This choice of the basis set creates a problem due to the 

large number of plane waves required to treat the tightly bound core states. By 

incorporating pseudopotentials into these calculations, the computational effort can 

be reduced significantly.

It will be assumed that the core states of the atom play a small role in determining 

the properties of a solid. As a result, we are assuming that only the occupied valence 

states are involved in the interactions with other atoms. Although this concept 

is widely accepted, one must be cautious and be aware that this approximation 

may fail. To reduce the computational demands of the calculation, the interaction 

between the core region and valence electrons will be modeled as an interaction 

between valence electrons and a potential which is termed a pseudopotential.

There are mainly three reasons for incorporating pseudopotentials into DFT 

calculations. The first reason was mentioned in the previous paragraph. The second 

problem arises from trying to describe a Coulomb potential with plane waves. In the

29
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density functional calculations, the potential is expressed as matrix elements in k- 

space. The problem is that a Coulomb potential in t-space goes as k being the 

radial wavevector. The third reason is that the valance electronic states are highly 

oscillatory. These oscillations are required to maintain the orthogonality between 

the valence and core electron states. These oscillations require a large number of 

plane waves to obtain an adequate representation and are therefore undesirable. 

What the pseudopotential approach does is change the problem to reduce the size 

the basis set while trying to maintain all of the important physics.

For a single atom, the solution for the all electron (AE) form of the radial 

wavefunction, satisfies the following equation Kohn-Sham equation:

where the bracketed terms correspond to the Kohn-Sham Hamiltonian. In this 

equation, the potential V[p{r):r] is defined as

V[p{r); r] = - ^  + Vw[p(r); r] +  V;c[p(r)], (3.2)

where Z  is the charge of the nucleus and Vîc is the exchange-correlation potential. 

WTiat a pseudopotential does is to change the form of the radial wavefunction and the 

form of the Coulomb potential into an effective potential for the valence electrons of 

the atom. The wavefunction obtained under the pseudopotential used will be called
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the pseudo-wavefunction Rf^{r).  The subscript n will be dropped because from 

now on we will only be concerned with the valence states.

We will be using generalized norm conserving pseudopotentials (GNCPPS) [28, 

29]. This class of pseudopotentials is bounded by a set of four rules. These rules will 

maintain almost all important physics of the problem while allowing one to modify 

the potentials and wavefunctions within a sphere in space for each component I of the 

valence wavefunctions. Even though the wavefunctions and potentials are different, 

the expectation values of important physical quantities are preserved. The four rules 

for constructing the GNCPPS are the following:

1. The normality of the pseudo-wavefunction must be conserved for charge con

servation,

f  \Rf^{r)\'^4irr^dr =  f  \Rf^{r)f4Kr^dr. (3.3)
Jo Jo

2. The all electron Kohn-Sham eigenvalues must be the same as the pseudo

eigenvalues

=  ( f  (3.4)

3. The pseudo-wavefunction must equal the all-electron wavefunction beyond a 

matching radius or at the least converges to the all-electron wavefunction 

very quickly; that is,

Rf^{r)  =  Rf^{r),  for r > (3-5)
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4. Likewise, the pseudopotential must converge to the original Coulomb potential 

beyond some matching radius r^,/,

v;^^(r) =  ^ ,  for r > (3-6)

where Z' is the screened nuclear charge.

As a consequence of the above conditions, the logarithmic derivatives of the 

pseudo and all-electron wavefunctions must be the same outside the radius r,n,( at 

some energy c that is not necessarily equal to the energy eigenvalue e,; that is,

1 d R r { r , e ) _  1 dRf^ir^e)
Rf^{r,e) dr Rf^{r,€) dr

The comparison of the logarithmic derivatives of the two solutions gives one an 

evaluation of the transferability of pseudopotential. This comparison can also be 

considered as a checking of the scattering properties of the pseudopotential. So far 

we have given a lot of emphasis to the pseudo-wavefunctions, not the pseudopoten

tials because the pseudopotentials are generated from the pseudo-wavefunctions.

The procedure for generating a pseudopotential from a pseudo wave function 

goes as follows. First, the screened pseudopotential, is obtained by inverting

Eq. (3.1) and solving for V[p{r);r]:

(3.8)
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As a result we have a different potential for each angular momentum I. Once the 

screened pseudopotential is obtained, one can obtain the ionic pseudopotential by 

subtracting the Hartree and exchange-correlation potentials due to the valence elec

trons themselves,

V " j ( r )  = -  VHlMry. r] -  V;.Wr)'], (3.9)

where p{r)' is the valence electron density. Once the ionic pseudopotential is ob

tained, we can replace the Coulomb potential - Z / r  with V'^^(r) in Eq. (3.2) and 

one obtains a different Hamiltonian for each angular momentum I. Finally we solve 

this Hamiltonian for the Kohn-Sham eigenfunction of the valence states with the 

modified potential.

To reduce the computational effort, Kleinman and Bylander (KB) proposed an 

operator representation of the pseudopotential [30]. The pseudopotential compo

nents can be written as

= i S C )  (3.10)
l,m

where

^K (r) =  V£^(r) -  V ,"  (r) (3,11)

and \l,m) are the normalized spherical harmonics. Kleinman and Bylander replaced 

AVj(r) with a projection operator.
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AV}(r) =  £f«|C,XCll. (3.12)

where

1 0 ) = ( 3 . 1 3 )

and

(RfP|Av;2|^pp^i/2

(Rr'’|AV;(r)2|fl")
(R/’'’|AV;(r)|Rf'’> ■

This procedure reduces the computational demand of the density functional calcu

lations involving the nonlocal potential energy matrix elements.

3.1 Ghost State Analysis

One problem that arises from the operator representation is the appearance of ghost 

states. First we will define the KB Hamiltonian to be the Hamiltonian of Eq. (3.1) 

except that we will use the pseudopotential in the KB representation described ear

lier. Because of the form of the KB Hamiltonian, it does not obey the Wronskian 

theorem. This theorem implies that eigenfunctions are ordered such that the energy 

increases with the number of nodes. As a result, it is possible that the KB Hamil

tonian can have eigenfunctions that contain nodes that are lower in energy than 

the zero-node eigenfunction. These unphysical states are termed as “Ghost States”. 

Because of this property, one must be careful in the pseudopotential generation 

process [31].
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Gonze found the way to determine if a ghost state was present by analyzing two 

quantities [32]. The first is the KB energy defined in Eq. (3.14). The second is the 

KB cosine energy
A  ^ - r m s

(3.15)

where

A V r ^  =  { R r \A V i i r ) \R r )  (3.16)

By examining these two quantities as a function of the matching radii for differ

ent /, one can eliminate the ghost states. These ghost states can also be eliminated 

or avoided by choosing the proper angular momentum component for the local po

tential.

