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ABSTRACT

An H-Adaptive Finite Element 
Compressible Flow Solver 

Applied to Light-Gas 
Gun Design

by

Timothy Todd de Bues

Dr. Darrell W. Pepper, Examination Committee Chair 
Director, Nevada Center for Advanced Computational Methods 

Professor o f M echanical Engineering 
University o f Nevada, Las Vegas

The Joint Actinide Shock Physics Experimental Research (JASPER) facility utilizes a 

two-stage light gas gun to conduct equation o f state experiments. The gun has a launch 

tube bore diameter o f 28 mm, and is capable o f launching projectiles at a velocity o f 7.4 

km/s using compressed hydrogen as a propellant. A numerical study is conducted to 

determine what effects, if  any, launch tube exit geometry changes have on attitude o f  the 

projectile in flight. A comparison o f two launch tube exit geometries is considered. The 

first case is standard muzzle geometry where the wall o f  the bore and the outer surface o f 

the launch tube form a 90 degree angle. The second case includes a 26.6 degree bevel 

transition from the wall o f the bore to the outer surface o f the launch tube. The finite 

element method is employed to model the Euler equations and the compressible Navier- 

Stokes equations. The numerical method incorporates the use o f trilinear, hexahedral, 

isoparametric elements, as well as the use o f Petrov-Galerkin weighting applied to the

111
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advection terms. M ass lumping allows an explicit Euler scheme to be used in 

conjunction with a second-order Runge-Kutta approximation to advance the discretized 

equations in time. An A-adaptive mesh refinement scheme based on elemental flow 

feature gradients is utilized for greater solution accuracy. For both cases, solutions are 

calculated for several positions downstream o f the launch tube exit. Numerical solutions 

obtained indicate that both eases will have an adverse effect on flight attitude o f the 

projectile, w ith the beveled muzzle geometry performing worse than the standard ease.

IV
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CHAPTER 1 

INTRODUCTION

This dissertation deals with the development o f a three-dimensional finite element 

compressible flow model, and how it applies to the muzzle design o f  a two-stage light gas 

gun. A basic road map o f this work is presented in this chapter.

Chapter 2 focuses on the governing equations for compressible flow. Therein, the 

dimensionless forms o f  the governing equations are developed.

Many numerical techniques for modeling systems o f partial differential equations are 

in use today. Chapter 3 centers on the finite element formulation o f the governing 

equations. Finite element methods are commonly used today for the solution o f 

compressible flow problems. Since the solution algorithm is decoupled from the process 

o f mesh generation, finite element methods can utilize unstructured meshes allowing any 

arbitrarily shaped region to be discretized. Also, it enables local refinement o f  the mesh 

to occur independently o f  the solution algorithm.

The primary disadvantage o f attacking complex problems in three dimensions is that 

the number o f  elements required to resolve certain flow phenom ena increases 

substantially. Finer mesh density is especially important in accurately capturing various 

flow features, such as the precise locations o f shocks. Rather than using a finer mesh 

throughout the entire solution domain, mesh adaptation is employed. Further discussion
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2

on the mesh adaptation methods and strategies concerning this work will be handled in 

Chapter 4.

Results o f several benchmark test cases will be presented in Chapter 5. 

Benchmarking is an important part o f  numerical model development. I f  results o f well 

documented experimental data or theoretical data can be duplicated with a numerical 

model, then greater trust can be given to that m odel’s results as it is applied to new 

problems.

In Chapter 6, results for the flow field around the muzzle o f a light gas gun are 

presented. Two different muzzle configurations are considered. The first case is 

standard muzzle geometry where the wall o f the bore and the outer surface o f the launch 

tube form a 90° angle. The second case includes a 26.6° bevel transition from the wall 

o f the bore to the outer surface o f  the launch tube. Due to the extreme nature o f the 

problem, numerical simulation is the only feasible way o f examining what effects, if  any, 

launch tube exit geometry changes have on the attitude o f  the projectile in flight.

Finally, in Chapter 7, eonclusions will be drawn based on the results obtained, and 

recommendations will be made regarding fliture research.
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CHAPTER 2

GOVERNING EQUATIONS FOR COM PRESSIBLE FLOW  

The model developed in this study is governed by the compressible Navier-Stokes 

Equations. N eglecting body forces, the governing equations may be written in 

noneonservation form as follows: 

continuity:

D p
D t

+ yOV-U = 0 (2.1)

momentum:

p —  = V G (2.2)
D t

internal energy:

= - V - q  + CT (2.3)

Brueckner (1991) noted that when compared to the total energy formulation, the internal

energy formulation for compressible flow results in a more stable algorithm. For this

reason, the internal energy formulation is used in this study.

In equations (2.1) through (2.3), the convective derivative is given by

+ u -V  (2.4)
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M  is the mach number, y  is the ratio o f specific heats, and Fourier’s Law gives the

required relation between temperature and heat flux as:

q = - k V T (2 5)

The terms o f  the Stokes stress tensor o are given by:

(Jj -  [~P + ■\y)5y + Dy (2.6)

where

Dy -  p — -  +  — - (27)

According to Stokes’ hypothesis

À  — — p  . 
3

(2.8)

The viscosity, / / ,  is temperature dependent and is determined using Sutherland’s formula

(Schlichting, 1979):

J L
TV y T + S

(2.9)

where p^  is the viscosity o f  the fluid at the reference temperature , and the Sutherland

constant, 5” = 1 1 0 .4 K .

In order to elose the above system o f equations, a relation for pressure is needed. The 

equation o f state for an ideal gas is used

p  = p R T .  (2.10)

In addition, a calorically perfect gas is assumed, giving the relation between internal 

energy and temperature as:
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5

e = (211)

where is the specific heat at constant volume.

To highlight the important similarity parameters for viscous, compressible flow, a 

nondimensional form o f the compressible Navier-Stokes Equations is employed. In order 

to obtain this nondim ensional form, the following dimensionless variables are introduced 

(Anderson, 2000):

u
u * X *

, X =  — , t  =  —
L L

=  _P_ . p ' = - £ -
P^ r . p .

e
, k ' - f . /

K

f  C2 12)

where L , U ^, p ^ ,  T^, p ^ ,  e^ , k ^ ,  and are free stream reference values.

After inserting equations (2.12) into equations (2.1), (2.2), (2.3), (2.10), and (2.11) the 

following forms o f  the governing equations are obtained (dropping the * notation for 

convenience):

continuity:

^  + p V - u  = 0 (2.13)
D t

momentum:

= V
D t y M  Re

+ - i - ( V - D )  (2.14)
Re  ̂ ^
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internal energy:

D e
^  D t

Ï
R ePr 

y ( y - l ) M 2

V - ( p V e )  +

1 2 p  ^
 r  p  H-------V  • U
yAf: 3 F k

V .„  + J - n ^
Re dx:

( 2 1 5 )

The dimensionless relation between internal energy and temperature becomes

e = T . (2.16)

Using equation (2.16) the dimensionless equation o f  state can be written as:

P = p e  (2.17)

The dimensionless similarity parameters appearing in equations (2.14) and (2.15) are 

now evident:

M ach number:

Reynolds number:

Prandtl number:

M  -

Re =

Pr =

(2.18)

(2.19)

(2.20)

Ratio o f specific heats:

r  = (221)
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The Sutherland viscosity formula must also be cast in terms o f  the dimensionless 

variables. Using dimensionless variables o f equation (2.12), equation (2.9) can be 

rewritten as:

p = (2.22)
T + S

where

i? = (223)

A closed set o f  dimensionless equations now exists. In the next chapter, a suitable 

finite element model based on these governing equations will be created.
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CHAPTER 3

FINITE ELEM ENT FORM ULATION 

M any numerical techniques for modeling systems o f partial differential equations are 

in use today. For eompressible flow problems, finite difference and finite element 

methods are frequently used. One o f the main advantages o f finite difference methods is 

that the algorithms are fairly easy to eneode. Since finite difference methods have been 

in use longer than any other method, a myriad o f solution schemes already exists for 

many types o f specific problems. The major drawback o f finite difference methods is 

that the computational domain is somewhat limited to structured meshes.

On the other hand, finite element methods can utilize unstructured meshes, since the 

solution algorithm and the process o f mesh generation are uncoupled. This decoupling 

permits any arbitrarily shaped region to be discretized (Lohner, et al., 1986). Also it 

enables local refinement o f the mesh to oecur independently o f the solution algorithm. 

For these reasons, the finite element method has been chosen to model the governing 

equations.

