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ABSTRACT

Extraction of Paleohydrology and Paleoclimate Proxies from Unsaturated Zones 
and Paleolake Records in the Southwestern Great Basin

by

Weiquan Dong

Dr. Zhongbo Yu, Examination Committee Chair 
Assistant Professor of Geology 

University of Nevada, Las Vegas

Thick vadose zones in arid regions recorded past climate changes up to 100 ka, so 

they are unique archives for continental paleoclimate change and groundwater recharge 

during the late Quaternary. Despite extensive research on flow and transport in arid 

regions, the transport properties and general response of arid vadose zones to climate 

regimes are still not well understood. Some of these issues are addressed with four 

distinct studies in this dissertation. The first study investigates effects of soil texture, 

vegetation coverage, and macopores on soil moisture variation at Nevada Test Site 

(NTS). The simulations show that bare soils have higher soil water content than vegetated 

soils. Effects of macropore flow on soil water content are insignificant.

The second study evaluates the impacts of climate change on solute transport in arid 

vadose zones. Undisturbed soil cores were collected at ground surface, directly below 

where tension infiltrometer measurements were made. The water fluxes and Br dispersion 

coefficients at investigated matric heads were very high due to the coarseness of the soils

111
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and possibly due to preferential flow pathways. These high water fluxes are more likely 

to occur in ephemeral washes. However, higher fluxes through the surface soil would be 

more likely during wetter climates.

The third study simulates paleolake extent in Owens Valley in the last 18 ka. A 

coupled catchment-lake model is developed in this study, and used to reconstruct the 

observed paleolake levels for Owens Lake and Searles Lake. Finally, a quantitative time- 

series of paleoclimate information was obtained.

The fourth study models the actual measured chloride profile in Amargosa Desert 

Research Site (ADRS) with the modified version of the HYDROS-ID computer code by 

using variable boundary conditions. The paleoinformation estimated from the third study, 

and chloride concentration in Greenland ice core (G1SP2) are used to prepare the 

atmospheric boundary file. The simulated chloride profile is in agreement with the 

measured chloride profile, and simulated water flux at ADRS is -0.016 mm/year upward 

at the base of the profile.

Transport properties and general response of vadose zones to climate regimes are 

addressed by these four independent studies.

IV
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CHAPTER 1 

INTRODUCTION

Predicting future hydrologie conditions requires a better understanding of present and 

past hydrometeorologic processes and of related climatic and hydrologie variability.

Also, there is a critical need for designing a disposal site for radioactive wastes that will 

be safe for a time frame of 10 ka. One of the best ways to approach these two problems is 

to study Quaternary paleoclimatic and paleohydrologic records (Kutzbach, 1980; 

Winograd, 1981). Changes in hydrology, including unsaturated zone percolation, 

saturated zone hydrology, and groundwater discharge, are closely related to climate 

changes. Therefore, inferences related to paleohydrology can be drawn from 

paleoclimatic studies. Links between paleoclimate and paleohydrology offer a basis for 

evaluating and predicting the effects of climate changes on hydrology in the past and in 

the future.

Low precipitation rates and high évapotranspiration rates commonly result in low 

rates of water movement and thick vadose zones in arid regions, thus the arid vadose 

zones have been considered very suitable for waste disposal sites (Winograd, 1981; 

Scanlon, 1991). Despite extensive research on flow and transport in arid regions, the 

transport properties and general response of arid vadose zones to climate regimes are still 

not well understood. In this dissertation, with field, laboratory, and numerical approaches, 

these problems were addressed by studying effects of soil textures, vegetation cover, and

1
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macropores on soil moisture variation (Chapter 2), impacts of climate changes on 

bromide transport (Chapter 3), paleoclimate and paleohydrology change in Owens Valley 

(Chapter 4), and chloride transport in vadose zones of Amargosa Desert Research Site 

(ADRS), United States Geologic Survey (Chapter 5).

1.1. Simulations on Soil Moisture Variation in Arid Regions 

Soil hydraulic properties are intrinsic factors in controling flow and transport in 

vadose zones. Macropores are one of the common soil structural properties, as they play 

an important role in the movement of water and chemicals owing to occasional rapid 

fluxes through them. Although macropore flows are not common in desert soils because 

of very low effective precipitation, they do occur in desert soils under certain 

circumstances (Devitt and Smith, 2002). So it is important to evaluate contributions of 

macropores to soil moisture and water flow in desert soils. In this study, a soil hydrologie 

model (SHM) was developed for simulating soil water movement through the unsaturated 

zone at the Nevada Test Site (NTS). A parameterization scheme with dual processes of 

matrix and macropore was adopted to derive effective hydraulic conductivity for the 

SHM. Effects of soil texture and vegetation coverage on soil water content were 

evaluated in this study.

1.2. Bromide Displacement Experiments 

A quantitative description of water movement and solute transport in soils is 

necessary for a variety of reasons, including groundwater recharge, ecosystem processes, 

and waste management. Beside intrinsic factors of soil hydraulic properties, external
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factors such as climate conditions have significant effects on water movement and solute 

transport. The conclusion that desert vadose zones are suitable for waste disposal is based 

on present climate conditions. However, the region was strongly influenced by pluvial 

climate conditions during the Quaternary Period (Quade et al., 2003; Anderson and 

Wells, 2003). Although extensive research on flow and transport has been conducted in 

arid regions, the transport properties and general response of arid vadose zones to wetter 

climate regimes are still not well understood. Therefore, it is necessary to study those 

processes in soils under alternative possible climate scenarios.

Since it is very difficult to perform field scale experiments to study such problems, 

miscible displacement experiments were used in this study to examine the effects of a 

high effective precipitation on water movement and solute transport. Miscible 

displacement experiments have been used by many researchers to quantitatively and 

qualitatively describe effects of soil structure, water flux, and water content on solute 

transport (Ersahin et al., 2002; Langner et al., 1999; Wilson et al., 1998; Mayes et al., 

2003). In this study, field measurements with a tension infiltrometer were incorporated 

into an investigation of the transport of nonreactive bromide (Br) under matric heads (soil 

water pressure) of 0, -2, -5 and -10 cm using undisturbed soil columns collected from 

Amargosa Desert Research Site (ADRS).

1.3. Paleolake Extent in Owens Valley

Quantitative paleoclimate information is needed for evaluating past and predicting 

future effects of climate changes on hydrology. Paleoclimate proxies have been extracted 

from a variety of sources such as tree rings, ice cores, and marine and continental
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sediments (e.g., Stuiver et al., 1995; Spaulding, 1985; Shackleton, 1967). Excepting ice 

core records, most of these records can only provide indirect and qualitative estimates of 

paleoprecipitation. However, lake levels in closed basins are the most sensitive indicators 

of the water balance between precipitation and evapotransporation in the watershed 

(Street-Perrott and Harrison, 1985). Lakes fluctuate in volume on both seasonal and 

interannual time scales in response to variations in the water balance over the lake and its 

catchment. These volume fluctuations are reflected in the lake level fluctuations in closed 

basin lakes, and in the rate change of overflow in open lakes. Studies of the lakes in the 

Owens River system, California, have shown that lake levels primarily record annual 

precipitation amounts and almost quantitatively document changes in precipitation within 

their catchments, thus these lakes are sometimes termed as “natural rain gauges” (Smith 

and Bischoff, 1997). Thus lake records of continental closed basins provide a unique 

opportunity to extract quantitative paleoprecipitation. There were more than a hundred 

lakes located in closed basins in the western United States during the Late Wisconsin (25 

ka to 10 ka), but only about 10% of the lakes are perennial and of substantial size today 

(Smith and Street-Perrott, 1983). This dramatic change on the hydrologie system is a 

result of changes in one or more elements of the climate including precipitation, 

temperature, evaporation, wind, cloud cover, and humidity.

The Owens River system, California, located at the western margins of the Great 

Basin, has the most complete continental Quaternary paleoclimate record in the world, 

and it is one of the best locations for studying paleoclimate change (Smith and Bischoff, 

1997). Although studies on the lakes in the Owens River system have shown that their 

water levels primarily record annual precipitation amounts within their catchment, the
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interpretation on paleoclimatic changes is generally limited to either wetter or drier 

climate, and offers little about the specific nature of the climate change. The reason for 

this is that the lake level in a particular basin is a complicated function of intrabasin and 

extrabasin climate and basin topography. One of the best approaches for extracting 

quantitative paleoclimatic proxies from these lake records, is through numerical 

modeling.

A variety of models have been used to simulate the paleorecord of closed basin lakes 

in arid and semi arid areas (e.g., Kutzbach, 1980; Benson, 1981; Benson, 1986; Hostetler 

and Bartlein, 1990; Hostetler and Benson, 1990; Hostetler et al., 1993, 1994). Physically- 

based lake models, which explicitly represent the physical processes governing the 

energy and water balances of the lake, offer a more robust way to predict climate induced 

changes in water volume, level, and outflow of the lakes. A suitable lake model for 

paleolake level studies should require a minimum of site-specific parameters (Hostetler 

and Giorgi, 1993). In this dissertation, a coupled catchment-lake hydrologie model was 

developed to evaluate how the hydrology responds to climate changes (e.g., mean annual 

temperature and mean annual precipitation) in the Owens River system since the last 

glacial maximum (LGM). The simulated paleoclimatic proxies were evaluated with a 

variety of lake records.

1.4. Chloride Transport in Vadose Zone of ADRS

The low water fluxes in arid environments result in thick vadose zones, providing an 

archive of continental paleoclimate (Tyler et al., 1996). How to precisely extract the 

paleoclimate information from arid vadose zones has not been resolved yet. Edmunds and
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Walton (1980) first recognized that paleoclimate could be reconstructed from vadose 

zone chemistry. Cook et al. (1992) reported that the unsaturated chloride profiles from 

Cyprus and northern Senegal record the past 400 yr climate changes. The time scales for 

vadose zones responding to atmospheric forces are much longer in arid regions than in 

humid regions (Allison and Hughes, 1983; Phillips, 1994; Scanlon et al., 1997). For 

example, paleoclimate records up to 120 ka in vadose zones of southern Nevada were 

reported by Tyler et al. (1996). Low water fluxes and water content in arid vadose zones 

significantly reduce the effects of diffusion, thus resulting in excellent preservation of 

tracers in the infiltrating water (Phillips, 1994; Allison et al., 1994). Among available 

tracers, chloride is most widely used as chloride mass balance (CMB), because of its 

conservative property and easy analytic technique. In order to apply CMB, the following 

assumptions must be satisfied (Scanlon, 1991): (1) one-dimensional, vertical, downward 

piston-type flow; (2) atmospheric fallout as only source of chloride; (3) mean annual 

precipitation and constant chloride concentration of precipitation through time; (4) 

steady-state chloride flux equal to the chloride accession rate in rainfall. However, little is 

known of the temporal changes in the fallout of chloride during pre-historic records, and 

the assumption of piston-type flow has been questioned at many sites. Previous studies 

have shown that the climate changed many times since the LGM. When precipitation or 

chloride mass deposition varies over time, the steady flow assumption is violated and a 

nonuniform profile results. Previous studies concluded that climate changes in the late 

Quaternary might be responsible for the nonuniform chloride “bulge” (Scanlon, 1991; 

Phillips, 1994). Therefore, in order to model chloride transport in vadose zones since the 

LGM, all assumptions above have to be clarified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this study, a modified version of the HYDRUS-ID computer code (Simunek et al., 

1998; Scanlon et al., 2003) was applied to forward model vertical chloride transport in 

the vadose zone of ADRS, southern Nevada since the LGM. By using variable boundary 

conditions, the unclear assumptions for the CMB were avoided. The variable boundary 

conditions were prepared based on independent estimates of paleoprecipitation and 

paleotemperature (Chapter 4), and chloride deposition rate (Mayeski et al., 1994). By 

comparing the simulated results to the actual measured chloride profile, the independent 

estimate of paleoprecipitation and/or chloride deposition rates were evaluated. In this 

way, chloride profile variations in the unsaturated zone can be quantitatively linked to the 

variations of paleoprecipitation.

References

Allison, G.B., and Hughes, M.W., 1983. The use of natural tracers as indicators of soil- 

water movement in a temperate semi-arid region. J. Hydrol. 60, 157-173.

Allison, G.B., Gee, G.W., and Tyler, S.W., 1994. Vadose-zone techniques for 

estimating groundwater recharge in and semi arid regions. Soil Sci. Soc.

Am. J. 58, 6-14.

Anderson, D.E., and Wells, S.G., 2003. Latest Pleistocene lake highstands in Death 

Valley, California, in Enzel, Y., Wells, S.G., and Lancaster, N., eds., 

Paloenvironments and paleohydrology of the Mojave and southern Great Basin 

Deserts: Boulder, Colorado, Geological Society of America Special Paper 368, 115- 

128.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Benson, L., 1981. Paleoclimatic significance of lake-level fluctuations in the Lahontan 

Basin. Quat. Res. 16, 390-403.

Benson, L., 1986. [Monograph] The sensitivity of evaporation rate to climate change; 

results of an energy-balance approach. Water-Resources Investigations - U. S. 

Geological Survey, Report: WRl 86-4148, 40 pp.

Cook, P.G., Edmunds, W.M., and Gaye, C.B., 1992. Estimating paleorecharge 

and paleoclimate from unsaturated zone profiles. Water Resour. Res. 28,

2721-2731.

Devitt, D.A., and Smith, S.D., 2002. Root channel macropores enhance downward

movement of water in a Mojave Desert ecosystem. J. Arid Environments 50, 99-108. 

Edmunds, W.M., and Walton, N.G.R., 1980. A geochemical and isotopic approach to 

recharge evaluation in semi-arid zones, past and present. Arid zone Hydrology, 

Investigations with Isotopes Techniques, pp.47-68. IAEA, Vienna.

Ersahin, S., Papendick, R.I., Smith, J.L., Keller, C.K., and Manoranjan, V.S., 2002. 

Macropore transport of bromide as influenced by soil structure differences.

Geoderma 108, 207-203.

Hostetler, S.W., and Bartlein, P.J., 1990. Simulation of lake evaporation with application 

to modeling lake level variations of Hamey-Malheur Lake, Oregon. Water Resour. 

Res. 26, 2603-2612.

Hostetler, S.W., and Benson, L.V., 1990. Paleoclimatic implications of the high stand of 

Lake Lahontan derived from models of evaporation and lake level. Climate Dynamics 

4, 207-212.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hostetler, S.W., and Giorgi, P., 1993. Use of output from high-resolution atmospheric 

models in landscape-scale hydrologie models; an assessment. Water Resour. Res. 

29,1685-1695.

Hostetler, S.W., Bates, G.T., and Giorgi, P., 1993. Interactive coupling of a lake thermal 

model with a regional climate model. J. Geophysi. Res. D, Atmospheres 98, 5045- 

5057.

Hostetler, S.W., Giorgi, P., Bates, G.T., and Bartlein, P.J., 1994. Lake-atmosphere 

feedbacks associated with paleolakes Bonneville and Lahontan. Science 263, 665- 

668.

Kutzbach, I.E., 1980. Estimates of past climate at Paleolake Chad, North Africa, based on 

a hydrological and energy-balance model. Quat. Res. 14, 210-223.

Langner, H.W., Gaber, H.M., Wraith, J.M., Huwe, B., and Inskeep, W.P., 1999.

Preferential flow through intact soil cores: effects of matric head. Soil Sci. Soc. Am.

J. 63, pp. 1591-1598.

Mayes, M.A., Jardine, P.M., Mehlhorn, T.L.,Bjornstad, B.N., and Ladd, J.L., 2003. 

Transport of multiple tracers in variably saturated humid region structured soils and 

semi-arid region laminated sediments. J. Hydrol. 275, 141-161.

Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M.C.,

Bloomfield, P., Bond, G.C., Alley, R.B., Gow, A.J., Grootes, P.M., Meese, D.A., 

Ram, M., Taylor, K.C., and Wumkes, W., 1994. Changes in atmospheric circulation 

and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263, 

1747-1751.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Phillips, F. M., 1994. Environmental tracers for water movement in desert soils: A 

regional assessment for the American southwest. Soil. Sci. Soc. Am. J. 58, 15-24.

Quade, J., Forester, R.M., and Whelan, J.F., 2003. Late Quaternary paleohydrologic and 

paleotemperature change in southern Nevada, in Enzel, Y., Wells, S.G., and 

Lancaster, N., eds., Paloenvironments and paleohydrology of the Mojave and 

southern Great Basin Deserts: Boulder, Colorado, Geological Society of America 

Special Paper 368, 165-188.

Scanlon, B.R., and Goldsmith, R.S., 1997. Field study of spatial variability in unsaturated 

flow beneath and adjacent to playas. Water Resour. Res. 33, 2239-2252.

Scanlon, B.R., 1991. Evaluation of moisture flux from chloride data in desert soils. J. 

Hydrol. 128, 137-156.

Scanlon, B.R., Keese, K., Reedy, R.C., Simnuek, J., and Andraski, B.J., 2003. Variations 

in flow and transport in thick desert vadose zones in response to paleoclimatic forcing 

(0-90 kyr): Field measurements, modeling, and uncertainties. Water Resour. Res. 39, 

SBH 3-1-17.

Shackleton, N.J., 1967. Oxygen isotope analyses and Pleistocene temperatures re

addressed. Nature 215, 15-17.

Simunek, J., Sejna, M., and van Genuchten, M.T., 1998. The HYDRUS-ID software 

package for simulating the one-dimensional movement of water, heat, and multiple 

solutes in variably-saturated media, version 2.0, IGWMC - TPS - 70, 202 pp.. Int. 

Groundwater Model. Cent., Colo. Sch. of Mines, Golden, Colo.

Smith, G.I., and Bischoff, J.L., 1997. Core OL-92 from Owens Lake: Project rationale, 

geologic setting, drilling procedures, and summary. In "An 800,000-year

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

paleoclimatic record from core OL-92, Owens Lake, Southern California" edited by 

Smith, G.I. and Bischoff, J.L. Special Paper 317, the Geological Society of America, 

Boulder, pp. 165.

Smith, G.I., and Street-Perrott, F.A., 1983. Pluvial lakes of the western United States, in 

S.C. Porter, éd., The Late Pleistocene. University of Minnesota Press, Minneapolis, 

Minnesota, p. 53-70.

Spaulding, W.G., 1985. Vegetation and climates of the last 45,000 years in the vicinity of 

the Nevada Test Site, south-central Nevada. U.S. Geological Survey Professional 

Paper 1329, 83 p.

Stuiver, M., Grootes, P.M., and Brasiunas, T.E., 1995. The G1SP2 5^*0 climate record of 

the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat. Res. 44, 

341-354.

Tyler, S.W., Chapman, J.B., Conrad, S.H., Hammermeister, D.P., Blout, D.O., Miller,

J.J., Sully, M.J., and Ginanni, J.M., 1996. Soil-water flux in the southern Great Basin, 

United States: temporal and spatial variations over the last 120,000 years. Water 

Resour. Res. 32, 1481-1499.

Wilson, G.V., Yunsheng L., Selim H.M., Essington M.E., and Tyler, D.D., 1998. Tillage 

and cover crop effects on saturated and unsaturated transport of fluometuron. Soil 

Sci. Soc. Am. J. 62, 46-55.

Winograd, I.J., 1981. Radioactive waste disposal in thick unsaturated zones. Science 212, 

1457-1463.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

SIMULATIONS ON SOIL WATER VARIATION IN ARID REGIONS

2.1. Abstract

Significant soil water variation has often been found in the top few meters of arid 

soils. Understanding soil water variation in these soils is crucial to groundwater recharge 

estimation, rainfall runoff process, risk assessment, and water resource management. A 

soil hydrologie model (SHM) was developed for simulating soil water movement in the 

vertical direction using time steps of minutes to days. To account for the dual processes 

of matrix and macropore flow, a parameterization scheme of dual processes has been 

adopted to derive effective hydraulic conductivity used in the SHM simulation. The 

integral-balance model based on water flux at different degrees of water saturation used 

to calculate the macropore conductivity is more useful in quantitatively integrating the 

macropore contribution to the dynamic soil water fluxes. The SHM, successfully applied 

to humid and semiarid regions and validated at the Nevada Test Site (NTS) in this study, 

was used to evaluate soil water variation in an arid region. Soil texture effects on soil 

water content have been evaluated; results indicate that higher hydraulic conductivity 

soils have less soil water content. A representative vegetation type at the NTS — Larrea 

tridentate (creosote) is included to simulate the effects of vegetative cover on the soil 

water content. The simulations show that the bare soils have higher soil water content 

than the vegetated soils, which is consistent with observations and other modeled results.
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Due to low precipitation at the NTS for much of the year, effects of the macropore flow 

on soil water content are insignificant. However, the macropore flow could be an 

important factor influencing the soil water content during high precipitation events.

2.2. Introduction

Studies on soil water flow and solute transport in arid regions have been conducted in 

the last four decades to evaluate the processes and factors that control water movement 

(e.g. Winograd and Thordarson, 1975; Tyler et al., 1992; Gee et al., 1994; Tyler et al., 

1996; Pohll et al., 1996; Schmeltzer et al., 1996; Albright et al., 1997; Andraski, 1997). 

An understanding of how these complex processes respond to the current climatic 

condition is required for predicting their response to potential future climatic conditions. 

This is important for evaluating the groundwater recharge and the potential for 

groundwater contamination. Results from these studies not only improve our 

understanding of these natural processes, but also provide valuable information of risk 

assessment and management of waste storage sites. Due to extremely low and highly 

variable precipitation and high potential evaporation, water flux in the unsaturated zone 

in arid regions can range from 100 ~ 1000 mm/year to less than O.OI mm/year. The time 

for the response in arid regions to surface boundary conditions is much longer than in 

humid regions, which makes it difficult to measure the water fluxes of desert soils. 

