SOUND ATTENUATION OF FIBERGLASS LINED VENTILATION DUCTS

By

Jacob Albright

Bachelor of Science in Engineering – Mechanical Engineering
University of Nevada, Las Vegas
2012

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Engineering – Mechanical Engineering

Department of Mechanical Engineering
Howard R. Hughes College of Engineering
The Graduate College

University of Nevada, Las Vegas
December 2015
This thesis prepared by

Jacob Albright

entitled

Sound Attenuation of Fiberglass Lined Ventilation Ducts

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Engineering – Mechanical Engineering
Department of Mechanical Engineering

Douglas D. Reynolds, Ph.D.
Examination Committee Chair

Kathryn Hausbeck Korgan, Ph.D.
Graduate College Interim Dean

Darrell Pepper, Ph.D.
Examination Committee Member

William G. Culbreth, Ph.D.
Examination Committee Member

Barbara Luke, Ph.D.
Graduate College Faculty Representative
ABSTRACT

Sound Attenuation of Fiberglass Lined Ventilation Ducts

by

Jacob Albright

Dr. Douglas Reynolds, Examination Committee Chair
Professor of Mechanical Engineering
University of Nevada, Las Vegas

Sound attenuation is a crucial part of designing any HVAC system. Most ventilation systems are designed to be in areas occupied by one or more persons. If these systems do not adequately attenuate the sound of the supply fan, compressor, or any other source of sound, the affected area could be subject to an array of problems ranging from an annoying hum to a deafening howl. The goals of this project are to quantify the sound attenuation properties of fiberglass duct liner and to perform a regression analysis to develop equations to predict insertion loss values for both rectangular and round duct liners.

The first goal was accomplished via insertion loss testing. The tests performed conformed to the ASTM E477 standard. Using the insertion loss test data, regression equations were developed to predict insertion loss values for rectangular ducts ranging in size from 12-in x 18-in to 48-in x 48-in in lengths ranging from 3ft to 30ft. Regression equations were also developed to predict insertion loss values for round ducts ranging in diameters from 12-in to 48-in in lengths ranging from 3ft to 30ft.
TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1 INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Test Method & Goals .. 2

CHAPTER 2 RELATED LITERATURE .. 3

2.1 HVAC Noise .. 3

2.2 Acoustical Duct Lining ... 3

2.3 Previous Work .. 4

2.4 Third Octave Band ... 4

2.5 Pink Noise .. 4

CHAPTER 3 UPGRADES TO ASTM E477 FACILITY ... 5

3.1 Measurement System ... 5

3.2 Relocation of the Sound Source ... 5

3.3 Reduction of Sound Leakage .. 6

CHAPTER 4 TEST & MEASUREMENT EQUIPMENT .. 10

4.1 Equalizers ... 10

4.2 Amplifiers .. 13

4.3 Speakers ... 15
LIST OF TABLES

Table 6.1: Coefficients for Regression Analysis of 1-in Rectangular Ducts (E.H. Price Data) ... 39
Table 6.2: Statistics of Regression Analysis of 1-in Rectangular Ducts (E.H. Price Data) 40
Table 6.3: Coefficients for Regression Analysis of 2-in Rectangular Ducts (E.H. Price Data) ... 41
Table 6.4: Statistics of Regression Analysis of 2-in Rectangular Ducts (E.H. Price Data) 42
Table 6.5: Coefficients for Regression Analysis of 1-in Rectangular Ducts (E.H. Price + UNLV Data) .. 43
Table 6.6: Statistics of Regression Analysis of 1-in Rectangular Ducts (E.H. Price + UNLV Data) .. 44
Table 6.7: Coefficients for Regression Analysis of 2-in Rectangular Ducts (E.H. Price + UNLV Data) .. 45
Table 6.8: Statistics of Regression Analysis of 2-in Rectangular Ducts (E.H. Price + UNLV Data) .. 46
Table 6.9: Comparison of Statistics for 1-in Rectangular Ducts ... 47
Table 6.10: Comparison of Statistics for 2-in Rectangular Ducts ... 48
Table 6.11: Coefficients for Regression Analysis of 1-in Round Ducts 50
Table 6.12: Statistics of Regression Analysis of 1-in Round Ducts .. 51
Table 6.13: Coefficients for Regression Analysis of 2-in Round Ducts 52
Table 6.14: Statistics of Regression Analysis of 2-in Round Ducts .. 53
LIST OF FIGURES

