X-ray metallicities and luminosity functions of galaxy clusters

Sandip Thanki
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation
https://digitalscholarship.unlv.edu/rtds/2601

This Dissertation is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
X-RAY METALLICITIES AND LUMINOSITY FUNCTIONS
OF GALAXY CLUSTERS

by

Sandip Thanki

Bachelor of Science
Widener University
1997

Master of Science
University of Nevada Las Vegas
1999

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy Degree in Physics
Department of Physics
College of Science

Graduate College
University of Nevada, Las Vegas
December 2004
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform 3176941
Copyright 2005 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The Dissertation prepared by

Sandip G. Thanki

Entitled

X-ray Metallicities and Luminosity Functions of Galaxy Clusters

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

\[\text{Examination Committee Member} \]

\[\text{Dean of the Graduate College} \]
ABSTRACT

X-ray Metallicities and Luminosity Functions of Galaxy Clusters

by

Sandip Thanki

Dr. George Rhee, Examination Committee Chair
Associate Professor
University of Nevada, Las Vegas

We present a comparison of the photometric quantities of rich galaxy clusters to their X-ray metallicity (Z). The intra-cluster medium (ICM) is enriched with more metals than expected for a primordial gas. The most plausible source of the metals are the constituent galaxies, in particular, supernovae winds from those galaxies. In an effort to probe the Z variations, we studied photometric quantities of a sample of galaxy clusters. White (2000) and Horner (2001) present X-ray data for large samples of clusters, including their metallicity. We analyzed photometric data for a sample of 35 clusters chosen from their list. Here, we present luminosity functions for those clusters with a metallicity range of 0.00 to 0.42 Z_\odot. There is a possible decrease in r band characteristic magnitude (M_r^*), of the luminosity functions for the clusters, as their metallicity increases. This result favors the hypothesis of ICM enrichment due to supernovae winds.
TABLE OF CONTENTS

ABSTRACT ... iii
LIST OF TABLES ... vi
LIST OF FIGURES .. viii
ACKNOWLEDGEMENTS ... ix

CHAPTER 1 INTRODUCTION ... 1
 1.1 Intra-cluster Metallicity and The Enrichment Mechanisms 1
 1.2 Source of Intra-cluster Metallicity 7
 1.3 Outline ... 7

CHAPTER 2 THE SAMPLE .. 10

CHAPTER 3 X-RAY METALLICITIES OF THE ICM 16
 3.1 The X-ray Instruments ... 16
 3.2 The X-ray Metallicity .. 18

CHAPTER 4 OBSERVATIONS AND DATA REDUCTION 24
 4.1 Observations ... 24
 4.2 Data Reduction .. 27

CHAPTER 5 CALIBRATION ... 29
 5.1 Creating Mosaics ... 29
 5.2 Cluster Centers and The Equatorial Grid 29
 5.3 Calibration Using Standard Stars 30

CHAPTER 6 PHOTOMETRY ... 33
 6.1 Star-Galaxy Classification and Photometry Using SExtractor ... 33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LIST OF TABLES

Table 1 Sample ... 14
Table 2 ASCA XRT ... 18
Table 3 Constants for the transformation equation 31
Table 4 SDSS filters .. 41
Table 5 Results from MDM data .. 117
Table 6 Results from SDSS data ... 118
LIST OF FIGURES

Figure 1 Evidence for ICM enrichment by ram-pressure stripping 2
Figure 2 Evidence for ICM enrichment by supernovae winds 4
Figure 3 Evidence for ICM enrichment by mergers 5
Figure 4 Evidence for ICM enrichment by jets 6
Figure 5 Luminosity function for Abell 1689 .. 11
Figure 6 Luminosity function for Abell 1576 12
Figure 7 Diagram of ASCA ... 17
Figure 8 GIS image of Abell 0085 ... 19
Figure 9 SIS image of Abell 0085 ... 19
Figure 10 Zero-redshift MEKAL model for $T = 1$ keV and $Z = 0.0 \, Z_{\odot}$ 21
Figure 11 Zero-redshift MEKAL model for $T = 1$ keV and $Z = 0.5 \, Z_{\odot}$ 21
Figure 12 Zero-redshift MEKAL model for $T = 10$ keV and $Z = 0.0 \, Z_{\odot}$... 22
Figure 13 Zero-redshift MEKAL model for $T = 10$ keV and $Z = 0.5 \, Z_{\odot}$... 22
Figure 14 MEKAL model fit to the Spectra of Abell 85 23
Figure 15 MDM Harris R Filter ... 27
Figure 16 The Automatic Plate Measuring (APM) machine 37
Figure 17 POSS1 Sky Coverage .. 38
Figure 18 UKST Sky Coverage ... 38
Figure 19 SDSS 2.5 Meter Telescope .. 40
Figure 20 SDSS DR3 coverage ... 41
Figure 21 SDSS filter response ... 42
Figure 22 SDSS completeness for Galaxies in r band 43
Figure 23 SFD Dust Map for Norther Galactic Hemisphere 66
Figure 24 SFD Dust Map for Southern Galactic Hemisphere 67
Figure 25 LF of A2244 with Analytical Functions Fits 68
Figure 26 Average background from SDSS 69
Figure 27 M_\ast^* versus Metallicity (MDM data) 119
Figure 28 M_\ast^* versus Metallicity (SDSS data) 120
Figure 29 M_\ast^* versus α (SDSS) ... 121
Figure 30 M_\ast^* versus Metallicity for nearby clusters (SDSS archive) 122
Figure 31 α versus Metallicity for nearby clusters (SDSS archive) 123
Figure 32 Total Metallicity versus Redshift 124
ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. George Rhee and our collaborator Dr. Jason Pinkney for their guidance. I also thank my committee members Dr. Lon Spight, Dr. Stephen Lepp and Dr. David Emerson.

I thank John Kilburg for introducing me to Perl, Awk, and many other tools that made my work efficient. I am thankful to Mark Hancock Greg Piet, Daniel Koury and Tae Song Lee for their help and support.

Finally, I thank my family, especially my wife Tejal for her patience.

This research has made extensive use of NASA’s Astrophysics Data System Bibliographic Services
CHAPTER 1

INTRODUCTION

First studied in visible light in the early 20th century by Wolf (1906), clusters of galaxies are massive, virialized, high density systems consisting of a few hundred to thousand galaxies bound by self-gravity in a radius of about 2 Mpc. Cluster galaxies are predominantly ellipticals or S0s, and an exceptionally massive galaxy called a cD galaxy is found in the center of many of the clusters (Sarazin 1988). The total luminosity of a galaxy cluster is $\sim 10^{12} \, L_\odot$ (Parolin et al. 2003). Galaxy clusters are the largest objects whose total masses can be directly estimated using their velocity dispersion. They have velocity dispersions of 300–1800 km/s (Struble & Rood 1999) and the masses are on the order of $10^{14} - 10^{15} \, M_\odot$ (Carlberg et al. 1996). The space between the galaxies is filled with gas that has a temperature of $\sim 10^7 - 10^8$K (White 2000; Ikebe et al. 2002; Horner 2001). The number density of the gas molecules is on the order of $10^{-2} - 10^{-4} \, \text{cm}^{-3}$ (Schindler 2004), and bremsstrahlung radiation from this intra-cluster medium (ICM) can be detected through X-rays. The mass of the ICM is about 2-10 times the mass of the cluster galaxies. The combined mass of the ICM and the galaxies is $\lesssim 30\%$ of the virial mass of the cluster (Horner 2001).

1.1 Intra-cluster Metallicity and The Enrichment Mechanisms

The X-ray spectra of ICMs contain lines of heavy elements (White 2000; Horner 2001). The lines correspond to metallicities of about 0.2 to 0.4 in solar units. This finding implies that the ICM cannot be purely primordial. Part of the gas must
have come from the inter-stellar medium (ISM) of the constituent galaxies of the clusters. A variety of mechanisms can be responsible for the transport of the parts of ISM into the ICM.

Schindler (2004) discusses four well-accepted processes that can potentially enrich the ICM: ram-pressure stripping, galactic winds, galaxy-galaxy interaction and jets from active galaxies.

Figure 1 Evidence ICM enrichment by ram-pressure stripping in an X-ray image of Abell 2125 taken by the Chandra Telescope (Wang et. al 2004)

First suggested by Gunn & Gott (1972), ram-pressure stripping is a mechanism in which a galaxy approaching the cluster center experiences the increasing pressure of the ICM and loses its metal enriched ISM to the intra-cluster gas. As described by Shu (1982), this mechanism is analogous to the wind knocking the hat off a rapidly pedaling cyclist. Figure 1 shows this mechanism at work in the cluster Abell 2125. An X-ray trail appears on one side of the fast-moving galaxy C153 due
to ram-pressure stripping (Wang et. al 2004).

Simulations done by Bekki et. al (2002) suggest that ram-pressure stripping could also be responsible for transforming spiral galaxies into passive spirals with weak or absent star formation. Hubble Space Telescope observations have revealed significant numbers of passive spiral galaxies in distant clusters (e.g. Dressler et. al 1999). Passive spiral galaxies are likely to be a key galaxy population in transition between red, elliptical/S0 galaxies in low-redshift clusters and blue, spiral galaxies more numerous in higher-redshift clusters (Goto et. al 2003). This could provide an explanation for the Butcher-Oemler effect which shows that the fraction of spiral galaxies increases with redshift (Butcher & Oemler 1984). If ram-pressure stripping is a dominant mechanism for ICM enrichment, a redshift-metallicity connection can be expected. The ICM metallicity should decrease with increasing redshift. Mushotzky & Loewenstein (1997) and Horner (2001) find no evolution in ICM abundance with increasing redshift. Better metallicity measurements are needed to reach a definitive conclusion. Since ram-pressure stripping is density dependent, Renzini (1997) has argued that it cannot have played a major role because a correlation between velocity-dispersion, a property related to cluster density, and metallicity is not supported by observations. This has motivated us to compare redshift with metallicity and compare ICM metallicity with the galaxy number density of the clusters.

Galactic winds, driven by supernovae, are another possible process for ICM enrichment. The out-flowing enriched supernova gas is blown into the ICM. Mathews & Baker (1971) proposed that the absence of observable gas in ellipticals can be due to the heating produced by supernova blast waves. Calculations show that enough metals can be passed on to the ICM by the cluster galaxies in a time shorter than the Hubble time, under a variety of initial conditions, to have present amount of
Figure 2 Evidence for ICM enrichment by Supernova Winds in a B,V and H$_\alpha$ image of the Cigar Galaxy M82 taken by the Subaru Telescope (Lehnert 1999).

ICM metallicity (De Young 1978).

Figure 2, an image of the Cigar Galaxy M82 taken by the Subaru Telescope, shows this process enriching the halo with the winds moving towards the ICM (Lehnert 1999).

It has been suggested that decreasing galactic mass can lead to increasing outflow of metals from the galaxies due to that fact that lower-mass galaxies have shallower potential wells (Larson 1974; Larson & Dinerstein 1975). This implies that the ICM metallicity would increase with increasing number of low-mass galaxies. It has been shown that the ISM metallicity increases with increasing galaxy mass in low-mass galaxies (Tamura 2001). This could mean that high mass galaxies would retain their metallicity more efficiently than low mass galaxies, implying a ICM metallicity-mass relation. For a constant mass-to-light ratio, this would translate to a metallicity-
Figure 3 Evidence for ICM enrichment by Mergers in a composite image of the cluster RDCS 1252.9-2927 with the X-ray data from the Chandra and XMM-Newton X-ray telescopes and the optical data from the Hubble Space Telescope and ground based VLT (Rosati et al. 2003)

luminosity relation. A cluster with larger ICM metallicity can be expected to have larger number of low-mass (low-luminosity) galaxies. This idea is tested in this project.