3.2 Pseudo-wavefunction Construction

There are many ways to modify the core region of the valence wavefunctions that 

follow the rules of the GNCPP. The first was done by Hamann, where gaussian type 

pseudo-wavefunction converges to the valence wavefunction near the matching ra

dius [28]. A few years latter, Troullier and Martins proposed a new construction that 

exactly matches the wavefunction and the wavefunction derivative at the matching 

radius [29]. The functional form of the pseudo-wavefunction in the Troullier Martins 

type is a taylor series in r. The last is the Vanderbilt form of the pseudopotentials 

which that is softer than the TM and Hamann types [33]. The benefit of the Vander
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bilt type is that the potentials are smoother, but they are also less reliable than the 

Troullier Martins or the Hamann type. The general rule is use a construction that 

provides a soft pseudopotential but also has good transferability for the targeted 

system.

3.3 Nonlinear Core-Valence Corrections

In general, the above pseudopotential scheme works very well for most systems, but 

not for all. Our main assumption is that there is a very weak coupling between the 

core and valence electrons of the atom. In cases where the coupling is stronger, one 

can begin by correcting the exchange-correlation energy. From Eq. (3.9), one can 

see that only the exchange-correlation energy of the valence charge is subtracted. 

In cases where the coupling is strong, there will be a nonlinear dependence of the 

exchange-correlation energy on the total charge density. This property greatly re

duces the transferability of the pseudopotential. In 1982, Louie et. al. proposed 

that the exchange-correlation energy of both the valence and core regions should be 

subtracted

=  K " (r )  -  Wr)', r| -  +  ^r)'], (3.17)

where p*̂ (r) is the core charge density.

At first glance, this may seem to be a very simple idea, but it is not that straight

forward. As mentioned earlier, the core density is highly oscillatory and undesirable 

when using a plane wave basis due to the fact that the oscillations require many
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plane waves. The second issue is that any error in the valence density will be greatly 

enhanced when added to the core density. The valence density is usually solved iter

atively and the inclusion of the true core density in the above equation will increase 

the number of iterations required to attain convergence. The solution is to introduce 

a model core that is small where the core density is high. In the region where the 

core density is high, the valence density will be low so the effects in that region will 

be small. Near the point where the core and valence densities are close to the same 

magnitude, the model density should converge to the true core density p‘̂ (r). One 

form for the model density is

Pmodelir) —
.4sin(B r)/r, for r <

(3.18)
p‘=(r), otherwise.

where .4 and B  are determined by p‘̂ {rnicv) and ^ p ‘̂ (^)|r„,„- The parameter rnicv is 

usually chosen the radius at which the model core matches the true core density. In 

general this correction is needed when the exchange-correlation energy is important. 

For example the exchange-correlation energy is a major contributor to the binding 

energy in alkali metals.
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CHAPTER 4

COMPUTATIONAL DETAILS

In the precious chapters, the details about the method and theory have been dis

cussed. Now we turn to the aspect regarding their computational implementation. 

For the calculations presented here, we have used various versions of the fhi98md 

code [35] ported to different machines. This package has been in development for 

many years and is very current with the newest schemes for the iterative mini

mization of the total energy. It also implements the latest approximations for the 

exchange-correlation energy. One version has been ported over to the Cray T3E 

platform by the developers and we have also spent much time parallelizing the se

rial version for our own SGI Power Challenge systems.

There are many details that are involved in implementing density functional 

theory computationally. In the next few sections, I will address the most relevant 

issues.

4.1 Basis Functions

In the preceding chapter, it was mentioned that planewaves would be used as the 

basis set for our calculations. There are many advantages to using planewaves:

38
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• Efficient Fourier transform algorithms exist for the transformations to and 

from fc-space.

•  The are no Puiay forces. These are forces arising from a basis set that is 

dependent on the coordinates of the nuclei.

•  r  and p operators are simple operations on plane waves.

•  Matching conditions at the boundaries are easily handled with Bloch states. 

There is only one disadvantage using a planewave basis set:

•  Localized orbitals and pure Coulomb potentials require a large number of 

planewaves to obtain good resolution.

This disadvantage means that to resolve real atomic systems, we will need a large 

basis set. As the size of the basis set increases, so do the computational resources 

required to do the calculation.

4.2 Basis R epresentation

For calculations of bulk properties, one must use periodic boundary conditions to 

approximate an infinite system. To treat the periodic behavior of the ionic potential 

of the crystal, the Bloch states are constructed for our basis set. Bloch states are 

still manageable because of their planewave form.
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A crystal is defined as a structure composed of repeated units [36]. This repeti

tion of atoms defines a periodicity in the ionic potential,

V'(r) =  K (r-hT ), (4.1)

where T is defined as a translational vector of the crystal and defined as

X  =  r i i a i  4- Tïoag 4- (4 .2)

with being the lattice unit vectors and the arbitrarv" rij integers. One would 

expect the electron density to have the same periodicity,

n(r) =  n (r 4-T), (4.3)

which is constructed from the occupied states,

"(r) =  5 l0 i( r )0 ‘(r). (4.4)
t

Bloch proved that the solution for the periodic potential must take the form

0t,k(r) =  exp (îk  • r)uj,k(r), (4.5)
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with

Wi,k(r) =  +  T). (4.6)

From the definition for Uj,k in Eq. (4.6), one can see that using planewaves of the 

form exp (zG • r) will satisfy the periodicity condition if G is a reciprocal lattice 

vector of the form

G =  m ibi +  mgbg + mabs, (4.7)

where the ruj are arbitrary integers and hj are the reciprocal lattice unit vectors 

satisfy the condition

Si bj =  27r5tj. (4.8)

So we have

G T =  TiiTrijaLi bj = ^ nixnil-K. (4.9)
« j  ‘

The Bloch states, can be written as

<̂ i,k(r) =  53 CG.k exp [i(G + k) • r] (4.10)
G

In most applications, the set of G vectors is determined by an energy cutoff. All 

vectors (G + k) with energy ^|(G -t- k)|^ less than the energy cutoff are used in the 

basis.
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4.3 Electronic Temperature

It has been shown that one can introduce a temperature into the electronic states 

by using partial occupancies of the Kohn-Sham orbitals. To include the finite tem

perature on modifies the previous definition of the electron density with

n{T) = f 5I/..k|<Ai,ic(r)Prfk (4.11)
t

where the /. k is the Fermi distribution function given by

«p{/3(e,,k- £ , ) )  +  ! 12)

where j8 =  l/kgT , with kg is the Boltzmann constant, T the temperature, and cp 

is the Fermi energy, .\lthough this might seem straight forward, it is not. One must 

remember that the Kohn-Sham eigenvalues are not the true eigenenergies of the 

system: they are the derivatives of the total energy with respect to the appropriate 

occupation number. The generalization of the finite temperature scheme was first 

introduced by Mermin in 1965 [37].