Therefore, the number of projects for long-term monitoring of water content in desert 

soils is quite limited (Warrick et al., 1998). Most precipitation that infiltrates into desert 

soil is taken up by plant roots and transpired back into the atmosphere (Phillips, 1994). 

Thus the vegetative cover has a significant influence on desert soil water fluxes.
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Furthermore, structured soils formed by fractures, shrinkage cracks, old root holes, 

chemical dissolution, and original heterogeneity also play a very important role in desert 

soil water fluxes (Scanlon, 1992). Therefore, large spatial and temporal variations of soil 

water content, and consequently recharge in desert soils can be expected. However, for a 

particular landfill or disposal site, all the above factors must be considered in order to 

make reliable long-term prediction of water fluxes. In order to choose the optimal 

combination of storage capacity and soil depth, interactions and feedback mechanisms 

between various controlling parameters must be analyzed. The best approach for this is 

numerical modeling.

Further studies are required to characterize the soil water content variation in desert 

soils, because the processes influencing water movement were significantly affected by 

temporal and spatial changes in precipitation, vegetation, and soil textures (Gee and 

Hillel, 1988; Andraski, 1997). The soil texture is an intrinsic factor that controls soil 

water variation, because the soil texture and its associated bulk density have a direct 

effect on porosity and vapor transport velocity. The distribution of water occurs more 

rapidly in a coarse-textured soil because of the steeper K(h) function, as compared to a 

fine-textured soil (Hillel, 1998). Knowledge of the amount and distribution of water in 

the soil profile can aid in assessing the rate of groundwater recharge. The soil texture is 

also an important factor that controls soil water evaporation. Generally, sand sustains 

evaporation at the full potential rate only during the first day, whereas evaporation from 

loam continues at the climatically determined potential rate for three days, and 

evaporation from clay persists at this rate for as long as five days (Hillel, 1977). In this
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study, the effect of three soil textures: sand, sandy loam, and silty loam on the soil water 

variation will be examined along with bare soil, vegetated soil, and macropore soil.

Vegetative cover can modify surface water runoff, infiltration, and evaporation. The 

vegetative cover has a profound effect on infiltration in arid areas by: 1) reducing rainfall 

impact, thereby reducing ponding, sealing, and crusting; 2) delivering the precipitation to 

the soil surface in a redistributed pattern, different drop sizes, and different energy levels; 

and 3) modifying the drying rate of the soil surface (Saxton, 1979). However, field data 

shows that bare soil has a higher soil water content than the vegetated soil (Levitt et al., 

1996; Albright et al., 1997). Therefore, the amount of water lost through plant 

transpiration has a direct effect on the amount of soil water that is potentially available 

for groundwater recharge. In this study, the effect of a cover of the deciduous shrub -  

Larrea tridentate on the soil water was examined. This is the dominant species in the 

Yucca Flat study area (Beatley, 1974).

Macropores consist of a relatively small portion of the soil volume, but they play an 

important role in the movement of water and chemicals owing to occasional rapid fluxes 

through them. The macropore can be defined as large soil channeling pores that have 

minimum equivalent cylindrical diameters (ECDs) ranging from 0.03 to 5 mm (Chen and 

Wagenet, 1992). Here ECDs ranging from 0.03 to 1 mm (Luxmore et al., 1990) were 

used. Macropores form preferred flow pathways for infiltrating water in most soils 

(Jarvis and Larsson, 2001). This is macroscopically reflected by significant increases in 

unsaturated hydraulic conductivity when the soil is close to saturation (Clothier and 

Smettem, 1990; Jarvis and Messing, 1995). At the pore scale, macropore flow occurs
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when the water pressure locally increases to near saturation as the water-entry pressure of 

the pore is exceeded (Jarvis and Larsson, 2001).

Interest in macropore flow has grown recently because: (1) macropores can promote 

rapid, preferential transport of water and wastes through soil (e.g., Beven and German, 

1982; Bouma, 1991; Villholth and Jensen, 1998 a, b; Kamra et al., 2001); and (2) all 

numerical simulations of soil water fluxes are based on precise calculations of the 

unsaturated hydraulic conductivity, to which macropore hydraulic conductivity can 

significantly contribute. Field and laboratory observations suggest that part of the overall 

soil hydraulic conductivity is governed by macropores (McCoy et al., 1994).

Macropore flow is significant not only in both saturated and near-saturated soils, but 

also in the unsaturated soil (Phillip et al., 1989). Macropore flow or preferential flow can 

be an important factor influencing the soil water in arid soils (Scanlon, 1992; Mohanty et 

al., 1998). Current approaches to characterizing macropore flow in soils are to lump 

individual preferential flow pathways into two or more pore domains within one

dimensional numerical models (Jarvis and Larsson, 2001). Most traditional numerical 

simulations of water fluxes in the unsaturated zone have not explicitly included 

macropore flow processes. For this study, an integral-balance model based on water 

contents at different degrees of water saturation was used to calculate the macropore 

conductivity, and then the effect of the macropore on the soil water variation was 

examined.

In this study, a soil hydrologie model (SHM) was modified and validated at the NTS, 

then the modified SHM was used to simulate the soil water variation at the NTS.

Because the deciduous shrub parameters in the SHM were originally developed for
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humid and semi-arid regions (Capehart and Carlson, 1994), these parameters were 

modified by available data for the SHM application in the NTS. The derived parameters 

were used to evaluate the vegetation effect on the soil water variation. The modified 

SHM with macropore flow and modified vegetation parameters was used to evaluate how 

macropores in the soil could affect the soil water flow and distribution, and to simulate 

the temporal soil water variations. The following sections contain a description of the 

SHM and its parameterization schemes, a description of the study site and field data, 

model validation for the modified SHM, a discussion of the simulated results, and a 

summary.

2.3. Soil Hydrologie Model (SHM)

The SHM was developed to simulate the vertical profile of soil water content and is 

driven by conventional meteorological and land-use data (Capehart and Carlson, 1994;

Yu et al., 2001). The SHM is a sub-model of a hydrologie model system (HMS) (Yu et 

al., 1999; Yu, 2000), which is used to simulate the transient variation of soil water in the 

vadose zone, to evaluate each component of vertical moisture flow, and to calculate near 

surface fluxes, such as évapotranspiration (ET) and infiltration, for each cell of the grid. 

The one-dimensional moisture flow in the SHM can be described (Capehart and Carlson, 

1994)as

= (2 .1)
dt az

where q is the vertical moisture flux, 6 is the volumetric water content, z is depth, and t is 

time. The term S represents a source/sink term that accounts for the rate of input and
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output of moisture into the soil column. By applying Darcy’s equation in conjunction 

with Equation 2.1, the vertical flux term in Equation 1 can be expanded as

= + (2.2)
dz dz d6 dz 96 9z

where K is the hydraulic conductivity, i|/ is the soil water matric potential, and P is the 

grid-surface slope angle. Equation 2.2 is solved using the Crank-Nicholson numerical 

scheme (Press et al., 1986; Capehart and Carlson, 1994) and a finite difference scheme of 

forward in time and backward in space.

Four schemes are available in the SHM for calculating soil hydraulic parameters 

(relating K  and to the volumetric water content): the Clapp and Homberger (1978) 

method, the van Genuchten and Mualem (van Genuchten, 1980; Mualem, 1976) method, 

the Cosby et al. (1984) method, and the Rawls and Brakensiek (1985) method (Capehart 

and Carlson, 1994; Capehart and Carlson, 1997). The van Genuchten and Mualem 

method is used in this study and can be expressed in the following equations:

Hydraulic conductivity K(0)

Matric potential \|/(0)

Where n = À+1, m = À/(À+1), À is the pore size parameter (b=X'^). Se is the normalized 

volumetric water content expressed in terms of the soil water content at saturation 0s, and 

a residual soil water content 0r, thus Sg is defined as
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2.3.1. Infiltration-Runoff Calculation 

Runoff in the model is simulated as infiltration-excess runoff (Horton, 1933) and 

saturation-excess runoff (Dunne and Black, 1970). Before the incoming precipitation is 

available for calculating infiltration and runoff, part of it is partitioned into the vegetation 

leaf or canopy interception which is directly proportional to the fractional vegetation 

cover, leaf water holding capacity, and leaf area index (LAI) (Yu et al., 2001). The 

Green-Ampt (GA) method (Chow et al., 1988) was implemented in the model for the 

infiltration-runoff calculation

f  = m = ^ = K J l  + ̂ ^ )  (2.4)
dt r

w here/is the infiltration capacity (cm/s), Kav is the average saturated hydraulic 

conductivity (cm/s), Aif/xs the difference in average matric pressure before and after 

wetting (cm), zl^is the difference in average soil water content before and after wetting, 

and F  is the cumulative infiltration for the rainfall event (cm). Three possible conditions 

were considered in the model for the GA method that requires data on effective rainfall 

intensity (I) (after plant interception), saturated hydraulic conductivity {Ks), and 

infiltration capacity. The infiltration capacity is calculated for each cell at each time step 

based on the saturated hydraulic conductivity, matric pressure, soil water content, and 

cumulative infiltration (Equation 2.4). Following Chu’s method (1978), two surface 

indicators, C„ and Cp (the unponded and ponded surface indicators), respectively were 

implemented in the model to differentiate various soil conditions during a rainfall event.

Infiltration and evaporation are distributed over the top layers. ET occurs across the 

entire root zone according to a weighting function, which depends on vegetation type and
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height. The Penman-Monteith method (Monteith, 1981) is used to calculate evaporation 

on the bare soil and ET on the vegetation canopy.

2.3.2. Subgrid Spatial Variability 

Traditional modeling approaches use a single value of parameters for a point or grid 

cell, resulting in smoothing out the natural variability and over- or under- estimating 

various variables. Theoretical, numerical, and observational studies indicate that the 

subgrid-scale spatial variability in hydrologie parameters has a significant effect on 

various hydrologie processes (Yu, 2000). For instance, the simulated moisture represents 

an average over the grid cell. This spatial averaging over dimensions of the order of 10- 

100 m results in average soil water contents that are significantly lower than the actual 

peak intensities. This problem has been addressed by using “effective values” of soil 

hydraulic parameters. However, Beven (1989) questioned the physical basis for this 

practice. Using this approach naturally overestimates the required travel time of solute 

transport from vadose zone to groundwater.

Simulations capable of incorporating the spatial variability in hydrologie parameters 

would improve the representation of physical processes and consequently improve the fit 

between the simulated results and the observed data. As a first step in representing 

variability in hydrologie parameters, the following probability distribution is 

implemented in the SHM to distribute the average value among subgrid fractions within a 

grid cell (Yu, 2000)

/ ( P ')  = ^ e x p ( - 2 ^ ) ,  f f { p i ) d P  = l (2.5)
P  P   ̂ o

where f(pi) is the fraction of a grid cell with precipitation pi, and P  is the grid cell average 

value of hydrologie parameters. Each subgrid fraction represents the fraction of land-
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surface area having a set of particular hydrologie variables. For each subgrid fraction, the 

rainfall-runoff process is applied and the integrated runoff and infiltration can be 

obtained. For this study, the SHM was only applied at a single point, without considering 

the spatial variation, for the evaluation of temporal variation of soil water.

2.3.3. Parameterization of Macropore Flow 

Numerical simulations of hydrologie processes (e.g., soil water) based on Equation 

2.2 with various parameterizations of hydraulic properties (e.g., hydraulic conductivity) 

such as those equations of van Genuchten (1980) produce a very long flow timescale.

This approach would overestimate the time required to allow the rainfall-induced 

recharge to the groundwater system and consequently underestimate the quick flow 

response of shallow groundwater systems (Yu et al., 1999).

A conventional approach to defining macroporosity based on pore size seems 

unsuccessful in quantitatively relating macroporosity to the dynamics of water flow. A 

definition of macroporosity based on water flux at different degrees of water saturation is 

more useful (Chen et al., 1993). In this study, a simple approach is used to estimate 

composite functions of hydraulic conductivity accounting for both macropore and matrix 

processes. Low macroporosity is assumed so that the effect on 6( y/) is negligible; the 

rapid pressure equilibration is reached instantaneously between the soil matrix and 

macropores. With certain values of macroporosity (the fraction of soil volume comprised 

of macropores) rim and the macropore radius probability density f(r) can be calculated by 

using the following equation

f{ r )  = k \c x p { - k i r )  (2.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

where r is the macropore radius, and ki and k% are fitting parameters, 0.63 and 0.60 for 

the fractional macroporosity = 0.01 respectively (Brandes, 1998). So the hydraulic 

conductivity of macropores for each value of radius can be calculated by

r
^Kmp{r)f{r)dr

Kmp{y/) = ^ -------------- (2.7)
J  f{r)d r
0

where /"is chosen such that y/ae(n = y/, and the y/ae is air entry pressure, so that the 

weighted sum includes only those pores (r< F) that contribute to flow at a certain matric 

potential. F  is calculated using the following equation

(2 .8)
pgw

where (7 is the air-water surface tension, / is  the water/pore surface contact angle, 

(assumed to be 0 for water), p  is the density of water, and g is the gravitational 

acceleration. Therefore, the calculated /"from Equation 8 would be a maximum radius 

for the macropore.

K m p(r) is calculated using Hagen-Poiseuille’s and Manning's equations (Chen and 

Wagenet, 1992). When F <  100 pm (or 10  ̂ m), the flow in pores can be considered 

laminar, thus the average flow velocity (JJ) in the pores is calculated using the Hagen- 

Poiseuille equation

U = - ^ A h  (2.9)
8v

where vis the kinematical viscosity and A h  is the hydraulic gradient. Following Darcy’s 

equation, the macropore conductivity can be defined
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When r >  100 pm, the macropore flow is no longer laminar and the Hagen-Poiseuille 

equation is invalid to describe flow. In this case, the macropore flow can be described 

using Manning’s formula (Chen and Wagenet, 1992). The average flow velocity is

U I (2.11)
n

where R is the hydraulic radius (for the special case of full pore flow with radius r,R  = 

r/2), and n is the coefficient of roughness, ranging from 0.016 to 0.14 for open channels. 

Here assuming the upper limit because the scale of the wall surface roughness to pore 

diameter is generally large. Therefore, the macropore hydraulic conductivity can be 

calculated using

Kmx( V )  is calculated using the van Genuchten’s equation (1980), which is expressed as

in which a , n, and m are soil parameters and m = 1-1/n. Ksis the soil hydraulic 

conductivity at saturation. This equation is valid over ranges of pressure values broader 

than that of Gardner’s exponential model (van Genuchten and Nielsen, 1985). The 

weighted effective conductivity for each value of yrmay then be obtained 

Keff Ok) = n„ ■ Kmp{y/) + (1 -  )Kmx{y/) (2.14)

With macroporosity rim = 0.01 and 0.001, the computed relations of Kgjj( yr), Kmp( W), and 

K na(W ) for a silty loam are shown in Figure 2.1. The effective hydraulic conductivity is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

directly proportional to the macroporosity and the matric potential. The effective 

hydraulic conductivity increases as the matric potential increases (less negative). There 

are indications that pores as small as 15 pm (equivalent to -1.0 m) in radius can act 

as channels where macropore flow occurs (Germann, 1990). Furthermore, in Figure 2.1, 

when the matric potential decreases below -1.0 m, the effective hydraulic conductivity 

does not follow the matrix conductivity because the integral-balance model for 

calculating the macropore conductivity has the limitation for all the matric potentials. 

Therefore, the low limit of macropore radius as 15 pm was set. Because the saturated 

hydraulic conductivity Ks is a sum of the macropore conductivity and the matrix 

hydraulic conductivity at saturation. Kg is the maximum of the effective hydraulic 

conductivity.

2.4. Study Sites

The NTS is located approximately 105 km northwest of Las Vegas, Nevada (Figure 

2.2). The study area is located within the Area 3 Radioactive Waste Management Site 

(RWMS) which is located within the south-central part of Yucca Flat. Yucca Flat is an 

alluvium-filled, topographically closed basin (Schmeltzer et al., 1996). The soil textures 

of all core samples within Area 3 ranged from a silty sand to a well-graded sand. The 

most prevalent textures in the samples from borehole UE-3bl-Dl are well-graded sand 

with silt and silty sand. In the samples from borehole UE-3bl-Ul, the most prevalent 

textures are well-graded sand, well-graded sand with silt, and silty sand (Schmeltzer et 

al., 1996). The samples from two other boreholes (U3fd-Nl and U3fd-N2) were
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classified as sand or loamy sand (Tyler et al., 1992). Soil textures of loamy sand or sand 

appear common at the NTS (Schmeltzer et al., 1996).

I
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Figure 2.1. Hydraulic conductivity for silty loam with and without macropores.

Hydrologie investigation demonstrated that the undisturbed alluvium beneath the 

Area 3 is relatively homogeneous and that no barriers to flow, such as carbonate 

horizons, are present (REECo, 1994). Bulk density and porosity for core samples fall to a 

range of 1.16 to 1.6 g/cm^ and 0.30 to 0.54, respectively. Measured hydraulic 

conductivity at saturation ranges from 6 x ICf̂  to 1.5 x 10'  ̂ cm/s and mean values are on 

the order of 4.4 x 10"̂  cm/s. Saturated water contents, 0s, range from 29.2 to 48.2 percent 

and residual water contents. Or, range from 0.0 to 10.2 percent. Fitted van Genuchten
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parameters a  and n for water characteristic curve data are 0.065-0.159 and 1.47-1.29, 

respectively (Schmeltzer et al., 1996).
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Figure 2.2. Location map of the study area at the Nevada Test Site (modified after Tyler 

et al., 1992).

The vadose zone characterization of alluvium at the Area 3 RWMS documented that 

the upper 1 to 3 m is a hydrologically active zone (Schmeltzer et al., 1996). In this 

region, both the magnitude and direction of fluxes are influenced by the episodic
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infiltration, evaporation, and plant root uptake. The depth of this active zone varies 

spatially and temporally depending on soil properties, plant density and species, and 

recent weather conditions. Root and animal activity are found mainly in the upper 2 to 5 

m. Seasonal changes in temperature contribute to the movement of water vapor in the 

upper few meters of the alluvium (Schmeltzer et al., 1996). Experimental and modeling 

studies in the similar climate of the Chihuahuan Desert of Texas have shown that the vast 

majority of both liquid and water vapor movement is limited to the upper 30 cm of the 

soil profile (Scanlon and Milly, 1994). Because the climate conditions, evaporative 

demand, and soil conditions of the Chihuahuan Desert are comparable to those at the 

NTS, Scanlon and Milly’s results can be applicable to the Area 3 RWMS.

This study focused on the Area 3 RWMS. Four shallow boreholes (U3fd-Nl, U3fd- 

N2, UE-3bl-Ul, and UE-3bl-Dl) were drilled (Tyler et al., 1992; Schmeltzer et al,

1996). Borehole U3fd-Nl was drilled at the lowest point within the U3fd crater to a 

depth of approximately 47 m; it represents a soil zone disturbed by weapons testing 

(Figure 2.2). Borehole U3fd-N2 was drilled 207 m north and east of the U3fd crater to a 

depth of 30.7 m in sediments which were unaffected by weapons testing. The water 

content profile (Figure 2.3) was determined by using the neutron logs at 30 cm intervals 

in each borehole immediately after drilling. The average volumetric water content was 

0.25 for U3fd-Nl profile and 0.13 for U3fd-N2 in undisturbed soils.
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Figure 2.3. Water content profile for the borehole U3fd-N2 (modified after Tyler et al., 

1992).

Because there is no major textural difference between the two sites, the higher water 

content in U3fd-Nl is attributed to changes in soil properties or recharge potential from 

the disturbed soil by weapons testing (Tyler et al., 1992). The mean volumetric water 

content in UE-3bl-Ul and UE-3bl-Dl is 0.10 and 0.11 respectively (Schmeltzer et al., 

1996). Laboratory measurements including gravimetric water content, bulk density, 

saturated hydraulic conductivity, soil water potential, soil water tritium analysis, and 

textural classification were performed on core samples of the two boreholes (Tyler et al., 

1992; Schmeltzer et al., 1996).
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2.5. Model Validation 

The SHM has been validated using two sets of experimental data that represent 

different soil and climatological conditions, one collected at Rock Springs and the other 

collected at Hanford, Washington (Capehart and Carlson, 1994). Both climatic 

conditions and soil textures at Hanford are very similar to these at the NTS, so the SHM 

could be applied to simulate the soil water content of soils at the NTS. Due to the lack of 

temporal data on soil water contents at the NTS, it is not possible to precisely test the 

validity of the modified SHM. However, the modified SHM with measured soil water 

content data of borehole samples was initially validated.

The SHM inputs include meteorology (i.e., hourly precipitation), vegetation, and soil 

property data. The meteorological data consist of hourly precipitation, daily average 

temperature (°C), downwelling global solar radiation (Watts/m^), 2 m wind speed 

(km/day), and clear sky fraction. The climatic input data are taken from the Area 3 

Station (N37 00.23’, W116 01.88’, elevation 1206.9 m) (Figure 2.2) (Meteorological 

Data Acquisition system (MEDA) maintained by the Air Resources Laboratory/Special 

Operations and Research Division (ARL/SORD)) and the average of solar radiation and 

cloud cover data at Desert Rock from 1998 to 2000 (N36 37.25’, W116 01.55’, elevation 

990.6 m) (SURFRAD Network, NO A A) are used for this calibration simulation. This 

station records 15-minute observations including precipitation, temperature, 2 m wind 

speed, and other meteorological recordings from 1983 to present. Vegetation inputs were 

prepared based on the major type plant Larrea tridentate (Levitt et al., 1996; Beatley, 

1974).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

There are relatively abundant data on soil water contents of the borehole samples 

from both Area 5 and Area 3 at the NTS. Based on typical soil textures and profile 

structures of these borehole data (Schmeltzer et al., 1996; Tyler et al., 1996), major input 

data for this validation were prepared and listed in Table 1 excepting the packing data 

which are loamy sand from 0 to 4 m deep and sand from 5 to 12 m deep. Simulated soil 

water content variations in top 12 m soils from 1990 to 2000 were simulated.