M ethod o f W eighted Residuals 

In order to examine the method o f weighted residuals, it is necessary to define the 

following linear function spaces:
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H'{n) = /(») I f p v f do. < CO

a n d / ( x )  = 0 o n r j

H '{ Q )  = { / | / e / / ' ( Q )  a n d / ( x )  = gj onTi}

(3.1)

(3.2)

(2 3 )

Consider the case o f linear one-dimensional heat conduction given by the following 

governing equation:

± [ k ^ ]  = /
d x \  dx )

Q  = (x  I o < x < 6 j (3.4)

For simplicity, this equation can be interpreted as a linear operator, L,  acting on 

fiinctions u ( x ) , over a domain Q , bounded by F . Equation (3.4) can be rewritten as:

with boundary eonditions:

Lu  —  f X e  Q

X e  F ,

n - { k - V u )  = g^{ x)

(3 5)

(3.6)

(3.7)

where g, and g^ are given functions, n is the outward unit normal to F ,  and

r, u r ,  = r,

The residual function based on equation (3.5) can be defined as:

R { u , x ) =  L u [ x )  -  / ( x ) (3.8)

We seek to minimize the residual R(u , x )  over the computational domain. The residual

measures the error in the satisfaction o f the solution. In other words, if  û is the exact 

solution o f equation (3.5), then

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R ( m , x )  =  0

10

(3.9)

Defining a weighting function w = w(x)  e  Hg,  the weighted residual form o f

equation (3.8) is obtained:

Jw (x)i?(w ,x)< iQ  = 0 (3.10)

or

\ A - ~j  1

d(f)
dx

■ f \  dx = 0 (3 11)

To weaken the second derivative term, Green’s Theorem is applied. The problem may 

now be stated as: Find a function ^ ( x )  e  / f ' ( Q )  such that

I dw drf) 
dx dx

dQ. - w
d(j)

- k
x=b

0 (3.12)

The functions (j) are called the trial fiinctions and the functions w  are called the test or 

weighting functions. The particular weighted residual method sought depends on the 

choice o f the weighting fiinctions.

Galerkin Finite Element Method 

The main difficulty with the solution o f equation (3.12) is that the Sobolev spaces 

f f '  (Q ) and H q (Q ) are infinite-dimensional (Heinrieh and Pepper, 1999). The Galerkin

method remedies this by doing two things. First, define the following n-dimensional 

subspaces:

e  / / ‘ (Q ) (3.13)
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c  (3.14)

Second, choose a set o f  shape functions Â , (x ) in that forms the basis

for {n ,Q )  :

<zi(x) « ^ f ( x )  = ^ J V ,(x )c .  (3.15)
/=1

and set the weighting funetions, w ,, equal to V. ( x ) . W hen applied to equation (3.12), 

this results in n algebraie equations for the n coefficients c . .

Transformation to Natural Coordinates 

The finite element method involves the discretization o f the solution domain into a 

finite number o f  elements. Each element is bounded by a num ber o f nodes. The 

elements may not overlap, but may share nodes with adjacent elements. The wide variety 

o f element shapes across the solution domain makes determination o f the shape functions 

and numerical integration tedious. To simplify these processes, a transformation from the 

Cartesian coordinate system to the so called “natural” coordinate system is employed (see 

Figure 3-1). In the natural coordinate system, all physical dimensions (<̂ , t], Ç) o f  the 

isoparametric elements lie within the range o f -1  to 1.
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(X8,Y8,Z8)

X

(-1,4,1)

(1,1,1)

( - 1, 1, 1)

(-1,1,-1)

Figure 3-1. Coordinate transformation to natural coordinates

In the natural coordinate system, the shape functions can easily be written as (Pepper 

& Heinrich, 1992):

( 1 - ^ ) 1 - 7 7 ) ( 1 - 0

N, ( 1  +  ^ ) 1 - 7 7 ) ( 1 - 0

N, ( 1  +  ^ ) 1 +  7 7 ) ( 1 - 0

N, 1 ( 1 - ^ ) 1  +  7 7 ) ( 1 - 0

8 ( 1 - ^ ) 1 - 7 7 ) ( 1 + 0

Ne ( 1  +  ^ ) 1 - 7 7 ) ( 1 + 0
N, (1 +  ^ ) 1  +  7 7 ) ( 1 + 0

1 +  7 7 ) ( 1 + 0 .

(3.16)

The derivatives o f  the shape functions are obtained using the chain rule (Beer and 

Watson, 1992; Fletcher, 1984):
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dNi ôNi ôx dN. dy dN. dz
 L -   L  +   L .Z .  +   L------

dx d^  dy d ^  dz d ^

dN, dN, dx dNf dy dN, dz 
+  — +

dîj

aw,

dx drj dy drj dz drj

dN, dx dN, dy dN, dz 
+  — +

dÇ dx a^  dy dÇ dz dÇ 

Equations (3.17) through (3.19) can be rewritten in matrix form as:

aw, dz
a^ â? a^ â f
aw, dx dz
drj drj drj drj

aw,
a^

'aw,"
a%

aw,

aw,
_  az _

or

"aw," "aw,"
a^ dx
aw. aw.

= J
drj

aw. aw.
_ dz _

13

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

where J is the Jacobian matrix. Similarly, the derivatives o f  any computational variable 

can be transformed into the natural coordinate system via the relation:

a ' a ‘
a^ a%
a

drj
= J

a
(3.22)

a a
.dz_
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When dealing with isoparametric elements, it is sometimes convenient to express the 

Jacobian in terms o f the shape functions defined in equation (3.16) as follows:

aw, ^  aw, ^  aw,
/  — - X  /  — -  V. > — -z.

^  a ^  ' ^  a ^  '

^  aw, ^  aw,
(3.23)

In the transfer back to Cartesian coordinates, the inverse o f  equation (3.22) is used.

'  a  ' ■ 0  '

dx 0 ^

d
= J '

0

0 7

d 0

In equation (3.24) the inverse o f the Jacobian (Fletcher, 1997) is:

dx dx dx
d ^  drj dÇ

^  ^  ^
a^ drj dÇ

dz dz dz
d ^  drj dÇ

J =

(3.24)

(1 2 5 )

Numerical Integration 

Although many numerical methods exist for evaluating integrals, Gauss-Legendre 

quadrature is a very appropriate algorithm to implement. Recall that the finite element 

method employed for this study makes use o f the transformation to a normalized 

computational domain where all physical dimensions ((^, 7 , lie within the range o f
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-1 to 1. Since the limits o f integration used for Gauss-Legendre quadrature also range 

from -1 to 1, no change in limits is required.

Integrals in this study take the form o f

1 1 1
(3.26)

-1  - 1  - 1

Using Gauss-Legendre quadrature to evaluate this integral yields (Pepper and Heinrich, 

1992):

X y y  (3.27)
;=1 j= \  k=\

where w,., w . , and are the Gauss weights o f  integration evaluated at the Gauss points

, 7/y, and For the trilinear hexahedral elements used in this study, 2 x 2 x 2

quadrature is used. Therefore, since « = 2 the following values are used:

w. = Wj = Wĵ  = 1 .0  (3.28)

= % = ( *  = (T29)

Finite Element Formulation for Compressible Flow 

Repeated here for convenience, the dimensionless governing equations are: 

continuity:

D p
Dt

+ p V -u  = 0 (3.30)

momentum:

p —  = V 
D t

 ̂ -p-k— (V -u )
y M  Re

+ D) (3.31)
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internal energy:

P
D e y
D t  Re Pr

V -(p V e) +

y M  3 Re

(3.32)

equation o f  state:

p  = p e (L33)

Since the equation o f  state gives the pressure strictly in terms o f density and internal 

energy, no further manipulation o f this equation is necessary.

M ultiplying the continuity, momentum, and energy equations by the weighting 

functions and integrating over the volume Q  with boundary surface Y  yields:

continuity:

IW A ^  +  { \ x - S 2 ) p \ d Q .  = -  |lf;(p V -u ) c/Q (3.34)

momentum:

y M

+ \W: V1
Q

r
Re

(V-u)

dQ.

1
+ (V -D ) J Q

(335 )
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internal energy:

I de
p | f +  ( u - V ) e ^  dn = dn

f H y M ' 3 Re
V u L dQ

n

17

(3.36)

Weak Formulation

Note that equations (3.35) and (3.36) contain second order derivatives. Due to the 

difficult nature o f numerically modeling second order derivative terms, the momentum 

and energy equations are weakened by applying the Green-Gauss theorem.

Suppose Ç9 is a scalar field represented h y c p -  ç i ^ x ,y , z ) , and q is an arbitrary vector 

given by

<ly (3.37)

The Green-Gauss theorem can be written as:

J ^ (V -q )  J F  = ^(paAn d S -  J(Vç?)^q (3.38)

where n is the unit veetor normal to and directed outward from the boundary o f volume 

F. Equation (3.38) takes the volume integral o f the divergence o f  vector q multiplied by 

(p and relates it to a surface integral. In one dimension this is known simply as

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



18

integrating by parts. This process has the desired effect o f  eliminating second order 

derivative terms.

Applying equation (3.38) to the terms in equations (3.35) and (3.36) containing 

second order derivatives, and recognizing that the weight functions in those terms are 

analogous to cp in equation (3.38), the governing equations may now be rewritten in their 

weakened form.

continuity:

j ^  + ( u - V ) p j  d Q  = -  J f ^ .( p V - u )  d Q (3.39)

momentum:

yM '
■p d Q

+

fQ. Q

nrfr + d Y

(3.40)

internal energy:

fW. p \ -  + { n - W ) e \ d Q  = -  y ^ ^ p W W ^ V e d QÏ

I ' + - ^ v  u V - u l  d n
y M  3 Re

Q r

u
jR e P r

(3.41)

p  W- ( n - V e )  d Y
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In three dimensions, the weakened governing equations may be written as: 

continuity:

1
d Q

dt I dx dy dz 

d Q

d Q

f „ .  \  du dv dw
(3.42)

x-momentum:

1 du I »  I du du du
W.p  —  d Q  -  -  \W .p \u  —  + v —  + w-

&
Q

Q

dx dy dz 

1 dp
'  I y M ' dx

d Q

Re dx
4 du 2 dv 2 dw 
3 dx 3 dy 3 dz

+ +
dz

J L .
' Re

dWj dv du 
— -  —  + —  
dy \_dx dy

4 du 2 dv 2 dw

dw du 

dx dz

n .

dv du
«y +

dw du 
dx dz

d Q

n , > d T
(3.43)
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y-momentum:

J i y p f r f Q

Q Q

}
Cl

1

dv ÔV dv
u  1- V 1- w —

^  8z
d Q

'  I  y M ' dy

Re dx
du dv 2 du 4 dv 2 dw

3 dx 3 dy 3 dz

+
dz

drw dv 
dy dz

y

p
Re

du dv
n„ +

2 du 4 dv 2 dw
n.