Figure 3.1: Recommended Speaker Position in Source Chamber .. 6
Figure 3.2: Schematic Drawing of Plug 1 (in inches) [1] .. 7
Figure 3.3: Drawing of Plug 1 [1] ... 8
Figure 3.4: Picture of Plug 1 [1] ... 8
Figure 3.5: Insertion Loss for Speaker Position 4 [1] ... 9
Figure 4.1: Behringer Ultra-Curve Pro DEQ2496 .. 10
Figure 4.2: Male and Female end of XLR Cable ... 11
Figure 4.3: Equalizer Settings for Channels 1 & 2 ... 11
Figure 4.4: Equalizer Settings for Channel 3 .. 12
Figure 4.5: Equalizer Settings for Channel 4 .. 13
Figure 4.6: QSC PowerLight PL380 8,000W Amplifier ... 14
Figure 4.7: QSC PowerLight PL325 2,500W Amplifier ... 14
Figure 4.8: JBL ASB7128 Speaker Unit ... 16
Figure 4.9: Frequency Response of JBL ASB7128 Speaker Unit [5] 17
Figure 4.10: JBL AM7215 Speaker Unit .. 18
Figure 4.11: Frequency Response of JBL AM7215 Speaker Unit [4] 18
Figure 4.12: JBL Selenium D4400Ti Driver .. 19
Figure 4.13: JBL Selenium HL 4750SLF Horn ... 20
Figure 4.14: Frequency Response of JBL Selenium D4400Ti Horn Driver [6] 20
Figure 4.15: Svantek SV 22 Microphone ... 21
Figure 4.16: Svantek SV 12 Microphone Preamplifier .. 22
Figure 4.17: Norsonic Nor 265 Microphone Boom ... 23
Figure 4.18: Svantek Svan 958 Four-channel Sound & Vibration Analyzer .. 24
Figure 4.19: Brüel & Kjær Type 4226 Acoustic Calibrator .. 25
Figure 4.20: All Sizes of Rectangular Duct .. 26
Figure 4.21: All Sizes of Round Duct ... 27
Figure 4.22: Rectangular Duct Transitions .. 28
Figure 4.23: Round Duct Transitions ... 29
Figure 5.1: CMEST’s ASTM E477 Compliant Test Facility ... 30
Figure 5.2: Reverberation Room ... 31
Figure 5.3: 12x18 Duct Test Setup ... 34
Figure 5.4: 12-in Diameter Duct Test Setup ... 34
Figure A.1: Insertion Loss for 12x18 ducts with 1-in Fiberglass .. 55
Figure A.2: Insertion Loss for 24x24 ducts with 1-in Fiberglass .. 55
Figure A.3: Insertion Loss for 18x48 ducts with 1-in Fiberglass .. 56
Figure A.4: Insertion Loss for 32x44 ducts with 1-in Fiberglass .. 56
Figure A.5: Insertion Loss for 48x48 ducts with 1-in Fiberglass .. 57
Figure A.6: 1-in Insertion Loss vs Duct Length at 50 Hz .. 58
Figure A.7: 1-in Slope vs P/A at 50 Hz ... 58
Figure A.8: 1-in Y-intercepts vs P/A at 50 Hz .. 58
Figure A.9: 1-in Insertion Loss vs Duct Length at 63 Hz .. 59
Figure A.10: 1-in Slope vs P/A at 63 Hz ... 59
Figure A.11: 1-in Y-intercepts vs P/A at 63 Hz ... 59
Figure A.12: 1-in Insertion Loss vs Duct Length at 80 Hz .. 60
Figure A.13: 1-in Slope vs P/A at 80 Hz .. 60
Figure A.14: 1-in Y-intercepts vs P/A at 80 Hz... 60
Figure A.15: 1-in Insertion Loss vs Duct Length at 100 Hz... 61
Figure A.16: 1-in Slope vs P/A at 100 Hz .. 61
Figure A.17: 1-in Y-intercepts vs P/A at 100 Hz.. 61
Figure A.18: 1-in Insertion Loss vs Duct Length at 125 Hz.. 62
Figure A.19: 1-in Slope vs P/A at 125 Hz .. 62
Figure A.20: 1-in Y-intercepts vs P/A at 125 Hz.. 62
Figure A.21: 1-in Insertion Loss vs Duct Length at 160 Hz.. 63
Figure A.22: 1-in Slope vs P/A at 160 Hz .. 63
Figure A.23: 1-in Y-intercepts vs P/A at 160 Hz.. 63
Figure A.24: 1-in Insertion Loss vs Duct Length at 200 Hz.. 64
Figure A.25: 1-in Slope vs P/A at 200 Hz .. 64
Figure A.26: 1-in Y-intercepts vs P/A at 200 Hz.. 64
Figure A.27: 1-in Insertion Loss vs Duct Length at 250 Hz.. 65
Figure A.28: 1-in Slope vs P/A at 250 Hz .. 65
Figure A.29: 1-in Y-intercepts vs P/A at 250 Hz.. 65
Figure A.30: 1-in Insertion Loss vs Duct Length at 315 Hz.. 66
Figure A.31: 1-in Slope vs P/A at 315 Hz .. 66
Figure A.32: 1-in Y-intercepts vs P/A at 315 Hz.. 66
Figure A.33: 1-in Insertion Loss vs Duct Length at 400 Hz.. 67
Figure A.34: 1-in Slope vs P/A at 400 Hz .. 67
Figure A.35: 1-in Y-intercepts vs P/A at 400 Hz.. 67
Figure A.36: 1-in Insertion Loss vs Duct Length at 500 Hz.. 68
Figure A.37: 1-in Slope vs P/A at 500 Hz ... 68
Figure A.38: 1-in Y-intercepts vs P/A at 500 Hz ... 68
Figure A.39: 1-in Insertion Loss vs Duct Length at 630 Hz 69
Figure A.40: 1-in Slope vs P/A at 630 Hz ... 69
Figure A.41: 1-in Y-intercepts vs P/A at 630 Hz ... 69
Figure A.42: 1-in Insertion Loss vs Duct Length at 800 Hz 70
Figure A.43: 1-in Slope vs P/A at 800 Hz ... 70
Figure A.44: 1-in Y-intercepts vs P/A at 800 Hz ... 70
Figure A.45: 1-in Insertion Loss vs Duct Length at 1000 Hz 71
Figure A.46: 1-in Slope vs P/A at 1000 Hz ... 71
Figure A.47: 1-in Y-intercepts vs P/A at 1000 Hz ... 71
Figure A.48: 1-in Insertion Loss vs Duct Length at 1250 Hz 72
Figure A.49: 1-in Slope vs P/A at 1250 Hz ... 72
Figure A.50: 1-in Y-intercepts vs P/A at 1250 Hz ... 72
Figure A.51: 1-in Insertion Loss vs Duct Length at 1600 Hz 73
Figure A.52: 1-in Slope vs P/A at 1600 Hz ... 73
Figure A.53: 1-in Y-intercepts vs P/A at 1600 Hz ... 73
Figure A.54: 1-in Insertion Loss vs Duct Length at 2000 Hz 74
Figure A.55: 1-in Slope vs P/A at 2000 Hz ... 74
Figure A.56: 1-in Y-intercepts vs P/A at 2000 Hz ... 74
Figure A.57: 1-in Insertion Loss vs Duct Length at 2500 Hz 75
Figure A.58: 1-in Slope vs P/A at 2500 Hz ... 75
Figure A.59: 1-in Y-intercepts vs P/A at 2500 Hz ... 75
Figure A.60: 1-in Insertion Loss vs Duct Length at 3150 Hz .. 76
Figure A.61: 1-in Slope vs P/A at 3150 Hz ... 76
Figure A.62: 1-in Y-intercepts vs P/A at 3150 Hz... 76
Figure A.63: 1-in Insertion Loss vs Duct Length at 4000 Hz ... 77
Figure A.64: 1-in Slope vs P/A at 4000 Hz ... 77
Figure A.65: 1-in Y-intercepts vs P/A at 4000 Hz... 77
Figure A.66: 1-in Insertion Loss vs Duct Length at 5000 Hz ... 78
Figure A.67: 1-in Slope vs P/A at 5000 Hz ... 78
Figure A.68: 1-in Y-intercepts vs P/A at 5000 Hz... 78
Figure A.69: 1-in Insertion Loss vs Duct Length at 6300 Hz ... 79
Figure A.70: 1-in Slope vs P/A at 6300 Hz ... 79
Figure A.71: 1-in Y-intercepts vs P/A at 6300 Hz... 79
Figure A.72: 1-in Insertion Loss vs Duct Length at 8000 Hz ... 80
Figure A.73: 1-in Slope vs P/A at 8000 Hz ... 80
Figure A.74: 1-in Y-intercepts vs P/A at 8000 Hz... 80
Figure A.75: 1-in Insertion Loss vs Duct Length at 10000 Hz .. 81
Figure A.76: 1-in Slope vs P/A at 10000 Hz ... 81
Figure A.77: 1-in Y-intercepts vs P/A at 10000 Hz.. 81
Figure A.78: Data Comparison for 1-in Rectangular Ducts ... 82
Figure B.1: Insertion Loss for 12x18 ducts with 2-in Fiberglass .. 83
Figure B.2: Insertion Loss for 24x24 ducts with 2-in Fiberglass .. 83
Figure B.3: Insertion Loss for 18x48 ducts with 2-in Fiberglass .. 84
Figure B.4: Insertion Loss for 32x44 ducts with 2-in Fiberglass .. 84
Figure B.5: Insertion Loss for 48x48 ducts with 2-in Fiberglass .. 85
Figure B.6: 2-in Insertion Loss vs Duct Length at 50 Hz... 86
Figure B.7: 2-in Slope vs P/A at 50 Hz .. 86
Figure B.8: 2-in Y-intercepts vs P/A at 50 Hz.. 86
Figure B.9: 2-in Insertion Loss vs Duct Length at 63 Hz... 87
Figure B.10: 2-in Slope vs P/A at 63 Hz .. 87
Figure B.11: 2-in Y-intercepts vs P/A at 63 Hz... 87
Figure B.12: 2-in Insertion Loss vs Duct Length at 80 Hz.. 88
Figure B.13: 2-in Slope vs P/A at 80 Hz .. 88
Figure B.14: 2-in Y-intercepts vs P/A at 80 Hz... 88
Figure B.15: 2-in Insertion Loss vs Duct Length at 100 Hz.. 89
Figure B.16: 2-in Slope vs P/A at 100 Hz ... 89
Figure B.17: 2-in Y-intercepts vs P/A at 100 Hz... 89
Figure B.18: 2-in Insertion Loss vs Duct Length at 125 Hz.. 90
Figure B.19: 2-in Slope vs P/A at 125 Hz ... 90
Figure B.20: 2-in Y-intercepts vs P/A at 125 Hz... 90
Figure B.21: 2-in Insertion Loss vs Duct Length at 160 Hz.. 91
Figure B.22: 2-in Slope vs P/A at 160 Hz ... 91
Figure B.23: 2-in Y-intercepts vs P/A at 160 Hz... 91
Figure B.24: 2-in Insertion Loss vs Duct Length at 200 Hz.. 92
Figure B.25: 2-in Slope vs P/A at 200 Hz ... 92
Figure B.26: 2-in Y-intercepts vs P/A at 200 Hz... 92
Figure B.27: 2-in Insertion Loss vs Duct Length at 250 Hz.. 93
Figure B.28: 2-in Slope vs P/A at 250 Hz ... 93
Figure B.29: 2-in Y-intercepts vs P/A at 250 Hz .. 93
Figure B.30: 2-in Insertion Loss vs Duct Length at 315 Hz 94
Figure B.31: 2-in Slope vs P/A at 315 Hz ... 94
Figure B.32: 2-in Y-intercepts vs P/A at 315 Hz .. 94
Figure B.33: 2-in Insertion Loss vs Duct Length at 400 Hz 95
Figure B.34: 2-in Slope vs P/A at 400 Hz ... 95
Figure B.35: 2-in Y-intercepts vs P/A at 400 Hz .. 95
Figure B.36: 2-in Insertion Loss vs Duct Length at 500 Hz 96
Figure B.37: 2-in Slope vs P/A at 500 Hz ... 96
Figure B.38: 2-in Y-intercepts vs P/A at 500 Hz .. 96
Figure B.39: 2-in Insertion Loss vs Duct Length at 630 Hz 97
Figure B.40: 2-in Slope vs P/A at 630 Hz ... 97
Figure B.41: 2-in Y-intercepts vs P/A at 630 Hz .. 97
Figure B.42: 2-in Insertion Loss vs Duct Length at 800 Hz 98
Figure B.43: 2-in Slope vs P/A at 800 Hz ... 98
Figure B.44: 2-in Y-intercepts vs P/A at 800 Hz .. 98
Figure B.45: 2-in Insertion Loss vs Duct Length at 1000 Hz 99
Figure B.46: 2-in Slope vs P/A at 1000 Hz ... 99
Figure B.47: 2-in Y-intercepts vs P/A at 1000 Hz ... 99
Figure B.48: 2-in Insertion Loss vs Duct Length at 1250 Hz 100
Figure B.49: 2-in Slope vs P/A at 1250 Hz ... 100
Figure B.50: 2-in Y-intercepts vs P/A at 1250 Hz ... 100
Figure B.51: 2-in Insertion Loss vs Duct Length at 1600 Hz ... 101
Figure B.52: 2-in Slope vs P/A at 1600 Hz ... 101
Figure B.53: 2-in Y-intercepts vs P/A at 1600 Hz ... 101
Figure B.54: 2-in Insertion Loss vs Duct Length at 2000 Hz ... 102
Figure B.55: 2-in Slope vs P/A at 2000 Hz ... 102
Figure B.56: 2-in Y-intercepts vs P/A at 2000 Hz ... 102
Figure B.57: 2-in Insertion Loss vs Duct Length at 2500 Hz ... 103
Figure B.58: 2-in Slope vs P/A at 2500 Hz ... 103
Figure B.59: 2-in Y-intercepts vs P/A at 2500 Hz ... 103
Figure B.60: 2-in Insertion Loss vs Duct Length at 3150 Hz ... 104
Figure B.61: 2-in Slope vs P/A at 3150 Hz ... 104
Figure B.62: 2-in Y-intercepts vs P/A at 3150 Hz ... 104
Figure B.63: 2-in Insertion Loss vs Duct Length at 4000 Hz ... 105
Figure B.64: 2-in Slope vs P/A at 4000 Hz ... 105
Figure B.65: 2-in Y-intercepts vs P/A at 4000 Hz ... 105
Figure B.66: 2-in Insertion Loss vs Duct Length at 5000 Hz ... 106
Figure B.67: 2-in Slope vs P/A at 5000 Hz ... 106
Figure B.68: 2-in Y-intercepts vs P/A at 5000 Hz ... 106
Figure B.69: 2-in Insertion Loss vs Duct Length at 6300 Hz ... 107
Figure B.70: 2-in Slope vs P/A at 6300 Hz ... 107
Figure B.71: 2-in Y-intercepts vs P/A at 6300 Hz ... 107
Figure B.72: 2-in Insertion Loss vs Duct Length at 8000 Hz ... 108
Figure B.73: 2-in Slope vs P/A at 8000 Hz ... 108
Figure B.74: 2-in Y-intercepts vs P/A at 8000 Hz ... 108
Figure B.75: 2-in Insertion Loss vs Duct Length at 10000 Hz ... 109
Figure B.76: 2-in Slope vs P/A at 10000 Hz .. 109
Figure B.77: 2-in Y-intercepts vs P/A at 10000 Hz ... 109
Figure B.78: Data Comparison for 2-in Rectangular Ducts ... 110
Figure C.1: Insertion Loss for 12x18 ducts with 1-in Fiberglass ... 111
Figure C.2: Insertion Loss for 24x24 ducts with 1-in Fiberglass ... 111
Figure C.3: Insertion Loss for 18x48 ducts with 1-in Fiberglass ... 112
Figure C.4: Insertion Loss for 32x44 ducts with 1-in Fiberglass ... 112
Figure C.5: Insertion Loss for 48x48 ducts with 1-in Fiberglass ... 113
Figure C.6: 1-in Insertion Loss vs Duct Length at 50 Hz .. 114
Figure C.7: 1-in Slope vs P/A at 50 Hz ... 114
Figure C.8: 1-in Y-intercepts vs P/A at 50 Hz .. 114
Figure C.9: 1-in Insertion Loss vs Duct Length at 63 Hz .. 115
Figure C.10: 1-in Slope vs P/A at 63 Hz .. 115
Figure C.11: 1-in Y-intercepts vs P/A at 63 Hz ... 115
Figure C.12: 1-in Insertion Loss vs Duct Length at 80 Hz .. 116
Figure C.13: 1-in Slope vs P/A at 80 Hz ... 116
Figure C.14: 1-in Y-intercepts vs P/A at 80 Hz ... 116
Figure C.15: 1-in Insertion Loss vs Duct Length at 100 Hz .. 117
Figure C.16: 1-in Slope vs P/A at 100 Hz ... 117
Figure C.17: 1-in Y-intercepts vs P/A at 100 Hz ... 117
Figure C.18: 1-in Insertion Loss vs Duct Length at 125 Hz .. 118
Figure C.19: 1-in Slope vs P/A at 125 Hz ... 118
Figure C.20: 1-in Y-intercepts vs P/A at 125 Hz ... 118
Figure C.21: 1-in Insertion Loss vs Duct Length at 160 Hz 119
Figure C.22: 1-in Slope vs P/A at 160 Hz ... 119
Figure C.23: 1-in Y-intercepts vs P/A at 160 Hz ... 119
Figure C.24: 1-in Insertion Loss vs Duct Length at 200 Hz 120
Figure C.25: 1-in Slope vs P/A at 200 Hz ... 120
Figure C.26: 1-in Y-intercepts vs P/A at 200 Hz ... 120
Figure C.27: 1-in Insertion Loss vs Duct Length at 250 Hz 121
Figure C.28: 1-in Slope vs P/A at 250 Hz ... 121
Figure C.29: 1-in Y-intercepts vs P/A at 250 Hz ... 121
Figure C.30: 1-in Insertion Loss vs Duct Length at 315 Hz 122
Figure C.31: 1-in Slope vs P/A at 315 Hz ... 122
Figure C.32: 1-in Y-intercepts vs P/A at 315 Hz ... 122
Figure C.33: 1-in Insertion Loss vs Duct Length at 400 Hz 123
Figure C.34: 1-in Slope vs P/A at 400 Hz ... 123
Figure C.35: 1-in Y-intercepts vs P/A at 400 Hz ... 123
Figure C.36: 1-in Insertion Loss vs Duct Length at 500 Hz 124
Figure C.37: 1-in Slope vs P/A at 500 Hz ... 124
Figure C.38: 1-in Y-intercepts vs P/A at 500 Hz ... 124
Figure C.39: 1-in Insertion Loss vs Duct Length at 630 Hz 125
Figure C.40: 1-in Slope vs P/A at 630 Hz ... 125
Figure C.41: 1-in Y-intercepts vs P/A at 630 Hz ... 125
Figure C.42: 1-in Insertion Loss vs Duct Length at 800 Hz .. 126
Figure C.43: 1-in Slope vs P/A at 800 Hz .. 126
Figure C.44: 1-in Y-intercepts vs P/A at 800 Hz ... 126
Figure C.45: 1-in Insertion Loss vs Duct Length at 1000 Hz ... 127
Figure C.46: 1-in Slope vs P/A at 1000 Hz .. 127
Figure C.47: 1-in Y-intercepts vs P/A at 1000 Hz ... 127
Figure C.48: 1-in Insertion Loss vs Duct Length at 1250 Hz ... 128
Figure C.49: 1-in Slope vs P/A at 1250 Hz .. 128
Figure C.50: 1-in Y-intercepts vs P/A at 1250 Hz ... 128
Figure C.51: 1-in Insertion Loss vs Duct Length at 1600 Hz ... 129
Figure C.52: 1-in Slope vs P/A at 1600 Hz .. 129
Figure C.53: 1-in Y-intercepts vs P/A at 1600 Hz ... 129
Figure C.54: 1-in Insertion Loss vs Duct Length at 2000 Hz ... 130
Figure C.55: 1-in Slope vs P/A at 2000 Hz .. 130
Figure C.56: 1-in Y-intercepts vs P/A at 2000 Hz ... 130
Figure C.57: 1-in Insertion Loss vs Duct Length at 2500 Hz ... 131
Figure C.58: 1-in Slope vs P/A at 2500 Hz .. 131
Figure C.59: 1-in Y-intercepts vs P/A at 2500 Hz ... 131
Figure C.60: 1-in Insertion Loss vs Duct Length at 3150 Hz ... 132
Figure C.61: 1-in Slope vs P/A at 3150 Hz .. 132
Figure C.62: 1-in Y-intercepts vs P/A at 3150 Hz ... 132
Figure C.63: 1-in Insertion Loss vs Duct Length at 4000 Hz ... 133
Figure C.64: 1-in Slope vs P/A at 4000 Hz .. 133
Figure C.65: 1-in Y-intercepts vs P/A at 4000 Hz ... 133
Figure C.66: 1-in Insertion Loss vs Duct Length at 5000 Hz .. 134
Figure C.67: 1-in Slope vs P/A at 5000 Hz ... 134
Figure C.68: 1-in Y-intercepts vs P/A at 5000 Hz ... 134
Figure C.69: 1-in Insertion Loss vs Duct Length at 6300 Hz .. 135
Figure C.70: 1-in Slope vs P/A at 6300 Hz ... 135
Figure C.71: 1-in Y-intercepts vs P/A at 6300 Hz ... 135
Figure C.72: 1-in Insertion Loss vs Duct Length at 8000 Hz .. 136
Figure C.73: 1-in Slope vs P/A at 8000 Hz ... 136
Figure C.74: 1-in Y-intercepts vs P/A at 8000 Hz ... 136
Figure C.75: 1-in Insertion Loss vs Duct Length at 10000 Hz ... 137
Figure C.76: 1-in Slope vs P/A at 10000 Hz .. 137
Figure C.77: 1-in Y-intercepts vs P/A at 10000 Hz ... 137
Figure C.78: Data Comparison for 1-in Rectangular Ducts .. 138
Figure D.1: Insertion Loss for 12x18 ducts with 2-in Fiberglass ... 139
Figure D.2: Insertion Loss for 24x24 ducts with 2-in Fiberglass ... 139
Figure D.3: Insertion Loss for 18x48 ducts with 2-in Fiberglass ... 140
Figure D.4: Insertion Loss for 32x44 ducts with 2-in Fiberglass ... 140
Figure D.5: Insertion Loss for 48x48 ducts with 2-in Fiberglass ... 141
Figure D.6: 2-in Insertion Loss vs Duct Length at 50 Hz .. 142
Figure D.7: 2-in Slope vs P/A at 50 Hz .. 142
Figure D.8: 2-in Y-intercepts vs P/A at 50 Hz .. 142
Figure D.9: 2-in Insertion Loss vs Duct Length at 63 Hz .. 143
Figure D.10: 2-in Slope vs P/A at 63 Hz ... 143
Figure D.11: 2-in Y-intercepts vs P/A at 63 Hz... 143
Figure D.12: 2-in Insertion Loss vs Duct Length at 80 Hz 144
Figure D.13: 2-in Slope vs P/A at 80 Hz ... 144
Figure D.14: 2-in Y-intercepts vs P/A at 80 Hz ... 144
Figure D.15: 2-in Insertion Loss vs Duct Length at 100 Hz 145
Figure D.16: 2-in Slope vs P/A at 100 Hz ... 145
Figure D.17: 2-in Y-intercepts vs P/A at 100 Hz ... 145
Figure D.18: 2-in Insertion Loss vs Duct Length at 125 Hz 146
Figure D.19: 2-in Slope vs P/A at 125 Hz ... 146
Figure D.20: 2-in Y-intercepts vs P/A at 125 Hz ... 146
Figure D.21: 2-in Insertion Loss vs Duct Length at 160 Hz 147
Figure D.22: 2-in Slope vs P/A at 160 Hz ... 147
Figure D.23: 2-in Y-intercepts vs P/A at 160 Hz ... 147
Figure D.24: 2-in Insertion Loss vs Duct Length at 200 Hz 148
Figure D.25: 2-in Slope vs P/A at 200 Hz ... 148
Figure D.26: 2-in Y-intercepts vs P/A at 200 Hz ... 148
Figure D.27: 2-in Insertion Loss vs Duct Length at 250 Hz 149
Figure D.28: 2-in Slope vs P/A at 250 Hz ... 149
Figure D.29: 2-in Y-intercepts vs P/A at 250 Hz ... 149
Figure D.30: 2-in Insertion Loss vs Duct Length at 315 Hz 150
Figure D.31: 2-in Slope vs P/A at 315 Hz ... 150
Figure D.32: 2-in Y-intercepts vs P/A at 315 Hz ... 150
Figure D.33: 2-in Insertion Loss vs Duct Length at 400 Hz ... 151
Figure D.34: 2-in Slope vs P/A at 400 Hz .. 151
Figure D.35: 2-in Y-intercepts vs P/A at 400 Hz .. 151
Figure D.36: 2-in Insertion Loss vs Duct Length at 500 Hz ... 152
Figure D.37: 2-in Slope vs P/A at 500 Hz .. 152
Figure D.38: 2-in Y-intercepts vs P/A at 500 Hz .. 152
Figure D.39: 2-in Insertion Loss vs Duct Length at 630 Hz ... 153
Figure D.40: 2-in Slope vs P/A at 630 Hz .. 153
Figure D.41: 2-in Y-intercepts vs P/A at 630 Hz .. 153
Figure D.42: 2-in Insertion Loss vs Duct Length at 800 Hz ... 154
Figure D.43: 2-in Slope vs P/A at 800 Hz .. 154
Figure D.44: 2-in Y-intercepts vs P/A at 800 Hz .. 154
Figure D.45: 2-in Insertion Loss vs Duct Length at 1000 Hz .. 155
Figure D.46: 2-in Slope vs P/A at 1000 Hz ... 155
Figure D.47: 2-in Y-intercepts vs P/A at 1000 Hz ... 155
Figure D.48: 2-in Insertion Loss vs Duct Length at 1250 Hz .. 156
Figure D.49: 2-in Slope vs P/A at 1250 Hz ... 156
Figure D.50: 2-in Y-intercepts vs P/A at 1250 Hz ... 156
Figure D.51: 2-in Insertion Loss vs Duct Length at 1600 Hz .. 157
Figure D.52: 2-in Slope vs P/A at 1600 Hz ... 157
Figure D.53: 2-in Y-intercepts vs P/A at 1600 Hz ... 157
Figure D.54: 2-in Insertion Loss vs Duct Length at 2000 Hz .. 158
Figure D.55: 2-in Slope vs P/A at 2000 Hz ... 158
Figure D.56: 2-in Y-intercepts vs P/A at 2000 Hz .. 158
Figure D.57: 2-in Insertion Loss vs Duct Length at 2500 Hz ... 159
Figure D.58: 2-in Slope vs P/A at 2500 Hz ... 159
Figure D.59: 2-in Y-intercepts vs P/A at 2500 Hz ... 159
Figure D.60: 2-in Insertion Loss vs Duct Length at 3150 Hz ... 160
Figure D.61: 2-in Slope vs P/A at 3150 Hz ... 160
Figure D.62: 2-in Y-intercepts vs P/A at 3150 Hz ... 160
Figure D.63: 2-in Insertion Loss vs Duct Length at 4000 Hz ... 161
Figure D.64: 2-in Slope vs P/A at 4000 Hz ... 161
Figure D.65: 2-in Y-intercepts vs P/A at 4000 Hz ... 161
Figure D.66: 2-in Insertion Loss vs Duct Length at 5000 Hz ... 162
Figure D.67: 2-in Slope vs P/A at 5000 Hz ... 162
Figure D.68: 2-in Y-intercepts vs P/A at 5000 Hz ... 162
Figure D.69: 2-in Insertion Loss vs Duct Length at 6300 Hz ... 163
Figure D.70: 2-in Slope vs P/A at 6300 Hz ... 163
Figure D.71: 2-in Y-intercepts vs P/A at 6300 Hz ... 163
Figure D.72: 2-in Insertion Loss vs Duct Length at 8000 Hz ... 164
Figure D.73: 2-in Slope vs P/A at 8000 Hz ... 164
Figure D.74: 2-in Y-intercepts vs P/A at 8000 Hz ... 164
Figure D.75: 2-in Insertion Loss vs Duct Length at 10000 Hz ... 165
Figure D.76: 2-in Slope vs P/A at 10000 Hz .. 165
Figure D.77: 2-in Y-intercepts vs P/A at 10000 Hz ... 165
Figure D.78: Data Comparison for 2-in Rectangular Ducts .. 166
Figure E.1: Insertion Loss for 12-in ducts with 1-in Fiberglass .. 167
Figure E.2: Insertion Loss for 24-in ducts with 1-in Fiberglass .. 167
Figure E.3: Insertion Loss for 36-in ducts with 1-in Fiberglass .. 168
Figure E.4: Insertion Loss for 42-in ducts with 1-in Fiberglass .. 168
Figure E.5: Insertion Loss for 48-in ducts with 1-in Fiberglass .. 169
Figure E.6: 1-in Insertion Loss vs Duct Length at 50 Hz .. 170
Figure E.7: 1-in Slope vs Diameter at 50 Hz ... 170
Figure E.8: 1-in Y-intercepts vs Diameter at 50 Hz ... 170
Figure E.9: 1-in Insertion Loss vs Duct Length at 63 Hz .. 171
Figure E.10: 1-in Slope vs Diameter at 63 Hz ... 171
Figure E.11: 1-in Y-intercepts vs Diameter at 63 Hz ... 171
Figure E.12: 1-in Insertion Loss vs Duct Length at 80 Hz .. 172
Figure E.13: 1-in Slope vs Diameter at 80 Hz ... 172
Figure E.14: 1-in Y-intercepts vs Diameter at 80 Hz ... 172
Figure E.15: 1-in Insertion Loss vs Duct Length at 100 Hz ... 173
Figure E.16: 1-in Slope vs Diameter at 100 Hz ... 173
Figure E.17: 1-in Y-intercepts vs Diameter at 100 Hz ... 173
Figure E.18: 1-in Insertion Loss vs Duct Length at 125 Hz ... 174
Figure E.19: 1-in Slope vs Diameter at 125 Hz ... 174
Figure E.20: 1-in Y-intercepts vs Diameter at 125 Hz ... 174
Figure E.21: 1-in Insertion Loss vs Duct Length at 160 Hz ... 175
Figure E.22: 1-in Slope vs Diameter at 160 Hz ... 175
Figure E.23: 1-in Y-intercepts vs Diameter at 160 Hz ... 175
Figure E.24: 1-in Insertion Loss vs Duct Length at 200 Hz ... 176
Figure E.25: 1-in Slope vs Diameter at 200 Hz ... 176
Figure E.26: 1-in Y-intercepts vs Diameter at 200 Hz ... 176
Figure E.27: 1-in Insertion Loss vs Duct Length at 250 Hz .. 177
Figure E.28: 1-in Slope vs Diameter at 250 Hz ... 177
Figure E.29: 1-in Y-intercepts vs Diameter at 250 Hz ... 177
Figure E.30: 1-in Insertion Loss vs Duct Length at 315 Hz .. 178
Figure E.31: 1-in Slope vs Diameter at 315 Hz ... 178
Figure E.32: 1-in Y-intercepts vs Diameter at 315 Hz ... 178
Figure E.33: 1-in Insertion Loss vs Duct Length at 400 Hz .. 179
Figure E.34: 1-in Slope vs Diameter at 400 Hz ... 179
Figure E.35: 1-in Y-intercepts vs Diameter at 400 Hz ... 179
Figure E.36: 1-in Insertion Loss vs Duct Length at 500 Hz .. 180
Figure E.37: 1-in Slope vs Diameter at 500 Hz ... 180
Figure E.38: 1-in Y-intercepts vs Diameter at 500 Hz ... 180
Figure E.39: 1-in Insertion Loss vs Duct Length at 630 Hz .. 181
Figure E.40: 1-in Slope vs Diameter at 630 Hz ... 181
Figure E.41: 1-in Y-intercepts vs Diameter at 630 Hz ... 181
Figure E.42: 1-in Insertion Loss vs Duct Length at 800 Hz .. 182
Figure E.43: 1-in Slope vs Diameter at 800 Hz ... 182
Figure E.44: 1-in Y-intercepts vs Diameter at 800 Hz ... 182
Figure E.45: 1-in Insertion Loss vs Duct Length at 1000 Hz .. 183
Figure E.46: 1-in Slope vs Diameter at 1000 Hz ... 183
Figure E.47: 1-in Y-intercepts vs Diameter at 1000 Hz ... 183
Figure E.48: 1-in Insertion Loss vs Duct Length at 1250 Hz .. 184
Figure E.49: 1-in Slope vs Diameter at 1250 Hz ... 184
Figure E.50: 1-in Y-intercepts vs Diameter at 1250 Hz ... 184
Figure E.51: 1-in Insertion Loss vs Duct Length at 1600 Hz ... 185
Figure E.52: 1-in Slope vs Diameter at 1600 Hz ... 185
Figure E.53: 1-in Y-intercepts vs Diameter at 1600 Hz ... 185
Figure E.54: 1-in Insertion Loss vs Duct Length at 2000 Hz ... 186
Figure E.55: 1-in Slope vs Diameter at 2000 Hz ... 186
Figure E.56: 1-in Y-intercepts vs Diameter at 2000 Hz ... 186
Figure E.57: 1-in Insertion Loss vs Duct Length at 2500 Hz ... 187
Figure E.58: 1-in Slope vs Diameter at 2500 Hz ... 187
Figure E.59: 1-in Y-intercepts vs Diameter at 2500 Hz ... 187
Figure E.60: 1-in Insertion Loss vs Duct Length at 3150 Hz ... 188
Figure E.61: 1-in Slope vs Diameter at 3150 Hz ... 188
Figure E.62: 1-in Y-intercepts vs Diameter at 3150 Hz ... 188
Figure E.63: 1-in Insertion Loss vs Duct Length at 4000 Hz ... 189
Figure E.64: 1-in Slope vs Diameter at 4000 Hz ... 189
Figure E.65: 1-in Y-intercepts vs Diameter at 4000 Hz ... 189
Figure E.66: 1-in Insertion Loss vs Duct Length at 5000 Hz ... 190
Figure E.67: 1-in Slope vs Diameter at 5000 Hz ... 190
Figure E.68: 1-in Y-intercepts vs Diameter at 5000 Hz ... 190
Figure E.69: 1-in Insertion Loss vs Duct Length at 6300 Hz ... 191
Figure E.70: 1-in Slope vs Diameter at 6300 Hz ... 191
Figure E.71: 1-in Y-intercepts vs Diameter at 6300 Hz ... 191
Figure E.72: 1-in Insertion Loss vs Duct Length at 8000 Hz .. 192
Figure E.73: 1-in Slope vs Diameter at 8000 Hz ... 192
Figure E.74: 1-in Y-intercepts vs Diameter at 8000 Hz ... 192
Figure E.75: 1-in Insertion Loss vs Duct Length at 10000 Hz ... 193
Figure E.76: 1-in Slope vs Diameter at 10000 Hz ... 193
Figure E.77: 1-in Y-intercepts vs Diameter at 10000 Hz ... 193
Figure E.78: Data Comparison for 1-in Round Ducts .. 194
Figure F.1: Insertion Loss for 12-in ducts with 2-in Fiberglass .. 195
Figure F.2: Insertion Loss for 24-in ducts with 2-in Fiberglass .. 195
Figure F.3: Insertion Loss for 36-in ducts with 2-in Fiberglass .. 196
Figure F.4: Insertion Loss for 42-in ducts with 2-in Fiberglass .. 196
Figure F.5: Insertion Loss for 48-in ducts with 2-in Fiberglass .. 197
Figure F.6: 2-in Insertion Loss vs Duct Length at 50 Hz ... 198
Figure F.7: 2-in Slope vs Diameter at 50 Hz ... 198
Figure F.8: 2-in Y-intercepts vs Diameter at 50 Hz ... 198
Figure F.9: 2-in Insertion Loss vs Duct Length at 63 Hz ... 199
Figure F.10: 2-in Slope vs Diameter at 63 Hz .. 199
Figure F.11: 2-in Y-intercepts vs Diameter at 63 Hz .. 199
Figure F.12: 2-in Insertion Loss vs Duct Length at 80 Hz .. 200
Figure F.13: 2-in Slope vs Diameter at 80 Hz .. 200
Figure F.14: 2-in Y-intercepts vs Diameter at 80 Hz .. 200
Figure F.15: 2-in Insertion Loss vs Duct Length at 100 Hz ... 201
Figure F.16: 2-in Slope vs Diameter at 100 Hz ... 201
Figure F.17: 2-in Y-intercepts vs Diameter at 100 Hz ... 201
Figure F.18: 2-in Insertion Loss vs Duct Length at 125 Hz .. 202
Figure F.19: 2-in Slope vs Diameter at 125 Hz ... 202
Figure F.20: 2-in Y-intercepts vs Diameter at 125 Hz ... 202
Figure F.21: 2-in Insertion Loss vs Duct Length at 160 Hz .. 203
Figure F.22: 2-in Slope vs Diameter at 160 Hz ... 203
Figure F.23: 2-in Y-intercepts vs Diameter at 160 Hz ... 203
Figure F.24: 2-in Insertion Loss vs Duct Length at 200 Hz .. 204
Figure F.25: 2-in Slope vs Diameter at 200 Hz ... 204
Figure F.26: 2-in Y-intercepts vs Diameter at 200 Hz ... 204
Figure F.27: 2-in Insertion Loss vs Duct Length at 250 Hz .. 205
Figure F.28: 2-in Slope vs Diameter at 250 Hz ... 205
Figure F.29: 2-in Y-intercepts vs Diameter at 250 Hz ... 205
Figure F.30: 2-in Insertion Loss vs Duct Length at 315 Hz .. 206
Figure F.31: 2-in Slope vs Diameter at 315 Hz ... 206
Figure F.32: 2-in Y-intercepts vs Diameter at 315 Hz ... 206
Figure F.33: 2-in Insertion Loss vs Duct Length at 400 Hz .. 207
Figure F.34: 2-in Slope vs Diameter at 400 Hz ... 207
Figure F.35: 2-in Y-intercepts vs Diameter at 400 Hz ... 207
Figure F.36: 2-in Insertion Loss vs Duct Length at 500 Hz .. 208
Figure F.37: 2-in Slope vs Diameter at 500 Hz ... 208
Figure F.38: 2-in Y-intercepts vs Diameter at 500 Hz .. 208
Figure F.39: 2-in Insertion Loss vs Duct Length at 630 Hz .. 209
Figure F.40: 2-in Slope vs Diameter at 630 Hz ... 209
Figure F.41: 2-in Y-intercepts vs Diameter at 630 Hz ... 209
Figure F.42: 2-in Insertion Loss vs Duct Length at 800 Hz ... 210
Figure F.43: 2-in Slope vs Diameter at 800 Hz ... 210
Figure F.44: 2-in Y-intercepts vs Diameter at 800 Hz ... 210
Figure F.45: 2-in Insertion Loss vs Duct Length at 1000 Hz .. 211
Figure F.46: 2-in Slope vs Diameter at 1000 Hz ... 211
Figure F.47: 2-in Y-intercepts vs Diameter at 1000 Hz ... 211
Figure F.48: 2-in Insertion Loss vs Duct Length at 1250 Hz .. 212
Figure F.49: 2-in Slope vs Diameter at 1250 Hz ... 212
Figure F.50: 2-in Y-intercepts vs Diameter at 1250 Hz ... 212
Figure F.51: 2-in Insertion Loss vs Duct Length at 1600 Hz .. 213
Figure F.52: 2-in Slope vs Diameter at 1600 Hz ... 213
Figure F.53: 2-in Y-intercepts vs Diameter at 1600 Hz ... 213
Figure F.54: 2-in Insertion Loss vs Duct Length at 2000 Hz .. 214
Figure F.55: 2-in Slope vs Diameter at 2000 Hz ... 214
Figure F.56: 2-in Y-intercepts vs Diameter at 2000 Hz ... 214
Figure F.57: 2-in Insertion Loss vs Duct Length at 2500 Hz .. 215
Figure F.58: 2-in Slope vs Diameter at 2500 Hz ... 215
Figure F.59: 2-in Y-intercepts vs Diameter at 2500 Hz ... 215
Figure F.60: 2-in Insertion Loss vs Duct Length at 3150 Hz .. 216
Figure F.61: 2-in Slope vs Diameter at 3150 Hz ... 216
Figure F.62: 2-in Y-intercepts vs Diameter at 3150 Hz ... 216
Figure F.63: 2-in Insertion Loss vs Duct Length at 4000 Hz ... 217
Figure F.64: 2-in Slope vs Diameter at 4000 Hz ... 217
Figure F.65: 2-in Y-intercepts vs Diameter at 4000 Hz ... 217
Figure F.66: 2-in Insertion Loss vs Duct Length at 5000 Hz ... 218
Figure F.67: 2-in Slope vs Diameter at 5000 Hz ... 218
Figure F.68: 2-in Y-intercepts vs Diameter at 5000 Hz ... 218
Figure F.69: 2-in Insertion Loss vs Duct Length at 6300 Hz ... 219
Figure F.70: 2-in Slope vs Diameter at 6300 Hz ... 219
Figure F.71: 2-in Y-intercepts vs Diameter at 6300 Hz ... 219
Figure F.72: 2-in Insertion Loss vs Duct Length at 8000 Hz ... 220
Figure F.73: 2-in Slope vs Diameter at 8000 Hz ... 220
Figure F.74: 2-in Y-intercepts vs Diameter at 8000 Hz ... 220
Figure F.75: 2-in Insertion Loss vs Duct Length at 10000 Hz .. 221
Figure F.76: 2-in Slope vs Diameter at 10000 Hz ... 221
Figure F.77: 2-in Y-intercepts vs Diameter at 10000 Hz ... 221
Figure F.78: Data Comparison for 2-in Round Ducts .. 222
CHAPTER 1 INTRODUCTION

1.1 Introduction

Modern buildings are quite analogous to the human body. They require a source of power to fuel their various systems, possess a processing unit to control their various systems, and have mechanisms for taking in air and regulating internal temperatures. The mechanisms for air intake and temperature regulation in buildings are usually fans and a heating, ventilation, and air-conditioning (HVAC) system respectively.