The simulated soil water contents and measured soil water contents are plotted with 

the depth of soil profile in Figure 4, where the simulated soil water contents represent the 

average of the measured soil water contents in the soils of upper 12 m. The average of 

the measured volumetric water contents and the simulated volumetric water contents are 

0.067 and 0.064 respectively, so the modified SHM here is capable of modeling the soil 

water variation in a depth of 12 m. The following simulations focus on the top 2 m of 

soils using this modified SHM, because significant soil water variation occurs this range 

of the soil depth, and the depth of most facilities in alluvial deposits used for the burial of 

low-level radioactive waste (LLRW) and hazardous chemical waste is 2 to 9 m 

(Andraski, 1997).

2.6. Hydrologie Data 

The annual precipitation of the NTS ranges from 29 mm to 230 mm over last 30 years 

with an average of 124 mm/yr, of which approximately 75% is generated by the cyclonic 

frontal system originating along the western coast of the Pacific Ocean during the winter.
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Figure 2.4. Comparison of the measured volumetric water content and the simulated 

volumetric water content.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

The rest of the precipitation is from the summer monsoons originating from the Gulf of 

California and the Gulf of Mexico. For the study site, the input meteorological data were 

taken from surface observations of the Area 3 station.

In this study, the simulated results with the input of 1998 and 1999 meteorological 

data representing relatively high and low precipitation were respectively presented. In 

1998 and 1999, the total precipitation was 177 and 89 mm respectively, maximum daily 

precipitation is 18.7 and 9.5 mm respectively, and the average maximum and minimum 

temperature are 72.4 and 39.7 F respectively. The average daily wind speed is 6.9 knots 

from 1983 to 2000. Available solar radiation and cloud cover data for the period of 1998 

to 2000 at the Desert Rock station is used for our Area 3 study. The SHM soil texture file 

has eleven soil texture types that include most typical soil categories; other specific 

texture types can be added as needed. The input files of soil profile data for the NTS 

were prepared based on soil data for the Subsidence Crater U3fd (Schmeltzer et al.,

1996).

The input vegetation parameters for this study were chosen based on representative 

plant type -  Larrea tridentate because Larrea tridentate is the dominant species at the 12 

Yucca Flat sites (Beatley, 1974). The parameters include: the maximum leaf area index 

(LAI) 2.0, 30 percent vegetative cover, an average height of 1.27 m, and a minimum 

stomata resistance of 157 s/m (Beatley, 1974 and Levitt et al., 1999). Because the 

biological response of Mojave Desert plants to climate is controlled by the available 

water and precipitation which is low as well as being temporally and spatially variable at 

the NTS, plant response varies from year to year (Levitt et al., 1999). Six-year average 

data show that Larrea tridentate becomes active in March and dormant at the end of
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May, while Lycium hymenoides becomes active in January and dormant in April 

(Ackerman et al., 1980). However, the total annual vegetative growth and natural 

vegetative cover fluctuates from year to year in response to variations in annual 

precipitation. Thus it is difficult to normalize general vegetation parameters. The 

biological response in the SHM is dependent on the growth angle, which is calculated 

based on time of the year (Capehart and Carlson, 1994). Major input parameters used in 

this study are listed in Table 2.1.

2.7. Results

All the simulations presented here are based on assumptions that soil properties have 

uniform distribution and no stratifications for the 2 m vertical soil profile. Each 

simulation uses 0.2-hour time steps and 5-cm vertical discretion in the unsaturated zone. 

For the simulation on the macropore flow, the macroporosity is assumed to be 0.01 

percent of the total soil volume, which is based on available macroporosity data 

published in the literature (Table 2.2). The one-dimensional simulations assume an initial 

constant of 50 percent saturation distribution of soil water content. All simulations show 

that it takes about 120 days for the model to reach the equilibrium, thus discussions will 

focus on the simulated results for Days 121 to 730. The following sections will present 

the modeled results with different soil textures, vegetation cover, and macropore effect. 

The simulated results are expressed as the normalized volumetric water content (Se) 

while the volumetric water content is listed in Table 2.1. The simulated volumetric water 

content over the period of 1998 to 1999 for three soil textures with bare cover, 

macropores, vegetative cover, and both macropores and vegetative cover are summarized
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in Table 2.3. In general, the average volumetric water content as well as the range 

between maximum and minimum volumetric water contents increases as the soil 

hydraulic conductivity decreases. The vegetation tends to decrease the soil water content 

for all three soil textures, while macropores tend to increase the soil water content 

slightly for sand and silty loam. Because of the naturally arid regions, the minimum 

value is similar to its residual soil water content for all cases.

2.7.1. Soil Texture

Three soil textures: sand, loamy sand, and silty loams are used for this study because 

they represent the range of soil textures within Area 3. Simulations with three soil 

textures and bare land surfaces were driven by the observed meteorological data 

beginning on January 1, 1998 and ending on December 31, 1999. The simulated soil 

water content within the uppermost 10 cm and 30 cm of the soil column are shown in 

Figures 2.5a and 2.5b for three different soil textures, respectively. In general, the 

simulated Se for various soil textures resemble each other except for their magnitudes, 

indicating that the soil water content is controlled by meteorological forces such as 

temperature, precipitation, and solar radiation, as well as soil texture.

The soil water content shows more fluctuation in the winter of 1998 and the spring of 

1999 in response to relatively high precipitation. Furthermore, Se within the top 10-cm 

soil layer shows larger daily fluctuations than does with the uppermost 30-cm soil layer 

(Figure 2.5). The average volumetric water content is 0.05 (lowest) in sand, 0.09 in 

loamy sand, and 0.14 (highest) in silty loam because the sand has lower water retention 

and higher conductivities, resulting in faster downward drainage through the soil. Higher 

water retention in the silty loam leads to slower drainage. As a result, more water drains
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deeper through sand while more water is held in the fine-grained soils such as silty loam 

and loamy sand and is subsequently lost through evaporation.

Table 2.1. List of variables used in this study.

Variable Units Value and source
Meteorological variables
Average daytime temperature K 15-minute records at Area 3 station
Cloud cover N/A Hourly records at the Desert Rock
Dew-point temperature K Daily minimum temperature at Area 3 

station
Daily wind speed, u m/s 15-minute records at Area 3 station
Precipitation, Ptotai m 15-minute records at Area 3 station
Solar radiation W/m^ 3-minute records at the Desert Rock

Botanical variables
Maximum LAI, LAIx N/A 2.0 (Levitt et al., 1999)
Min. stomata resist, rstmin s/m 157 s/m (Kleinkopf et al., 1980)
Vegetation height m 1.27 (Beatley, 1974)
Vegetation cover % 30 (Beatley, 1974)

Hydrological/Envir. Variables
Macroporosity 0.01 percent, estimated
Soil texture Sand, loamy sand, silty loam
Saturated conductivity, Ks m/s 6.22E-5, 1.66E-5, 3.67E-5
Saturated matric potential, \\f m -0.0726, -0.0869, -0.2076
Sat. vol. Water content, 0s mVm^ 0.379, 0.437, 0.501
Residual vol. Water content, 0r mVm^ 0.020, 0.035, 0.015

Running variables
Depth of permeable zone m 2.0
Space step m 0.05
Time step hour 0.20
Start date N/A 01/01/1998
End date N/A 12/31/1999
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Figure 2.5. Simulated soil water content for bare soils without macropores at the top 10 

cm and 30 cm.
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The results suggest that the soil saturates near the surface at a rate that is primarily 

determined by precipitation, but the rate at which the water is transported downward 

through the soil is dependent upon the soil hydraulic properties. It can be seen in Figure 

2. 5 that the magnitude of the Se variation becomes smaller with increases in soil depth. 

These results indicate that the influence of meteorological forces is reduced gradually 

with depth, and the influence of soil texture increases with depth. These results are 

similar to those reported in a humid area (Yu et al., 2001).

2.7.2. Macropores

Macropore flow can be an important mechanism influencing the temporal and 

vertical variation in soil water, especially in humid areas. There is no data available for 

the macropore flow at the NTS. In this analysis of techniques for estimating potential 

recharge and shallow unsaturated zone water balance near the NTS, Leary (1990) 

concluded that the macropore could be one of the factors influencing the shrub dormancy. 

Scanlon (1992) found preferential flow in fissured soils in a similar environment -  the 

Chihuahuan Desert of Texas. Although annual precipitation is low at the NTS, the 

precipitation intensity can be high. For instance, the precipitation for Area 3 was 18.7 

mm on October 24, 1998, and the total precipitation from October 16 to 30 of 1998 was 

96.8 mm. A recent study concluded that the 100-year return-period value of a 24-hour 

precipitation is 89 mm (Randerson, 1997). Therefore, macropore flow could occur in the 

upper structured soil layers in the NTS under extremely high rainfall events.

The simulations presented here are based on a hypothetical set of conditions. In these 

simulations, 0.01 percent macroporosity along with observed meteorological data is 

applied to drive the simulation with bare soil, and soil textures of sand (Figure 2.6),
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loamy sand (Figure 2.7), and silty loam (Figure 2.8). The simulated results show that Se 

is slightly lower for sand (Figure 2.6) and loamy sand (Figure 2.7) with macropores, than 

Se without macropores during periods of low precipitation, but apparently lower during 

periods of high precipitation. The difference of Sg becomes greater with an increase in 

soil depth. However, the simulated Sgfor silty loam (Figure 2.8) with macropores shows 

a higher Sg than silty loam without macropores. Therefore, the macropores may have 

different effects on the soil water content for different textures. In Table 2.3, the average 

volumetric content of the sand and silty loam is slightly higher with macropores than that 

without macropores. Inversely, the average volumetric water content of the loamy sand 

is lower with macropores than without macropores. From the start of the transpiration 

season around the middle of April to the end of the growing period around late October, 

the Sg of both the top lO-cm and top 30-cm soil layers for three soil textures is much 

lower in the soils with vegetative cover than in the bare soils. This is in agreement with 

the observed results for the loamy sand at Beatty (Gee et al., 1994). However, the Sg for 

the winter period is similar to bare soil. The actual situation may be slightly different 

depending on the vegetation types and growing cycle.
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Figure 2.6. Simulated soil water content for sand with macropores at the top 10 cm and 

30 cm.
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Figure 2.8. Simulated soil water content for silty loam with macropores at the top 10 cm 

and 30 cm.
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2.7.3. Vegetation

This section examines the effect of vegetative cover and its combined effect with 

macropores on the soil water content variation. The simulated results are plotted on 

Figure 2.9 for sand, Figure 2.10 for loamy sand, and Figure 2.11 for silty loam. All 

simulations show Se is significantly lower in the three types of soils with vegetative 

cover, than with bare soils during the period of active water uptaken by roots.

Table 2.2. Estimated macroporosity for different radii.

Assumed threshold radius 
of macropores (|im)

Macroporosity 
(% of soil volume) Reference

1500 1 - 4 . 5 Germann and Beven (1981)
750 0.04 Watson and Luxmoore (1986)
750 0.017 -  0.032 Wilson and Luxmoore (1988)
750 3.4 Smettem et al. (1991)
380 0.006 -  0.013 Dunn and Phillips (1991)
500 0.000169 -  0.000188 Lin and Mclnnes (1995)
500 0.00087 -  0.0219 Buttle and McDonald (2000)

Comparison among Figures 2.9, 2.10, and 2.11 indicates that the effects of the 

vegetative cover on the simulated Se significantly increase from sand to loamy sand, and 

to silty loam. It can be also noted that the soil water reaches its minimum more quickly 

in sand and loamy sand than it does in silty loam. The average loss of soil water content 

due to vegetation in 1998 and 1999 is 5.0% for sand and loamy sand, and 9.0% for silty 

loam (Table 2.3). Therefore, the vegetation cover can significantly reduce the soil water 

content and modify the soil texture effects on the soil water variation during the 

transpiration period. Gee et al. (1994) concluded that differences in the accumulation and
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depletion of soil water at Beatty are attributed to soil properties and the presence or 

absence of vegetation. This is in agreement with the simulated results.
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Figure 2.9. Simulated soil water content for sand with vegetative cover only and both 

vegetative cover and macropores at the top 10 cm and 30 cm.
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Figure 2.10. Simulated soil water content for loamy sand with vegetative cover only and 

both vegetative cover and macropores at the top 10 cm and 30 cm.
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Figure 2.11. Simulated soil water content for silty loam with vegetative cover only and 

both vegetative cover and macropores at the top 10 cm and 30 cm.
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Table 2.3. Summary of simulated volumetric water content over the 2-m soil profile.

Soil texture 0 av Omax Omin %
Bare 0.0487 0.1205 0.02

Macropore 0.0500 0.0913 0.02 -3.0
Sand Vegetation 0.0463 0.1146 0.02 5.0

Vegetation and macropore 0.0477 0.0913 0.02 2.0

Bare 0.0857 0.1610 0.0305
Macropore 0.0831 0.1264 0.0305 3.0

Loamy sand Vegetation 0.0814 0.1563 0.0305 5.0
Vegetation and macropore 0.0785 0.1233 0.0305 8.0

Bare 0.1368 0.1977 0.015
Macropore 0.1408 0.1751 0.015 -3.0

Silty loam Vegetation 0.1254 0.1982 0.015 9.0
Vegetation and macropore 0.1273 0.1590 0.015 7.0

Note: % indicating water gain or loss with macropore, vegetative cover, and both 
macropore and vegetative cover as compared to the water content of the bare soil.

For all simulations with the Larrea tridentate cover, the soil water content is lower 

than the bare soil during the growing period (Figures 2.9, 2.10, and 2.11). This shows 

that mean plant community peak transpiration is different from year to year, depending 

on the amount and duration of precipitation in the current and previous year (Beatley, 

1974). This is demonstrated in Figures 2.9, 2.10, and 2.11 where the growing season 

begins earlier in 1999 than in 1998, because of higher precipitation in the winter of 1998 

and the spring of 1999. Larrea maintains active photosynthesis during the spring when 

temperatures are mild and water is usually available. Summer and winter seasons bring 

extremes of temperature and aridity that usually cause Larrea to become dormant. 

However, in the case of a cool, wet, late spring or a mild, wet fall, it is thought that 

Larrea can extend the temporal range of photosynthesis (Ackerman et al., 1980).
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Therefore, the plant has its own temporal range of transpiration depending on the timing 

of precipitation.

The loss by évapotranspiration in Figure 2.11 is greater than in Figures 2.9 and 2.10 

because the fine-grained silty loam has a higher water holding capacity than the sand and 

loamy sand, hence there is more water for extraction by plants. Both TDR (Time 

Domain Reflectometry) and TCP (Thermocouple psychrometer) measurements show that 

bare soil appears to reach slightly higher water contents than the vegetated soil during the 

wetting phase, and both bare and vegetated soils show fairly rapid drying in the upper 75 

cm. This indicates significant evaporation and transpiration during the drying phase 

(Albright et al., 1997), which is consistent with the simulated results. Although more 

water is lost from the silty loam, the minimum soil water content is higher in the silty 

loam than in the sand and loamy sand because the soil texture controls the residual soil 

water. Lane et al. (1984) concluded that evaporation accounts for approximately two- 

thirds of the annual water loss and is the dominant process controlling the local water 

balance in the desert soils of the NTS and Yucca Mountain area. The simulated results 

show that plant transpiration increases the loss of the soil water. Thus for soil with 

vegetative cover at the NTS, most of water loss is through évapotranspiration.

The simulated results with both macropores and vegetative cover are very close to 

those with vegetative cover only. These results are also plotted on Figure 2.9 for sand. 

Figure 2.10 for loamy sand, and Figure 2.11 for silty loam. Results with macropores in 

the three textural soils show that macropores have a lesser influence on the soil water 

content than the vegetative cover does, which is consistent with the previous conclusion 

that the macropores are insignificant under present climatic conditions. However, the
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water loss due to both vegetative cover and macropores is the highest in loamy sand 

(Table 2.3), thus the combination of the vegetation and macropores does produce 

different effects on the loss of the soil water content.

It is unclear how the soil texture, vegetative cover, and macropores interact with each 

other to influence the soil water distribution, but it seems that texture plays an important 

role. The difference among the three soil textures is that loamy sand has greater ranges 

of grain sizes than sand and silty loam. It can therefore be concluded that both the mean 

grain size and the distribution of the grain size are important in macropore flow. The 

sum of the water loss due to macropores and vegetation respectively is about the same as 

for both macropores and vegetative cover together, which means that macropores, 

vegetative cover, and soil texture interact with each other to influence the soil water 

content.

The simulations with combinations of vegetative cover and macropores show that 

macropore effect on the soil water content is secondary to the loss of soil water by 

transpiration. However, it seems that during vegetative dormancy, the macropore effect 

on the soil water content is enhanced, especially in the silty loam (Figure 2.11).

Therefore, it can be concluded that the depletion of the soil water by plants is one of 

important contributors to the loss of soil water in the NTS soil. The macropore flow, 

however, may be important during high winter and spring precipitation events. All 

simulations in this study were performed with a uniform soil profile that is not 

representative of soil conditions at the NTS, therefore the simulated results cannot be 

quantitatively compared to the observed temporal profile data of soil water contents. 

However, the average of simulated can be approximately compared to measured profile
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data. The average of measured volumetric water content (0.10) for Area 3 undisturbed 

soil at the NTS (Tyler et al., 1992 and Schmeltzer et al., 1996) compares well with the 

average of simulated volumetric water content (0.09) for loamy sand.

2.8. Summary and Conclusions 

The modified SHM was initially validated with the measured data at study sites. The 

validated SHM was then used to simulate combined effects of soil texture, vegetative 

cover, and macropores on the soil water variation. The simulated results described above 

indicate that the soil texture and vegetative cover have significant effects on the soil 

water content, while macropores have only slight effects on the soil water content in the 

NTS. Soil texture determines the soil’s hydraulic properties and affects the retention and 

flow of water in the soil, which thereby affects the soil water content. In arid 

environments, plant growth increases the loss of water from the soil. Structured soil 

macropores may play an important role in soil water content depending on soil types and 

environmental conditions.

Most surface soils of Area 3 in the NTS were classified as loamy sand or sandy loam 

(Schmeltzer et al., 1996 and Tyler et al., 1992), thus the volumetric water content (0.09) 

of loamy sand should represent the simulated soil water content of the surface soils at 

Area 3. The results compare well with the average of measured soil water content of 

undisturbed soils (Schmeltzer et al., 1996). The simulated volumetric water content of 

sand and silty loam should represent the respective lower and upper limit of soil water 

content in the soils at Area 3. The decrease of soil water content due to the transpiration 

of vegetation is 9.0% for silty loam and 5.0% for sand and loamy sand.
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Soil texture is an important factor influencing soil water variation. In general, soils 

with high hydraulic conductivity have high infiltration and drainage rates. After the 

surface dries, the soil texture is one of the dominant controlling factors influencing the 

evaporation rate. Surface sandy soils dry more rapidly than loams and clays due to the 

decreasing upward capillary movement of water and lesser water storage capacity of 

coarse-textured soils. The overall effect of soil texture on evaporation varies with the 

quantity of available water. For instance, water from very light rainfall events will 

evaporate quickly from any soil. In contrast, if precipitation is sufficient to wet the soil 

below the root zone, moisture deficient conditions develop more rapidly in coarse- 

textured soils. This explains why sand has the lowest soil water content and silty loam 

has the highest soil water content. Furthermore, sand has a higher hydraulic conductivity, 

leading to a higher rate of water flow. This causes more water to drain into deeper soils 

and less water to be held in the coarse-grained soils during the high rain events.

The macropore flow increases the soil water content by 3.0% in sand and silty loam, 

and decreases the soil water content by 3.0% in the loamy sand. The combined effects of 

vegetation and macropores on the soil water content are most significant in loamy sand 

and insignificant in sand.

Soil with macropores has higher effective hydraulic conductivity near saturation than 

soil without macropores. However, macropore flow contribution to soil water content 

varies for different soil textures. Generally, the macropore flow is more significant in 

fine-grained soils. The simulated results with macropores in Figures 6 and 7 show that 

sand and loamy sand with macropores have a slightly lower soil water content during 

periods of low precipitation, but larger difference during periods of high precipitation.
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This is because soils with macropores have a higher effective hydraulic conductivity near 

saturation. Water flows faster through soil with macropores than soil without 

macropores. High precipitation makes it possible for a higher Se, and therefore a more 

significant macropore flow.

Under current climatic conditions, the precipitation in the NTS is low throughout 

most of the year, and macropore flow is insignificant. However, macropore flow could 

have been important in past pluvial periods and could be important for possible future 

high precipitation events. The simulated results in Figure 2.8 show different patterns of 

soil water content than those in Figures 2.6 and 2.7, especially for the simulated results of 

1999. This could be explained by the premise that the soil water content is also 

controlled, in part, by the initial soil-water conditions. There was relatively high 

precipitation during the winter of 1998 and the spring of 1999, so the silty loam with a 

higher water holding capacity retained more water than the sand and loamy sand.

