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ABSTRACT

Modeling of the Protective Oxide Layer Growth in Non-isothermal Lead-Alloys
Coolant Systems

by

Taide Tan

Dr. Yitung Chen, Examination Committee Chair 
Associate Professor of Mechanical Engineering 

University o f Nevada, Las Vegas

Lead alloys have been determined to be potential coolant candidates in advanced 

reactors and accelerator driven systems (ADS) because o f their favorable thermal- 

physical and chemical properties. However, the corrosiveness of the lead-alloys is a 

critical obstacle and challenge for safe applications in reactors and ADS. Furthermore, 

the selective dissolution of materials into lead alloys would destroy the structure and 

contaminate the coolant rapidly, and the deposition o f corrosion product may lead to 

severe flow-path restrictions. One o f the effective ways to protect the material is to form 

and maintain a protective oxide film along the structural material surface by active 

oxygen control technology.

The goal of this research is to provide basic understanding o f the protective oxide 

layer behaviors and to develop oxide layer growth models o f steels in non-isothermal 

lead-alloys coolant systems in order to provide useful information for active oxygen 

control technique.

I l l
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First, a theoretical kinetic model based on the boundary layer theory was developed to 

investigate the corrosion/precipitation in non-isothermal lead alloy coolant systems. The 

analytical expressions o f the local corrosion/precipitation rate and the bulk concentration 

o f the corrosion products were obtained by considering a turbulent core region and a 

laminar sub-layer. Numerical solutions were also accomplished together with considering 

the effect of the eddy mass diffusivity in lead alloy systems. Second, a diffusion 

controlling oxide layer growth model with scale removal was built in oxygen containing 

lead alloys. Scale removal effect was considered and the formation mechanism of duplex 

oxide layer structure was investigated in the model. Finally, the oxide layer growth 

process, together with the transport o f oxygen and ionic metal, was studied at a 

mesoscopic level based on an improved stochastic cellar automaton (CA) model.

Results from the developed models were compared with the available experimental 

data and previous work, and good agreement was attained. Moreover, the extended 

applications of the developed models were analyzed.

IV
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Lead and LBE

Lead bismuth eutectic (LBE) is an efficient heat transfer media in nuclear power 

systems because of its high thermal conductivity, high heat capacity and other favorable 

thermal-physical properties such as low melting point, wide margin to boiling, high 

boiling points and low vapor pressure. Moreover, LBE is chemically inert and does not 

react violently with air and water [1-4]. LBE offers the advantage o f a much lower 

melting point (123.5°C vs. 327°C) compared to pure lead. Therefore, LBE, 

thermodynamically near the ideal solution, has been determined from previous 

experimental studies to be a potential coolant candidate in advanced nuclear reactors and 

accelerator driven systems (ADS) [1, 5, 6].

However, lead and lead alloys are very corrosive to many structural materials if  the 

materials are exposed to lead or lead alloys directly. The corrosion results in significant 

wall thinning and/or loss o f mechanical integrity [3, 4, 7]. More seriously, the selective 

dissolution of materials into lead alloys would destroy the structure rapidly and 

contaminate the lead alloys coolant. Furthermore, the subsequent deposition of corrosion 

product may lead to severe flow-path restrictions that can eventually block the flow. 

Therefore, corrosion and precipitation in lead and lead alloys coolant systems are 

becoming the most critical obstacle and challenge for safe application of lead and lead

1
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alloys as ideal nuclear coolant candidates for ADS and advanced reactors, especially at 

medium and high temperature conditions [2, 7-9]. Hence, full knowledge of the important 

characteristics in flow-induced and/or enhanced corrosion is necessary in proper system 

design and safe operations of lead and lead alloys (mainly LBE) coolant systems.

Full knowledge of the important characteristics o f the flow-induced and/or enhanced 

corrosion is essential in the proper design and safe operation of LBE heat transfer 

circuits. Currently, a lack of systematic understanding of the scientific basis is l im i t in g  

many R&D efforts to testing and impeding the development o f material and technologies. 

Several efforts are underway to remedy this deficiency, including the preparation o f an 

LBE m aterials handbook by an international expert group. [10]

u
O

<u

4 - 1

cd

G
4>

400
327

300 271

200

100

0
40 6020 80 1000

P b  m a s s . %  B i

Figure 1. Pb-Bi phase diagram obtained by IPPE, Obninsk, Russia, (or is Pb, /? is

PbjBi^ and /  is Bi.) [11]
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The phase diagram of lead bismuth alloy is shown in Figure 1, which was updated by 

the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia, for the 

purpose of using lead-bismuth alloy as a nuclear coolant [11]. It indicates that the eutectic 

point is 123.5°C at 44.8 wt% of lead.

All heavy liquid metals (HLM) are believed to be Newtonian liquids. [12, 13] Some o f the physical 
properties o f Lead and LBE are available from the previous work [10,12, and 13]. As shown in the phase 
diagram (Figure 1) and

Table 1, the pure lead melting point is higher than that of LBE. A higher operation 

temperature is needed if liquid lead is used as a nuclear coolant. As will be discussed 

later, a higher temperature is difficult to manipulate because o f the greatly increased 

corrosion rate, and many other consequent difficulties.

Table 1 Melting and Boiling Points of Lead and LBE

Melting Point(°C) Boiling Point(°C)

Lead 327 1725

LBE 123.5 1670

Density (p) is an important physical property of molten lead and LBE as a nuclear 

coolant. From the previous study [10, 13], the linear regressions of the lead and LBE 

density values presented in Figure 2 yields

where are constants which can be found from

(1- 1)

Table 2. The densities o f lead and LBE decrease when the temperature increases.
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Figure 2. Density o f the molten lead and LBE as a function o f temperature at the normal

pressure [13].

Table 2 The Constants for Calculating Density and Viscosity

A) ( kg/ n̂ ) ^ (k g /K  ni) A  ( 10'"̂  kg/m s) E( J/ n®l )
Lead 11.367 1.1944 4.55 8. 888
LBE 11.096 1.3236 4.94 6. 270

The temperature dependence o f the dynamic viscosity (p) of HLM is usually 

described by an Arrhenius type formula [13]:

X n [ P a . ; r ]  = ex p (jE /.R Ji;[]) (1-2)

where 7?̂  = 8.314 is the gas constant, is a coefficient and E is the

activation energy of motion of viscous flow. A reliable choice of an empirical equation to 

describe the temperature dependence o f the dynamic viscosity o f molten lead and LBE 

can be obtained by fitting the previous data as show in Figure 3. The fitting data for 

A and E are reported in Ref. [13] which are listed in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.

L yon.1932 
o Kulateladze 1959 
A Bonilla 1964 
■ Holman 1968 

Hofmann 1970 
$  Kaplun 1979 

Lucas 1984 
lida 1988
IAEA TECDOC-1289 2002 

O SmHhellsHb2004
Pb recommended 
LBE recommended

Pb-Bi

300 500 700
Temperature (K)

900 100

Figure 3. Dynamic viscosity of molten lead and LBE at the normal pressure as a function

of temperature. [13]

It is shown that pure liquid lead has a larger dynamic viscosity than LBE at the same 

temperature, and especially at lower temperatures. Both dynamic viscosities decrease 

with increasing temperature. At a relatively lower temperature, the dynamic viscosities 

decrease much faster for both lead and LBE with the temperature increases. The 

kinematic viscosity v  is calculated ffomu = / / / / ? .  The Reynolds number of a flow in a 

pipe is expressed by Re = ED / u . The calculated kinematic viscosities o f molten lead and 

LBE from Eqs. (1-1) and (1-2) are compared with the experimental data in Ref [14]. The 

comparison shown in Figure 4 depicts that molten lead has a larger kinematic viscosity 

than LBE, and the calculated results for LBE agree very well with the experimental 

results reported by IPPE [14]. Since a smaller kinematic viscosity results in a higher
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Reynolds number, the decreasing kinematic viscosity with increasing temperature results 

in higher corrosion rates in the mass diffusion controlled situations. [10]

6

E
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LBE by IPPE
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Figure 4. Comparison of the kinematic viscosities of molten lead, LBE and experimental

data.

The molecular diffusivities of iron in molten lead and LBE are assumed to be equal 

[15] and can be approximated from an equation developed by Robertson [16]

D^[m^  I s ] - A . 9 x \ Q  ’ exp( Q
R T [ K ] ) (1-3)

where g  = 44,100 + 6,300 J  / mo/e . Thus the molecular diffusivity is a function of 

temperature as well, and the calculated molecular diffusivities are in a range between the 

upper limit and the lower limit according to the manipulating temperature, which is 

shown in Figure 5. Obviously, the mass diffusivities of molten lead and LBE increase 

with increase o f temperature. A higher mass diffusivity results in a higher diffusing
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efficiency for the corrosion products, therefore, causes a higher corrosion rate in the mass 

diffusion controlled corrosion, too. [10]
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Figure 5. The mass diffusivity as a function of temperature.

1.2 Corrosion on Stainless Steel by Lead and LBE 

LBE corrosion has long been recognized as a leading obstacle to its nuclear 

applications. The corrosion of stainless steel could be very severe in a flowing LBE 

environment, especially at a high temperature. For example, experimental tests show that 

the local liquid metal corrosion depth could reach 220 pm after 3000 h of exposure time, 

for an austenitic steel specimen 316L (“L” stands for the low carbon version of steel), at 

550 °C, with flowing velocity 1.9 m/s, as shown in Figure 6 [17].

Besides the global corrosion, severe intergranular attack was also observed for 

American Iron and Steel Institute (AISI) 316 steel in liquid lead. [18] Corrosion of steels 

in pure liquid Pb or LBE occurs primarily through dissolution of steel components into
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the liquid metals/alloys. The main driving force for liquid metal corrosion is the chemical 

potential for dissolution of all solid surfaces in contact with liquid metals [10, 19]. More 

seriously, the compositional and microstructural changes due to selective dissolution and 

intergranular corrosion can lead to material failures and destroy the structure rapidly, 

which may be difficult to observe [7, 20, 21]. It is necessary to review and understand the 

mechanisms o f the LBE corrosion and the dependence o f the LBE corrosion.

 ̂ I"* '

316 L
_____ I

SO iun

Figure 6. The microstructure of severe corrosion in 3 16L steel [17].

1.2.1 Mechanisms of Liquid Metal/alloy Corrosion 

The corrosion of steels in a liquid metal environment is divided into uniform 

corrosion and local corrosion, according to their damages to the structure (Figure 7) [22].

In a uniform corrosion (Figure 7 a), the corrosive liquid metal corrodes the material 

uniformly along the surface of the solid phase structure material. Therefore, a uniform 

corrosion is easy to observe, since the damage is o f a same thickness at any point on the 

surface. However, in a local corrosion (Figure 7 b-f), the liquid metal penetrates into the 

solid material along the grain boundaries and some other crystal structural defects which

8
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reach the surfaee of the strueture. Figure 7 b, c, and d illustrates the penetration of liquid 

metal along the specific crystallographic directions, along the grain boundaries, and along 

vacaneies and pores, respeetively. The penetration o f the eorrosive liquid metal will eause 

deep eorrosions, and the corrosions will develop along the previously formed defects, 

such as in Figure 7 e and Figure 7 f. The loeal corrosion can cause very severe damage to 

the struetural material, and it is more difficult to observe.

— —Liqmd M etal- -Liquid M etal- — — —

— ^L iq u id  Ltetal- —

— —Liqm dLIetal-

— ^—Liquid M etal- —

•Liquid M etal- —

Figure 7. Uniform corrosion and local corrosion.

The quick diffusion o f LBE along the boundaries and consequent loeal corrosion on 

stainless steels has been demonstrated and reported from experiments by Glasbrenner. 

LBE can reach to over 50 pm inside the material of 316L steel after 5000 hours of 

exposure, while, in spite of that, uniform corrosion occurs at the same time (Figure 8). 

[23]
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Figure 8. Diffusion of LBE along the grain boundaries of 316L steel after 5000 h of

exposure time. [23]

The flow eonditions affect corrosion to a great extent, especially for the corrosion in a 

liquid metal environment at a high temperature. The flowing velocity of liquid metals 

accelerates corrosion on the solid structural material, which is called flow accelerated 

corrosion (FAC) [24]. At a very low flow velocity which is close to zero, natural 

convection alone is involved in mass transfer and presents no mechanical flow effects. 

For a moderate velocity flow, mass transfer is accelerated by forced convection, and 

mechanical flow effect is still assumed to be absent. Under the influence of a high 

velocity, especially in a turbulent flow, mass transfer increases greatly, and mechanical 

flow effect becomes important. The oxide layer, and even the metal structural material, 

may suffer mechanically induced damage. [25]

When liquid metal flows over solid metal/alloy structural surfaces with a moderate 

velocity, corrosion occurs by direct dissolution, and the corrosion mechanism can be

10
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divided into two steps: (i) the dissolution reaction at the surface of the solid strueture, and 

(ii) the mass transport by convection and diffusion of the dissolved metal from the solid- 

liquid interface to the bulk flow. A number o f mechanisms o f combined actions of flow 

and corrosion results in four main types o f FAC (Figure 9 a-d): mass transport-controlled 

corrosion, phase transport-controlled corrosion, erosion-corrosion and cavitation- 

corrosion [15, 26].

Convective Diffiision

(a) Mass Tianq)Oii

AggiesÉve Particles or Intense 
Tmtulence of Liqind

 WÉ ----± _ ---- —

y / / / / / / / / /
(c) Erosion Corrosion

Aggressive Liquid Phase

X
o  o

(b) Plrase Transport

Cavitation Bubbles

o
c=>“L  -

y / / / / / / / / . /
(d) Cavitation Corrosion

Figure 9. Representation o f the four main types o f flow affected corrosion.

When the flow velocity is low, the combined mass transport rate o f convection and 

diffusion is less than the dissolution rate of the solid metal into the liquid metal (Figure 9 

a). In such cases, the corrosion rate is controlled completely or partially by the combined 

mass transfer rate. And, the corrosion product concentration at the solid/liquid interface

11
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equals the saturation or equilibrium eoncentration. Phase transport-controlled corrosion 

(Figure 9 b) was manifested during the transport of multi-phase systems, sueh as water 

droplets containing hydrocarbon with dissolved corrosive components. If  these droplets 

contact the metal surface, they adhere to and corrode the surfaee. For multi-phase flows 

with aggressive particles or intense turbulence, the oxide layer can be stripped and worn 

away and erosion corrosions occur. [10, 26] Cavitation corrosion is the mechanical 

damage in eavitating liquids, which is caused by collapsing cavitation bubbles.

The main interactions between a flowing liquid and a solid surfaee are synthesized in 

Figure 10. In single-phase flow (Figure 10 a, b), shear stress and pressure variation 

dominate in various kinds o f interaction o f a flowing liquid with a solid wall. A relatively 

high roughness of the solid surface, a high flowing velocity, and a high turbulence all 

may cause the increase of shear stress. A high shear stress can lead to the onset of 

erosion-corrosion. In disturbed flow and in flows on a surface with the roughness greater 

than the thickness o f the laminar sub-layer, pressure variations reach the surfaee and may 

produce mechanical damage. On the liquid/solid surface, sueh pressure variations are 

finally converted into local shear stresses, which in turn add to the overall shear stresses 

discussed previously. In a flow with solid particles, interactions between particles and 

the solid/liquid surface will cause transports o f energy and deformations of the surface. 

The liquid or the aggressive particles are thrown against the surfaee of solid metals, 

which results in a higher wear rate. Local mechanical damage takes place as another kind 

of erosion (as shown in Figure 10 c). In the areas where the flow changes its direction 

sharply, sueh as sudden expansions or elbows, this erosion takes place more frequently. 

In the eavitation-corrosion (as shown in Figure 10 d), the eavitating bubbles collapse on

12
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solid metal surfaces, and create micro-jets o f the liquid metal to the solid metal surface, 

producing high local pressure and destroying the surface. This behavior can lead to brief 

high stress in the solid metal, causing localized corrosion fatigue damage and 

environmentally assisted micro-fractures o f the solid metal. [26] For the mass transfer 

and heat transfer, convective diffusion and convective heat transfer dominate 

respectively.