+
dw dv 
dy dz (3.44)

z-momentum:

I I ^  dw dw
W-p \  U ----- V V  h w —

\ dx dy dz

f
Q

I

1 dp 
y M ' dz

d Q

Re dx

du dw
+

dv dw 
dz dy

I"+ \W,

+

P

&

2 du 2 dv 4
3 ÔX 3 dy 3 dz

' Re
du dw n.

dv dw 
dz dy

n.

2 du 2 dv 4 dw
3 dx 3 dy 3 dz

n , > d r
( 3 .4 5 )
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internal energy:

F S ' «
1

-

de de de 
u  h V h w —

^
d Q

r  mJ R ePr
dW- de dW, de dW. de L +  L +  L----
dx dx dy dy dz dz

d Q

f'n

1

du dv dw 

etc ^
(/Q

du dv dw 
dx dy dz

+ 2
du

+ 2 + 2

+
 ̂du J v l  f  du ôwV

;
+

de
+ \ - ^ W ^  

R ePr

/

V dz dx
dv dw 
dz dy

d Q

de de
dz

d r (3.46)

Petrov-Galerkin Method 

As discussed earlier, choosing the weighting functions in equations (3.42) through 

(3.46) to be equal to the shape functions (i.e. = A,. ) produces a Galerkin finite element

formulation. Using trilinear hexahedral elements, the density, velocity, temperature and 

pressure approximations for each element are:

nnode

p { ^ d ) =
f=i

m o d e

(3.47)

( 3 .4 8 )
/=!
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nnode

e ( x , / ) =  X  (3.49)
/=!

nnode

p (x > 0 =  Z  (3.50)
/=i

where nnode is the number o f  nodes, and A, denotes the appropriate shape function. 

Derivatives o f  the computational variables for each element are approximated as:

f  (M ) = (3.5.)

(3.52,

f  ( M )  = (3.53,

(3.54)

where O  represents the computational variables p , u, e, and p.

One o f the major difficulties with the Galerkin method is the production o f  spurious

oscillations throughout the computational domain (Almeida and Galeao, 1996). These

spurious oscillations tend to manifest in areas where downwind hard boundary conditions 

exist. A widely used method o f  minimizing these oscillations is by the addition o f some 

perturbation factors, P J(x ), P J(x ), ^ ( x ) ,  and J^'(x) to the Galerkin weighting

functions on the advection terms, causing them to be weighted in the upwind direction 

(Hughes and Brooks, 1979; Hughes, et al., 1982). This results in the Petrov-Galerkin 

method, sometimes called the “upwind Petrov-Galerkin” or “streamline upwind Petrov- 

Galerkin” method.
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The Petrov-Galerkin weighting functions for momentum and energy are, for all nodes 

i = 1 , 2 , . . . ,  nnode'.

= + (3 55)

+ j ^ ( ^  (3 56)

M r:0 [ )  == ( I )  +  JF%(][) ( 3f 57 )

Mr;0[) == vW(:K) h jP'fx) (3.58)

Substituting the perturbation functions derived by Brueckner (1991) into equations

(3.55) through (3.58) yields:

Mr'(x) = A f'(i) + .tr/y 'O c))

W j(x) = A '(x ) + ^ ( u V A ' ( x ) )
2|u|

%(;(][) = AT'(x) +

(3.59)

(3.60)

(3.61)

where

fp:(][) == 77'(x) + “ ^ ^ (u -V A '(x))  
2 u|^ ^

(3.62)

= coth r o 2
(3.63)

<  2 y K

«V = coth
2

(3.64)
V 2 y K

= coth
2

(3.65)
V 2 y fw

= coth r & i 2
(3.66)

<  2 y Ve
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Tu =
pR e|u |/z

P 1 +  -

3|uf

(3.67)

7v
pR e|u |A

(3.68)

pR e|u |/z

P 1 +
w

3 |u f

(3.69)

p P rR e |u |/z

PY
(3.70)

For the trilinear hexahedral element, the characteristic element length, h, is given by:

h = \h,\ + \h \̂ + (3 71)

where

u a
(3.72)

K
u b

(3.73)

fh =
u c

(3.74)

and, as shown in Figure 3-2,

a = a.

a.

( x j  - X j )  +  ( x 3  - X 4 ) - h ( x 6  - X ; )  +  (x.y - X g )

(T 2 -T l)  + (T 3-T 4) + (y 6 -? 5 )  + (T 7 -T s)  
. ( z 2 - 4 )  + (z3-zJ-H(z,-Z;)  + (z7-Z,)

( 3 .7 5 )
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b =

c =

" 6  "

1
y 4

A .

r

1
y 4

( “  3̂ 2 )  +  (> '4  “  )  +  ( 3^7 “  7e  )  +  ( 3̂ 8 -  3̂ 5 )

. (^3 - - ^ 2 )  +  (^4 “ ^ l )  +  (^7 ~ ^ 6 )  +  (^8 “ ^5 )  ,

(X; -% ]) + (%« -%2) + (X 7 -X j + (X g-% J 

( 3 ^ 5 - 3 ' . ) + ( 3 ' 6 - 3 ; 2 ) + ( y 7 - y 3 ) + ( 3 ; g - 3 ; 4 )  

( Z ; - Z , )  +  ( z , - Z 2 )  +  ( z 7 - Z 3 )  +  ( Z g - z J  _

(3.76)

(3.77)

X

6

2

3

Figure 3-2. Definition o f vectors a, b, and c.

In three dimensions, the Petrov-Galerkin form o f the governing equations may now 

be written as follows:
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continuity:

2 6

f N,
ôt

dQ. =

( /n
y
\  y 

+
y V

+ Z
av..

-w,
&  ''

d Q

(3.78)

x-momentum:

i du.
pN -N -  dÇï —

dt

I-  \pK

- p

1

av,.
d Q

' yM"

f ü f e
j R e |  dx

d Q

2
3 '  " z " ' ■w..

+

+

av;

&

z
av,

+ Z
aV/

- U j

.av,
y \  X/ y
\  y AAr \

+ >dQ
(3.79)
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y-momentum:

I dV: .aiv, ,av,
--- H

h ' yM"

f ü f e
j R e |  dx

+ ( Z ^ j '^ j ) I Z

■Pi

a v .
dQ.

,av, \ / ,av,
y V &

+

+

av;

dz

z
av,

+ -
3 Z

av, ,a v ,

-W; +
,av \

6/n
(3.80)

z-momentum:

^ p N .N .
&y\

a
-dQ  = — \ p k [(Z % )  z

,av,
+ ( Z % )  z

.av,
-w.

+
dz~"‘

dQ

yM

,av.
& - P i r/Q

f ü f e
jR e ja x :

,av,
+

,av,

+

+
dz

.av,
a ' ' "

+ -W;

z
av.

z
av,

y

4
+ -

3

/

V ' &
-w. >dQ

(3.81)
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internal energy:

de.
\pN.N.— do. =

dt

f  YP
jR e P r dx V

+ -

y

,av, a%.
’ &

,av, \

y

IQ
f

I
av,

+ I
av.

+
. a ^  

'  &
-W;

( /n

4 Z
.av, r ^ a v ,

dz
-w.

+ 2
r ^ a v .  Y

+ 2 Z
av,  ̂ .av,

+ 2

+
y ,av,

■V
A

+
,av, \

+

z

z
 ̂ av,  ̂ r^^av, ^

y

-w. dQ

(3.82)

Temporal Integration

Equations (3.78) through (3.82) can now be expressed as a system o f ordinary 

differential equations:

( 3 .8 3 )
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[ M ] { f } = {R.1
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(3.84)

(3.85)

(3.86)

(3.87)

Here, the mass matrices L  and M  are:

[L] = (3.88)

[M ] = I (3.89)

and | r  ̂I , {R„ }, {R „} , {R „}, and {R^ } are the right hand side load vectors.

In order to obtain a fully explicit algorithm, mass lumping is used to diagonalize the 

mass matrices. The diagonal terms for the lumped mass matrices for the continuity 

equation. I., and the momentum and energy equations, m., are given by (Brueckner,

1991):

I ' f t

f  ^
\ p A

J  V y='
m, = dQ

(3.90)

(3 .91)
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Because the mass matrix is lumped along the diagonal, inversion is trivial, allowing 

an explicit solution to the system o f equations. In this work, an explicit Euler scheme is 

used in conjunction with a second-order Runge-Kutta approximation to advance the 

discretized equations in time.