This finite temperature scheme is very important for metallic systems. During 

the iterative scheme, (p is  constrained by the total number of valence electrons.

Ne = ^  J  fi^dk. (4.13)
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Under the finite temperature distribution, one has one more degree of freedom for 

to work on during the iterations in the matrix diagonalization (see Section 2.7). 

Not only will the planewave expansion coefficients be changed, but also the Fermi 

energy tp  and the occupation numbers /,,k. This slows down the rate of convergence 

but allows for partial occupancies of the Kohn-Sham eigenstates.

For semiconducting and insulating systems, there is no occupancy at the Fermi 

level. This means that the occupation numbers /,,k are either 1 or 0. In metals, 

this is not the case and there many states at the Fermi level. Therefore without 

the smooth Fermi distribution function, states near the Fermi surface would have 

a discontinuous change in occupation number, which may not allow the system 

to reach the ground state. By introducing a temperature in the distribution, the 

occupation number of the states near the Fermi level will not change discontinuously.

4.4 Finite k-Space

In the previous section, a dependence of the eigenstates, eigenvalues and occupation 

numbers are all dependent on the Bloch wavevector k. The electron density must 

be integrated over the first Brillouin zone. The first Brillouin zone is defined to be 

the Wigner-Seitz primitive cell of the reciprocal lattice [36]. The reciprocal lattice is 

defined by the b, mentioned in Eq. (4.7). A numerical integration through out the 

entire Brillouin Zone is an enormous task. It has been sho\%Ti that the integration 

above can be done over a small selection of highly symmetric points in the Brillouin
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Zone [38, 39]. This reduces the integral to a summation over the symmetric k points

with the condition that

=  1. (4.15)
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CHAPTER 5 

RUBIDIUM PART I

In this chapter, the process of constructing a good pseudopotential for rubidium will 

be addressed. In Chapter 3, the fundamental ideas behind the pseudopotential were 

discussed and we will use them here to generate a pseudopotential for rubidium. 

For the next few sections, we will be testing different pseudopotentials and different 

approximations for the exchange-correlation energy to see how these approximations 

affects the calculated properties of rubidium

5.1 Pseudopotential Construction

There many choices one can make to construct a good quality pseudopotential. A 

good pseudopotential:

•  has good transferability (The logarithmic derivatives match well);

•  is soft (few planewaves are needed to describe the potential) ;

•  has no ghost states (see Section 3.1).

Here is a list of the choices one can make in the pseudopotential approximation:

1. The approximation for the exchange-correlation potential:

45
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2. The matching radii for each of the nonlocal components of the pseudopoten

tial (rm,,):

3. The radius for the nonlinear core valence correction (if needed);

4. The Hamann or Troullier-Martins form of the pseudopotential;

5. The choice of the local component of the pseudopotential in the Kleinman- 

Bylander representation;

6. Partial occupancies of the valence orbitals.

The first item on the list is the approximation for the exchange-correlation potential. 

As discussed in Chapter 2, this one of the few approximations we have made in 

density functional theory. There are basically two choices for this approximation. 

One is the local density approximation (LDA) which approximates the exchange- 

correlation potential of the electron density as if it were a homogenius electron gas 

(see Section 2.6). Here the exchange-correlation potential is dependent on only the 

local electron density, n(r) at some point r  in space. This the most basic and most 

accepted approximation for the exchange-correlation energj*.

The second choice for the approximation to the exchange-correlation energy is 

the generalized gradient approximation (GGA) which is dependent not only the 

electron density, n(r) at some point r, but also the magnitude of the gradient of the 

electron density, |Vn(r)|. Usually, the GGA works better because it contains both 

the zeroth and first order terms in a Taylor expansion of the electron density. One
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problem arises in the potential related to a term that is proportional to |l/V n(r)|. 

In cases where this term is small, instabilities may arise in the calculations. In 

general, one cannot foresee which approximation will work and one compare the 

results for both approximations with experimental data.

The second item on the list is the proper choice of the matching radius where 

one matches the modified core of the atom to the true valence wavefunction. This 

radius also pertains to the radius where each of the core potentials is matched to 

the screened Coulomb potential. This radius is usually chosen as the outermost 

maximum of the particular wavefunction and can be different each L In some cases, 

the radii can be modified to remove ghost states, if they exist.

The third item on the list is not always necessary, except where exchange- 

-correlation effects are critical. The nonlinear core valence correction is an ap

proximation used to correct the exchange-correlation effects between the core and 

the valence electrons of the atom. This radius is chosen where the valence and core 

densities are equal.

The fourth item is the choice for the actual construction of the core region of 

the pseudo-wavefunction. The choice between the two forms is usually a personal 

preference. These were referred to in Section 3.2. Sometimes one of the forms is 

more transferable and/or softer than the other. The reason the Vanderbilt form was 

not listed was due to the fact that it is somewhat nonuniversal and less predictable.
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The fifth item on the list is the choice for the local component of the pseudopo

tential. For the Kleinman-Bylander representation of the pseudopotential, we need 

to assign one of the components as local. Usually this is also a preference, but in 

certain cases, the choice of the local component can be made to avoid ghost states, 

if they are present.

The final item on the list has to do with the partial occupancies of the valence 

orbitals. This is done by moving some electrons from the lowest-energy configuration 

to a higher-energy configuration. This improves the pseudopotential transferability 

because the higher-energy configuration imposed may be closer to the environment 

the pseudopotential will be placed in.

As one can see, in practice, the construction of the pseudopotential can be quite 

complicated. Knowledge about all of the previous choices for the pseudopotential 

approximation can aid in generating the best pseudopotential.

5.2 The Pseudopotential Program

The package we used to generate all of the following pseudopotentials and graphs is 

called fhi98PP [40]. The package was written by Dr. Martin Fuchs and distributed 

for free by the Fritz-Haber Institute. The program is written in Fortran77 and 

comes with all of the tools to modify and analyze a pseudopotential. Some modifi

cations to this program were made to allow for more extreme modifications to the 

pseudopotentials than are normally done.
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5.3 Pseudopotential Construction in Practice

The construction of the pseudopotential for rubidium will be analyzed in great 

detail here. We will begin by constructing a pseudopotential for rubidium. These 

calculations were done using the LDA for the exchange-correlation potential and the 

pseudopotentials were constructed within the Troullier-Martins scheme [29]. The 

matching radii for / =  0,1,2 are chosen to be =  4.20,4.60,3.2 no.