An unfortunate and unwanted byproduct of the fans and HVAC systems is acoustic noise. There are two main sources of noise from HVAC systems. The first is the operating equipment used to move and condition the air. The second is the turbulence in the air being moved within the ventilation ducts. When the level of noise gets too high, modifications to the HVAC system must be made.

On most systems, modifications to the sound source, fans, compressors, etc., will either be impractical or impossible. The alternative is to modify the path that the sound travels through, ventilation ducts. The two most common modifications are in-duct silencers and acoustical liner applied to the inside of the ducts. In order for a HVAC designer to select the right product for the system to achieve the desired sound levels the acoustic properties of silencers and liners must be known. Therefore, it is necessary to develop standards for and perform acoustic testing on these modifications.
The American Society for Testing and Materials (ASTM) has developed such a standard for testing sound attenuators in ventilation systems, ASTM E477: Standard Test Method for Laboratory Measurements of Acoustical and Airflow Performance of Duct Liner Materials and Prefabricated Silencers. The standard requires a specific set of laboratory, equipment, and testing protocol guidelines. The Center for Mechanical & Environmental Systems Technology (CMEST) at the University of Nevada, Las Vegas has a testing facility that is in compliance with ASTM E477. The CMEST testing facility was recently upgraded to conform to the updated standards of ASTM E477. The upgrades include improving and relocating the sound source and reducing sound transmission through the inside walls of the duct in the supply and return duct systems. With the CMEST testing facility in compliance with ASTM E477, testing can now be performed to determine the acoustic characteristics of silencers and duct liners.

1.2 Test Method & Goals

Insertion loss testing was used to quantify the acoustic characteristics of the duct liners. Insertion loss is defined as “the reduction in sound power level, in decibels, due to the placement of a sound-attenuating device in the path of transmission.” [9] To calculate insertion loss, two measurements must be made. First, an unlined duct must be tested. Then a duct with acoustic liner must be tested. The difference between these two measurements is the insertion loss.

The goal of this project is two-fold:

- To quantify the acoustic characteristics of the duct liners via insertion loss testing for various sizes and lengths of rectangular and round ducts
- To perform a regression analysis on the insertion loss data to predict insertion loss values based on the cross-section and length of the duct
CHAPTER 2 RELATED LITERATURE

2.1 HVAC Noise

There are two main sources from which sound can propagate in a ventilation system. The first is aerodynamically generated sound from system air handlers and sound from other equipment used to condition the air. The second is from turbulence associated with airflow through and around the duct fittings. These sources can transmit sound through the duct system into occupied spaces within a building. In some instances this transmitted sound can reach unpleasant or even dangerous levels. It would then be necessary to modify the HVAC system to reduce the sound to reasonable levels.

“For most HVAC and other mechanical systems, it is generally not possible for system designers to modify or change the source characteristics of occupied areas within a building. Thus, system designers most often are constrained to modifying the sound and vibration transmission paths to achieve desired background sound levels associated with HVAC and other mechanical systems.” [8] The two most common methods for modifying the sound transmission path are installation of pre-fabricated duct silencers and installation of acoustical duct lining.

2.2 Acoustical Duct Lining

Acoustical duct lining is usually made from a porous material and is attached to the inside of the walls of the ducts through which the sound travels. The main purpose of acoustical duct lining is to attenuate the sound propagated through a sheet metal air duct system. Duct lining can also be used for thermal insulation. “The thickness of duct linings associated with thermal insulation usually vary from 0.5 in. (12.7mm) to 2.0 in. (50.8 mm). For fiberglass duct
lining to be effective for attenuating sound, it must have a minimum thickness of 1.0 in (25 mm).” [8]

2.3 Previous Work

Extensive research has been done on the subject of acoustically lined sheet metal ducts. For rectangular ducts, various dimensions have been tested with both 1 in and 2 in liners. The only length tested, however, was 10 ft. “Attenuation for lengths greater than 10 ft is not well documented.” [2]

The acoustically lined round sheet metal ducts underwent similar testing as the rectangular ducts. Various diameters were tested with both 1 in and 2 in liners. The round ducts were only tested at a length of 20 ft.

2.4 Third Octave Band

A third octave band is defined as “a frequency band whose cutoff frequencies have a ratio of 2 to the one-third power, which is approximately 1.26. The cutoff frequencies of 891 Hz and 1112 Hz define the 1000 Hz third-octave band in common use.” [3] All data gathered and presented are using the third octave frequency bands from 50 Hz to 10,000 Hz.

2.5 Pink Noise

Pink noise is defined as “noise with constant energy per octave band width.” [3] All data collected in this report were done so using pink noise as input at the sound source. The only exception is when ambient sound levels were measured to ensure the input sound levels were well above ambient levels.
CHAPTER 3 UPGRADES TO ASTM E477 FACILITY

In 2012 upgrades to the CMEST testing facility were completed that brought it into compliance with the updated standards of ASTM E477. The upgrades consisted of three main parts: integration of a measurement system, relocation of the sound source, and reduction of sound leakage.

3.1 Measurement System

The new measurement system can collect seven points of data: sound in the reverberation room, sound in the source room, air flow velocity, pressure in the source side of the duct, pressure in the reverberation side of the duct, temperature, and humidity. All of the data can be collected, recorded, and analyzed simultaneously with the help of National Instruments’ LabView software.

3.2 Relocation of the Sound Source

Originally the speakers were attached to the sides of one of the upstream ducts. The speakers needed to be moved inside the sound chamber. “A significant amount of time was spent on how to position the speakers in the sound chamber so that its sound power input to the duct is high.” [1] The microphone was tested in three locations to determine its optimal position: duct, center, and off-center. The recommended speaker position is shown in Figure 3.1. The center microphone position was found to be the best.
3.3 Reduction of Sound Leakage

Sound leakage from the duct system needed to be reduced to increase the sound attenuation that can be measured in the facility. Originally, both walls of the dual-walled duct were made of 18-gauge sheet metal. A layer of 12-gauge sheet metal was added to the inside walls of the duct to reduce the sound leakage from the system.

To determine the effectiveness of the 12-gauge sheet metal, insertion loss was measured using a plug that was inserted into the duct work both with and without the 12-gauge sheet metal. “Plug 1 is a sound barrier to be placed inside the duct. It is constructed of two 2-ft x 2-ft 0.75-
in.-thick plywood, four 54-in long L-shaped aluminum bars, and 1 lb/ft³ loaded vinyl. Loaded vinyl is glued to both surfaces of the plywood pieces. With 54-in of space in between the two plywood pieces, they are connected on the corners using the 54-in long L-shaped aluminum.

One side of the plug, which is the bottom, is totally covered with loaded vinyl. The other three sides are covered with loaded vinyl except for a 30-in space between the two plywood pieces. Also, the loaded vinyl extends about 4-in pass [sic] the length of the L-shaped aluminum to provide an effective surface for the edges of the plug to be taped on the inside surface of the duct to make a better seal. Finally, the entire cavities in the plug are filled with fiber glass.” [1]

Figure 3.2 through Figure 3.4 illustrate how the plug is constructed.

Figure 3.2: Schematic Drawing of Plug 1 (in inches) [1]
Figure 3.3: Drawing of Plug 1 [1]

Figure 3.4: Picture of Plug 1 [1]
There were three configurations tested using the recommended speaker position. 4A utilized a backboard in the source chamber and Plug 1. 4C utilized the same backboard and Plug 1 but also included the 12-gauge sheet metal on the inside of the ducts. 4D was exactly the same as 4C except with the backboard removed. The insertion loss data for these configurations is shown in Figure 3.5. The backboard did not have much of an effect on the insertion loss. However, an increase in insertion loss is clear between 4A and the other two configurations. This shows that the addition of the 12-gauge sheet metal made significant improvements to the breakout transmission loss.

![Insertion Loss](image_url)

Figure 3.5: Insertion Loss for Speaker Position 4 [1]
CHAPTER 4 TEST & MEASUREMENT EQUIPMENT

4.1 Equalizers

The Behringer Ultra-Curve Pro DEQ2496 equalizer, shown in Figure 4.1, has two channels, a frequency range from 20 Hz to 20,000 Hz, and a gain setting range from -15 dB to +15 dB. The equalizer also has a built in function to produce continuous pink noise. There are a total of four channels through which the sound signals need to travel. Therefore, two equalizers were necessary to adequately produce and send the pink noise signal to the amplifiers. The first equalizer used channels 1 and 2 for the bass speaker. The second equalizer handled channels 3 and 4 which were set for the mid-range speaker and the high-frequency horn drivers respectively. The sound signals from the equalizers were sent to the amplifiers using XLR cables, shown in Figure 4.2. The gain settings for the 4 channels are shown in Figure 4.3 through Figure 4.5.

![Figure 4.1: Behringer Ultra-Curve Pro DEQ2496](image)
Figure 4.2: Male and Female end of XLR Cable

Figure 4.3: Equalizer Settings for Channels 1 & 2
Figure 4.4: Equalizer Settings for Channel 3
4.2 Amplifiers

Two amplifiers were used to amplify the sound signals from the equalizers before they reach the speakers. Each amplifier is capable of handling two inputs. Channels 1 and 2 were connected to the QSC PowerLight PL380 amplifier, shown in Figure 4.6. It has a total maximum power output of 8,000 W. Because the signals that go through the amplifiers are separate, each channel has a maximum power output of 4,000 W.
Channels 3 and 4 were connected to the QSC PowerLight PL325 amplifier, shown in Figure 4.7. It has a total maximum power output of 2,500 W. Because the signals that go through the amplifiers are separate, each channel has a maximum power output of 1,250 W.
The gain settings were adjusted so that the sound signals were amplified to within the amplifiers’ maximum wattage capacity while providing minimal clipping. The amplified sound signals were then passed to the speakers via 8-gauge speaker cables.

4.3 Speakers

One speaker alone cannot reproduce pink noise loud enough across all the frequencies being studied, i.e. 50 Hz to 10,000 Hz. Therefore, the amplified sound signals from the amplifiers were directed to three speakers: a bass speaker, a mid-range speaker, and two high-frequency horns.

4.3.1 Low Frequency Speaker

To reproduce the low frequency sound from channels 1 and 2 the JBL ASB7128 Speaker Unit, Figure 4.8, was used. The speaker unit has two individual speakers that can be controlled by two separate inputs. Both are 18-in.-dia. speakers with neodymium. The speaker unit is effective for frequencies from 20 Hz to 1,000 Hz, Figure 4.9. [5]
Figure 4.8: JBL ASB7128 Speaker Unit
4.3.2 Mid Frequency Speaker

The JBL AM7215 Speaker Unit was used to reproduce sound between 125 Hz and 1,600 Hz using the signal from channel 3. This speaker unit has one low frequency driver and one high frequency horn driver where both can be controlled by one input. The transducer for the low frequency has a capacity of 1,000 W while the high frequency has a capacity of 100 W. This speaker unit is effective on frequencies from 40 Hz to 20 kHz. [4]
Figure 4.10: JBL AM7215 Speaker Unit

Figure 4.11: Frequency Response of JBL AM7215 Speaker Unit [4]
4.3.3 High Frequency Horn

Two JBL Selenium D4400Ti Drivers, Figure 4.12, coupled with two HL 4750SLF Horns, Figure 4.13, were used to reproduce sound between 1,000 Hz and 20,000 Hz using the signal from channel 4. The channel 4 cable from the amplifier branched into two so that the amplified signal could be passed to both units. Each drive has a capacity of 250 W. They are effective for frequencies from 400 Hz to 20,000 Hz. [6]

Figure 4.12: JBL Selenium D4400Ti Driver
Figure 4.13: JBL Selenium HL 4750SLF Horn

Figure 4.14: Frequency Response of JBL Selenium D4400Ti Horn Driver [6]
4.4 Microphones

Two Svantek SV 22 1/2" Pre-polarized Condenser Microphone, shown in Figure 4.15, were used for the insertion loss tests. The microphones contain a diaphragm that senses vibrations in the air and transforms them into electrical signals.

![Svantek SV 22 Microphone](image)

Figure 4.15: Svantek SV 22 Microphone

4.5 Microphone Preamplifiers

Two Svantek SV 12 Preamplifiers were used to amplify the signal from the microphone diaphragms. The SV 12 Preamplifier is pictured below in Figure 4.16.
4.6 Rotating Microphone Boom

The Norsonic Nor 265, Figure 4.17, is a sweeping microphone boom. It can be used for building acoustic measurements in accordance with ISO 140, reverberation time measurements in accordance with ISO 354, and sound power measurements in accordance with ISO 3740. It can sweep at ±90 degrees or ±180 degrees with variable sweep times. The inclination of the boom can also be adjusted.
4.7 Sound Analyzer

The sound signal from the preamplifiers is transferred to the Svantek Svan 958 Four-channel Sound & Vibration Analyzer, Figure 4.18. The SVAN 958 is a digital, four channel 0.5 Hz to 20 kHz signal analyzer including a Type 1 sound level meter (meeting IEC 61672-1:2002) and vibration meter (meeting ISO 8041:2005). It can perform real time 1/1 or 1/3 octave analysis including statistical calculations, Fast Fourier Transform (FFT) analysis including cross spectra, and noise measurements with Type 1 accuracy in the frequency range of 10 Hz to 20,000 Hz among many other functions. Data stored on the analyzer can be transferred to a computer using the SvanPC++ software. [10]
Figure 4.18: Svantek Svan 958 Four-channel Sound & Vibration Analyzer

4.8 Calibrator

The Brüel & Kjær Type 4226 Acoustic Calibrator, Figure 4.19, was used to calibrate the microphones and the Svantek Svan 958 sound analyzer. It was used to calibrate at 94 dB at 1,000 Hz. The calibrator has an accuracy level of ±0.2 dB and conforms to IEC942 (1988) and ANSI S1.40–1984. [7]
4.9 Sheet Metal Ducts

The ducts that were tested were of two separate cross sections: rectangular and circular. Within each of these configurations were five distinct shapes and/or sizes of duct. Included with each test configuration were transition pieces to allow installation of the various shapes and sizes of ducts to the existing duct system in the CMEST testing facility.

4.9.1 Rectangular Ducts

The first of the duct configurations was rectangular. Instead of using the opening surface area as a defining characteristic, the value of the perimeter of the opening divided by the area is used. This value, P/A, has the units of 1/in. The five sizes of rectangular ducts were 12 in x 18 in, 24 in x 24 in, 18 in x 48 in, 32 in x 44 in, and 48 in x 48 in with P/A values of 0.278 1/in, 0.167 1/in, 0.153 1/in, 0.108 1/in, and 0.083 1/in respectively. All five sizes are pictured in Figure 4.20 in the same order listed above from left to right.
Each of these sizes had ducts of lengths 3, 7, and 10 ft. The 12 in x 18 in size also had a 5 ft length. Combinations of these lengths were required to test some of the longer test sections. Each length of duct was tested with a 1 in and a 2 in thick fiberglass liner.

![Image of rectangular ducts](image)

Figure 4.20: All Sizes of Rectangular Duct

4.9.2 Round Ducts

The second configuration of ducts was circular in shape. The defining characteristic for the circular ducts is their diameter. The five sizes of circular ducts were 12 in, 24 in, 36 in, 42 in, and 48 in diameter. Figure 4.21 shows all five of these sizes.
Each of these sizes had ducts of lengths 3, 7, and 10 ft. The 12 in, 42 in, and 48 in diameter ducts also had a 5 ft length. Combinations of these lengths were required to test some of the longer test sections. Each length of duct was tested with a 1 in and a 2 in fiberglass liner.

4.9.3 Transitions

The rectangular transition ducts for each size start at 24 in x 24 in at one end and scale to the size of the test duct over the span of 5 ft and are shown in Figure 4.22. Because the duct system in the CMEST testing facility is rectangular, a coupler is needed to allow the round ducts to be connected to the existing rectangular ducts. This coupler is 24 in in diameter and has a 24 in x 24 in frame around it. The round duct transitions start at a 24 in diameter and scale to the appropriate diameter of the test duct over a span of 5 ft and are shown in Figure 4.23. One transition duct is placed upstream of the test section and another is placed downstream.
The reason these transition ducts are required is due to the fact that if these duct configurations were to be installed in an actual HVAC system, the air needs time to stabilize from going from one size duct to another. If the air is not allowed to do so, then turbulence will occur. This could cause unwanted noise generation within the duct system.

Figure 4.22: Rectangular Duct Transitions
Figure 4.23: Round Duct Transitions
5.1 Test Setup

5.1.1 Testing Facility Layout

The layout of the testing facility is shown in Figure 5.1. The leftmost room is the reverberation room. In the center are the dual-wall ducts that can be removed and replaced with the ducts to be tested. The rooms on the right are the sound chambers. There is a supply and return side, each connected to the reverberation room via the dual-wall ducts. All the tests were performed with the speakers in the supply sound chamber.

![Figure 5.1: CMEST's ASTM E477 Compliant Test Facility](image-url)
5.1.1.1 Reverberation Room

The reverberation room is pictured in Figure 5.2. It has a volume of 9,373 ft\(^3\) and has been qualified for broad band sound testing per ANSI S12.31. Sound absorbers have been placed on the walls to smooth out the mid-frequency and lower the low-frequency reverberation times. There is also a half-cone turning vane installed in the center of the reverberation room. Its main purpose is to efficiently diffuse low-frequency room modes. The turning speed can be adjusted using a controller located just outside the reverberation room.

![Reverberation Room](image.jpg)

Figure 5.2: Reverberation Room
5.1.1.2 Dual-wall Ducts

The dual-wall ducts consist of nine sections each 10 ft long. Starting from the sound chamber, the first two sections measure 4 ft x 4 ft. The next section is a transition piece that starts at 4ft x 4 ft and goes down to 2 ft x 2ft. The next five sections are 2 ft x 2ft with the first two having a cavity of 4.25 in between the inside and outside walls and the last three having a cavity of 2.25 in. between the inside and outside walls. Another transition piece with similar dimensions as the previous transition piece finishes the dual-wall duct system. The walls of the ducts were originally 18-gauge sheet metal and the cavities between the walls are filled with fiber glass. 12-gauge sheet metal panels were attached to all four walls of all of the duct sections as part of the facility upgrade to bring it into compliance with the updated ASTM E477 standards.

5.1.1.3 Sound Chambers

The sound chambers are directly connected to the supply and return air dual-wall ducts. The insides of the walls of the sound chambers are filled with fiber glass with the inside surfaces of the walls and ceiling are perforated sheet metal. The sides of the sound chambers opposite the duct openings are silencers. The measurements for both chambers are about 12 ft x 6 ft x 6.5 ft in length, width, and height, respectively, totaling 460 ft3 in volume.

5.1.2 Placement of Test & Measurement Equipment

The complete speaker assembly was placed into the supply air side sound chamber. A microphone and microphone preamplifier were also placed into the supply sound chamber. The speakers were then connected to amplifiers located just outside the sound chamber. The amplifiers were connected to the equalizers. The second microphone and microphone preamplifier were placed on the rotating boom in the center of the reverberation room.
The microphones were both connected to the Svantek Svan 958 Sound Analyzer. The sound chamber microphone was connected to channel 1. The reverberation room microphone was connected to channel 4.

5.1.3 Placement of Test Ducts

The dual-wall ducts were replaced by the test ducts only on the supply air side. The 2 ft x 2 ft dual-wall ducts closest to the sound chamber were replaced first, followed by the next closest 2 ft x 2 ft duct as needed to provide enough room for the test ducts and their transition ducts to fit into the test section. As previously stated, the transition pieces were placed upstream and downstream of the test ducts. The upstream transition piece always attached to the 4 ft x 4 ft to 2 ft x 2 ft dual-wall transition. The downstream transition piece usually connected to a 2 ft x 2 ft dual-wall duct. The lined test ducts were then placed into the test section starting at the upstream transition. If there were ever any open space between the lined test ducts and the downstream transition, a length of unlined duct of the same size was used to fill the gap. Figure 5.3 shows an example of a rectangular duct test while Figure 5.4 shows an example of a round duct test.
Figure 5.3: 12x18 Duct Test Setup

Figure 5.4: 12-in Diameter Duct Test Setup
5.2 Test Procedure

5.2.1 Calibration

Before taking any measurements it was necessary to ensure the microphones and the sound analyzer were properly calibrated. The calibrator was set to produce a 94 dB tone at 1,000 Hz. To check the calibration of a microphone simply insert it into the calibrator and turn the calibrator on. Then turn on the sound analyzer and check to see if the 1,000 Hz 1/3 Octave Frequency Band shows 94 dB. If it does not, the sound analyzer has built in functions to assist with the calibration process and should be followed. If the signal is 94 dB then the microphone is ready for testing.

5.2.2 Data Acquisition

Once the microphones are calibrated and the test equipment is in place and all connected, the insertion loss test can be performed. To begin, the equalizers were turned on, set to the pink noise generator mode, and the gains were increased to 0 dB. The microphone boom was set to ±90 degrees every 30 seconds and the turning vane was turned on and set to speed 3. Next, the amplifiers and the sound analyzer were turned on. The sound analyzer was set to take a measurement every five seconds and stop after a minute. The test was then repeated with the equalizers and amplifiers turned off to acquire the ambient sound pressure levels. Once the data is recorded on the sound analyzer, everything else was turned off. This completed the data acquisition portion of the test procedure.

5.2.3 Data Transfer

After the data was collected, it needed to be transferred to a computer to be processed. This was done using a piece of software called SvanPC++. This software allowed the data stored
in the sound analyzer to be transferred to a Microsoft Excel file to be processed. Two file types were transferred in this way. The first, called a buffer file, contained twelve measurements, each of which was taken every 5 seconds. The second file contains the overall measurement made over the course of 1 minute. The main purpose of the buffer file is to check that the main file is accurate and to make sure there are no anomalies during the test.
CHAPTER 6 SUMMARY OF RESULTS

The full suite of rectangular duct configurations was tested by a company called E.H. Price. Some of the rectangular duct tests were repeated at UNLV’s CMEST testing facility to verify the data provided by E.H. Price. All of the round duct tests were performed at UNLV’s CMEST testing facility.

There appears to be a linear relationship between insertion loss and the length of a lined duct. An example of this can be seen in Figure A.24. In order to develop an equation to accurately predict insertion loss, multiple regression analyses were performed. First, a linear regression was performed on insertion loss vs duct length. The slopes of these linear regressions were then plotted against the ducts’ P/A values, which is the duct opening’s perimeter divided by its area, and a regression analysis was performed. Finally, the Y-intercepts of the linear regressions were plotted against the P/A values and another regression analysis was performed. The type of regression analysis was different for each duct shape. The combination of these regression analyses make up the final equation used to approximate insertion loss values.