0 "  ' = -  At [M " 'r ]

(3.92)

(3.93)

where 0  contains the solution variables:

Pi

M,

T
W.

T,

(3.94)

Finally, at each node, the value o f the pressure is calculated using the equation o f state.

P, = (3.95)

Since this is an explicit algorithm, there is, o f  course, a limitation on the size o f the 

time step. In order to ensure stability, the time step used is simply the CFL stability 

criterion for compressible flow given by (Roache, 1976):

h
At <

u + o
(3.96)

In equation (3.96) h is the characteristic element length given by (3.71), |u| is the 

magnitude o f the velocity, and a is the local speed o f sound. A global value o f At is 

used, meaning that At is calculated for every element in the domain and the smallest 

value is used.
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For steady state problems the equations are advanced in time until each o f the 

dependent variables is converged to an absolute error, s , according to the relation:

I®" -  ®"+'| < g (3.97)

where £ = 10'''.
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CHAPTER 4

MESH ADAPTATION 

Mesh adaptation provides a means o f achieving the fine mesh density required for 

accurately locating shocks without unnecessarily compromising computational speed 

(Pepper and Stephenson, 1995). For any given system o f equations, as the number o f 

elements in the computational domain decreases, the work at each time step will 

decrease, but the overall error will most likely increase (Capon and Jimack, 1995). 

Rather than using a finer mesh throughout the entire solution domain, the mesh can be 

refined in areas with extreme flow feature gradients and left alone or unrefined in areas 

with little or no gradients, thus providing a balance in solution accuracy and 

computational speed.

There are three distinct adaptation schemes currently in use: r-adaptation, p-  

adaptation, and A-adaptation. In r-adaptive methods, the number o f  elements in a mesh 

remains constant, but relocating nodes changes the size and shape o f the elements. This 

method is also known as adaptive remeshing. The advantage o f  this method is that the 

overall number o f  elements remains fixed, thus the number o f  computations per iteration 

is fixed. This method is useful for quickly locating shocks in Euler flows, because nodes 

can be quickly relocated to regions o f high gradients. However, this method does not 

perform well for viscous flows due to the difficulties in resolving the mesh around both 

shocks and boundary layers (Ilinca, et al., 1998). Another disadvantage o f r-adaptive

32
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methods is that odd shaped elements can easily be produced. In finite element methods, 

highly skewed elements are problematic, often causing the solution process to diverge.

In /p-adaptive methods the number o f elements in a mesh remains constant, but the 

degree o f the interpolating polynomial is increased on elements where greater solution 

accuracy is warranted. For example, in two dimensions, an initial mesh may be 

comprised o f four-node quadrilateral elements with a linear interpolating polynomial. 

For p-adaptation to occur, the polynomial must be changed to a quadratic, cubic, etc., 

which requires additional nodes. This method has the advantage o f  high solution 

accuracy. The disadvantage is that ̂ -adaptive methods can be troublesome to implement. 

The development o f  the required data management scheme can be difficult, especially on 

domains with complex geometries (Oden and Demkowicz, 1989).

In A-adaptive methods, the number o f elements in a mesh changes through a series o f 

refinements and recoveries. Refinement can be accomplished in one o f  two ways: block 

embedding or element division. Block embedding (see Figure 4-1) is a scheme where an 

element o f  similar shape is embedded in the original element and nodes between old and 

new are connected in such a way that elements o f similar type are created. The distinct 

advantage o f block embedding over element division is that block embedding creates no 

constrained or “virtual” nodes, which can become computationally expensive. This 

method o f refinement works well if  elements are to be refined one level. Beyond one 

level, it is very likely that highly skewed and odd-shaped elements will be created.

Element division creates new elements by dividing the original parent element 

through midpoints on all sides (see Figure 4-2). This method creates new child elements 

that are essentially the same shape as the original parent element. Therefore, if  the parent
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elements comprising the original mesh are well shaped, then all subsequent child 

elements will be well shaped. Even though element division creates virtual nodes, it is 

well suited for multiple levels o f division. For these reasons, element division is the 

refinement scheme used in this study.

Figure 4-1. Refinement using block embedding

Figure 4-2. Refinement using element division

Overall, the h-adaptive method has the advantage o f  increased solution accuracy. 

However, this increase in accuracy is achieved at the expense o f computational speed. 

As the number o f  elements increases, the number o f  computations per iteration also 

increases. There has been much interest in /^-adaptive and /zp-adaptive schemes lately.
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and it has been demonstrated that, in many cases, they perform as well or better than h- 

adaptive methods (Zienkiewicz and Taylor, 2000). However, for the purposes o f this 

study, the A-adaptation process is employed, since it is less complex to program.

Adaptation Rules

The A-adaptation process is governed by some general rules (Heinrich and Pepper, 

1999), which can be summarized as follows:

Refinement rules:

1. Refinement o f  a quadrilateral element results in the creation o f 4 child elements 

and in the creation o f up to five new nodes. Refinement o f  a hexahedral element 

results in the creation o f 8 child elements and in the creation o f  up to nineteen 

new nodes.

2. An element may be refined only when adjacent elements are at the same 

refinement level or higher.

3. Duplicate nodes must not be created.

4. An embedded node that is created along a domain boundary is not a virtual node. 

Recovery rules:

1. To be unrefined, a group o f elements must not contain another group o f elements, 

and each element o f the group to be unrefined must not be a neighbor to an 

element with a higher level.

2. I f  a group o f  elements is unrefined, then the embedded virtual node along the 

edge common to an element that is not a member o f  the group will be eliminated.
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3. I f  a group o f elements is unrefined, then the node along the edge common to this 

group and its neighbor group will become a virtual node.

4. I f  a group o f  elements is unrefined, all embedded nodes along a domain boundary 

will be eliminated.

The first refinement rule is the most basic principle o f the A-adaptive process, and is 

illustrated in Figure 4-3. It states that the refinement o f a bilinear quadrilateral element 

results in the creation o f 4 child elements and in the creation o f  up to five new nodes. It 

also states that the refinement o f  a trilinear hexahedral element results in the creation o f 8 

child elements and in the creation o f up to nineteen new nodes.

Figure 4-3. Refined and unrefined elements in two and three dimensions.

The second refinement rule states that an element may be refined only when adjacent 

elements are at same level or one level higher. The purpose o f  this rule is to limit the 

number o f  virtual nodes in the computational domain. As more elements throughout the 

computational domain are adapted, more virtual nodes are created. The values o f the 

solution variables at the virtual nodes must be calculated separately and can quickly 

become computationally expensive.
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Consider the two-dimensional case o f two adjacent elements where only one 

undergoes the adaptation process (see Figure 4-4). The bilinear parent element that has 

been adapted has yielded the four bilinear child elements A, B, C, and D. Each child 

element has four nodes, one at each comer. The adjacent unadapted, bilinear element E  

still has one node at each o f  its four comers, but now also has a new virtual node formed 

by the children o f  the adjacent parent element. I f  elements B  and D  were adapted again, 

and the element E  remained unchanged, the number o f  virtual nodes in the unadapted 

element would climb to three (see Figure 4-5). In this scenario, in order to comply with 

the second refinement rule, element E  would have to be adapted, creating four new 

elements (see Figure 4-6), with elements F  and H  each having only one virtual node.

Figure 4-4. Unrefined element E  has one virtual node (node 5).

A

c

4
6

4 5

7 
1

Figure 4-5. Unrefined element E  has three virtual nodes (nodes 5, 6, and 7).
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Figure 4-6. Element E  is adapted to prevent excess virtual nodes.

Extending this concept to three dimensions, the importance o f  this rule becomes even 

more evident. Consider two adjacent, three-dimensional, trilinear, hexahedral elements 

where one undergoes adaptation (see Figure 4-7). Eight new trilinear child elements are 

created, and the unrefined element A gains five virtual nodes on the face bordering the 

new children B, C, D, and E. I f  elements B, C, D, and E  were refined again, and element 

A were left unchanged, the number o f virtual nodes on the bordering face o f element A 

would jum p to 21.

Figure 4-7. Location o f the five virtual nodes on the bordering face.
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Also, when working in three dimensions, the elements adjacent to the adjacent 

elements must be considered, due to the fact that they also can create virtual nodes. In 

other words, if  any o f the elements adjacent to elements B, C, D, or E  in Figure 4-7 were 

adapted to a higher level than elements B, C, D, or E  then additional virtual nodes would 

be introduced to element A  (see Figure 4-8), thus violating the second refinement rule.

Figure 4-8. Element now has six virtual nodes.

Refinement rule three states that duplicate nodes must not be created. This rule has 

critical importance due to the fact that two distinct nodes occupying the same spatial 

coordinates can cause the solution process to diverge. Therefore, to eliminate the 

possibility o f creating duplicate nodes, existing nodes in adjacent child elements must be 

utilized when adapting an element. For example, if  the element E  in Figure 4-4 were 

adapted, node 3 o f  elem ent D  or node 2 o f  the element B  would have to be incorporated 

into the connectivity o f the new child elements. As a consequence o f  this action, the
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virtual node (node 5) o f element E  is eliminated. As can be seen in figure 4-6, the 

previous virtual node is now replaced by a real node that can be described as node 1 o f 

element F  or node 4 o f  element H.