Another explanation is that the same scheme of the macropore parameterization used in 

all the simulations may have lead to some errors.

In general, soils with higher values of hydraulic conductivity have higher infiltration 

and drainage rates. Bare soils have higher soil water content than vegetated soils, which 

is consistent with observations (Levitt et al, 1996, Gee et al., 1994) and other modeled 

results (Albright et al, 1997). Higher hydraulic conductivity soils have less soil water 

content because they drain faster and have a lower capacity for water retention. Although 

the macropore flow can be an important factor influencing the soil water content, it is 

insignificant for the NTS soils under current climatic conditions.
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The parameterization of the effective hydraulic conductivity shows promise in 

calculating soil water contents for soils with macropores. The simulations in this study 

show that soil texture, vegetative cover, and macropores interact with each other to 

influence the soil water content in arid regions. However, due to the lack of precise 

knowledge concerning vegetative cover, soil properties, and the atmospheric processes of 

transpiration and precipitation, no direct comparison with observed data could be made. 

Therefore, one aspect of future work will be to characterize the soil properties in the 

vertical profile and lateral variability, and to collect more precise field data concerning 

the vegetative cover.

Recent displacement studies on the leaching of bromide and two pesticides under 

unsaturated steady state flow conditions show that large variability and double peak 

behavior in the field-scale concentrations, and mass flux of bromide and pesticides 

induce a small number of preferential flows in small columns from two sites (Kamra et 

al., 2001). Therefore it is necessary to conduct soil column experiments to study the 

macropore effects on the movement of solutes in arid soils. With more precise 

characterization of soil properties in the profile, the natural tracer data (Tyler et al., 1992, 

1996), and laboratory experiments, the SHM should provide better simulation for natural 

process of water flow and solute transport in arid soils. The simulated results will 

become the basis for further understanding of soil water fluxes and solute transport in 

arid regions.
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CHAPTER 3

SOLUTE TRANSPORT IN ARID VADOSE ZONES

3.1. Abstract

A quantitative description of water movement and solute transport in soils is 

necessary for a variety of reasons, including groundwater recharge, ecosystem processes 

and waste management. The transport of bromide (Br) under matric heads of 0, -2, -5, 

and -10 cm was investigated using undisturbed soil columns collected from the Amargosa 

Desert Research Site, located approximately 20 km east of Death Valley National Park. 

Undisturbed soil cores were collected at the ground surface, directly below where tension 

infiltrometer measurements were made. Measured water fluxes in the field ranged from 

1.67 cm/hour to 38.9 cm/hour at the investigated matric heads. Experiments were 

conducted by introducing water containing Br tracer into a soil column maintained at 

steady-state conditions. Effluent was collected using a fraction collector inside of a 

vacuum chamber, and analyzed using a Br ion electrode. Results of breakthrough curves 

(BTC) exhibited asymmetries and tailing for all core samples. The observed data were 

well fitted to a one-region model, except for the cores at saturation, and a core at the 

matric head -5  cm, from which the observed data were better fitted to a two-region 

model. Fitted pore water velocities with the one-region model ranged from 1.2 to 56.6 

cm/hr, and fitted dispersion coefficients (D) ranged from 2.2 to 100 cm^/hr. Results for 

the core analyzed with the two-region model indicated that D ranged from 27.6 to 70.9
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cm^/hr at saturation, and 25.7 cm^/hr at the matric head -5  cm; fraction of mobile water 

(P) ranged from 0.18 to 0.65, and mass transfer coefficient (to) ranged from 0.006 to 0.03. 

In summary, the water fluxes and Br dispersion coefficients at investigated matric heads 

were very high due to the coarseness of the soils and possibly due to preferential flow 

pathways. These high water fluxes are more likely to occur in ephemeral washes that 

collect runoff from larger contributing areas. However, higher fluxes through the surface 

soil would be more likely during wetter climates, like the past pluvial periods or 

potentially in the future. These high water fluxes and Br dispersion coefficients would 

lead to higher risk leaching accumulated nitrate nitrogen, which was recently discovered 

in arid vadose zones, to the groundwater, and have significant effects on the desert 

ecosystem.

3.2. Introduction

Present low effective precipitation commonly results in low rates of water movement 

and thick vadose zones in southern Nevada, thus these thick vadose zones have been 

considered very suitable for waste disposal sites (Winograd, 1983; Scanlon, 1991; Reith 

and Thomson, 1992). The primary objective for waste-burial facilities is to limit exposure 

of the public to hazardous wastes for 100 to 10,000 yr (Andraski, 1996). However, the 

region was strongly influenced by pluvial climate conditions during the late Quaternary 

Period (Quade et al., 2003; Anderson and Wells, 2003). Despite extensive research on 

flow and transport in arid regions, the transport properties and general response of arid 

vadose zones to wetter climate regimes are still not well understood. Therefore, it is 

necessary to study those processes in soils under possible climate scenarios. For example, 

a large reservoir of nitrate nitrogen recently found in subsoil zones of arid regions has
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been accumulated by long-term leaching from upper soils throughout the Holocene 

(Walvoord et al., 2003; Stokstad, 2003). This nitrate nitrogen is readily mobilized, which 

poses a risk of groundwater contamination after land-use or climatic changes. Climate 

changes, especially the increase in precipitation, and land-use have tremendous effects on 

the soil moisture that controls desert ecosystems. Studies have found that a dynamic 

relationship exists among climate change, CO2 content of the atmosphere, nitrogen 

deposition, and pedogenic inorganic carbon (Naumburg et al., 2003; BassiiiRad et al., 

1998; Hamerlynck et al., 2002; Huxman and Smith, 2001). A "reverse desertification" 

phenomenon was postulated by Idso (1986) based on the dramatic increase in desert plant 

water use efficiency due to the ongoing rise in CO2 content of the atmosphere 

(Grunzweig et al., 2003; Eklundh and Olssson, 2003). It can be predicted that a 

combination of the rise in precipitation and CO2 content of atmosphere will promote the 

reverse desertification.

A wetter climate means more water available to percolate into deeper soil zones; thus, 

processes for water movement and solute transport would significantly differ from the 

present situation. For example, soils would have higher overall water storage, higher 

possibility for a preferential flow, and lead to an overall downward hydraulic gradient. 

However, a wetter climate generally leads to more vegetation coverage and diversities 

that would uptake more water. Therefore, a dynamic relationship between climate, 

ecosystem, and soil water control the overall soil water storage and flow direction. 

Preferential flow is a transport phenomenon in which water and solutes can move through 

soils along preferred pathways, bypassing much of the soil matrix when the soil is near 

saturation (Seyfried andRao, 1987; Singh and Kanwar, 1991; Wilson et al., 1998).
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Cracks, root channels, animal burrows, and sediment bedding often found in desert soils 

provide an intrinsic condition leading to the preferential flow; thus, whether the 

preferential flow occurs depends on external conditions, largely net precipitation falling 

on the soil surface. Although the desert areas have low annual precipitation, a high 

precipitation intensity is very common. It is thus possible that the preferential flow occurs 

during periods of high intensity rainfall events which are more common in summer time 

convective storms. Because the preferential flow can result in rapid solute movement to 

significant depths in the vadose zone, it is important to include this transport mechanism 

in the prediction of solute transport in the arid vadose zone, in past and potentially the 

future wetter climate conditions.

Field scale experiments are ideal for studying the preferential flow and related solute 

transports, but they are very difficult to be implemented. Miscible displacement 

experiments have been used by many researchers to quantitatively and qualitatively 

describe effects of soil structure, water flux, and water content on solute transport 

(Frsahin et al., 2002; Langner et al., 1999; Wilson et al., 1998; Mayes et al., 2003). In this 

study, miscible displacement experiments are used to examine the effects of a high net 

precipitation on water movement and solute transport. Based on field measurements with 

a tension infiltrometer, miscible displacement experiments of nonreactive bromide (Br) 

under matric heads of 0, -2, -5 and -10 cm using undisturbed soil columns collected from 

United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) were 

performed.
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3.3. Materials and Methods

3.3.1. Site Description 

The ADRS is a USGS field laboratory for the study of arid-site processes. The site is 

located about 17 km south of Beatty, Nevada, and 20 km east of Death Valley National 

Park (Figure 3.1) (Andraski and Stonestrom, 1999). The Beatty facility was the first 

commercially operated low-level radioactive waste disposal site in the United States 

(1962-92), and is now used for the disposal of hazardous chemical wastes (1970 to 

present). Investigations at ADRS began in 1983 and have produced basic data on soil 

hydraulic properties, climate, and soil-water movement for both undisturbed and 

disturbed conditions. Average annual precipitation and annual pan evaporation at the 

ADRS is about 108 millimeters (mm) and 1900 mm respectively (Johnson et al., 2002). 

Average air temperatures are about 3°C in December and 33°C in July. 70% of 

precipitation at ADRS occurs during October through April through frontal systems. 

Remaining summer rainfall is predominantly through localized and short-duration 

convective storms (Wood and Andraski, 1995). Although annual precipitation is very 

low, the precipitation intensity of some rainfall events at ADRS is high. Based on the 

micrometeorological data collected at ADRS (Johnson et al., 2002), the intensity for three 

rainfall events on February 14, March 16, and July 21 of 1998 was 13.33, 17.57, and 

13.03 mm/hour, respectively; the intensity for two rainfall events on July 9 and 14 of 

1999 was 12.12 mm/hour; the intensity for one event on August 30 of 2000 was 13.63 

mm/hour. Sparse vegetation at the site is predominantly Larrea tridentata  (creosote bush). 

The Amargosa Desert is in the Basin and Range physiographic province. Sediments at the 

ADRS are mainly fluvial and alluvial deposits that are more than 170 meters (m) thick
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(Nichols, 1987). Particle size analyses indicated the surface soil (0.75 to 1 m thick) was 

made of 79.8% sand, 14.1% silt, and 6.1% clay, as determined by sieve and hydrometer 

method (Andraski, 1996). The ADRS was chosen for our investigation because it and the 

Nevada Test Site (NTS) are located in the same physiographic province and have very 

similar climate and sediments. Therefore, conclusions from this study can be applied to 

both ecosystems and waste management.
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Figure 3.1. Location map of the ADRS (modified from the ADRS website).
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3.3.2. Collection of Undisturbed Cores 

Undisturbed soil cores were collected by using a retrieve split core sampler at ground 

surface (AMS (American Falls, ID)), directly below where tension infiltrometer 

measurements were made. Flowever, some measurements did not have corresponding soil 

cores, because the core retrieve failed. The tension infiltrometer measurements were 

performed at matric heads equal to -5, -10 and -15 cm H2O. Most surface soils at ADRS 

are loamy sand, sand, and sandy loam that are very dry and coarse, thus a casing was 

used to collect the soil cores and to limit disturbing effects on the soil structure. Samples 

were contained in 6 inch brass liners with the outer 2.54 cm ends removed. Two 0.54 

inch diameter holes were drilled about 1 inch from the both sides of the remaining 4 inch 

liner. After the split core sampler was advanced to the proper depth, the soil around the 

sampler was excavated to the bottom of the sampler, and the sampler was carefully 

retrieved. The outer (removable) 2.54 cm-sections of liner were carefully removed, 

yielding an undisturbed 10 cm long core. Both ends of the core were capped. The cores 

were stored, and transported back to laboratory. Root channels and gravel were visible at 

both ends of some soil cores. Totally 8 undisturbed soil cores with 4 from the soil under 

canopy and another 4 from the soil of intercanopy, were collected in the field.

3.3.3. Experimental Setup 

The experimental setup was a combination of those methods described in Wierenga 

and Manz (1973), Wilson et al. (1998), and Ersahin et al. (2002) (Figure 3.2). The tension 

infiltrometer was used to determine the flow rate of the column under the saturation. Two 

tensiometers were installed at the two pre-drilled holes using compression fittings. To 

maintain a unit potential gradient along the column, soil water pressure inside of the
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column and in the vacuum chamber was monitored. During the experiments, the inflow 

water flux and the pressure in the vacuum chamber were adjusted until the inlet and 

outlet matric heads were equal. The outlet tube used to connect the core and the fraction 

collector (ISCO, Lincoln, NE), set inside of the vacuum chamber was kept at same level 

on the bottom of the soil core. A precision pump (FMI Lab Pump, Model QG 50) was 

used to maintain a constant inflow during the duration of experiments.

0.01 M

Vacuum
cham ber

Lab air or 
vacuum pum p

0.05 M 
Br

Balance

Fraction. 
Collector

Tension 
infiltrometer----------------------  inriitromeier

I n  Bleeder vent
n  ______  im m m m  Fabric and

porous plate

Soil
column Data logger

Fabric and 
porous plate

Regulator

Figure 3.2. Schematic of the experimental setup used in this study (modified from 

Wilson et al., 1998 and Ersahin et al., 2002).

A series of four transport experiments was performed on each of five intact soil cores 

and a repacked sand column, all under steady-state flow conditions. The primary goal was 

to obtain Br breakthrough curves (BTC) at matric heads of 0, -2, -5 and -10 cm. Miscible 

displacement experiments were performed using the method of van Genuchten and 

Wierenga (1977). Each soil core was saturated with 0.01 M CaS0 4  and 0.03% thymol
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solution for two days. The thymol was used to prevent microorganism developing during 

the experiment. Upon saturation, the inlet at the top of the assembled soil core was 

connected to a tension infiltrometer, and the outlet at the bottom was connected to a 

vacuum chamber. Saturated hydraulic conductivity of the assembled soil core was 

determined with the tension infiltrometer using zero tension. By comparing the saturated 

hydraulic conductivity made in the field and in the laboratory, only the soil cores with the 

close agreement of saturated hydraulic conductivity were used for the Br displacement 

experiment. As a result, three soil cores collected from the soil under canopy were 

excluded, because their saturated hydraulic conductivity from laboratory is much smaller 

than these derived from the field measurements with the tension infiltrometer. In this 

way, it was assured that effects of disturburance on the soil cores used for displacement 

experiments were limited. After the saturated hydraulic conductivity was measured, the 

top outlet of the assembled soil core was connected to the FMI (Fluid Metering, Inc.) 

precision pump, and the flow rate was set to that recorded when the tension was set with 

the infiltrometer. The input solution was then switched to the tracer solution of 0.05 M 

KBr in O.OI M CaS0 4 . After approximately 0.7 pore volumes of tracer solution were 

introduced into the column, the tracer solution was switched to the leaching solution. 

Approximately 3 pore volumes of O.OI M CaS0 4  was used to leach the tracer from the 

column. The effluent was analyzed for bromide using a Br electrode (Abdall and Lear, 

1975). To test the experimental system and to observe the effects of soil structure on the 

Br transport, a column with repacked sand was used to perform the Br displacement 

experiment with exactly same procedures used for the soil core collected in the field.
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Following the experiment under saturated conditions, the column was leached with 4 

pore volumes of 0.01 M CaS0 4  leaching solution to minimize the background effect of 

bromide on the next experiment. The water potential in the core was reset for subsequent 

experiments at different tensions. By applying -2 cm matric head to the bottom of the 

column, and adjusting the pump rate until the pressure readings in the column were equal, 

the procedures for the experiment under saturated conditions were repeated. Similarly, 

the experiment was repeated with the same column under -5 and -10 cm matric heads.

At conclusion of the experiments, the soil core was detached from the system, and 

dried in oven for 48 hours to obtain bulk density and final water content.

3.4. Modeling Approaches

Measured Br BTCs were evaluated using the convection-dispersion equation (CDE) 

as a mechanism to identify the presence or absence of physical nonequilibrium (Toride et 

al., 1999). The CDE used to describe one-dimensional transport of a sorbing solute under 

steady-state fluid flow conditions through homogeneous porous media is provided in 

Wierenga and van Genuchten (1988):

ac ac
af â x a%“ '̂777 (3 1)

Where C is the solution-phase solute concentration, t is time, D is the hydrodynamic 

dispersion coefficient, X is the distance from solute application, and v is the average pore 

water velocity which is defined as q/0, where q is the Darcian fluid flux velocity, and 0 is 

the volumetric water content. R is the retardation factor, which is defined as l+pK^ /0, 

where Kd is a distribution coefficient and p is the soil bulk density.
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Equation (3.1) does not appropriately describe solute transport under conditions 

where water and solute movement along preferential pathways and nonuniform mixing 

with the soil matrix, which have generally been described as transport-related 

nonequilibrium, van Genuchten and Wierenga (1976) modified the CDE to explicitly 

differentiate two soil water regions: the mobile region where all convective-dispersive 

transport occurs, and the immobile region where diffusive transport is responsible for the 

exchange of solute between the mobile and immobile regions. The governing differential 

equations for the transport-related nonequilibrium are given as:

^  ^  (3.2)

= (3.3)

Following parameters are also defined:

^ ^ 6 ^ + p f K ,  £ = D^ I v =  ^  (3 .4)

where 0m and 0im are the mobile and immobile water content (0m+0im= 8), Cm and Cim 

are solute concentrations in the mobile and immobile regions, / i s  the fraction of sorption 

sites that equilibrate with the mobile region, Vm is the average mobile phase pore water 

velocity. Dm is the mobile phase dispersion coefficient, 8 is dispersivity, a  is the first- 

order mass transfer coefficient between the two regions, L is the length of the column, 

and Rm and Rim are two retardation factors for adsorption in the mobile and immobile 

regions, respectively. If sorption sites in the soil are distributed in the same ratio as the 

mobile and immobile water contents, Rm and Rim become identical (R= Rm = Rim ) 

(Nkedi-Kizza et al., 1983). The variable 3 is a partitioning coefficient describing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

fraction of solute present in the mobile region, and the parameter to is a dimensionless 

rate coefficient describing mass transfer between the mobile and immobile regions 

(Toride et al., 1999). For nonsorbing solutes Kd=0, 3 reduces to the fraction of mobile 

water ( 0 m /0 ) .  Values of 3 and to can be used to evaluate potential contributions from the 

transport-related nonequilibrium (Langner et al., 1999). Physical equilibrium conditions 

are approached when 3 approaches unity. Similarly, if to increases, the rate of 

convergence of Cm and Cm increases. When to—>«), Cm = Cm, solutes in each region mix 

instantaneously, and the nonequilibrium status again reduces to the equilibrium status. 

Previous studies indicated that optimized values of to 100 indicate absence of 

nonequilibrium conditions (Valocchi, 1985; Bahr and Rubin, 1987; Langner et al., 1999).

To distinguish between equilibrium and nonequilibrium conditions, measured Br 

BTCs from miscible displacement experiments were analyzed using both one-region and 

two-region models (Toride et al, 1999). Model parameter L was obtained from direct 

measurement. The initial average pore water velocity v was estimated based on the field 

measurements with the tension infiltrometer. The steady status water flux density, q was 

calculated for each experiment from the effluent flow rate. The data from the Br 

displacement experiments were quantitatively evaluated using the computer program 

CXTF1T2 (Toride et al., 1999). The relative concentrations (C/Co) of Br used to represent 

the results, where C is Br concentration in effluent solution, and Cq is Br concentration in 

the stock solution. Both the one-region model and the two-region (physical 

nonequilibrium) models were used to analyze the experimental data. Equilibrium 

transport conditions (absence of preferential flow) were assumed if the coefficient of 

determination (r^) using the two-region model was equal to the for the one-region
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model, and one or both of the optimized nonequilibrium parameters 3 and co were 1 or 

100 (upper limit for to in CXTFIT2), respectively. Conversely, nonequilibrium conditions 

(preferential flow) were assumed if higher values were obtained with the two-region 

model at the case of 3 < 1 and to< 100 (Langner et al., 1999).

3.5. Results and Discussion

3.5.1. Infiltration Data Analysis 

The fieldwork was conducted from May 4 to May 8, 2003. The site chosen for this 

study is a typical undisturbed spot at the ADRS. The tension infiltrometer measurements 

were performed at a bare ground site and at a site close to plants (dominantly creosote). 

Generally, the bare ground site is covered with sparse gravels and the particle size is 

coarser than the surface sediments close to the plants, because the plants trapped the dusts 

and falling leaves. Initial thought was that physical hydraulic properties could be very 

different between the bare site and the site close to plants. Five and six measurements at 

matric heads -5, -10, and -15 cm were done in the bare ground surface and in the surface 

close to the plants with a 20 cm disk tension infiltrometer (Soilmeasurement.com), 

respectively. Measured flow rates (cm^/hr) are listed in Table 3.1.

Wooding (1968) proposed the following algebraic approximation of steady-state 

unconfined infiltration rates into soil from a circular source of radius r (cm)

4Q = m  K 1 + (3.5)
nrp

where Q is the volume of water entering the soil per unit time (cm/hr), K (cm/hr) is the 

hydraulic conductivity, and |a is a parameter (1/cm) that is an inverse of macropore
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capillary length (k, cm). It is assumed that the unsaturated hydraulic conductivity of soil 

varies with matric potential h (cm) as proposed by Gardner (1958).

Table 3.1. In-si tu measured water flow rates (cm^/hour) with tension infiltrometer at the 

ADRS.

Matric

head (cm) Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 6 Bare 1 Bare 2 Bare 3 Bare 4 Bare 5

-15 147.3 31.7 54.1 100.7 42.0 15.9 91.4 39.2 93.2 99.8 47.6

-10 - 279.7 271.3 554.8 141.7 117.5 467.1 96.0 607.9 638.7 251.7

-5 733.8 998.6 834.5 1228.9 313.3 983.7 1530.1 1589.7 2974.4 1519.8 863.4

Notes: Tree 3 eorresponds soil core ID 5611 ; Bare 1 corresponds soil eore ID 5711 and 5721 ; Bare 4 
eorresponds soil ID 5541 and 5551. Original design for colleeting soil cores was to take one soil eore each 
measurement, but only 8 soil eores were retrieved. Four of these soil cores were collected from bare soil 
surface (intercanopy) and other four soil cores were collected from the soil surfaee close to plants 
(undercanopy).