6.1 E.H. Price Rectangular

A second order polynomial regression was used on the plots of Slope vs P/A and Y-intercepts vs P/A. Because the plots of insertion loss vs duct length show a linear relationship, the final form of the regression equation is also linear. The following equation shows this final form.

\[IL = (a_1 \ast (P/A)^2 + a_2 \ast P/A + a_3) + L \ast (b_1 \ast (P/A)^2 + b_2 \ast P/A + b_3) \] \hspace{1cm} (1)

Where:

IL is Insertion Loss
L is Length

P/A is the perimeter of the opening of the duct divided by its area

a_1, a_2, a_3, b_1, b_2, and b_3 are coefficients determined by the second order polynomial regressions

Table 6.1 summarizes all the coefficients at each 1/3 Octave Frequency Band from 50Hz to 10kHz for the 1-in thick Fiberglass Lining. The coefficients for the 2-in thick Fiberglass Lining are shown in Table 6.3.

Table 6.2 and Table 6.4 show some of the statistical relationships between the measured insertion loss and the predicted insertion loss for 1-in and 2-in Fiberglass Lining respectively. AVG DIFF is the average of the difference between the measured value and the predicted value at each 1/3 Octave Frequency Band. Similarly, STD DEV is the standard deviation for each 1/3 Octave Frequency Band. MAX DIFF and MIN DIFF are the maximum and minimum difference between the measured insertion loss value and the predicted value. σ/μ is the standard deviation divided by the average of the measured values, also known as the coefficient of variance.

For both the 1-in and 2-in thicknesses the AVG DIFF is within ± 1 dB for most of the 1/3 Octave Frequency Bands. The few outliers only exceed this to ± 1.5 dB. The standard deviations are also quite reasonable. Most are within ± 4 dB.
Table 6.1: Coefficients for Regression Analysis of 1-in Rectangular Ducts (E.H. Price Data)

<table>
<thead>
<tr>
<th>Freq</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>52.347</td>
<td>-28.537</td>
<td>2.746</td>
<td>-10.858</td>
<td>3.913</td>
<td>-0.282</td>
</tr>
<tr>
<td>63</td>
<td>-0.852</td>
<td>-3.629</td>
<td>0.399</td>
<td>-28.482</td>
<td>9.118</td>
<td>-0.610</td>
</tr>
<tr>
<td>80</td>
<td>48.551</td>
<td>-23.663</td>
<td>1.687</td>
<td>24.963</td>
<td>-6.663</td>
<td>0.411</td>
</tr>
<tr>
<td>100</td>
<td>-89.565</td>
<td>22.024</td>
<td>-1.208</td>
<td>-4.969</td>
<td>1.326</td>
<td>-0.049</td>
</tr>
<tr>
<td>125</td>
<td>-15.703</td>
<td>6.347</td>
<td>-0.325</td>
<td>-6.106</td>
<td>3.064</td>
<td>-0.153</td>
</tr>
<tr>
<td>160</td>
<td>13.677</td>
<td>-1.820</td>
<td>0.056</td>
<td>7.137</td>
<td>-1.380</td>
<td>0.157</td>
</tr>
<tr>
<td>200</td>
<td>10.724</td>
<td>-2.058</td>
<td>0.084</td>
<td>3.148</td>
<td>0.369</td>
<td>0.104</td>
</tr>
<tr>
<td>250</td>
<td>-0.429</td>
<td>0.578</td>
<td>0.109</td>
<td>-5.251</td>
<td>3.636</td>
<td>-0.051</td>
</tr>
<tr>
<td>315</td>
<td>1.303</td>
<td>-1.612</td>
<td>0.641</td>
<td>0.904</td>
<td>1.663</td>
<td>0.238</td>
</tr>
<tr>
<td>400</td>
<td>25.123</td>
<td>-10.414</td>
<td>2.139</td>
<td>-7.016</td>
<td>5.644</td>
<td>0.179</td>
</tr>
<tr>
<td>500</td>
<td>58.126</td>
<td>-19.865</td>
<td>3.707</td>
<td>-7.800</td>
<td>7.357</td>
<td>0.392</td>
</tr>
<tr>
<td>630</td>
<td>-15.890</td>
<td>3.347</td>
<td>23.292</td>
<td>13.290</td>
<td>0.522</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>324.947</td>
<td>9.680</td>
<td>98.146</td>
<td>42.828</td>
<td>-1.599</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>251.197</td>
<td>-68.851</td>
<td>9.926</td>
<td>136.583</td>
<td>66.371</td>
<td>-4.024</td>
</tr>
<tr>
<td>1600</td>
<td>-42.990</td>
<td>90.061</td>
<td>-2.477</td>
<td>23.175</td>
<td>6.551</td>
<td>-0.290</td>
</tr>
<tr>
<td>2000</td>
<td>-112.487</td>
<td>101.539</td>
<td>-3.929</td>
<td>32.052</td>
<td>-0.897</td>
<td>0.199</td>
</tr>
<tr>
<td>2500</td>
<td>-194.431</td>
<td>119.101</td>
<td>4.910</td>
<td>33.261</td>
<td>-3.911</td>
<td>0.375</td>
</tr>
<tr>
<td>3150</td>
<td>-12.840</td>
<td>72.356</td>
<td>-2.785</td>
<td>3.287</td>
<td>2.666</td>
<td>0.019</td>
</tr>
<tr>
<td>4000</td>
<td>131.936</td>
<td>96.279</td>
<td>-4.982</td>
<td>-7.160</td>
<td>4.980</td>
<td>-0.091</td>
</tr>
<tr>
<td>5000</td>
<td>-125.297</td>
<td>87.653</td>
<td>-4.308</td>
<td>2.534</td>
<td>2.441</td>
<td>0.016</td>
</tr>
<tr>
<td>6300</td>
<td>40.852</td>
<td>48.772</td>
<td>-2.523</td>
<td>-6.496</td>
<td>4.316</td>
<td>-0.084</td>
</tr>
<tr>
<td>8000</td>
<td>-22.459</td>
<td>59.678</td>
<td>-3.019</td>
<td>-7.103</td>
<td>4.346</td>
<td>-0.112</td>
</tr>
<tr>
<td>10000</td>
<td>-79.104</td>
<td>75.146</td>
<td>-3.976</td>
<td>-5.804</td>
<td>3.700</td>
<td>-0.069</td>
</tr>
</tbody>
</table>
Table 6.2: Statistics of Regression Analysis of 1-in Rectangular Ducts (E.H. Price Data)

<table>
<thead>
<tr>
<th>Freq</th>
<th>MIN DIFF</th>
<th>MAX DIFF</th>
<th>AVG DIFF</th>
<th>STD Dev</th>
<th>s/m</th>
<th>σ/µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-4.8</td>
<td>5.6</td>
<td>0.01</td>
<td>2.12</td>
<td></td>
<td>1440%</td>
</tr>
<tr>
<td>63</td>
<td>-4.1</td>
<td>6.8</td>
<td>-0.02</td>
<td>1.89</td>
<td></td>
<td>2653%</td>
</tr>
<tr>
<td>80</td>
<td>-3.7</td>
<td>4.2</td>
<td>0.00</td>
<td>1.67</td>
<td></td>
<td>441%</td>
</tr>
<tr>
<td>100</td>
<td>-2.1</td>
<td>2.9</td>
<td>0.00</td>
<td>0.84</td>
<td></td>
<td>-9371%</td>
</tr>
<tr>
<td>125</td>
<td>-3.6</td>
<td>3.2</td>
<td>-0.01</td>
<td>1.29</td>
<td></td>
<td>48%</td>
</tr>
<tr>
<td>160</td>
<td>-0.5</td>
<td>0.6</td>
<td>0.00</td>
<td>0.28</td>
<td></td>
<td>11%</td>
</tr>
<tr>
<td>200</td>
<td>-0.6</td>
<td>0.4</td>
<td>0.00</td>
<td>0.24</td>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>250</td>
<td>-0.8</td>
<td>0.6</td>
<td>0.01</td>
<td>0.37</td>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>315</td>
<td>-2.4</td>
<td>1.6</td>
<td>0.00</td>
<td>0.76</td>
<td></td>
<td>9%</td>
</tr>
<tr>
<td>400</td>
<td>-1.6</td>
<td>1.2</td>
<td>0.01</td>
<td>0.55</td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td>500</td>
<td>-10.9</td>
<td>2.0</td>
<td>-0.28</td>
<td>2.03</td>
<td></td>
<td>9%</td>
</tr>
<tr>
<td>630</td>
<td>-5.2</td>
<td>2.8</td>
<td>-0.25</td>
<td>1.51</td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>800</td>
<td>-10.5</td>
<td>8.1</td>
<td>-1.20</td>
<td>3.58</td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>1000</td>
<td>-6.8</td>
<td>4.8</td>
<td>-0.62</td>
<td>2.68</td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td>1250</td>
<td>-8.2</td>
<td>10.7</td>
<td>-0.67</td>
<td>3.86</td>
<td></td>
<td>11%</td>
</tr>
<tr>
<td>1600</td>
<td>-8.2</td>
<td>7.5</td>
<td>-0.39</td>
<td>3.65</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>2000</td>
<td>-9.3</td>
<td>3.9</td>
<td>-0.62</td>
<td>2.61</td>
<td></td>
<td>12%</td>
</tr>
<tr>
<td>2500</td>
<td>-10.8</td>
<td>2.4</td>
<td>-0.28</td>
<td>2.38</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>3150</td>
<td>-2.9</td>
<td>1.7</td>
<td>0.01</td>
<td>1.24</td>
<td></td>
<td>7%</td>
</tr>
<tr>
<td>4000</td>
<td>-5.3</td>
<td>2.6</td>
<td>-0.32</td>
<td>1.83</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>5000</td>
<td>-8.9</td>
<td>2.8</td>
<td>-0.53</td>
<td>2.27</td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td>6300</td>
<td>-9.6</td>
<td>1.7</td>
<td>-0.47</td>
<td>2.22</td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td>8000</td>
<td>-8.4</td>
<td>2.4</td>
<td>-0.35</td>
<td>2.03</td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td>10000</td>
<td>-6.5</td>
<td>2.8</td>
<td>-0.23</td>
<td>1.87</td>
<td></td>
<td>17%</td>
</tr>
</tbody>
</table>
Table 6.3: Coefficients for Regression Analysis of 2-in Rectangular Ducts (E.H. Price Data)

<table>
<thead>
<tr>
<th>Freq</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-172.567</td>
<td>47.504</td>
<td>-2.303</td>
<td>-14.066</td>
<td>5.387</td>
<td>-0.386</td>
</tr>
<tr>
<td>63</td>
<td>-32.924</td>
<td>14.939</td>
<td>-1.200</td>
<td>-5.220</td>
<td>0.724</td>
<td>0.020</td>
</tr>
<tr>
<td>80</td>
<td>45.900</td>
<td>-17.261</td>
<td>1.087</td>
<td>26.861</td>
<td>-7.495</td>
<td>0.515</td>
</tr>
<tr>
<td>100</td>
<td>-80.932</td>
<td>24.153</td>
<td>-1.540</td>
<td>-12.489</td>
<td>4.001</td>
<td>-0.159</td>
</tr>
<tr>
<td>125</td>
<td>30.134</td>
<td>-5.951</td>
<td>0.535</td>
<td>1.280</td>
<td>1.485</td>
<td>0.069</td>
</tr>
<tr>
<td>160</td>
<td>18.823</td>
<td>-1.013</td>
<td>0.093</td>
<td>9.289</td>
<td>-1.263</td>
<td>0.331</td>
</tr>
<tr>
<td>200</td>
<td>22.571</td>
<td>-7.055</td>
<td>0.950</td>
<td>-4.918</td>
<td>4.948</td>
<td>0.148</td>
</tr>
<tr>
<td>250</td>
<td>38.840</td>
<td>-12.589</td>
<td>1.868</td>
<td>-14.731</td>
<td>9.618</td>
<td>0.037</td>
</tr>
<tr>
<td>315</td>
<td>146.354</td>
<td>-52.155</td>
<td>6.085</td>
<td>-16.490</td>
<td>10.789</td>
<td>0.325</td>
</tr>
<tr>
<td>400</td>
<td>-67.478</td>
<td>14.027</td>
<td>1.622</td>
<td>-0.352</td>
<td>8.659</td>
<td>1.062</td>
</tr>
<tr>
<td>500</td>
<td>-93.399</td>
<td>56.996</td>
<td>-1.251</td>
<td>-18.578</td>
<td>9.598</td>
<td>1.601</td>
</tr>
<tr>
<td>630</td>
<td>-228.627</td>
<td>86.626</td>
<td>1.094</td>
<td>-64.132</td>
<td>37.216</td>
<td>-1.203</td>
</tr>
<tr>
<td>800</td>
<td>1011.467</td>
<td>-299.652</td>
<td>27.179</td>
<td>-327.433</td>
<td>132.197</td>
<td>-8.501</td>
</tr>
<tr>
<td>1000</td>
<td>370.631</td>
<td>-58.483</td>
<td>8.989</td>
<td>-87.352</td>
<td>52.176</td>
<td>-3.438</td>
</tr>
<tr>
<td>1250</td>
<td>-270.904</td>
<td>108.283</td>
<td>-1.065</td>
<td>111.275</td>
<td>-11.216</td>
<td>0.534</td>
</tr>
<tr>
<td>1600</td>
<td>-361.032</td>
<td>153.621</td>
<td>-6.015</td>
<td>81.671</td>
<td>-10.820</td>
<td>0.721</td>
</tr>
<tr>
<td>2000</td>
<td>-114.672</td>
<td>89.670</td>
<td>-3.201</td>
<td>11.534</td>
<td>4.113</td>
<td>-0.130</td>
</tr>
<tr>
<td>2500</td>
<td>-34.594</td>
<td>55.445</td>
<td>-0.654</td>
<td>4.855</td>
<td>4.985</td>
<td>-0.228</td>
</tr>
<tr>
<td>3150</td>
<td>104.151</td>
<td>26.894</td>
<td>0.337</td>
<td>-12.307</td>
<td>8.082</td>
<td>-0.357</td>
</tr>
<tr>
<td>4000</td>
<td>22.384</td>
<td>38.294</td>
<td>-0.776</td>
<td>-24.392</td>
<td>11.339</td>
<td>-0.518</td>
</tr>
<tr>
<td>5000</td>
<td>-30.762</td>
<td>54.831</td>
<td>-1.539</td>
<td>-8.564</td>
<td>6.933</td>
<td>-0.289</td>
</tr>
<tr>
<td>6300</td>
<td>273.833</td>
<td>-25.071</td>
<td>2.248</td>
<td>-30.050</td>
<td>12.635</td>
<td>-0.558</td>
</tr>
<tr>
<td>8000</td>
<td>118.457</td>
<td>15.361</td>
<td>0.166</td>
<td>-20.833</td>
<td>9.400</td>
<td>-0.408</td>
</tr>
<tr>
<td>10000</td>
<td>11.168</td>
<td>47.858</td>
<td>-2.566</td>
<td>-14.683</td>
<td>6.862</td>
<td>-0.197</td>
</tr>
</tbody>
</table>
Table 6.4: Statistics of Regression Analysis of 2-in Rectangular Ducts (E.H. Price Data)

<table>
<thead>
<tr>
<th>Freq</th>
<th>MIN DIFF</th>
<th>MAX DIFF</th>
<th>AVG DIFF</th>
<th>STD Dev</th>
<th>σ/μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-6.6</td>
<td>10.2</td>
<td>-0.14</td>
<td>3.21</td>
<td>353%</td>
</tr>
<tr>
<td>63</td>
<td>-2.1</td>
<td>2.6</td>
<td>0.11</td>
<td>0.95</td>
<td>554%</td>
</tr>
<tr>
<td>80</td>
<td>-2.8</td>
<td>4.4</td>
<td>0.18</td>
<td>1.35</td>
<td>96%</td>
</tr>
<tr>
<td>100</td>
<td>-4.0</td>
<td>1.9</td>
<td>-0.10</td>
<td>0.98</td>
<td>57%</td>
</tr>
<tr>
<td>125</td>
<td>-3.1</td>
<td>0.6</td>
<td>-0.22</td>
<td>0.76</td>
<td>13%</td>
</tr>
<tr>
<td>160</td>
<td>-4.3</td>
<td>1.1</td>
<td>-0.16</td>
<td>1.01</td>
<td>15%</td>
</tr>
<tr>
<td>200</td>
<td>-8.1</td>
<td>0.9</td>
<td>-0.56</td>
<td>1.87</td>
<td>15%</td>
</tr>
<tr>
<td>250</td>
<td>-13.5</td>
<td>0.7</td>
<td>-0.80</td>
<td>2.90</td>
<td>16%</td>
</tr>
<tr>
<td>315</td>
<td>-18.0</td>
<td>4.4</td>
<td>-0.49</td>
<td>3.40</td>
<td>13%</td>
</tr>
<tr>
<td>400</td>
<td>-1.9</td>
<td>5.2</td>
<td>0.43</td>
<td>1.43</td>
<td>4%</td>
</tr>
<tr>
<td>500</td>
<td>-3.8</td>
<td>5.7</td>
<td>0.04</td>
<td>2.15</td>
<td>6%</td>
</tr>
<tr>
<td>630</td>
<td>-9.7</td>
<td>13.1</td>
<td>-0.29</td>
<td>3.81</td>
<td>9%</td>
</tr>
<tr>
<td>800</td>
<td>-6.0</td>
<td>10.6</td>
<td>0.89</td>
<td>3.83</td>
<td>10%</td>
</tr>
<tr>
<td>1000</td>
<td>-5.4</td>
<td>7.7</td>
<td>0.38</td>
<td>3.13</td>
<td>9%</td>
</tr>
<tr>
<td>1250</td>
<td>-14.6</td>
<td>5.8</td>
<td>-0.06</td>
<td>3.43</td>
<td>12%</td>
</tr>
<tr>
<td>1600</td>
<td>-19.9</td>
<td>2.4</td>
<td>-0.83</td>
<td>4.37</td>
<td>18%</td>
</tr>
<tr>
<td>2000</td>
<td>-12.9</td>
<td>2.7</td>
<td>-1.03</td>
<td>3.14</td>
<td>16%</td>
</tr>
<tr>
<td>2500</td>
<td>-10.3</td>
<td>2.6</td>
<td>-0.78</td>
<td>2.63</td>
<td>15%</td>
</tr>
<tr>
<td>3150</td>
<td>-9.3</td>
<td>2.0</td>
<td>-0.71</td>
<td>2.44</td>
<td>15%</td>
</tr>
<tr>
<td>4000</td>
<td>-8.5</td>
<td>2.5</td>
<td>-0.96</td>
<td>2.71</td>
<td>19%</td>
</tr>
<tr>
<td>5000</td>
<td>-9.2</td>
<td>3.3</td>
<td>-0.99</td>
<td>2.88</td>
<td>21%</td>
</tr>
<tr>
<td>6300</td>
<td>-15.1</td>
<td>2.4</td>
<td>-1.54</td>
<td>3.91</td>
<td>28%</td>
</tr>
<tr>
<td>8000</td>
<td>-12.1</td>
<td>2.4</td>
<td>-0.96</td>
<td>2.92</td>
<td>23%</td>
</tr>
<tr>
<td>10000</td>
<td>-10.4</td>
<td>2.3</td>
<td>-0.97</td>
<td>2.69</td>
<td>23%</td>
</tr>
</tbody>
</table>

6.2 E.H. Price + UNLV Rectangular

Some of the rectangular duct configurations were tested at UNLV’s CMEST testing facility to verify the data provided by E.H. Price. The configurations retested were the 3, 7, and 10ft lengths of the 12x18, 24x24, and 18x48 ducts with both 1-in and 2-in Fiberglass Lining. The 5ft and 20ft lengths were also retested for the 12x18 and 24x24 ducts respectively in both 1-in and 2-in Fiberglass Lining.
The data followed a similar pattern as the E.H. Price data. The exact same regressions were performed on the data, and the final equation took the same form as Equation 1. The coefficients and statistics associated with the retested configurations are shown from Table 6.5 to Table 6.8.