As before, the incorporation o f a third dimension brings more difficulty to the 

situation. In three dimensions the elements adjacent to the adjacent elements, as well as 

the adjacent elements themselves must be examined for existing nodes, so as not to create 

any duplicates. As seen in figure 4-7, if  element A were to be adapted, the five nodes 

from elements B,  C, D,  and E  corresponding to the five virtual nodes o f element A must 

be incorporated into the structure o f the new child elements to be created. I f  the element 

to be adapted has no elements at a higher level adjacent to any o f  its faces, then the 

elements adjacent to the adjacent elements must be examined. This is due to the fact that 

these elements share a common edge with the parent element being adapted, on which 

sits a single node which m ust be utilized (see figure 4-9)

Figure 4-9. Elements adjacent to the adjacent o f element A 
contributes virtual node to element A.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



41

Refinement rule four states that an embedded node that is created along a domain 

boundary is not a virtual node. Such nodes are given the same boundary conditions 

applied to the nodes on either side o f it.

The recovery rules are simply the opposite o f  the refinement rules and subject to all 

the conditions described above for the refinement rules.

Adaptation Process

The /i-adaptive process can be generally described in a few simple steps. First, at a 

specified time in the calculation, the iterative solution process is stopped and flow feature 

gradients are calculated across every element in the solution domain. This process is 

flexible in that any flow feature, such as velocity, density, temperature, pressure, etc., or a 

combination o f  flow features can be used as a trigger for mesh adaptation. In the case o f 

compressible flows, the density gradient is a suitable criterion for element refinement 

(Burton and Pepper, 1993).

Second, a certain number o f  elements are tagged for adaptation. For each element the 

density gradient is calculated using the relation:

4  = m a x .. |/ ) ,- / ) J  (4.1)

N ext the mean is calculated,

  1 nelem

4  = (4.2)

as well as the standard deviation.

nelem .  —  .

/=!
I n .

(4.3)
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Finally, a normal distribution o f  the gradient is determined by subtracting the mean and 

dividing by the standard deviation (Taylor and Karlin, 1994).

a :
a

(4 4)

Elements where A f  > a  are tagged for refinement. The value o f a  is flexible, but

experience shows that values o f  OJ < a  < 0.8 work well.

Third, tagged elements are refined according to the refinement rules cited above. The

values o f the computational variables are interpolated onto the new nodes from the nodes 

o f the parent element using a piecewise linear polynomial.

Fourth, holes are eliminated (see Figure 4-10). “Holes” are elements that are nearly 

or entirely surrounded by elements that have been adapted to a higher level. Holes have 

many virtual nodes, and are undesirable due to the computational expense associated with 

virtual nodes. The process o f eliminating holes can very often create new holes.

Therefore, this step is repeated until no new holes are found.

Figure 4-10. Shaded element is a hole.

Fifth, a certain number o f elements are tagged for recovery. Recovery simply means 

that a parent element is recovered by eliminating its children. As in the refinement 

process, for each element the density gradient is calculated using equation (4.1), and this
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quantity is then normalized by subtracting the mean and dividing by the standard 

deviation as in equation (4.4). Elements where A^" < p  are tagged for recovery. 

Experience shows that values o f 0 2 <  p  < 0.3 work well.

Sixth, tagged elements are recovered. Recovery occurs by simply reversing the 

process o f refinement. As the child elements are removed, any nodes unique to the 

children as well as any corresponding virtual nodes are deleted.

Finally, the process is repeated at set intervals. For a rapidly changing solution, a 

higher interval is desired than if  the solution is nearing convergence.
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CHAPTER 5 

VALIDATION

Results from several test cases will now be presented. All computations were 

performed on a personal computer with an Intel Pentium 4 processor with 1GB o f RAM.

Three Dimensional Euler Flow Over 15° Compression Com er 

Flow over a ramp, wedge or compression com er is a widely used test case for 

compressible flow models (Zienkiewicz and Taylor (b), 2000; Bm eckner, 1991). In the 

Euler limit, the precise location o f shocks can rapidly be obtained.

free surface

outflow

inflow

wall

Figure 5-1. Boundary conditions for compressible flow over three-dimensional 
15° compression comer.
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The geometry and general boundary conditions are shown in Figure 5-1. The nodes 

at the inflow boundary are set according to the following dirichelet conditions:

m 00

P in  -  Po)

Since no dirichelet conditions are specified on either the free surface boundary or the 

outflow boundary, the finite element method described earlier defaults to a zero-flux

boundary. As is common practice in Euler solutions, the wall is treated as a slip surface.

In other words, only the velocity components tangential to the wall are applied.

The following fluid properties for air are used:

Pr = 0.72 

y = 1.4

Re = 10"

Two cases are presented on the same geometry for free stream M ach numbers o f three 

and five. For each case, solutions are presented with and without the use o f h-adaptation. 

Based on the known two-dimensional oblique shock relations (Anderson, 1990), M ach 3 

flow encountering a 15° wedge should produce a shock wave angled 32.3° up from the 

horizontal. The expected ratios for density, pressure and temperature are:

= 1 0 3  (5T)
A

== 2.82 (5.2)
Px
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= 1.39 (5.3)
Tx

Mach 5 flow encountering a 15° wedge should produce a shock wave angled 24.3° 

up from the horizontal. The expected ratios for density, pressure and temperature are:

== :Z/75 (5.4)
A

== 4.8() (5.5)
A

^  = 1.74 (5.6)
Tx

Note that in the equations above, subscript 1 indicates values in upstream o f the shock, 

and subscript 2 indicates values downstream o f the shock.

Compression Com er Results without Adaptation for = 3

The best way to get a converged solution o f  a steady state problem using mesh 

adaptation is first to get a nearly converged solution on a coarse mesh. The mesh must be 

fine enough to allow flow features to develop, yet coarse enough to reach convergence

quickly. The coarse mesh used for this case is presented in Figure 5-2. This mesh

consists o f  5408 elements with 6468 nodes.

Density, pressure and temperature contours along the central z-plane are presented in 

Figures 5-3 through 5-5. The shock wave is diffused over several element widths and is

observed at a 33° angle. Irregularities on the outer edges o f the shock wave indicate that

the elements are too large to adequately capture the high density, pressure and 

temperature gradients.
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Figure 5-2. Coarse mesh for three-dimensional 15° compression comer.

Level D 
15 2.184

2.030
1.877
1.723
1.569
1.416
1.262
1.109

0.2 —

Figure 5-3. Density contours a t z -  0.5 for three-dimensional compression 
com er at -  3 without adaptation.
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Level P 
15 0.2440.8 -
13 0.222
11 0.200

0.178
0.156
0.134
0.112
0.089

Figure 5-4. Pressure contours at z = 0.5 for three-dimensional compression 
com er at = 3 without adaptation.

1

0.8  —  

0.6 -  

0.4

Level T
15 1.394
13 1.341
11 1.288
9 1.235
7 1.182
5 1.129
3 1.076
1 1.023

Figure 5-5. Temperature contours at z = 0.5 for three-dimensional compression 
com er at = 3 without adaptation.
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Compression Corner Results with Two Levels o f  Adaptation for = 3

Once a nearly-converged solution is achieved on the coarse mesh, the h-adaptive 

algorithm is engaged. As described in Chapter four, as the solution progresses, elements 

undergo several refinements and recoveries. Once the location o f the various flow 

features is sufficiently resolved, many elements are recovered and no further divisions are 

made. A t this point, the mesh is said to be “converged.” For this particular case, the 

converged mesh with two levels o f adaptation is shown in Figure 5-6. It shows 57,096 

elements and 59,086 nodes.

Density, pressure and temperature contours along the central z-plane are presented in 

Figures 5-7 through 5-9. While the shock wave is still diffused over several element 

widths, its exact location is more evident, and is observed at a 32.5° angle. Irregularities 

on the outer edges o f the shock wave are minimized on the finer elements in the adapted 

region.
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Figure 5-6. Convergeaat = 3 wi± two

d  m esh for three-dim ensional 15" com pr
two le v e ls  of ̂ -adaptation.

gsstou cornet
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1

0.8  -  

0.6 —  

0.4 ^  

0.2 —

Level P
15 0.250
13 0.227
11 0.204
9 0.181
7 0.159
5 0.136
3 0.113
1 0.091

1 r
0.5

Figure 5-8. Pressure contours at z -  0.5 for three-dimensional compression 
com er at -  3 with two levels o f  /z-adaptation.

1

0.8 —  

0.6

0.4 H  

0.2

Level T
15 1.407
13 1.353
11 1.299
9 1.244
7 1.190
5 1.135
3 1.061
1 1.026

0.5
1— r

Figure 5-9. Temperature contours at z = 0.5 for three-dimensional compression 
com er at = 3 with two levels o f  /z-adaptation.
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Compression Corner Results without Adaptation for = 5

As in the previous case without adaptation the mesh used here is the same one 

depicted in Figure 5-2. Density, pressure and temperature contours along the central z- 

plane are presented in Figures 5-10 through 5-12.

The shock wave is diffused over several element widths and is observed at a 24° 

angle. Since the space behind the shock is smaller than the M ach 3 case, it is even more 

difficult to adequately capture the high density, pressure and temperature gradients on the 

coarse mesh, resulting in even greater irregularities.