We begin the analysis with the all-electron calculations for rubidium. These 

are the calculations that are done to find the true wavefunctions that are needed 

to generate the pseudopotentials. The first test that is done is the calculation of 

the ionization energy. This is the difference between the ground-state energy of the 

neutral atom and the ground state energy of the ion. This difference is 0.15707 

Hartree, which is very close to the experimental value of 0.15350 Hartree.

5.4 Transferability and Occupancies

Based on the work of McMahan [13] we expect to see some d characteristics in our 

pseudopotential. Therefore, the pseudopotential was generated with the valence 

configuration 5s° *5p° ^d® ^ In Fig. 5.1 and Fig. 5.2 we show the I =  0,1,2 com

ponents of the pseudopotentials and the valence pseudo-wavefunctions, respectively. 

The LD.\ was used for the exchange-correlation potential and the I = 2 component 

is used as the local component for the KB representation.

In Fig.5.1, both the pseudo-wavefunctions and pseudopotentials are shown. One
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Figure 5.1: Components of the pseudopotential for rubidium for the I = 0,1,2 
components.
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Figure 5.2: This is a plot of the / = 0,1,2 components of the pseudo-wavefunction 
for rubidium. The smooth curves are the pseudo-wavefunctions, whereas the dashed 
curves are the all-electron solutions.
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Figure 5.3: The logarithmic derivatives D{E) of all the / =  0,1,2 components of the 
pseudopotential for rubidium. The peak deep in energy in the s channel is a ghost 
state.

can see that the pseudopotentials are quite soft by the energy scale for each of the 

components. Each of the components is quite smooth and behaves quite nicely be

yond each of the matching radii. Now that we have a smooth pseudopotential and we 

can now look at transferability. The logarithmic derivatives for this pseudopotential 

are shown in Fig. 5.3.

As stated earlier, the transferability test involves analyzing the logarithmic 

derivatives of our pseudo-wavefunctions to see if they match the all-electron so

lutions. One can see that the semilocal, KB, and all-electron logarithmic derivatives 

agree well. Each time Di{E) crosses the zero point on the y axis corresponds to an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

1
£-
I
I
I

10.0
0.0

- 10.0

10.0
0.0

- 10.0

10.0
0.0

- 10.0

all-electron
semilocal
separable

- 2.0 - 1.0 0.0 1.0 
E  (hartree)

2.0

Figure 5.4: This is a plot of the logarithmic derivatives D{E) of each of the / = 0,1,2 
components of the pseudopotential for rubidium. Here the Z =  0 component is used 
as the local component and the ghost state in Figure 5.3 is removed.

eigenvalue. The energies on the horizontal axis are shifted arbitrarily. Note that in 

the I =  0, channel there are crossings in the KB form of the pseudopotential but not 

in the semilocal or all-electron forms. This is a ghost state that must be removed. 

If we change the choice of the local component from / = 2 to Z =  0 one can remove 

the ghoststate as seen in Fig.5.4.

5.5 Further Testing

Up to this point, we have done as much as possible from the pseudopotential end. 

The next thing one can do is to see how large a basis set must be and how many
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Ecut (Ry) Total Energy (eV/atom)
5 -5.19031
10 -5.21967
15 -5.22386

Table 5.1: The difference in ground-state energy for three different values for the 
energy cutoff is shown. One can estimate that with an energy cutoff of 10 Rydbergs, 
the energy converges to a difference of about 5 meV.

number of k-points Total Energy (eV/atom)
6 -5.20348
26 -5.22993
68 -5.22386

Table 5.2: The difference in total energy for increasing the number of t-points in 
the first BZ. One can estimate that with 26 fc-points converges to a difference of 
about 10 meV.

A-points are needed to converge the total energy. The fc-point set is generated using 

the Monkhurst Pack scheme mentioned in Chapter 4, and the electronic temperature 

of the Fermi distribution is set to 300K which is approximately 25 meV. In Table 5.1 

the ground state energy for the bcc structure of rubidium is calculated for different 

values for the energy cutoff. Again, this energ\' cutoff determines the size of the 

basis set. These energies were calculated for a volume of 500 og/atom and with 182 

k-points in the first BZ. Table 5.1 shows that for an energy cutoff of 10 Rydbergs, 

we can have the energy converge to a difference of 5 meV. We can also check the 

convergence versus the number of k-points used.

In Table 5.2, the ground-state energy for different numbers of k-points in the 

first BZ are given. These energies were calculated for a volume of 500 Oq/atom with
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Number of k-points Ecut (Ry) E q (eV) V o (ûq) B q (GPa)
6 5 -6.7300 482.4 4.71 2.34
6 10 -6.0729 464.9 3.18 2.57
6 15 -5.8711 459.3 3.32 3.13
26 5 -5.4641 479.2 3.31 6.48
26 10 -5.8147 456.1 3.37 3.43
26 15 -5.9168 452.0 3.43 3.11
68 5 -5.5333 483.9 3.34 5.37
68 10 -5.9156 460.3 3.33 3.05
68 15 -6.0811 456.0 3.35 2.66

Experiment 1 [42] 589.4 2.92 4.1
Theory 1 [9] 540 3.5 3.9

Experiment 2 [43] 588.4 2.6
Theory 2 [11] 519.6 4.2 4.1

Table 5.3: The fitted parameters to the Mumaghan equation of state are given for 
different energy cutoff values and different numbers of k-points.

an energy cutoff of 15 Rydbergs. One can estimate that for 26 k-points we can the 

energy to a difference of 10 meV. It should be noted that in metallic systems, one 

needs a large number of k-points to converge not only the total energy, but also the 

Fermi energy. This is why in some cases the energy will fluctuate slightly higher 

when the number of k-points is increased.

Now we will put our pseudopotentials in use in a series of bulk calculations to 

test suitable values for the energy cutoff and the number of k-points to be used. 

We begin be doing a series of energy versus volume calculations for different k- 

point sets and different values for the energy cutoff. The energy is calculated at 

20 Uq/atom intervals starting from 380 oq/atom. We will test the convergence by 

doing a nonlinear fit to 7 data points centered around the volume that gives the
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minimum energy. In Table 5.3, the fitted parameters of the Murnaghan equation of 

state are listed. The Mumaghan equation of state is defined as [41]

where E q is the Energy at the equilibrium volume V q , B q is the bulk modulus at 

the equilibrium volume and Bq =  dBQjdP. In Table 5.3, the convergence to specific 

values for E q and B q is not very good, but is better for B q and Vq . One should also 

note that B q is larger than the experimental value and less than other theoretical 

values. On the other hand Vq , is smaller than both the experimental and theoretical 

results. This is typical in LDA to underestimate equilibrium volumes and lattice 

constants.