Table 6.5: Coefficients for Regression Analysis of 1-in Rectangular Ducts (E.H. Price + UNLV Data)

<table>
<thead>
<tr>
<th>Freq</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-10.166</td>
<td>22.471</td>
<td>-1.593</td>
<td>-11.078</td>
<td>2.854</td>
<td>-0.177</td>
</tr>
<tr>
<td>63</td>
<td>209.420</td>
<td>-69.467</td>
<td>4.688</td>
<td>-38.950</td>
<td>12.393</td>
<td>-0.824</td>
</tr>
<tr>
<td>80</td>
<td>62.443</td>
<td>-11.184</td>
<td>0.399</td>
<td>21.964</td>
<td>-6.460</td>
<td>0.418</td>
</tr>
<tr>
<td>100</td>
<td>-25.226</td>
<td>8.456</td>
<td>-0.515</td>
<td>-8.132</td>
<td>2.000</td>
<td>-0.084</td>
</tr>
<tr>
<td>125</td>
<td>22.169</td>
<td>-11.320</td>
<td>1.022</td>
<td>-6.222</td>
<td>3.256</td>
<td>-0.171</td>
</tr>
<tr>
<td>160</td>
<td>67.800</td>
<td>-19.862</td>
<td>1.298</td>
<td>5.421</td>
<td>-0.834</td>
<td>0.120</td>
</tr>
<tr>
<td>200</td>
<td>33.198</td>
<td>-10.298</td>
<td>0.658</td>
<td>2.552</td>
<td>0.588</td>
<td>0.089</td>
</tr>
<tr>
<td>250</td>
<td>2.748</td>
<td>-1.158</td>
<td>0.237</td>
<td>-5.317</td>
<td>3.680</td>
<td>-0.054</td>
</tr>
<tr>
<td>315</td>
<td>14.725</td>
<td>-2.828</td>
<td>0.629</td>
<td>-0.219</td>
<td>1.906</td>
<td>0.225</td>
</tr>
<tr>
<td>400</td>
<td>64.220</td>
<td>-16.404</td>
<td>2.325</td>
<td>-9.741</td>
<td>6.287</td>
<td>0.144</td>
</tr>
<tr>
<td>500</td>
<td>-21.635</td>
<td>14.015</td>
<td>1.270</td>
<td>-6.912</td>
<td>6.860</td>
<td>0.430</td>
</tr>
<tr>
<td>630</td>
<td>286.027</td>
<td>-61.939</td>
<td>5.721</td>
<td>-43.124</td>
<td>18.988</td>
<td>0.161</td>
</tr>
<tr>
<td>800</td>
<td>490.277</td>
<td>-148.674</td>
<td>13.688</td>
<td>-106.374</td>
<td>46.052</td>
<td>-1.825</td>
</tr>
<tr>
<td>1000</td>
<td>229.514</td>
<td>-62.632</td>
<td>9.543</td>
<td>-112.819</td>
<td>60.776</td>
<td>-3.714</td>
</tr>
<tr>
<td>1250</td>
<td>186.318</td>
<td>-29.995</td>
<td>7.395</td>
<td>-35.561</td>
<td>36.055</td>
<td>-2.332</td>
</tr>
<tr>
<td>1600</td>
<td>-193.580</td>
<td>97.705</td>
<td>-1.908</td>
<td>102.606</td>
<td>-12.189</td>
<td>0.757</td>
</tr>
<tr>
<td>2000</td>
<td>36.044</td>
<td>35.886</td>
<td>0.812</td>
<td>30.759</td>
<td>0.323</td>
<td>0.099</td>
</tr>
<tr>
<td>2500</td>
<td>-161.293</td>
<td>81.744</td>
<td>-1.805</td>
<td>37.011</td>
<td>-3.987</td>
<td>0.352</td>
</tr>
<tr>
<td>3150</td>
<td>20.469</td>
<td>31.667</td>
<td>0.526</td>
<td>4.687</td>
<td>3.465</td>
<td>-0.061</td>
</tr>
<tr>
<td>4000</td>
<td>136.344</td>
<td>3.970</td>
<td>1.085</td>
<td>-14.759</td>
<td>7.512</td>
<td>-0.253</td>
</tr>
<tr>
<td>5000</td>
<td>164.320</td>
<td>-23.448</td>
<td>3.311</td>
<td>-11.246</td>
<td>7.672</td>
<td>-0.342</td>
</tr>
<tr>
<td>6300</td>
<td>93.803</td>
<td>-0.168</td>
<td>1.391</td>
<td>-10.906</td>
<td>7.210</td>
<td>-0.306</td>
</tr>
<tr>
<td>8000</td>
<td>95.141</td>
<td>2.127</td>
<td>1.151</td>
<td>-15.444</td>
<td>7.978</td>
<td>-0.370</td>
</tr>
<tr>
<td>10000</td>
<td>63.709</td>
<td>15.855</td>
<td>0.171</td>
<td>-16.208</td>
<td>7.745</td>
<td>-0.349</td>
</tr>
<tr>
<td>Freq</td>
<td>MIN DIFF</td>
<td>MAX DIFF</td>
<td>AVG DIFF</td>
<td>STD Dev</td>
<td>σ/μ</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>-7.8</td>
<td>4.7</td>
<td>-0.90</td>
<td>2.48</td>
<td>1683%</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>-4.9</td>
<td>6.0</td>
<td>-0.12</td>
<td>2.00</td>
<td>2813%</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>-4.3</td>
<td>3.9</td>
<td>-0.42</td>
<td>1.83</td>
<td>482%</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-3.4</td>
<td>1.6</td>
<td>-0.17</td>
<td>0.95</td>
<td>-10534%</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>-3.5</td>
<td>3.4</td>
<td>0.20</td>
<td>1.31</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>-0.5</td>
<td>0.7</td>
<td>0.02</td>
<td>0.32</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>-0.6</td>
<td>0.5</td>
<td>0.04</td>
<td>0.25</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>-0.7</td>
<td>0.6</td>
<td>0.04</td>
<td>0.37</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>-2.5</td>
<td>1.5</td>
<td>-0.09</td>
<td>0.78</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>-1.9</td>
<td>1.1</td>
<td>-0.21</td>
<td>0.65</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>-11.1</td>
<td>1.8</td>
<td>-0.63</td>
<td>2.03</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>-6.6</td>
<td>2.4</td>
<td>-1.21</td>
<td>1.97</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>-10.5</td>
<td>8.1</td>
<td>-1.14</td>
<td>3.60</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>-8.0</td>
<td>4.4</td>
<td>-1.03</td>
<td>2.81</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>-6.6</td>
<td>11.2</td>
<td>-0.79</td>
<td>3.65</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>-14.2</td>
<td>8.5</td>
<td>-0.31</td>
<td>4.49</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>-10.0</td>
<td>4.5</td>
<td>-0.09</td>
<td>2.88</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>-12.2</td>
<td>4.0</td>
<td>0.50</td>
<td>2.88</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>-2.4</td>
<td>5.0</td>
<td>0.90</td>
<td>1.82</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>-5.4</td>
<td>3.7</td>
<td>0.05</td>
<td>2.06</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>-11.3</td>
<td>4.1</td>
<td>-0.18</td>
<td>2.97</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td>-11.9</td>
<td>5.5</td>
<td>0.19</td>
<td>3.22</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>-10.6</td>
<td>4.0</td>
<td>-0.01</td>
<td>2.68</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>-8.7</td>
<td>2.8</td>
<td>-0.10</td>
<td>2.34</td>
<td>21%</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.7: Coefficients for Regression Analysis of 2-in Rectangular Ducts (E.H. Price + UNLV Data)

<table>
<thead>
<tr>
<th>Freq</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-119.192</td>
<td>56.615</td>
<td>-3.633</td>
<td>-18.956</td>
<td>5.954</td>
<td>-0.396</td>
</tr>
<tr>
<td>63</td>
<td>18.325</td>
<td>-5.826</td>
<td>0.292</td>
<td>-10.272</td>
<td>2.720</td>
<td>-0.124</td>
</tr>
<tr>
<td>80</td>
<td>-111.811</td>
<td>39.479</td>
<td>-2.803</td>
<td>33.221</td>
<td>-9.811</td>
<td>0.675</td>
</tr>
<tr>
<td>100</td>
<td>-33.846</td>
<td>20.030</td>
<td>-1.599</td>
<td>-14.627</td>
<td>4.190</td>
<td>-0.156</td>
</tr>
<tr>
<td>125</td>
<td>68.726</td>
<td>-22.786</td>
<td>1.782</td>
<td>-1.664</td>
<td>2.708</td>
<td>-0.020</td>
</tr>
<tr>
<td>160</td>
<td>89.977</td>
<td>-21.606</td>
<td>1.421</td>
<td>4.297</td>
<td>0.367</td>
<td>0.221</td>
</tr>
<tr>
<td>200</td>
<td>96.754</td>
<td>-32.486</td>
<td>2.679</td>
<td>-8.628</td>
<td>6.267</td>
<td>0.056</td>
</tr>
<tr>
<td>250</td>
<td>74.684</td>
<td>-30.254</td>
<td>3.196</td>
<td>-16.797</td>
<td>10.578</td>
<td>-0.035</td>
</tr>
<tr>
<td>315</td>
<td>190.228</td>
<td>-64.758</td>
<td>6.861</td>
<td>-19.170</td>
<td>11.631</td>
<td>0.270</td>
</tr>
<tr>
<td>400</td>
<td>34.962</td>
<td>-14.042</td>
<td>3.296</td>
<td>-7.754</td>
<td>10.558</td>
<td>0.952</td>
</tr>
<tr>
<td>500</td>
<td>-210.204</td>
<td>116.938</td>
<td>-5.531</td>
<td>-14.222</td>
<td>7.473</td>
<td>1.757</td>
</tr>
<tr>
<td>630</td>
<td>-374.685</td>
<td>165.141</td>
<td>-4.958</td>
<td>-46.846</td>
<td>31.337</td>
<td>-0.807</td>
</tr>
<tr>
<td>800</td>
<td>722.980</td>
<td>-226.083</td>
<td>22.913</td>
<td>-266.136</td>
<td>116.621</td>
<td>-7.592</td>
</tr>
<tr>
<td>1000</td>
<td>347.541</td>
<td>-77.576</td>
<td>11.086</td>
<td>-25.873</td>
<td>38.297</td>
<td>-2.694</td>
</tr>
<tr>
<td>1250</td>
<td>-286.545</td>
<td>101.324</td>
<td>-0.294</td>
<td>163.725</td>
<td>-23.661</td>
<td>1.231</td>
</tr>
<tr>
<td>1600</td>
<td>-75.764</td>
<td>41.324</td>
<td>1.918</td>
<td>37.926</td>
<td>1.975</td>
<td>-0.086</td>
</tr>
<tr>
<td>2000</td>
<td>71.549</td>
<td>2.758</td>
<td>3.208</td>
<td>4.984</td>
<td>7.448</td>
<td>-0.382</td>
</tr>
<tr>
<td>2500</td>
<td>42.386</td>
<td>-0.537</td>
<td>3.819</td>
<td>2.648</td>
<td>7.047</td>
<td>-0.400</td>
</tr>
<tr>
<td>3150</td>
<td>98.585</td>
<td>-3.316</td>
<td>3.028</td>
<td>-8.344</td>
<td>8.095</td>
<td>-0.387</td>
</tr>
<tr>
<td>4000</td>
<td>251.051</td>
<td>-40.344</td>
<td>4.363</td>
<td>-31.858</td>
<td>13.859</td>
<td>-0.680</td>
</tr>
<tr>
<td>5000</td>
<td>167.214</td>
<td>-27.139</td>
<td>4.226</td>
<td>-14.914</td>
<td>9.612</td>
<td>-0.477</td>
</tr>
<tr>
<td>6300</td>
<td>331.406</td>
<td>-84.857</td>
<td>7.048</td>
<td>-37.735</td>
<td>17.104</td>
<td>-0.889</td>
</tr>
<tr>
<td>8000</td>
<td>141.181</td>
<td>-15.080</td>
<td>2.631</td>
<td>-21.567</td>
<td>10.539</td>
<td>-0.498</td>
</tr>
<tr>
<td>10000</td>
<td>88.527</td>
<td>8.473</td>
<td>0.281</td>
<td>-18.042</td>
<td>8.455</td>
<td>-0.308</td>
</tr>
</tbody>
</table>
Table 6.8: Statistics of Regression Analysis of 2-in Rectangular Ducts (E.H. Price + UNLV Data)

<table>
<thead>
<tr>
<th>Freq</th>
<th>MIN DIFF</th>
<th>MAX DIFF</th>
<th>AVG DIFF</th>
<th>STD Dev</th>
<th>σ/μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-6.8</td>
<td>10.0</td>
<td>-0.04</td>
<td>3.33</td>
<td>177%</td>
</tr>
<tr>
<td>63</td>
<td>-3.2</td>
<td>2.5</td>
<td>0.03</td>
<td>1.16</td>
<td>529%</td>
</tr>
<tr>
<td>80</td>
<td>-2.0</td>
<td>5.1</td>
<td>0.21</td>
<td>1.40</td>
<td>93%</td>
</tr>
<tr>
<td>100</td>
<td>-3.6</td>
<td>2.2</td>
<td>-0.03</td>
<td>0.92</td>
<td>44%</td>
</tr>
<tr>
<td>125</td>
<td>-4.0</td>
<td>2.2</td>
<td>-0.23</td>
<td>1.02</td>
<td>18%</td>
</tr>
<tr>
<td>160</td>
<td>-5.1</td>
<td>1.7</td>
<td>-0.18</td>
<td>1.22</td>
<td>18%</td>
</tr>
<tr>
<td>200</td>
<td>-8.7</td>
<td>1.2</td>
<td>-0.59</td>
<td>1.98</td>
<td>16%</td>
</tr>
<tr>
<td>250</td>
<td>-14.1</td>
<td>0.9</td>
<td>-0.84</td>
<td>2.98</td>
<td>16%</td>
</tr>
<tr>
<td>315</td>
<td>-18.2</td>
<td>4.4</td>
<td>-0.53</td>
<td>3.39</td>
<td>13%</td>
</tr>
<tr>
<td>400</td>
<td>-3.4</td>
<td>5.2</td>
<td>0.26</td>
<td>1.64</td>
<td>5%</td>
</tr>
<tr>
<td>500</td>
<td>-3.8</td>
<td>5.1</td>
<td>0.05</td>
<td>2.39</td>
<td>6%</td>
</tr>
<tr>
<td>630</td>
<td>-10.0</td>
<td>12.8</td>
<td>-0.16</td>
<td>4.15</td>
<td>10%</td>
</tr>
<tr>
<td>800</td>
<td>-5.2</td>
<td>11.7</td>
<td>1.11</td>
<td>3.78</td>
<td>10%</td>
</tr>
<tr>
<td>1000</td>
<td>-5.3</td>
<td>10.6</td>
<td>0.87</td>
<td>3.71</td>
<td>11%</td>
</tr>
<tr>
<td>1250</td>
<td>-14.6</td>
<td>13.7</td>
<td>-0.25</td>
<td>4.58</td>
<td>15%</td>
</tr>
<tr>
<td>1600</td>
<td>-21.5</td>
<td>2.1</td>
<td>-1.15</td>
<td>4.61</td>
<td>20%</td>
</tr>
<tr>
<td>2000</td>
<td>-14.9</td>
<td>3.5</td>
<td>-1.18</td>
<td>3.53</td>
<td>19%</td>
</tr>
<tr>
<td>2500</td>
<td>-12.0</td>
<td>3.4</td>
<td>-0.92</td>
<td>3.05</td>
<td>19%</td>
</tr>
<tr>
<td>3150</td>
<td>-10.1</td>
<td>3.0</td>
<td>-0.66</td>
<td>2.88</td>
<td>19%</td>
</tr>
<tr>
<td>4000</td>
<td>-8.9</td>
<td>3.9</td>
<td>-0.97</td>
<td>3.14</td>
<td>23%</td>
</tr>
<tr>
<td>5000</td>
<td>-10.1</td>
<td>4.2</td>
<td>-0.95</td>
<td>3.36</td>
<td>25%</td>
</tr>
<tr>
<td>6300</td>
<td>-19.0</td>
<td>4.3</td>
<td>-1.89</td>
<td>5.13</td>
<td>39%</td>
</tr>
<tr>
<td>8000</td>
<td>-13.1</td>
<td>3.2</td>
<td>-0.91</td>
<td>3.45</td>
<td>28%</td>
</tr>
<tr>
<td>10000</td>
<td>-11.1</td>
<td>3.6</td>
<td>-0.88</td>
<td>3.20</td>
<td>28%</td>
</tr>
</tbody>
</table>

Table 6.9 and Table 6.10 compare the statistics from the E.H. Price data, designated by P, and the added data from UNLV, designated by P+U, for the 1-in thick liner and 2-in thick liner respectively.
Table 6.9: Comparison of Statistics for 1-in Rectangular Ducts

<table>
<thead>
<tr>
<th>Freq</th>
<th>AVG DIFF (P)</th>
<th>AVG DIFF (P+U)</th>
<th>Difference</th>
<th>STD DEV (P)</th>
<th>STD DEV(P+U)</th>
<th>Difference</th>
<th>σ/μ (P)</th>
<th>σ/μ (P+U)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.01</td>
<td>-0.90</td>
<td>0.91</td>
<td>2.12</td>
<td>2.48</td>
<td>-0.36</td>
<td>1440%</td>
<td>1683%</td>
<td>-2.43</td>
</tr>
<tr>
<td>63</td>
<td>-0.02</td>
<td>-0.12</td>
<td>0.10</td>
<td>1.89</td>
<td>2.00</td>
<td>-0.11</td>
<td>2653%</td>
<td>2813%</td>
<td>-1.60</td>
</tr>
<tr>
<td>80</td>
<td>0.00</td>
<td>-0.42</td>
<td>0.43</td>
<td>1.67</td>
<td>1.83</td>
<td>-0.16</td>
<td>441%</td>
<td>482%</td>
<td>-0.41</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
<td>-0.17</td>
<td>0.16</td>
<td>0.84</td>
<td>0.95</td>
<td>-0.10</td>
<td>-9371%</td>
<td>-10534%</td>
<td>11.63</td>
</tr>
<tr>
<td>125</td>
<td>-0.01</td>
<td>0.20</td>
<td>-0.21</td>
<td>1.29</td>
<td>1.31</td>
<td>-0.02</td>
<td>48%</td>
<td>49%</td>
<td>-0.01</td>
</tr>
<tr>
<td>160</td>
<td>0.00</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.28</td>
<td>0.32</td>
<td>-0.04</td>
<td>11%</td>
<td>13%</td>
<td>-0.02</td>
</tr>
<tr>
<td>200</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.01</td>
<td>0.24</td>
<td>0.25</td>
<td>-0.01</td>
<td>6%</td>
<td>6%</td>
<td>0.00</td>
</tr>
<tr>
<td>250</td>
<td>0.01</td>
<td>0.04</td>
<td>-0.01</td>
<td>0.37</td>
<td>0.37</td>
<td>0.00</td>
<td>6%</td>
<td>6%</td>
<td>0.00</td>
</tr>
<tr>
<td>315</td>
<td>0.00</td>
<td>-0.09</td>
<td>0.10</td>
<td>0.76</td>
<td>0.78</td>
<td>-0.01</td>
<td>9%</td>
<td>9%</td>
<td>0.00</td>
</tr>
<tr>
<td>400</td>
<td>0.01</td>
<td>-0.21</td>
<td>-0.22</td>
<td>0.55</td>
<td>0.65</td>
<td>-0.10</td>
<td>4%</td>
<td>4%</td>
<td>-0.01</td>
</tr>
<tr>
<td>500</td>
<td>-0.28</td>
<td>-0.63</td>
<td>0.35</td>
<td>2.03</td>
<td>2.03</td>
<td>0.00</td>
<td>9%</td>
<td>9%</td>
<td>0.00</td>
</tr>
<tr>
<td>630</td>
<td>-0.25</td>
<td>-1.21</td>
<td>0.96</td>
<td>1.51</td>
<td>1.97</td>
<td>-0.47</td>
<td>5%</td>
<td>6%</td>
<td>-0.01</td>
</tr>
<tr>
<td>800</td>
<td>-1.20</td>
<td>-1.14</td>
<td>-0.06</td>
<td>3.58</td>
<td>3.60</td>
<td>-0.03</td>
<td>10%</td>
<td>10%</td>
<td>0.00</td>
</tr>
<tr>
<td>1000</td>
<td>-0.62</td>
<td>-1.03</td>
<td>0.41</td>
<td>2.68</td>
<td>2.81</td>
<td>-0.13</td>
<td>8%</td>
<td>8%</td>
<td>0.00</td>
</tr>
<tr>
<td>1250</td>
<td>-0.67</td>
<td>-0.79</td>
<td>0.12</td>
<td>3.86</td>
<td>3.65</td>
<td>0.20</td>
<td>11%</td>
<td>11%</td>
<td>0.01</td>
</tr>
<tr>
<td>1600</td>
<td>-0.39</td>
<td>-0.31</td>
<td>-0.08</td>
<td>3.65</td>
<td>4.49</td>
<td>-0.84</td>
<td>13%</td>
<td>16%</td>
<td>-0.03</td>
</tr>
<tr>
<td>2000</td>
<td>-0.62</td>
<td>-0.09</td>
<td>-0.54</td>
<td>2.61</td>
<td>2.88</td>
<td>-0.27</td>
<td>12%</td>
<td>13%</td>
<td>-0.01</td>
</tr>
<tr>
<td>2500</td>
<td>-0.28</td>
<td>0.50</td>
<td>-0.78</td>
<td>2.38</td>
<td>2.88</td>
<td>-0.50</td>
<td>13%</td>
<td>15%</td>
<td>-0.03</td>
</tr>
<tr>
<td>3150</td>
<td>0.01</td>
<td>0.90</td>
<td>-0.89</td>
<td>1.24</td>
<td>1.82</td>
<td>-0.58</td>
<td>7%</td>
<td>11%</td>
<td>-0.03</td>
</tr>
<tr>
<td>4000</td>
<td>-0.32</td>
<td>0.05</td>
<td>-0.37</td>
<td>1.83</td>
<td>2.06</td>
<td>-0.22</td>
<td>13%</td>
<td>15%</td>
<td>-0.02</td>
</tr>
<tr>
<td>5000</td>
<td>-0.53</td>
<td>-0.18</td>
<td>-0.35</td>
<td>2.27</td>
<td>2.97</td>
<td>-0.69</td>
<td>18%</td>
<td>23%</td>
<td>-0.05</td>
</tr>
<tr>
<td>6300</td>
<td>-0.47</td>
<td>0.19</td>
<td>-0.67</td>
<td>2.22</td>
<td>3.22</td>
<td>-1.00</td>
<td>18%</td>
<td>26%</td>
<td>-0.08</td>
</tr>
<tr>
<td>8000</td>
<td>-0.35</td>
<td>-0.01</td>
<td>-0.34</td>
<td>2.03</td>
<td>2.68</td>
<td>-0.66</td>
<td>18%</td>
<td>24%</td>
<td>-0.06</td>
</tr>
<tr>
<td>10000</td>
<td>-0.23</td>
<td>-0.10</td>
<td>-0.13</td>
<td>1.87</td>
<td>2.34</td>
<td>-0.47</td>
<td>17%</td>
<td>21%</td>
<td>-0.04</td>
</tr>
</tbody>
</table>
Table 6.10: Comparison of Statistics for 2-in Rectangular Ducts