Galaxy-galaxy interactions, or galactic mergers, also play a role in passing on the ISM metallicity to ICM. Close encounters between two or more galaxies can tidally strip gas from the galaxies into the ICM. Such encounters can also result into mergers blowing part of the interstellar gas into the ICM. Figure 3, a composite of and X-ray and optical data of the cluster RDCS 1252.9-2927 at the redshift of 1.24, shows X-ray concentration around the galaxies merging toward the cluster center
Figure 4 Evidence for ICM enrichment by Jets in an X-ray image of the cluster RBS767 from the Chandra telescope (De Filippis 2002)

(Rosati et al. 2003). The X-ray data is from the Chandra and XMM-Newton X-ray telescopes and the optical data is from the Hubble Space Telescope and ground based VLT. Enriched X-ray emission from the merging galaxies indicate outflow of the gas into the ICM. The galaxy-galaxy interactions would be more common in a dense cluster or a cluster with high velocity-dispersion. As mentioned above, a correlation between metallicity and velocity-dispersion is not supported by observations.

Another possible mechanism is jets that are emitted by active galaxies in the clusters. Figure 4 shows a Chandra image of the cluster RBS767 at the redshift of 0.35. The image shows two X-ray minima, indicated by the arrows, on both side of the cluster center that indicate interaction of the galaxy jets and the ICM. The metallicity of the ICM drops radially from the cluster center, indicating enrichment of the intra-cluster gas via jets (De Filippis 2002). Therefore, the answer to the question of whether the cluster has had a history of jets can be found in the metallicity gradients.
There could exist other mechanisms, in addition to the four above, that are responsible for the metal enrichment of the intra-cluster gas. Intra-cluster supernovae have been discovered that could also enrich the ICM (Domainko et al. 2004). Dust grain expulsion by stellar radiation pressure has also been considered a potential mechanism (Wiebe 1999).

Whether one of the mechanisms discussed above is more efficient over the others and plays a dominant role in ICM enrichment is a question of debate. Computer simulations with different enrichment processes have been performed, and the results have been quite discordant. Gnendin (1998) found that galaxy mergers eject most of the gas, while galactic winds play only a minor role. Aguirre et al. (2001) argue that ram-pressure and tidal interactions are relatively ineffective in transferring metallicity to the ICM and winds are most important.

1.2 Source of Intra-cluster Metallicity

The primary source of the ICM metallicity are the galaxies within the clusters. Regardless of the processes at work, a cluster with more ICM metallicity would have had more contributions from the constituent galaxies than a cluster with low ICM metallicity. This suggests a connection between optical characteristics of the cluster galaxies and the metallicity of the ICM. A luminosity function of a cluster is one of the basic measurement of its optical data. Analytical functions can be fit to the luminosity functions to generate quantitative descriptions such as the slope of the functions at the faint end and a characteristic magnitude of the cluster.

1.3 Outline

The major goal of this work is to search for a connection between the amount of intra-cluster metallicity and its source, presumably the galaxies that move through
the intra-cluster medium.

We have obtained photometric data through observations at the MDM observatory and from the archive of Sloan Digital Sky Survey for a sample of Abell clusters (Abell 1958). Luminosity functions are generated for a sample of galaxy clusters whose metallicity is known. In efforts to find the contributions from metallicity transfer mechanisms to ICM, discussed in section 1.1, we compare the following parameters with the ICM metallicity: redshift, characteristic magnitude of the luminosity functions and the faint-end slope of the luminosity functions.

In chapter 2 we discuss how the sample for this project was selected. For better statistics the size of the sample was maximized by using all the available optical data, with redshift constraint, for the clusters whose metallicities are known.

The ICM metallicities used in this project were found using the data from the ASCA X-ray telescope. In chapter 3 we discuss the telescope and the instruments used to collect the X-ray data. We also describe the process for computing the metallicity from the X-ray data.

Preliminary optical data for this project were obtained using the MDM 1.3-m telescope at the Kitt Peak National Observatory. We describe the telescope and the instrumentation used to collect the data in chapter 4. The data reduction, done using the Image Reduction and Analysis Facility (IRAF), is also described in this chapter.

The area of the clusters on the sky could not be covered by one CCD exposure. Mosaics were created by joining several CCD images to create a single image for a cluster. In chapter 5 we discuss the process used to combine and calibration the images using the standard stars.

Once the CCD images were reduced and, if necessary, mosaiced, they were ready for star/galaxy classification and photometry. In chapter 6, we discuss the process
used for classification and photometry.

In addition to the data from our observations, we also obtained data from the Automatic Plate Measuring Catalog, maintained by the Institute of Astronomy in Cambridge, and the Sloan Digital Sky Survey undertaken at the Apache Point Observatory, in Sunspot, New Mexico. In chapter 7 we discuss the archives and compare the photometry from different sources.

Once the data was compiled, we generated cluster luminosity functions in efforts to parameterize the cluster photometry. In chapter 8 we outline the process used to generate the luminosity functions (LF), analytical functions that are fit to the LFs, and present the LFs and the fits.

In chapter 9 we present the results comparing the X-ray metallicity to the optical parameters mentioned above. We conclude with ideas for future work.
CHAPTER 2

THE SAMPLE

In this chapter, we discuss our sample selection criteria and the sources used to acquire the data for the sample.

One of the goals for this project was to investigate a possible connection between the X-ray metallicities of the intra-cluster mediums (ICM) and the luminosity functions (LF) of the galaxy clusters. White (2000) and Homer (2001) present ICM metallicities for clusters with a redshift range of 0.00 to 0.45. The method used by them to find the metallicities is described in the next chapter. Our sample is drawn from their data sets.

A luminosity function for a galaxy cluster is the number distribution for the luminosity of the cluster galaxies. Depending on the distances to the clusters and the limiting magnitude of a telescope, only certain clusters can be observed to generate meaningful luminosity functions. This is explained in the following argument.

A characteristic luminosity for a galaxy cluster can be found by fitting analytical functions to the LF. One of the widely used models for galaxy cluster LF has been developed by Schechter (1976). In terms of absolute magnitude, the Schechter function for the differential LF is $n(M) dM = k N^* \, e^{k(\alpha+1)(M^* - M) - e^{k(M^* - M)}} dM$, where M^* is the characteristic magnitude, or the 'knee' of the LF, α is the slope of the faint end of the function, $k = \ln(10)/2.5$, and N^* is determined by requiring that the total number of galaxies expected by the Schechter function equal the number of galaxies in a given magnitude range. Figure 5 is an example of a typical field corrected LF for a galaxy cluster. The characteristic magnitude, M^*, of galaxy clusters ranges around
the absolute magnitude of -22. Absolute magnitude is given by $M = m - \mu - A - K_z$, where m is the apparent magnitude, μ is the distance modulus, and A is the galactic absorption. K_z is the K-correction which corrects for the stretching of the spectrum due to the redshift, and is estimated by $K_z = 2.5 \log (1 + z)$ (Sandage 1973). The distance modulus, $\mu = 42.384 - 5 \log(h) + 5 \log(z)$, where z is the redshift and $h = H_0/100$, H_0 being the Hubble constant (See Appendix for derivation of μ). Figure 5 shows M^* determined using the Schechter function for the cluster Abell 1689. In order to obtain a reliable M^* using the luminosity function, there needs be sufficient amount of data on the faint end of the LF beyond the characteristic magnitude at least up to one magnitude. To generate the LF just for the cluster, and not for the cluster field, one needs to subtract the background galaxies in the survey region from each magnitude bin. It is found using the Sloan Digital Sky Survey (SDSS) that the number of galaxies $N(m)$ per square degrees per magnitude in the
R band can be approximated by \(N(m) = (0.39 \pm 0.063) m - (4.67 \pm 1.01) \) (Parolin et al. 2003). For a distant cluster, \(M^* \) would correspond to fainter apparent magnitude than a nearby cluster. At fainter magnitudes (\(> 20 \)) the number of background galaxies per square degrees would have significant contribution to the total counts from the cluster field. Therefore, the cluster contrast against the background is less strong for higher redshift clusters. This induces greater errors towards the bright end of high redshift cluster luminosity function making it difficult to determine \(M^* \) reliably. Figure 6 shows a cluster at the redshift of 0.30 with larger error-bars closer to \(M^* \) than a cluster at redshift of 0.18 (Figure 5). At higher redshifts the amount of data towards the find-end of the luminosity function is also less. The values of \(M^* \) corresponding to \(m \lesssim 20 \) would provide much more reliable characteristic magnitudes for the clusters. This can be clearly seen in Figure 5. From \(m = M + \mu \), for the apparent magnitude of 20 to correspond with the absolute magnitude of -22,
typical M^* value, the upper limit on the redshift would be ~ 0.42. This effect is somewhat compensated by tendency to select richer cluster at high redshift.

Based on the availability of data that would provide reliable values for the 'knee' of the luminosity functions, we selected 34 clusters of galaxies in our sample. Data for 16 clusters were obtained at the MDM Observatory in Tuscon, Arizona in summer of 2000. The right ascension range of the MDM data was limited to 10h-18h for our observing dates. The telescope used was a 1.3 meter reflector. The magnitude limit of the telescope limited the redshift to ~ 0.2. Data for 24 clusters were obtained using the Automatic Plate Measurement (APM) archive. The selection was based on the redshift of the clusters with $z = 0.1$ being the limit. This data turned out to be non-useable for the reasons explained in Chapter 7. Data for 30 clusters were obtained from the Sloan Digital Sky Survey (SDSS). 2.5 meter SDSS telescope is capable of photometry to much fainter magnitudes than MDM and APM and therefore, the clusters chosen from SDSS had the redshift limit of $z = 0.35$. The clusters that were common among the surveys were used for comparison of the results. Data acquisition through observing and from the archives is described in the following chapters.