As mentioned in Section 3.3, the exchange-correlation energy is very important 

in alkali metals. Here we perform the same test except include the nonlinear core 

valence correction of Louie et. al. [34]. In Fig. 5.5 we plot the core, valence, and 

model core electron densities for a single rubidium atom. The radius at which the 

densities are the same is at r  =  3.5oo, the radius chosen for the model core. In 

Table 5.4, the results for the same tests as done in Table 5.3 are given. The results 

show less variance with a larger k-point sets and the larger energy cutoff. The values 

tend to agree more with the theoretical calculations which is expected since the other 

calculations also use the LDA. One last thing to check is how the fitted parameters 

vary with the valence configuration under which they are generated. In Table 5.5,
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Figure 5.5: The core, valence, and model core densities for the pseudopotential of 
Rb. The model core radius for the nonlinear core valence correction is 3.5oo.

Number of k-points Ecut (Ry) Eo (eV) Vq (o q ) Bo (GPa) B ’o
6 5 -16.870 540.0 3.30 5.34
6 10 -17.049 524.6 3.65 4.32
6 15 -17.155 522.4 3.56 3.70
26 5 -18.377 537.7 3.56 1.95
26 10 -17.244 519.0 3.70 3.52
26 15 -17.184 515.9 3.64 3.71
68 5 -17.741 539.2 3.43 2.39
68 10 -17.235 521.7 3.73 3.55
68 15 -17.181 518.8 3.62 3.70

Experiment 1 [42] 589.4 2.92 4.1
Theory 1 [9] 540.0 3.5 3.9

Experiment 2 [43] 588.4 2.6
Theory 2 [11] 519.6 4.2 4.1

Table 5.4: The fitted parameters to the Mumaghan equation of state are give for 
different energy cutoff values and numbers of k-points usin the nonlinear core valence 
correction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

Valence Occ. nlcv Eo (eV) Vq ( o o ) Bo (GPa)
no -5.8147 456.1 3.37 3.43

5s°’̂ 5p°Md®* no -6.2235 409.2 3.99 2.78
5s°^5p^^4(f ̂ ves -17.244 519.0 3.70 3.52
5s°‘̂ 5p°'̂ 4d®‘® yes -17.170 520.1 3.70 3.59

Table 5.5; The fitted Murnaghan parameters among pseudopotentials with the non
linear core valence correction and pseudopotentials generated with different valence 
configurations. The nonlinear core valence correction improves transferability sig
nificantly.

we show the results for the fitted parameters to the Murnaghan equation of state 

are given for a pseudopotential that was generated using a valence configuration of

The results show that the pseudopotential is highly transferable when the non

linear core valence correction is used. The equilibrium volume is a little too small 

as are the other values. It should be noted that the decrease in E q , when using 

the nonlinear core valence correction, is due to inclusion of the exchange-correlation 

energy of the core. Without the correction, this contribution to the energy is not 

included in the pseudopotential. Now let us see how well we can calculate the bcc to 

fee phase transition. In Fig.5.6, one can see the energy curves for both structures. 

These calculations were done using the good pseudopotential for 26 k-points and an 

energ}' cutoff of 10 Rydbergs. As one can see the energies for the two structures are 

very similar. In Fig. 5.7 we plot the energy of the bcc structure with respect to the 

fee structure. One can see in this figure that the fee structure is lower in energy for 

volumes less than 270 Oq/atom. This transition volume for the bcc to fee transition
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Figure 5.6: This is a plot of the energy-volume curves for the fee and bcc structures. 
The first volume at which they cross is 270 Og/atom. Fits through the data points 
are done with cubic splines.
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Figure 5.7: Energy-volume curves for the fee and bcc structures. In this figure the 
fee curve is used as the reference energy. The first volume at which they cross is 
270 Og/atom. Fits through the data points are done with cubic splines.
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which is slightly less than the theoretical value of SOGog/atom obtained by Louie et. 

al. [9]. The experimentally observed transition volume is 300ûg/atom [4]. To find 

the pressure for the bcc to fee transition one must plot the enthalpy versus pressure. 

Under pressure induced transitions it is the enthalpy that is the conserved quantity. 

The enthalpy is given by

H = E + PV  (5.2)

or

dH  = VdP  + TdS. (5.3)

where E  is the total energy, P  is the pressure, V  is the volume, T is the temperature,

and 5  is the entropy of the system. In Fig. 5.8 the enthalpies of the two structures

are compared and one obtains a from the bcc phase to the fee phase at 7 GPa, as 

observed in experiment [2].

5.6 The PBE Approximation

We will now use on of the GG-4. approximations for the exchange-correlation po

tential introduced by Perdew, Burke, and Erzenhof [44]. To begin we carry out the 

same tests as before. The pseudopotential has the same matching radii and radius 

for the nonlinear core correction as the previous potentials except now the PBE ap

proximation has been used for the exchange-correlation energy potential. With this 

approximation we get much better agreement with the experimental values. One
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Figure 5.8: Enthalpy-pressure curves for the bcc structure in comparison to that of 
the fee curve. The transition from the bcc to the fee structure is at 7 GPa, which is 
the same as as the experimental value. Fits through the data points are done with 
cubic splines.

Ecut (Ry) Number of fc-points Eo (eV) Vo (ûo) Bo (GPa) Bf
5 26 -13.2372 609 2.6 6.95
10 26 -13.6629 600 2.79 3.47
15 26 -13.6348 600 2.78 3.44
5 68 -13.2965 612 2.71 5.87
10 68 -13.6481 603 2.80 3.41
15 68 -13.6360 602 2.80 3.44

exp 1 [42] 589.4 2.92 4.1
theory 1 [9] 540 3.5 3.9
exp 2 [43] 588.4 2.6

theory 2 [11] 519.6 4.2 4.1

Table 5.6: The fitted parameters to the Mumaghan Equation of state are give 
for different energy cutoff and different numbers of fc-points with the nonlinear 
core valence correction and the PBE approximation for the exchange-correlation 
potential.
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Valence Occ. nlcv Eo (eV) Vo (oo) Bo (GPa) B'
5s®®5p*’ ‘̂ 4d̂ ’̂ no -5.3580 635 2.29 3.41
5s°‘̂ 5p°'̂ 4d®* no -5.5017 571 2.52 3.40
5s*̂ ®5p®Md®'̂ yes -13.6629 600 2.79 3.47
5s°' 5̂p°*̂ 4d®* yes -13.5809 591 2.82 3.49

Table 5.7: Above the fitted parameters to the Mumaghan equation of state are give 
for different energy cutoff values and different folding parameters.

can also check the transferability of the pseudopotential and those results are given 

in Table 5.7.