Momentum Transport
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/ I

I I
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(d) Liquid Gas

I 7\
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Figure 10. Interactions o f a flowing liquid with a solid boundary.

From a physico-chemical point of view, corrosion reactions are heterogeneous 

reactions in which the reactants have to be transported towards the metal surface and the

13
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corrosion products are transported away. Mass transfer is inherently correlated with 

liquid flow. [26] Basically, the mass transfer in the corrosion process of metal/alloys in 

liquid metal media includes: the molecular diffusion of metallic ions from the structural 

material to its surface with liquid as a result of a concentration gradient, the convection or 

diffusion o f oxygen in the liquid media, the inward molecular transport o f oxygen inside 

the material and the oxide layer, and transport of corrosion products from surfaces to bulk 

liquid metals.

The diffusion of metal and the transport of oxygen in the oxide layer and metal/alloys 

are very complex. The diffusion of iron in oxide layer can be explained by point defect 

theory [28], and is influenced by the oxygen pressure and temperature and point defects. 

The transport mechanism of oxygen in oxide layer is not well understood at present. The 

oxygen self-diffusion coefficient in oxide layer is very small. However, there must be 

some fast paths for oxygen to arrive at the inner layer at sufficiently high rates to account 

for the observed inner oxide growth. [27]

According to the oxygen control technique, the corrosion of structural materials, such 

as steel, in molten LEE, occurs via dissolution at very low oxygen concentrations, and 

through surface oxidation and reduction o f surface oxides at higher oxygen 

concentrations. No matter which way the corrosion proceeds, it is usually sufficiently fast 

and the corrosion is limited by the mass transfer process. [21]

Corrosion products dissolved into LEE at surfaces are transported in LEE for 

sustained corrosion or stops when the concentrations reach the saturation limits. In a 

static isothermal system, the transport process is mostly diffusion that depends on the 

corrosion product concentration gradient, and the corrosion product diffusion coefficient

14
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in LBE. The corrosion process stops when the liquid is saturated with the corrosion 

products. Since the diffusion coefficients in liquids are very small, the resulting reaction 

rate in a stagnant solution is very small. When the dissolution rate is less than the 

diffusion rate, diffusion is fast enough to take all the dissolved species away, thus the 

corrosion rate is determined by the dissolution rate. When the dissolution rate is greater 

than the diffusion rate, the concentration at the interface is always at saturation and the 

corrosion rate is determined by the diffusion rate. In liquid metal systems there is good 

evidence that both cases which were described above occur [29], depending on the 

solution and solute. Note that the diffusion coefficient is a function o f temperature.

The situation is quite different in a flowing system. Corrosion products can be 

transported by both diffusion and convection. The mass transport rate is increased 

considerably since the convective mass transfer is much more efficient than the molecular 

diffusion. Moreover, in a non-isothermal flowing system, as analyzed earlier, the flowing 

liquid takes corrosion products from dissolution locations to other places, where the 

corrosion products may deposit.

1.2.2 Factors Affecting Structural Materials Corrosion in LBE

Liquid metal corrosion process may involve the following four processes [22]:

(1) dissolution o f the solid materials into the liquid metal;

(2) thermal and concentration gradients assisted mass transfer;

(3) redistribution of the interstitial impurities between the solid and liquid metals; and

(4) diffusion penetration of liquid metals into solid metals with formation o f solid 

solutions or new phases.

15
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The operating conditions determine which process dominates. Factors affecting one 

o f the above processes should affect the corrosion rate. These factors are divided into 

three groups [22]; corrosion, metallurgical, and technological.

The corrosion factors include the chemical composition of the liquid metal and its 

impurity contents, the flowing conditions (the pressure and the flow velocity), the 

temperature and its profile, the exposure time, etc.

The metallurgical factors include the purity of the solid metals, alloying, and the 

structural state and microstructure of solid materials.

The technological factors include the stress state, formation of new phases associated 

with machining, welding, assembling o f structures, and the loading conditions [10, 22].

The main factors affecting the corrosion process are analyzed below.

(a) Flow velocity

The flow velocity is the most important factor to influence corrosion among all o f the 

external factors [30]. The mechanism of the flow velocity affecting the corrosion is 

analyzed previously. As a summarization, the effects o f the flow velocity for single-phase 

flow are as follows [10, 15, 31] (Figure 11):

(a.l) At low velocities, the corrosion is controlled or partially controlled by mass 

transfer. In such cases, the thickness o f the laminar mass transfer layer becomes thinner 

with increasing velocity and, as a result, the corrosion rate increases.

(a.2) When the velocity exceeds a critical value, the mass transfer rate becomes high 

enough to transport all the corrosion products away from the interface. Then the
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corrosion rate is determined by the dissolution/reaction rate, and independent o f the flow 

velocity. The corrosion is activation controlled.

(a.3) For very high velocities, the high shear stress at the interface can strip the 

protective film on the surface o f the structure. Some cavities appear at the interface and 

the corrosion rate increases sharply with the flow velocity. For heavy liquid metals/alloys 

such as LBE, erosion-corrosion is likely to occur at moderately high velocities due to 

their high densities.
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Figure 11. Velocity effects on the corrosion rate. [31]

In practical nuclear coolant system designs, conditions (2) and (3) should be avoided 

due to rapid and nonuniform corrosion and erosion-corrosion. Therefore, most of the 

corrosion studies performed for liquid metals/alloys are in the mass transfer controlled 

regime.
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(b) Temperature

The dissolution/chemical reaction rates, the corrosion product diffusion coefficients 

in solid and liquid alloys, and the liquid metal viscosity are all functions o f temperature. 

Increasing temperature results in higher dissolution rates, higher solubility, higher 

diffusion coefficients, and smaller viscosities. These changes all lead to higher corrosion 

rates. A sustained corrosion process can only occur in a non-isothermal system such as 

nuclear coolant systems [32]. In a closed loop system, without temperature gradients, 

species concentration would eventually reach a homogeneous distribution and no further 

corrosion would occur. With temperature gradients, steel elements will be dissolved from 

the hot legs, transported to locations with lower temperatures, and precipitate. As the 

temperature gradient increases, attacks in hot sections o f loops become more severe [30]. 

Precipitation in the cold areas can accelerate corrosion in the hot sections [7]. Even for 

loops having the same maximum temperature and other hydraulic parameters, the 

corrosion rates can be different if  the loops are operated under different stream-wise 

temperature profiles [33].

(c) Solubility of metals in Bi, Pb, and LBE

As analyzed previously, the first step o f the corrosion process is the dissolution o f the 

structural materials to the liquid metal media. The dissolution rate depends on the liquid 

media, the ratio of the surface area o f the solid metal to the volume of the liquid metal, 

the conditions of the surface, the content of interstitial impurities, such as oxygen and 

nitrogen in the liquid metal/alloy, and the compositions o f the solid materials [15]. As it 

was mentioned previously, the corrosion on steels in molten LBE occurs via dissolution 

at very low oxygen concentrations, and through surface oxidation and reduction of
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surface oxides at higher oxygen concentrations. The corrosion is controlled by the mass 

transfer process since the reaction usually sufficiently fast. Thus, the corrosion products’ 

concentrations are always at their saturated or equilibrium levels at the solid-liquid 

interface. [21, 34, 35, 36] Therefore, solubility o f iron, chromium, and nickel in molten 

lead and LBE plays an important role in corrosion phenomena when using such liquid

metals/alloys as nuclear coolants. Generally, the saturation solubility (c^) of a metal in 

LBE, lead and bismuth can be written as:

log cjw ppm ] = A, -t- 5j I T{K~\ (1-4)

where and 5 j  are constant coefficients, and the values for Fe, Cr, and Ni in liquid LBE, and lead are 
given in

Table 3. [10,37,38].

Table 3 Solubility Coefficients of Ni, Fe, and Cr in LBE [37] and Pb [38] (Temperatures

are in the Unit o f Kelvin)

Fe Cr Ni
Ai Bi Al Bi

Lead (673<T<873) 4.34 -3450
(873<T<1020) 5.82 -4860
LBE 6.10 -4380 5.08 -2280 7.53 -843

The comparison o f solubility o f Fe, Cr and Ni in LBE and Pb is shown in Figure 12. 

The solubility is compared with the experimental data o f solubility o f Fe in LBE as well. 

The comparison shows the empirical equation agrees very well with the experimental 

data from Ref. [38] All the solubility increases quickly with an increasing temperature. 

The solubility of Ni in LBE is much higher than that of Fe and Cr, indicating that Ni 

content in steels used for containments o f LBE needs to be reduced or protected to
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increase the corrosion resistance. The solubility of a metal in liquid lead-bismuth alloys 

depends on the compositions o f the liquid alloy. The Fe solubility in pure liquid lead is 

lower than the Fe solubility in LBE, indicating that the pure liquid lead is less corrosive 

than LBE.
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Figure 12. Comparison o f solubility o f Fe in LBE and Pb, solubility o f Cr and Ni in LBE, 

with the experimental data [38] of solubility of Fe in LBE.

1.3 Oxidation of Stainless Steels in Lead/LBE 

The oxidation o f stainless steel in LBE or lead alloys, which is a high temperature 

chemical reaction problem, is very complex. Knowledge and understanding o f the basic 

principles and mechanisms o f oxidation o f stainless steel are essential to analyze any lead 

or lead alloys coolant systems in which lead or lead alloys is the working medium. In
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order to understand the oxidation mechanism, a simpler case with pure iron is analyzed 

first. In the oxidation process for pure iron, the dissolution of oxygen into the alloys is 

involved, together with the ionization of iron, migration of iron ions and electrons 

through the formed oxide film. Moreover, the chemical reactions between metal atoms 

and atomic oxygen take place on the oxide/metal interface, on the oxide/liquid interface 

and inside the oxide simultaneously, in high temperature lead or lead alloy flows. The 

chemical and chemical thermodynamics basis, oxide layer structure, and the oxide layer 

forming mechanism will be discussed one by one. The oxide layer structure of stainless 

steel depends on the material composition, the oxygen concentration, the flow 

temperature and other flow conditions.

1.3.1 Chemical and Chemical Thermodynamics Basis 

The oxygen in high temperature metal flow is in atomic phase instead o f molecular 

phase. [39] The dissolution of oxygen into LBE can be expressed as the following 

reaction,

^  igas) < ^0{alloy) (1-5)

During the oxidation, the chemical reactions are much faster than mass transfer. Thus 

it is reasonable to assume all the chemical reactions are at their local equilibrium states. 

[27] In studying thermodynamics, it is important to take the attitude that all reactions are 

reversible. In a practical LBE coolant system or an LBE test facility, the flow is fully 

turbulent and it can mix the corrosion product quickly, thus the mass transfer rate in the 

boundary layer dominates the transport in the liquid. It was commonly accepted that the 

mass transport in the oxide layer dominates the whole oxide process. [27]
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The oxidation reaction can be divided into three parts: inner interface action, outer 

interface reaction, and reaction in the oxide layer.

At the inner interface reaction (oxide/metal interface), the oxygen atoms, which were 

transported to the inner interface, react with the iron atoms at the inner interface 

following the Eq (1-6).

3Fe + 4 0  = Fe^ (1-6)

At a high temperature, this reaction induces the growth of an inner oxide layer easily. 

Also, at the inner interface between oxide layer and iron, iron ionizes according to

Fg = Fg"++2e (1-7)

The iron ions and electrons are transported outwards through the oxide layer. At a 

high temperature, iron ions can form new iron atoms any time by reacting with the 

electrons.

F e^"+ 2 e-= F e  (1-8)

The reactants, atomic irons, react with the oxygen which was transported in the oxide 

via Eq. (1-6). This part of reactions occur whenever iron atoms meet enough oxygen 

atoms during the transport, and cause the redistribution of oxide layer and the volume 

expansion of the oxide layer.

At the outer interface (oxide/liquid interface), surface reactions take place following 

the Eqs (1-8) and (1-6). This part o f oxidation accounts for the outward growth o f the 

oxide layer. The migration processes o f oxygen and iron ions and the oxide layer growth, 

in both sides of inward and outward, were also analyzed in Ref. [18]
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Simply, the overall equation for the chemical reaction involved in the oxidation can 

be expressed in a general form,

+ (1-9)

The driving force for this reaction is, of course, the free energy change associated 

with the formation of oxide from the reactants and can be calculated if  the pertinent 

thermochemical data are available. Though, as needed to keep in mind, the rate o f a 

thermodynamically possible reaction is a kinetic problem instead of a thermodynamical 

problem. [40]

The transport of steel components and oxygen in the oxide layer is very complex and 

not well understood. Among which, the diffusion o f iron in oxide layer can be explained 

by point defect theory. The diffiision rate of iron is influenced by the oxygen pressure, 

temperature and point defects (such as, vacancies and interstitials). [28] The oxygen is 

assumed to migrate through the oxide film by some unclear mechanisms. [27] It is 

reasonable to assume that the transport rates (not only the diffiision) of iron and oxygen 

are of the same order, and both the transport rates o f iron and oxygen control the 

oxidation rates. The transport o f electrons is comparatively fast. [27]

The oxidation o f real stainless steel becomes more complex because o f the added 

alloying components, impurities and other defects. With different temperature and flow 

conditions, the oxide film for a particular material can be different. The mechanism of the 

oxide layer growth of stainless steel in lead or lead alloys is studied based on the 

observation of oxidation experiments. A brief review of the identification o f oxide 

structure will be summarized before the mechanism analysis.
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1.3.2 The Oxide Structure from Experimental Results

The existence of the added alloying elements, impurity and other defects in the 

stainless steel will increase the complexity in the oxidation process. The oxide layer 

structure of steel in liquid lead-alloy with oxygen control, in principle, depends on steel 

compositions, temperature and hydraulic factors.

The most important added alloying element for improving the anticorrosiveness is 

chrome. The addition of element chrome can protect the stainless steel by enhancing the 

electrode potential o f iron, obviously. The possible stainless steels in LBE systems are 

martensitic stainless steels and austenitic stainless steels. The chrome contents in 

martensitic stainless steels usually are between 13% to 18 wt%, which ensure a good 

corrosion resistance. Moreover, the martensitic stainless steels have a relatively high 

content o f carbon, 0.1% to 1.0 wt%. Therefore, the martensitic stainless steels have very 

good mechanical properties such as, hardness, mechanical strength, abrasion resistance, 

and machinability. The austenitic stainless steels are the most popular stainless steels 

used in industry. The chrome contents in austenitic stainless steels usually are 17 wt% 

and above. Moreover, element nickel is added in until around 17 wt%. Titanium, niobium, 

molybdenum, and copper are often added as well. Therefore, the austenitic stainless 

steels have excellent corrosion resistance. [41]

(a). Oxide layer of stainless steel in pure molten lead

G. Muller et al [42] conducted corrosion experiments in pure molten lead using plate 

specimens o f martensitic steel OPTIFER IVc (Fe9Cr) and o f austenitic steel 1.4970 

(16Crl5Ni), with and without surface treatment. The specimens were small plates of 

1 1 5 x 1 0 x 2 dimension. The test temperature was set at 550 °C and the oxygen
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concentration was controlled at 8x10“'’ atVo in the molten lead. The scanning electron 

microscope (SEM) of cross-section o f OPTIFER specimen after 3000 hours is shown in 

Figure 13. A brittle outer layer with low Cr concentration and a Cr rich spinel inner layer 

are pronounced in the SEM. Below the oxide layer, a oxygen transport zone can be 

observed in which oxides precipitate along the grain boundaries.

Pb

Outer Layer

Inner Layer

Oxygen 
Transport Zone

Figure 13. (SEM) of cross-section o f OPTIFER specimen after 3000 hours at 550°C [42].

The scanning electron microscope (SEM) of a cross-section of a 1.4970 specimen 

after 3000 hours is shown in Figure 14. The oxide structure is similar to that on 

OPTIFER steel with layers of magnetite and Fe-Cr spiner and an oxygen diffiision 

substrate in the interior. Because the higher content o f Cr and the presentation o f Ni, the 

corrosion/oxidation resistance is higher in austenitic stainless steels. The oxide layer is 

much thinner in the steel 1.4970 than that in the steel OPTIFER, with the same 

conditions. It was reported that the spinel zone contains Pb and oxygen penetrates along 

grain boundaries up to 20 deep into the metal matrix. The experiments demonstrate
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that the steel 1.4970 (austenitic stainless steel) has better oxidation resistance in liquid 

lead than OPTIFER (martensitic stainless steel) under controlling of oxygen. However, 

this slow oxidation rate may lead to penetration o f lead into the material since a thin 

oxide layer may not be able to protect the structure efficiently. The author also showed 

that the surface treatment can improve the corrosion/oxidation resistance o f the stainless 

steel.