Level D 
15 3.5430.8  -
13 3.195
11 2.847

2.500
2.152
1.804
1.456
1.109

0.6  —

Figure 5-10. Density contours at z = 0.5 for three-dimensional compression 
com er at = 5 without adaptation.
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0.8  -

0.6 -

0.4 -

0.2 -

Level P
15 0.182
13 0.161
11 0.141
9 0.120
7 0.099
5 0.078
3 0.057
1 0.036

Figure 5-11. Pressure contours at z = 0.5 for three-dimensional compression 
corner at = 5 without adaptation.

Level T
15 1.762
13 1.657
11 1.551
9 1.446
7 1.340
5 1.235
3 1.129
1 1.024

Figure 5-12. Temperature contours at z = 0.5 for three-dimensional compression 
corner at = 5 without adaptation.
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Compression Corner Results with Two Levels o f  Adaptation for = 5

For this particular case, the converged mesh with two levels o f  adaptation is shown in 

Figure 5-13. It shows 41,704 elements and 44,166 nodes. Density, pressure and 

temperature contours along the central z-plane are presented in Figures 5-14 through 5- 

16. While the shock wave is still diffused over several element widths, its exact location 

is more evident, and is observed at a 24° angle. Irregularities around the shock are 

reduced.

0.8

0,6

0.4

0.2

0.250.5
0.5

0.75

2.5

Figure 5-13. Converged mesh for three-dimensional 15° compression comer 
at M  = 5 with two levels o f A-adaptation.
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0.8 —

0 6

0.4 -

0.2

Level D
15 2.838
13 2.590
11 2.341
9 2.093
7 1.845
5 1.597
3 1.348
1 1.100

Figure 5-14. Density contours a tz  = 0.5 for three-dimensional compression 
corner at = 5 with two levels o f  A-adaptation.

1

0.8  -  

0.6

0.4 -

Level P
15 0.185
13 0.163
11 0.141
9 0.119
7 0.098
5 0,076
3 0.054
1 0.032

0.5

Figure 5-15. Pressure contours at z = 0.5 for three-dimensional compression 
com er at = 5 with two levels o f A-adaptation.
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1

0.8 

0.6 

0.4 —

J
0

Level T
15 1,774
13 1.659
11 1.544
9 1,429
7 1.314
5 1.199
3 1.084
1 0.969

0.5

Figure 5-16. Temperature contours a tz  = 0.5 for three-dimensional compression 
com er at = 5 with two levels o f A-adaptation.

Comparison o f Euler Solutions with Theoretical Data 

Since the geom etry o f  the above test cases is constant along the z-axis, it is not 

unreasonable to relate central z-plane data to two dimensional theoretical solutions. The 

data presented above can be compared with the two-dimensional oblique shock relations 

for a calorically perfect gas (Anderson, 1990). Comparisons o f  computed and theoretical 

density ratios for all cases are presented in Table 5-1. Comparisons o f  computed and 

theoretical pressure ratios are presented in Table 5-2. Comparisons o f computed and 

theoretical temperature ratios are presented in Table 5-3. The error in all cases without 

adaptation ranges from approximately 1% to 16%. The error in all eases with adaptation 

ranges from approximately 1% to 2%, which indicates that the Euler model with h- 

adaptation performs very well.
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Table 5-1. Comparison o f  density ratio.

57

Adaptation —  computed 
A

—  theoretical 
A

% error

3 None 2.04 2.03 0.49

3 2 levels 2.05 2.03 0.99

5 None 3.20 2.75 16.4

5 2 levels 2.80 2.75 1.82

Table 5-2. Comparison o f  pressure ratio.

Adaptation —  computed 
A

—  theoretical 
Pi

% error

3 None 2.73 2.82 3.19

3 2 levels 2.76 2.82 2.14

5 None 5.01 4.80 4.38

5 2 levels 4.71 4.80 1.88

Table 5-3. Comparison o f  temperature ratio.

Adaptation
T

computed
T
—  theoretical
T,

% error

3 None 1.36 1.39 2.16

3 2 levels 1.37 1.39 1.44

5 None 1.72 1.74 1.15

5 2 levels 1.77 1.74 1.72
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Three Dimensional Viscous Flow Over a Flat Plate

Carter was the first to calculate a numerical solution to the two-dimensional flow over 

an isothermal flat plate (Carter, 1972). Since then many people have used Carter’s 

solution as a benchm ark for both two-dimensional and three-dimensional code validation 

(Brueekner and Pepper, 1995; Devloo et al., 1988).

free surface

Y

inflow

X

flat plate

outflow

Figure 5-17. Boundary conditions for three-dimensional viscous compressible 
flow over a flat plate.

The geometry and general boundary conditions are shown in Figure 5-17. The 

leading edge o f  the flat plate is located at x = 0.1 and the outflow boundary is located at 

X = 1.1. The domain extends 1 unit in the z-direction and 0.75 units in the y-direction. 

The nodes at the inflow boundary are set according to the following dirichelet conditions:

A. = C/. 

v..„ = = 0m in

Pm
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7 ; , = 7 ; =  205 K

M,, = = 3.0

Inflow dirichelet conditions are also imposed on the free surface boundary. However, 

this only works if  the free surface boundary is placed far enough away, so that the

leading-edge shock does not intersect it. On the surface o f  the flat plate:

^w all -  K a l i  -  ^ w a ll ~  ^

T  - T
^  w all ~  s

where is the dimensionless stagnation temperature (Brueekner and Pepper, 1995):

T. = 1 +  [ ( y - l ) / 2 ] M l  (5.7)

In order to simulate an infinitely long flat plate, the velocity values at the outflow

boundary nodes are set equal to the values o f the interior adjacent nodes.

The following fluid properties for air are used:

Pr = 0.72 

y  = 1.4

Re = 10'

The mesh used for this case is presented in Figure 5-18. This mesh consists o f 28,080 

elements with 32,400 nodes and is biased toward the flat plate in order to accurately 

capture the boundary layer. Density, pressure, temperature, and mach contours along the 

central z-plane are presented in Figures 5-19 through 5-22. The velocity profile along the 

central z-plane is presented in Figure 5-23.

When the flow encounters the flat plate, both a shock wave and a boundary layer are 

spawned at the leading edge. Based on work by Carter, the boundary layer should evolve

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



60

such that the boundary layer edge is located between y  -  0.20 and y  = 0.25 at the outlet. 

Likewise, the leading-edge shock should be located between y  = 0.42 and y  = 0.57 at 

the outlet. The calculated contours o f density, pressure, and temperature are in agreement 

with those obtained by Brueekner and Pepper (1995) and Devloo, et al. (1988).

Figure 5-20 does show some oscillation in pressure values near the flat plate, which is 

more prominent at the leading edge and weakens downstream. It appears to be caused by 

insufficient resolution o f the extremely high pressure gradients that occur at the leading 

edge o f the plate. Carter experienced the same oscillations in wall pressure in his study 

when using the continuity equation to solve for the density at the flat plate. He noted that 

with finer grids the oscillations are smaller and dampen out further upstream. Carter also 

noted that a quadratic extrapolation o f the density in the in the y-direction at the flat plate 

significantly reduced the oscillations.
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0 , 7 5 -

0 . 5 -

0 . 2 5 -

0 0.1 0 .2  0 .3  0 .4  0.5 0 .6  0 .7  0 .8  0 .9  1 1.1

Figure 5-18. Three-dimensional mesh for viscous compressible flow over a flat plate.
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Level D
15 2.060
13 1.845
11 1.630
9 1.415
7 1,200
5 0.985
3 0,770
1 0.555

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

X

Figure 5-19. Density contours a tz  = 0.5 for three-dimensional viscous compressible 
flow over a flat plate.
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Level P
15 5.752 -
13 5.118
11 4.485
9 3.851
7 3.218
5 2.584
3 1.950
1 1.317

Figure 5-20. Pressure contours a tz  = 0.5 for three-dimensional viscous compressible 
flow over a flat plate.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



64

Level T
15 2.674
13 2,421
11 2.169
9 1.917
7 1.664
5 1.412
3 1.160
1 0.907

I I I I I I I I I I I V Tn"|TTTTJTT'T I [ I I I I' j I l"l T | H
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Figure 5-21. Temperature contours at z = 0.5 for three-dimensional viscous 
compressible flow over a flat plate.
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Level M
15 3.049 -
13 2.643
11 2.236
9 1.830
7 1.423
5 1.016
3 0.610
1 0.203

11 I I 11 I I I 111 r r r\r  
0.2 0.3 0.4 0.5 0.6

'i" jT" r rT | - n  i i | r i i' i | 'i' r r r  

0.7 0.8 0.9 1 1.1

Figure 5-22. M ach contours at z = 0.5 for three-dimensional viscous compressible 
flow over a flat plate.
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0.8 -

0.7 -

0.6 —

0.5 -  

> -  0.4

0.3 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Figure 5-23. Velocity profile at z = 0.5 for three-dimensional viscous compressible 
flow over a flat plate.
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Figures 5-24 through 5-27 show profiles o f various flow properties at the outflow 

boundary calculated by the current finite element model along the central z-plane, along 

with a couple o f  two-demensional finite difference cases performed by Carter. Carter 

solved this problem using several different grids. The fine grid results shown were 

obtained by Carter using a grid spacing o f 0.015 fixed in the y-direction and varying from 

0.015 to 0.020 in the x-direction. The coarse grid results shown were obtained by Carter 

using a grid spacing o f  0.05 fixed in both the x-direction and y-direction. The three- 

dimensional results obtained in this study were performed on a mesh with a 0.0135 fixed 

element length in the x-direction, a fixed element length o f 0.10 in the z-direction and a 

variable element length in the y-direction biased toward the y  = 0 plane, with a range of 

0.01 to 0.05.