<table>
<thead>
<tr>
<th>Freq</th>
<th>AVG DIFF (P)</th>
<th>AVG DIFF (P+U)</th>
<th>Difference</th>
<th>STD DEV (P)</th>
<th>STD DEV(P+U)</th>
<th>Difference</th>
<th>σ/μ (P)</th>
<th>σ/μ (P+U)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-0.14</td>
<td>-0.04</td>
<td>-0.11</td>
<td>3.21</td>
<td>3.33</td>
<td>-0.13</td>
<td>353%</td>
<td>177%</td>
<td>1.75</td>
</tr>
<tr>
<td>63</td>
<td>0.11</td>
<td>0.03</td>
<td>0.07</td>
<td>0.95</td>
<td>1.16</td>
<td>0.21</td>
<td>554%</td>
<td>529%</td>
<td>0.25</td>
</tr>
<tr>
<td>80</td>
<td>0.18</td>
<td>0.21</td>
<td>-0.03</td>
<td>1.35</td>
<td>1.40</td>
<td>-0.05</td>
<td>96%</td>
<td>93%</td>
<td>0.03</td>
</tr>
<tr>
<td>100</td>
<td>-0.10</td>
<td>-0.03</td>
<td>-0.07</td>
<td>0.98</td>
<td>0.92</td>
<td>0.06</td>
<td>57%</td>
<td>44%</td>
<td>0.13</td>
</tr>
<tr>
<td>125</td>
<td>-0.22</td>
<td>-0.23</td>
<td>0.01</td>
<td>0.76</td>
<td>1.02</td>
<td>-0.26</td>
<td>13%</td>
<td>18%</td>
<td>-0.05</td>
</tr>
<tr>
<td>160</td>
<td>-0.16</td>
<td>-0.18</td>
<td>0.03</td>
<td>1.01</td>
<td>1.22</td>
<td>-0.21</td>
<td>15%</td>
<td>18%</td>
<td>-0.02</td>
</tr>
<tr>
<td>200</td>
<td>-0.56</td>
<td>-0.59</td>
<td>0.03</td>
<td>1.87</td>
<td>1.98</td>
<td>-0.10</td>
<td>15%</td>
<td>16%</td>
<td>-0.01</td>
</tr>
<tr>
<td>250</td>
<td>-0.80</td>
<td>-0.84</td>
<td>0.04</td>
<td>2.90</td>
<td>2.98</td>
<td>-0.08</td>
<td>16%</td>
<td>16%</td>
<td>0.00</td>
</tr>
<tr>
<td>315</td>
<td>-0.49</td>
<td>-0.53</td>
<td>0.04</td>
<td>3.40</td>
<td>3.39</td>
<td>0.00</td>
<td>13%</td>
<td>13%</td>
<td>0.00</td>
</tr>
<tr>
<td>400</td>
<td>0.43</td>
<td>0.26</td>
<td>0.17</td>
<td>1.43</td>
<td>1.64</td>
<td>-0.21</td>
<td>4%</td>
<td>5%</td>
<td>-0.01</td>
</tr>
<tr>
<td>500</td>
<td>0.04</td>
<td>0.05</td>
<td>-0.02</td>
<td>2.15</td>
<td>2.39</td>
<td>-0.23</td>
<td>6%</td>
<td>6%</td>
<td>0.00</td>
</tr>
<tr>
<td>630</td>
<td>-0.29</td>
<td>-0.16</td>
<td>-0.13</td>
<td>3.81</td>
<td>4.15</td>
<td>-0.34</td>
<td>9%</td>
<td>10%</td>
<td>0.00</td>
</tr>
<tr>
<td>800</td>
<td>0.89</td>
<td>1.11</td>
<td>-0.22</td>
<td>3.83</td>
<td>3.78</td>
<td>0.05</td>
<td>10%</td>
<td>10%</td>
<td>0.00</td>
</tr>
<tr>
<td>1000</td>
<td>0.38</td>
<td>0.87</td>
<td>-0.49</td>
<td>3.13</td>
<td>3.71</td>
<td>-0.58</td>
<td>9%</td>
<td>11%</td>
<td>-0.01</td>
</tr>
<tr>
<td>1250</td>
<td>-0.06</td>
<td>-0.25</td>
<td>0.19</td>
<td>3.43</td>
<td>4.58</td>
<td>-1.16</td>
<td>12%</td>
<td>15%</td>
<td>-0.04</td>
</tr>
<tr>
<td>1600</td>
<td>-0.83</td>
<td>-1.15</td>
<td>0.32</td>
<td>4.37</td>
<td>4.61</td>
<td>-0.24</td>
<td>18%</td>
<td>20%</td>
<td>-0.02</td>
</tr>
<tr>
<td>2000</td>
<td>-1.03</td>
<td>-1.18</td>
<td>0.14</td>
<td>3.14</td>
<td>3.53</td>
<td>-0.39</td>
<td>16%</td>
<td>19%</td>
<td>-0.03</td>
</tr>
<tr>
<td>2500</td>
<td>-0.78</td>
<td>-0.92</td>
<td>0.14</td>
<td>2.63</td>
<td>3.05</td>
<td>-0.42</td>
<td>15%</td>
<td>19%</td>
<td>-0.03</td>
</tr>
<tr>
<td>3150</td>
<td>-0.71</td>
<td>-0.66</td>
<td>-0.05</td>
<td>2.44</td>
<td>2.88</td>
<td>-0.44</td>
<td>15%</td>
<td>19%</td>
<td>-0.04</td>
</tr>
<tr>
<td>4000</td>
<td>-0.96</td>
<td>-0.97</td>
<td>0.01</td>
<td>2.71</td>
<td>3.14</td>
<td>-0.44</td>
<td>19%</td>
<td>23%</td>
<td>-0.03</td>
</tr>
<tr>
<td>5000</td>
<td>-0.99</td>
<td>-0.95</td>
<td>-0.04</td>
<td>2.88</td>
<td>3.36</td>
<td>-0.49</td>
<td>21%</td>
<td>25%</td>
<td>-0.04</td>
</tr>
<tr>
<td>6300</td>
<td>-1.54</td>
<td>-1.89</td>
<td>0.35</td>
<td>3.91</td>
<td>5.13</td>
<td>-1.21</td>
<td>28%</td>
<td>39%</td>
<td>-0.11</td>
</tr>
<tr>
<td>8000</td>
<td>-0.96</td>
<td>-0.91</td>
<td>-0.06</td>
<td>2.92</td>
<td>3.45</td>
<td>-0.53</td>
<td>23%</td>
<td>28%</td>
<td>-0.05</td>
</tr>
<tr>
<td>10000</td>
<td>-0.97</td>
<td>-0.88</td>
<td>-0.09</td>
<td>2.69</td>
<td>3.20</td>
<td>-0.51</td>
<td>23%</td>
<td>28%</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

6.3 UNLV Round

All of the round duct configurations were tested at UNLV’s CMEST testing facility. The regression analyses that were performed were similar to the rectangular duct configurations. The main difference is that the data fit better into a third order polynomial regression rather than a second order. The other difference is instead of using the P/A value of the duct, the round duct analyses use the duct diameter as the defining characteristic of the ducts. Equation 2 was used to predict insertion loss values for the round ducts.

\[
IL = (a_1 \cdot D^3 + a_2 \cdot D^2 + a_3 \cdot D + a_4) + L \cdot (b_1 \cdot D^3 + b_2 \cdot D^2 + b_3 \cdot D + b_4) \quad (2)
\]
Where all the variables are the same as the previous equation with the exception of D being the duct diameter in inches.

Table 6.11 to Table 6.14 show the coefficients and statistics associated with the round duct tests for both 1-in and 2-in Fiberglass Lining. All of the statistics show a better fit for the round duct data compared to the rectangular duct data. The AVG DIFF as well as STD DEV are all much lower overall.
Table 6.11: Coefficients for Regression Analysis of 1-in Round Ducts

<table>
<thead>
<tr>
<th>Freq</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3.77E-04</td>
<td>-2.96E-02</td>
<td>6.58E-01</td>
<td>-3.20E+00</td>
<td>-3.07E-06</td>
<td>4.93E-04</td>
<td>-2.28E-02</td>
<td>3.19E-01</td>
</tr>
<tr>
<td>63</td>
<td>2.47E-04</td>
<td>-2.87E-02</td>
<td>1.02E+00</td>
<td>-9.98E+00</td>
<td>5.31E-06</td>
<td>2.80E-04</td>
<td>3.62E-04</td>
<td>7.22E-02</td>
</tr>
<tr>
<td>80</td>
<td>3.87E-05</td>
<td>-3.97E-03</td>
<td>1.11E-01</td>
<td>-3.57E-01</td>
<td>1.19E-05</td>
<td>-1.12E-03</td>
<td>3.19E-02</td>
<td>-2.35E-01</td>
</tr>
<tr>
<td>100</td>
<td>1.14E-04</td>
<td>-1.15E-02</td>
<td>3.42E-01</td>
<td>-2.60E+00</td>
<td>-3.55E-06</td>
<td>4.85E-04</td>
<td>-2.14E-02</td>
<td>3.46E-01</td>
</tr>
<tr>
<td>125</td>
<td>-6.62E-06</td>
<td>7.89E-04</td>
<td>-4.71E-02</td>
<td>9.82E-01</td>
<td>-3.63E-06</td>
<td>5.44E-04</td>
<td>-2.59E-02</td>
<td>4.66E-01</td>
</tr>
<tr>
<td>160</td>
<td>7.39E-05</td>
<td>-8.33E-03</td>
<td>2.85E-01</td>
<td>-2.54E+00</td>
<td>-1.28E-05</td>
<td>1.52E-03</td>
<td>3.62E-04</td>
<td>7.22E-02</td>
</tr>
<tr>
<td>200</td>
<td>-1.13E-05</td>
<td>6.08E-04</td>
<td>-3.08E-03</td>
<td>2.47E-01</td>
<td>-8.35E-06</td>
<td>1.16E-03</td>
<td>-5.44E-02</td>
<td>9.94E-01</td>
</tr>
<tr>
<td>250</td>
<td>8.08E-05</td>
<td>-8.07E-03</td>
<td>2.27E-01</td>
<td>-1.57E+00</td>
<td>-1.82E-05</td>
<td>2.24E-03</td>
<td>-9.24E-02</td>
<td>1.52E+00</td>
</tr>
<tr>
<td>315</td>
<td>1.00E-05</td>
<td>-1.98E-03</td>
<td>8.70E-02</td>
<td>-8.41E-01</td>
<td>-2.26E-05</td>
<td>2.87E-03</td>
<td>-1.25E-01</td>
<td>2.20E+00</td>
</tr>
<tr>
<td>400</td>
<td>-1.72E-04</td>
<td>1.63E-02</td>
<td>-4.93E-01</td>
<td>6.83E+00</td>
<td>3.03E-06</td>
<td>6.11E-04</td>
<td>-6.66E-02</td>
<td>2.01E+00</td>
</tr>
<tr>
<td>500</td>
<td>1.06E-04</td>
<td>-1.24E-02</td>
<td>4.00E-01</td>
<td>-1.08E+00</td>
<td>-2.36E-06</td>
<td>1.42E-03</td>
<td>-1.02E-01</td>
<td>2.87E+00</td>
</tr>
<tr>
<td>630</td>
<td>4.53E-04</td>
<td>-3.93E-02</td>
<td>9.34E-01</td>
<td>3.01E-01</td>
<td>-3.78E-05</td>
<td>3.89E-03</td>
<td>-1.42E-01</td>
<td>3.42E+00</td>
</tr>
<tr>
<td>800</td>
<td>-5.02E-04</td>
<td>5.11E-02</td>
<td>-1.48E+00</td>
<td>1.99E+01</td>
<td>1.17E-04</td>
<td>-1.06E-03</td>
<td>2.18E-01</td>
<td>1.72E+00</td>
</tr>
<tr>
<td>1000</td>
<td>3.75E-04</td>
<td>-1.09E-02</td>
<td>-7.71E-01</td>
<td>3.30E+01</td>
<td>9.69E-05</td>
<td>-9.81E-03</td>
<td>2.46E-01</td>
<td>2.71E-01</td>
</tr>
<tr>
<td>1250</td>
<td>-1.15E-03</td>
<td>1.44E-01</td>
<td>-5.81E+00</td>
<td>8.38E+01</td>
<td>1.17E-04</td>
<td>-1.20E-02</td>
<td>3.37E-01</td>
<td>-1.37E+00</td>
</tr>
<tr>
<td>1600</td>
<td>-1.49E-03</td>
<td>1.75E-01</td>
<td>-6.66E+00</td>
<td>8.81E+01</td>
<td>8.26E-05</td>
<td>-7.78E-03</td>
<td>1.88E-01</td>
<td>-5.15E-02</td>
</tr>
<tr>
<td>2000</td>
<td>-7.81E-04</td>
<td>1.01E-01</td>
<td>-4.31E+00</td>
<td>6.52E+01</td>
<td>7.95E-06</td>
<td>-2.29E-04</td>
<td>-3.32E-02</td>
<td>1.50E+00</td>
</tr>
<tr>
<td>2500</td>
<td>-3.19E-04</td>
<td>4.26E-02</td>
<td>-1.92E+00</td>
<td>3.51E+01</td>
<td>-5.17E-05</td>
<td>6.19E-03</td>
<td>-2.51E-01</td>
<td>3.63E+00</td>
</tr>
<tr>
<td>3150</td>
<td>6.47E-04</td>
<td>-5.30E-02</td>
<td>1.05E+00</td>
<td>5.53E+00</td>
<td>-8.42E-05</td>
<td>9.13E-03</td>
<td>-3.32E-01</td>
<td>4.37E+00</td>
</tr>
<tr>
<td>4000</td>
<td>1.06E-03</td>
<td>-9.88E-02</td>
<td>2.60E+00</td>
<td>-9.10E+00</td>
<td>-8.71E-05</td>
<td>9.28E-03</td>
<td>-3.22E-01</td>
<td>3.84E+00</td>
</tr>
<tr>
<td>5000</td>
<td>7.88E-04</td>
<td>-7.65E-02</td>
<td>2.03E+00</td>
<td>-3.26E+00</td>
<td>-4.29E-05</td>
<td>4.65E-03</td>
<td>-1.65E-01</td>
<td>2.11E+00</td>
</tr>
<tr>
<td>6300</td>
<td>8.54E-04</td>
<td>-8.16E-02</td>
<td>2.08E+00</td>
<td>-2.14E+00</td>
<td>-3.09E-05</td>
<td>3.50E-03</td>
<td>-1.29E-01</td>
<td>1.78E+00</td>
</tr>
<tr>
<td>8000</td>
<td>1.05E-03</td>
<td>-1.01E-01</td>
<td>2.64E+00</td>
<td>-6.74E+00</td>
<td>-3.67E-05</td>
<td>3.92E-03</td>
<td>-1.35E-01</td>
<td>1.71E+00</td>
</tr>
<tr>
<td>10000</td>
<td>1.73E-03</td>
<td>-1.73E-01</td>
<td>5.04E+00</td>
<td>-3.11E+01</td>
<td>-1.09E-04</td>
<td>1.14E-02</td>
<td>-3.77E-01</td>
<td>4.07E+00</td>
</tr>
</tbody>
</table>
Table 6.12: Statistics of Regression Analysis of 1-in Round Ducts

<table>
<thead>
<tr>
<th>Freq</th>
<th>MIN DIFF</th>
<th>MAX DIFF</th>
<th>AVG DIFF</th>
<th>STD DEV</th>
<th>σ/μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-1.2</td>
<td>1.5</td>
<td>3.83E-03</td>
<td>0.73</td>
<td>66%</td>
</tr>
<tr>
<td>63</td>
<td>-1.5</td>
<td>1.6</td>
<td>3.33E-03</td>
<td>0.77</td>
<td>184%</td>
</tr>
<tr>
<td>80</td>
<td>-1.5</td>
<td>1.0</td>
<td>-2.02E-04</td>
<td>0.53</td>
<td>73%</td>
</tr>
<tr>
<td>100</td>
<td>-0.5</td>
<td>0.7</td>
<td>-3.98E-04</td>
<td>0.33</td>
<td>35%</td>
</tr>
<tr>
<td>125</td>
<td>-0.6</td>
<td>0.5</td>
<td>-1.09E-03</td>
<td>0.26</td>
<td>18%</td>
</tr>
<tr>
<td>160</td>
<td>-0.4</td>
<td>0.3</td>
<td>1.15E-05</td>
<td>0.19</td>
<td>9%</td>
</tr>
<tr>
<td>200</td>
<td>-0.2</td>
<td>0.5</td>
<td>3.54E-04</td>
<td>0.17</td>
<td>5%</td>
</tr>
<tr>
<td>250</td>
<td>-0.3</td>
<td>0.3</td>
<td>-1.25E-05</td>
<td>0.16</td>
<td>4%</td>
</tr>
<tr>
<td>315</td>
<td>-0.4</td>
<td>0.3</td>
<td>4.99E-04</td>
<td>0.20</td>
<td>3%</td>
</tr>
<tr>
<td>400</td>
<td>-1.8</td>
<td>1.5</td>
<td>9.71E-05</td>
<td>0.73</td>
<td>6%</td>
</tr>
<tr>
<td>500</td>
<td>-2.6</td>
<td>3.4</td>
<td>-1.69E-03</td>
<td>1.17</td>
<td>7%</td>
</tr>
<tr>
<td>630</td>
<td>-3.8</td>
<td>6.7</td>
<td>1.37E-01</td>
<td>2.37</td>
<td>9%</td>
</tr>
<tr>
<td>800</td>
<td>-5.0</td>
<td>3.9</td>
<td>-8.97E-02</td>
<td>2.34</td>
<td>8%</td>
</tr>
<tr>
<td>1000</td>
<td>-3.7</td>
<td>2.8</td>
<td>-2.05E-01</td>
<td>2.06</td>
<td>8%</td>
</tr>
<tr>
<td>1250</td>
<td>-3.0</td>
<td>2.6</td>
<td>4.18E-02</td>
<td>1.50</td>
<td>6%</td>
</tr>
<tr>
<td>1600</td>
<td>-3.0</td>
<td>4.1</td>
<td>1.66E-02</td>
<td>1.24</td>
<td>6%</td>
</tr>
<tr>
<td>2000</td>
<td>-3.7</td>
<td>2.4</td>
<td>5.19E-03</td>
<td>1.32</td>
<td>8%</td>
</tr>
<tr>
<td>2500</td>
<td>-2.7</td>
<td>2.4</td>
<td>5.32E-04</td>
<td>1.11</td>
<td>7%</td>
</tr>
<tr>
<td>3150</td>
<td>-1.8</td>
<td>2.0</td>
<td>2.58E-03</td>
<td>0.94</td>
<td>7%</td>
</tr>
<tr>
<td>4000</td>
<td>-2.1</td>
<td>2.9</td>
<td>5.98E-03</td>
<td>1.00</td>
<td>8%</td>
</tr>
<tr>
<td>5000</td>
<td>-2.2</td>
<td>3.8</td>
<td>1.20E-02</td>
<td>1.35</td>
<td>11%</td>
</tr>
<tr>
<td>6300</td>
<td>-2.1</td>
<td>3.7</td>
<td>1.25E-02</td>
<td>1.36</td>
<td>11%</td>
</tr>
<tr>
<td>8000</td>
<td>-2.7</td>
<td>3.3</td>
<td>1.10E-02</td>
<td>1.29</td>
<td>11%</td>
</tr>
<tr>
<td>10000</td>
<td>-11.5</td>
<td>2.2</td>
<td>-7.15E-01</td>
<td>2.79</td>
<td>25%</td>
</tr>
</tbody>
</table>
Table 6.13: Coefficients for Regression Analysis of 2-in Round Ducts

<table>
<thead>
<tr>
<th>Freq</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.31E-04</td>
<td>-5.71E-03</td>
<td>-8.70E-02</td>
<td>4.68E+00</td>
<td>-6.14E-06</td>
<td>7.25E-04</td>
<td>-2.53E-02</td>
<td>2.84E-01</td>
</tr>
<tr>
<td>63</td>
<td>3.60E-04</td>
<td>-3.64E-02</td>
<td>1.09E+00</td>
<td>-8.31E+00</td>
<td>-9.05E-06</td>
<td>9.23E-04</td>
<td>-3.35E-02</td>
<td>5.48E-01</td>
</tr>
<tr>
<td>80</td>
<td>7.10E-05</td>
<td>-2.75E-03</td>
<td>-7.77E-02</td>
<td>2.77E+00</td>
<td>-1.29E-05</td>
<td>1.37E-03</td>
<td>-7.14E-02</td>
<td>1.06E+00</td>
</tr>
<tr>
<td>100</td>
<td>1.08E-04</td>
<td>-8.72E-03</td>
<td>1.85E-01</td>
<td>-3.32E-01</td>
<td>-7.77E-02</td>
<td>9.23E-04</td>
<td>-6.23E-02</td>
<td>1.13E+00</td>
</tr>
<tr>
<td>125</td>
<td>2.41E-05</td>
<td>1.39E-03</td>
<td>-2.03E-01</td>
<td>4.13E+00</td>
<td>-1.85E-05</td>
<td>2.53E-03</td>
<td>-1.19E-01</td>
<td>2.37E+00</td>
</tr>
<tr>
<td>160</td>
<td>7.10E-05</td>
<td>-2.75E-03</td>
<td>-7.77E-02</td>
<td>2.77E+00</td>
<td>-9.05E-06</td>
<td>9.23E-04</td>
<td>-6.23E-02</td>
<td>1.13E+00</td>
</tr>
<tr>
<td>200</td>
<td>1.08E-04</td>
<td>-8.72E-03</td>
<td>1.85E-01</td>
<td>-3.32E-01</td>
<td>-7.77E-02</td>
<td>9.23E-04</td>
<td>-6.23E-02</td>
<td>1.13E+00</td>
</tr>
<tr>
<td>250</td>
<td>2.41E-05</td>
<td>1.39E-03</td>
<td>-2.03E-01</td>
<td>4.13E+00</td>
<td>-1.85E-05</td>
<td>2.53E-03</td>
<td>-1.19E-01</td>
<td>2.37E+00</td>
</tr>
<tr>
<td>315</td>
<td>1.42E-04</td>
<td>-1.11E-02</td>
<td>2.47E-01</td>
<td>-1.04E+00</td>
<td>-7.49E-05</td>
<td>8.39E-03</td>
<td>-3.13E-01</td>
<td>5.18E+00</td>
</tr>
<tr>
<td>400</td>
<td>6.55E-04</td>
<td>-5.60E-02</td>
<td>1.34E+00</td>
<td>2.12E+00</td>
<td>-3.55E-05</td>
<td>3.86E-03</td>
<td>-1.44E-01</td>
<td>3.33E+00</td>
</tr>
<tr>
<td>500</td>
<td>6.22E-04</td>
<td>-5.25E-02</td>
<td>1.24E+00</td>
<td>8.67E+00</td>
<td>-1.66E-05</td>
<td>2.10E-03</td>
<td>-9.18E-02</td>
<td>2.67E+00</td>
</tr>
<tr>
<td>630</td>
<td>-5.78E-04</td>
<td>2.77E-02</td>
<td>-8.86E-02</td>
<td>1.59E+00</td>
<td>-1.25E-04</td>
<td>1.36E-02</td>
<td>-4.94E-01</td>
<td>7.36E+00</td>
</tr>
<tr>
<td>800</td>
<td>1.27E-03</td>
<td>-1.06E-01</td>
<td>1.92E+00</td>
<td>2.20E+00</td>
<td>4.61E-05</td>
<td>6.04E-03</td>
<td>2.05E-01</td>
<td>-4.17E-01</td>
</tr>
<tr>
<td>1000</td>
<td>-1.10E-03</td>
<td>1.38E-01</td>
<td>-5.66E+00</td>
<td>8.60E+00</td>
<td>2.73E-04</td>
<td>2.77E-02</td>
<td>8.15E-01</td>
<td>-5.23E+00</td>
</tr>
<tr>
<td>1250</td>
<td>-2.65E-03</td>
<td>2.89E-01</td>
<td>-1.03E+00</td>
<td>1.27E+02</td>
<td>1.74E-04</td>
<td>1.75E-02</td>
<td>5.06E+00</td>
<td>-3.03E+00</td>
</tr>
<tr>
<td>1600</td>
<td>-1.78E-03</td>
<td>1.91E-01</td>
<td>-6.80E+00</td>
<td>8.63E+00</td>
<td>3.29E-05</td>
<td>1.94E-03</td>
<td>-2.45E-02</td>
<td>2.26E+00</td>
</tr>
<tr>
<td>2000</td>
<td>-2.48E-04</td>
<td>2.09E-02</td>
<td>-7.92E-01</td>
<td>1.98E+01</td>
<td>-1.70E-04</td>
<td>2.03E-02</td>
<td>-7.85E-01</td>
<td>1.01E+01</td>
</tr>
<tr>
<td>2500</td>
<td>-8.57E-04</td>
<td>8.60E-02</td>
<td>-2.94E+00</td>
<td>4.20E+01</td>
<td>-4.07E-05</td>
<td>5.64E-03</td>
<td>-2.51E-01</td>
<td>3.78E+00</td>
</tr>
<tr>
<td>3150</td>
<td>-1.06E-06</td>
<td>-2.22E-03</td>
<td>-1.23E-01</td>
<td>1.42E+01</td>
<td>-6.31E-05</td>
<td>7.81E-03</td>
<td>-3.15E-01</td>
<td>4.44E+00</td>
</tr>
<tr>
<td>4000</td>
<td>3.21E-04</td>
<td>-4.09E-02</td>
<td>1.25E+00</td>
<td>1.83E+00</td>
<td>-5.86E-05</td>
<td>7.27E-03</td>
<td>-2.85E-01</td>
<td>3.70E+00</td>
</tr>
<tr>
<td>5000</td>
<td>4.88E-04</td>
<td>-5.81E-02</td>
<td>1.75E+00</td>
<td>-1.55E+00</td>
<td>-2.38E-05</td>
<td>3.49E-03</td>
<td>-1.50E-01</td>
<td>2.14E+00</td>
</tr>
<tr>
<td>6300</td>
<td>6.77E-04</td>
<td>-7.19E-02</td>
<td>1.94E+00</td>
<td>-1.27E-01</td>
<td>-1.22E-05</td>
<td>2.22E-03</td>
<td>-1.04E-01</td>
<td>1.60E+00</td>
</tr>
<tr>
<td>8000</td>
<td>1.03E-03</td>
<td>-1.02E-01</td>
<td>2.66E+00</td>
<td>-4.67E+00</td>
<td>-2.32E-05</td>
<td>2.97E-03</td>
<td>-1.12E-01</td>
<td>1.48E+00</td>
</tr>
<tr>
<td>10000</td>
<td>1.69E-03</td>
<td>-1.62E-01</td>
<td>4.31E+00</td>
<td>-1.82E+01</td>
<td>-5.45E-05</td>
<td>5.44E-03</td>
<td>-1.60E-01</td>
<td>1.51E+00</td>
</tr>
</tbody>
</table>
Table 6.14: Statistics of Regression Analysis of 2-in Round Ducts