K( h ) ^  (3.6)

where Ksat is the saturated hydraulic conductivity (cm/hr). For combining unsaturated soil 

at two different matric heads (hi and ha), and solving for p., it results

4
1 +

n r a

Ttra

(3.7)

(3.8)

(3.9)
^ 2  ~  ^1

Calculated p and Ksat (cm/s) are listed in Table 3.2. Based on the values of p, À (1/p) 

and Ksat in Table 3.2, the hydraulic conductivities were calculated at the matric head -2,
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-5,-10, and -15 cm, and were plotted with matric head for the bare soil and the soil close 

to the plants (Figures 3.3a and 3.3b).

The saturated hydraulic conductivity ranges from 4.6x10 '̂  to 5.2x10^ cm/s and 

2.3x10'^ to 1.1x10'^ cm/s for the soil under the canopy and the soil of inter-canopy (bare 

surface), respectively. Mean values are 2.43x10'^ cm/s with standard deviation 1.79x10'^ 

for the soil under the canopy, and 5.42x10  ̂cm/s with standard deviation 3.41x10^ for 

the soil from the intercanopy, respectively. Based on the standard deviation, the saturated 

hydraulic conductivity for the soil under canopy and the soil from the intercanopy is 

indistinguishable. This could be a result of small sample population for these field 

measurements. The saturated hydraulic conductivity is 2.2 to 7.9 and 3.9 to 6.4 times of 

the hydraulic conductivity at matric head -5  cm for the soil under the canopy, and the soil 

from intercanopy, respectively.

3.5.2. Br Transport Characteristics 

Each core was dried in an oven at 110°C for 48 hours after the Br displacement 

experiment, then the bulk density (pb) and porosity were calculated and listed in the 

Table 3.3. The pore water velocity was calculated, and the experimental conditions for 

the undisturbed soil cores were replicated in the laboratory with engineering sand. By 

comparing the estimated pore water velocity at matric heads (Table 3.3), the magnitude 

of the pore water velocity from the matric head -10 cm to 0 cm is increased by 7.7 times 

for the column with repacked sand, by 16.5 times for the soil under canopy (5611), and 

by 13.5 to 21.8 times for the soil from the intercanopy (5541, 5551, 5711, and 5721), 

respectively, even though their porosities are similar. This could be a result of different
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structures among these columns. The column with repacked sand is approximately 

homogeneous, while undisturbed soil cores are structural soils.

Table 3.2. Calculated parameters with the data in Table 3.1.

Location p À Ksat (cm/s) K at -5  cm

Tree 1 0.16 6.25 8.06E-04 3.61E-04
Tree 2 0.34 3.33 3.61E-03 6.44E-04
Tree 3 0.27 3.7 1.97E-03 5.03E-04
Tree 4 0.25 4 2.51E-03 7.19E-04
Tree 5 0.2 5 4.63E-04 1.69E-04
Tree 6 0.41 2.43 5.23E-03 6.64E-04
Mean 0.27+0.09 4.12±1.34 2.43E-03+1.79E-03 5.10E-04+2.12E-04

Bare 1 0.28 3.57 3.81E-03 9.30E-04
Bare 2 0.37 2.7 6.65E-03 1.04E-03
Bare 3 0.35 2.86 1.08E-02 1.92E-03
Bare 4 0.27 3.7 3.57E-03 9.14E-04
Bare 5 0.29 3.45 2.26E-03 5.29E-04
Mean 0.31±0.04 3.26+0.45 5.42E-03+3.41E-03 1.07E-03+5.15E-04

All experimental data for the undisturbed soil cores and the column with packing 

sand under saturated conditions were first analyzed with the one-region model. The BTCs 

and the fitted curves were plotted against pore volumes in Figure 3.4. The label C/CO of 

Y axle represents observed and fitted Br concentrations normalized for the initial Br 

concentration. The coefficients of determination (r^) (Table 3.3) for all the fitted curves in 

Figure 3.4 are larger than 0.98; illustrating the good match between the observed data and 

the calculated curves. The BTCs for the soil cores exhibit asymmetries and tailing, but
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the BTC for the column with repacked sand is reasonably symmetrical and typical of 

equilibrium conditions, because of its homogeneous hydraulic properties. The 

nonuniformity in bromide transport in the undisturbed soil cores is possibly caused by the 

lateral mass exchange between intraaggregate and interaggregate spaces. Fitted 

dispersion coefficients (D) increased with the pore water velocity in all soil cores, but the 

dispersivity was not much affected by the velocity (Table 3.3).
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Figure 3.3. Calculated hydraulic conductivities based on the in-situ measurements; a. 

shows the hydraulic conductivity for soils close to plants, b. shows the hydraulic 

conductivity for the bare soils.
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Dispersion was much smaller for the disturbed column than these for the undisturbed 

cores. The fitted pore water velocity was higher than those estimated for all soil cores, 

but it was very close to that measured in the disturbed column, because the pore water 

velocities for the disturbed was determined in the laboratory, while the pore water 

velocities for the undisturbed soil cores were estimated based on the field measurements 

with the tension infiltrometer, and the total porosity which is generally larger than 

effective porosity for the structural soils.

1.0

0.8 packing sand
5541
5551
5611
5711
5721
fitted0.6

0.4

0.2

0.0

4 .0 4.5 5.01.5 2.0 2.5 3 .0 3.50.0 0.5 1.0
Pore volumes

Figure 3.4. Observed data and fitted curves with the one-region model of CXTFIT2 at 

saturated conditions were plotted with pore volumes.

The values of dispersivity (e) for the disturbed column were lower than those for the 

undisturbed soil cores (Table 3.3). This indicates that transport of bromide was dispersion
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dominated in the undisturbed soil cores. The experimental BTCs for the undisturbed soil 

cores showed both early breakthrough and tailing as compared to the BTC for the 

disturbed column (Figure 3.4), which may indicate either a preferential flow or 

significant mass exchange between mobile and immobile regions in these soil cores, or 

both. High values of pore water velocity generally matched with high values of 

hydrodynamic dispersion coefficient D for the undisturbed soil cores (Table 3.3), 

indicating that the transport of Br in these soils is more a function of physical 

characteristics of the porous medium than diffusive characteristics of Br.

Table 3.3. Input parameters and fitted parameters with the one-region model.

Core ID

Matric
head
(cm)

Bulk
density

(P)

Calcula
ted

porosity

Tracer
loaded
(pore

volume)

Estimated 
velocity V 

(cm/hr)

Fitted V Fitted D Dispersivity 
(cm/hr) (cm^/hr) (e)

Fitted
T /
(hr) r2*

PS-0 0 1.32 0.50 0.57 87.20 87.20 10.00 0.11 0.07 0.9990
PS-2 -2 1.32 0.50 0.74 34.31 41.00 23.77 0.58 0.20 0.9974
PS-5 -5 1.32 0.50 0.65 16.61 21.52 10.69 0.50 0.39 0.9990

PS-10 -10 1.32 0.50 0.65 11.30 17.71 9.71 0.55 0.57 0.9986
5541-0 0 1.52 0.43 0.74 28.26 56.60 100.00 1.77 0.26 0.9904
5541-2 -2 1.52 0.43 0.77 15.87 30.99 81.65 2.63 0.48 0.9955
5541-5 -5 1.52 0.43 0.73 6.52 15.39 56.48 3.67 1.10 0.9949

5541-10 -10 1.52 0.43 0.74 1.98 3.37 7.32 2.17 3.80 0.9939
5551-0 0 1.52 0.43 0.74 28.26 37.30 28.75 0.77 0.26 0.9947
5551-2 -2 1.52 0.43 0.73 17.19 22.70 17.58 0.77 0.43 0.9947
5551-5 -5 1.52 0.43 0.73 7.49 11.34 10.75 0.95 0.96 0.9984

5551-10 -10 1.52 0.43 0.72 2.09 3.13 2.92 0.93 3.45 0.9971
5611-0 0 1.41 0.47 0.70 15.17 21.50 22.80 1.06 0.46 0.9974
5611-2 -2 1.41 0.47 0.68 8.15 12.70 21.60 1.70 0.84 0.9986
5611-5 -5 1.41 0.47 0.66 3.87 5.45 7.76 1.42 1.72 0.9974

5611-10 -10 1.41 0.47 0.63 0.92 1.21 1.64 1.36 7.00 0.9933
5711-0 0 1.33 0.50 0.64 26.77 43.22 43.28 1.00 0.24 0.9947
5711-2 -2 1.33 0.50 0.64 16.38 23.55 20.10 0.85 0.39 0.9968
5711-5 -5 1.33 0.50 0.62 6.64 10.80 11.97 1.11 0.94 0.9992

5711-10 -10 1.33 0.50 0.61 1.52 2.17 2.23 1.03 4.16 0.9982
5721-0 0 1.43 0.46 0.72 27.53 47.91 100.00 2.09 0.26 0.9806
5721-2 -2 1.43 0.46 0.72 16.81 26.66 42.79 1.61 0.43 0.9989
5721-5 -5 1.43 0.46 0.72 7.21 10.37 10.98 1.06 0.99 0.9965

5721-10 -10 1.43 0.46 0.74 1.26 1.84 1.59 0.86 5.58 0.9974
* T2 duration for loading Br tracer; r regression coefficient.
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In contrast to the high dispersion values for the undisturbed soil cores, little 

dispersion occurred in the disturbed column (Table 3.3). The low dispersion values in the 

disturbed column suggest that mass transport is more a function of convective flow than 

dispersive flow. The experimental BTCs for the disturbed column showed little tailing 

and no early breakthrough (Figure 3.4), indicating a more uniform solute front and lack 

of the conditions favoring a preferential transport as compared to those in the undisturbed 

soil cores.

The experimental data for the undisturbed soil cores and the disturbed column at the 

matric heads -2  cm and -5  cm were evaluated with the one-region model. The observed 

data and fitted curves were plotted with pore volumes in Figures 3.5 and 3.6. The BTCs 

for the undisturbed soil cores in Figure 3.5 are similar to those in Figure 3.4, but several 

differences can be noticed. First, the appearance of tracers for the soil cores 5541 and 

5711 were delayed slightly. Second, the shapes of the BTCs for all the undisturbed soil 

cores were symmetrical than those in Figure 3.4. The BTCs for the undisturbed cores in 

Figure 3.6 are similar to those in Figure 3.4, not in Figure 3.5, which was not expected. 

The dispersion coefficient decreases at the matric heads -2  and -5  cm, because of much 

slower pore water velocity, versus those at saturation.

The experimental data for the undisturbed soil cores and the disturbed column at the 

matric head -10 cm were analyzed with the one-region model and all the data fit well to 

the calculated curves with r  ̂greater than 0.98. The data and fitted curves were plotted 

with pore volumes in Figure 3.7. The shape of all BTCs for the undisturbed soil cores are 

very close to the shape of the BTC for the disturbed column in Figure 3.7, which is nearly 

symmetrical, little tailing and no early breakthrough, indicating a more uniform solute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

front and lack of the conditions favoring the preferential transport as compared to those in 

Figures 3.4, 3.5, and 3.6.

BTC a t matric h ead  -2 cm
packing sand
5541
5551
5611
5711
5721
fitted

1.0

0.8

0.6

0.4

0.2

0.0

5.03.5 4.0 4.50.0 1.0 1.5 2.0 2.5 3.00.5
P o re  v o lu m e s

Figure 3.5. Observed data and fitted curves with the one-region model of CXTFIT2 at 

the matric head of -2  cm were plotted with pore volumes.

All the experimental data were also analyzed with the two-region (mobile-immobile) 

transport model given by Equations (3.2 & 3.3). Agreement between observed and 

calculated curves of the experiments for 5541, 5711, and 5721 at the saturation condition, 

and 5541 at the matric head of -5  cm are slightly better than these obtained with Equation
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(3.1). The data and fitted curves were plotted against pore volumes in Figure 3.8. The 

fitted parameters including dispersion coefficient (D), mobile water fraction (|3), and 

mass transfer coefficient (co) are listed in Table 3.4. Based on the criteria for absence or 

presence of preferential flow (Langner et al., 1999), the preferential flow occurred in 

three undisturbed soil cores (5541, 5711, and 5721) at the saturation condition, and one 

soil core (5541) at the matric head of -5  cm. No preferential flow was simulated in other 

data sets.

BTC at matric tiead -5 cm1.0 BTC a t matric tiead  -5 cm
 ♦ ---------  packing sand
 0 ---------  5541
 # ---------  5551

 A   5611
 ^ ---------  5711

 ★ ---------  5721
-------------------- fitted

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
P o re  v o lu m e s

Figure 3.6. Observed data and fitted curves with the one-region model of CXTFIT2 at 

the matric head of -5  cm were plotted with pore volumes.
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BTC at matric tiead  -10 cm
packing sand
5541
5551
5611
5711
5721
fitted

0.8
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

P o re v o lu m e s

Figure 3.7. Observed data and fitted curves with the one-region model of CXTF1T2 at 

the matric head of -10 cm were plotted with pore volumes.

The two-region model-fitted values of mobile water fraction (P) under saturated 

conditions were 0.18, 0.23, and 0.21 for 5541, 5711, and 5721, respectively (Table 3.4). 

These small P values indicated the large immobile water content, which could be due to 

higher pore water velocity of macropores. The mobile mass fraction (P) value was 0.65 

for 5541 at the matric head of -5  cm, which reflects a decrease in the immobile water 

contents with decrease in the matric head.
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Table 3.4. Fitted parameters with the two-region model.

Laboratory D P 0) r'' a

ID (cmVhr) (1/hour)

5541-0 70.93 0.18 0.030 0.9973 1.14

5541-5 25.66 0.65 0.006 0.9963 0.05

5711-0 27.57 0.23 0.008 0.9958 0.33

5721-0 89.92 0.21 0.008 0.9965 0.32

Note: The number after the laboratory ID is matric head in cm.

Preferential flow was not observed in any experimental data at matric head less than -  

5 cm. Previous studies indicate that mobile water regimes become more important at the 

matric heads above -3 cm or -5  cm (Ersahin et al., 2002; Langner et al., 1999). 

Nonequilibrium conditions often occurred in matric heads of 0 and -1 cm (Seyfried and 

Rao, 1987), but nonequilibrium conditions were not found at matric head of -10 cm. 

Observed field data with a disc infiltrometer indicated that flow changed from gravity- 

dominated to capillary-dominated, when matric head at the infiltrometer base changed 

from -3 to -6 cm (Angulo-Jaramillo et al., 1996). Therefore, the lack of a preferential 

flow in conducted experiments under the matric head of -5  cm in this study is consistent 

with results reported above. The parameter (cn) is related to a rate coefficient a  (hour'), 

which controls rate of diffusive mass exchange between mobile and immobile regions 

(van Genuchten, 1981; Parker and Toride, 1984). The rate coefficient values for 5541 

decreased sharply when soil matric head decreased to -5 cm. This was attributed to the 

effect of pore water velocity and mobile water content on a, where the increasing pore 

water flux resulted in an increase in a  values and increase in mobile water content 

resulted in a decrease in a  values. A strong correlation between soil water potential and
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values of a  was found by Casey et al. (1998), which suggested that pressure head also 

has an effect on a.

Two-region fitted curve
 ^ ---------  5541-0
 ■ ---------  5541-5
 # ---------  5711-0
 A   5721-0
----------------------- fitted0.8

0.6
oy

0.4

0.2

0.0

3.5 4.0 4.5 5.00.0 0.5 1.0 1.5 2.0 2.5 3.0

P o re  v o lu m e s

Figure 3.8. Observed data and fitted curves with the two-region model of CXTPÏT2 were 

plotted with pore volumes.

3.5.3. Discussion

Transport of water and/or contaminants through thick vadose zones is directly 

related to climate and hydraulic properties of the vadose zone. Typically arid vadose 

zones are considered very suitable for waste disposal sites because of very low water 

availability for infiltration. However, intrinsic hydraulic properties in areas with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

thick alluvial sequences are favorable for transmitting water and/or contaminants to 

a greater depth. In-situ measurements with tension infiltrometer at ADRS indicate 

that surface soils have the ability to transmit water up to 38.9 cm per hour for the 

bare surface soils and 18.8 cm per hour for the surface soils under plant canopy. 

Laboratory measurements indicated that the field soils at ADRS have the ability to 

conduct the water flux up to 23.0 cm per hour (Andraski, 1996). These potential 

water fluxes are extremely high. Therefore, the ability of the vadose zone to transmit 

water and/or contaminants is mainly dependent on the climate. It is apparent that 

these high fluxes would not occur for most surface soils at ADRS under present 

climate. However, these high water fluxes are more likely to occur in ephemeral washes 

that collect runoff from larger contributing areas. Previous studies with chloride-mass 

balance and water-balance modeling show that, despite minimal or nonexistent 

percolation of precipitation below a depth of 10 m at ADRS for at least the last 6,000 

(Fouty, 1989) to 16,000 years (Prudic, 1994), the potential for infrequent percolation of 

precipitation below a depth of 2 m does occur under present climatic conditions in bare 

soil (Nichols, 1987), which indicates that the native vegetation plays an important role in 

removing available water. Episodic, deep drying during periods of below average 

precipitation limited the potential for deep percolation under natural, vegetated conditions 

(Gee et al., 1994; Andraski, 1997; Dong et al., 2003). Therefore, the lack of plants can 

increase the risk for deep water percolation.

The coarse soil texture of the surface soil at ADRS leads to low water retention which 

reduces limited water resources available for plants. The coarse soil texture is also less 

capable of holding the nutrients that are needed for plant growth. Therefore, higher
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precipitation will lead to a greater loss of soil nutrients. This may indicate that the desert 

ecosystem is vulnerable and difficult to be recovered. However, desert plants are 

expected to use water more efficiently due to the ongoing rise in CO2 content of 

atmosphere (Grunzweig et al., 2003; Eklundh and Olssson, 2003). A dynamic 

relationship among the soil physical properties, climate, and CO2 content of atmosphere 

thus controls the desert ecosystem.

Paleoclimate studies indicated that the high-stand water in Death Valley occurred at 

26 ka, 18 ka, and 12 ka, and was mainly contributed by surface water from the Amargosa 

River (Anderson and Wells, 2003). Major wetlands formed by paleo-spring discharge in 

southern Nevada were present during periods of 16.4-26.3 ka, 13.9-13.5 ka, and 11-9.5 ka 

(Quade et al., 2003); thus, the age of the latest wet climate event is only about 10 ka. 

Based on plant macrofossils of the Yucca Mountain region, Thompson et al. (1999) 

concluded that at the LGM (18 ka), the annual temperature was 5.2°C cooler than modem 

annual temperature and the precipitation was 2.35 times greater than modem 

precipitation. Given the proximity of ADRS to Yucca Mountain, a similar climate change 

is assumed for ADRS and the Yucca Mountain. If wetter climate pattems occur in the 

next 10 ka, the annual precipitation at ADRS could be as high as 253.8 mm, high 

precipitation intensity could be about 40 mm per hour which is more than most water 

fluxes measured in the field at the matric head -5 cm. The fitted pore water velocity at 

the matric head -5 cm is up to 15.4 cm/hour (Table 3.3). Based on assumptions, potential 

évapotranspiration calculated with the Hargreaves model was subtracted (Hargreaves and 

Samani, 1982) from the precipitation to obtain minimum net water for infiltration during 

rainfalls with high intensities. These values were up to 10.9 mm and 25.5 mm for the
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modem climate and the LGM conditions, respectively. Therefore, the surface soils at 

ADRS could experience local high water fluxes during highly intensive rainfall events 

under present climate conditions, and could have higher water fluxes in past or future wet 

climates.

Experimentally measured BTCs for structured soils often exhibit asymmetries and 

tailing that are not consistent with the CDE, but the CDE does provide a reasonably 

accurate description of nonreactive solute transport in uniformly packed columns (Skaggs 

et ah, 2002). The Br effluent data from the undisturbed soil columns exhibited 

asymmetries and tailing (Figures 3.4, 3.5, and 3.6) as compared to the Br effluent data 

from the packed column with sand. Because the Br is nonreactive, these asymmetries and 

tailing are attributed by macroscopic heterogeneities. However, the effluent data from the 

undisturbed columns were reasonably well described with the CDE, and only slight 

improvements on the fit for the effluent data for 5541, 5711, and 5721 at saturated 

conditions, and 5541 at the matric head -5 cm with the two-region model were observed. 

This is largely a result of coarse particles in these undisturbed soil columns.

The fitted dispersion coefficient is an increasing function of the pore water velocity in 

the undisturbed soil column, but not in the column with the packing sand (Table 3.3). The 

undisturbed columns are expected to have original soil structures that lead to spatial 

variations in local bulk densities, water contents and resultant flow variability. This 

purely explains the Br early appearance in the undisturbed soil cores (Figure 3.4, 3.5, 3.6, 

and 3.7) as compared to the column with repacked sand. These phenomena became 

insignificant with a decrease in matric head in each undisturbed column.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

The Br effluent data for cores 5541, 5711, and 5721 at saturation condition, and 5541 

at the matric head -5  were better fitted to the two-region model (Figure 3.8). This 

indicated that a preferential flow occurred in these cores. Those three cores were 

collected from bare ground surface of ADRS. The field measurements with the tension 

infiltrometer (Figure 3.3) exhibited large spatial variability of soil hydraulic properties of 

the interspace at ADRS, which could be results of different sediment bedding, grain size 

distribution, and clay content in both lateral and vertical directions. It is known that 

textural differences can promote the development of preferential flow (Glass et al.,

1988, 1989; Hillel and Baker, 1988; Ritsema et al., 1993, 1998; DiCarlo et al., 1999; 

Banters et al., 2000; Sililo and Tellam, 2000). In addition, macropores formed by root 

channels (Devitt and Smith, 2002), cracks, and animal burrows may be an important 

conduit for the preferential water flow and solute movement. Decayed roots were often 

found in the undisturbed cores used for this study. Preferential flow was not observed in 

cores 5551 and 5611. This could be a result of spatial variability of soil structures, or the 

cores used for our experiments are not big enough to capture the macropores in all scales. 