1.4970
10 um

■ Pb

■ Outer Layer

■ Inner Layer

Oxygen 
Transport 
Zone including 
Grain Boundary 
Penetration

Figure 14. (SEM) of cross-section of 1.4970 specimen after 3000 hours at 550“C [42]. 

(b). Oxide layer of stainless steel in LBE

Compatibility tests o f eight kinds o f stainless steels in flowing LBE were performed 

in the non-isothermal experimental facility of IPPE-Obninsk by Barbier et al. [43] Two 

austenitic stainless steels AISI 316L and 1.4970, and six martensitic steels, Optifer IVc, 

T91, Batman 27, Batman 28, EP823, and EMIO are exposed to flowing LBE for 1000, 

2000 and 3000 h and at two temperatures 300 °C and 470 °C. The experiments are under
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a controlled oxygen level at 10 ® wt% . The flowing velocity of LBE is set at 

\ .9 ± 0 .\m ls  . The results were reported in Ref. [43].

With the same facilities o f IPPE-Obninsk, tube and rod specimens of austentic steels 

316/316L, D-9, and martenstic steels HT-9, T410, were tested in the flowing LBE by J. 

S. Zhang et al. The experiments were carried out at 460 “C and 550 °C for exposure times 

o f 1000, 2000, and 3000 h. The flow velocity at the test section was set at 1.9 w /s 'and  

the oxygen concentration in LBE was controlled in the range o f 0.03-0.05 wppm. [17]

Generally, there are three possible structures for martensitic steels, according to 

existing experimental results [44]:

50 urn

m - r - f

LBE 

Oxide Layer

Steel

Figure 15. SEM micrograph of the oxide layer structure of the T91 steel at 470 °C after

3000 h exposure. [43]

For temperature at 300°C, the total thickness is usually very thin and sometimes too 

thin to measure, such as T91 steel. And the oxide scale may not be distributed uniformly.
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The martensitic stainless steels show a good corrosion resistance, and the thin oxide films 

formed on the surfaces lead to protection against liquid metal corrosion.

For temperature at 460-470 °C, typically a duplex-layer structure can be observed, for 

example, in specimens Batman 27 after 1000 h exposure. Batman 28 after 1000 h 

exposure, EMIO steel, T91 steel, Optifer IVc, and EP823. The oxide layer is composed of 

an external magnetite layer, Fe304 and a compact internal Fe-Cr spinel oxide layer. The 

SEM micrograph of T91 steel after 3000 h exposure is shown in Figure 15.

HT-9 20 |4m 
I 1

Figure 16. Cross-section of HT-9 (tube) after being exposed to flowing LBE for 2000 h at

T = 460°C. [17]

In some cases, the external magnetite layer is not observed. The duplex-layer can 

protect the steel from dissolution. Penetrations of lead are sometimes observed in the 

outer layer. While, after 2000 h and 3000 h o f exposure, an internal oxidation zone (third 

layer), with oxide precipitates along the grain boundaries, is observed below the Fe-Cr 

spinel layer in steels Batman 27 and Batman 28. [43] The presence o f LBE was observed 

between the inner layer and outer layer in EM 10 steel and the penetration in the outer
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layer was more evident with longer test time. The duplex-layer oxide film was also 

reported by Zhang [17] for HT-9 steel at 460 °C (as shown in Figure 16). No liquid metal 

corrosion was observed in either the experiments by Barbier [43] or Zhang [17]. 

However, a non-uniform single oxide layer of Cr-rich spinel was observed in a rod 

specimen of T410, and local damage was observed after 2000 h [17]. From Figure 15 and 

Figure 16, the oxide layer thicknesses are very close, which confirms the consistency of 

the two experiments conducted by Barbier [43] and Zhang [17].

For temperature above 550°C, an oxygen diffusion layer underneath the oxide layer 

after 3000 h of exposure at 550 °C, was observed by Zhang [17] for HT-9 steel at 550 °C 

(as shown in Figure 17). For T-410 steel, the rod specimen was subjected to heavy liquid 

metal corrosion.

HT-9 20 |im

Figure 17. Cross-section of HT-9 (tube) after being exposed to flowing LBE for 3000 h at

T = 550 °C. [17]
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Since the austenitic stainless steels have more Cr and Ni than martensitic stainless 

steels, the oxide layer formed on austenitic steels has the following possible structures 

[27]:

For temperature below 500°C, the oxide layer is very thin and is composed of the 

single-layer Fe-Cr spinel, which can prevent direct dissolution (316L, 1.4970 specimens 

in BarbierN test [43], and tube specimen of 316 in Zhang’s test [17]). The SEM 

micrograph o f 1.4970 steel after 3000 h exposure is shown in Figure 18. The Cross- 

section o f tube specimen 316, after being exposed to flowing LBE for 2000 h at T = 460 

°C from Zhang’s experiment [17], is shown in Figure 19. Also, Figure 18 and Figure 19 

show agreement o f Barbier’s [43] and Zhang’s [17] experimental results in the total oxide 

structure and thickness.

Oxide Layer

Figure 18. SEM micrograph of the oxide layer structure of the 1.4970 steel at 470 °C after

3000 h exposure. [43]
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316

Figure 19. Cross-section of 316 (tube) after being exposed to flowing LBE for 2000 h at

T = 460°C. [17]

Slot corrosion was detected on the surface o f rod specimen of 3 16L steel after 2000 h 

o f tests at 460 °C (as shown in Figure 20). The thickness of oxide film in steel D-9 is very 

thin even after 3000 h. [17]

Corrosion damage

Figure 20. Slot corrosion o f 316L steel at T = 460 °C for 2000 h. [17]

Typically, the oxide layer has a duplex-layer structure for a temperature at 550 °C, 

such as tube specimens made of tube specimens of 316 and D-9 steels [17]. The duplex- 

layer oxide can prevent steel component dissolution efficiently. The cross-section of steel
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316 (tube), with a duplex-layer after being exposed to flowing LBE for 2000 h at T = 550 

°C, is shown in Figure 21.

M e 3 0 ,

316 20 Hin

Figure 21. Cross-section of 316 (tube) after being exposed to flowing LBE for 2000 h at

T = 550°C. [17]

As analyzed above, the structure o f the oxide layer strongly depends on surface 

treatments, manufacturing technology, and flow conditions, as well. For instance, a 

single-layer structure oxide layer was observed by Zhang [17] in a rod specimen of steel 

316L. However, a duplex-layer oxide film was reported by Muller in Ref [9]. Both liquid 

metal corrosion and slot corrosion were observed in austenitic stainless steel 316L at 550 

°C. [17]

In the cases with the only single layer structure at such a high temperature, heavy 

dissolution corrosion was observed and the material could not be well protected. For 

temperature above 550 °C, more severe dissolution corrosion and local damage occurs, 

which should be avoided in real manipulation. [17] For these cases, the oxygen
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concentration may need to be controlled at a higher level, as long as it will not exceed the 

saturation concentration.

1.3.3 The Mechanism of the Oxide Layer Growth

Based on the observations in Refs. [17, 42, 43], the mechanism of the oxide layer 

growth o f stainless steel in liquid lead and leady alloys can be summarized, together with 

the consideration of alloying elements in the steels. The possible oxide structures of 

martensitic or austenitic steels in liquid lead and lead-alloys with oxygen control can be 

outlined as the flowing cases.

(a) For static molten lead or LBE

The flow conditions’ influence on the oxidation process can be ignored for a case in 

static lead or LBE environment. The steel components can be dissolved to the molten 

lead and lead alloys since most o f the steel components have high solubility in liquid lead 

and lead alloys [17]. If  the oxygen concentration is too low to form the protective oxide 

layer, heavy dissolution corrosion occurs (as shown in Figure 22). Such corrosion can 

also occur at a high temperature if the forming oxide layer cannot prevent steel 

components from dissolution. [45]

Original surface Lead LBE (low Co)

Dissolution corrosion

V / / / A ^ / / / / /

N ew surface

Figure 22. Dissolution corrosion in unsaturated static lead or LBE.
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When the liquid is saturated with the steel components, and if  the steel components 

which were released to the solution are in equilibrium with the components deposited on 

the structural surface, the corrosion will cease (as shown in Figure 23). This is a case with 

pre-corrosion and no change will be observed on the stainless steel surface.

Lead LBE (low Co)

Dissolution Deposition 

Original surface 1 I

V // / / / / / / /Z  V777/) y 7y / /
New surface

Figure 23. Corrosion ceases when dissolution is in balance with deposition.

Deposition

Ongmai surface '

Y /m J //// W /y m /A
New surface

Figure 24. Deposition induces a single layer of (Fe,Cr)3Ü4.

The reaction will be different from the case shown in Figure 23 if  the oxygen level is 

increased to a higher level. The protective oxide films will begin to form along the 

surface, if  the oxygen concentration in lead or lead alloys is sufficient. The dissolved 

oxygen can react with the dissolved steel components and the insoluble oxide will be 

precipitated on the surface of the steel. At the beginning, a single layer oxide film will be
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formed because all components of the stainless steel were pre-dissolved into the molten 

lead or LBE. Therefore, a deposition-induced single-layer structure of oxide layer, mainly 

(Fe,Cr)304 , can be observed as shown in Figure 24.

Original surface

7

FC304

Fe\.(Fe.Cr)304.

7777777777/. W77777777/
New surface

Figure 25. Duplex-layer structure without oxygen transported into the stainless steel.

If the oxygen concentration is controlled at a particular level, which is higher than 

zero and not high enough to diffuse into the oxide layer and the stainless steel structure, 

the concentration of dissolved steel components will become more and more dilute 

because of the reaction in the molten metal/alloy environment. Then, migration of the 

steel components into the lead and lead alloys starts again. Since the diffusion rates o f Cr 

and other elements in the oxide layer are much lower than the diffusion rate of iron in the 

oxide layer, the oxide layer works as a good barrier for the diffusion o f Cr and other 

elements. For Fe-Cr steels, the Fe-Cr spinel initially forming can retain Cr and other 

components such as Ni to stay their original location because they have a low diffusion 

rate through the scale, compared with Fe [46]. Therefore, the diffusion o f Cr and other 

components into lead or lead alloy through the oxide layer will be neglected after the 

oxide film thickness reaches to 2-3 nm [46]. When all the dissolved Cr is consumed, a
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new layer o f the magnetite (Fe304) will be formed on the top o f the layer (Fe,Cr)304 via 

the surface reaction between the outward-diffused iron and oxygen, as illustrated in 

Figure 25 . The oxidation is controlled by the diffusion o f iron in the oxide layer.

At a higher oxygen level, the surface reaction o f the outwards diffused iron and 

oxygen cannot consume all the oxygen in the molten lead or LBE. The oxygen begins to 

migrate through the oxide layer and react with both Fe and Cr beneath the oxide film, 

increasing the thickness o f the spinel. Obviously, the outwards diffused Fe reacts with 

oxygen at the outer surface and forms a porous outer layer o f Fe3Ü4 at the same time, 

which accounts for the growth of the outer oxide layer. As investigated previously, the 

transport of oxygen and iron both control the oxidation process. The duplex-layer oxide 

formation controlled by both the transport of oxygen and iron can be illustrated in Figure 

26.

O rig inal surface

V777777777/.

Fe304

.(Fe.Cr)j04% .'.9.

Cr. N i enriched  layer

y y 7 7 / / / / 7 / 7 .

N ew  surface

Figure 26. Duplex-layer structure oxide controlled by transports of iron and oxygen.

In fresh static LBE or lead which is clean and does not contain the steel components, 

surface oxide reaction occurs on the stainless steel surface if  the oxygen level is high. 

Initially, in the molten LBE or lead, a very thin oxide layer of Fe304 forms on the steel
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surface quickly. This is different with the pre-corrosion case for a saturated LBE/lead 

alloys environment. The single layer is formed by the surface reaction of Fe and O 

instead o f the deposition of Fe304 and Cr203 in the liquid. During the reaction, Fe is 

consumed in the material. Since iron is the main component in stainless steels, 

redistribution o f the material and volume contraction take place because o f the 

consumption o f iron. Two directions in movement o f the interface can be observed. One 

is the outwards movement o f the oxide/liquid interface, and another one is the inwards 

movement of the oxide/steel interface. The single layer structure oxide induced by the 

surface reaction in clean static lead/LBE is illustrated in Figure 27.

Original surface 'LNF/, . ,  . ,  " 

New surface

Figure 27. Single layer structure oxide induced by surface reaction in clean static

lead/LBE.

With the increasing of the oxygen concentration in molten lead or LBE, oxygen 

begins to transport inwards to the material, which induces the reaction inside the material 

and on the interface of oxide/steel. The protective film impedes the oxidation process by 

slowing down the transport of oxygen and iron through the oxide layer when the film 

reaches 2-3 nm [46]. The oxidation is controlled by the transport of oxygen and iron. This 

transport will enhance the total reaction rate, together with the outer interface reaction. 

The oxygen transported inwards reacts with the iron and Cr and forms spinel of
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(Fe,Cr)304. Beneath the inner spinel layer, there will be a layer with rich contents of Cr 

and other components since Fe diffuses out and forms the oxide layer. Therefore, a 

duplex-layer structure of oxide will be observed. And the inner interface of oxide/steel 

will move faster than the single layer case in Figure 27, since oxygen is now transported 

in. The duplex layer structure of oxide formation is shown in Figure 28.

Original surface
Fe;(34
■p-r

O
(Fe,Cr)304 :

-N ;>;Cr, Ni rich layer

V .

Figure 28. Duplex layer structure of oxide with oxygen transported in.

(b) For flowing lead or LEE

For cases of flowing lead and lead alloys environment, the corrosion and oxidation 

are different. First, the flowing solution (lead-alloys) can remove the oxide layer at the 

outer surface. Second, the non-isothermal condition may affect the corrosion and 

oxidation as well. These effects, of course, will make the corrosion and oxidation more 

complex. Simply, if  the removal rate is greater than the diffusion rate of metal through 

the scale, no new oxide can be formed at the outer surface (liquid /oxide interface) and 

the oxide can be formed at the oxide/steel surface. Also, if  the scale removal rate is large 

enough to remove the outer oxide layer, a single layer structure will be observed. If  the 

scale removal rate is large enough to remove the total oxide layer, no oxide film will be
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observed, and net removal of the structural material may occur, which is one kind of 

erosion corrosion.

Absent oxygen, or if  the concentration o f oxygen in lead or LBE is close to zero, the 

steel components will be dissolved in the molten lead and lead alloys. This case is similar 

to the first case in static lead/LBE. With the influence of the flowing conditions, the 

dissolved components can be transferred away quickly. Thus the dissolution corrosion 

rate is increased. Since there is no oxide film formed on the structural surface, net erosion 

on the structural material may occur, which will induce an erosion corrosion, (as shown 

in Figure 29)

O riginal surface 

^ ///////////
Flow ing Lead LB E (low Co)

D issolution corrosion

y 7 7 7 > v ^ / / y
New surface

Figure 29. Dissolution corrosion in unsaturated flowing lead or LBE.

When the liquid is saturated with the steel components, the dissolution corrosion 

ceases at the balance between the dissolution and precipitation in an isothermal system. 

Only the scale removal process remains. This case is similar to the second case in static 

lead/LBE with pre-corrosion. And erosion corrosion may be observed because o f the 

scale fragments in flowing lead/LBE and no film protection on the stainless steel surface 

(Figure 30).
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Flow ing L ead  LBE (low Co)

Original surface D issolution D eposition

' / / / / / / / / / /z .
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N ew  surface

Figure 30. Dissolution is in balance with deposition (with scale removal).

Flowing Lead LBE (low Co)

Flowing Lead LBE (low Co)

Dissolution Deposition

Original surface Dissolution Deposition

Hot area Cold area

New surface

Figure 31. Corrosion and oxidation in an non-isothermal lead/LBE system with balance 

of dissolution and deposition in total quantity.