5.7 Discussion

We have demonstrated that using density functional calculations can obtain good 

theoretical results for the properties of mbidium at low pressure. Even with the LDA 

underestimating the equilibrium volume of the bcc stmcture by about 10%, we still 

obtained the correct pressure for the bcc to fee transition. This pseudopotential at 

higher pressures fails due to overlap with the 4s and 4p states that were treated as 

part of the inert core. In the next chapter, we will generate a new pseudopotential 

that is more suitable for higher pressure to study the complex structures of mbidium 

observed in recent experiments [2, 3, 4|.
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CHAPTER 6

RUBIDIUM PART II

As stated at the end of the preceding chapter, the one valence electron approxima

tion in the pseudopotential for rubidium fails as the volume gets too small. Other 

pseudopotentials with different matching radii failed much worse than the pseu

dopotentials used in the preceding chapter. Because it is the Coulomb repulsion 

between the core electrons that causes the energy to rise under compression, one 

must assume that it is the approximation of the core that is at fault. Let us attempt 

now to approximate the core better by treating the core states 4s and 4p on equal 

footing with the valence electron.

We begin by generating a pseudopotential with the following valence configura

tion: 4s^4p®4d^ We have also used a small nonlinear core valence correction to take 

into account any possible exchange-correlation energy issues of the deep 3d level. 

During the construction of this pseudopotential, some problems arose. We observed 

that if there was any occupancy of the valence 5s or 5p orbital, a singularity at the 

origin in the components of the pseudopotential occurred. We believe that this is 

an artifact due to the way that the charge at r  =  0 is calibrated with the charge at 

infinite distance. In the pseudopotential program, there is a parameter to remove
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the charge at infinity which is specified by some large radius. Although we could 

not correct the problem by increasing this parameter, we could introduce such a sin

gularity in other pseudopotentials by reducing the parameter. For now we should 

be aware of this issue in the approximation.

There are other issues to be dealt with, including the instability of the PBE 

functional. During both the pseudopotential generation and the electronic structure 

calculations, convergence was very slow and sometimes unstable. Therefore, for the 

calculations here the LDA for the exchange-correlation energy is used.

The calculated energies for this new potential are listed in Table 6.1. We refer 

to the pseudopotential that is generated with nine valence electrons as hard since it 

will require more planewaves than a typical soft pseudopotential. By treating both 

the 4s and 4p states as valence states, the calculated total energy of the system will 

be shifted downward by the binding energy of these states in comparison to the total 

energy calculated with the soft potential. In the calculations shown in the preceding 

chapter, with the soft pseudopotential, this binding energy was treated as constant 

was therefore neglected.

Energy convergence tests show that and energy cutoff of 60 Ry is sufficient and 

a similar number of Ar-points was adequate as compared to the number required for 

the soft pseudopotential. We can estimate that we are within about 20 meV of the 

ground state based on calculations similar to those of Table 5.1 with an energy cutoff 

of 60 Ry. Convergence of the equation of state parameters can be seen in Table 6.1
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Potential Ecut (Ry) t-points Eo (eV) Vq (qq) Bo (GPa) B'o
soft 10 26 -17.244 519 3.57 3.52
soft 15 26 -17.184 516 3.64 3.71
hard 60 14 -678.275 526 3.60 3.50
hard 60 26 -678.250 526 3.52 3.52
hard 100 14 -678.281 526 3.60 3.62

Table 6.1: The fitted parameters to the Mumaghan equation of state for the hard 
pseudopotential as compared to those obtained with the soft pseudopotential.

where we look at the change in the fitted parameters with different values for the 

energy cutoffs and different numbers of fc-points. By glancing at Table 6.1, the 

differences between the hard and soft pseudopotentials are almost constant, which 

one may consider to be the binding energy of the 4s and 4p states. To examine the 

issue closely, in Fig. 6.1 we plot both the hard and soft bcc energy-volume curves 

except the soft potential is manually shifted down in energy to make up for the 

binding energy difference.

Now the detailed differences can be seen. Near the equilibrium volume of (K = 

520 Oq/atom), the curves are almost identical, but at small volumes, the curves 

deviate with the soft pseudopotential being lower in energy than the hard pseu

dopotential. This indicates that the hard pseudopotential is behaving correctly at 

small atomic volumes, where as the soft pseudopotential is not. One final check is 

to look for the fee to bcc transition volume as we did with the soft potential. In 

Fig. 6.2, we plot the energy-volume curves for both the fee and bcc structures with 

60 Rydbergs as the energy cutoff and 26 Ar-points. Here the bcc structure is plotted
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Figure 6.1: This energy-volume curves for the hard and soft pseudopotentials. The 
energy of soft pseudopotential is shifted down in energy by 661.032 eV to make up 
for the difference in binding energy between the two calculations. At small volumes 
the soft pseudopotential has lower energy than the hard pseudopotential which is 
were it fails.

using the fee energy as the reference energy. The figure shows that the transition 

volume for the fee to bcc transition is about 285oo/atom which is closer to the ex

perimental value of 300flo/atom which was obtained by Schwarz et. al. [4]. We also 

plot the enthalpy of the two structures in Figure 6.3. From the enthalpy curve we 

find that the transition pressure is about 6 GPa which is a little smaller than the 

experimental value of 7 GPa. One may also notice that the bcc structure becomes 

slightly more favorable energetically than bcc in the 17 to 20 GPa range. VVTiat 

is interesting is that there is a turning point in the bcc structure around 13 GPa. 

This we believe to be an electronic structure change in the system. In Fig. 6.4 and 

Fig. 6.5, we show the band structures for the bcc structure near 0 GPa and 13 GPa,
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Figure 6.2: Energy-volume curves for the fee and bcc structures. Here the fee energy 
is used as the reference. The first crossing point for the two curves determines the 
transition volume of 285 Og/atom.
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Figure 6.3: Enthalpy-pressure calculations for the fee and bcc structures. Here the 
fee enthalpy is used as the reference energy. The crossing point for the two curves 
determines the transition pressure of about 6 GPa.
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Figure 6.4: The band structure for bcc rubidium near zero pressure. The 4s and 4p 
bands appear quite narrow.

respectively. At 0 GPa, the core 4s and 4p bands are quite narrow, showing no 

overlap. At 13 GPa, one can see that more bands have dropped below the Fermi 

level. Because it is near this pressure where the s —> d transition occurs, it can be 

assumed that this is the d orbital or at least some type of s —d hybridized band cross

ing the Fermi level. These same characteristics are seen in similar band-structure 

calculations for cesium [45].