The preferential flow was only observed in core 5541 at the matric head -5  cm, not in 

cores 5711 and 5721. This may be attributed by the fact that the grain size of the surface 

soils at ADRS is very coarse with coarse fragments (Andraski, 1996), or the preferential 

flow is generally significant when the soils are nearly saturated (Luxmoore, 1981). There 

was no preferential flow observed for all undisturbed soil cores at the matric head -10 

cm, because the matric head is one of most important factors to affect the preferential 

flow. Previous studies suggested preferential flow occurs predominantly at the matric
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head larger than -10 cm, or through soil pores with an effective radius greater than 150 

jum (Langner et al., 1999; Elrick and French, 1966; and Seyfried and Rao, 1987).

The preferential flow can contribute an important fraction of solute movement to 

significant depths in the vadose zone when near saturation. Under present climate 

conditions at ADRS, the surface soils are dry for most of the year; thus, preferential flow 

may not be a major mechanism for solute movement in the vadose zones of ADRS. 

However, precipitation with high intensities occurring in winter seasons could promote 

deep recharge of water through surface soils of ADRS. In that case, the contribution of 

preferential flow to the acceleration of the soil water percolation and solute transport 

could occur. It is likely that the preferential flow would occur in ephemeral washes that 

collect runoff from larger contributing areas under present climate conditions. This 

conclusion was supported by a recent study that indicated that deep percolation and 

groundwater recharge occur beneath areas of irrigation and ephemeral channels 

(Stonstrom et al., 2003). However, higher water infiltration and preferential flow through 

the surface soil could also occur during wetter climates, like the past pluvial periods or 

potentially in the future, if wetter climate returns to the desert.

3.6. Conclusions and Further Work 

Water fluxes from the in-situ measurements with tension infiltrometer, and Br 

dispersion coefficients obtained from displacement experiments in undisturbed soil cores 

were quite high. These high water fluxes are mainly results of coarse soil textures and 

possibly from the preferential flow, which was supported by the effluent data for the 

undisturbed cores of 5541, 5711, and 5721. Four undisturbed soil cores collected from
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the bare ground sites at ADRS used in this study should be representative of soil types. 

Effluent data from these four cores show a close fit between calculated and experimental 

BTCs. One undisturbed soil core from the plant canopy area exhibits similar transport 

characteristics to the cores from the interspace, which may not be typical for the soils 

under plant canopy, because the field measurements with the tension infiltrometer 

indicated larger variation in hydraulic properties for the soils under canopy. Fine particle 

sizes and more root channels for the soil under canopy are more favorable for producing 

a preferential flow when enough water is available. It can be expected that large soil 

cores would better capture more information on the water movement and solute transport 

in structured soils. Multiple tracers could also be used to identify the contributions of the 

preferential flow and matrix diffusion in structured soils.
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CHAPTER 4

SIMULATION OF PALEOLAKE EXTENTS IN OWENS VALLEY

4.1. Abstract

Quantitative paleoclimate information is necessary for the realistic estimation of 

groundwater recharge and prediction of future climate change. A physically based 

catchment-lake model was developed to extract quantitative paleoclimate information 

over the past 18 ka from lake records in the Owens River Valley, California, a 

hydrologically closed basin including Owens Lake, China Lake, Panamint Lake, and 

Death Valley. Since the lake serves as an integrator that reflects climatic and hydrologie 

conditions for the entire catchment, it is sensitive to regional as well as local climatic 

fluctuations. Shoreline terraces, beach deposits, lake sediments, and fossil data in this 

chain of lakes document several cycles of pluvial events in the late Quaternary. Studies 

have shown that these pluvial events were triggered by the global climate change. A 

catchment-lake model was used to reconstruct the observed paleolake levels for Owens 

Lake and Searles Lake at key times in the past (18 ka, 15 ka, 12 ka, 9 ka, and 6 ka). The 

initial model inputs were prepared based on modem regional spatial and temporal climate 

data, boundary conditions from the General Circulation Model, and fossil proxy data. The 

inputs subsequently were systematically varied in order to produce the observed lake 

levels. In this way, a large number of possible paleoclimatic combinations can quickly
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narrow the possible range of paleoclimatic combinations that could have produced the 

paleolake level and extent. Finally, a quantitative time-series of paleoclimate information 

for key times was obtained.

4.2. Introduction

Yucca Mountain (YM), Nevada, was selected as the first long-term geological 

repositories for high-level radioactive wastes in the Unites States in 2002. Understanding 

long-term groundwater flux at the repository is fundamental for predicting future 

groundwater flow and transport in the region. The time for the safe isolation of 

radioactive wastes from public requires up to hundreds of thousands of years. Therefore, 

in addition to characterizing present-day site hydrology, the knowledge of long-term 

hydrologie variability is needed. YM is composed of a sequence of welded and non

welded tuffs. The present-day arid climate and a thick unsaturated zone (UZ) (the present 

water table is about 400 to 600 m below land surface) comprise of two major positive 

attributes that may limit the releases of radioactive material into the environment 

(Winograd, 1981). However, the region was strongly influenced by wetter, cooler climate 

conditions during the Quaternary period (Spaulding, 1985; Quade et ah, 1995), and 

nearly 100 closed basins in the western United States contained lakes during the late 

Pleistocene (Benson and Thompson, 1987). A variety of paleoclimatic proxy data have 

offered qualitative information on past climate, but quantitative data are often needed for 

studying long-term hydrologie processes. Although atmospheric general circulation 

models (GCMs) have been utilized in attempts to estimate quantitative paleoclimate 

information at a global scale (Kutzbach, 1987; COHMAP Members, 1988; Street-Perrott,
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1991), their resolution is not fine enough for the investigation of localized climate change 

(Kutzbach, 1987; Dickinson et ah, 1989) that is very critical for the analysis of regional 

groundwater recharge and transport.

Paleoprecipitation proxies have been extracted from a variety of sources such as tree 

rings, ice cores, and marine and continental sediments (e.g., Stuiver et al., 1995; 

Spaulding, 1985; Shackleton, 1967). Excepting ice core records, most of these records 

can only provide indirect and qualitative estimates of paleoprecipitation. However, lake 

levels in closed basins are the most sensitive indicators of the water balance between 

precipitation and évapotranspiration in the watershed (Street-Perrott and Harrison, 1985). 

Lakes fluctuate in volume at both seasonal and interannual time scales in response to 

variations in the water balance over the lakes and their catchments. These volume 

fluctuations are reflected in the lake level fluctuations in closed basin lakes, and in the 

rate change of overflow in open lakes.

The distinctive tectonic setting and geomorphic characteristic of the southern Great 

Basin create many hydrologically closed basins that were filled with water during pluvial 

lake periods (e.g.. Smith and Street-Perrott, 1983; Street-Perrott and Harrison, 1985; 

Phillips et al., 1994; Bischoff et al., 1997; Menking et al., 1997; Benson, 1999; 

Lowenstein et al., 1999; Bischoff and Cummins, 2001). Although variations in wind 

velocities, relative humidity, temperature, and other climatic variables that influence 

evaporation rates are factors in determining lake sizes, the change in precipitation is the 

most important factor (Smith, 1991). Studies on the lakes in Owens River system, 

California, have shown that lake levels primarily record annual precipitation amounts and 

almost quantitatively document changes in precipitation within their catchments, thus
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these lakes are sometimes termed as - “natural rain gauges” (Smith and Bischoff, 1997) 

that can be used to extract quantitative paleoprecipitation for the catchment area of the 

Owens River and its neighboring regions including Yucca Mountain.

Studies on the lakes in the Owens River system have shown that their water levels 

primarily record annual precipitation amounts within their catchment, but the 

interpretation on paleoclimatic changes is generally limited to either wetter or drier 

climate, and offers little specific data about the nature of the climate change. The reason 

for this is that lake level in a particular basin is a complicated function of intrabasin and 

extrabasin climate and basin topography (Benson and Thompson, 1987). In order to 

extract quantitative paleoclimatic proxies from these lake records, one of the best 

approaches is through numerical modeling.

A variety of models have been used to simulate the paleorecord of closed basin lakes 

in arid and semi arid areas (e.g., Kutzbach, 1980; Benson, 1981; Benson, 1986; Hostetler 

and Bartlein, 1990; Hostetler and Benson, 1990; Hostetler et al., 1993, 1994). Physically- 

based lake models, which explicitly represent the physical processes governing the 

energy and water balances of the lake, offer a more robust way to predict climate induced 

changes in water volume, level, and outflow of the lakes. A suitable lake model for 

paleolake level studies should require a minimum of site-specific parameters (Hostetler 

and Giorgi, 1993). In this study, a coupled catchment-lake model was developed and used 

to quantitatively estimate paleoclimate information, especially annual mean precipitation 

and temperature in southwestern Great Basin since the last glacial maximum (LGM).
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4.3. Owens River System 

The Owens River system, California, located at the western margins of the Great 

Basin, is a hydrologically closed basin that consists of a chain of lakes including Mono 

Lake, Owens Lake, China Lake, Searles Lake, Panamint Lake, and Death Valley Lake 

(Figure 4.1). Excepting Mono Lake, the floors of these lakes are now occupied by playa 

lakes or salt flats. The valley is bound on the west by the Sierra Nevada, on the northeast 

by the Inyo and White Moutains, and on the southeast by the Coso Range. Presently, 

Owens River drains an area of about 8,550 km^, but due to a strong rain shadow effect, 

most of the runoff is derived from about 16% of the catchment area, which lies on the 

eastern slope of the Sierra Nevada (Lee, 1912). Modem climate at the floor of the Owens 

River system is semi-arid with about 15 cm of annual precipitation. Thus, precipitation 

that falls directly on the surface of the basins in the Owens River system is an 

insignificant contribution to the lake water budget, which could also be true for the lakes 

in the paleo-Owens River system (Jannik et al., 1991). Street-Perrott and Harrison (1985) 

termed such lakes as “amplifier” lakes, describing a simple relationship among basin 

runoff, lake evaporation, and lake area (Smith and Bischoff, 1997).

Owens Lake, at the base of high mountains, is the first to respond to the increasing 

amounts of regional precipitation. Until 1912, the Owens Lake, which was about 10 m 

deep and 290 km^ in area before agricultural irrigation in the area became extensive, was 

a terminal lake of the Owens River. All of the river’s water was diverted to Los Angeles 

in 1912, and subsequently, the Owens Lake desiccated. Searles Lake was third in a chain 

of five permanent lakes receiving water from the Owens River during the late 

Pleistocene, and Mono Lake was separated from the Owens River system to the south by
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a high-altitude sill in the late Wisconsin (Benson and Thompson, 1987). During the 

LGM, Owens Lake, China Lake, and Searles Lake overflowed and the Panamint Valley 

was a terminal lake of the Owens River hydrological system. Lake stages at Searles Lake 

are sensitive to climatic changes because of the storage capacities of the upper lakes in 

the series. Inflow to Searles Lake depends on the overflow from the other lakes and 

therefore it is first lake affected by a decreasing inflow in the lake system.

Studies of lacustrine outcrops, cores, and landforms have allowed the reconstruction 

of the past histories of lakes in the Owens River system and its downstream basins (Smith 

and Street-Perrott, 1983; Smith and Bischoff, 1997). Geomorphic and sedimentary 

evidence, including staircases of abandoned shorelines and abrupt changes of facies in 

sediments, records fluctuations of the paleolake levels. Smith and Street-Perrott (1983) 

provided a chronology of Late Wisconsin to present lake level fluctuations for Searles 

Lake (Figure 4.2).

Benson et al. (1997) identified two hiatuses at 2.25 and 9.2 m based on the data of

Core OL84B from Owens Lake. These two hiatuses represent two desiccation events 

that occurred at -15.3-13.5 and -6.1-4.3 ka (all ages used in the text of this study are on 

time scale before present (B.P.)) in Owens Lake. The ô'^O data of sediments between 

the two hiatuses show four abrupt dry/wet oscillations that correspond the four dry/wet 

oscillations in the North Atlantic region (Benson et al., 1997). Relatively wet intervals 

precede each of the dry events. An extreme overflow occurred at about 12 ka, which 

resulted in the lowest 0^*0 (-13 % o )  of lake carbonate (Benson, 1999).
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Figure 4.1. Location map of Owens River system (Modified from Smith and Bischoff, 

1997).

Based on the ostracode assemblage from Owens Lake, Forester (2001) derived more 

details on lake level changes of the Owens Lake from 25 ka to 4 ka while Li et al. (2000) 

provided detailed information on climate for the past 1000 years. 5**0 was plotted with 

age (Benson et al., 2002) for past 20 ka in Figure 4.2.
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In summary, the detailed paleolake records in the Owens River system offer a good 

opportunity to extract quantitative paleoclimate information in the southwestern Great 

Basin.
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Figure 4.2. for core OL84B (solid line with dot) (Benson et ah, 1997), 6^*0 from 

GISP2 (solid line) (Stuiver et al., 1995), and elevation of lake surface for Searles Lake 

(dashed line) (Smith and Street-Perrott, 1983) in the last 20 ka.

4.4. Description of Model and Modeling Strategies 

The surface area of a closed-basin lake under natural conditions is strictly dependent 

on the dynamic equilibrium between precipitation and évapotranspiration over its entire 

catchment (Hailey, 1715). Any changes in this equilibrium result in a change in terminal 

lake depth, which directly influences its area, and the cumulative lake area in the drainage
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basin (Benson and Paillet, 1989). The mean annual water balance of a lake is governed 

by the equation (Street-Perrott and Harrison, 1985)

Ay = A,(P, -  E J  + ( R - D )  + (G, - G J  (4.1)

where AV is the net change in volume of the lake, Pl is precipitation on the lake, El is 

evaporation from the lake, Al is the area of the lake, R and D are runoff from the 

catchment and the surface discharge from the lake respectively, and G; and Go are 

groundwater flows into and out of the lake respectively. For a closed basin lake, Gj and 

Go can be assumed negligible, and D is zero (Street-Perrott and Harrison, 1985), so 

Equation (1) reduces to the following form for equilibrium conditions 

R = A ,(E ,-7^) (4.2)

If the runoff from the drainage basin can be represented by

R = (4.3)

where Ab represents area of the catchment, Pb is the precipitation over the catchment, and 

Eb is the évapotranspiration over the catchment, then

A g(7^-E ,) = A ,(E ,-J ^ ) (4.4)

This simple expression shows that the equilibrium area of a closed lake under natural 

conditions is strictly dependent on the precipitation and evaporation over its catchment 

and water surface. In the Owens River system, based on paleolake records, values for Al 

and Ab for those paleolakes can be measured quite accurately using a digital elevation 

model (DEM). Remaining components in Equation (4.4) are precipitation and 

evaporation over the drainage basin. The evaporation mainly depends on temperature, 

thus the purpose for this study is to develop a coupled catchment-lake model to resolve 

these two unknown variables in the Equation (4.4).
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Besides temperature, the evaporation value also depends on many other climatic 

factors including solar radiation, wind speed, and cloud cover. With the exception of 

temperature, other relevant factors are difficult to reconstruct from geologic data. Many 

studies assume that paleo-values for the evaporation can be satisfactorily estimated from 

empirical relationships between modem data on evaporation and air temperature. 

However, a change in evaporation rates could result from higher wind velocities, higher 

relative humidities and lower solar radiation values, and greater amounts of precipitation 

on the lake surface (Smith and Street-Perrott, 1983). Therefore, it is desirable to have a 

model that considers all of these factors. Hostetler and Bartlein (1990) developed a one

dimensional surface energy-balance lake model, where the vertical heat transfer was 

simulated by eddy diffusion and convective mixing. Several studies using this model 

have successfully simulated the modem and paleolake level change both in humid and 

arid regions (Vassiljev, 1997; Hostetler and Benson, 1990; Hostetler et al., 1994). 

Omdorff (1994) developed a surface hydrologie model (OSHM) that has been 

successfully applied to the Owens River system to test the proxy estimates of the LGM 

against the paleolake records. The OSHM has three modules: the snow module that 

computes mean monthly snowfall, snowmelt, snowpack, ice accumulation, ice transport, 

and icemelt for each grid cell based on the input of temperature, precipitation, and 

elevation of that cell, the mnoff module that calculates mean annual runoff from available 

water (rain, snowmelt, and icemelt), and the lake module that computes lake extent from 

the results of basin-wide mean annual runoff calculated by the mnoff module and lake 

evaporation. In the OSHM, empirical relationships between modem data on evaporation 

and air temperature are used to calculate the evaporation for the pluvial lakes in the
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Owens River system during the LGM, which may not represent the actual situation as 

discussed above. In this study, the lake module in the OSHM was modified with the 

addition of Hostetler’s lake model and used to simulate evaporation over the lake surface. 

The paleoclimatic evaluation strategy is first to model the lake extent under current 

climatic conditions with the coupled catchment-lake model developed in this study. The 

input parameters under current climatic conditions are then systematically varied in order 

to reconstruct lake extent based on lake records under paleoclimatic conditions. The 

modeling strategy is essentially an inverse approach to inferring paleoclimatic conditions 

based on past lake extent. The advantage of this modeling strategy is that a large number 

of possible paleoclimatic combinations can be quickly narrowed to a possible range of 

temperature/precipitation combinations that could have produced a particular paleolake 

extent.

A simulation on lake extent begins with dry closed basins. Each basin’s runoff 

volume is added to the current lake volume at each time step. The lake volume is 

compared to the basin threshold volume, which corresponds to a lake level equal to the 

controlling elevation of the lowest basin outlet. Overflow occurs into the basin on the 

other side of the outlet when the lake volume exceeds the threshold volume. The model 

also checks for lake merging during overflow, which occurs when two lakes with a 

common active outlet overflow, thus inundating the active outlet. If two lakes merge, the 

downstream basin becomes a part of the upstream basin, and the remaining outlets of 

both basins are sorted to determine the new active outlet for the complex basin (Omdorff,

1994). Lake evaporation is then calculated using the eddy diffusion and convective 

mixing (Hostetler and Bartlein, 1990), and the lake level is adjusted accordingly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

(Omdorff, 1994). The simulation mns in one year time step until the cumulative lake 

volume equilibrates or the mn time exceeds a specified end time. Benson and Paillet 

(1989) state that “the proper gage of lake response to change in the hydrologie balance is 

neither lake depth (level) nor lake volume but instead lake surface area”, thus this study 

focused on lake surface area for a comparison of simulated lake extent and derived lake 

extent based on geologic evidence.

4.5. Calibration of Catchment-Lake Model 

The catchment-lake model used in this study was developed by coupling a 

distribution hydrology model (Omdorff, 1994) and an energy-balance lake model 

(Hostetler and Bartlein, 1990). Both of these models were independently calibrated with 

observed data (Omdorff, 1994; Hostetler and Bartlein, 1990; Hostetler, 1991), thus they 

are valid when used independently. However, the catchment-lake model developed for 

this study has to be calibrated before applying it to simulate paleolake levels. Mono Lake 

is presently the only lake with standing water in Owens Valley. The three major streams 

(Rush, Lee Vining, and Mill Creeks) that delivery water to Mono Lake originate in the 

high Sierra Nevada (Benson et al., 1990), so the hydrological characteristics of Mono 

Lake and Owens Lake are similar. Observed data including climate data, hydrological 

data and lake level data are available for the Mono Lake drainage basin since 1857 

(Mono Basin Environmental Impact Report, 1993). The data on measured temperature 

profiles and lake evaporation are also available for some periods of time (MacIntyre et 

al., 1999). The calibration was done with input data including modem precipitation and 

temperature matrix data for the Mono Lake drainage basin from the LCM (Stamm, 1991),
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solar radiation data from the Desert Rock, vapor pressure, wind speed, and cloudiness 

data from stations close to the Mono Lake. The Desert Rock is located at about 150 km 

southeast of Mono Lake. The simulated monthly runoff for the Mono Lake drainage 

basin in this study is compatible with the observed (Figure 4.3) and the annual runoff is 

about 1% less than the observed. The simulated lake surface area is 227 km^, which is 

0.5% less than the average of the observed lake surface area from 1940 to 1989 (Mono 

Basin Environmental Impact Report, 1993).

Simulated runoff In Mono Basin
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Figure 4.3. A comparison of observed runoff and simulated runoff in Mono Lake 

drainage basin.

The lake temperature profile simulated by the model agreed very well with measured 

temperature profile (Figure 4.4a). Furthermore, the simulated evaporation also compares 

well with the observed evaporation data through the grand pan, but slight higher than the 

evaporation estimated from water budget method (Figure 4.4b). These comparisons
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indicated that the overall ability of the coupled catchment-lake model developed here to 

reproduce observed basin-wide mean annual runoff, mean lake surface area, temperature 

profile and evaporation of lake water in modem Mono Lake drainage basin.
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Figure 4.4. a. A plot of simulated and measured temperature profile (MacIntyre et al., 

1999) in Mono Lake; b. Simulated evaporation and observed evaporation for Mono Lake.
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4.6. Input Parameters 

A number of input parameters are required for the coupled catchment-lake model. 