In a non-isothermal lead/LBE system, the corrosion and oxidation behaviors are 

different. Even the total deposition and dissolution are equal, and the net dissolution in 

the high temperature region and net deposition at the lower temperature region will occur, 

instead o f the simple balanced reaction in the non-isothermal system, as shown in Figure 

30. The corrosion/oxidation in an isothermal lead/LBE system with balance o f dissolution 

and deposition in total quantity is shown in Figure 31. If  the scale removal rate is larger 

than the maximum deposition rate (at the cold region), then the deposition may not be 

observed. Since the concentration of the dissolved components is beyond the saturated
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concentration, solid phase particle or scale scrap will be found in the flowing lead and 

lead alloys. As mentioned earlier, the solid particle and solid scale scrap will enhance the 

erosion corrosion in turn.

With the increasing oxygen level in the flowing lead or lead alloys, the dissolved 

oxygen begins to react with the dissolved steel components and the insoluble oxide will 

precipitate on the surface o f the steel. Except for the difference of scale removal effect 

and non-isothermal condition, the corrosion/oxidation results are similar to the cases in 

Figures 24-28. Simply, the effect of scale removal is that a small scale removal rate may 

only reduce the oxide growth rate at the outermost layer in a single layer or duplex layer 

structure o f oxide. A higher scale removal rate may remove the outermost layer and 

reduce a duplex layer structure to a single layer structure, or remove the total single layer 

and induce erosion corrosion. A very high scale removal rate may remove the total 

duplex layer and induce erosion corrosion on the structural material. Similarly, the effect 

o f the non-isothermal condition is that high corrosion occurs in a high temperature region 

and precipitation may occur in a cold temperature. Consequently, a duplex layer structure 

o f magnetite and spinel ((Fe,Cr)304), a single layer o f magnetite, a single layer of spinel 

((Fe,Cr)3Û4) , or no oxide layer and erosion corrosion may be observed for stainless steel 

in flowing lead/LBE.

Since the corrosion/oxidation process is very complex, it depends on many 

parameters and conditions. For example, the stress effect is also an important factor in 

corrosion/oxidation, especially in a non-isothermal case. The stress can cause a crack in 

the protective oxide film, make a local penetration of corrosive lead/LBE, and even lead 

to breakage and scale off o f the oxide layer. [27] As discussed above, that oxide layer
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structure strongly depends on the steel composition, such as contents o f Cr and Si. 

Discussions on the effects o f Cr contents can be found in ref. [47] for aqueous 

environments, and of Si contents in ref. [48] for gaseous environments.

1.3.4 Oxygen Control Technique 

The main purpose for oxygen control in a liquid lead-alloy system is to create and 

maintain a protective film on the surface of the structural materials. The lower limit o f the 

partial pressure of oxygen is the dissociation pressure of the oxide in equilibrium

with the metal iron. However, when the oxygen partial pressure is too high and exceeds 

the saturation oxygen partial pressure, PhO  begins to form and precipitate. The

formation of PbO  will contaminate the alloy coolant, change the composition, and thus

change the properties of the coolant. Therefore, another goal of oxygen control is to 

prevent lead oxide precipitation. [36]

The saturation oxygen partial pressure can be determined according to the following 

reaction:

| 0 2 + P b o P b 0  (1-10)

Therefore, the partial pressure of oxygen needs to be controlled in the range,

^ ^ ^ ^ < l n P o  (1-11)
2RT  ̂ R T

The oxygen concentration should be controlled in a proper range [Cgmin^Cg, J  [36,

42].

The oxygen solubility in liquid lead and LBE [36, 49] can be expressed in wt% as:
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= ( 1- 12)

= (1-13)

where T  is the absolute temperature in K.

Assuming the bottom line for the concentration is to form Fe304 , can be

expressed as:

Co.min = Co,,ap, e x p C ^ ^ ^ S ^ ^ ^ ^ ^ )  (1-14)

where is the standard free energy of formation of PbO and in the temperature

range from 400 to 1000 K, AGp^g,(J/mo7) = -2187204-99.35T [50]. ap  ̂ is the activity 

o f Pb, and for liquid lead ap  ̂ = 1 and for LBE Op̂  = 0.4232exp(-135.2/T) [36, 45].

For liquid lead:

= (1-14)

and for LBE:

= (1-14)

In a typical flowing liquid lead/LBE coolant system, the temperature is not uniform

and the flow is fully turbulent. The fully turbulent flow can mix the oxygen, leading to a

nearly uniform oxygen concentration in the entire system. Because both and Cq

are functions of temperature, this uniform concentration should be less than  ̂ at the

lowest temperature (7^;^) and greater than ^  at the highest temperature (7 ]^  ). Then,

in a non-isothermal system:
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^O .itiin (^m ax (^m in ) (1-14)

A typical LBE coolant system has a temperature range from 350 °C to 550 °C, 

corresponding to a target oxygen range of 6.63 x 10“® wt% < Co[Z5E']< 5 .5x10'^wt% .

The liquid lead system has a higher operating temperature range and is typically between 

450 to 650°C, corresponding to a target oxygen concentration range of 

2.4xl0^^w /% < Cg[Pb]< 1 .9 x l0 ”'*wt% . These typical oxygen ranges are shown in 

Figure 32. [36]

0.01

0.001

0.0001

IE-05

IE-06 Range tbPl.BE

a IE-07

IE-08

IE-09

IE-10

IE-11
350 450 550 650 750

Teinperatm e [°C]
Figure 32. Typical oxygen control range in non-isothermal liquid lead and LBE flow

systems. [36]

The methods for oxygen control include direct injection of oxygen and hydrogen 

gases, injection of hydrogen and steam mixture, and solid phase oxygen control. [36]
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Since this topic is extensive, and not a goal of this research, the details will not be 

discussed in this dissertation.

1.4 DELTA Loop

A test facility called DELTA (DEvelopment of Lead-Bismuth Target Applications) 

Loop was constructed at Los Alamos National Laboratory, U. S. The DELTA loop was 

designed in cooperation with the Institute of Physics and Power Engineering (IPPE) of 

Obninsk, Russia. The first run of DELTA loop took place on December 5th, 2001. The 

DELTA Loop was designed to study the long-term corrosive effects of LBE on structural 

materials at a high temperature. Moreover, the DELTA loop can also be used to study 

thermal and hydraulic properties o f LBE flow in future spallation target designs. [51]

The main goals for the DELTA loop are [51]:

• Implementation of an oxygen measurement and control system in the LBE flow;

• Investigation of the long-term corrosive effects of LBE on a variety o f materials;

• Implementation and investigation o f natural convection flow in an LBE system; and

• Investigation o f the thermal-hydraulic properties of LBE in prototype target designs.

The maximum designed temperature o f the DELTA loop can reach up to 500°C, 

which is much higher than the melting points o f both lead and LBE and lower than their 

boiling points, (see the values in Table 1)

Since the local temperature is important for the corrosion and deposition behaviors, a 

recuperator, a heater, and a heat exchanger are used to control the temperature 

distribution in DELTA loop.
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Motor
Cover

RecnperatcMT

Sump Tank

Figure 34. The DELTA Loop. Sump tank is visible on the left, heat exchanger next to 

sump tank, calibration tank is at the right top comer, and recuperator is underneath

calibration tank, in the shadow. [51]
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Briefly, LBE flow comes out o f the pump at the lowest temperature section, passes 

through the recuperator shell side and the heater, and reaches the highest temperature at 

the test section. On the return path, the temperature decreases through the recuperator 

tuhe side and the heat exchanger, and drops to the lowest temperature.

The schematic sketch o f the DELTA loop is shown in Figure 33. A photograph of the 

DELTA loop is shown in Figure 34. [51]

The DELTA loop is a closed system that is 6 meters high and is constructed primarily 

with 5.25 cm diameter pipe. The loop components include an 18.6 kW, variahle-speed, 

sump-type, centrifugal pump capable of delivering LBE at a rate o f 13 m^/hr; a magnetic 

flow meter with an attached calibration tank; a 60 kW heat input section for raising the 

fluid temperature during material testing; a 3.3 m long test section where various material 

sample coupons will be placed for corrosion testing in the LBE flow; an expansion tank 

that provides a free surface during natural convection operation; a shell-and-tube 

recuperator capable o f providing a 50 °C fluid temperature change; a variable capacity, 

LBE-to-water heat exchanger; and a melt/drain tank that holds 3500 kg of LBE and is 

equipped with a 45 kW, radiant heater. Approximately 80 kW of tape heaters are 

mounted on the external surfaces of the loop piping and vessels to provide trace heating. 

All vessels and piping are designed according to the ASME Boiler and Pressure Vessel 

Code [52] and ASME Piping Code [53], and are built from 316L stainless steel. The 

DELTA loop was designed to minimize the stresses due to gravity, internal pressure, 

thermal expansion and seismic loads. Some of the supports are flexible, to allow for 

thermal expansion. The recuperator is an IPPE designed shell and tuhe heat exchanger 

with 19 1.43 cm diameter tubes enclosed in a 10.2 cm diameter shell. The heat

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



exchanger, designed by IPPE, is an annular, counter-flow design using water at room 

temperature and atmospheric pressure as the cooling fluid. The water is separated from 

the LBE by a closed, intermediate armulus containing lead-bismuth. This intermediate 

fluid can be moved up and down inside the annulus hy sliding the inside cylinder like a 

piston. When the piston is brought all the way up, it leaves the intermediate lead-bismuth 

at the bottom of the annulus, thus reducing the heat exchanging capacity to a minimum. 

When the piston is lowered to the very bottom, the intermediate fluid is pushed up into 

the annulus, thus increasing the heat exchanging area and increasing the heat exchanger 

capacity. Turning a screw handle at the top o f the heat exchanger moves the piston. [51]

Prior to operation, LBE is heated to 300 "C in the melt tank, the piping and vessels are 

heated to 250 °C using the trace heaters, and the loop is evacuated to a rough vacuum. 

The melt tank is then pressurized with helium to force the LBE up into the sump tank. 

The sump tank is then pressurized to force the LBE up into the rest o f the piping. When 

the fill is complete, the pump can be started.

During operation, LBE leaves the sump tank and travels up to the recuperator’s shell 

side where the fluid temperature is increased by 50 °C. LBE then flows to the magnetic 

flow meter through a long vertical pipe leading from the recuperator’s shell side to the 

heated section at the bottom of the loop. The tubing in the heated section is covered with 

hand heaters that are used to raise the fluid temperature another 50 °C. The heated fluid 

then enters the 2.65 cm diameter, vertical test section where material samples will be 

placed. Upon exiting the test section, the fluid then enters the tube side of the recuperator 

where the temperature is reduced by 50 °C. After leaving the recuperator, the fluid flows 

to the heat exchanger where its temperature is again reduced by 50 °C. The fluid leaves
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the heat exchanger and returns to the sump tank through the bottom inlet. Several pipes 

are built into the loop to allow bypasses of the recuperator, the heat exchanger or the 

sump tank. In addition, a bypass o f the primary piping exists to enable flow rate and 

pressure adjustment o f the main flow. A venturi is located in this primary bypass where 

oxygen and hydrogen clean-up gases are injected. The temperature changes shown in this 

paragraph are nominal for the design flow speed of 1 m/s in the test section or about 6 

kg/s mass flow rate. [51]

1.5 Transmutation Research Program

The University of Nevada, Las Vegas (UNLV) has entered into a partnership with the 

national laboratories through the Transmutation Research Program (TRP). The TRP 

projects are trying to establish a world-class program for transmutation technologies 

while building core competencies and facilities to promote UNLV's strategic growth 

goals. The central theme and purpose o f this program is to involve UNLV students in 

research on the economically and environmentally sound refinement of spent nuclear 

fuel. The long-term goals of this program are to increase the University's research 

capabilities, attracting students and faculty of the highest caliber, while furthering the 

national program to address one o f the nation's most pressing technological and 

environmental problems. [54]

Under the leadership o f the program director, Dr. Anthony E. Hechanova, thirty 

projects are under scientific study, being researched in different departments at UNLV, 

together with the collaboration with other research groups and help from national 

laboratories. This research is the task #21 o f the UNLV TRP program.
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1.6 Purpose of Study

Liquid lead alloys have heen considered as a prototype target and coolant candidate 

for the ADS systems because of their ideal thermal-physical and chemical properties. 

One of the main problems, as widely recognized, in using LBE is its adverse effect on 

structural materials, mostly stainless steels. This molten metal dissolves stainless steel 

components and causes severe corrosion during the application in the nuclear coolant 

systems

Initiated in Russia, one effective method to prevent corrosion in LBE systems is to 

create and maintain a protective oxide film on the surface o f the metal/alloy structure. 

The so called “active oxygen control technique” can promote the formation o f the “self- 

healing” oxide films on the structural material surface, drastically reducing steel 

corrosion and coolant contamination. The formation and longevity o f the protective oxide 

layer depends on the oxygen concentration in the liquid metal. [3]

Many experiments on steels exposed to flowing lead-alloys have been carried out to 

study the corrosion rates and the protective oxide layer behaviors. [10, 17, 43] However, 

the experimental data are still very incomplete at present and cannot provide the 

dependence of the oxide behaviors on the system operating temperature, temperature 

profiles along the lead-alloys loop, oxygen concentration, flow velocity, etc. [10, 21] In 

addition, the mechanism of oxygen transport in the oxide layer and structural materials in 

a non-isothermal lead-alloys coolant system is not well understood. [27]

Precise studies and simulations o f all hydrodynamics with thermal conditions 

encountered in practical coolant loop systems, by use of different flowing conditions in 

the laboratory, are difficult and expensive, if  not impossible. Therefore, it is important
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and necessary to develop theoretical models to predict the protective oxide layer 

behaviors at the design stage of a practieal lead-alloys coolant system, to properly 

interpret and apply experimental results from test loops, and to provide guidance for 

optimization in lead-alloys nuclear coolant systems. The research project, therefore, is 

aimed at filling the gaps o f protective oxide layer growth and the oxygen concentration 

level before lead-alloys nuclear coolant is ready for programmatic implementations and 

industrial applications.

As one task in TRP projects, the goal of the research is to provide basic understanding 

o f the protective oxide layer behaviors, and to develop oxide layer growth models of 

steels in non-isothermal lead-alloys coolant systems. From the developed model, useful 

information and quantitative manipulating parameters are anticipated for an active 

oxygen control technique. [55]

This dissertation gives an introduction on the background and targets for this research 

project. The favorable properties of lead and LBE are reviewed as an ideal candidate of 

the nuclear coolant in ADS. Then, the mechanism of liquid metal/alloy corrosion and the 

factors, which influence the corrosion process, are studied. Based on the understanding of 

the lead and LBE corrosion and the identification of oxide structure from experiments, 

oxidation mechanism of stainless steel in both the static and flowing lead/LBE are 

studied. Then the active control technique is introduced. Later on, a brief introduction on 

the material test loop, DELTA loop, and UNLV TRP program are presented.

In Chapter 2, a theoretical kinetic model based on the boundary layer theory is 

presented. This model was developed to investigate the corrosion/precipitation in non- 

isothermal lead alloy coolant systems. The analytical expressions o f the local
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corrosion/precipitation rate and the bulk concentration of the corrosion products were 

obtained by considering a turbulent core region and a laminar sub-layer. Numerical 

solutions were also aeeomplished together with eonsidering the effect o f eddy mass 

diffusivity in lead alloy systems.

Chapter 3 proposes a diffusion controlling oxide layer growth model with scale 

removal in oxygen containing lead alloys. Scale removal effect was considered and the 

formation mechanism of duplex oxide layer structure was investigated in the model.

An improved stochastic mesoscopic cellar automaton (CA) model is developed in 

Chapter 4. In the CA model, the oxide layer growth process, together with the diffusion 

of oxygen and ionic metal, was studied at a mesoscopic level.

In Chapter 5, some useful conclusions are summarized based on the research results. 