<table>
<thead>
<tr>
<th>Freq</th>
<th>MIN DIFF</th>
<th>MAX DIFF</th>
<th>AVG DIFF</th>
<th>STD Dev</th>
<th>σ/μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-2.8</td>
<td>2.7</td>
<td>0.00</td>
<td>1.00</td>
<td>51%</td>
</tr>
<tr>
<td>63</td>
<td>-2.0</td>
<td>2.4</td>
<td>0.00</td>
<td>0.94</td>
<td>67%</td>
</tr>
<tr>
<td>80</td>
<td>-1.3</td>
<td>2.1</td>
<td>0.00</td>
<td>0.64</td>
<td>28%</td>
</tr>
<tr>
<td>100</td>
<td>-0.8</td>
<td>1.1</td>
<td>0.00</td>
<td>0.54</td>
<td>17%</td>
</tr>
<tr>
<td>125</td>
<td>-0.8</td>
<td>1.0</td>
<td>0.00</td>
<td>0.49</td>
<td>11%</td>
</tr>
<tr>
<td>160</td>
<td>-0.5</td>
<td>0.7</td>
<td>0.00</td>
<td>0.33</td>
<td>5%</td>
</tr>
<tr>
<td>200</td>
<td>-0.3</td>
<td>0.5</td>
<td>0.00</td>
<td>0.22</td>
<td>3%</td>
</tr>
<tr>
<td>250</td>
<td>-0.9</td>
<td>1.2</td>
<td>0.00</td>
<td>0.42</td>
<td>3%</td>
</tr>
<tr>
<td>315</td>
<td>-0.9</td>
<td>1.4</td>
<td>0.00</td>
<td>0.41</td>
<td>2%</td>
</tr>
<tr>
<td>400</td>
<td>-5.3</td>
<td>5.6</td>
<td>0.14</td>
<td>3.00</td>
<td>10%</td>
</tr>
<tr>
<td>500</td>
<td>-7.7</td>
<td>8.4</td>
<td>0.20</td>
<td>4.83</td>
<td>14%</td>
</tr>
<tr>
<td>630</td>
<td>-9.2</td>
<td>7.6</td>
<td>-0.10</td>
<td>4.43</td>
<td>12%</td>
</tr>
<tr>
<td>800</td>
<td>-6.1</td>
<td>4.9</td>
<td>0.26</td>
<td>3.08</td>
<td>9%</td>
</tr>
<tr>
<td>1000</td>
<td>-6.8</td>
<td>6.0</td>
<td>0.16</td>
<td>2.67</td>
<td>9%</td>
</tr>
<tr>
<td>1250</td>
<td>-4.4</td>
<td>3.8</td>
<td>0.10</td>
<td>1.67</td>
<td>7%</td>
</tr>
<tr>
<td>1600</td>
<td>-4.2</td>
<td>2.8</td>
<td>-0.04</td>
<td>1.58</td>
<td>8%</td>
</tr>
<tr>
<td>2000</td>
<td>-10.3</td>
<td>3.0</td>
<td>-0.71</td>
<td>2.81</td>
<td>16%</td>
</tr>
<tr>
<td>2500</td>
<td>-4.2</td>
<td>4.9</td>
<td>0.00</td>
<td>1.98</td>
<td>13%</td>
</tr>
<tr>
<td>3150</td>
<td>-2.5</td>
<td>3.9</td>
<td>0.01</td>
<td>1.44</td>
<td>9%</td>
</tr>
<tr>
<td>4000</td>
<td>-3.7</td>
<td>5.4</td>
<td>0.02</td>
<td>1.89</td>
<td>14%</td>
</tr>
<tr>
<td>5000</td>
<td>-4.1</td>
<td>3.6</td>
<td>0.02</td>
<td>1.72</td>
<td>13%</td>
</tr>
<tr>
<td>6300</td>
<td>-3.6</td>
<td>3.3</td>
<td>0.02</td>
<td>1.52</td>
<td>11%</td>
</tr>
<tr>
<td>8000</td>
<td>-2.6</td>
<td>2.9</td>
<td>0.01</td>
<td>1.25</td>
<td>10%</td>
</tr>
<tr>
<td>10000</td>
<td>-1.9</td>
<td>2.2</td>
<td>0.00</td>
<td>1.23</td>
<td>11%</td>
</tr>
</tbody>
</table>
CHAPTER 7 CONCLUSION

○ Tests were conducted to quantify the sound attenuation of the fiberglass lining in both rectangular and round ducts in accordance with ASTM E477.

○ Regression equations were developed to predict insertion loss values of rectangular ducts with cross sectional areas from 12-in x 18-in to 48-in x 48-in for lengths from 3ft to 30ft and round ducts with diameters from 12-in to 48-in for lengths from 3ft to 30ft.

○ IL vs Length shows a linear relationship for every test configuration.

○ A second order regression was necessary for the rectangular ducts.

○ A third order regression was necessary for the round ducts.

○ The average differences between the measured and predicted IL values were:
 ▪ Between -1.2 and 0.01 for the 1-in, and -1.54 and 0.89 for the 2-in E.H. Price Rectangular Data
 ▪ Between -1.21 and 0.90 for the 1-in, and -1.89 and 1.11 for the 2-in E.H. Price + UNLV Rectangular Data
 ▪ Between -0.71 and 0.14 for the 1-in, and -0.71 and 0.26 for the 2-in Round Data

○ The standard deviations were:
 ▪ Between 0.24 and 3.86 for the 1-in, and 0.76 and 4.37 for the 2-in E.H. Price Rectangular Data
 ▪ Between 0.25 and 4.49 for the 1-in, and 0.92 and 5.13 for the 2-in E.H. Price + UNLV Rectangular Data
 ▪ Between -0.16 and 2.79 for the 1-in, and 0.22 and 4.83 for the 2-in Round Data

○ The statistics of the E.H. Price data and the data added from UNLV differed by no more than 1dB in every field except σ/μ for a few of the low frequency bands.
APPENDIX A E.H. PRICE DATA FOR 1-IN RECTANGULAR DUCTS

Duct Insertion Loss

12x18 P/A = 0.278 1/in Duct - 1-in.-Thick Fiberglass Lining

Figure A.1: Insertion Loss for 12x18 ducts with 1-in Fiberglass

Duct Insertion Loss

24x24 P/A = 0.167 1/in Duct - 1-in.-Thick Fiberglass Lining

Figure A.2: Insertion Loss for 24x24 ducts with 1-in Fiberglass

55
Figure A.3: Insertion Loss for 18x48 ducts with 1-in Fiberglass

Figure A.4: Insertion Loss for 32x44 ducts with 1-in Fiberglass
Figure A.5: Insertion Loss for 48x48 ducts with 1-in Fiberglass Lining
Figure A.6: 1-in Insertion Loss vs Duct Length at 50 Hz

Figure A.7: 1-in Slope vs P/A at 50 Hz

Figure A.8: 1-in Y-intercepts vs P/A at 50 Hz
Figure A.9: 1-in Insertion Loss vs Duct Length at 63 Hz

Figure A.10: 1-in Slope vs P/A at 63 Hz

Figure A.11: 1-in Y-intercepts vs P/A at 63 Hz
Figure A.12: 1-in Insertion Loss vs Duct Length at 80 Hz

Figure A.13: 1-in Slope vs P/A at 80 Hz

Figure A.14: 1-in Y-intercepts vs P/A at 80 Hz
Figure A.15: 1-in Insertion Loss vs Duct Length at 100 Hz

Figure A.16: 1-in Slope vs P/A at 100 Hz

Figure A.17: 1-in Y-intercepts vs P/A at 100 Hz
Figure A.18: 1-in Insertion Loss vs Duct Length at 125 Hz

Figure A.19: 1-in Slope vs P/A at 125 Hz

Figure A.20: 1-in Y-intercepts vs P/A at 125 Hz
Figure A.21: 1-in Insertion Loss vs Duct Length at 160 Hz

Figure A.22: 1-in Slope vs P/A at 160 Hz

Figure A.23: 1-in Y-intercepts vs P/A at 160 Hz
Figure A.24: 1-in Insertion Loss vs Duct Length at 200 Hz

Figure A.25: 1-in Slope vs P/A at 200 Hz

Figure A.26: 1-in Y-intercepts vs P/A at 200 Hz
Figure A.27: 1-in Insertion Loss vs Duct Length at 250 Hz

Figure A.28: 1-in Slope vs P/A at 250 Hz

Figure A.29: 1-in Y-intercepts vs P/A at 250 Hz
Figure A.30: 1-in Insertion Loss vs Duct Length at 315 Hz

Figure A.31: 1-in Slope vs P/A at 315 Hz

Figure A.32: 1-in Y-intercepts vs P/A at 315 Hz
Figure A.33: 1-in Insertion Loss vs Duct Length at 400 Hz

Figure A.34: 1-in Slope vs P/A at 400 Hz

Figure A.35: 1-in Y-intercepts vs P/A at 400 Hz
Figure A.36: 1-in Insertion Loss vs Duct Length at 500 Hz

Figure A.37: 1-in Slope vs P/A at 500 Hz

Figure A.38: 1-in Y-intercepts vs P/A at 500 Hz
Figure A.39: 1-in Insertion Loss vs Duct Length at 630 Hz

Figure A.40: 1-in Slope vs P/A at 630 Hz

Figure A.41: 1-in Y-intercepts vs P/A at 630 Hz
Figure A.42: 1-in Insertion Loss vs Duct Length at 800 Hz

Figure A.43: 1-in Slope vs P/A at 800 Hz

Figure A.44: 1-in Y-intercepts vs P/A at 800 Hz
Figure A.45: 1-in Insertion Loss vs Duct Length at 1000 Hz

Figure A.46: 1-in Slope vs P/A at 1000 Hz

Figure A.47: 1-in Y-intercepts vs P/A at 1000 Hz
Figure A.48: 1-in Insertion Loss vs Duct Length at 1250 Hz

Figure A.49: 1-in Slope vs P/A at 1250 Hz

Figure A.50: 1-in Y-intercepts vs P/A at 1250 Hz
Figure A.51: 1-in Insertion Loss vs Duct Length at 1600 Hz

Figure A.52: 1-in Slope vs P/A at 1600 Hz

Figure A.53: 1-in Y-intercepts vs P/A at 1600 Hz
Figure A.54: 1-in Insertion Loss vs Duct Length at 2000 Hz

Figure A.55: 1-in Slope vs P/A at 2000 Hz

Figure A.56: 1-in Y-intercepts vs P/A at 2000 Hz
Figure A.57: 1-in Insertion Loss vs Duct Length at 2500 Hz

Figure A.58: 1-in Slope vs P/A at 2500 Hz

Figure A.59: 1-in Y-intercepts vs P/A at 2500 Hz
Figure A.60: 1-in Insertion Loss vs Duct Length at 3150 Hz

Figure A.61: 1-in Slope vs P/A at 3150 Hz

Figure A.62: 1-in Y-intercepts vs P/A at 3150 Hz
Figure A.63: 1-in Insertion Loss vs Duct Length at 4000 Hz

Figure A.64: 1-in Slope vs P/A at 4000 Hz

Figure A.65: 1-in Y-intercepts vs P/A at 4000 Hz
Figure A.66: 1-in Insertion Loss vs Duct Length at 5000 Hz

Figure A.67: 1-in Slope vs P/A at 5000 Hz

Figure A.68: 1-in Y-intercepts vs P/A at 5000 Hz
Figure A.69: 1-in Insertion Loss vs Duct Length at 6300 Hz

Figure A.70: 1-in Slope vs P/A at 6300 Hz

Figure A.71: 1-in Y-intercepts vs P/A at 6300 Hz
Figure A.72: 1-in Insertion Loss vs Duct Length at 8000 Hz

Figure A.73: 1-in Slope vs P/A at 8000 Hz

Figure A.74: 1-in Y-intercepts vs P/A at 8000 Hz
Figure A.75: 1-in Insertion Loss vs Duct Length at 10000 Hz

Figure A.76: 1-in Slope vs P/A at 10000 Hz

Figure A.77: 1-in Y-intercepts vs P/A at 10000 Hz
<table>
<thead>
<tr>
<th>Length - ft</th>
<th>P/A - 1/in</th>
<th>Flanking Insertion Loss Reached Regress - Calculated IL Values from Regression Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure A.78: Data Comparison for 1-in Rectangular Ducts
APPENDIX B E.H. PRICE DATA FOR 2-IN RECTANGULAR DUCTS

Figure B.1: Insertion Loss for 12x18 ducts with 2-in Fiberglass

Figure B.2: Insertion Loss for 24x24 ducts with 2-in Fiberglass
Figure B.3: Insertion Loss for 18x48 ducts with 2-in Fiberglass

Figure B.4: Insertion Loss for 32x44 ducts with 2-in Fiberglass
Figure B.5: Insertion Loss for 48x48 ducts with 2-in Fiberglass
Figure B.6: 2-in Insertion Loss vs Duct Length at 50 Hz

Figure B.7: 2-in Slope vs P/A at 50 Hz

Figure B.8: 2-in Y-intercepts vs P/A at 50 Hz
Figure B.9: 2-in Insertion Loss vs Duct Length at 63 Hz

Figure B.10: 2-in Slope vs P/A at 63 Hz

Figure B.11: 2-in Y-intercepts vs P/A at 63 Hz
Figure B.12: 2-in Insertion Loss vs Duct Length at 80 Hz

Figure B.13: 2-in Slope vs P/A at 80 Hz

Figure B.14: 2-in Y-intercepts vs P/A at 80 Hz
Figure B.15: 2-in Insertion Loss vs Duct Length at 100 Hz

Figure B.16: 2-in Slope vs P/A at 100 Hz

Figure B.17: 2-in Y-intercepts vs P/A at 100 Hz
Figure B.18: 2-in Insertion Loss vs Duct Length at 125 Hz

Figure B.19: 2-in Slope vs P/A at 125 Hz

Figure B.20: 2-in Y-intercepts vs P/A at 125 Hz
Figure B.21: 2-in Insertion Loss vs Duct Length at 160 Hz

Figure B.22: 2-in Slope vs P/A at 160 Hz

Figure B.23: 2-in Y-intercepts vs P/A at 160 Hz
Figure B.24: 2-in Insertion Loss vs Duct Length at 200 Hz

Figure B.25: 2-in Slope vs P/A at 200 Hz

Figure B.26: 2-in Y-intercepts vs P/A at 200 Hz
Figure B.27: 2-in Insertion Loss vs Duct Length at 250 Hz

Figure B.28: 2-in Slope vs P/A at 250 Hz

Figure B.29: 2-in Y-intercepts vs P/A at 250 Hz
Figure B.30: 2-in Insertion Loss vs Duct Length at 315 Hz

Figure B.31: 2-in Slope vs P/A at 315 Hz

Figure B.32: 2-in Y-intercepts vs P/A at 315 Hz
Figure B.33: 2-in Insertion Loss vs Duct Length at 400 Hz

Figure B.34: 2-in Slope vs P/A at 400 Hz

Figure B.35: 2-in Y-intercepts vs P/A at 400 Hz
Figure B.36: 2-in Insertion Loss vs Duct Length at 500 Hz

Figure B.37: 2-in Slope vs P/A at 500 Hz

Figure B.38: 2-in Y-intercepts vs P/A at 500 Hz
Figure B.39: 2-in Insertion Loss vs Duct Length at 630 Hz

Figure B.40: 2-in Slope vs P/A at 630 Hz

Figure B.41: 2-in Y-intercepts vs P/A at 630 Hz
Figure B.42: 2-in Insertion Loss vs Duct Length at 800 Hz

Figure B.43: 2-in Slope vs P/A at 800 Hz

Figure B.44: 2-in Y-intercepts vs P/A at 800 Hz
Figure B.45: 2-in Insertion Loss vs Duct Length at 1000 Hz

Figure B.46: 2-in Slope vs P/A at 1000 Hz

Figure B.47: 2-in Y-intercepts vs P/A at 1000 Hz
Figure B.48: 2-in Insertion Loss vs Duct Length at 1250 Hz

Figure B.49: 2-in Slope vs P/A at 1250 Hz

Figure B.50: 2-in Y-intercepts vs P/A at 1250 Hz
Figure B.51: 2-in Insertion Loss vs Duct Length at 1600 Hz

Figure B.52: 2-in Slope vs P/A at 1600 Hz

Figure B.53: 2-in Y-intercepts vs P/A at 1600 Hz

101
Figure B.54: 2-in Insertion Loss vs Duct Length at 2000 Hz

Figure B.55: 2-in Slope vs P/A at 2000 Hz

Figure B.56: 2-in Y-intercepts vs P/A at 2000 Hz
Figure B.57: 2-in Insertion Loss vs Duct Length at 2500 Hz

Figure B.58: 2-in Slope vs P/A at 2500 Hz

Figure B.59: 2-in Y-intercepts vs P/A at 2500 Hz
Figure B.60: 2-in Insertion Loss vs Duct Length at 3150 Hz

Figure B.61: 2-in Slope vs P/A at 3150 Hz

Figure B.62: 2-in Y-intercepts vs P/A at 3150 Hz
Figure B.63: 2-in Insertion Loss vs Duct Length at 4000 Hz

Figure B.64: 2-in Slope vs P/A at 4000 Hz

Figure B.65: 2-in Y-intercepts vs P/A at 4000 Hz
Figure B.66: 2-in Insertion Loss vs Duct Length at 5000 Hz

Figure B.67: 2-in Slope vs P/A at 5000 Hz

Figure B.68: 2-in Y-intercepts vs P/A at 5000 Hz
Figure B.69: 2-in Insertion Loss vs Duct Length at 6300 Hz

Figure B.70: 2-in Slope vs P/A at 6300 Hz

Figure B.71: 2-in Y-intercepts vs P/A at 6300 Hz
Figure B.72: 2-in Insertion Loss vs Duct Length at 8000 Hz

Figure B.73: 2-in Slope vs P/A at 8000 Hz

Figure B.74: 2-in Y-intercepts vs P/A at 8000 Hz
Figure B.75: 2-in Insertion Loss vs Duct Length at 10000 Hz

Figure B.76: 2-in Slope vs P/A at 10000 Hz

Figure B.77: 2-in Y-intercepts vs P/A at 10000 Hz
<table>
<thead>
<tr>
<th>Length - ft</th>
<th>P/A - 1/in</th>
<th>Flanking Insertion Loss Reached Regress - Calculated IL Values from Regression Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>32x44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48x48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12x18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24x24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18x48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32x44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C E.H. PRICE + UNLV DATA FOR 1-IN RECTANGULAR DUCTS

Duct Insertion Loss
12x18 P/A = 0.278 1/in Duct - 1-in.-Thick Fiberglass Lining

Figure C.1: Insertion Loss for 12x18 ducts with 1-in Fiberglass

Duct Insertion Loss
24x24 P/A = 0.167 1/in Duct - 1-in.-Thick Fiberglass Lining

Figure C.2: Insertion Loss for 24x24 ducts with 1-in Fiberglass

111
Figure C.3: Insertion Loss for 18x48 ducts with 1-in Fiberglass

Figure C.4: Insertion Loss for 32x44 ducts with 1-in Fiberglass
Figure C.5: Insertion Loss for 48x48 ducts with 1-in Fiberglass Lining
Figure C.6: 1-in Insertion Loss vs Duct Length at 50 Hz

Figure C.7: 1-in Slope vs P/A at 50 Hz

Figure C.8: 1-in Y-intercepts vs P/A at 50 Hz
Figure C.9: 1-in Insertion Loss vs Duct Length at 63 Hz

Figure C.10: 1-in Slope vs P/A at 63 Hz

Figure C.11: 1-in Y-intercepts vs P/A at 63 Hz
Figure C.12: 1-in Insertion Loss vs Duct Length at 80 Hz

Figure C.13: 1-in Slope vs P/A at 80 Hz

Figure C.14: 1-in Y-intercepts vs P/A at 80 Hz
Figure C.15: 1-in Insertion Loss vs Duct Length at 100 Hz

Figure C.16: 1-in Slope vs P/A at 100 Hz

Figure C.17: 1-in Y-intercepts vs P/A at 100 Hz

117
Figure C.18: 1-in Insertion Loss vs Duct Length at 125 Hz

Figure C.19: 1-in Slope vs P/A at 125 Hz

Figure C.20: 1-in Y-intercepts vs P/A at 125 Hz
Figure C.21: 1-in Insertion Loss vs Duct Length at 160 Hz

Figure C.22: 1-in Slope vs P/A at 160 Hz

Figure C.23: 1-in Y-intercepts vs P/A at 160 Hz
Figure C.24: 1-in Insertion Loss vs Duct Length at 200 Hz

Figure C.25: 1-in Slope vs P/A at 200 Hz

Figure C.26: 1-in Y-intercepts vs P/A at 200 Hz
Figure C.27: 1-in Insertion Loss vs Duct Length at 250 Hz

Figure C.28: 1-in Slope vs P/A at 250 Hz

Figure C.29: 1-in Y-intercepts vs P/A at 250 Hz
Figure C.30: 1-in Insertion Loss vs Duct Length at 315 Hz

Figure C.31: 1-in Slope vs P/A at 315 Hz

Figure C.32: 1-in Y-intercepts vs P/A at 315 Hz
Figure C.33: 1-in Insertion Loss vs Duct Length at 400 Hz

Figure C.34: 1-in Slope vs P/A at 400 Hz

Figure C.35: 1-in Y-intercepts vs P/A at 400 Hz
Figure C.36: 1-in Insertion Loss vs Duct Length at 500 Hz

Figure C.37: 1-in Slope vs P/A at 500 Hz

Figure C.38: 1-in Y-intercepts vs P/A at 500 Hz
Figure C.39: 1-in Insertion Loss vs Duct Length at 630 Hz

Figure C.40: 1-in Slope vs P/A at 630 Hz

Figure C.41: 1-in Y-intercepts vs P/A at 630 Hz
Figure C.42: 1-in Insertion Loss vs Duct Length at 800 Hz

Figure C.43: 1-in Slope vs P/A at 800 Hz

Figure C.44: 1-in Y-intercepts vs P/A at 800 Hz
Figure C.45: 1-in Insertion Loss vs Duct Length at 1000 Hz