Coarse grid cell (5 km x 5 km) used in the OSHM missed some small snow cover and 

stream networks, and did a poor job representing some basin shapes (Omdorff, 1994). In 

this study, the fine resolution (1 km x 1 km) data was used to obtain better results. The 

topographic data used in this model is from the global 30 arc-second elevation data set 

(GTOPO30) (http://edc.usgs.gov/products/elevation/gtopo3G.html). The GTOPO30 has a 

horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). Observed solar 

radiation, cloud cover, wind speed, atmospheric pressure from near weather stations, and 

modem monthly temperature and precipitation matrix from the LCM (Stamm, 1991) that 

are based on boundary conditions including terrain, wind field, and radiation balance 

were used to drive the newly developed catchment-lake model and to reproduce the 

historical lake level of the Owens Lake. Precipitation and temperature matrix data at 18 

ka, 15 ka, 12 ka, 9 ka, and 6 ka were prepared based on the proxy data in Table 4.1 by 

applying the appropriate perturbation (simple additive change for temperature, and 

multiplicative change for precipitation) to the modem monthly precipitation and 

temperature matrix data from the LCM. For example, climate at the LGM might be 

hypothesized to be 5° colder and 50% wetter than the present based on proxy data in 

Table 4.1. The input climate matrix at the LGM could be prepared for temperature by 

subtracting 5°C from the modem temperature matrix, and for precipitation by multiplying 

1.5 times the modem precipitation matrix. Other climate parameters including cloud 

cover (Figure 4.5a), solar radiation (Figures 4.5b, c), and wind speed (Figure 4.6) were 

from historic records for modem conditions, and from the Community Climate Model
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Figure 4.5. Inputs of cloud cover, solar radiation for the simulations at 18 ka, 15 ka, 12 

ka, 9 ka, and 6 ka (Bartlein et al., 1998).

(CCMC) (Kutzbach and Guetter, 1986) and the results of paleoclimate simulation of 

North America (Bartlein et al., 1998) for paleoclimatic simulation. However, the single 

monthly value for these parameters was used for the whole area. The reason for this is: 

first, there are no fine resolution data available for these parameters in the study area; 

second, previous study indicated that precipitation and temperature are the two primary 

factors controlling glacial extent (Plummer and Phillips, 2003).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Because Owens Lake, China Lake, and Searles Lake overflowed and the Panamint 

Valley was a terminal of the Owens River hydrological system at the LGM, and most 

observation data are available for Owens Lake and Searles Lake, the comparison between 

the simulated results and the observation data in this study focused on Owens Lake and 

Searles Lake.
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Figure 4.6. Inputs of wind speed for the simulations at at 18 ka, 15 ka, 12 ka, 9 ka, and 6 

ka (Kutzbach and Guetter, 1986).
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4.7. Results 

4.7.1. Simulation on Modem Lakes 

Mean annual mnoff, computed for modem climate from the mnoff module is input to 

the lake model to simulate modem lake extent in the Owens Valley. The resulting lakes 

along with hillshed and stream network that were derived from the DEM are shown in 

Figure 4.7a. The lake system converges in 80 years (the lake system reaches its steady- 

state). There is no lake mergence occurring. The results from modem simulation 

accurately portray Mono Lake, Lake Crowley (in the Long Valley basin). Black Lake (in 

Adobe Basin), and Owens Lake. Simulated Mono Lake has a surface area of 227 km^ that 

is about 0.5% less as compared to the average 228 km^ of the observed lake surface area 

from 1940 to 1989 (Mono Basin Environmental Impact Report, 1993). Simulated Owens 

Lake has a surface area of 289 km  ̂that is about 0.3% less as compared to an observed 

pre-diversion surface area of 290 km^ (Smith and Street-Perrott, 1983).

4.7.2. Simulations on Lakes at Last Glacial Maximum (LGM)

Simulations on lakes at the LGM in the Owens Valley were done with modem 

temperature and precipitation matrices perturbed based on proxy-based LGM temperature 

and precipitation departures (Table 4.1), other climate parameters including solar 

radiation, cloud cover, and wind speed from CCMO (Kutzbach and Guetter, 1986) and the 

results of paleoclimate simulation of North America (Bartlein et al., 1998) that were 

fixed. By varying combinations of temperature and precipitation with appropriate
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119-0'0'W 118-0'0'W 117-0'0'W 116-0’0'W

d. 12  ka
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f. LGM (18  Ka)
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Figure 4.7. Simulated lake extents (dotted area) in the last 18 ka, and hillshed (Gray 

scale) and stream network (solid lines) derived from DEM data.
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perturbation until the derived lake extent at the LGM from field evidenee was 

reproduced, the final combination with temperature 5.5°C cooler than modem 

temperature, and 1.25 times of modem precipitation was obtained. Simulated final lake 

extents with hillshed and stream network are shown in Figure 4.7f. Owens Lake 

overflows, and has a lake surface area of 692 km^. China Lake and Searles Lake coalesce 

and have an area of 949 km^. Searles Lake also overflows and a small lake with an area 

of 144 km^ is formed in Panamint Valley. These results are very compatible with 

observed lake extent in Owens Valley at the LGM. Smith and Street-Perrott (1983) 

reported that both Owens Lake and Searles Lake overflow and have a lake surface area of 

694 and 994 km^, respectively.

Table 4.1. Proxy data in the southwest United States in the last 18 ka

Time Temperature
(°C)

Precipitation Source

Late
W isconsin

-6.25 annual 
-3 .0  annual 
-5.5 annual 
-6.5 annual 
-6 .0  sum m er 
-6.7 annual 
+ 1.0  w inter, -1 .0  
sum m er
-3.0 Jan, -3 .0  Jul

+37 cm  winter
+68%  annual
+27.5%  annual
+65%  winter, -4 5 %  sum m er
Sum m er precip itation  10% o f  annual
+32%  annual
+57%  w inter, +56%  sum m er 

+19 m m  Jan, -31 m m  Jul

D ohrenw end (1984)
M ifflin  and W heat (1979) 
M errill and Pew e (1977) 
Spaulding (1985) 
B etancourt (1990)
C ole (1990)
L effler and C ochran (1989)

Spaulding and G raum lich 
(1986)

18 ka

20.5 to 18 ka 
14 to  11.5 ka

-3.29 annual 
-3 .17 Jan, -3.01 Jul 
-7.5 annual 
-6.7 annual

-0.29 m m /day annual
+0.25 m m /day Jan, -0 .84  m m /day Jul
2.40x
2.58x

T hom pson et al, 1994

T hom pson et al., 1999 
T hom pson et al., 1999

12 ka -2.52 annual 
-3.01 Jan, -0.63 Jul

-0.18 m m /day annual
-0.27 m m /day Jan, -0.15 m m /day Jul

T hom pson et al, 1994

9 ka +0.43 annual 
-0 .09 Jan, +2.15 Jul

+ 0.30 m m /day annual
+ 0.80 m m /day Jan, -0.27 m m /day Jul

T hom pson et al, 1994

6 ka +0.69 annual 
+ 0.30 Jan, +0.68 Jul

-0.03 m m /day annual
-0.16 m m /day Jan, +0.07 m m /day Jul

Thom pson et al, 1994
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4.7.3. Simulations on Lakes at 15 ka

The techniques used to prepare input data for simulations on lakes in Owens Valley at 

15 ka are the same as these at the LGM. Based on dating and sedimentary features, 

Benson et al. (1997) reported a desiccation event occurred at Owens Lake at 15 ka. 

Because Owens Lake is an upstream lake of Searles Lake, and Searles Lake received 

most of its inflow from the overflow of Owens Lake, Searles Lake could also desiccate at 

15 ka. This is supported by the field evidence that indicates that Searles Lake was at its 

low water level with an elevation of 510 m. Therefore, the simulation on the lake extent 

in Owens Valley at 15 ka is to find a combination of precipitation and temperature that 

can create a dry Owens Lake and Searles Lake. After multiple runs, a combination with 

temperature 1.8°C cooler than modem temperature and precipitation 20% less than 

modem precipitation could produce a dry Owens Lake and Searles Lake (Figure 4.7e).

The results from this simulation also indicated that a significant decline on the water level 

in Mono Lake. This is consistent with possible hiatuses in cores from the Mono Lake 

basin (Newton, 1991) and major declines on the levels in Mono Lake and Lake Lahontan 

(Benson et al., 1998; Benson et al., 1996).

4.7.4. Simulations on Lakes at 12 ka

The 5**0 data from Core OL84B drilled in Owens Lake indicated the lowest values 

of 5^*0 at 12 ka for the last 15 ka (Figure 4.2) (Benson et al., 1997). This represents the 

highest ratio of overflow to flow into Owens Lake (Benson et al., 1997), which implies 

that Searles Lake probably also received its highest inflow at 12 ka for the last 18 ka. The 

field evidence indicated that the water level of Searles Lake started to increase at 12 ka 

and reached its highest level at I l k a  (Figure 4.2) (Smith and Street-Perrott, 1983). It can
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be expected that the overflow from Searles Lake might finally reaeh its highest level, and 

the largest lake might be formed in Panamint Valley in the last 18 ka. Based on multiple 

runs, a combination of temperature 4.5°C cooler than modem temperature and 1.8 times 

of modem precipitation could reproduce a lake system with the highest lake level in 

Panamint Valley (Figure 4.7d) since the LGM. However, the lake level of Panamint Lake 

was still not high enough to cause overflow.

4.7.5. Simulations on Lakes at 9 ka

0^*0 values of Owens Lake at 9 ka are around 27 %o, indicating Owens Lake was at 

its hydrological closure at this time (Benson et al., 1996). A dry event was recognized 

based on the presence of prismatic cracking that suggests the existence of soil formed 

during subaerial exposure of lake sediments at about 9 ka (Benson et al., 1997). In the 

meantime, Searles Lake was at its lowest water level since the LGM (Smith and Street- 

Perrott, 1983). A combination of temperature 0.5°C warmer than modem temperature and 

1.2 times of modem precipitation could reproduce a lake system in Owens Valley at 9 ka 

(Figure 4.7c).

4.7.6. Simulations on Lakes at 6 ka

Owens Lake experienced a second desiccation event between 6.1-4.3 ka (Benson et 

al., 1997), while Searles Lake was at a water levels that were about the same as today 

(Smith and Street-Perrott, 1983). Thus the lakes at 6 ka might have shallower water levels 

than modem lakes in Owens Valley. Based on this evidence, a combination of 

temperature 1.2°C warmer than modem temperature and 0.9 times of modem 

precipitation could produce a lake system in Owens Valley at 6 ka (Figure 4.7b).
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4.8. Sensitivity Analysis 

Sensitivity analysis was only performed for the simulation of lakes in Owens Valley 

at the LGM (18 ka), because more evidence for paleolake levels are available. Based on 

the proxy data at the LGM in Table 4.1, a combination of the lowest temperature (7.5°C 

cooler than modem temperature) and the maximum precipitation (2.4 times modem 

precipitation) was used to prepare the input data for simulation on the lake extent. The 

results from simulation based on this combination indicate that all basins including Death 

Valley in Owens River system are full of water, which was not the case in the last 18 ka. 

Another combination of the highest temperature (3.0°C cooler than modem temperature) 

and the lowest precipitation (1.2 times modem precipitation) was used to simulate lake 

extent in Owens Valley. The results from this simulation indicate that Searles Lake is not 

full and no lake was formed in Panamint Valley. The results from these two extreme 

cases of the combination are in conflict with the geological evidence. First, Panamint 

Lake did not overflow, and there was no full lake in Death Valley in the last 18 ka (Smith 

and Street-Perrott, 1983). Second, Mono Lake was separated from the Owens River 

system to the south by a high-altitude sill in the late Wisconsin (Benson and Thompson, 

1987). Third, Searles Lake was full and overflowed into Panamint Valley where a small 

lake was formed at the LGM (Smith and Street-Perrott, 1983). Therefore, the coupled 

catchment-lake model developed in this study is very sensitive to a change of both 

temperature and precipitation, and it can be used to infer paleoclimatic conditions based 

on past lake extents.
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4.9. Discussion

The coupled catchment-lake model developed in this study has several advantages for 

paleoclimatic interpretation of paleolake extents. By using physically based models to 

examine the climatic conditions that could produce a particular lake extent at a specific 

time, a quantitative estimate on temperature and precipitation as compared to field 

evidence was obtained. This approach allows a direct consideration of the effects of 

changes in both precipitation and temperature, as well as numerous climate variables 

including cloud cover, solar radiation, and wind speed. Simulated lake surface areas and 

the elevation of lake surfaces for major lakes in Owens Valley in the last 18 ka are listed 

in Table 4.2.

Table 4.2. Simulated lake extent and elevation of lake levels in Owens Valley in the last 

18 ka

Age Mono Lake Owens Lake Searles Lake Panamint Lake

Elevation Area Elevation Area Elevation Area Elevation Area

(ka) (m) (km^) (m) (km") (m) (km") (m) (km")

18 2040 461 1145 692 688 949 340 144

15 1952 3 1070 30 475 2 310 3

12 2120 689 1145 692 688 949 350 349

9 1978 270 1100 302 525 252 325 94

6 1949 2 1075 96 490 4 315 5

0 1958 227 1097 289 515 225 320 30
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The combinations of temperature (Figure 4.8a) and precipitation (Figure 4.8b) that 

could produce observed lake extent in Owens Valley in the last 18 ka were obtained from 

the simulations above. Reconstructed temperature and precipitation based on pollen in 

Owens Lake core OL84B are plotted in Figure 8. Simulated combination of temperature 

and precipitation at the LGM (18 ka) is 5.5°C cooler than modem temperature, and 1.25 

times of modem precipitation. This result is close to some proxy data (Merrill and Pewe, 

1977) in Table 4.1, but different from other proxy data in Table 4.1. This could be the 

result that the proxy-based estimates of LGM climate are representative of the area where 

the fossil assemblage or glacial feature was founded. A mixed conifer forest from Kings 

Canyon that includes red fir, westem juniper, incense cedar, sugar pine, ponderosa pine, 

Califomia nutmeg, and single-needle pinon pine (Cole, 1983) indicated a colder climate 

than today with near-modem precipitation levels in the southem Sierra Nevada at 18 ka.

The 9.2 m hiatus found in Owens Lake core OL84B was dated at 15.5 to 13.5 ka 

(Benson et al., 1997). Simulation indicated lake extent at 15 ka is the smallest in the last 

18 ka. The combination of precipitation and temperature that produced this smallest lake 

extent is the lowest precipitation in the last 18 ka, and about 1.8°C cooler than modem 

temperature. The lake extent at 12 ka in Owens Valley is largest in the last 18 ka. 

Simulated combination of precipitation and temperature at 12 ka is 4.5 °C cooler than 

modem temperature, and 1.8 times of modem precipitation. This result is consistent with 

the pollen data from core OL84B (Figures 4.8a,b) (Mensing, 2001). The pollen data 

indicated that a mean annual precipitation of 308-370 mm and a >80% increase in 

effective moisture, and 4 to 5°C cooler than the present mean temperature in Owens 

Valley starting from 13.5 ka. A very wet climate in the westem Great Basin at this time is
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also supported by the 6^*0 data from Owens Lake (Benson et al., 1996) and Mono Lake 

(Benson et al., 1998), and ages of tufa from Searles Lake (Lin et al., 1998) and Lake 

Lahontan (Benson, 1993) that indicate high lake stands from 14 to 13.5 ka. However, the 

climate in Sierra Nevada shifted from cool, wet conditions to possibly a more seasonal 

climate with cool, wet winters and warmer summers (Mensing, 2001; Smith and 

Anderson, 1992), but still wetter and cooler than today (Spaulding, 1985) after 12 ka. 

Simulated lake extent in Owens Valley at 9 ka indicates a significant decrease in lake 

extent from 12 ka.
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Figure 4.8. a. Simulated temperature (solid line with dots) and estimated temperature 

based on pollen (solid line) (Mensing, 2001) in Owens Lake; b. Simulated precipitation 

(solid line with dots) and estimated precipitation based on pollen (solid line) (Mensing, 

2001) in Owens Lake.
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The last déglaciation was interrupted by a worldwide cooling event, the Younger 

Dryas (YD) from 11 to 10 ka. Studies from westem North America have identified late- 

glacial climatic oscillations roughly synchronous with the YD interval (Stuiver et al.,

1995). The pollen data from core OL84B indicates a series of abrupt climatic oscillations 

between 10.8 to 9.5 ka, but it is not sufficient to clearly define the YD for a direct 

comparison with other sites (Mensing, 2001). Summer insolation reached the maximum 

between 9 to 8 ka, resulting in higher summer temperatures and probably increased 

seasonality (Grigg and Whitlock, 1998). Low lake levels (Benson et al., 1997) and the 

increased dominance of desert shrubs (Mensing, 2001) indicate the beginning of warm, 

dry Holocene conditions. The results from our simulations indicate 0.5°C warmer than 

modem temperature, and 1.2 times of modem precipitation could produce the observed 

lake extent at 9 ka, which is generally in agreement with high isolation and increased 

desert shmbs. A second hiatus found in core OL84B indicates that Owens Lake was 

probably dry at 6 ka (Benson et al., 1997), and quantitative analysis of the pollen record 

from Sierra Nevada suggests temperatures 1.4-2.1°C warmer than today (Adam and 

West, 1983). The lake level of Searles Lake was also low at 6 ka (Smith and Street- 

Perrott, 1983). Simulated lake extent with a combination of temperature 1.2°C warmer 

than modem temperature, and 0.9 times of modem precipitation is consistent with 

geologic evidence.

The climate in Owens Valley after 6 ka was probably similar to modem climate 

conditions. However, a slight increase in precipitation and decrease in temperature could 

happen, because the historic lake level of Owens Lake was higher than those at 6 ka. An 

increased frequency of modem extreme storm events in Mojave River watershed in late
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Holocene was concluded based on lake deposits in the Silver Lake playa, CA (Enzel et 

al., 1989). The relatively high lake level of Searles Lake from 5 to 3 ka could be a result 

of an increased frequency of modem extreme storm events and summer monsoon 

circulation (Bush, 2001).

4.10. Conclusions and Future Work 

The coupled catchment-lake model developed in this study is capable of aceurately 

simulating lake extent as a function of modem climate and paleoclimate. This model can 

be used to quantitatively estimate paleoclimate, especially annual precipitation and 

temperature against field evidence in a catchement-lake watershed hydrologie system.

The simulations on lake extent at 18 ka, 15 ka, 12 ka, 9 ka, 6 ka, and modem climate 

conditions are very compatible with observed or derived data. The annual precipitation 

and temperature in Owens Valley for these times are generally in agreement with the 

proxy data that are derived from Owens Valley and localities near Owens Valley. The 

accuracy of quantitative estimates in paleotemperature and paleoprecipitation in Owens 

Valley in this study is eompletely dependent on the accuracy of the field observations, 

especially the elevation of paleo-shorelines and their chronology for the lakes. Therefore, 

numeric values for the temperature and precipitation at 18 ka, 15 ka, 12 ka, 9 ka, and 6 ka 

are only effective for the geologic evidence used in this study. However, these numeric 

values of paleotemperature and paleoprecipitation can be adjusted based on new geologic 

evidence. The two advantages of the coupled catchment-lake model are: (1) Based on the 

proxy data, the possible range of temperature/precipitation combinations that could 

produce a particular paleolake extent can be obtained by narrowing a large number of
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possible paleoclimatic combinations; (2) The model developed in this study is a 

physically based model that requires a minimum of site-specific parameters (Hostetler 

and Giorgi, 1993), thus it can be applied to any lake system if input parameters are 

available.

Simulations performed in this study did not consider that the seasonal distribution of 

precipitation and temperature in the last 18 ka that might be different from modem 

climatic conditions. The reason for this is that information on the seasonal distribution of 

precipitation and temperature in the past are seldom available. However, the lake levels 

of the Mediterranean region were significantly affected by the seasonal distribution of 

temperature (Prentic et al., 1992). Therefore, it is very important to consider the seasonal 

distribution of paleoclimate into the simulation on the paleolake extent in Owens Valley 

with the accumulation of more data on the seasonal distribution of paleoprecipitation and 

paleotemperature in future studies. When the simulations on lake extent were performed, 

an initially dry lake was assumed, which is not tme for most situations, thus the model 

could be improved if the simulation on the lake extents in the last 18 ka is continuously 

mn with starting a high lake level at 18 ka to a historic lake level. A time-series result of 

temperature and precipitation from the continuous simulation is more useful than the 

discrete results of temperature and precipitation in this study. However, in order to reach 

this goal, besides improving computation efficiency of the model, faster computers are 

needed.
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CHAPTER 5

SIMULATION OF CHLORIDE TRANSPORT 

5.1. Introduction

Thick vadose zones in arid regions have been considered suitable for waste disposal 

sites (Winograd, 1981; Scanlon, 1991) because low effective precipitation rates result in 

low rates of water movement. Flow and transport in arid regions have been extensively 

studied in the last four decades for that purpose (e.g., Winograd, 1981; Tyler et al., 1992; 

Gee et al., 1994; Tyler et al., 1996; Andraski, 1997). The time scales over which the 

unsaturated zone responds to the surface boundary conditions are much longer in arid 

regions than in humid regions (Allison and Hughes, 1983; Phillips, 1994; Scanlon et al., 

1997), which allows thick vadose zones to serve as long-term records of flow and 

transport. Because of very low water fluxes, on the order of a few millimeters or less 

annually, the ability to determine water fluxes using physical techniques (e.g., lysimeters, 

time domain reflectometry (TDR), remote sensing, tensiometers, thermocouple 

psychrometers, and electromagnetic induction (EMI)) in arid areas is limited. However, 

methods using tracers (e.g.. Cl', ^H, and ^^Cl) have advantages in quantifying the 

correlation between long-term net water flux variation and climate in arid regions 

(Allison et al., 1994). Among available tracer techniques, chloride mass balance (CMB) 

is the simplest, least expensive, and most universal for recharge estimation. Low water 

fluxes and water content in arid vadose zones significantly reduce the effects of diffusion
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thus resulting in excellent preservation of tracers in the infiltrating water (Phillips, 1994; 

Allison et al., 1994). Edmunds and Walton (1980) first recognized that paleoclimate 

could be reconstructed from vadose zone chemistry. Cook et al. (1992) reported that the 

unsaturated chloride profiles from Cyprus and northern Senegal record the past 400 yr 

climate changes. The variations in chloride are well correlated with changes in recorded 

rainfall and lake levels. Recent studies have shown that thick unsaturated zones can be 

used to infer climatic changes over longer glacial time scales of 10 tolOO ka (Tyler et al., 

1996; Ginn and Murphy, 1997). However, due to dispersion and diffusion, the 

paleoclimatic input signals are often smoothed out, which ultimately limits the usefulness 

of data for a paleoclimatic reconstruction. Chloride bulges (peaks) and reduction below 

the bulges in deep profiles have been attributed to the non-piston-type flow (Nativ et al., 

1995; Sharma and Hughes, 1985), to the diffusion of chloride to groundwater (Cook et 

al., 1989), and to changes in recharge due to paleoclimatic variations (Stone, 1992).