Table 1 shows the complete sample along with the central redshifts and the X-ray metallicities of the clusters.
<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>$Z(Z_{\odot})$</th>
<th>$90%\text{cl}$</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0963</td>
<td>0.21</td>
<td>0.34</td>
<td>0.26 - 0.42</td>
<td>MDM</td>
</tr>
<tr>
<td>A0990</td>
<td>0.14</td>
<td>0.23</td>
<td>0.18 - 0.27</td>
<td>MDM</td>
</tr>
<tr>
<td>A1068</td>
<td>0.14</td>
<td>0.42</td>
<td>0.36 - 0.48</td>
<td>MDM</td>
</tr>
<tr>
<td>A1204</td>
<td>0.17</td>
<td>0.35</td>
<td>0.28 - 0.43</td>
<td>MDM</td>
</tr>
<tr>
<td>A1553</td>
<td>0.17</td>
<td>0.25</td>
<td>0.18 - 0.32</td>
<td>MDM</td>
</tr>
<tr>
<td>A1650</td>
<td>0.08</td>
<td>0.40</td>
<td>0.37 - 0.43</td>
<td>MDM</td>
</tr>
<tr>
<td>A1689</td>
<td>0.18</td>
<td>0.32</td>
<td>0.28 - 0.37</td>
<td>MDM</td>
</tr>
<tr>
<td>A1914</td>
<td>0.17</td>
<td>0.30</td>
<td>0.24 - 0.36</td>
<td>MDM</td>
</tr>
<tr>
<td>A1942</td>
<td>0.22</td>
<td>0.27</td>
<td>0.12 - 0.44</td>
<td>MDM</td>
</tr>
<tr>
<td>A2034</td>
<td>0.11</td>
<td>0.29</td>
<td>0.23 - 0.34</td>
<td>MDM</td>
</tr>
<tr>
<td>A2104</td>
<td>0.16</td>
<td>0.32</td>
<td>0.26 - 0.38</td>
<td>MDM</td>
</tr>
<tr>
<td>A2142</td>
<td>0.09</td>
<td>0.28</td>
<td>0.23 - 0.33</td>
<td>MDM</td>
</tr>
<tr>
<td>A2204</td>
<td>0.15</td>
<td>0.39</td>
<td>0.34 - 0.44</td>
<td>MDM</td>
</tr>
<tr>
<td>A2218</td>
<td>0.18</td>
<td>0.20</td>
<td>0.14 - 0.25</td>
<td>MDM</td>
</tr>
<tr>
<td>A2219</td>
<td>0.23</td>
<td>0.27</td>
<td>0.19 - 0.34</td>
<td>MDM</td>
</tr>
<tr>
<td>A2261</td>
<td>0.22</td>
<td>0.37</td>
<td>0.29 - 0.45</td>
<td>MDM</td>
</tr>
</tbody>
</table>
The Sample (Cont.)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>$\bar{Z}(Z_C)$</th>
<th>90% confidence</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0267</td>
<td>0.23</td>
<td>0.26</td>
<td>0.17 - 0.34</td>
<td>SDSS</td>
</tr>
<tr>
<td>A0611</td>
<td>0.29</td>
<td>0.19</td>
<td>0.12 - 0.27</td>
<td>SDSS</td>
</tr>
<tr>
<td>A0697</td>
<td>0.28</td>
<td>0.24</td>
<td>0.17 - 0.31</td>
<td>SDSS</td>
</tr>
<tr>
<td>A0773</td>
<td>0.20</td>
<td>0.29</td>
<td>0.20 - 0.38</td>
<td>SDSS</td>
</tr>
<tr>
<td>A0854</td>
<td>0.21</td>
<td>0.09</td>
<td>0.00 - 0.19</td>
<td>SDSS</td>
</tr>
<tr>
<td>A0959</td>
<td>0.35</td>
<td>0.04</td>
<td>0.00 - 0.19</td>
<td>SDSS</td>
</tr>
<tr>
<td>A0963</td>
<td>0.21</td>
<td>0.34</td>
<td>0.26 - 0.42</td>
<td>SDSS</td>
</tr>
<tr>
<td>A0990</td>
<td>0.14</td>
<td>0.23</td>
<td>0.18 - 0.27</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1068</td>
<td>0.14</td>
<td>0.42</td>
<td>0.36 - 0.48</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1430</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00 - 0.08</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1553</td>
<td>0.17</td>
<td>0.25</td>
<td>0.18 - 0.32</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1576</td>
<td>0.30</td>
<td>0.25</td>
<td>0.14 - 0.36</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1650</td>
<td>0.08</td>
<td>0.40</td>
<td>0.37 - 0.43</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1682</td>
<td>0.23</td>
<td>0.21</td>
<td>0.10 - 0.32</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1689</td>
<td>0.18</td>
<td>0.32</td>
<td>0.28 - 0.37</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1704</td>
<td>0.22</td>
<td>0.37</td>
<td>0.26 - 0.49</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1763</td>
<td>0.19</td>
<td>0.12</td>
<td>0.05 - 0.19</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1774</td>
<td>0.17</td>
<td>0.08</td>
<td>0.02 - 0.14</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1835</td>
<td>0.25</td>
<td>0.30</td>
<td>0.24 - 0.37</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1914</td>
<td>0.17</td>
<td>0.30</td>
<td>0.24 - 0.36</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1942</td>
<td>0.22</td>
<td>0.27</td>
<td>0.12 - 0.44</td>
<td>SDSS</td>
</tr>
<tr>
<td>A1995</td>
<td>0.32</td>
<td>0.19</td>
<td>0.01 - 0.36</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2029</td>
<td>0.08</td>
<td>0.32</td>
<td>0.29 - 0.35</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2034</td>
<td>0.11</td>
<td>0.29</td>
<td>0.23 - 0.34</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2142</td>
<td>0.09</td>
<td>0.28</td>
<td>0.23 - 0.33</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2219</td>
<td>0.23</td>
<td>0.27</td>
<td>0.19 - 0.34</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2244</td>
<td>0.10</td>
<td>0.29</td>
<td>0.25 - 0.33</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2255</td>
<td>0.08</td>
<td>0.31</td>
<td>0.26 - 0.35</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2259</td>
<td>0.16</td>
<td>0.18</td>
<td>0.12 - 0.24</td>
<td>SDSS</td>
</tr>
<tr>
<td>A2670</td>
<td>0.08</td>
<td>0.25</td>
<td>0.18 - 0.33</td>
<td>SDSS</td>
</tr>
</tbody>
</table>
CHAPTER 3

X-RAY METALLICITIES OF THE ICM

In this chapter we review the X-ray instruments that collected the X-ray data used in this project, models for determining X-ray metallicities of the ICM, and the process used to find the metallicities.

3.1 The X-ray Instruments

An X-ray space telescope mission using a satellite called Advanced Satellite for Cosmology and Astrophysics (ASCA) was undertaken between 1993 and 2001. ASCA was initially named Astro-D and was launched by Japan’s Institute of Space and Astronautical Science (ISAS). The X-ray telescope (XRT) on ASCA was developed as a collaboration between Japanese and U.S. scientists. It was the first XRT capable of simultaneous imaging and spectroscopic observations over an energy range of 0.5-10 keV (Tanaka et al. 1994). The ASCA XRT collected data with two types of instruments, the Gas Imaging Spectrometer (GIS) and the Solid-state Imaging Spectrometer (SIS).

GIS is an imaging gas scintillation proportional counter (IGSPC). Focused X-ray photons enter the detector through a thin beryllium entrance window into the “drift region” containing Xenon with ten percent of Helium. The X-rays ionize the Xenon atoms and the electrons produced by the ionization drift into the “scintillation region” which contains the same mixture of gases as the “drift region.” The electrons in the “scintillation region” are accelerated by a strong electric field parallel to the entrance window whose voltage is such that the electrons gain enough energy to
excite Xenon atoms but not to ionize them. When these exited atoms de-excite, ultra violet scintillations with their intensity proportional to the energy of the original X-ray are produced. These scintillations are then detected by the position sensitive phototube (PSPT). The two-dimensional position of the scintillation corresponds to the position of the incident X-ray photon since the electric field is parallel to the window.

SIS consists of four 420×422 pixel Charge Coupled Device (CCD) chips. The chips are arranged in an 2×2 array. Focused X-ray photons are absorbed in the body of the detector and produce electrons whose total charge is proportional to the original photon energy. Since SIS is directly exposed to X-rays, it is more prone to radiation damage than GIS.

The GIS circular field of view covers an area four times larger than the square field of view of SIS. The energy resolution of SIS, on the other hand, is up to four times better than GIS. Two SIS (SISO and SIS1) and two GIS (GIS2 and GIS3)
operated simultaneously through four identical X-ray telescopes. Four telescopes increased the total effective area and provided consistency checks between the instruments. Figure 7 shows a schematic diagram of ASCA. The following table summarizes some basic properties of the telescope.

Table 2 ASCA XRT

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>4.7 m</td>
</tr>
<tr>
<td>Mass</td>
<td>417 kg</td>
</tr>
<tr>
<td>Focal Length</td>
<td>3.5 m</td>
</tr>
<tr>
<td>Angular Resolution</td>
<td>20% of the photons are within 1'</td>
</tr>
<tr>
<td>GIS field of view</td>
<td>50' (circular)</td>
</tr>
<tr>
<td>SIS field of view</td>
<td>22' × 22' (square)</td>
</tr>
<tr>
<td>Energy range</td>
<td>0.5-10 keV</td>
</tr>
<tr>
<td>GIS Energy Resolution ($E/\Delta E$)</td>
<td>~ 13 at 6 keV</td>
</tr>
<tr>
<td>SIS Energy Resolution ($E/\Delta E$)</td>
<td>~ 50 at 6 keV</td>
</tr>
</tbody>
</table>

Even though the energy range of both types of detectors is 0.5-10 keV, GIS is practically insensitive below ~ 1 keV. Later in the mission accumulated radiation damage to the SIS CCDs made them unusable below 0.8 keV. Figure 8 and Figure 9 show examples of images taken by GIS and SIS instruments.

3.2 The X-ray Metallicity

The X-ray emission from hot ICM is due to thermal bremsstrahlung radiation. The emissivity, e_{ν}^{eff}, at frequency ν from an ion of charge Z_i with a temperature of T_x is given by,

$$e_{\nu}^{\text{eff}} = \frac{2^5\pi e^6}{3m_e c^3} \left(\frac{2\pi}{3m_e k}\right)^{1/2} \sum_i Z_i^2 n_e n_i g_{\text{ff}}(Z_i, T_x, \nu) T_x^{-1/2} e^{hv/kT_x},$$

where n_e and n_i are the number density of ions and electrons, respectively. The Gaunt $g_{\text{ff}}(Z_i, T_x, \nu)$, of order unity, corrects for quantum mechanical effects and for
Figure 8 GIS image of Abell 0085

Figure 9 SIS image of Abell 0085
the effect of distant collisions. It is a slowly varying function of temperature and energy (Sarazin 1988).

White & Buote (2000) use processed GIS observations obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC) database to determine the X-ray temperatures and abundances of 106 clusters. Larger field of view of GIS allows them to determine the cluster properties to larger radii. Spectra were obtained for each cluster for a band of 1-9 keV. To determine the temperature and the metallicities of the ICM gas, a spectral model is fit to the ICM spectrum of each cluster. The model used is a single thermal emission component (MEKAL: Mewe, Gronenschild, van den Oord 1985; Mewe, Lemen, van den Oord 1986), modified by foreground absorption (Morrison & McCammon 1983) of X-ray by neutral Hydrogen according its galactic column density (Stark et al. 1992). Horner (2001) also computed metallicities using the ASCA data for 273 clusters. The models used by Horner are MEKAL and Raymond-Smith (Raymond & Smith 1977).

Figure 10 through 13 show the predicted spectra by the MEKAL model for various ICM temperatures and metallicities. Figure 11 shows an a MEKAL spectra fit to an ASCA spectra of Abell 85.

Metallicities computed by White (2000) and Horner (2001) are used in this project for investigating the relationship between the metallicities and the photometric properties of the galaxy clusters.
Figure 10 Zero-redshift MEKAL model for $T = 1$ keV and $Z = 0.0 \ Z_{\odot}$

Figure 11 Zero-redshift MEKAL model for $T = 1$ keV and $Z = 0.5 \ Z_{\odot}$
Figure 12 Zero-redshift MEKAL model for $T = 10$ keV and $Z = 0.0 \ Z\odot$

Figure 13 Zero-redshift MEKAL model for $T = 10$ keV and $Z = 0.5 \ Z\odot$
Figure 14 MEKAL model fit to the Spectra of Abell 85
CHAPTER 4

OBSERVATIONS AND DATA REDUCTION

In this chapter we describe the telescope and the instrumentation used to collect the optical data for a preliminary sample. The data reduction process is also described.

4.1 Observations

A sample of 16 galaxy clusters was observed with the MDM 1.3-m telescope at Kitt Peak National Observatory. The observations were made with a 2048 x 2048 CCD camera named Echelle. The camera is manufactured by Scientific Imaging Technologies (SITe). Each pixel is 24μm wide, making the CCD 49 mm (2048 x 24μm) on the sides. The MDM 1.3-m telescope has a scale of 20.72"/mm when used at f/7.6 and 11.81"/mm when used at f/13.5. Since the clusters of galaxies are wide objects the telescope was setup to give us 20.72"/mm which translates to a field of view of 17" (49 mm x 20.72") for our observations.

The observations were made on seven nights starting on May 3, 2000. Three nights (May 3, 4 and 9) were photometric while others where partly cloudy. During each clear night Landolt standard stars were observed throughout the night (Landolt 1992). Divided into these three clear nights, all the clusters in the sample were observed with short exposure time of one minute. This was done so that we could calibrate the short exposure images using the standard stars. The short exposures could then be used to calibrate the long exposure images recorded on non-photometric nights.
The number of frames required to image the clusters was determined based on the apparent sizes of the clusters. The apparent size depends on the distance of the cluster and the cosmology used.

The apparent angular size θ radians of an object of size y Mpc with a redshift of z is given by using $\theta = y/r$ with the angular size distance r being

$$r \simeq (1 + z)^{-1} \frac{c}{H_0} \left(z - \frac{1 + q_0}{2} z^2 \right),$$

where H_0 is the Hubble constant in Km/s/Mpc, c is the speed of light in vacuum in units of Km/s, $q_0 = 0.5\Lambda_m - \Lambda_k$. Λ_m and Λ_k are the density parameters (Peacock 1999).

For $z = 0.16$ the Abell diameter has an apparent size of 17' (field of view of our telescope) for $H_0 = 75$ Km/s/Mpc.

Clusters with higher redshifts ($z > 0.16$) have smaller angular sizes than the field of view of 17'; therefore, a single exposure on the cluster center contains whole cluster. Such a distant cluster has to be imaged for a longer exposure time for us to have a high enough signal/ratio to capture faint galaxies. High redshift clusters were imaged for 45 minutes. To ensure quality of the images this exposure time was broken down into three 15 minute exposures and each 15 minute exposure image was checked before the next image was taken. The images were shifted slightly (20") with respect to each other. This technique, known as dithering, takes away any inhomogeneity due to the dust particles on the mirror, bad pixels, or differences in pixel sensitivity that could exist in individual images from the final combined image.