Figure C.46: 1-in Slope vs P/A at 1000 Hz

Figure C.47: 1-in Y-intercepts vs P/A at 1000 Hz
Figure C.48: 1-in Insertion Loss vs Duct Length at 1250 Hz

Figure C.49: 1-in Slope vs P/A at 1250 Hz

Figure C.50: 1-in Y-intercepts vs P/A at 1250 Hz
Figure C.51: 1-in Insertion Loss vs Duct Length at 1600 Hz

Figure C.52: 1-in Slope vs P/A at 1600 Hz

Figure C.53: 1-in Y-intercepts vs P/A at 1600 Hz
Figure C.54: 1-in Insertion Loss vs Duct Length at 2000 Hz

Figure C.55: 1-in Slope vs P/A at 2000 Hz

Figure C.56: 1-in Y-intercepts vs P/A at 2000 Hz
Figure C.57: 1-in Insertion Loss vs Duct Length at 2500 Hz

Figure C.58: 1-in Slope vs P/A at 2500 Hz

Figure C.59: 1-in Y-intercepts vs P/A at 2500 Hz
Figure C.60: 1-in Insertion Loss vs Duct Length at 3150 Hz

Figure C.61: 1-in Slope vs P/A at 3150 Hz

Figure C.62: 1-in Y-intercepts vs P/A at 3150 Hz
Figure C.63: 1-in Insertion Loss vs Duct Length at 4000 Hz

Figure C.64: 1-in Slope vs P/A at 4000 Hz

Figure C.65: 1-in Y-intercepts vs P/A at 4000 Hz
Figure C.66: 1-in Insertion Loss vs Duct Length at 5000 Hz

Figure C.67: 1-in Slope vs P/A at 5000 Hz

Figure C.68: 1-in Y-intercepts vs P/A at 5000 Hz
Figure C.69: 1-in Insertion Loss vs Duct Length at 6300 Hz

Figure C.70: 1-in Slope vs P/A at 6300 Hz

Figure C.71: 1-in Y-intercepts vs P/A at 6300 Hz
Figure C.72: 1-in Insertion Loss vs Duct Length at 8000 Hz

Figure C.73: 1-in Slope vs P/A at 8000 Hz

Figure C.74: 1-in Y-intercepts vs P/A at 8000 Hz
Figure C.75: 1-in Insertion Loss vs Duct Length at 10000 Hz

Figure C.76: 1-in Slope vs P/A at 10000 Hz

Figure C.77: 1-in Y-intercepts vs P/A at 10000 Hz
Table: Data Comparison for 1-in Rectangular Ducts

<table>
<thead>
<tr>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>12x18</td>
</tr>
<tr>
<td>0.278</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIFF AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.278</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flanking Insertion Loss Reached Regress - Calculated IL Values from Regression Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.278</td>
</tr>
</tbody>
</table>

| 12x18 | 18x48 | 24x24 | 32x44 | 48x48 |
|--------|
| 0.278 | 0.108 | 0.083 | 0.067 | 0.050 |

Figure C.78: Data Comparison for 1-in Rectangular Ducts
Figure D.1: Insertion Loss for 12x18 ducts with 2-in Fiberglass

Figure D.2: Insertion Loss for 24x24 ducts with 2-in Fiberglass
Figure D.3: Insertion Loss for 18x48 ducts with 2-in Fiberglass

Figure D.4: Insertion Loss for 32x44 ducts with 2-in Fiberglass
Figure D.5: Insertion Loss for 48x48 ducts with 2-in Fiberglass lining.
Figure D.6: 2-in Insertion Loss vs Duct Length at 50 Hz

Figure D.7: 2-in Slope vs P/A at 50 Hz

Figure D.8: 2-in Y-intercepts vs P/A at 50 Hz
Figure D.9: 2-in Insertion Loss vs Duct Length at 63 Hz

Figure D.10: 2-in Slope vs P/A at 63 Hz

Figure D.11: 2-in Y-intercepts vs P/A at 63 Hz
Figure D.12: 2-in Insertion Loss vs Duct Length at 80 Hz

Figure D.13: 2-in Slope vs P/A at 80 Hz

Figure D.14: 2-in Y-intercepts vs P/A at 80 Hz
Figure D.15: 2-in Insertion Loss vs Duct Length at 100 Hz

Figure D.16: 2-in Slope vs P/A at 100 Hz

Figure D.17: 2-in Y-intercepts vs P/A at 100 Hz
Figure D.18: 2-in Insertion Loss vs Duct Length at 125 Hz

Figure D.19: 2-in Slope vs P/A at 125 Hz

Figure D.20: 2-in Y-intercepts vs P/A at 125 Hz
Figure D.24: 2-in Insertion Loss vs Duct Length at 200 Hz

Figure D.25: 2-in Slope vs P/A at 200 Hz

Figure D.26: 2-in Y-intercepts vs P/A at 200 Hz
Figure D.27: 2-in Insertion Loss vs Duct Length at 250 Hz

Figure D.28: 2-in Slope vs P/A at 250 Hz

Figure D.29: 2-in Y-intercepts vs P/A at 250 Hz
Figure D.30: 2-in Insertion Loss vs Duct Length at 315 Hz

Figure D.31: 2-in Slope vs P/A at 315 Hz

Figure D.32: 2-in Y-intercepts vs P/A at 315 Hz
Figure D.33: 2-in Insertion Loss vs Duct Length at 400 Hz

Figure D.34: 2-in Slope vs P/A at 400 Hz

Figure D.35: 2-in Y-intercepts vs P/A at 400 Hz
Figure D.36: 2-in Insertion Loss vs Duct Length at 500 Hz

Figure D.37: 2-in Slope vs P/A at 500 Hz

Figure D.38: 2-in Y-intercepts vs P/A at 500 Hz
Figure D.39: 2-in Insertion Loss vs Duct Length at 630 Hz

Figure D.40: 2-in Slope vs P/A at 630 Hz

Figure D.41: 2-in Y-intercepts vs P/A at 630 Hz
Figure D.42: 2-in Insertion Loss vs Duct Length at 800 Hz

Figure D.43: 2-in Slope vs P/A at 800 Hz

Figure D.44: 2-in Y-intercepts vs P/A at 800 Hz
Figure D.45: 2-in Insertion Loss vs Duct Length at 1000 Hz

Figure D.46: 2-in Slope vs P/A at 1000 Hz

Figure D.47: 2-in Y-intercepts vs P/A at 1000 Hz
Figure D.48: 2-in Insertion Loss vs Duct Length at 1250 Hz

Figure D.49: 2-in Slope vs P/A at 1250 Hz

Figure D.50: 2-in Y-intercepts vs P/A at 1250 Hz
Figure D.51: 2-in Insertion Loss vs Duct Length at 1600 Hz

Figure D.52: 2-in Slope vs P/A at 1600 Hz

Figure D.53: 2-in Y-intercepts vs P/A at 1600 Hz
Figure D.54: 2-in Insertion Loss vs Duct Length at 2000 Hz

Figure D.55: 2-in Slope vs P/A at 2000 Hz

Figure D.56: 2-in Y-intercepts vs P/A at 2000 Hz
Figure D.57: 2-in Insertion Loss vs Duct Length at 2500 Hz

Figure D.58: 2-in Slope vs P/A at 2500 Hz

Figure D.59: 2-in Y-intercepts vs P/A at 2500 Hz
Figure D.60: 2-in Insertion Loss vs Duct Length at 3150 Hz

Figure D.61: 2-in Slope vs P/A at 3150 Hz

Figure D.62: 2-in Y-intercepts vs P/A at 3150 Hz
Figure D.63: 2-in Insertion Loss vs Duct Length at 4000 Hz

Figure D.64: 2-in Slope vs P/A at 4000 Hz

Figure D.65: 2-in Y-intercepts vs P/A at 4000 Hz
Figure D.66: 2-in Insertion Loss vs Duct Length at 5000 Hz

Figure D.67: 2-in Slope vs P/A at 5000 Hz

Figure D.68: 2-in Y-intercepts vs P/A at 5000 Hz
Figure D.69: 2-in Insertion Loss vs Duct Length at 6300 Hz

Figure D.70: 2-in Slope vs P/A at 6300 Hz

Figure D.71: 2-in Y-intercepts vs P/A at 6300 Hz
Figure D.72: 2-in Insertion Loss vs Duct Length at 8000 Hz

Figure D.73: 2-in Slope vs P/A at 8000 Hz

Figure D.74: 2-in Y-intercepts vs P/A at 8000 Hz
Figure D.75: 2-in Insertion Loss vs Duct Length at 10000 Hz

Figure D.76: 2-in Slope vs P/A at 10000 Hz

Figure D.77: 2-in Y-intercepts vs P/A at 10000 Hz
<table>
<thead>
<tr>
<th>Flanking Insertion Loss Reached Regress - Calculated IL Values from Regression Equations</th>
</tr>
</thead>
</table>

Figure D.76: Data Comparison for 2-in Rectangular Ducts

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>P/A (in)</th>
<th>Diff AVG</th>
<th>AVG meas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.1</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>1.2</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.3</td>
<td>1.3</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>1.4</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>0.6</td>
<td>1.6</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>0.7</td>
<td>1.7</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>0.8</td>
<td>1.8</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>0.9</td>
<td>1.9</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>1.1</td>
<td>2.1</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>2.2</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>1.3</td>
<td>2.3</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>1.4</td>
<td>2.4</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>1.6</td>
<td>2.6</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>1.7</td>
<td>2.7</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>1.8</td>
<td>2.8</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>1.9</td>
<td>2.9</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>2.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Note: The table above shows the calculated insertion loss values for various lengths and P/A values.

166
APPENDIX E UNLV DATA FOR 1-IN ROUND DUCTS

Duct Insertion Loss
12-in.-dia. Duct - 1-in.-Thick Fiberglass Lining

![Graph of Duct Insertion Loss for 12-in. ducts with 1-in. Fiberglass](image)

Figure E.1: Insertion Loss for 12-in. ducts with 1-in. Fiberglass

Duct Insertion Loss
24-in.-dia. Duct - 1-in.-Thick Fiberglass Lining

![Graph of Duct Insertion Loss for 24-in. ducts with 1-in. Fiberglass](image)

Figure E.2: Insertion Loss for 24-in. ducts with 1-in. Fiberglass
Figure E.3: Insertion Loss for 36-in ducts with 1-in Fiberglass

Figure E.4: Insertion Loss for 42-in ducts with 1-in Fiberglass
Figure E.5: Insertion Loss for 48-in ducts with 1-in Fiberglass Lining
Figure E.6: 1-in Insertion Loss vs Duct Length at 50 Hz

Figure E.7: 1-in Slope vs Diameter at 50 Hz

Figure E.8: 1-in Y-intercepts vs Diameter at 50 Hz
Figure E.9: 1-in Insertion Loss vs Duct Length at 63 Hz

Figure E.10: 1-in Slope vs Diameter at 63 Hz

Figure E.11: 1-in Y-intercepts vs Diameter at 63 Hz
Figure E.12: 1-in Insertion Loss vs Duct Length at 80 Hz

Figure E.13: 1-in Slope vs Diameter at 80 Hz

Figure E.14: 1-in Y-intercepts vs Diameter at 80 Hz

172
Figure E.15: 1-in Insertion Loss vs Duct Length at 100 Hz

Figure E.16: 1-in Slope vs Diameter at 100 Hz

Figure E.17: 1-in Y-intercepts vs Diameter at 100 Hz
Figure E.18: 1-in Insertion Loss vs Duct Length at 125 Hz

Figure E.19: 1-in Slope vs Diameter at 125 Hz

Figure E.20: 1-in Y-intercepts vs Diameter at 125 Hz
Figure E.21: 1-in Insertion Loss vs Duct Length at 160 Hz

Figure E.22: 1-in Slope vs Diameter at 160 Hz

Figure E.23: 1-in Y-intercepts vs Diameter at 160 Hz
Figure E.24: 1-in Insertion Loss vs Duct Length at 200 Hz

Figure E.25: 1-in Slope vs Diameter at 200 Hz

Figure E.26: 1-in Y-intercepts vs Diameter at 200 Hz
Figure E.27: 1-in Insertion Loss vs Duct Length at 250 Hz

Figure E.28: 1-in Slope vs Diameter at 250 Hz

Figure E.29: 1-in Y-intercepts vs Diameter at 250 Hz
Figure E.30: 1-in Insertion Loss vs Duct Length at 315 Hz

Figure E.31: 1-in Slope vs Diameter at 315 Hz

Figure E.32: 1-in Y-intercepts vs Diameter at 315 Hz
Figure E.33: 1-in Insertion Loss vs Duct Length at 400 Hz

Figure E.34: 1-in Slope vs Diameter at 400 Hz

Figure E.35: 1-in Y-intercepts vs Diameter at 400 Hz
Figure E.36: 1-in Insertion Loss vs Duct Length at 500 Hz

Figure E.37: 1-in Slope vs Diameter at 500 Hz

Figure E.38: 1-in Y-intercepts vs Diameter at 500 Hz
Figure E.39: 1-in Insertion Loss vs Duct Length at 630 Hz

Figure E.40: 1-in Slope vs Diameter at 630 Hz

Figure E.41: 1-in Y-intercepts vs Diameter at 630 Hz
Figure E.42: 1-in Insertion Loss vs Duct Length at 800 Hz

Figure E.43: 1-in Slope vs Diameter at 800 Hz

Figure E.44: 1-in Y-intercepts vs Diameter at 800 Hz
Figure E.45: 1-in Insertion Loss vs Duct Length at 1000 Hz

Figure E.46: 1-in Slope vs Diameter at 1000 Hz

Figure E.47: 1-in Y-intercepts vs Diameter at 1000 Hz
Figure E.48: 1-in Insertion Loss vs Duct Length at 1250 Hz

Figure E.49: 1-in Slope vs Diameter at 1250 Hz

Figure E.50: 1-in Y-intercepts vs Diameter at 1250 Hz
Figure E.51: 1-in Insertion Loss vs Duct Length at 1600 Hz

Figure E.52: 1-in Slope vs Diameter at 1600 Hz

Figure E.53: 1-in Y-intercepts vs Diameter at 1600 Hz
Figure E.54: 1-in Insertion Loss vs Duct Length at 2000 Hz

Figure E.55: 1-in Slope vs Diameter at 2000 Hz

Figure E.56: 1-in Y-intercepts vs Diameter at 2000 Hz
Figure E.57: 1-in Insertion Loss vs Duct Length at 2500 Hz

Figure E.58: 1-in Slope vs Diameter at 2500 Hz

Figure E.59: 1-in Y-intercepts vs Diameter at 2500 Hz

187
Figure E.60: 1-in Insertion Loss vs Duct Length at 3150 Hz

Figure E.61: 1-in Slope vs Diameter at 3150 Hz

Figure E.62: 1-in Y-intercepts vs Diameter at 3150 Hz
Figure E.63: 1-in Insertion Loss vs Duct Length at 4000 Hz

Figure E.64: 1-in Slope vs Diameter at 4000 Hz

Figure E.65: 1-in Y-intercepts vs Diameter at 4000 Hz
Figure E.66: 1-in Insertion Loss vs Duct Length at 5000 Hz

Figure E.67: 1-in Slope vs Diameter at 5000 Hz

Figure E.68: 1-in Y-intercepts vs Diameter at 5000 Hz
Figure E.69: 1-in Insertion Loss vs Duct Length at 6300 Hz

Figure E.70: 1-in Slope vs Diameter at 6300 Hz

Figure E.71: 1-in Y-intercepts vs Diameter at 6300 Hz
Figure E.72: 1-in Insertion Loss vs Duct Length at 8000 Hz

Figure E.73: 1-in Slope vs Diameter at 8000 Hz

Figure E.74: 1-in Y-intercepts vs Diameter at 8000 Hz
Figure E.75: 1-in Insertion Loss vs Duct Length at 10000 Hz

Figure E.76: 1-in Slope vs Diameter at 10000 Hz

Figure E.77: 1-in Y-intercepts vs Diameter at 10000 Hz
Figure E.78: Data Comparison for In Round Ducts
APPENDIX F UNLV DATA FOR 2-IN ROUND DUCTS

Figure F.1: Insertion Loss for 12-in ducts with 2-in Fiberglass

Figure F.2: Insertion Loss for 24-in ducts with 2-in Fiberglass
Figure F.3: Insertion Loss for 36-in ducts with 2-in Fiberglass

Figure F.4: Insertion Loss for 42-in ducts with 2-in Fiberglass
Figure F.5: Insertion Loss for 48-in ducts with 2-in Fiberglass
Figure F.6: 2-in Insertion Loss vs Duct Length at 50 Hz

Figure F.7: 2-in Slope vs Diameter at 50 Hz

Figure F.8: 2-in Y-intercepts vs Diameter at 50 Hz
Figure F.9: 2-in Insertion Loss vs Duct Length at 63 Hz

Figure F.10: 2-in Slope vs Diameter at 63 Hz

Figure F.11: 2-in Y-intercepts vs Diameter at 63 Hz
Figure F.12: 2-in Insertion Loss vs Duct Length at 80 Hz

Figure F.13: 2-in Slope vs Diameter at 80 Hz

Figure F.14: 2-in Y-intercepts vs Diameter at 80 Hz
Figure F.15: 2-in Insertion Loss vs Duct Length at 100 Hz

Figure F.16: 2-in Slope vs Diameter at 100 Hz

Figure F.17: 2-in Y-intercepts vs Diameter at 100 Hz
Figure F.18: 2-in Insertion Loss vs Duct Length at 125 Hz

Figure F.19: 2-in Slope vs Diameter at 125 Hz

Figure F.20: 2-in Y-intercepts vs Diameter at 125 Hz
Figure F.21: 2-in Insertion Loss vs Duct Length at 160 Hz

Figure F.22: 2-in Slope vs Diameter at 160 Hz

Figure F.23: 2-in Y-intercepts vs Diameter at 160 Hz
Figure F.24: 2-in Insertion Loss vs Duct Length at 200 Hz

Figure F.25: 2-in Slope vs Diameter at 200 Hz

Figure F.26: 2-in Y-intercepts vs Diameter at 200 Hz
Figure F.27: 2-in Insertion Loss vs Duct Length at 250 Hz

Figure F.28: 2-in Slope vs Diameter at 250 Hz

Figure F.29: 2-in Y-intercepts vs Diameter at 250 Hz
Figure F.30: 2-in Insertion Loss vs Duct Length at 315 Hz

Figure F.31: 2-in Slope vs Diameter at 315 Hz

Figure F.32: 2-in Y-intercepts vs Diameter at 315 Hz
Figure F.33: 2-in Insertion Loss vs Duct Length at 400 Hz

Figure F.34: 2-in Slope vs Diameter at 400 Hz

Figure F.35: 2-in Y-intercepts vs Diameter at 400 Hz
Figure F.36: 2-in Insertion Loss vs Duct Length at 500 Hz

Figure F.37: 2-in Slope vs Diameter at 500 Hz

Figure F.38: 2-in Y-intercepts vs Diameter at 500 Hz
Figure F.39: 2-in Insertion Loss vs Duct Length at 630 Hz

Figure F.40: 2-in Slope vs Diameter at 630 Hz

Figure F.41: 2-in Y-intercepts vs Diameter at 630 Hz
Figure F.42: 2-in Insertion Loss vs Duct Length at 800 Hz

Figure F.43: 2-in Slope vs Diameter at 800 Hz

Figure F.44: 2-in Y-intercepts vs Diameter at 800 Hz
Figure F.45: 2-in Insertion Loss vs Duct Length at 1000 Hz

Figure F.46: 2-in Slope vs Diameter at 1000 Hz

Figure F.47: 2-in Y-intercepts vs Diameter at 1000 Hz
Figure F.48: 2-in Insertion Loss vs Duct Length at 1250 Hz

Figure F.49: 2-in Slope vs Diameter at 1250 Hz

Figure F.50: 2-in Y-intercepts vs Diameter at 1250 Hz
Figure F.51: 2-in Insertion Loss vs Duct Length at 1600 Hz

Figure F.52: 2-in Slope vs Diameter at 1600 Hz

Figure F.53: 2-in Y-intercepts vs Diameter at 1600 Hz
Figure F.54: 2-in Insertion Loss vs Duct Length at 2000 Hz

Figure F.55: 2-in Slope vs Diameter at 2000 Hz

Figure F.56: 2-in Y-intercepts vs Diameter at 2000 Hz
Figure F.57: 2-in Insertion Loss vs Duct Length at 2500 Hz

Figure F.58: 2-in Slope vs Diameter at 2500 Hz

Figure F.59: 2-in Y-intercepts vs Diameter at 2500 Hz
Figure F.60: 2-in Insertion Loss vs Duct Length at 3150 Hz

Figure F.61: 2-in Slope vs Diameter at 3150 Hz

Figure F.62: 2-in Y-intercepts vs Diameter at 3150 Hz
Figure F.63: 2-in Insertion Loss vs Duct Length at 4000 Hz

Figure F.64: 2-in Slope vs Diameter at 4000 Hz

Figure F.65: 2-in Y-intercepts vs Diameter at 4000 Hz
Figure F.66: 2-in Insertion Loss vs Duct Length at 5000 Hz

Figure F.67: 2-in Slope vs Diameter at 5000 Hz

Figure F.68: 2-in Y-intercepts vs Diameter at 5000 Hz
Figure F.69: 2-in Insertion Loss vs Duct Length at 6300 Hz

Figure F.70: 2-in Slope vs Diameter at 6300 Hz

Figure F.71: 2-in Y-intercepts vs Diameter at 6300 Hz
Figure F.72: 2-in Insertion Loss vs Duct Length at 8000 Hz

Figure F.73: 2-in Slope vs Diameter at 8000 Hz

Figure F.74: 2-in Y-intercepts vs Diameter at 8000 Hz
Figure F.75: 2-in Insertion Loss vs Duct Length at 10000 Hz

Figure F.76: 2-in Slope vs Diameter at 10000 Hz

Figure F.77: 2-in Y-intercepts vs Diameter at 10000 Hz
<table>
<thead>
<tr>
<th>Diameter - in</th>
<th>Length - ft</th>
<th>FLanking Insertion Loss Reached</th>
<th>Regress</th>
<th>Ave</th>
<th>DIFF AVG</th>
<th>DIFF AVG</th>
<th>DIFF AVG</th>
<th>DIFF AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>12</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>36</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>42</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>48</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>36</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>42</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
<tr>
<td>24</td>
<td>48</td>
<td>Flanking Insertion Loss Reached</td>
<td>Regress</td>
<td>Ave</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
<td>DIFF AVG</td>
</tr>
</tbody>
</table>

Figure F.78: Data Comparison for 2-in Round Ducts
BIBLIOGRAPHY

CURRICULUM VITAE

Graduate College
University of Nevada, Las Vegas

Jacob Albright

Degrees:
Bachelors of Science in Mechanical Engineering, 2012
University of Nevada, Las Vegas

Community College of Southern Nevada

Thesis Title:
Sound Attenuation of Fiberglass Lined Ventilation Ducts

Thesis Examination Committee:
Chairperson, Douglas Reynolds, Ph.D.
Committee Member, William Culbreth, Ph.D.
Committee Member, Darrell Pepper, Ph.D.
Graduate College Representative, Barbara Luke, Ph.D.