Looking at Figure 5-24, it is evident that the edge o f  the boundary layer is located at 

y  = 0.25 . W ithin the boundary layer, the plotted results at the outlet calculated from the 

current model agree more with the fine-grid results o f  Carter. This is to be expected, 

since it is in this region where the y-spacing o f the three-dimensional mesh is more 

closely matched with the fine grid used by Carter.

Looking at Figures 5-25 and 5-26, Carter locates the leading-edge shock at y  = 0.57 

on the fine-grid, and at y  = 0.42 on the coarse-grid. The results obtained by the current 

three-dimensional model locate the leading-edge shock at y  = 0.44, indicating better 

agreement with Carter’s coarse-grid solution. This is not surprising, since it is in this 

region where the y-spacing o f the three-dimensional mesh is more closely matched with 

the coarse grid used by Carter.
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Figure 5-24. Comparison o f u values at the outflow boundary between the results 
o f  Carter and current finite element results at z = 0.5.
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Carter fine grid 
Carter coarse grid0.7
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0.050 0.1 0.15 0.2

Figure 5-25. Comparison o f v values at the outflow boundary between the results 
o f  Carter and current finite element results at z = 0.5.
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Current Study 
Carter fine grid 
Carter coarse grid0.7
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o O0.5 —
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Figure 5-26. Comparison o f density values at the outflow boundary between the results 
o f  Carter and current finite element results at z = 0.5.
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Figure 5-27. Comparison o f temperature values at the outflow boundary between the 
results o f  Carter and current finite element results at z = 0.5.
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CHAPTER 6

APPLICATION TO LIGHT GAS GUN DESIGN 

The first light gas gun was developed due to the need to achieve higher projectile 

velocities. It was determined that higher muzzle velocities could be achieved if  the 

column o f conventional powder gas driving the projectile was replaced with a light­

weight gas such as hydrogen (Crozier and Hume, 1957). Since then, single-stage, two- 

stage, and three-stage light gas guns have been used for hypervelocity impact studies 

(Schonberg and Cooper, 1994) and equation o f  state experiments (Nellis, et ah, 1991). 

When impacted by a high-velocity projectile, strong shock waves are generated in a 

target specimen. Equation o f  state data for the target material can then be obtained using 

a method based on the Rankine-Hugoniot equations (Mitchell and Nellis, 1981).

The Joint Actinide Shock Physics Experimental Research (JASPER) facility utilizes a 

two-stage light gas gun to conduct equation o f state experiments (Braddy, et ah, 2001). 

Figure 6-1 illustrates the major components o f the JASPER light gas gun. The pump tube 

is 11.5 meters long with a bore diameter o f 89 mm and a piston mass o f 4.5 kg. The 

launch tube is 8.1 meters long with a bore diameter o f 28 mm. Hydrogen is used to 

propel projectiles with a mass range o f 16.5 g to 26.5 g to a velocity o f  7.4 km/s. The 

projectiles are cylindrical in shape, with a diameter o f  approximately 28 mm and a length 

o f 25.4 mm.
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A

Pump Tube Launch Tube

A Breech 
B Piston 
C Hydrogen Gas 
D Projectile 
E Free Flight Zone 
F Primary Target Chamber 
G Secondary Containment Chamber

Figure 6-1. Diagram o f JASPER light gas gun.

An explosive charge is loaded into the breech behind the piston. The remaining 

section o f the pump tube in front o f the piston is filled with hydrogen gas. W hen a shot is 

fired, the explosive charge is detonated, sending the piston down the pump tube, 

compressing the hydrogen. W hen the hydrogen reaches a pressure o f  approximately 400 

bar (Mespoulet, 2001), a petal valve separating the pump tube and launch tube ruptures, 

allowing the compressed hydrogen to propel the projectile down the launch tube toward 

the target.

Due to the hazardous nature o f  the experiments, the target is placed within the 

primary target chamber. The primary target chamber is equipped with an explosively 

driven ultra fast closure valve to contain any debris resulting from the projectile 

impacting with the target. The primary target chamber is placed inside the secondary 

containment chamber, which is designed to contain hydrogen deflagration and provide
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containment should the primary target chamber fail. Before the shot, a vacuum is pulled 

on the secondary containment chamber and launch tube.

From the muzzle exit to the entrance o f the primary target chamber the projectile 

encounters a free flight zone approximately 1 meter in length. W hat the projectile does in 

this free flight zone is o f particular interest in this study. Ideally, the projectile should 

impact the target with no tilt in the axial direction, ensuring that the shock propagates 

through the target as uniformly as possible. This work is focused on determining what 

effects, if  any, launch tube exit geometry changes have on attitude o f  the projectile in 

flight.

At the muzzle exit, a muzzle protector is attached to guard against debris. Depending 

on the configuration o f the muzzle protector, the geometry o f  the muzzle may be altered. 

Two different configurations o f this muzzle protector are under consideration (see Figure 

6-2). The first case is standard muzzle geometry where the wall o f the bore and the outer 

surface o f the launch tube form a 90 degree angle. The second case includes a 26.6 

degree bevel transition from the wall o f the bore to the outer surface o f  the launch tube. 

For both cases, solutions are calculated for several positions downstream o f the launch 

tube exit.
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CA SE 1 C A SE 2

Figure 6-2. Cross-section o f muzzle exit showing attached protectors.

Boundary Conditions

The computational domains for both cases are illustrated in Figure 6-3. The exit 

plane o f the muzzle is defined as x = 0 . The nodes at the inlet boundary are set 

according to the following dirichelet conditions:

= 0 

=  0

=  2 . 8 ,

On the surfaces o f  the projectile and muzzle

The temperature ate the wall, is set equal to the nondimensional stagnation

temperature given by equation (5.7).
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muzzle!

inlet

projectile

CASE 1. 90 degree angle at end o f  muzzle.

X

muzzl

in le t *"

projectile

CASE 2. 26.6 degree angle at end o f  muzzle.

Figure 6-3. Axisymmetric representation o f launch tube exit geometries.

It should be noted that all simulations were conducted in a quasi-steady state, 

meaning that at each location the projectile is held fixed while the flow field is calculated. 

In other words, when performing a simulation for a particular location o f  the projectile, 

results for prior locations are not taken into account. Hence, the current study is focused 

on indicating if  changes in projectile attitude might occur, and not with quantifying the 

actual changes in projectile attitude.
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Two-Dimensional Axisymmetric Results 

The initial coarse mesh used for all cases is comprised o f  elements that are 1 mm 

square, or close to 1 mm square, depending on geometry. All calculations were 

conducted on the coarse mesh with 2 levels o f /z-adaptation (see Figures 6-4 and 6-5).

Pressure contours around the projectile located at x = 4, 16, 32, 48, and 64 mm are 

presented for both cases in Figures 6-6 through 6-15. The difference between the two 

cases is more evident closer to the launch tube. W hen comparing the two cases further 

away from the muzzle, there is little difference in the pressure contours behind the 

projectile. It would appear that the effects o f the fluid expansion out o f  the muzzle are 

most prominent within approximately 35 mm o f exit.

When comparing the pressure contours at each location from case to case, it is 

evident that the flow fields are different. However, there is no information indicating that 

one flow field would have more influence than the other with regard to the attitude o f the 

projectile. Based on these two-dimensional results, a series o f  three-dimensional 

simulations were performed for both cases at projectile locations less than 35 mm.
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Figure 6-4. Example o f  axisymmetric case 1 mesh with two levels o f  A-adaptation.
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Figure 6-5. Example o f  axisymmetric case 2 mesh with two levels o f  /z-adaptation.
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Figure 6-6. Pressure contours around projectile for ease 1 at x = 4 mm.
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Figure 6-7. Pressure contours around projectile for case 2 at jc = 4 mm.
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Figure 6-8. Pressure contours around projectile for case 1 at x = 16 mm.
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Figure 6-9. Pressure contours around projectile for case 2 at x = 16 mm.
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Figure 6-10. Pressure contours around projectile for case 1 at x = 32 mm.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



85

^  30 -

20  -

Level P
15 1.000
13 0.864
11 0.729
9 0.593
7 0.457
5 0.321
3 0.186
1 0.050

30 40

X (mm)
50

r  I I I I I I

60 70

Figure 6-11. Pressure contours around projectile for case 2 at % = 32 mm.
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Figure 6-12. Pressure contours around projectile for case 1 at x = 48 mm.
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Figure 6-13. Pressure contours around projectile for case 2 at x = 48 mm.
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Figure 6-14. Pressure contours around projectile for case 1 at x = 64 mm.
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Figure 6-15. Pressure contours around projectile for case 2 at x = 64 mm.
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Three Dimensional Results

An example o f  an initial coarse mesh used is shown in figure 6-16. The coarse mesh 

consists o f  21,472 nodes and 18,858 elements. After adapting the mesh to two levels the 

resulting mesh contains 126,767 nodes and 127,570 elements (see Figure 6-17). 