For clusters with low redshift ($z < 0.16$) the apparent sizes are bigger than the field of view of the telescope. Different parts of such clusters had to be imaged individually in order to capture the whole clusters. These images formed mosaics.
of 2×2 to 4×4 depending on the distances, hence the sizes of the clusters. The constituent images of the mosaics were taken in such a way that they overlapped the adjacent images. This was to ensure that we could digitally attach them without any loss of data. Since the the clusters with low redshift are nearby, a relatively short exposure time is enough to get high signal/noise for faint galaxies. Exposure time of 5 minutes was used to image each constituent field of the low redshift (z < 0.16) clusters.

The exposure times were determined by the distance of the clusters. To generate meaningful luminosity functions, it is required that we capture galaxies at least one magnitude fainter than M^* for the clusters as explained in chapter 2. Our exposure times were chosen to give us high signal to noise ratio for galaxies at least one magnitude fainter than M^*.

The clusters were observed with the R band filter with its central wavelength at 6300Å with a full width half maximum of 1180Å. Figure 15 shows the response curve for this filter. The reason for observing in the R band filter is that the majority of the population in the galaxy clusters are elliptical galaxies which are red and therefore observing them in the R band gets us the most amount of light allowing us to observe galaxies with fainter magnitudes.

A set of calibration images was recorded along with the data. There is a zero (or bias) exposure current that goes through the CCD camera every time the camera is triggered. This needs to be taken out from the images. Since this current could vary each night, several zero exposure images were taken each night. The images also have a common non-uniformity in them due to the spatial variations in the CCD's sensitivity and the dust on the telescope optics. This non-uniformity can be characterized by observing uniform objects such as twilight sky. Such frames are called the flat fields. Division of the images by these flat fields removes the non-uniformity.
uniformity. In order to be able to do this, several flat fields were observed at evening twilights and the morning twilights. The reasons for multiple flat field observations was to be able to average out the variations in them.

4.2 Data Reduction

The data were reduced using standard IRAF (Image Reduction and Analysis Facility) tasks. The zero and flat field frames for each night were combined by averaging them using the IRAF tasks ZEROCOMBINE and FLATCOMBINE. Some of the CCD pixels were not usable. A bad pixel file containing the coordinates of
pixels that were bad in the CCD was used to interpolate the values of the bad pixels using the adjacent pixel values. The CCD images also include a section in the image called the overscan section. The overscan section is the section of the CCD that is not exposed to the light and contains counts that would be part of the whole image. These counts need to be removed from the images, and overscan sections need to be trimmed out from the images. The images were corrected for zero, flats, bad pixels and overscan using the IRAF task CCDPROC.
CHAPTER 5

CALIBRATION

In this chapter we discuss processing of the reduced data, described in chapter 4, and calibration of the images using the standard stars.

5.1 Creating Mosaics

Since the area of our clusters on the sky could not be covered by one CCD exposure we created mosaics by joining several CCD images. To create a single image for a cluster, individual images were combined using the overlap regions. One of the images in the set was chosen as a reference image. For rest of the images, horizontal and vertical shifts in the pixels were computed using common stars in the overlap regions. All the images of the set were then combined, using the IMCOMBINE task of IRAF, forming one image for the whole cluster. Multiple single field images, which were dithered, for high redshift clusters were also combined with the IMCOMINE task. The only difference was that the shifts where small (20") compared to the images that were mosaiced.

5.2 Cluster Centers and The Equatorial Grid

In order to generate a luminosity function for a given cluster one has to select galaxies within a region large enough to include most of member galaxies. A region with an Abell radius (1.5 Mpc) contains most of the cluster galaxies. Knowing the centers for the clusters is crucial for determining the location of this region. The centers of the clusters are also found to be the hottest regions of the clusters. Such
regions are $\sim 10^7 - 10^8$ K and radiate in X-rays. The centers were found by using intensity (I) weighted moments on the SIS x-ray images, available through the ASCA archives. SIS images were chosen for this task because they have better spatial resolution than GIS images and provide better accuracy for center coordinates. The x and y coordinates of the centers in the units for Right Ascension (RA) and Declination (DEC) are given by:

$$x_c = \frac{\sum_x \sum_y I(x, y)x}{\sum_x \sum_y I(x, y)}; \quad y_c = \frac{\sum_x \sum_y I(x, y)y}{\sum_x \sum_y I(x, y)}.$$

Locating these points on the CCD images requires mapping of the RA and DEC grid on the images. This was done using the United States National Observatory (USNO) sky survey. The survey includes astrometry of the entire sky and can be used to find the RA and DEC for bright stars in any field. The fields of our CCD images were matched with the USNO fields to find the equatorial coordinates using sets of five stars, four close to the corners and one close to the center. An IRAF coordinate transformation task, CCMAP, was used to map the equatorial grid on the CCD images using the physical (in units of pixels) and equatorial coordinates of the set of stars.

5.3 Calibration Using Standard Stars

On each of the three clear nights, Landolt (1992) standard stars were observed. These stars were used to calibrate the short exposure images of the clusters on those clear nights. An IRAF task, PHOT, was used to find the instrumental magnitudes of the standard stars. The true apparent magnitudes for these stars were looked up in the Landolt catalog. The relation between the instrumental magnitudes and the apparent magnitudes is based on the colors and the airmasses of the objects. The R band apparent magnitude, R, is given by,
\[R = M_r - R_1 - R_2 X_r - R_3 (V - R) - R_4 (V - R) X_r \]

where \(R \) is the apparent magnitude, \(M_r \) is the instrumental magnitude, \(X_r \) is the airmass, \(V - R \) is the \(V - R \) color index, and \(R_1, R_2, R_3 \) and \(R_4 \) are constants. \(R_4(V - R)X_r \) term is negligible and therefore \(R_4 \) is assumed to be zero. The instrumental magnitudes of the standard stars were found by using the IRAF task PHOT. To find the values for the constants, two separate catalogs were made, one containing the instrumental magnitudes with errors and the airmasses for the standard stars, and one containing the Landolt magnitudes and \((V - R) \) of the same standard stars. The constants were computed using these catalogs and the IRAF package PHOTCAL for each photometric night. The values for the constants are shown in Table 3.

Table 3 Constants for the transformation equation

<table>
<thead>
<tr>
<th>Night of</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 3</td>
<td>2.508 ± 0.018</td>
<td>0.123 ± 0.011</td>
<td>0.061 ± 0.013</td>
</tr>
<tr>
<td>May 4</td>
<td>2.385 ± 0.105</td>
<td>0.187 ± 0.057</td>
<td>0.139 ± 0.090</td>
</tr>
<tr>
<td>May 9</td>
<td>2.578 ± 0.038</td>
<td>0.097 ± 0.027</td>
<td>0.024 ± 0.024</td>
</tr>
</tbody>
</table>

The transformation equations with the constants above were used to find the apparent magnitudes for the bright stars in the short exposure images taken on the clear nights. These bright stars are used to calibrate the long exposure images taken on the nights that were not photometric. All our observations were made using the R band filter which restricts us from using the \(R_3 (V - R) \) term in our transformation equations for the bright stars. This terms affects the 100th place in the magnitude adding an error of less than a percent of a magnitude. We thus set \(R_3 \) to zero for calibrating the bright stars for the photometric nights. The apparent magnitudes, calculated by this method, were used on the non-photometric nights to
find a zero point for the images taken on those nights.
CHAPTER 6

PHOTOMETRY

In this chapter we discuss the photometry of the data that is reduced and calibrated as discussed in chapter 3 and 4. We also discuss how the star/galaxy classification is done.

6.1 Star-Galaxy Classification and Photometry Using SExtractor

The photometry done so far is on selected bright stars for calibration and is done using the IRAF task PHOT. Photometry done by PHOT requires lists of coordinates for the sets of objects on which the photometry is to be done. In order to create such lists for cluster galaxies, the stars and galaxies in the images have to be separated. PHOT also does photometry using fixed circular aperture. For better results, the aperture for galaxies should be varied based on the angular sizes and shapes of the galaxies. Since the clusters in our sample are rich clusters of galaxies, de-blending is also required for high density regions before performing photometry. SExtractor (Source Extractor), software written for such tasks, optimally detects, deblends, measures and classifies sources from images (Bertin & Arnouts, 1995). SExtractor analyzes the images in six steps: estimation of the sky background, detection, deblending, filtering of the detection, photometry and star/galaxy separation. This process is ideal for our project.

The background is estimated by clipping the local background histogram iteratively until it converges at ±3σ around its median, and recording the mean of the clipped histogram as the local background. If σ changes by more than 20% during
the clipping process, the field is considered crowded and the mode of the histogram
is recorded as the background. A background grid is generated using this process
for the whole image.

After the background is generated, the objects are detected using a technique
called thresholding. 8-connected contiguous pixels above a threshold value from the
background, are extracted by convolving a Point Spread Function with them. This
is done using Lutz's one pass algorithm (Lutz, 1979)

Deblending is done by re-thresholding at 30 different levels between primary
extraction threshold and its peak value. If a branch of multiple sets of connected
pixels is detected above a level and if the integrated pixel intensity (above the level)
of the branch is greater than a certain fraction of the total intensity of the composite
object, the object is consider a blend of multiple objects.

When dealing with extended sources like galaxies, it is possible that one could
erroneously detect separate objects for peaks in the wings of such sources. SExtra-
c tor computes the contribution to the mean surface brightness of each object from its
neighbors. This contribution is then subtracted, and if the mean surface brightness
still falls above the detection threshold, the object is accepted as a separate object.

For each object SEExtractor computes 2 types of magnitudes, one uses the adap-
tive aperture, and the other an isophotal correction. For each object, adaptive
aperture method computes an elliptical aperture with ellipticity ϵ, position angle θ
and size $6\sigma_s$, where σ_s is the mean standard deviation of the bivariate Gaussian
profile of the object. The counts in this aperture are integrated to compute the
magnitude.

SEExtractor uses the adaptive aperture magnitudes to catalog the objects unless
a neighbor is suspected to bias the magnitude by more than 0.1 magnitude. In such
cases the corrected isophotal magnitude is used.
Star/galaxy classification is done by SExtractor using a neural network. The assumption that the galaxy images look more extended than stars or QSO’s is the basis of the neural network used by SExtractor. The parameters are 8 isophotal areas, 1 peak intensity, and the seeing which is entered by the user. The isophotal areas are in the units of the “squared seeing (FWHM)”. The output contains of a “stellarity index”: 0 for a galaxy, 1 for a star, or any intermediate value for ambiguous objects.

SExtractor is used for doing photometry on all the clusters we observed at the MDM observatory. Since seeing is one of the most important parameters used by the star/galaxy classifier used by SExtractor, great care was taken in computing the seeing for individual images. The objects with the stellar index less than 0.2 were confirmed by eye to be galaxies using multiple images. For each cluster, right ascensions and declinations of all the objects with their stellar index less than 0.2, and R band magnitudes measured by SExtractor with their measurement errors were tabulated.
CHAPTER 7

ARCHIVE DATA

In this chapter we discuss the Automatic Plate Measuring (APM) and Sloan Digital Sky Survey (SDSS) archives used to obtain data to supplement the CCD observations. The archives contain photometric data and include star/galaxy classification for the objects.

7.1 Automatic Plate Measuring (APM) Catalog

The Automatic Plate Measuring (APM) machine (Figure 16) is a National Astronomy Facility run by the Institute of Astronomy in Cambridge. The APM facility typically processes a data stream of well over 10 Gbytes per day from which the parameters of about 1 million images are extracted. The facility has digitized the first generation of The National Geographic Society-Palomar Observatory Sky Survey (POSS1) to 20 degrees from the Galactic plane and southern UK Schmidt Telescope (UKST) survey to 30 degrees from the Galactic plane with a few missing parts. Although, a large part of the service provided by this facility consists of off-line data processing, POSS1 and UKST data have been made available on-line which include photometry of the objects. Position and photometry data for 83 Abell clusters were obtained from the APM site. Figure 17 and 18 show the POSS1 and UKST coverage. The white regions are the regions of the galactic plane and are not covered by the surveys.