Some results from the developed models were compared with the available experimental 

data and good agreement was attained. Moreover, the extended applications of the 

developed models were analyzed.
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CHAPTER 2

CORROSION AND PRECIPITATION IN NON-ISOTHERMAL LIQUID LEAD OR

LBE SYSTEMS

2.1 Introduction

As discussed in the first chapter, the corrosion of steels by corrosive molten lead or 

LBE is a eomplex and important problem. The corrosion of stainless steel by molten lead 

or LBE presents the main challenge and leading obstacle to its nuclear application. 

Moreover, the precipitation in the cold region will block the flow of lead or LBE and 

cause severe safety problems as well. The experimental investigations on corrosion in 

LBE indicated that the flow-affecting corrosion depends strongly on exposure time, 

temperature distribution, flow velocity conditions, structural material, heat and surface 

treatment o f material and many other factors. [2, 4, 10, 20, 21] In real operations, various 

values may he applied for each thermal and hydraulic parameter. It is impossible, 

expensive, time-consuming and not necessary to do experiments on each value for every 

variable parameter. Furthermore, experimental data on lead alloy corrosion are still very 

poor and scattered currently. [10, 15, 29, 56] Therefore, theoretical modeling is important 

and necessary to estimate corrosion and deposition behaviors in the LBE coolant systems.

A theoretical kinetic model based on the boundary layer theory was developed to 

investigate the corrosion/precipitation in non-isothermal lead alloy pipe/loop systems.
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The analytical expressions of the local corrosion/precipitation rate and the bulk 

concentration o f the corrosion products were obtained by considering a turbulent core 

region and a laminar sub-layer. Numerical solutions were also obtained, together with 

considering the effect of eddy mass diffusivity in lead alloy systems. [21] A parametric 

study will be conducted in order to illustrate the dependence on different thermal and 

hydraulic parameters, such as temperature distribution and inlet velocity, of the 

corrosion/precipitation rate and hulk concentration of the corrosion product. The present 

analytical model and numerical model will be benchmarked with some previous 

experimental data.

2.2 Literature Survey

Many scientists and researchers are devoted to building theoretic models for analytic 

calculations and numerical simulations for the corrosion problem of metallic material in 

molten lead or LBE environment. With the help of the built models, useful data are 

anticipated for predicting the corrosion and precipitation behaviors in a lead/LBE system.

As an example, Balbaud-Celerier and Barbier [15] applied the local corrosion models 

to calculate corrosion rates in liquid metal loops by assuming that the corrosion product 

bulk concentration was zero. However, the authors considered the local conditions only, 

such as the velocity and local temperature. Actually, the LBE pipe/loop systems are non- 

isothermal in most LBE coolant systems. Taking into account the effects of the axial 

temperature gradients, several kinetic corrosion models were developed. Assuming that 

the corrosion product concentration is equal to that in the cold zone, Epstein [29] 

developed a model that could predict the mean corrosion rate at the hottest zone in heat 

transfer loops. Applying this model, the corrosion and deposition zones could be
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predicted, and good results were obtained that were consistent with the experimental 

results. However, their basic assumption that the mass transfer boundary layer is only a 

function of the liquid metal velocity, and remains constant in thickness along the loop is 

unreasonable for a loop system with large surface concentration or temperature gradient. 

In most o f the existing corrosion models, only mean values were considered based on 

local conditions, in particular the velocity o f the liquid and the local temperature. Another 

kinetic model incorporating the effects of the axial temperature profile was developed by 

He et al. [32]. The model demonstrated that the axial temperature profiles have 

significant effects on corrosion and precipitation phenomena in LBE loops. However, this 

model was limited to simple loop flows, and there was a missing term in the solution of 

the boundary layer concentration. In recent studies, Zhang and Li [2, 34] developed a 

kinetic model to investigate the dependence o f corrosion/precipitation on the axial 

temperature profile for both closed pipe flow and open pipe flow. Basic concepts o f 

chemical kinetics and thermal hydraulics o f lead bismuth flow loops were studied and 

simulations were conducted hy K. Dasika and S. Moujaes [57, 58] hased on Zhang’s 

model using a commercial Computational Fluid Dynamics code. Their studies showed 

that the corrosion/precipitation rates and their distributions in a LBE pipe/loop system 

depend on both the local temperature and the axial temperature profiles. However, the 

authors only considered the mass transfer in the boundary layer and did not consider that 

the boundary layer thickness effects play important roles on the corrosion product bulk 

concentration. Moreover, the eddy mass diffusivity was neglected because it was 

assumed that the turbulent boundary layer is so small that all the effects happen in the 

laminar sub-layer of the turbulent fluid flow.
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The molecular diffusivity and the kinematic viscosity are both a function of local 

temperature. [10, 16, 30] Based on the analysis in Ref [36], the Schmidt number for the 

iron transport in liquid LBE is around 150. For the mass transport cases with high 

Schmidt numbers, the turbulent and molecular diffusions are o f the same order of 

magnitude, so that it is very important to describe both o f them with high accuracy. 

Rosen showed that even at the interface of the laminar sub-layer and buffer zones, the 

eddy mass diffusivity could be much larger than the molecular diffusivity in a solute with 

a Schmidt number of 5000 [59, 60]. Aravinth confirmed that the eddy mass viscosity 

plays an important role in the buffer regime and turbulent core region, especially in fluids 

with a high Schmidt number, e.g. liquid metals [61]. From Nelissen’s calculations, the 

turbulent mass transfer model has a strong influence on the local concentration 

distribution, and all the models showed that the eddy mass diffusivity is important for a 

precise estimation [62]. To the hest of knowledge, there was no work being done with 

consideration o f eddy mass diffusivity in LBE corrosion models. One of the important 

reasons for this is the complexity in solving the convection-diffusion equation because of 

the non-linearity caused by the eddy mass diffusivity. Therefore, it is necessary to 

evaluate the influence o f the eddy mass diffusivity in the LBE corrosion systems as well.

In the present study, the previous kinetic model [2, 34] was improved by considering 

the mass transfer effects in both turbulent core region and laminar boundary layer 

regions. The buffer zone was neglected in order to obtain analytical solutions. Systemic 

theories for predicting the corrosion/ precipitation rates in non-isothermal LBE pipe/loop 

systems were developed. The total mass transfer of corrosion products hy the fluid 

towards the wall, as well as away from the wall, was studied in two regions respectively.
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The developed model was applied to a materials test loop, the DELTA loop, at the Los 

Alamos National Laboratory, with specific axial temperature profiles. Following the 

model development, the corrosion/precipitation rate, together with bulk corrosion product 

concentration were calculated and discussed to illustrate the effects o f the axial 

temperature profile. In the proposed numerical models, the eddy mass diffusivity effect 

was considered, coupling with the continuity equation and momentum equation in 

analyzing the corrosion/precipitation behaviors in non-isothermal lead alloy pipe/loop 

systems. Cases with different inlet velocity were studied in order to find the 

corrosion/precipitation dependence on flow conditions. The average Sherwood number at 

the highest temperature isothermal leg was also obtained and analyzed through numerical 

simulation of the corrosion and deposition rates in the DELTA loop. Both the analytical 

model and numerical model were benchmarked with a pure lead loop and attained good 

agreement with the available data.

2.3 Theory

The study on the dissolution corrosion and precipitation will be initiated from the 

investigating o f the physical and mathematical model. By considering the boundary 

conditions, analytical and numerical algorithms will be applied to obtain solutions for the 

corrosion and precipitation rates, concentration of corrosion products, etc.

2.3.1 Assumptions and Governing Equations 

The liquid lead alloy is considered to be incompressible, have constant thermal 

properties, and is a Newtonian fluid. These assumptions lead to the governing equations 

for the fluid flow o f the continuity equation, the Navier-Stokes (momentum) equations.
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and the mass transport equation. These equations in a steady state are shown as Equations 

(2-1 to 2-3).

V « = 0  (2-1)

(2-2)

{u.V)c = - V - J  + R' (2-3)

where p  is the effective pressure and p  = p  + p g h , J  is the diffusion flux o f the

corrosion product and i? is the net rate o f production/consumption of the corrosion

product.

Since the flow-induced corrosion/precipitation phenomena in the LBE system are 

very complex, more assumptions are needed to simplify this problem [10, 34]. The 

reaction near the wall is assumed to be in equilibrium. The wall surface is smooth, and 

corrosion and precipitation do not change the wall surface. The reaction term in the flow 

contributes little to mass transfer in the bulk flow. The flow is a fully developed turbulent 

flow. The physical properties of the liquid and the bulk flow velocity keep constant in 

axial direction. In the analytical solutions, the eddy mass diffusivity/), can be neglected

compared to the molecular mass diffusivity , since the turbulent boundary layer is 

smaller and the mass transfer is governed mainly by the molecular diffusion in the 

laminar sub-layer. In order to obtain the analytical solutions, the hydraulic buffer zone is 

neglected.

Noticing that the molecular mass diffusivity o f the corrosion product is much less 

than the kinematic viscosity of the liquid metal, and the Schmidt number is much greater
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than 1, the mass diffusion boundary layer is submerged under the hydraulic boundary 

layer. Hence, it is reasonable to consider a turbulent core region and a laminar sub-layer 

region separately, as shown in Figure 35, where S  is the thickness o f hydraulic laminar 

sub-layer and it can be calculated by

\U  J

V A
Re V /

(2 ^ )

where u is the friction velocity, is the limit of laminar sub-layer. Re is the 

Reynolds number based on the average velocity, and is the shear stress at the wall. 

The experimental results show that there is a layer of very small thickness -1 .6  ±0.4, 

in which a linear velocity gradient occurs virtually at all times [63]. In this research, the 

value of y^  is taken as 1.6 in all of the cases. The fanning-friction factor f  is calculated by 

the simpler expression from the von Karman and Nikuradse theoretical equation [64, 65]

/  = 0.046Rg -0.20 (2-5)

Pipe axis

Turbulent core region

Laminar sub-layer

C„=C„(x)

Figure 35. Scheme o f the turbulent core region and laminar sub-layer near the wall.
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In the laminar sub-layer region, according the boundary layer theory, convection is 

dominant in the x-direction and diffusion is dominant in the y-direction. Thus, at a steady 

state, the convection-diffusion equation in Eq. (2-3) for corrosion production transport 

can be simplified as [66]:

where c, is the concentration of corrosion product in the hydraulic laminar sub-layer.

In the analytical analysis, the flow velocity is set equal to a constant bulk flow 

velocity F], . While in the hydraulic laminar sub layer, a linear velocity profile is 

assumed:

V , = ^  (2-7)

Therefore, only the convection-diffusion equation needs to be considered in the 

analytical calculations. And Eq. (2-6) can be simplified to:

dc, 1 ô^c, 

T] d r f

where the coordinate transforming variable is introduced.

y  (2-9)

and where L is the length of the loop/pipe. The concentration o f corrosion production 

in the core region, , is assumed to be independent of y, but a function of x. Therefore, 

the longitudinal diffusion terms are negligible, and it can be noticed that the mass flux of
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turbulent core is equal to that of the laminar sub-layer at the interface. The following 

mass balance equation in the turbulent core region can be obtained by considering a 

control volume with an infinitesimal length in x direction, i.e. Ax ^  0 [66]:

■ +

dx R - Ô  dy
=  0 (2-10)

y=S

2.3.2 Boundary Conditions and Oxygen Control Technology 

Thus, the governing equations (2-8) (2-10) are subject to the following boundary 

conditions:

G = c„(^ ) at 77 = 0 (2- 11)

(2-12)

where is the concentration of the corrosion product at the wall.

For a pipe.

(2-13)

For a closed loop, periodic inlet conditions are employed.

gL=o and Cf\ (2-14)

In a closed loop case, the liquid metal flow keeps cycling without renewal. At the 

steady state, as a consequence, the total amount o f corrosion is equal to the total amount 

of precipitation in the entire loop [2],

qdx = 0 (2-15)
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The concentration o f the corrosion product at the wall is a function of the local

temperature. According to the oxygen control technique [32, 35, 36], the determination 

and the formation mechanisms for the concentration of corrosion product on the solid- 

liquid interface are very complex. The corrosion o f structural materials such as steel in 

molten LBE occurs via dissolution at very low oxygen concentrations, and through 

surface oxidation and reduction of surface oxides at higher oxygen concentrations. No 

matter which way the corrosion proceeds, it is usually sufficiently fast and the corrosion 

is limited by the mass transfer process. Therefore, the corrosion products’ concentrations 

are always at their saturated or equilibrium levels at the solid-liquid interface. When the 

oxygen concentration in LBE flow is low, the surface concentrations of the corrosion 

products in LBE equal their saturated concentrations, namely, the solubility in LBE

loge,, = loge, (2-16)

where e„ is the wall concentration, and c, is the solubility which can be calculated 

fi-om Eq. (1-4) with the coefficients from Table 3.

With the increase o f oxygen concentration level in LBE alloy, an oxide layer of 

magnetite begins to form, since the free energy of formation for ferrous ferric oxide is 

lower than bismuth oxide and lead oxide. Among ferrous ferric oxide (Fe304) 0 bismuth 

oxide (BizO]) and lead oxide (PbO), the free energy of formation for bismuth oxide is the 

highest. It is thus possible to “passivate” the surface of the structural steels in contact 

with LBE with a protective magnetite film (Fe304). The reactions for forming the oxide 

layer follow the Eq. (1-8) and (1-6). And the reaction on the protective magnetite film on 

structural surfaces submersed in LBE flow is (assuming magnetite Fc304 is insoluble)
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P b  - - F e ^ p ^ y +  Pb0^p^) (2-17)

If the concentration o f Fe in LBE is low and less than the equilibrium level, the 

reaction o f Eq. (2-17) proceeds towards the right hand side and Pb begins to destroy the 

formed FegO# film. The reaction ceases at a dynamic balance until the Fe concentration 

near the interface reaches the equilibrium level. Therefore, only when the oxygen 

concentration is very high will the précipitants of bismuth oxide (BiaOa) contaminate the 

coolant. The equilibrium constant is for reaction in Eq. (2-17) as

j r  = e%:p(------"O "to, ^
^Pb̂ Fe,0̂ (s) ŝ,Oxy ^s,Fe

Where a is the activity, with , ^Fe(Pb)’ ^pb’ ^Fe,o,w for activity o f lead oxide

in LBE, atomic iron in LBE, atomic lead in LBE and solid magnetite respectively. The 

activity cife^o^M is unity since Fe304 is assumed to be non-soluble in LBE. According to 

Zhang [10] and Li [35], the difference between the oxygen partial pressure for LBE and 

that for lead is small, so that the activity o f lead in LBE as unity is also reasonable,

is the oxygen concentration in LBE flow which can be in a unit o f wt% or wppm, and 

T  is the local absolute temperature in Kelvin.

Therefore,

3 3 ~7^Fe,0,~^Pb0
iog -  C^axy + 4  log Q ,  -  -  log = ----- 2303RT-----  ^

and the solubility in LBE can be expressed in Eq. (1-4) . After substituting solubility 

fi'om Eq. (1-4) for iron and oxygen,
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as

— AF® _  AF®
4 5  4 5  4 4

logC „ = - - io g C „ ,  + ( 4  + - ( A * - ) „  + -  (2-20)

The temperature dependence o f the free energy formation can be generally expressed

AF“ = ^ ^ + 5 ^ r  (2 -2 1 )

Therefore, for concentration of corrosion product in the solid-liquid interface in wt%

4 12844
logrC:,, = --i^logC^ 4 2X)23-------------------------------------- (2-22)

and for concentration of corrosion product in the solid-liquid interface in wppm

4 12844
logCp, = --i^logCcky 4-11.35()----- j ;- -  (2-:23)

According to thermodynamic analysis, the equilibrium concentration o f corrosion 

product in the solid-liquid interface in wt% can be expressed as

(2-24)

or, for concentration in wppm,

Cf, = (2-25)

Obviously, the axial concentration o f iron (the main dissolution corrosion product) at 

the wall is a function o f axial temperature profile in a non-isothermal loop or pipe. As 

discussed above, the concentration of corrosion product at the solid-liquid interface is at 

its saturated level via dissolution at a low oxygen concentration, while the corrosion 

species concentration reaches and stops (dynamic balance) at the equilibrium level
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through reduction reaction at the interface with the existence of the oxide layer at a 

higher oxygen concentration.