Another interesting point is that the 4s and 4p bands are also broaden signifi

cantly under pressure. In Fig. 6.6 we show the density of states for the fee structure 

at 0 and 35 GPa. At low pressure, the 4s and 4p bands are quite narrow and 

under pressure the 4p broadens significantly. We now believe we have a working 

pseudopotential that gives reasonably accurate results for the low pressure bcc and 

fee phases. Although the LDA is overbinding and gives slightly smaller equilibrium
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Figure 6.5: The band structure for bcc rubidium near 13 GPa. The core 4s and 4p 
bands have broadened and more states have dropped below the Fermi level.
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Figure 6.6: The density of states for the fee structure at pressures of 0 and 35 GPa. 
Under pressure the semi core 4s and 4p show significant broadening.
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volumes, the enthalpy appears to be correct giving the correct transition pressure. 

The deficiency in the pseudopotential in Chapter 5 was approximating that the 4s 

and 4p shells were inert under pressure which appear to be quite active under high 

pressure.

6.1 Complex Structures

Now that a working pseudopotential has been found, we can begin by calculating the 

stability of the currently known structures. In Fig. 6.7 we plot the energy against 

volume for all of the complex structures using fee as the reference energy. For each 

structure, we used the lattice ratios and atomic coordinates obtained experimen

tally [2, 3, 4]. This leads to small errors on the order of our original error of about 

20 meV. For the Rb V structure, 42 fc-points were used while in the Rb VI structure 

only 5 fc-points were used. Increased fc-point sets showed to smooth the curves out 

slightly and did not change the energy beyond the error estimated earlier of about 

20 meV. In Fig. 6.7, at small volumes the Rb VI structure is most stable. At about 

V = 124ag/atom there is a transition to Rb V. Experimentally, the Rb VI phase is 

identified at only one volume of V =  120oo/atom. Throughout the entire regime of 

volume, the Rb IV structure is completely unstable. This calculation was done with 

full occupancy of the Wyckoff 46 sites and therefore treatment of this structure as 

a fully ordered one may be at fault.

We can also plot the pressure against the volume for each of the structures.
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Figure 6.7: Total energy versus volume for the known structures of rubidium. The 
small wiggles in the curves are due to the use of cubic splines.

This is shown in Fig. 6.8 where we compare our results with the experimental data 

provided by Holzapfel et. al. from reference [2]. At low pressures the LDA under 

estimates the atomic volume while at high pressures the disagreement it less. Small 

kinks in the pressure volume curves are due to electronic structure changes. For 

example, in the bcc pressure-volume curve, this occurs around 11 GPa. From the 

band structure calculation of Fig. 6.5, this is where a band drops below the Fermi 

surface. Similar effects are seen in the other structures at different pressures and 

volumes.

In Fig. 6.9, the enthalpy-pressure curves for all of the known structures for the 

five phases of rubidium are plotted. Each structure is plotted with respect to the 

fee enthalpy. In Fig. 6.9, one can see that the Rb IV structure is not as stable as the 

fee structure. The Rb V and Rb VI structures are quite stable with respect to the
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Figure 6.8: Pressure-volume curves for the five known phases of rubidium. The data 
points are the experimental pressure versus volume data from reference [2].
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Figure 6.9: Enthalpy-pressure curves for the known structures of rubidium. Here 
the fee enthalpy is used as the reference.
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fcc structure and a transition pressure of 42 GPa is obtained for the Rb V to Rb VI 

transition. Experimentally the transition pressure is 46 GPa for this transition [2].

It would appear that we do have a working pseudopotential for rubidium through

out the entire pressure range, but we are still lacking in the proper treatment of the 

Rb IV structure.

6.2 Rubidium IV

In the previous section, the calculations showed that the Rb IV structure with full 

occupancy of the 46 sites was unstable with respect to the fee structure and much 

higher in energy than the Rb V structure. Experimentally, this was only one possible 

solution for the structure. Another possible solution the experimentally obtained for 

the structure of Rb IV used 1/2 occupancies of the 8g sites instead of full occupancy 

of the 46 sites [4]. This means that on average, 1 atom is siting on two possible 8g 

sites (see Fig. 1.2). We tried various configurations for the 8g cites and found that 

it just raised the energy of the structure. When looking at the electron density of 

the fully occupied 46 structure along the z axis, it was observed that the system 

seemed compressed along the z direction. To relieve this stress, c/a was increased 

to see how the energy was affected. In Fig. 6.10, we plot the energy against c/a 

for the Rb IV structure, with full occupancy of the 46 sites, at V =  170 (og/atom) 

of the Rb rV structure. The \"alue for c/a obtained experimentally is 0.500 which 

increases under pressure to 0.507 [4]. By increasing the value of c/a for the Rb IV
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Figure 6.10; This is a plot of the relative lowering of the energy of the RB IV 
structure with 1 atom in each of the 46 sites. The energy is lowered by about 60 
meV when c/a is increased to approximately 0.57 from the experimental value of 
0.50.

structure, one finds that when c/a =  0.57, one lowers the energy by about 60 meV. 

The exact minimum cannot be resolved with out relaxing the structure and also the 

fluctuations are within our error of about 20 meV. In Fig. 6.11, the enthalpy for the 

Rb IV structure with the increased value of c/a =  0.57 and full occupancy of the 

46 is plotted with the previous calculations. From Fig. 6.11 one can see that the 

increased value for c/o does lower the energy of the structure, but not enough to 

stabilize it against Rb V. This tells us that the full occupancy of the 46 sites stretches 

the crystal along the z direction. At this point our only choice is to remove atoms 

from the unit cell. The removal of atoms from specific sites be a more drastic change 

in the structure than the variation of c/a. Therefore, we must allow the structure 

to relax to make up for the spaces left by the atoms removed. This takes us to a
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Figure 6.11: This plot is similar to Fig. 6.9 except now we add the enthalpy calcu
lation for the Rb IV structure with c/a =  0.570, This is labeled as Rb IVb. The 
original calculation with c/a =  0.500 is labeled as IVa.

second technique which is quite powerful with the density functional method. The 

structures in the unit cell can be relaxed by calculating the forces on the atoms via 

the Hellman-Feynman theorem [46, 47]. This theorem gives the force on atom i as

F, = -gg-EWr), (6 .1)

where Ri is the position vector of the ith nuclei and F[n(r)| is the energy func

tional. Once the forces on the atoms have converged, the atoms are allowed to move 

under a damped Verlet molecular dynamics scheme [35]. The motion of the nuclei is 

allowed to evolve until adequate convergence to a stationary structure is achieved.