The APM system uses a fast laser micromicron densitometer with a dedicated hardware-based front end for signal preprocessing. Control of the hardware, communication
with the microdensitometer, and data acquisition are done using a computer with an
average transfer rate of 1 Mbyte/s. The signal conditioning hardware, programmable
via the PC interface, performs 16-bit analog to digital conversion and look-up-table
(LUT) transformations from transmission to density (or intensity), and digitally
smears the spot if required. The computer controls the complete scanning system,
forms the control interface for the user, and also carries out the image analysis. The
high scanning speed is achieved by sweeping the laser beam across the plate in strips
2 mm wide using an acousto-optic deflector. A massive \(x - y \) table is used to move
the plate relative to the beam and a scan is built up by moving the table in the \(y \)
direction with the \(x \) coordinate fixed. Subsequently the table is moved 2 mm in \(x \)
and another \(y \) strip is measured. Each scan line within the 2 mm strip is digitized
into 256 samples at 7\(\mu \)m spacing. The rms repeatability (expected deviation in the
signal) is \(\sim 0.5\mu \) for both axes. The scanning and processing time for a complete
Figure 17 POSS1 Sky Coverage

Figure 18 UKST Sky Coverage
UK or Palomar Schmidt plate at 0.5 arcsec resolution is just over 4 hours.

The majority of the APM objects have an internal position accuracy of approximately 0.1 arcsec except stars brighter than about 11th magnitude and fully resolved galaxies. The external accuracy is about 0.5 arcsec and is governed by the density and magnitude range of the astrometric standards used, and is limited by residual plate distortions and magnitude-dependent terms.

The APM magnitudes are given as "red" and "blue" plate magnitudes. For UKST survey plates "blue" = Bj (i.e. 3900Å-5400Å bandpass) while "red" = OR (i.e. 5900Å-6900Å bandpass). For POSS1 survey plates "blue" = O (i.e. 3200Å-4900Å bandpass) while "red" = E (i.e. 6200Å-6800Å bandpass). The magnitude limits of the commonly used plates to within 0.5 magnitude are: UKST/POSS2 Bj=22.5; UKST/POSS2 R=21.0; POSS1 E=20.0, POSS1 O=21.5. Internal accuracy for the majority of images brighter than 1 magnitude above the plate limit are typically 0.1 magnitude, with the same exceptions as in position accuracy. External accuracy is about 0.3 magnitudes for the fainter images but can be much worse than this (i.e. 1+ magnitudes) for bright images. This was a problem for this project as discussed in section 7.3.

7.2 Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) is an ambitious astronomical survey that maps in detail one-quarter of the entire sky, determining the positions and magnitudes of more than 100 million objects. It also provides distance measurements to more than a million galaxies and quasars. Apache Point Observatory, site the of the SDSS telescopes, is operated by the Astrophysical Research Consortium (ARC).

SDSS is a joint project of The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins Univer-
The 2.5-meter Sloan telescope has a wide-angle view, and is made specifically to create a map of the sky. The telescope uses CCD cameras and two spectrographs. Figure 19 shows the telescope pointing toward zenith. The boxy metal structure is the outer wind baffle, mounted separately from the rest of the telescope. The telescope scans the sky at the sidereal rate. As of October 2004, three data releases have been made public by SDSS that cover 5282 square degrees of the northern sky.
hemisphere. Figure 20 shows the data release 3 (DR3) sky coverage of SDSS.

The filter system used by SDSS is summarized in Table 4.

Table 4 SDSS filters

<table>
<thead>
<tr>
<th>Filter</th>
<th>λ_c</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>u'</td>
<td>3540 Å</td>
<td>570 Å</td>
</tr>
<tr>
<td>g'</td>
<td>4770 Å</td>
<td>1370 Å</td>
</tr>
<tr>
<td>r'</td>
<td>6230 Å</td>
<td>1370 Å</td>
</tr>
<tr>
<td>i'</td>
<td>7630 Å</td>
<td>1530 Å</td>
</tr>
<tr>
<td>z'</td>
<td>9130 Å</td>
<td>950 Å</td>
</tr>
</tbody>
</table>

Figure 21 shows the SDSS filter system response curves. The responses are shown without atmospheric extinction (upper curves) and as modified by the extinction at 1.2 airmasses (lower curves). The curves represent expected total quantum efficiencies of the camera plus telescope on the sky.

The limiting magnitudes at the detection limit, S/N 5:1, is about $u' = 22.3$, $g' = 23.3$, $r' = 23.1$, $i' = 22.5$ and $z' = 20.8$. These limiting magnitudes are for
stars, and those for galaxies are typically between half a magnitude and a magnitude brighter at the same signal to noise ratio. We are concerned with the red magnitude, since most cluster galaxies are red, the limiting magnitude for the galaxies of interest is \(r' \approx 22 \).

Figure 22 shows the completeness of SDSS in \(r' \) band as compared to the Classifying Objects by Medium-Band Observations (COMBO) survey. COMBO survey has imaged 1 square degree of sky in 17 filters using the Wide Field Imager at the MPG/ESO 2.2-m telescope at La Silla, Chile. The 17 passband allow classification into stars, galaxies and quasars to \(R < 24 \) (Wolf 2004).
Figure 22 SDSS completeness for Galaxies in r band

7.3 Comparison of the APM, Sloan and MDM Samples

Sloan Digital Sky Survey (SDSS) is an all digital survey that is more recent and contains fainter objects than the digitized APM survey. We decided to compare the APM survey data with Sloan survey data to check the consistency of the photometry done in two different sets of data. The photometry of the sample observed at the MDM observatory is done using the software SExtractor which uses a method different than both APM catalog and SDSS, therefore, it is also important to compare the MDM results to APM catalog and SDSS for consistency checks.

As of October 2004, the APM catalog is still about 3 times (15000 degrees2/5282 degrees2) larger in survey area than SDSS, and contains all the clusters of our sample drawn from SDSS and the clusters observed at the MDM observatory. Therefore, the photometry of all the clusters of the samples drawn from SDSS and the clusters observed at the MDM observatory are compared with the APM sample. Five
common clusters between the SDSS and the MDM samples which are also compared.

In order to compare the photometry of individual clusters, a region of 0.2 Mpc from the cluster centers is chosen. In order to do this, the regions in arc-seconds corresponding to 0.2 Mpc are calculated from the center of each cluster using \(\theta = 0.2/r \) with the angular size distance,

\[
r \simeq (1 + z)^{-1} \frac{c}{H_0} \left(z - \frac{1 + q_0}{2} z^2 \right)
\]

(Peacock 1999). All the galaxies with angular distance (\(\phi \)) smaller than \(\theta \) from the cluster center are kept. \(\phi \) is determined using

\[
\cos(\phi) = \sin(\delta_c) \sin(\delta) + \cos(\delta_c) \cos(\delta) \cos(\alpha_c - \alpha),
\]

where \(\alpha_c \) and \(\delta_c \) are the center coordinates, and \(\alpha \) and \(\delta \) are the coordinates of the individual galaxies. Each galaxy in a cluster to be compared from the Sloan survey is used to look for a galaxy in the corresponding cluster from the APM survey within the distance of 2 arc-seconds, accounting for any position errors. Similarly, the clusters from the MDM sample are also compared with the APM survey. The same is done to compare common clusters between the Sloan and the MDM samples.

The following figures show the comparison done using the above method. Figures on the left show apparent magnitude verses apparent magnitude plots for the same galaxies from two different surveys. A line with a slope of 1 is plotted for reference on these plots. Figures on the right show the locations of the galaxies from two different surveys confirming that the same galaxies are being compared. Magnitudes from the APM data do not agree with SDSS data for bright galaxies. For some clusters (e.g. A2255) the data do not agree for most of the galaxies. Data from MDM are in strong agreement with SDSS. This makes the data from the APM survey unusable in generating luminosity functions.
A0611

Metallicity: 0.21 Solar
Redshift: 0.29

A0773

Metallicity: 0.10 Solar
Redshift: 0.20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A1689

Metallicity: 0.29 Solar
Redshift: 0.18

y=x

APM vs Sloan

A1704

Metallicity: 0.00 Solar
Redshift: 0.22

y=x

APM vs Sloan
A1068

Metallicity: 0.36 Solar
Redshift: 0.14

APM vs MDM

y=x

A1204

Metallicity: 0.19 Solar
Redshift: 0.17

APM vs MDM

y=x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A1246

Metallicity: 0.26 Solar
Redshift: 0.22

APM vs MDM

A1553

Metallicity: 0.19 Solar
Redshift: 0.17

APM vs MDM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A1851

Metallicity: 0.08 Solar
Redshift: 0.21

A1914

Metallicity: 0.25 Solar
Redshift: 0.17
A2104

Metallicity: 0.18 Solar
Redshift: 0.16

A2142

Metallicity: 0.31 Solar
Redshift: 0.09

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Metallicity: 0.27 Solar
Redshift: 0.22

$y = x$

APM vs MDM

A2261

32.2
32.15
32.1
32.05

DEC

260.5

RA

MDM

APM
CHAPTER 8

LUMINOSITY FUNCTIONS

In this chapter we discuss how the absolute magnitudes are computed for the cluster galaxies. We discuss the method used to generate the luminosity functions, and present the luminosity functions for our entire sample.

8.1 Absolute Magnitude

In order to compare different clusters, it is important to calibrate the magnitude measurements. The absolute magnitude, M, an object is given by $M = m - \mu - A$ where m is the apparent magnitude and A is the galactic absorption. μ is a function of distance and therefore, depends on the cosmology used, the Hubble constant, and the redshift of the object. For $\Lambda_m = 0.25$ and $\Lambda_k = 0.75$,

$$\mu = 42.384 - 5 \log(h) + 5 \log(z) + 5 \log(1 + z) + 5 \log(1 - 0.1875z).$$

Appendix A shows the derivation of μ. Here the distance used contains the K-correction.

8.2 Galactic Absorption

A galaxy appears fainter in any given bandpass depending on the amount of the dust from the Milky Way in the line of site to the galaxy. The absorption in the R bandpass can be approximated by $A_r = 0.07(\csc |b| - 1)$ for $|b| \leq 50$ and $A_R = 0$ for $|b| > 50$ (Sandage 1973). The extinction can be computed, for a given direction and filter, if the amount of dust is known in that direction. Schlegel et
al (1998) present a full-sky 100 \(\mu m \) map, commonly referred to as SFD map, that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and point sources removed. The fluxes can be converted to a number proportional to dust column density. The extinction in a given bandpass can be found by using this dust extinction value for a given galactic coordinate are made publicly available by Schlegel et al. Figure 23 and 24 show the extinction images for the northern and the southern hemispheres of our galaxy. The outer rim of the images correspond to the galactic equator and hence show the most amount of extinction. These dust maps are used to find the interstellar absorption in the R band for the clusters we observed and the clusters obtained from the APM archives. The SDSS archive contain the extinction that are derived from the SFD map.

The absolute magnitudes for all the cluster galaxies from all the sources used for this project (CCD observations, APM data and SDSS data) are computed using the average redshifts with respect to the cosmic background radiation \((z)\), galaxy magnitudes in red, and the intergalactic absorption \((A_R)\) using \(M = m - 42.384 + 5 \log(h) - 5 \log(z) - 5 \log(1 + z) - 5 \log(1 - 0.1875z) - A \).

8.3 Luminosity Functions

The Luminosity function for a galaxy cluster gives the number distribution for the luminosity of the cluster galaxies. The integral luminosity function \(N(L) \) is the number of galaxies with luminosities greater than \(L \), while the differential luminosity function \(n(L)dL \) is the number of galaxies with luminosities between \(L \) and \(L + dL \). Luminosity functions are often defined in terms of magnitudes \(m \propto -2.5 \log(L) \) with \(N(m) \) being number of galaxies brighter than the magnitude of \(m \). There are three types of analytical functions that have commonly been used for fitting the luminosity functions.
1. A form proposed by Zwicky (1957):

\[N(M) = K(10^{0.2(M-M_1)} - 1), \]

where \(K \) is a constant and \(M_1 \) is the magnitude of the first brightest galaxy.