For a particular temperature, therefore, the corrosion production concentration at 

interface is given by the minimum of the saturation concentration from Eq. (2-16) and the 

chemical equilibrium concentration from Eq. (2-24) or (2-25). In formula, it can be 

expressed as the Eq. (2-26) or Eq. (2-27).

c* (2 -:!6)

for concentrations in wt%, while

(2-27)

for concentration in wppm.

2.4 Methodology

The governing equations were listed above based on the proposed physical model. 

Considering the boundary conditions in section 2.2, the governing equations (2-8) and (2- 

10) for mass transfer can be solved analytically with Fourier series expansion. First, a 

similarity solution of the concentration of the dissolution corrosion product, mainly Fe, in 

the laminar boundary layer is calculated. The corrosion or precipitation rate is easy to 

obtain for regions with different temperatures, from the concentration of the dissolution 

corrosion product in the laminar boundary layer. Then, the concentration of the corrosion 

product in the bulk flow can be calculated from Eq. (2-10).

The continuity equation and the time-averaged Navier-Stokes equation (i.e. the so- 

called Reynolds equation) for a steady flow and the time-averaged conservation equation
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for a species concentration of turbulent flow were solved numerically using Finite 

Volume Method (FVM). A structured mesh is created for the steady state numerical 

solutions. The standard k-e model was selected to model the turbulent flow in the 

pipe/loop systems. The eddy mass diffusivity in the cases will be calculated from some 

empirical formulas and linked to the numerical simulations instead of the default 

Reynold’s analogy. The corrosion product transport equation, together with the continuity 

and momentum equations, were then solved implicitly with a segregated iterative 

algorithm.

2.5 Analytical Solutions

2.5.1 Analytical Solutions for Open Pipe Flow 

Using Fourier series to expand the bulk concentration c,(^, 7 ) :

= c, + (2-28)

where c, (^, 7 ) is assumed to satisfy a partial differential equation (PDE)

and (7 ) satisfies the following ordinary differential equation (ODE)

d^Y
2ÆÜ7}^—^  = 0 (2-30)

Considering the boundary condition of the wall

C/(^,0) = c„(^) =
k*0
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where and o. are Fourier’s series coefficients,

(2-32)

and

«0 = (2-33)

Obviously, accounts for the mean wall concentration. The PDE (2-29) can be

transformed to an ODE by introducing in order to obtain a similarity

solution.

0 (2-34)

Taking into account boundary conditions, the ODEs (2-30) and (2-34) can be solved

(2-35)

Q[\

r

^1
(2-36)

where F stands for the Gamma function, while Ai is the Airy function with the cubic 

feet of the imaginary unit given by [34]:

f i " ' = V 3 / 2  + / /2  
l(-f)'^3 1 2 - 1 1 2

(2-37)

After substituting, Cj is expressed as:
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Gn
(2-38)

So the corrosion/precipitate rate q{^) at the wall into the fluid is equal to the diffusive 

flux given by Pick’s law and applied at the wall, namely.

9(^) =
Cl(\

r(i /3)
+

35L

n 1/3

2 4 f(0 )r ( l /3 )§ ^ ^ ^
(2-39)

Plug the Eq. (2-38) into Eq. (2-10) and the expression o f the concentration of 

corrosion product in the turbulent core region can be obtained as:

c*(f) = Co +
1 ( d J F ]

1/3
2g q

R - S y r(i/3)

-h
la,. /  T/

{iTdii) 1/3

SDL

9̂ ySDL

(2-40)

kJ  7ikAi{Qi)

where c„ is a constant decided by the boundary condition Eq. (2-13)

2.5.2 Analytical Solution for Closed Loop Flow 

In a closed loop case at a steady state, the total amount of corrosion is equal to the 

total amount o f precipitation in the entire loop, as shown in Eq. (2-15). Substituting Eq. 

(2-39) into Eq. (2-15), it can be found that the mean concentration in the turbulent core 

region c l= a ^  (the mean wall concentration) [10]. The corrosion production 

concentration in the laminar sub-layer region, therefore, can be expressed as

+Y,Yk(Jl)e (2-41)
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The solution for the closed pipe loop flow is obtained by substituting Eq. (2-41) to 

Eq. (2-8) in the following form

cM ,r i)  = «0 (2-42)

Consequently, the wall corrosion rate is given by 

9(^) = 3ÔL
  -------------------------------------------- (2-43)
24i(0)r(l/3)6

From Eq. (2-10), similarly, the concentration in the turbulent core region is obtained

Cft(^) = «0 + ^
f  n  • /  Tr

^  (2-44)
^Q7mAi{Qi) \d D L j

2.6 Numerical Model

The governing equations for velocity, momentum, and energy for a steady flow were 

solved numerically using FVM and a standard k-e model. As pointed out by Nelissen 

[62], the algorithm to calculate the eddy mass diffusivity strongly influences the local 

concentration distribution. There are a number of theories to predict the value o f eddy 

mass diffusivity. One typical model for turbulent diffusion is to assume turbulent 

diffusivity is proportional to the turbulent viscosity v , , i.e. turbulent Schmit number

Sc^ is a constant. It is the straightforward extrapolation of what is generally done in 

turbulent heat transfer [11, 62, 67]. More elaborate models consider the dependence of 

on some global quantities o f the flow (Re, Sc, boundary layer thickness, etc.) [60]. 

Another type of method is to calculate by an algebraic turbulence model. Several
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different models have been developed [61, 68-70], most of them based on one set of 

measurements. A typical model proposed by Malang [71] for calculation of high Schmidt 

number liquid metal flow is

A  =

0 0 < / : ^ 5
ü ( y V 5 - l )  5 < y  <30  (2-45)
0.005uRe°^^ 3 0 <y +

As shown in Eq. (2-45), in the core region ( >30), D, is assumed to be zero,

whereas in the mass transfer wall region (0< <30), D, is a function of and

molecular diffusivity. The eddy mass diffusivity in this study was calculated from 

Malang’s model and linked to the numerical simulations instead of the default Reynold’s 

analogy. The governing equations were solved implicitly with a segregated iterative 

algorithm.

2.7 Parameter Identification 

The proposed model was applied to the DELTA test loop filling with flowing LBE. 

The parameters o f DELTA loop adopted for the proposed models are [34]; Loop/pipe 

length L -  29.92 m , hydraulic diameter d  = 0.0525 m , liquid LBE velocity

Fj = 0.5 w / 5  , oxygen concentration in LBE -  0.01 p p m .

The density of LBE is obtained from Eq. (1-1). From Figure 4, the kinematic 

viscosity o f LBE is about a constant value at temperature from 500°C ~ 600°C . For 

simplicity, it can be estimated as t> = 1. 5x10“’ in the LBE loop. The molecular 

diffusivity of iron in LBE is approximated from Eq. (1-3). Therefore at 823.15 K, the
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diffusion coefficient is calculated in the r a n g e = 0.31 ~ 2 . 0 x 1 0 / s .  As reported 

in Ref [34], a medium value =1.0 x 10 / s  is usually employed for calculation of 

diffusion of iron in LBE flow.

The temperature profiles of DELTA loop with maximum temperature 

m̂ax =550°C= 823.15/f and temperature differences of AT = 50Æ , AT  = 200Æ and 

AT = 350K  are shown in Figure 36. The maximum temperature locates at the test leg, 

and the temperature is linear in each subsection.

900

int max

800 min

int

g) 700
recuperatorint heater

min

600
heat exchangisrrecupenitor

50 K 
200 K 
350 K

500
mm

m in

400 0.2 0.4 0.6
Loop/pipe length (x/L)

0.8

Figure 36. Temperature profile of the open pipe/DELTA loop, (T^^^ = 823.15AT,

7 L = ( 7 L + W / 2 ) .

Three wall iron concentration profiles were obtained from Eq. (2-27) and are shown 

in Figure 37. The maximum value o f the corrosion production concentration at the wall 

is 0.0257 ppm. The magnitude orders of the concentration at the wall are about 10^ ppm
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or lower before the heater and after the second recuperator for a ease with a temperature 

difference of or larger than 200 K.

0.03

0.025

0.02

^0.015

 ̂ 0.01

0.005

0.20 0.4 0.6 0.8 1
Loop/pipe length (x/L)

Figure 37. Wall concentration profile of the open pipe/DELTA loop.

In many real cases, it is difficult to keep the temperature distribution at a constant 

value or in a linear expression. Therefore, the corrosion/precipitation behaviors of open 

pipe/loop systems with a cosine axial temperature profile were also studied. The 

temperature profiles are expressed as Eq. (2-46);

J' = r „ „ + ^ c o s ( ^ ) (2-46)

The temperature profiles are shown in Figure 38. And the calculated wall corrosion 

production concentration profiles are shown in Figure 39. In these three cases, the

average temperature was kept the same at average 113.\5 K .
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Figure 38. Cosine axial temperature profile of the pipe/loop.
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Figure 39. Wall concentration profile of a pipe/loop with a cosine axial temperature

profile.
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The maximum temperature o f each case is no longer of the same value, which is 

different with the cases shown in Figure 36. Consequently, the maximum concentrations 

o f the iron at the wall have a relatively larger difference, valued at 0.0083 ppm, 0.0257 

ppm, 0.0749 ppm for temperature differences of 50 K, 100 K and 15OK respectively. For 

a cosine temperature distribution case, the temperature increases or drops more slowly 

than a linear temperature distribution case. As a result, the wall concentration gradient 

along the pipe/loop is smaller and the profile looks smoother. This is the main difference 

between a cosine temperature distribution case and a linear temperature distribution case.

2.8 Results and Discussion 

In the kinetic model, the corrosion/precipitation rates were calculated from Eq. (2-39) 

and Eq. (2-43) based on the different wall concentration distributions caused by the axial 

temperature distributions. The analytical solutions for both open pipe case and closed 

loop case are shown in Figure 40 and Figure 41. The positive values of the 

corrosion/precipitation rate correspond to corrosion, whereas the negative values 

correspond to precipitation. For the open pipe case, as shown in Figure 40, the 

corrosion/precipitation rate is different from the results in the Ref. [34], in which it 

assumed that the mean corrosion rate was linear with the transverse coordinate. For the 

open pipe flow case, the corrosion rate decreases, evidently, at the beginning section 

because o f the entry effect. The maximal corrosion rate occurs at the beginning o f the test 

leg, both in closed loop cases and in open pipe cases, as shown in Figure 41. Deposition 

occurs at the beginning part of the closed loop, which is different from the open pipe 

cases. At the test leg, a case with a larger temperature difference leads to a high corrosion 

rate even though the temperature at the test leg, , is the same.
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Figure 40. Corrosion/precipitation rates of an open pipe.
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Figure 41. Corrosion/precipitation rates o f a closed loop.
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The reason is that both the local temperature and the global temperature profile of the 

pipe/loop can affect the corrosion/precipitation behaviors. A case with a smaller 

temperature difference leads to a higher corrosion rate at the beginning o f open pipe 

systems for a given maximum temperature. However, at the beginning o f a closed loop, a 

case with a smaller temperature difference leads to a higher precipitation rate for a given 

maximum temperature. For a particular AT , the maximal corrosion rate and the maximal 

precipitation rate o f an open pipe case is larger than that of a closed loop case.
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£  0.03 

c
0.02
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m ax

X 0.01

O-0.01
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Loop/pipe length (x/L)
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Figure 42. Corrosion/precipitation rates of an open pipe with a cosine axial temperature

profile.

Figure 42 shows the corrosion or precipitation rate in an open pipe with an axial 

cosine temperature profile. While Figure 43 shows the corrosion/precipitation rate in a 

closed loop with cosine temperature distribution. Different from the cases o f pipe/loop
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systems with linear temperature profiles in each subsection, high corrosion was observed 

at the entrance of both cases. As shown in Figure 43, a maximum corrosion rate over 0.04 

mm/year can be observed. First, this is because o f the relatively high temperature at the 

beginning of the both cases. Second, the temperature and wall concentratoin drops more 

slowly after the maximum temperature in a cosine temperature profile case. In both cases 

o f closed loop and open pipes with a cosine temperature distribution, the precipitation 

regions occur at the section after the corrosion part (the entrance region o f the loop/pipe). 

And then, the precipitation rates keep decreasing until corrosion is observed again. The 

corrosion rates then keep increasing till they reach the maximum corrosion rate near the 

end part o f the loop/pipe.
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5  0.04

= 50 K 
= 100 KE 0.03 

o-.5 0.02

O-0.01

-0.02 0.4 0.6
Loop/pipe length (x/L)
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Figure 43. Corrosion/precipitation rates o f a closed loop with a cosine axial temperature

profile.
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Also, it was found that a larger temperature difference corresponds to a higher 

corrosion/precipitation rate in the closed loop. At the entrance region, the corrosion rates 

o f open pipes with a cosine temperature profile are higher than that of closed pipes with a 

cosine temperature profile because of the entrance effect. Moreover, it can be found that 

the corrosion rates have higher and steeper peaks, and the deposition rates have a 

relatively flatter profile in cases with cosine temperature distributions, compared with the 

cases o f linear temperature distributions.

In order to predict the eddy mass diffusivity effect on the corrosion behaviors in 

turbulent flow, corrosion/precipitation processes are numerically simulated for open pipes 

with AT=50 K, AT=200 K, and AT=350 K with different inlet velocities, as shown in 

Figure 44 to Figure 46.
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' t 0
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-------------- v= 0.1 m/s
------------v= 0.3 m/s
--------------  v= 0.5 m/s

0.2 0.4 0.6
Loop length (x/L)
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Figure 44. Corrosion/precipitation rates vs. inlet velocities of an open pipe with AT=50

K.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i
0.03 - Test leg

I  0.02

I
co

0.01 -

0
a
'5
g  -0.01

Î  - 0.02 
§
Ü  -0.03

v= 0.1 m/s 
v= 0.3 m/s 
v= 0.5 m/s

0.2 0.4 0.6
Loop length (x/L)

0.8

Figure 45. Corrosion/precipitation rates vs. inlet velocities of an open pipe with AT=200

K.
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Figure 46. Corrosion/precipitation rates vs. inlet velocities of an open pipe with AT=350

K.
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Figure 47. Corrosion/precipitation rates vs. inlet velocities o f a closed loop with AT=50

K.
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Figure 48. Corrosion/precipitation rates vs. inlet velocities of a closed loop with AT=200

K.
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Figure 49. Corrosion/precipitation rates vs. inlet velocities o f a closed loop with AT=350

K.

Figure 47 to Figure 49 show the numerical solutions of the corrosion/precipitation 

rates for closed loop cases AT=50 K, AT=200 K, and AT=350 K with different inlet 

velocities.

The eddy mass diffusivity, which was neglected in the analytical solutions, was 

considered in the numerical solutions. And the mass transfer equation was calculated 

together with the continuity and momentum equations. The eddy mass diffusivity is 

calculated using a typical S. Malang model [71] as in Eq. (2-38), in the numerical 

simulations. The profiles in Figure 44 to Figure 49 illustrate that a higher temperature 

difference leads to higher corrosion and precipitation rates, obviously, which agrees with 

the tendency from the analytical results. The maximum corrosion rates and deposition 

rates of cases with AT=350 K can be triple the values o f cases with AT=50 K (Figure 46
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vs. Figure 44, or Figure 49 vs. Figure 47). The figures also indicate clearly that the 

velocity can affect the corrosion/precipitation rate. A case with a higher inlet velocity 

tends to have a higher corrosion rate at the test leg and a higher precipitation rate after the 

test leg, although the relationship between the corrosion rate and the inlet velocity is not 

simply linear. Moreover, the momentum of the fluid flow influences the mass transfer 

behaviors. In the numerical simulations, the molecular diffusivity and eddy mass 

diffusivity were calculated at the same time, and these results also impact the 

corrosion/precipitation rates in the pipe/loop, since the eddy mass diffusivity is a function 

depending on the bulk velocity.