Solutions for the projectile located at % = 8, 16, 24, and 32 for both cases are presented in 

Figures 6-18 through 6-25. These figures indicate the pressure contours at slices in the x- 

plane coincident with the rear face o f the projectile.

For both cases the flow field is irregular close to muzzle exit. As indicated on the 

slices located at 8 mm, there is clearly an asymmetric pressure distribution on the rear 

face o f the projectile (see Figures 6-18 & 6-19). It is possible that this asymmetric 

pressure distribution could cause a change in attitude o f  the projectile. W hen comparing 

Figures 6-18 and 6-19, it is interesting to note that case 2 shows more irregularity than 

case 1, indicating that the configuration o f  case 2 would actually cause more tilt in the 

projectile.

Further downstream, at 16 mm, 24 mm, and 32 mm (see Figures 6-20 through 6-25), 

the pressure contours are symmetric, which would indicate no changes in attitude would 

be spawned from those locations.
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Figure 6-16. Example o f initial coarse three-dimensional mesh with 21,472 nodes 
and 18,858 elements (all dimensions in mm).
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Figure 6-17. Example o f mesh refined 2 levels with 126,767 nodes and 127,570 
elements (all dimensions in mm).
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Figure 6-18. Pressure contours for case 1 on rear face o f projectile a tx  = 8 mm.
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Figure 6-19. Pressure eontours for ease 2 on rear face o f projectile at x = 8 mm.
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Figure 6-20. Pressure eontours for ease 1 on rear face o f projectile a tx  = 16 mm.
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Figure 6-21. Pressure eontours for ease 2 on rear faee o f projectile a tx  -  16 mm.
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Figure 6-22. Pressure contours for ease 1 on rear face o f projectile at x = 24 mm.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



98

Level P
15 1.000
13 0.864
11 0.729
9 0.593
7 0.457
5 0.321
3 0.186
1 0.050

I ' l ""T- T ' I  ' [■ I I I I I I I I I I I I I I

30 35 4015 20 25
z (mm)

Figure 6-23. Pressure contours for case 2 on rear face o f projectile at x = 24 mm.
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Figure 6-24. Pressure contours for case 1 on rear face o f projectile at % -  32 mm.
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Figure 6-25. Pressure contours for case 2 on rear face o f projectile a tx  -  32 mm.
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CHAPTER 7 

CONCLUSIONS

A compressible flow solver for viscous and inviscid flows has been developed. The 

finite element method employed incorporates the use o f  trilinear, hexahedral, 

isoparametric elements, as well as the use o f Petrov-Galerkin weighting applied to the 

advection terms. An A-adaptive mesh refinement scheme based on elemental flow 

feature gradients was also developed and implemented.

Numerical solutions o f several benchmark problems were presented, illustrating this 

m odel’s ability to accurately capture shock waves and resolve viscous boundary layers. 

The benchmark results also illustrated the ability o f  the A-adaptive mesh refinement 

algorithm to increase solution accuracy.

The algorithm developed here was also used to investigate the flow field around a 

projectile as it exits the muzzle o f the JASPER light-gas gun. Specifically the model was 

applied to investigate if  a change in muzzle geometry would cause the projectile to tilt in 

the axial direction during free flight. A comparison between two launch tube exit 

geometries was made. The first case was standard muzzle geometry, where the wall o f 

the bore and the outer surface o f the launch tube form a 90 degree angle. The seeond 

case included a 26.6 degree bevel transition from the wall o f the bore to the outer surface 

o f the launch tube.
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Results showed that for both cases the flow field is irregular close to the muzzle exit 

and more uniform further downstream. This would indicate that any tilting in the 

projectile would be spawned closer to the muzzle. O f particular interest was the fact that 

close to the muzzle, case 2 showed more irregularity than case 1. This would suggest that 

the configuration o f  case 2 might actually cause more tilt in the projectile, and that the 

case 2 configuration is not an improvement over case 1.

Based on the current study, several recommendations can be made for future research. 

First, greater computational speed and resources would certainly allow much larger 

problems to be examined. Therefore, a logical next step would be to parallelize the 

compressible flow solver as well as the A-adaptive algorithm.

Another logical progression would be to implement this compressible flow solver 

with an /zp-adaptation scheme, since /zp-adaptive methods are known to have better 

convergence rates than /z-adaptive methods (Oden and Demkowicz, 1989). Much study 

has been devoted to applying /zp-adaptive schemes to a wide variety o f fluid flow 

problems. iTp-adaptive techniques have been used with elliptic boundary value problems 

for many years (Suli and Houston, 2003). While the application to hyperbolic problems 

is less common, some work has been done at the two dimensional level, such as that by 

Devloo, et al. (1988). The use o f three dimensional /zp-adaptation is even rarer today, 

although some studies are underway (Demkowicz, et al., 2002). Applying an hp- 

adaptation scheme to this compressible flow solver would be an interesting and 

challenging project.

Finally, as noted in Chapter 6, all simulations for the JASPER problem were 

conducted in a quasi-steady state, meaning that at each location the projectile is held
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fixed while the flow field is calculated. The drawback o f  this approach is that at each 

location o f  the projectile, flow interactions with the projectile at prior locations are not 

taken into account. Therefore, this method cannot quantify the amount o f  tilt that the 

projectile might experience. It would be desirable to have the ability to track the changes 

in the projectile’s flight path as it interacts with the flow field. This would certainly 

require greater computational effort, as changes in the mesh would have to be updated 

frequently.
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APPENDIX A

NOMENCLATURE

a speed o f  sound
A flow feature gradient

S specific heat at constant pressure

Cv specific heat at constant volume
e internal energy
h characteristic element length
J Jacobian matrix
k thermal conductivity
L reference length; linear operator
L mass matrix for continuity equation
M M ach number
M mass matrix for momentum and energy equations
n outward unit normal vector
N, shape function

P pressure
P Petrov-Galerkin perturbation factor
Pr Prandtl number
q heat flux vector
R universal gas constant; residual
R right hand side load vector
Re Reynolds number

Sutherland constant
t time
T temperature
u x-component o f  velocity vector
u velocity vector

t/oo free stream velocity
V y-com ponent o f  velocity vector
w z-component o f  velocity vector; Gauss weight
w, W. weighting function
X horizontal Cartesian coordinate
X Cartesian space vector
T lateral Cartesian coordinate
z vertical Cartesian coordinate
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a Petrov-Galerkin optimal value; upper refinement threshold
P lower refinement threshold

Y ratio o f  specific heats; Petrov-Galerkin stability parameter
r boundary

Kronecker delta

8 error
natural (nondimensional) coordinate (z)

7 natural (nondimensional) coordinate (y)

P dynamic viscosity

P density
G standard deviation
O, <J.. stress tensor

natural (nondimensional) coordinate (x)
Q domain
V divergence operator

Subscripts

e internal energy; element
i, in inlet
V node numbers; column-row reference in vectors

unit vectors in the x, y, and z directions
u,v,w velocity components in the x,y,z directions

x,y,z  coordinate directions
1 in Iront o f  shock
2 behind shock
00 reference quantity (free stream)

Superscripts

i node numbers
n previous time level
n+\ new time level
* dimensionless parameter
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APPENDIX B 

FLOWCHARTS

Flowcharts for the solution algorithms used in this study are presented in this section. 

Figures B-1 and B-2 show the flowcharts for the compressible flow solver. Figures B-3 

through B-5 show the flowcharts for the /z-adaptive process.
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initialize arrays

read in mesh data, boundary conditions, 
fluid flow, and runtime parameters

no is time < 
stop value?

yes

call h-adaptation subroutine 
(see Fig. B-3)

calculate optimum time step

increment time

call assembly subroutine 
(see Fig. B-2)

interpolate virtual nodes

nois solution 
converged?

yes

write output file

end

Figure B-1. Compressible flow solver flowchart
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do for all nodes

Ï
>■

determine shape functions and derivatives

I
calculate Petrov-Galerkin weights

Ï
compute right hand side load vectors

compute mass matrices

Ï
compute new values o f computational variables

i
increment node

Ï
return

Figure B-2. Assembly flowchart
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yesFirst call to 
adaptation? initialize arrays

no
locate adjacent elements

calculate flow feature gradients

do for each element

no
gradient > 

high switch?

yes

divide elements (see Fig. B-4)

yes
holes located? eliminate holes

no

no
gradient < 

low switch?

yes

recover elements (see Fig. B-5)

locate virtual nodes

interpolate virtual nodes

return

Figure B-3. /z-adaptation flowchart
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do for all elements tagged for division

is neighbor's 
neighbor at 
higher level? ^

no nois neighbor at 
higher level"^ -

yes
yes

create new nodes by interpolation

update adjacent elements

update boundary conditions

return

increment face

increment element

do for each face o f element

use new nodes to form new children

create new nodes using 
existing virtual nodes

Figure B-4. Element division flowchart
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do for all elements tagged for recovery

do for each face o f  element

is neighbor's 
neighbor at 
same level?

no nois neighbor at 
same level?

yes
yes

delete existing nodes

delete children

update adjacent elements

increment element

return

increment face

update boundary conditions

do not delete existing nodes 
they will become virtual nodes

Figure B-5. Element recovery flowchart
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