2. Two intersecting power lows suggested by Abell (1975):

\[\log N(M) = \begin{cases}
K_1 + s_1 M & M \leq M^* \\
K_2 + s_2 M & M > M^*
\end{cases}, \]

where \(K_1 \) and \(K_2 \) are constants and the slopes are approximately \(s_1 \approx 0.75 \) and \(s_2 \approx 0.25 \), and the power laws cross at \(M = M^* \), making \(K_1 + s_1 M^* = K_1 + s_1 M^* \).

3. A function proposed by Schechter (1976):

\[n(M)dM = k N^* e^{k(M^* - M) - e^k(M^* - M)} dM, \]
where M^* is the characteristic magnitude, or the 'knee', of the LF, α is the slope of the faint end of the function, $k = \ln(10)/2.5$, and N^* is determined by requiring that the total number of galaxies expected by the Schechter function equal the number of galaxies in a given magnitude range.

Figure 25 shows all of the above functions fit to the LF generated for the cluster Abell 2244. Unlike the Zwicky function, the Schechter function does not depend on the magnitude of the brightest cluster galaxy and therefore, shows a better fit at the bright end of LF. The Schechter function is also continuous like the Zwicky function opposed to a discontinuous Abell function. We use Schechter functions for our project to compute M^*'s for our sample. These M^* values are than used for investigating the possible connection with the cluster metallicities.
Cluster data are sorted by brightness in 10 bins with the bin centers ranging from apparent magnitudes of 12 to 23. The bins include the brightest cD galaxies and galaxies fainter than the telescope limits. Each bin is corrected for background field galaxies using the background data obtained from SDSS. The number of background galaxies in each bin is estimated by averaging the number of galaxies in those bins from the fields centered on 4 Mpc east and west of the clusters in the SDSS sample. Figure 26 shows the plot of average number of galaxies per square Mpc versus apparent magnitude. It is found that number of galaxies $N(m)$ per square degrees per magnitude in the R band can be approximated by $\log N(m) = 0.42 m - 5.0$. This result agrees with the findings by Parolin et al. (2003) of $\log N(m) = (0.39 \pm 0.063) m - (4.67 \pm 1.01)$.

Schechter functions are fit to the field corrected bins to compute M^* values for all the sample clusters. Towards the bright ends of the LFs, the fits exclude the
bright cD galaxies, and galaxies fainter than the apparent magnitudes between 21 and 22 on the faint end. Even though the effective limiting magnitude of the SDSS telescope is 22, variations in airmass could make this limit brighter for some image. Figures on the following pages show the LFs and Schechter function fits to all the clusters in our sample. The figures also show the images of the clusters in X-ray, obtained from the ASCA archive, and position plots of the cluster galaxies using the SDSS data. The circles around the X-ray images are drawn with a radius of 500 Kpc.
Galaxies of A0963

A0963 (MDM)

Absolute Magnitude

+27 -26 -26 -25 -24 -23 -22

Gal/Sq Mpc

100 10 1

Ngal: 203
Metallicity: 0.34
Redshift: 0.21
M*: -22.7

Corrected counts/Sq Mpc
Schechter function, $\alpha=0.0$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A0990

Absolute Magnitude

A0990 (MDM)

Corrected counts/Sq Mpc

Schechter function, $\alpha = -0.3$

NGal: 201
Metallicity: 0.23
Redshift: 0.14
$M^* = -22.9$

Ngal: 201
Metallicity: 0.23
Redshift: 0.14
$M^* = -22.9$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1068

A1068 (MDM)

Absolute Magnitude

Ngal: 172
Metallicity: 0.42
Redshift: 0.14
M*: -22.9

Corrected counts/Sq Mpc

Schechter function, α=-0.2

Apparent Magnitude
Galaxies of A1204

Absolute Magnitude

- Ngal: 417
- Metallicity: 0.35
- Redshift: 0.17
- M*: -23.3

Corrected counts/Sq Mpc
Schechter function, $\alpha=-1.2$

Apparent Magnitude
Galaxies of A1553

A1553 (MDM)

Absolute Magnitude

Ngal: 178
Metallicity: 0.25
Redshift: 0.17
M*: -22.2

Corrected counts/Sq Mpc
Schechter function, α=0.3

Apparent Magnitude
Galaxies of A1650

<table>
<thead>
<tr>
<th>RA</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>194.403</td>
<td>-1.5</td>
</tr>
<tr>
<td>194.587</td>
<td>-1.6</td>
</tr>
<tr>
<td>194.771</td>
<td>-1.7</td>
</tr>
<tr>
<td>194.955</td>
<td>-1.8</td>
</tr>
</tbody>
</table>

A1650 (MDM)

- Ngal: 426
- Metallicity: 0.40
- Redshift: 0.08
- M*: -22.6

Schechter function, $\alpha = 0.7$

Corrected counts/Sq Mpc
Galaxies of A1689

A1689 (MDM)

Absolute Magnitude

Gal/Sq Mpc

Corrected counts/Sq Mpc

Schechter function, $\alpha=0.4$

Ngal: 199
Metallicity: 0.32
Redshift: 0.18
$M^*: -22.6$

Apparent Magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A1914 (MDM)

Galaxies of A1914

A1914 (MDM)

Absolute Magnitude

Ngal: 385
Metallicity: 0.30
Redshift: 0.17
M*: -23.1

Corrected counts/Sq Mpc
Schechter function, \(\alpha = -1.2 \)

Gal/Sq Mpc

Apparent Magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A1942 (MDM)

Galaxies of A1942

RA

DEC

A1942 (MDM)

Galaxies of A1942

A1942 (MDM)

Absolute Magnitude

Gal/Sq Mpc

Apparent Magnitude

Ngal: 201
Metallicity: 0.27
Redshift: 0.22
M*: -22.4

Corrected counts/Sq Mpc
Schechter function, $\alpha=-0.8$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A2034

- **Absolute Magnitude**
 - Ngal: 495
 - Metallicity: 0.29
 - Redshift: 0.11
 - M^*: -22.6

- **Corrected counts/Sq Mpc**
 - Schechter function, $\alpha=-1.0$
Galaxies of A2142

A2142 (MDM)

Absolute Magnitude

-25 -24 -23 -22 -21 -20

Gal/Sq Mpc

100 10 1

Ngal: 541
Metallicity: 0.28
Redshift: 0.09
M*: -22.8

Corrected counts/Sq Mpc

Schechter function, α=-0.9

Apparent Magnitude

14 15 16 17 18 19 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A2204

248.027 248.135 248.244 248.353

RA

DEC

A2204 (MDM)

Absolute Magnitude

Galaxies of A2204

Ngal: 195
Metallicity: 0.39
Redshift: 0.15
M*: -23.2

Corrected counts/Sq Mpc
Schechter function, $\alpha=0.8$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A2218

A2218 (MDM)

Absolute Magnitude

Ngal: 96
Metallicity: 0.20
Redshift: 0.18
M*: -22.3

Corrected counts/Sq Mpc

Schechter function, α=0.6
Galaxies of A2219

- RA: 249.913, 250.027, 250.14, 250.254
- DEC: 46.8, 46.75, 46.7, 46.65

A2219 (MDM)

- Ngal: 181
- Metallic: 0.27
- Redshift: 0.23
- M*: -22.8

Apparent Magnitude

Galaxies of A2219 (MDM)

- Corrected counts/Sq Mpc
- Schechter function, α=-0.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A2261

A2261 (MDM)

Absolute Magnitude

Gal/Sq Mpc

Corrected counts/Sq Mpc

Schecter function, $\alpha=0.6$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A0267

A0267 (Sloan)

Absolute Magnitude

Ngal: 2344
Metallicity: 0.26 Z⊙
Redshift: 0.23
M*: -22.0

Corrected counts/Sq Mpc
Schechter function, α=-1.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A0611

A0611 (Sloan)

Absolute Magnitude

Ngal: 1687
Metallicity: 0.19 Z⊙
Redshift: 0.29
M*: -22.5

Corrected counts/Sq Mpc
Schechter function, \(\alpha = -1.5 \)
Galaxies of A0697

A0697 (Sloan)

Absolute Magnitude

Gal/Sq Mpc

Apparent Magnitude

Ngal: 2475
Metallicity: 0.24 Z_\odot
Redshift: 0.28
M*: -22.5

Corrected counts/Sq Mpc
Schechter function, $\alpha=1.6$
Galaxies of A0773

A0773 (Sloan)

Absolute Magnitude

Ngal: 2890
Metallicity: 0.29 \(Z_\odot \)
Redshift: 0.20
M*: -22.1

Corrected counts/Sq Mpc
Schechter function, \(\alpha=1.4 \)

Apparent Magnitude
Galaxies of A0854

A0854 (Sloan)

Absolute Magnitude

Ngal: 2172
Metallicity: 0.09 Z⊙
Redshift: 0.21
M*: -22.3

Corrected counts/Sq Mpc
Schechter function, α=1.4

Gal/Sq Mpc

Apparent Magnitude
Galaxies of A0959

Absolute Magnitude

Ngal: 1103
Metallicity: 0.04 Z⊙
Redshift: 0.35
M*: -22.3

Corrected counts/Sq Mpc

Schechter function, α=1.2
Galaxies of A0963

A0963 (Sloan)

Absolute Magnitude

-28 -27 -26 -25 -24 -23 -22 -21 -20

Gal/Sq Mpc

Ngal: 2614
Metallicity: 0.34 Z⊙
Redshift: 0.21
M*: -21.8

Corrected counts/Sq Mpc
Schechter function, α=-1.2

Apparent Magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A0990 (Sloan)

Absolute Magnitude

Galaxies of A0990

Ngal: 4254
Metallicity: 0.23 Z☉
Redshift: 0.14
M*: -22.2

Corrected counts/Sq Mpc
Schechter function, α=-1.4

Corrected counts/Sq Mpc
Schechter function, α=-1.4

Apparent Magnitude
Galaxies of A1068

Absolute Magnitude

Ngal: 5268
Metallicity: 0.42 Z_
Redshift: 0.14
M*: -22.4

Corrected counts/Sq Mpc
Schechter function, α=-1.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1430

Absolute Magnitude

Ngal: 2593
Metallicity: 0.00 Z⊙
Redshift: 0.21
M*: -21.2

corrected
Schechter function, α=-1.2

Apparent Magnitude

Gal/Sq Mpc

Counts/Sq Mpc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1553

Absolute Magnitude

Ngal: 3208
Metallicity: 0.25 Z_{\odot}
Redshift: 0.17
M*: -21.9

Corrected counts/Sq Mpc
Schechter function, $\alpha=-1.2$

Apparent Magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1576

A1576 (Sloan)

Absolute Magnitude

Ngal: 1382
Metallicity: 0.25 Z_{\odot}
Redshift: 0.30
M*: -22.0

Corrected counts/Sq Mpc
Schechter function, $\alpha=-1.2$

Apparent Magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1650

A1650 (Sloan)

RA

DEC

194.023 194.459 194.895 195.331

Galaxies of A1650

A1650 (Sloan)

Absolute Magnitude

Corrected counts/Sq Mpc

Schecter function, \(\alpha = -1.8 \)

Apparent Magnitude

Ngal: 8723
Metallicity: 0.40 \(Z_{\odot} \)
Redshift: 0.08
M*: -22.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1682

A1682 (Sloan)

Absolute Magnitude

Corrected counts/Sq Mpc
Schechter function, $\alpha=-1.5$

Ngal: 2680
Metallicity: 0.21 Z_\odot
Redshift: 0.23
M^*: -22.5

100
10
1
0.1

12 13 14 15 16 17 18 19 20 21
Apparent Magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1689

Ngal: 2389
Metallicity: 0.32 Z⊙
Redshift: 0.18
M*: -22.3
Corrected counts/Sq Mpc
Schechter function, α=-1.1
Galaxies of A1704

A1704 (Sloan)

Absolute Magnitude

-28 -27 -26 -25 -24 -23 -22 -21 -20

Gal/Sq Mpc

Corrected counts/Sq Mpc

Schechter function, $\alpha=1.4$

Ngal: 1685
Metallicity: 0.37 Z_\odot
Redshift: 0.22
M^*: -22.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A1763 (Sloan)