Chloride transport in the vadose zones of arid regions not only represents a spatially 

uniform input to the soil water-groundwater systems, but also offers a natural experiment 

on the solute transport that is very important for engineering designs of a potential 

repository. Therefore, the extraction of the natural chloride transport in the vadose zone is 

important on both continental paleoclimatic study and natural solute transport.

The CMB is based on the following assumptions (Scanlon, 1991): downward piston- 

type flow, atmospheric fallout as the only source of chloride, mean annual precipitation 

and chloride concentration of precipitation constant through time, and steady-state 

chloride flux equal to the chloride accession rate in rainfall. However, the temporal 

changes in the fallout of chloride during pre-histoiic records are little known, and the
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assumption of piston-type flow has been questioned at many sites. Furthermore, previous 

studies have shown that the climate changed many times since the LGM. The steady flow 

assumption is violated when precipitation or chloride mass deposition varies over time, 

and a nonuniform profile is formed. Previous studies concluded that climate changes in 

the late Quaternary might be responsible for the nonuniform chloride “bulge” (Scanlon, 

1991; Phillips, 1994). Therefore, in order to model chloride transport in vadose zones 

since the LGM, all assumptions above have to be clarified.

In this study, a modified version of the HYDRUS-ID computer code was used 

(Simunek et al., 1998; Scanlon et al., 2003) to forward model the vertical chloride 

transport in the vadose zone of ADRS (Amargosa Desert Reseach Site, United States 

Geological Survey), southern Nevada since the LGM. This modified HYDRUS-ID has 

been demonstrated capable of simulating water movement and solute transport in desert 

vadose zones (Scanlon et al., 2003) because it coupled liquid water, water vapor, and 

energy and solute transport. By using variable boundary conditions including time- 

varying precipitation, temperature, and chloride deposition, in this modified HYDRUS- 

ID, the unclear assumptions in the CMB can be avoided. The variable boundary 

conditions were obtained based on the paleoprecipitation and paleotemperature from a 

coupled catchment-lake model (Chapter 4), and chloride deposition rate in Greenland ice 

core (Mayewski et al., 1994). Finally, the chloride transport through the unsaturated zone 

of ADRS was simulated. By comparing the simulated results to the actual measured 

chloride profile, the independent estimate of paleoprecipitation and/or chloride deposition 

rates were evaluated. In this way, chloride profile variations in the unsaturated zone were 

quantitatively evaluated against the variations of paleoprecipitation.
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5.2. Site Description

The USGS initialized studies of unsaturated zone hydrology at a site in the Amargosa 

Desert near Beatty, Nevada, in 1976. The site is located about 20 km east of Death Valley 

Nation Park (Figure 5.1) (Andraski and Stonestrom, 1999). Basic data on soil hydraulic 

properties, climate, and soil-water movement for both undisturbed and disturbed 

conditions have been accumulated and are available for public use. Average annual 

precipitation and annual pan evaporation at the ADRS is about 108 millimeters (mm) and 

1900 mm respectively (Johnson et al., 2002). Mean annual temperature is 18.4°C 

(Stonestrom et al., 2003). Seventy percent of the precipitation at ADRS occurs between 

October and April through frontal systems. Remaining summer rainfall is predominantly 

through localized and short-duration convective storms (Wood and Andraski, 1995). The 

site is covered with sparse vegetation predominantly Larrea tridentata (creosote bush). 

The Amargosa Desert is in the Basin and Range physiographic province. More than 170 

meters (m) thick sediments at the ADRS are mainly fluvial and alluvial deposits (Nichols, 

1987). The water table in the area ranges from about 85 to 115 m below land surface 

(Fischer, 1992). Particle size analyses indicated the surface soil (0.75 to 1 m thick) 

is made of 79.8% sand, 14.1% silt, and 6.1% clay, as determined by sieve and 

hydrometer method (Andraski, 1996).
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Figure 5.1. Location map of the ADRS (modified from Johnson et al., 2002).

Actual measured chloride profile and soil water content (Prudic, 1994) are 

plotted against depth in Figure 5.2. Chloride is less than 50 mg/L in surface soils 

(less than 0.5 m), and quickly reaches its peak of 9000 mg/L between 0.5 to 2.3 m. 

Chloride then decreases to less than 50 mg/L below a depth of 10 m. Groundwater 

chloride at the site is about 79 mg/L that is higher than chloride concentration of 

soils close to water table (Prudic, 1994). Soil water content is lower in soils less 

than 2.5 m, and reaches a constant value of water content below 2.5 m (Figure 

5.2).
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Figure 5.2. Measured chloride and soil water content profiles (Prudic, 1994).

5.3. Numerical Modeling 

A modified version of the HYDRUS-ID computer code (Simunek et al., 1998, 

Scanlon et al., 2003) with variable boundary conditions was used in this study to forward 

model the chloride transport in vadose zones of ADRS since the LGM. Because basic 

equations for water flow and solute transport are provided in the manual of HYDRUS-ID 

(Simunek et al., 1998), details on equations for vapor flow are only given here (Scanlon 

et al., 2003). Vapor flux (qv) can be described by Pick’s law of diffusion:
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(5.1)
dz dz p„ RT dz dTdz

where qvh, and qvx,, are isothermal vapor flux, and thermal vapor flux, respectively. Kvh 

and Kvt are isothermal vapor conductivity, thermal vapor conductivity, respectively. D is 

vapor diffusivity in soil, Pw is density of liquid water, pvs is saturated vapor density, M is 

molecular weight of water (kg /mol), g is gravitational acceleration, R is gas constant. Hr 

is relative humidity, h is matric potential head, p is enhancement factor, and T is 

temperature (K). The vapor diffusivity in soil is described by

i7 /3  /  T

D = 2.12x10-=
T

(5.2)
273.15

where T is tortuosity given by Millington and Quirk (1961), 0a is volumetric air content. 

Da is diffusivity of water vapor in air, and 0s is saturated water content. Enhancements for 

thermal vapor flux as a result of liquid islands and increased temperature gradients in the 

air phase relative to the average temperature gradient (Philip and de Vries, 1957) were 

included in this modified HYDRUS-ID (Scanlon et al., 2003). The following equation 

(Cass et al., 1984) was used to derive the enhancement factor (Campbell, 1985):

f] = 9.5 + 3—— 8.5exp(-)-((l + - 7 = ) — )*) (5.3)
s J e  s

where fe is the mass fraction of clay in soil.

Modeling strategies used in this study were starting with downward water fluxes that 

were estimated from chloride concentrations beneath the bulge at the LGM (18 ka) 

(Scanlon et al., 2003). Variable upper boundary conditions that water and solute fluxes 

were set equal to precipitation and chloride deposition rate. The potential evaporation 

was calculated based on the Penman equation (Penman, 1948). The root zone was set as
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2.3 m that is the depth of the chloride peak. The simulation was performed for the entire 

110 m unsaturated zone. The lower boundary condition for the water flux is assigned zero 

pressure equal to the water table (Scanlon et al., 2003). The geothermal gradient was 

incorporated by specifying the temperature at the surface and in the groundwater. The 

surface temperature is set equal to air temperature. The grid cell size generally varies 

from 0.1 m at the surface to a maximum of 2 m within the profile and decreased to a 

minimum value of 0.05 m at the water table. Adaptive time stepping is used in 

HYDRUS-ID, and a minimum initial time step is generally set at 0.01 day. There was no 

limit on the maximum time step size.

5.4. Input Parameters 

Input parameters (Table 5.1) for soil hydraulic properties at ADRS were prepared 

from the data provided by Prudic (1994), Andraski (1996), and Scanlon et al. (2003). Soil 

profile was set up as one layer (110 m) of homogenous sediment. Soil texture is set to 

loamy sand that represents the particle size less than 2 mm fraction after removing 22% 

gravel (Andraski, 1996).

The parameters related to chloride profile at ADRS were listed in Table 5.2. 

Atmospheric boundary file (atmosphere.in in HYDRUS-ID) for the last 18 ka was 

prepared based on paleoprecipitation and paleotemperature from our simulation on lake 

extent in Owens Valley. The potential evaporation was calculated based on 

paleotemperature with the Penmen equation (Penman, 1948). The chloride concentration 

in precipitation at ADRS for the last 18 ka was obtained by adjusting the chloride 

concentration in the Greenland Ice Core (G1SP2) (Mayewski et al., 1994) with
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comparison of modem chloride precipitation at ADRS and Greenland. Four parameters 

including precipitation, temperature, potential evaporation, and chloride concentration of 

precipitation were plotted along with time in Figure 5.3.

Table 5.1. Hydraulic properties of representative soil at ADRS.

Texture Percentage of 
Sand Silt Clay

Ks
(no/day)

Os
(mVm^)

Or a  n 
(m^/m^) (1/m)

Loamy sand 80 14 6 0.43 0.29 0.026 2.6 1.42
Source: Andraski, 1996; Scanlon et al., 2003.

Table 5.2. The parameters related chloride profile used in this study.

Parameters ADRS Source

Precipitation (m/yr) (30-yr average) 0.108 Johnson et al., 2002

Temperature (°C) 18.4 Stonestrom et al., 2003

Water table depth (m) 110 Prudic, 1994

Profile depth for water potential (m) 47.5 Pmdic, 1994

Profile depth for chloride profile (m) 85 Pmdic, 1994

Modem chloride precipitation (mg/L) 0^2 Pmdic, 1994

Cl peak (mg/L) 9,000 Prudic, 1994
Cl peak depth (m) 2.3 Prudic, 1994
Cl base (mg/L) 20 Prudic, 1994
CMB age at the base of the chloride bulge (ka) 16 Prudic, 1994
CMB age at the base of the chloride profile (ka) 18 Pmdic, 1994

Matric potential (root sink) (m) -500 Scanlon et al., 2003

Root sink depth (m) 2.3 Scanlon et al., 2003

Geothermal gradient (°C/km) 40 Scanlon et al., 2003
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Figure 5.3. The data used to prepare atmospheric boundary input file for HYDRUS-ID.

5.5. Results

Simulated and measured chloride concentrations were plotted with depth in Figure 

5.4. Simulated and measured chloride shows good agreement. Simulated chloride 

concentrations below the peak at 10 to 20 m depth overestimate the measured values. 

Measured water potential and vapor density increase downward between the depths of 12 

and 48 m, indicating that water movement both as liquid and vapor is upward (Prudic and 

Striegl, 1994). The simulation overestimating measured chloride profile from 10 to 20 m 

may be due to this upward water movement that was not well implemented in the model.
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The estimated chloride age using CMB is 16 ka, based on assumptions of precipitation of 

10 to 15 cm/year and chloride concentration in precipitation of 0.82 to 1.1 mg/L (Prudic, 

1994). This estimated age is close to the age of the first desiccated event (15 ka) in 

Owens Lake after the LGM (Benson et al., 1997). Previous studies concluded that a 

reversal in the direction of water movement from downward to upward was attributed to 

changes from mesic vegetation during Pleistocene pluvial periods to xeric vegetation 

during Holocene arid conditions (Walvoord et al, 2002; van De vender, 1990). The 

chloride profile at ADRS did not show the latest pluvial event at 12 ka, because climate 

had more oscillation at this time, and high and low precipitation could offset each other, 

and resulted no indications in measured chloride profile. Low chloride concentrations 

beneath the chloride bulge at depths of 10 to 25 m represent higher water fluxes during 

the last pluvial event. Simulated final water flux at ADRS is -0.016 mm/year upward at 

the base of the profile. This result is in the opposite direction and much lower than the 

downward CMB flux of 8.4 mm/yr (Prudic, 1994).

5.6. Uncertainty Analyses 

Uncertainty analysis performed by Walvoord et al. (2002), Scanlon et al. (2003), and 

Scanlon (2000) addressed the effects of varying water table depths, saturated hydraulic 

conductivities, geothermal gradients, vapor diffusion enhancement, osmotic component 

of water potentials, and numerical modeling. Uncertainties of numerical modeling come 

from those related to conceptual models, hydraulic parameterization, and solute diffusion 

coefficients.
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Figure 5.4. Simulated chloride and measured chloride profiles are plotted along with 

depth.

CMB age is significantly influenced by the chloride input. The CMB age previously 

estimated at the base of the ADRS site’s chloride bulge is 28 ka (Phillips, 1994; Scanlon 

et al., 2003) with chloride input of 100 mg/m^/yr, and 16 ka with a chloride input of 173 

mg/m^/yr (Prudic, 1994; Scanlon et al., 2003). The chloride input of 173 mg/m^/yr is 

similar to the upper range of values suggested by Prudic (1994). Higher estimates on the
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chloride input result a higher estimate of water flux during the Pleistocene. In this study, 

the chloride input was prepared based on quantitative paleoclimate information (Chapter 

4) and chloride records in GISP2 (Mayewski et al., 1994). The average chloride input in 

the last 18 ka used in this study is 316 mg/ m^/yr. However, the average chloride input is 

646 mg/m^/yr from 18 ka to 12 ka, and 228 mg/ m^/yr from 12 ka to present. The CMB 

age by using 228 mg/ m^/yr is 12 ka that is consistent with the last pluvial event in the 

ADRS area (Quade et al., 2003; Anderson and Wells, 2003). Therefore, variable chloride 

input used in this study is better than a single value of the chloride input used for 

thousands of years. Uncertainty of the chloride input used in this study could be from 

different magnitudes of climate change between the Greenland and the ADRS.

Scanlon et al. (2003) concluded that osmotically driven vapor fluxes are negligible at 

the ADRS. Since osmotic potentials also affect the simulated time required to reproduce 

the measured water potentials, ignoring osmotic potentials may result in overestimation 

of this time (Scanlon et al., 2003).

Assuming a fixed root depth of 2.3 m for the last 18 ka in this study may not be 

appropriate because water potential and chloride profiles in some settings indicate that 

roots may extend to greater depths (Scanlon et al., 2003). One layer of homogenous 

sediment profile was used in this study. By using three layers of soil profiles 

configuration, Scanlon et al. (2003) found that varying the porosity by -25% resulted in 

the same amount of change in the simulated Cl concentrations. Simulated chloride 

profiles are also sensitive to residual water content, and the van Genuchten n parameter 

(Scanlon et al., 2003). Uncertainties related to chloride diffusion result primarily from
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uncertainties in the calculation of effective diffusivities (De). Higher De values result in 

more diffuse chloride profiles with lower peaks (Scanlon et al., 2003).

5.7. Conclusions and Further Work 

The measured chloride profile at ADRS was successfully simulated with the modified 

version of the HYDRUS-ID computer code (Simunek et al., 1998, Scanlon et al., 2003) 

by using variable boundary conditions. The paleoprecipitation and paleotemperature 

estimated from the simulations on lake extents in Owens Valley in the last 18 ka with a 

coupled catchment-lake model were tested and first evaluated. Simulated water flux at 

ADRS is -0.016 mm/year upward at the base of the profile, which is consistent with the 

previous study (Scanlon et al., 2003). Because variable boundary conditions including 

time-varying precipitation, temperature, and chloride deposition were used to drive the 

modified HYDRUS-ID, the unclear assumptions in the CMB were avoided, and the 

resulted simulation on measured chloride profile was improved. However, many 

uncertainties such as varying water table depths, saturated hydraulic conductivities, 

geothermal gradients, vapor diffusion, hydraulic parameterization, and solute diffusion 

coefficients, may exist in our simulations. Therefore, it is very critical to perform the 

uncertain analysis in future studies.
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CHAPTER 6 

CONCLUSIONS

This dissertation is composed of four separate studies which are related to each other. 

Studies examined effects of soil physical properties, vegetation cover, and macropores on 

soil moisture variation of desert soils, the impacts of climate change on solute transport, 

paleoclimate and paleohydrology in southwestern Great Basin, and chloride transport in 

vadose zone of ADRS. Three of these studies focused on soil moisture change, and solute 

transport in the vadose zone of southwestern Great Basin. The fourth chapter evaluated 

paleoclimate and paleohydrology change in Owens Valley in the last 18 ka.

The simulated results from the soil moisture study indicate that the soil texture and 

vegetative cover have significant effects on the soil water content, while macropores have 

only slight effects on the soil water content at the NTS. Soil texture determines the soil’s 

hydraulic properties and affects the retention and flow of water in the soil, which thereby 

affects the soil water content. In arid environments, plant growth enhances the loss of 

water from the soil. As a result, the soils with vegetation cover have less soil water 

content than the bare soils. The overall effect of soil texture on evaporation varies with 

the amount of available water.

The macropore flow increases the soil water content by 3.0% in sand and silty loam, 

and decreases the soil water content by 3.0% in the loamy sand. The combined effects of

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vegetation and macropores on the soil water content are most significant in loamy sand 

and insignificant in sand.

Soil with macropores has higher effective hydraulic conductivity near saturation than 

soil without macropores. However, macropore flow contributions to soil water content 

varies among different soil textures. The simulated results with macropores show that 

sand and loamy sand with macropores have a slightly lower soil water content during 

periods of low precipitation, but have a larger difference during periods of high 

precipitation. This is because soils with macropores have a higher effective hydraulic 

conductivity near saturation. Water flows faster through soil with macropores than soil 

without macropores. High precipitation makes it possible for a higher water content, and 

therefore a more significant macropore flow.

Under current climatic conditions, the precipitation at the NTS is low throughout 

most of the year; macropore flow is insignificant. However, macropore flow could have 

been important in past pluvial periods and could be important in future possible high 

precipitation events.

The parameterization of the effective hydraulic conductivity shows promise in 

calculating soil water contents for soils with macropores. The simulations in this study 

show that soil texture, vegetative cover, and macropores interact with each other to 

influence the soil water content in arid regions.

Water fluxes from the in-situ measurements with tension infiltrometer, and Br 

dispersion coefficients obtained from displacement experiments in undisturbed soil cores 

were quite high. These high water fluxes are mainly results of coarse soil textures and
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possibly from preferential flow, which was supported hy the effluent data for the 

undisturbed cores.

One undisturbed soil core from the plant canopy area exhibited similar a transport 

characteristics to the cores from the interspace, which may not be typical for the soils 

under plant canopy, because the field measurements with the tension infiltrometer 

indicated a larger variation in hydraulic properties for the soils under canopy. It can be 

expected that large soil cores would better capture more information on the water 

movement and solute transport in structured soils. Multiple tracers could also be used to 

identify the contributions of preferential flow and matrix diffusion in structured soils.

The coupled catchment-lake model developed in this dissertation is capable of 

simulating lake extent as a function of modem climate and paleoclimate. The simulations 

on lake extent at 18 ka, 15 ka, 12 ka, 9 ka, 6 ka, and modem climate conditions are very 

compatible with observed or derived data. The annual precipitation and temperature of 

Owens Valley for these times are generally in agreement with the proxy data that are 

derived from Owens Valley and the places near Owens Valley. The accuracy of our 

quantitative estimates in paleotemperature and paleoprecipitation in Owens Valley is 

completely dependent on the elevation of paleo-shorelines and their chronology for the 

lakes. Therefore, estimates on paleotemperature and paleoprecipitation at 18 ka, 15 ka, 12 

ka, 9 ka, and 6 ka are only effective for the geologic evidence used this study. There are 

two advantages for the coupled catchment-lake model developed in this dissertation.

First, based on the proxy data, numerical values of paleotemperature/paleoprecipitation 

can be easily obtained by narrowing a large number of possible paleoclimatic 

combinations. Second, the model developed in this study is a physically based model.
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thus it can be applied to any lake system if input parameters are available.

The simulation of chloride profile is improved with the modified version of the 

HYDRUS-ID computer code by using variable boundary conditions. The unclear 

assumptions in the CMB are avoided in simulations with the variable conditions. Based 

on the simulated results of local paleolake extents, the techniques preparing variable 

boundary conditions have been proved effective in this study. Simulated water flux at 

ADRS is -0.016 mm/year upward at the base of the profile, which is consistent with 

previous studies. However, many uncertainties exist, and may have some effects on 

chloride transport, thus it is very critical to perform the uncertainty analysis in future 

studies.
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