In Table 6.2 we all of the possible starting configurations for the initial positions 

of the atoms in the 46 sites. For the following calculations c/a will be fixed at the
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Configuration X y 2 =  0.25 2 = 0.75
Rbxe 0.5 0.0 0 0

0.0 0.5 0 0

Rbi7 0.5 0.0 X 0

0.0 0.5 0 0

Rbi8o 0.5 0.0 X 0

0.0 0.5 X 0

Rbi86 0.5 0.0 X 0

0.0 0.5 0 X

Rbi8c 0.5 0.0 X X

0.0 0.5 0 0

Rbi9 0.5 0.0 X X

0.0 0.5 0 X

Table 6.2: In this table the starting coordinates of the atoms in the 46 sites for the 
Rb rV calculation are listed. The coordinates are listed in units of the appropriate 
lattice vector. The x’s correspond to occupied sites while the o’s are unoccupied.

experimental value of 0.5. If this were allowed to vary, we would have results that 

would completely disagree with the experimental observation. For each of these 

possible structures, calculations were carried out to find the ground state energy 

at V = 170ao/atom with 12 fc-points in the Brillouin zone with out any symmetry 

constraints what so ever.

The structural relaxation was continued until the energy change per structural 

optimization step was approximatley 1 meV. These calculations were done on a Cray 

T3E with CPU time granted by the National Partnership for .\dvanced Computa

tional Infrastructure. The computational requirements for each individual calcula

tion took approximately 40 hours on 16 processors. The results of the minimized 

energy for all of the structures are given in Table 6.3. This table shows that 1/2
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Structure Configuration Eo (eV/atom)
RbiG 
RblSa 
Rbi86 
Rbi8c 
Rbi9 

Fully occupied 46

-675.540
-675.838
-675.839
-675.659
-675.813
-675.824

Table 6.3: Here are the listed energies for the various possible configurations for 
atoms in the 46 sites listed in the Table 6.2.

occupation of the 46 sites is most energetically favorable in configurations Rbigo 

and Rbisfc. Rbigc is higher in energy due to the packing of the atoms in the 46 sites 

in the same channel along the z axis. This corresponds to 18 atoms per unit cell 

instead 20. Even though it does lower the energy, it is still as low as the Rb V 

energy of -676.0 eV/atom at V =  170oo/atom. No drastic changes in the structure 

were observed in any of the relaxations. All atoms in the channels just sat in the 

46 position. These values also tell us that the fc-point sampling is not an issue since 

the energies did not change much with respect to the previous calculations. Now 

one is left with one more possibility, double the cell along the z axis to attempt to 

allow more disorder in the occupation of the sites.

If we increase the cell along the z axis, one has more options to work with, as far 

as the structure is concerned. If the 46 sites are not fully occupied, the structures 

may relax such that the atoms in other 46 sites move closer to one of the nearby 8g 

sites. By doubling the cell along the z direction, the length of the z axis to the same 

length as the x  axis making the cell cubic. In Table 6.4 we list the configurations
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Configuration X y 2 =  0.125 2  =  0.375 2 = 0.625 2 = 0.875
Rb38a 0.5 0 .0 X X 0 X

0 .0 0.5 X 0 X X

Rbssfc 0.5 0 .0 X X 0 X

0 .0 0.5 0 X X X

Hb38c 0.5 0 .0 X X 0 X

0 .0 0.5 X X 0 X

Table 6.4: In this table the starting coordinates of the atoms in the 46 for the unit 
cell doubled along the z axis. The coordinates are listed in units of the appropriate 
lattice vector. The x’s correspond to occupied sites while the o’s are unoccupied.

Structure Configuration Eo (eV/atom)
Rbssa 
Rb̂ Sb 
Rbosc 

Fully occupied 46

-675.838
-675.857
-675.850
-675.791

Table 6.5: Here are the listed energies for the various possible configurations for 
atoms in the 46 sites listed in Table 6.4.

we choose to calculate. Each calculation was carried out for 1 fc-point and at an 

atomic volume of V =  170 Oq/atom.

In this case the configurations ^ 6380,^ 6386,and Rb^oc all relaxed similarly. Two 

of the atoms relaxed to the 8g sites and one atom in between the two 8g sites stayed 

in the 46 site. It is at this time we should highlight the third result on the Rb IV 

structure which the experimental group identified [4]. It was not mentioned in the 

Chapter 1 because it was considered an over refinement by Schwarz et. al. A third 

solution for the structure was 0.17 occupancy of the 46, 0.35 occupancy of the 8g 

which corresponds to 19.48 atoms per unit cell. In our case, we have a 2 t o i  ratio
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of occupancy of 46 to 8g sites and 38 atoms per unit cell which agrees quite nicely.

Enthalpy results for the Rb^sc structure showed results comparable with the 

results for the configuration of fully occupied 46 sites and c/a = 0.570. This is a 

step in the right direction since this calculation was done with c/a = 1.0 which 

corresponds to c/a =  0.50 with 18 atoms per cell. So it appears at this time that 

we have not found a valid unit cell representation for the Rb IV structure. Based 

on the structural relaxations, the atoms Wyckoff 16fc sites do not move appreciably. 

We have also calculated that a full occupancy of the 46 sites is not energetically 

favorable. By varying the occupancy of various sites, we were able to lower the 

energy somewhat, but not enough to stabilize it against Rb V.
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CHAPTER 7 

CONCLUSIONS

It has been shown that density functional calculations can be a powerful tool. In 

the case of rubidium at high pressure, that this tool reproduces and confirms exper

imental results very well. We have confirmed the phase transitions for the bcc to fee 

phase. As far as the Rb V to Rb VI transition, little is known experimentally [2, 3]. 

The Rb VI phase is known to exist at about 46 GPa, but the volume and pressure 

points for the specific transition are unknown. We have calculated the pressure for 

the transition to be 42 GPa and the transition volume to be 125 Oq/atom.

Unfortunately, we were not able to find a correct unit cell description for the 

Rb rV structure. Many attempts we made and each attempt brought us closer to 

a possible unit cell description. If time had allowed, a study of all the possible 

occupancies of the enlarged cell might have given rise to a unit cell that could be a 

good enough model of the disordered Rb IV structure. These types of calculations 

are very difficult and require much computer time and resources.

Future calculations could be used to predict what structure the Rb III phase. 

Knowing that it might be close to the K III structure gives one enough information 

to get started. We have made some attempts at finding a stable structure, but none
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that were energetically favorable have been found. Based on the relations between 

the phase diagrams between Rb and Cs one could predict the dhcp structure above 

the Rb VI phase. An estimate of that transition pressure would put it above 100 

GPa which is quite high.
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