Absolute Magnitude

- Ngal: 2754
- Metallicity: 0.12 Z_\odot
- Redshift: 0.19
- M^*: -21.6

Galaxies of A1763

- Corrected counts/Sq Mpc
- Schechter function, $\alpha=-1.4$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A1774

A1774 (Sloan)

Absolute Magnitude

- Ngal: 3556
- Metallicity: 0.08 Z☉
- Redshift: 0.17
- M*: -21.6

Galaxies of A1774

A1774 (Sloan)

Corrected counts/Sq Mpc —— Schechter function, α=-1.3
Galaxies of A1835

Absolute Magnitude

-26 -25 -24 -23 -22 -21 -20

Gal/Sq Mpc

Ngal: 2155
Metallicity: 0.30 Z_{\odot}
Redshift: 0.25

M*: -21.7

Corrected counts/Sq Mpc

Schechter function, $\alpha=-0.8$
Galaxies of A1914

A1914 (Sloan)

Absolute Magnitude

Ngal: 4423
Metallicity: 0.30 Z⊙
Redshift: 0.17
M*: -22.7

Corrected counts/Sq Mpc
Schechter function, α=-1.6

Apparent Magnitude
Galaxies of A1995

A1995 (Sloan)

Absolute Magnitude

Galaxies of A1995

A1995 (Sloan)

Corrected counts/Sq Mpc

Schechter function, $\alpha=-1.0$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A2029

Absolute Magnitude

Ngal: 13842
Metallicity: 0.32 Z⊙
Redshift: 0.08
M*: -22.4

Corrected counts/Sq Mpc
Schechter function, α=-1.4
Galaxies of A2034

Absolute Magnitude

Ngal: 7969
Metallicity: 0.29 Z⊙
Redshift: 0.11
M*: -22.3

Corrected counts/Sq Mpc
Schechter function, α=-1.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A2142 (Sloan)

Absolute Magnitude

Galaxies of A2142

Corrected counts/Sq Mpc

Schechter function, $\alpha = -1.4$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A2219

A2219 (Sloan)

Absolute Magnitude

Ngal: 2882
Metallicity: 0.27 Z_\odot
Redshift: 0.23
M^*: -22.7

Gal/Sq Mpc

Corrected counts/Sq Mpc

Schechter function, $\alpha=-1.4$
Galaxies of A2255

Absolute Magnitude

Ngal: 8092
Metallicity: 0.31 Z⊙
Redshift: 0.08
M*: -23.3

Corrected counts/Sq Mpc

Schechter function, α=-1.6
Galaxies of A2259

RA

DEC

Galaxies of A2259

A2259 (Sloan)

Absolute Magnitude

Corrected counts/Sq Mpc

Schechter function, \(\alpha = -1.4 \)

Apparent Magnitude

Gal/Sq Mpc

Ngal: 4059
Metallicity: 0.18 \(Z_{\odot} \)
Redshift: 0.16
\(M^* \): -22.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Galaxies of A2670

A2670 (Sloan)

Absolute Magnitude

Corrected counts/Sq Mpc

Schechter function, $\alpha=-1.6$

Gal/Sq Mpc

Apparent Magnitude

Ngal: 10122
Metallicity: 0.25 Z_\odot
Redshift: 0.08
$M^*:$ -22.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 9

RESULTS AND CONCLUSIONS

In this chapter we present results from the luminosity function of all the clusters in our sample. We also graph M_\star^*, α, and the redshifts versus the X-ray metallicities of the ICM for the clusters.

9.1 ICM Metallicity and the Cluster Luminosity Functions

The metallicity of the intra-cluster medium is measured using bremsstrahlung X-rays from the cluster centers. This metallicity is more than what is expected in a primordial gas. This suggests that the ICM is enriched with metals from the ISM of the cluster galaxies. If this is true, a connection between the ICM metallicity and optical parameters of the galaxies can be expected. In efforts to parameterize the optical data from the clusters, we have generated luminosity functions of a sample of clusters with a wide metallicity range. The luminosity functions are used to compute a characteristic magnitude (M_\star^*) and the faint-end slope for each cluster. This is done by fitting Schechter function of the form

$$n(M)dM = k N^* e^{[\alpha + 1](M^* - M) - e^{\alpha (M^* - M)}}dM,$$

to the cluster luminosity functions. The parameters are as described in chapter 8.

Results are presented in Table 5 and Table 6. The columns contain the following data:

Column (1).—Abell number.

Column (3).—ICM metallicity from Horner (2001) and White (2000).

Column (4).—90% confidence interval for metallicity.

Column (5).—Characteristic absolute magnitude from the cluster luminosity functions.

Column (6).—α, representing the faint-end slope of the cluster luminosity functions.

Column (7).—χ^2/ν for the Schechter function fits to the luminosity functions. ν is the degrees of freedom.

Table 5 Results from MDM data

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Z/Z_\odot</th>
<th>90 %cl</th>
<th>M^*</th>
<th>α</th>
<th>χ^2/ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0963</td>
<td>0.21</td>
<td>0.34</td>
<td>0.26 - 0.42</td>
<td>-22.7 ± 0.1</td>
<td>0.00 ± 0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>A0990</td>
<td>0.14</td>
<td>0.23</td>
<td>0.18 - 0.27</td>
<td>-22.9 ± 0.5</td>
<td>-0.30 ± 0.47</td>
<td>2.21</td>
</tr>
<tr>
<td>A1068</td>
<td>0.14</td>
<td>0.42</td>
<td>0.36 - 0.48</td>
<td>-22.9 ± 0.5</td>
<td>-0.20 ± 0.63</td>
<td>1.77</td>
</tr>
<tr>
<td>A1204</td>
<td>0.17</td>
<td>0.35</td>
<td>0.28 - 0.43</td>
<td>-23.3 ± 0.4</td>
<td>-1.20 ± 0.25</td>
<td>0.99</td>
</tr>
<tr>
<td>A1553</td>
<td>0.17</td>
<td>0.25</td>
<td>0.18 - 0.32</td>
<td>-22.2 ± 0.6</td>
<td>0.30 ± 0.94</td>
<td>2.41</td>
</tr>
<tr>
<td>A1650</td>
<td>0.08</td>
<td>0.40</td>
<td>0.37 - 0.43</td>
<td>-22.6 ± 0.4</td>
<td>-0.70 ± 0.45</td>
<td>0.58</td>
</tr>
<tr>
<td>A1689</td>
<td>0.18</td>
<td>0.32</td>
<td>0.28 - 0.37</td>
<td>-22.6 ± 0.4</td>
<td>0.40 ± 0.64</td>
<td>0.90</td>
</tr>
<tr>
<td>A1914</td>
<td>0.17</td>
<td>0.30</td>
<td>0.24 - 0.36</td>
<td>-23.1 ± 0.6</td>
<td>-1.20 ± 0.37</td>
<td>0.96</td>
</tr>
<tr>
<td>A1942</td>
<td>0.22</td>
<td>0.27</td>
<td>0.12 - 0.44</td>
<td>-22.4 ± 0.3</td>
<td>-0.80 ± 0.31</td>
<td>0.19</td>
</tr>
<tr>
<td>A2034</td>
<td>0.11</td>
<td>0.29</td>
<td>0.23 - 0.34</td>
<td>-22.6 ± 0.3</td>
<td>-1.00 ± 0.24</td>
<td>0.31</td>
</tr>
<tr>
<td>A2104</td>
<td>0.16</td>
<td>0.32</td>
<td>0.26 - 0.38</td>
<td>-22.7 ± 0.5</td>
<td>-0.70 ± 0.49</td>
<td>1.31</td>
</tr>
<tr>
<td>A2142</td>
<td>0.09</td>
<td>0.28</td>
<td>0.23 - 0.33</td>
<td>-22.8 ± 0.3</td>
<td>-0.90 ± 0.20</td>
<td>0.87</td>
</tr>
<tr>
<td>A2204</td>
<td>0.15</td>
<td>0.39</td>
<td>0.34 - 0.44</td>
<td>-23.2 ± 0.2</td>
<td>-0.80 ± 0.17</td>
<td>0.09</td>
</tr>
<tr>
<td>A2218</td>
<td>0.18</td>
<td>0.20</td>
<td>0.14 - 0.25</td>
<td>-22.3 ± 0.9</td>
<td>0.60 ± 2.17</td>
<td>2.76</td>
</tr>
<tr>
<td>A2219</td>
<td>0.23</td>
<td>0.27</td>
<td>0.19 - 0.34</td>
<td>-22.8 ± 0.5</td>
<td>-0.40 ± 0.42</td>
<td>0.18</td>
</tr>
<tr>
<td>A2261</td>
<td>0.22</td>
<td>0.37</td>
<td>0.29 - 0.45</td>
<td>-22.8 ± 0.3</td>
<td>0.60 ± 0.61</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Table 6 Results from SDSS data

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>$z(\text{Z} / \text{Z}_\odot)$</th>
<th>90 % cl</th>
<th>M^*</th>
<th>α</th>
<th>χ^2/ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0267</td>
<td>0.23</td>
<td>0.26</td>
<td>0.17 - 0.34</td>
<td>-22.0 ± 0.1</td>
<td>-1.10 ± 0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>A0611</td>
<td>0.29</td>
<td>0.19</td>
<td>0.12 - 0.27</td>
<td>-22.5 ± 0.2</td>
<td>-1.50 ± 0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>A0697</td>
<td>0.28</td>
<td>0.24</td>
<td>0.17 - 0.31</td>
<td>-22.5 ± 0.5</td>
<td>-1.60 ± 0.28</td>
<td>0.32</td>
</tr>
<tr>
<td>A0773</td>
<td>0.20</td>
<td>0.29</td>
<td>0.20 - 0.38</td>
<td>-22.1 ± 0.1</td>
<td>-1.40 ± 0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>A0854</td>
<td>0.21</td>
<td>0.09</td>
<td>0.00 - 0.19</td>
<td>-22.3 ± 0.3</td>
<td>-1.40 ± 0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>A0959</td>
<td>0.35</td>
<td>0.04</td>
<td>0.00 - 0.19</td>
<td>-22.3 ± 0.2</td>
<td>-1.20 ± 0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>A0963</td>
<td>0.21</td>
<td>0.34</td>
<td>0.26 - 0.42</td>
<td>-21.8 ± 0.1</td>
<td>-1.20 ± 0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>A0990</td>
<td>0.14</td>
<td>0.23</td>
<td>0.18 - 0.27</td>
<td>-22.2 ± 0.3</td>
<td>-1.40 ± 0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>A1068</td>
<td>0.14</td>
<td>0.42</td>
<td>0.36 - 0.48</td>
<td>-22.4 ± 0.5</td>
<td>-1.50 ± 0.22</td>
<td>0.35</td>
</tr>
<tr>
<td>A1430</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00 - 0.08</td>
<td>-21.2 ± 0.1</td>
<td>-1.20 ± 0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>A1553</td>
<td>0.17</td>
<td>0.25</td>
<td>0.18 - 0.32</td>
<td>-21.9 ± 0.1</td>
<td>-1.20 ± 0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>A1576</td>
<td>0.30</td>
<td>0.25</td>
<td>0.14 - 0.36</td>
<td>-22.0 ± 0.3</td>
<td>-1.20 ± 0.20</td>
<td>0.14</td>
</tr>
<tr>
<td>A1650</td>
<td>0.08</td>
<td>0.40</td>
<td>0.37 - 0.43</td>
<td>-22.7 ± 0.5</td>
<td>-1.80 ± 0.11</td>
<td>0.21</td>
</tr>
<tr>
<td>A1682</td>
<td>0.23</td>
<td>0.21</td>
<td>0.10 - 0.32</td>
<td>-22.5 ± 0.2</td>
<td>-1.50 ± 0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>A1689</td>
<td>0.18</td>
<td>0.32</td>
<td>0.28 - 0.37</td>
<td>-22.3 ± 0.3</td>
<td>-1.10 ± 0.19</td>
<td>0.39</td>
</tr>
<tr>
<td>A1704</td>
<td>0.22</td>
<td>0.37</td>
<td>0.26 - 0.49</td>
<td>-22.6 ± 0.2</td>
<td>-1.40 ± 0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>A1763</td>
<td>0.19</td>
<td>0.12</td>
<td>0.05 - 0.19</td>
<td>-21.6 ± 0.2</td>
<td>-1.40 ± 0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>A1774</td>
<td>0.17</td>
<td>0.08</td>
<td>0.02 - 0.14</td>
<td>-21.6 ± 0.1</td>
<td>-1.30 ± 0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>A1835</td>
<td>0.25</td>
<td>0.30</td>
<td>0.24 - 0.37</td>
<td>-21.7 ± 0.4</td>
<td>-0.80 ± 0.40</td>
<td>1.05</td>
</tr>
<tr>
<td>A1914</td>
<td>0.17</td>
<td>0.30</td>
<td>0.24 - 0.36</td>
<td>-22.7 ± 0.2</td>
<td>-1.60 ± 0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>A1942</td>
<td>0.22</td>
<td>0.27</td>
<td>0.12 - 0.44</td>
<td>-22.8 ± 0.4</td>
<td>-1.50 ± 0.12</td>
<td>0.19</td>
</tr>
<tr>
<td>A1995</td>
<td>0.32</td>
<td>0.19</td>
<td>0.01 - 0.36</td>
<td>-21.6 ± 0.5</td>
<td>-1.00 ± 0.47</td>
<td>0.52</td>
</tr>
<tr>
<td>A2029</td>
<td>0.08</td>
<td>0.32</td>
<td>0.29 - 0.35</td>
<td>-22.4 ± 0.2</td>
<td>-1.40 ± 0.07</td>
<td>0.29</td>
</tr>
<tr>
<td>A2034</td>
<td>0.11</td>
<td>0.29</td>
<td>0.23 - 0.34</td>
<td>-22.3 ± 0.3</td>
<td>-1.50 ± 0.10</td>
<td>0.22</td>
</tr>
<tr>
<td>A2142</td>
<td>0.09</td>
<td>0.28</td>
<td>0.23 - 0.33</td>
<td>-22.7 ± 0.2</td>
<td>-1.40 ± 0.07</td>
<td>0.24</td>
</tr>
<tr>
<td>A2219</td>
<td>0.23</td>
<td>0.27</td>
<td>0.19 - 0.34</td>
<td>-22.7 ± 0.4</td>
<td>-1.40 ± 0.19</td>
<td>0.34</td>
</tr>
<tr>
<td>A2244</td>
<td>0.10</td>
<td>0.29</td>
<td>0.25 - 0.33</td>
<td>-22.4 ± 0.2</td>
<td>-1.60 ± 0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>A2255</td>
<td>0.08</td>
<td>0.31</td>
<td>0.26 - 0.35</td>
<td>-23.3 ± 0.4</td>
<td>-1.60 ± 0.08</td>
<td>0.30</td>
</tr>
<tr>
<td>A2259</td>
<td>0.16</td>
<td>0.18</td>
<td>0.12 - 0.24</td>
<td>-22.2 ± 0.0</td>
<td>-1.40 ± 0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>A2670</td>
<td>0.08</td>
<td>0.25</td>
<td>0.18 - 0.33</td>
<td>-22.6 ± 0.6</td>
<td>-1.60 ± 0.15</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 27 and 28 show the plots of metallicity versus M_r^*, the "knee" of the luminosity functions, for MDM and SDSS data respectively. The figures show a weak trend of increasing brightness for M_r^* for clusters with increasing metallicity. Since the sizes of the error-bars are relatively large, there is no strong support for the trend. The best fits are used as indicators for a possible trend.