Later on, the analytical solution and numerical solutions were compared for a same 

inlet velocity, for example, V=0.5 m/s. Figure 50 to Figure 52 show that the similar 

tendency o f the corrosion/precipitation behaviors can be observed in the numerical 

solutions and analytical solutions. This means that the simplified kinetic model is 

reasonable and can be used to predict the corrosion/precipitation rates in an open 

pipe/loop LBE systems. However, differences were observed between the numerical and 

analytical solutions. The curves o f the corrosion rates for the numerical solutions in the 

test leg region are steeper than those of the analytical solutions. At the beginning o f the 

test leg, the calculated corrosion rates o f the numerical solutions are higher. For a case 

with AT=350 K, the differences of the corrosion rates at the beginning of the test leg 

region are significant between the analytical solutions and the numerical solutions, valued 

at 0.017 mm/year and 0.030 mm/year respectively. Similarly, the maximal deposition 

rates have large differences between analytical solutions and numerical results, right after 

the test leg region. These differences are mainly caused by the eddy mass diffusivities
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which were considered in the numerical models. With increasing temperature difference, 

this difference is found to be more obvious.
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Figure 50. Comparison of analytical solution and numerical solutions for AT=50 K.
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Figure 51. Comparison of analytical solution and numerical solutions for AT=200 K.
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Figure 52. Comparison of analytical solution and numerical solutions for AT=350 K.

Therefore, the eddy mass diffusivities should be considered in order to calculate the 

corrosion rates more precisely, especially for a case with a large temperature difference.

For mass transfer controlled corrosion, the Sherwood number in a non-isothermal 

LBE pipe/loop system can be written as

 q{^)d (41)

To capture the mass transfer characteristics at the isothermal test leg in a non- 

isothermal pipe/loop, the Sherwood number at the test leg was investigated. Figure 53 to 

Figure 55 show the variations o f the Sherwood numbers at the test leg region for open 

pipe flows and with AT=50 K, AT=200 K, and AT=350 K. The Sherwood numbers at the 

test leg region for the closed loop cases with AT=50 K, AT=200 K, and AT=350 K are 

shown in Figure 56 to Figure 58.
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Figure 53. Sherwood number variations at the test leg for an open pipe,

T = m . \5 K ,A T  = 50K .
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Figure 54. Sherwood number variations at the test leg for an open pipe, t   ̂ = 823.15AT,

AT = 200K .
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Figure 55. Sherwood number variations at the test leg for an open pipe, 

T =823.15%, AT = 350%.
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Figure 56. Sherwood number variations at the test leg for a closed loop,

T = S 2 3 . 1 5 K , A T  = 50K.
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Figure 57. Sherwood number variations at the test leg for a closed loop, = 823.15Æ,

AT = 200A:.
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Figure 58. Sherwood number variations at the test leg for a closed loop, 

T =823.I5^,A T = 350Æ.
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For all of the cases, the Sherwood number decreases sharply from the beginning of 

the test leg to the minimum value at the end of the test leg. The figures show that the 

temperature difference affects the Sherwood number clearly. A larger temperature 

difference leads to a larger Sherwood number for both the open pipe cases and the closed 

loop cases. Comparing the cases o f the open pipe and the cases of the closed pipe, it is 

easy to find that the Sherwood number is larger in the cases o f the open pipe cases for a 

given temperature difference. The inlet velocity effect on the Sherwood number is also 

complex. At the beginning o f the test leg, a larger inlet velocity tends to have a higher 

Sherwood number. However, some of the curves o f the Sherwood number cross each 

other in the test leg region. This is because the relationship between the Sherwood 

number and the inlet velocity is not simply linear, and both the momentum and the eddy 

mass diffusivity of the fluid flow affect the mass transfer process.

To benchmark the proposed kinetic model and extend it to other non-isothermal 

liquid metal loop systems, the correlation for the closed loop flow to a non-isothermal 

pure lead loop built by Sanier and Santarini [72] is applied. In their experimental study, 

the oxygen level was assumed to be very low. The wall concentration of iron in pure lead 

is determined by the dissolution process at a low oxygen level, and thus is calculated by

C,, = (42)

The following parameters are considered: the internal diameter o f the tube is 0.0247 

m and the length is 6 m; the highest temperature in the loop is 823.15 K (at the test leg) 

and the lowest temperature is 738.15 K; the flow velocity is 0.115 m/s. The kinematic 

viscosity of pure lead is estimated to be 1.65x10’’ . The density is obtained from
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Eq (39), where = l \ A A l % k g l =  Q.QQ\21 kg!K-rri^ for pure lead. As reported 

in Ref [10], the moleeular diffusivity of iron in pure lead is in the same order of that in 

LBE, and the moleeular diffusivity is slightly higher, so =\.5x\Q~^ Is  is 

employed for calculating the pure lead loop.

The temperature distribution and corresponding wall concentration of iron is show in 

Figure 59.
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Figure 59. Wall temperature distribution and the wall concentration o f iron o f the

experiment o f the pure lead loop.

The experiments were carried out at three locations in the test leg. Two types of steel 

at the highest temperature were considered. For steel lOCD 9-10, the experimental 

corrosion rate was between 75+ 2 0 -1 1 0  + 2 0 /m  after 3000 hours, and steel Z 10 CD 

Nb V92 was between 25 + 2 0 -4 0  + 20/m afte r 2800 hours. The predicted corrosion rate
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from the model of Balbaud-Celerier and Barbier was about 239 /jm after 3000 hours, 

which was 2.1 times higher than the maximal experimental results [15].
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Figure 60. Comparisons between the experiment data [72], numerical and analytical 

results from the model for the pure lead loop.

Figure 60 shows the numerical solutions, analytical solutions from the proposed 

models and the comparison with the experimental data. As can be found, the corrosion 

rates o f the numerical model in the three test locations are in the experimental data 

region. Therefore, the numerical model predicts the corrosion rate accurately. The 

analytical result also predicts the corrosion rate with an acceptable error, considering the 

test error and impact of the molecular diffusivity. Moreover, the numerical model 

predicts a higher corrosion rate in the test leg region and a higher precipitation rate right 

after the test leg than that in an analytical result, since the eddy mass diffusivity is 

considered. Those observations agree with the analysis of the proposed model above.
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Thus, the analytical expression can be used to predict the corrosion/precipitation rates for 

lead and the lead alloy coolant system. The analytical prediction is precise, and the result 

is easy to obtain with explicit expressions. Compared with the results of Ref. [15], both 

the numerical simulation and the analytical calculation are more accurate. Hence, the 

proposed numerical model can calculate the corrosion/precipitation rates more precisely 

and accurately since the fluid condition and eddy mass diffusivity is considered.

2.9 Conclusions

A theoretical kinetic model based on the boundary layer theory was developed to 

predict the corrosion/precipitation in non-isothermal lead alloy pipe/loop systems. By 

considering a turbulent core region and a laminar sub-layer, the mass transport equations 

in both regions were solved. The analytical expressions o f both the local corrosion/ 

precipitation rate and the hulk concentration o f the corrosion products were obtained. The 

present kinetic model is applied to the DELTA test loop with specific axial temperature 

distribution. Based on the present model, it was found that the maximal corrosion rate 

occurs at the beginning o f the maximal temperature region both in the open pipe flow 

case and the loop flow case, and there is a precipitation region shortly after the high 

temperature leg. At the beginning region, the corrosion rate decreases sharply in the open 

pipe flow case. The temperature difference between the maximal and minimal 

temperatures affects the corrosion/ precipitation rate significantly.

The corrosion or precipitation rates in an open pipe/closed loop with an axial cosine 

temperature profile were also investigated. High corrosions were observed at the entrance 

of the cases with an axial cosine temperature profile, which are different with the cases of 

the pipe/loop system with linear temperature profiles in each subsection The reasons for

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the difference are the relatively high temperature at the entrance and slower drops of the 

temperature and wall concentration after the maximum temperature in a cosine 

temperature profile case. Moreover, it can be found that the corrosion rates have higher 

and steeper peaks, and the deposition rates have relatively flatter profile in cases with 

cosine temperature distributions, compared with the cases o f linear temperature 

distributions.

For the first time, the eddy mass diffusivity is coupled in the present numerical model 

in order to demonstrate the effect of the eddy mass diffusivity on the corrosion and 

precipitation in non-isothermal lead alloy pipe/loop systems. From the comparison of 

numerical and kinetic models, the eddy mass diffusivity has an obvious effect on the 

corrosion/precipitation behaviors, especially when the temperature difference is large. At 

the test leg, where temperature is at a maximum, the eddy mass diffusivity increases the 

corrosion rates. In addition, at the temperature dropping region right after the test leg, the 

eddy mass diffusivity leads to a much higher deposition rate. In the numerical model, the 

influence of flow conditions were also studied, such as the inlet velocity. For a higher 

inlet velocity, a higher corrosion rate can be found in the test leg region and a higher 

precipitation rate at the temperature dropping region right after the test leg. The average 

Sherwood number at the test leg section with the highest temperature for both open pipes 

and closed loops are also presented and analyzed.

In summary, both the analytical and the numerical solutions for a simple lead loop 

were compared to the experimental data and were in agreement. For a more precise and 

accurate prediction, the eddy mass diffusivities should he considered, especially for a 

case with a large temperature difference.
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Finally, it should he noticed that the present model is only suitable for the high 

Schmidt number cases, which means the mass diffusion layer is submerged under the 

hydraulic boundary layer. Meanwhile, although the present solution is proposed for 

modeling the mass transfer corrosion in LBE pipe/loop systems, it can be extended to the 

other general problems of high Schmidt mass transfer for the developed turbulent wall- 

bounded shear flows in a non-isothermal system.
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CHAPTER 3

A DIFFUSION CONTROLLING OXIDATION MODEL WITH SCALE REMOVAL IN

OXYGEN-CONTAINING LIQUID FLOW

3.1 Introduction

A diffusion controlling oxidation model considering scale removal is developed in an 

oxygen-containing liquid flow environment. Scale removal is implemented and the effect 

of scale removal rate on the formation mechanism of duplex oxide layer structure is 

analyzed in the model. The volume expansion effect caused by density difference is 

coupled with the weight gain during oxidation. A coordinate transform technique is 

employed to obtain the diffusion equations with an advection term. The governing 

equations are nondimensionalized and analogized with the Stefan problem and solved 

numerically by the finite difference method. The nondimensional parameters are studied 

and the model is extended to an oxide growth model with duplex layer structure and 

noble elements. The model is benchmarked with previous results and good agreement is 

obtained.

3.2 Literature Survey

The study o f the corrosion and oxidation of metals has been for many years a subject 

o f considerable research effort because of its basic scientific interest as well as its 

technological importance. The severe corrosion o f materials presents a critical barrier to
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their industrial use in many cases. For example, it is widely recognized that the 

corrosiveness of the lead alloys is a critical challenge for safe applications as a potential 

coolant candidate in advanced reactors. [10, 19, 21, 36] In liquid flow, especially in 

liquid metal flow at high temperature, forming and maintaining a protective oxide layer 

by an oxygen controlling technique is one o f the most efficient ways in protecting the 

containment and structural materials from critical corrosion. As reported, the main 

driving force for corrosion in liquid metal flow is the chemical potential for dissolution of 

all solid surfaces in contact with the liquids. [10, 19] The oxide layer separates the 

structural materials from the corrosive liquid flow and works as an effective solid-state 

diffusion barrier for oxygen and solid components.

The oxidation of metal in a liquid flow environment is very complex because many 

interactions are involved during the process. For example, the selective corrosion and/or 

oxidation occur because of the added alloying components and impurities. The flow 

conditions induce and enhance scale removal at the same time. Furthermore, the oxide 

layer and the remained components may restructure during the process. Among those 

phenomena, scale removal plays an important role, especially for high flow velocity at 

high temperature, through scale dissociation, volatilization, corrosion, erosion, etc. 

Therefore, scale removal can increase the corrosion rate and make the oxide layer 

unstable in structures easily broken away. [3] A duplex oxide layer structure can usually 

be observed in aqueous environments and liquid media. As a complex nonlinear process, 

the evolution o f the oxide layer structure o f steel, in a liquid environment containing 

oxygen, strongly depends on steel compositions, temperature and hydraulic factors. [10, 

74]
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Although studies were conducted and conclusions were drawn during the study of 

theoxidation process in liquid flows in many countries, convictive results are still scare 

and scattered. In order to interpret the existing data and to predict the oxidation and 

corrosion conditions in oxygen containing flowing liquid, it is necessary to develop 

kinetic oxidation models and study the oxidation process systemically. Several models 

assuming that the outer layer formation is due to the precipitation of dissolved metals 

have been presented in an aqueous environment. [27, 75-77] However, experimental 

results have shown that a porous outer layer can be formed on the gas/oxide interface 

even in a gaseous environment. Robertson [46, 78] developed an oxidation model for 

steel in steam and water at high temperature, in which he assumed the outer layer is 

formed due to the solid diffusion of iron and the inner layer is caused hy the water 

reaching the inner surface through micro-pores. According to Robertson’s model, the 

corrosion rate is independent of the liquid flow velocity and the partial oxygen pressure 

in the flow. However, studies and tests indicate that the oxide layer thickness depends 

strongly on the flow velocity and oxygen dissolved in the liquid. Actually, both the 

diffusion of metal and the diffusion of oxygen in liquid flow control the growth of the 

oxide layer. [27] The mechanism of duplex oxide films formation is very complex and 

not well understood at the present time. Stated simply, the porous outer layer is formed 

hy the reaction of oxygen and the component element in metal which has a high mass 

diffusivity and is easily oxidized. The compact inner layer is fonned by the remained 

components in metal material, together with the reactant of the active components and 

oxygen diffused inwards.
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As stated by Wagner [47] and Coates et al. [79], the diffusion controlled oxidation 

problem is difficult to solve because it is a moving-boundary problem and complication 

arises from the change in density as metal is converted into oxide. By analogy with the 

Stefan problem, Wong and Caldwell et al. [80, 81] solved the oxygen diffusion 

controlling oxidation problem for pure zirconium using finite difference methods. Neither 

Wong nor Caldwell considered the weight o f oxygen in the oxide and Caldwell even 

neglected the volume changes due to the density changes. Only a simple single layer 

structure oxide is formed for pure zirconium and no scale removal effect was studied 

because they developed the model for high-temperature steam. Ding [82] proposed a 

model for the oxidation of titanium in which the diffusion equation of oxygen was solved 

and the volume of titanium was replaced by the oxide simply. To the best knowledge, 

there is no model considering density change, oxygen weight absorption, and duplex 

oxide layer structure, together with scale removal effects in oxygen containing flowing 

liquid.

3.3 Theory

In the present study, an extensive diffusion-controlling oxidation model, with scale 

removal in oxygen containing liquid flow, is developed for metal or metal alloy 

materials. In oxygen containing liquid flows, the concentration o f oxygen is assumed to 

be uniform so that the diffusion of oxygen in the fluid is not considered. The molar 

density o f oxygen will be calculated in the oxidation process. On the interface o f liquid 

flow and solid structure material, the molar density of oxygen is assumed to be at a 

constant value, C mo, Assuming that only the component o f element M  in the metal 

materials has a high mass diffusivity in the oxide layer and only M  reacts with oxygen.
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Other components have relatively lower mass diffusivity, so their diffusion in the 

material and their reaction with oxygen are negligible. From time t=0, the active atomic 

oxygen begins to diffuse into the material and react with the active component M in the 

material via the following reaction:

+ (3-1)

After the oxide layer, mainly M%Oy, is formed on the surface of the metal, oxygen 

continues to diffuse inwards and M begins to diffuse outwards through this barrier. The 

oxygen which diffused inwards reacts with M behind the oxide layer and this part o f the 

oxide forms the compact inner layer, together with all other remaining inert components 

of the structure materials. The reaction behind the oxide layer accounts for the inner 

volume expansion o f the oxidation process. On the other hand, M keeps diffusing out and 

reacts with oxygen on the outer surface o f the oxide layer and forms a new porous outer 

layer. This reaction may occur as well inside the oxide layer, partly, which will cause 

redistribution of the oxide structure during the process. At the same time, the oxide layer 

is undergoing a removal caused by the fluid flow. The reaction on the outer surface of the 

oxide layer, inside the oxide layer, and the removal o f scale, all account for the outer 

volume expansion. The value o f the outer volume expansion can be negative, which 

indicates a decrease in the thickness o f the oxide layer. This decrease takes place 

especially in high turbulent flows, multi-phase flows with aggressive particles, or on the 

structure surface with a high shear stress. The consequent fast removal o f the oxide layer 

results in a fast erosion on the outer surface of the oxide layer.
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The diffusion of metallic element M is assumed to be faster than the diffusion of 

atomic oxygen. Thus, the oxidation is controlled by the diffusion of oxygen, and only the 

diffusion equation of atomic oxygen during the oxidation will be solved. However, the 

mass conservation of M is involved, which accounts for the diffusion result o f M. As 

illustrated in Figure 61, the simplified oxidation process, considering the volume 

expansion effect, is illustrated from time t (a) to t+At (b). The atoms M from a layer of 

are assumed to be oxidized during this period. The weight ratio o f M in the material, w, 

can he checked out from the material manuals. As analyzed above, the atomic M reacts 

behind the oxide layer, inside the oxide layer, and even on the outer surface of the oxide 

layer. Hereby, an important parameter is introduced, p, which stands for the ratio of inner 

reacted atomic M out of the total reacted atomic M. Thus, 1-p o f the reacted atomic M 

reacts inside the oxide layer or on the outer surface of the oxide layer. At time t+At, an 

inner layer of A6m is formed, and oxide of a thickness ASout is formed after the scale 

removal. Let Kr to be the scale removal rate constant.