![Figure 27 M_r^* versus Metallicity (MDM data)](image)

When the data are binned around the median value of metallicity range (0.31 Z_\odot for MDM and 0.26 Z_\odot for SDSS), and compared with low metallicity clusters, on average, the higher metallicity clusters are found to be 0.2 magnitudes brighter for MDM data and 0.4 magnitudes brighter for SDSS data.

The parameters derived from the luminosity functions, M_r^*, are α, depend on the availability of the data at the faint end of the functions. For distant clusters the amount of data at the faint end of the luminosity functions is not sufficient to compute the faint-end slope of the functions with certainty. The faint-end slope also plays a role in determining the value for M_r^*, which is illustrated in Figure 29.
Therefore, uncertainty in measuring α induces uncertainty in the measurement of M_α^\star. If only nearby clusters are used, α and M_α^\star can be determined with improved certainty. For SDSS data, cluster with redshift ≤ 0.2 provide us with data for the faint-end slope at least up to 3 magnitudes beyond M_α^\star. This results in better measurements of α and hence M_α^\star. Figure 30 is a plot of metallicity versus M_α^\star for cluster with redshift ≤ 0.2 for SDSS data. Some of the MDM observations were done on non-photometric nights. This depleted the number of galaxies towards the faint-end of the luminosity functions. Therefore, a redshift constraint on MDM data does not lead to better measurements of M_α^\star. With redshift constraint on the SDSS data, when the data are binned around the median value of new metallicity range ($0.29 \ Z_\odot$), and compared with low metallicity clusters, on an average, the higher metallicity clusters are found to be 0.5 magnitudes brighter. This is a small improvement in the contrast between M_α^\star for low-metallicity clusters and M_α^\star for high-metallicity clusters.
Figure 31 is a plot of α versus metallicity. A week trend can be expected due to the trends between α and M_r^* (Figure 29) and, M_r^* and metallicity (Figure 30). As discussed in the introduction, it has been suggested that decreasing galactic mass can lead to increasing outflow of metals from the galaxies due to that fact that lower-mass (faint) galaxies have shallower potential wells. If such a correlation exists, a relation between number of faint galaxies and ICM metallicity can be expected. Bigger values of $|\alpha|$ correspond to greater number of faint galaxies. Figure 31 is in qualitative agreement with this. This result, if confirmed with improved data, implies that supernovae outflows could be one of the dominant mechanisms for ICM enrichment. Bigger values of $|\alpha|$ also corresponds to greater densities. Greater densities make ram pressure stripping and galaxy-galaxy interactions more likely. Therefore, the results also support these mechanisms.
As discussed in the introduction, if ram-pressure stripping is a dominant mechanism for transferring metallicity to the ICM from the ISM, clusters that are further away would have had less events of such transfer. This is because it would take time for cluster galaxies to plunge through the primordial ICM. If this is the case, a relation between redshift and ICM metallicity can be expected. Figure 32 is a plot of ICM metallicity in solar units versus redshift. The results are in agreement with Mushotzky & Loewenstein (1997) and Horner (2001) showing no correlation of metallicity with redshift. Better metallicity measurements are needed to reach a definitive conclusion.

9.3 Future Work

This project provides marginal evidence of a connection between the metallicity of the intra-cluster and the galaxies within the clusters. The errors in the metallicity and M_\star^* measurements make it difficult to claim with certainty that there is a
Figure 31 α versus Metallicity for nearby clusters (SDSS archive)

The metallicity error-bars are from the model fitting to the X-ray spectra that come from the ASCA telescope. The spectral resolution ($E/\Delta E$) of ASCA is 50 at 6 keV. New generation X-ray telescope Chandra, has spectral resolution of 60-1000 for an energy range of 0.5 -10 keV. Therefore, Chandra can provide metallicity measurements with much smaller errors.

The ICM metallicity varies from region to region in a given cluster (De Grandi & Molendi 2001; White 2000). The metallicity used for this project is found using all the X-ray light received from the clusters. This smoothes out any gradient in the metallicity that could exist. It also induces spread in the spectral line resulting into larger errors in metallicity measurements. The spatial resolution of the Chandra telescope is less than 1" compared to 20% photons within 1' for ASCA. Such higher resolution of can provide better measurements for the metallicity gradients.

The error in M_L^* measurements are from the Schechter function fits to the luminosity functions. χ^2/ν values for our fits are small providing us with $\sim 10\%$
probability of getting smaller χ^2/ν values. Therefore, the errors in M_r^* and α primarily depend on the number of field galaxies in each magnitude bin. If a sample of nearby clusters with redshifts of individual galaxies is observed, the cluster members can easily be identified. In such case, there would be no need to subtract the field galaxies, and the error induced by the field galaxies can be eliminated. This can result in much smaller errors in the M_r^* and α measurement.
APPENDIX

ABSOLUTE MAGNITUDE

A difference of 5 magnitudes equals to a factor of 100 in apparent brightness. The magnitude scale is logarithmic and therefore,

\[\frac{m - 5}{m} = \frac{\log(100 \times f)}{\log(f)} \]

where \(m \) is the apparent magnitude and \(f \) is the observed flux from an object. The above equation can be rewritten as

\[m = -2.5 \log(f) \]

Flux \((f) \) depends on the luminosity \((L) \) and the distance \((r) \) to the object.

\[f = \frac{L}{4\pi r^2} \]

The distance modulus which is the difference between the absolute magnitude \((M) \) and the apparent magnitude \((m) \) for an object would depend on the flux received from the object \((f_m) \), and the flux that would be received \((f_M) \) if the object were at a distance of 10 parsec, since the absolute magnitude is the magnitude of an object if it were at the distance of 10 parsec.

\[M - m = 2.5 \log\left(\frac{f_m}{f_M}\right) \]

which translates to

\[M - m = 5 \log(10 \text{ pc}/r) \]

\(M - m \) is called the distance modulus.
For an object in the Hubble flow, the luminosity distance, \(r \), is
\[
 r \simeq (1 + z) \frac{c}{H_0} \left(z - \frac{1 + q_0}{2} z^2 \right),
\]
where \(H \) is the Hubble constant, \(z \) is the redshift and \(q_0 = 0.5 \Lambda_m - \Lambda_k \). \(\Lambda_m \) and \(\Lambda_k \) are the density parameters (Peacock 1999). Substituting the \(r \) above into \(M - m \) gives us
\[
 M - m \simeq 5 \log \left(\frac{0.1 \text{ pc}}{(1 + z) \frac{c}{H_0} (z - \frac{1 + q_0}{2} z^2)} \right).
\]
This can be rewritten as,
\[
 M - m \simeq 5 \log \left(\frac{100 \ h \times 10 \ \text{pc}}{c (1 + z)(z - 0.1875 z^2)} \right),
\]
with 100 \(h = H_0 \) in the units of Km/s/Mpc, \(\Lambda_m = 0.25 \) and \(\Lambda_k = 0.75 \) (Bahcall 2000). This can be simplified to,
\[
 M - m \simeq 5 \log(100 \times 10 \ \text{pc/c}) + 5 \log(h) - 5 \log(z) - 5 \log(1 + z) - 5 \log(1 - 0.1875 z),
\]
which reduces to
\[
 M - m \simeq -42.385 + 5 \log(h) - 5 \log(z) - 5 \log(1 + z) - 5 \log(1 - 0.1875 z)
\]
for \(c = 2.998 \times 10^8 \) Km/s.

The above distance modulus is bolometric and assumes no galactic extinction. For a given bandpass \((i)\), after correcting for the extinction \((A_i)\), the absolute magnitude becomes,
\[
 M_i \simeq m_i - 42.385 + 5 \log(h) - 5 \log(z) - 5 \log(1 + z) - 5 \log(1 - 0.1875 z) - A_i,
\]
or simply,
\[
 M_i = m_i - \mu - A_i,
\]
with
\[
 \mu \simeq 42.385 - 5 \log(h) + 5 \log(z) + 5 \log(1 + z) + 5 \log(1 - 0.1875 z).
BIBLIOGRAPHY

Horner, D., PhD Thesis 2001

Wolf, M. 1906, Astronomische Nachrichten, 170, 211

Zwicky, F., 1957, Morphological Astronomy (Berlin: Springer)
VITA

Graduate College
University of Nevada, Las Vegas

Sandip G. Thanki

Local Address:
9225 West Charleston Blvd., Apartment 2090
Las Vegas, NV 89117

Degrees:
Bachelor of Science, Physics and Electrical Engineering, 1997
Widener University, PA

Master of Science, Physics, 1999
University of Nevada Las Vegas, NV

Dissertation Title: X-ray Metallicities and Luminosity Functions of Galaxy Clusters

Dissertation Committee:
Chairperson, Dr. George Rhee, Ph. D.
Committee Member, Dr. Stephen Lepp, Ph. D.
Committee Member, Dr. Lon Spight, Ph. D.
Graduate Faculty Representative, Dr. David Emerson, Ph. D.