The original point o f the calculating coordinate is set at the outer surface o f the oxide 

layer. The moving of the oxide layer as a whole suh-domain is neglected, since the 

oxidation occurs in the whole sub-domain, and there is a scale removal which causes a 

relatively small movement, compared with the movement of the metal. Consequently, the 

oxide-metal interface moves at a velocity of V qm , and the coordinate changes from 5(t) to 

5(t) +A5tot- The remaining metal is moving at a velocity of Vm6, since there is a volume 

substituting effect. The concentration o f oxygen in the oxide phase satisfies the equation,

dC cP'C
— — = 0 (3-2)
ot dx
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Liquid Oxide Metal

(a) at time t

Liquid Oxide Metal

I

L(t+A t)

(b) at time t+At

Figure 61. Illustration of the oxygen-controlling oxidation process.

And as a result o f the moving of metal, the concentration of oxygen in the metal 

phase satisfies:
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dC dC ci^C
^  + = 0 > C > 0  ( 0 . 1 ( 0  >% > ^^,(0 ) (3-3)
^  ck 8 c

where, L(t) is at the far end o f the specimen away from the exposed end. Obviously,

Lit) = 1q + ^Me  ̂ (3-4)

where Lo is the original thickness of the specimen.

To find out the metal phase moving velocity Vmb, the mass conservation o f element 

M is considered. For the reaction behind the oxide layer:

^PPmĉ ^  -  APin^^in -  P mc (̂  “  ^)AA] (3-5)

where r is the fi-action o f mass of atomic M in the oxide molecular and.

M

which can be written as.

(3-6)

For the reaction other than behind the oxide layer:

-  .P)/7A&AA = (A ^ ^  + X , A/) (3-7)

So,

A a., .  + (3-8)

(3-10)
m m
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where, V qm is the moving velocity of the oxide-metal interface

(3-11)

and,

m M l -  P) (3.12)

In Eq. (3-12), m is a complex factor. It consists of the densities of metal, inner oxide

and outer oxide, the atomic mass fraction of mass of metallic element in its oxide

molecular (r), and the inner reaction ratio (p), and weight ratio of element M in the

material (w).

Introduce

C ‘ = - ^  (3-13.a)
^oo

X  ——  (3 -13 .b )
^0

(3-13.C)
4

(3-13d)

and the Eq. (3-2) can be nondimensionalized to:

= 0  yb . 1 > c  > c ; ^ ( o . r ( / )  > %' > (3-14)

Similarly, Eq (3-3) follows the form.
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^  + = » f o r C „ ^ > C  > 0 (o rS :„ ( l - )> x  >0) (3-15)
e t  dx dx

Let

(3-16.a)
^Me

< = 4 f ^  (3-16.b)

Obviously, for a case with an initial condition of zero oxide layer thickness.

(3-17)
M

Thus,

^Me -  (1  WoM   (3-18)m m

Where,

r (r )  = #  (3-19.a)
4

= (3-19.b)
L/,0

(3-19.C)
^OO

c ' „ „ = ~  (3-19.d)
^oo

To simplify this problem, the coordinate is transformed by introducing.
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T =  i

1 ( 1  + ̂ ) % '
m V,OM

X - ( 1  )h— - t  fo r  L {t ) > x  > 5,^ft )
m m

(3-20)

Even though the transformation differentiates between the oxide and metallic phase, y 

is continuous at the oxide-metal interface for a case with an initial condition o f zero oxide 

layer thickness. Meanwhile, y is a dimensionless variable as well.

yi^m  )) -  )) -  yoM (O  -  — (O  + —- 1m m
(3-21)

Another merit of this coordinate transformation is that the far end o f the specimen is 

kept at a constant value Lo, in the new coordinate system.

y ( / = r  ( / ) ) = ! (3-22)

Due to the transformation.

dC
dx*

m CM

d c
(3-23)

dt m m dy

(3-24)

After substituting, the governing equations become:

8 C 1

dt m
=  0 (3-25)
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dt dy
= 0 yb . r  (f'  ) > x ' > ^2, (f ' )  (3-26)

8C 8"C .................................... ^ .

Let

+ (3-27)

(3-28)

Then the governing equation in all phases can be expressed in the same form:

= 0 (3-29)
dt dy

The boundary conditions are analyzed as below. On the outer surface,

C = 1 at y = 0 (x = 0 ) (3-30)

At the interface between the oxide and the metal material.

C at y (x  - S , ^ f t  )) - — ô,^ft  ) + — - t  (3-31)
m m

^  ~^Mo  y(x - S f ( t  ) ) - — S f ( t  ) + —~t  (3-32)
m m

At the end of the specimen,

dC*
- ^ L % -  = 0 czf X /  = r ( 0 ) = l  (3-33)

In order to solve the above equation numerically, the function D* of C* is extended 

from 0 to the maximum value of the concentration at the outer surface. The value of D*
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is set to zero in the unphysical interval o f C* between C*q̂  and . By this extension, 

the Eq. (3-29) is now regarded as a nonlinear diffusion equation without restriction on the 

value of C*. With this extension, the interface condition of the conservation o f oxygen to 

join the governing Eqs. (3-2) and (3-3) now can be ignored.

A Kirchkoff transformation technique is applied by introducing [80],

(3-34)

The relation of Z and C* can be shown in Figure 62. Therefore, a dimensionless 

equation can be obtained.

(3-35)

Unphysical
interval Oxide

Metal

O

Figure 62. The function Z (C ’) with unphysical interval of Z)* = 0.
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In this form, the diffusion problem is analogous to the Stefan problem in the enthalpy 

formulation. [80]

Where H is the specific enthalpy and T is the temperature. In the phase change 

region, the specific latent heat keeps the temperature at a constant value, which is 

analogous to the constant Z value during the unphysical interval where D* is forced to be 

zero. Obviously, the functions Z(C*) and T(H) have similar behaviors, and numerical 

methods can be used to solve the analogous Stefan problem.

3.4 Methodology

A forward-in-time, center-in-space, finite difference method is adopted for the 

numerical solutions of Eq. (3-35). An implicit method assures the unconditional stability 

o f the numerical results along with the boundary conditions (3-31, 3-33). The Newton- 

Raphson’s method is adopted for an iterating solution from C* to . After

arrangement, a system of linear equations for with tri-diagonal matrix coefficients

is obtained and the Tri-Diagonal Matrix Algorithm (TDMA) is used to solve the matrix 

efficiently.

The normalized D* is a function of , thus it is a function of time. The inter 

surface moving velocity Vq̂  is calculated at each step and is taken into account, together 

with C*, in determining the value o f D *. Usually A* is a very small value in real cases. 

When k I is much smaller than , the scale removal effect can be neglected during the
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calculating procedure of the diffusion equations for each time step. However, the scale 

removal effect impacts the solutions through the removal of oxide from a previous step to 

the next step, since the coordinate is adjusted each step after removal. This simplification 

is valid especially for a slow scale removal case or for a fast oxidation case. In these 

cases where D*q̂  is not a function of time, the calculation time is decreased greatly by 

this simplification. In a simple inner oxidation model for pure metal materials, m = B l r , 

where B is the Pilling-Bedworth ratio.

3.5 Results and Discussions 

To prove the validity of the proposed macroscopic model, simulations are conducted 

based on the diffusion controlling model. The calculated results are benchmarked with 

some previous work with a different metallic material. Also, the present model is 

benchmarked with experimental data on oxidation of stainless steel in LBE. In the end, 

duplex oxide layer growth will be studied from this model.

3.5.1 Benchmark 1: Oxidation of Pure Zirconium without Scale Removal 

This new oxidation model is benchmarked with both the experimental data and the 

numerical results from reference [80, 83]. In this simple model, the inner oxidation 

process is considered for pure zirconium without scale removal in a short time span of 

460 seconds. The weight gain is calculated and a good agreement is obtained with the 

published results, as shown in Figure 63. Actually, the weight gain calculated by Moalem 

and Olander [83] using an integral approach with the real value of mass diffusivities of 

oxygen is much lower than the experimental data. The numerical results of Moalem and 

Olander [83] shown in Figure 63 were obtained by multiplying the diffusivities of oxygen
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by four. Obviously, the present model and Wong’s model [80] show advantages in 

estimating the weight gain of zirconium than Moalem and d a n d e r’s numerical model 

[83]. The weight gain increases quickly at the initial stage and slows down gradually 

during the oxidation process.

500 500

400 -  400

O)
300 300

it
.2 » 200 200

Experiment (Moalem and Olander 1990) 
Numerical Solution(Moalem and Olander 1990) 
Numerical Solution (Wong 1997)
Numerical Solution (Present Result)100 100

100 200 300 400
Time (s)

Figure 63. The weight gain with time for the oxidation of pure zirconium without scale

removal.
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3.5.2 Benchmark 2: Oxidation o f Pure Titanium 

Ding [82] proposed a model in which the oxidation of titanium was calculated. In 

Ding’s model, only the diffusion equation o f oxygen was solved and the volume of 

titanium will be replaced by the titanium dioxide simply.

I I  I  I  f  I  I

b  oxide

Ding s  result
— A  *— Model with vloume expansion only
-  -  Q - -  Model with volume expansion & scale removal

oxide i

oxide

10 20 30 40 50 60
Distance from the original surface (micron)

Figure 64. Distribution of the oxygen concentration at time t=0.5h (Kr=2 xlQ'® m/s for the

scale removal model).

Figure 64 shows the comparison o f the model, considering both volume expansion 

and scale removal, the model considering volume expansion only, and Ding’s model. In 

Ding’s result, an oxide layer of thickness Ôq is formed in a time interval of 0.5 hours. The
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layer o f titanium dioxide replaces the same thickness o f the consumed titanium in 

volume. In the first new model that considers the volume expansion, the inward 

movement o f the inner surface and the outward movement o f the outer surface are 

observed in the oxide layer. The thickness o f oxide layer 5i is larger than ôo, for the 

reason o f volume expansion. In the model that considers both volume expansion and 

scale removal, a thickness decreasing in the oxide layer is observed. It should be noted, 

that the thickness o f oxide layer Ô2 can be larger than Ô0, when the oxide growth rate is 

larger than the scale removal rate. To benchmark the new model, input data for the 

oxidation of titanium were used from Ding’s model, and the results were compared with 

Ding’s solutions. From Figure 64, the calculated results agree very well with Ding’s 

calculation, and the proposed models show advantages in considering volume expansion 

and scale removal effect.

3.5.3 Benchmark 3; Oxidation of Stainless Steel in LBE 

The oxidation problem of stainless steel in LBE has been studied for years as a 

challenging research topic to mitigate the LBE corrosion on the stainless steel. [3, 10, 21, 

26, 27, 43, 74] As reported in Ref [43], at a temperature o f 743K, specimens of US 

martensitic steel. Batman 28, were tested in flowing LBE. The flow velocity was 

\ . 9 ± Q . \ m l s , and the oxygen concentration was maintained a t ( l - 2 ) x l0 “'’w t% . The 

oxidation layer thickness was measured to bel2 //w ,15  jjm , and 17 jjm after 1,000, 2,000, 

and 3,000 h of exposure, respectively. Applying a constant scale removal rate 

= 7.0x10 *̂ «7 /5  [27], the oxide layer thickness is calculated and compared with the 

experimental data. From Figure 6 6 , the numerical results from the present model agree 

with the experimental data.
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Calculated Thickness 
Experimental Data (Barbler2001)
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Time (1000 hours)

Figure 65. Benchmark with the experimental data.

3.5.4 Parametric Study 

The oxide layer thickness is studied for different values of normalized parameters 

D*q̂  , m, and . From Eq. (3-13.c), the unity of t* corresponds to a very large time scale,

since has a much smaller value than in the same unit system. So the cases are

shown only for the normal time t*from 0 to 0.1. Figure 6 shows that the oxide layer 

grows following a parabolic tendency, and the thickness increases faster with a smaller 

value of K I  with = 0.5 and m=1.5. The case of K] = 0 is for the oxidation process

without scale removal. From figure 6 , it is found that the oxide layer keeps growing 

unless a high scale removal exists. The growth rate of the normalized thickness is very 

high at the initial stage as well, which will drop down with time increases. For a case
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with K I = 1.0 , the thickness o f the oxide layer approaches a constant value after a long 

time. This means the oxidation is in a dynamic equilibrium with the scale removal, and a 

protective oxide film with a constant thickness will remain on the surface of the structural 

metal. In many applications o f metal passivation, this is the expected result since erosion 

will damage the structure and a fast growth of the oxide layer will jam  the fluid flow, 

especially in pipes.

0.25 0.25

0.2 0.2

&  0.15 0.15

g , 0.05 0.05

■o Ki*=0
Kt*=0.2
Kt*=0.5
Kr*=1.0

-0.05 -0.05

- 0.1 -0 10.02 0.04 0.06  
Time (t*)

0.08

Figure 6 6 . The impact of = 0.5 and m=1.5).

Physically m (expressed in Eq. (3-12)) is a factor which consists o f the density 

change, oxygen absorbing, impurity of the material, etc. Usually, m is a value larger than 

unity. The parameter of m is very important and it controls the developing speed of the 

oxide layer and the ratio of inner oxide layer thickness to the outer oxide thickness. 

Figure 67 illustrates how the parameter m influences the oxide layer growth for cases of
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= 0.5 and K*̂  = 0.2. From the comparison, the oxide layer grows obviously faster

with a larger value o f m. From the expression of m, a larger value o f the Pilling- 

Bedworth ratio and a smaller value of r both lead to a larger m and hereby cause a faster 

growth of the oxide layer.

0.3 0.3

0.25 0.25

0.2 10.2

£  0.15 0.15

m=2.0
m =1.5
m =1.2
m =1.0

0.05 0.05

0.02 0.04 0.080.06  
Time (t*)

Figure 67. The impact of m ( Æj = 0.2 andD^^ = 0.5 )

The impact o f is shown in Figure 6 8 , where K l = 0.2 and m=1.5. With a higher 

value of , the oxide layer grows faster. This is understandable since the oxide layer is 

the main obstacle for the diffusion of oxygen during the oxidation process. With the 

given value of K] and m, the thickness of oxide layer grows very slowly for the case 

ofDg^ =0.1 . When the value is enhanced to 0.8, the thickness o f the oxide layer

reaches about 7 times o f the thickness for the case oîD*^^ =0.1 at t* =0.1 .
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Figure 6 8 . The impact of (ATj = 0.2 and m=1.5).

In reference [80], the weight o f atomic oxygen in oxide was neglected during the 

derivation in the volume expansion. However, for many metals, the weight o f atomic 

oxygen in oxide is a large proportion of the molecular weight, and it plays an important 

role during the oxide process. For example, the weight ratio of atomic oxygen quantitates 

at 0.276 for Fc304 , 0.260 for ZrOi, and 0.400 for TiOi. In order to check the impact of 

the oxygen weight, the weight ratio o f metal in its oxide, r, is studied for the oxidation of 

titanium. The cases with r= l neglect the atomic weight of oxygen in TiOi. From Figure 

69, it is found that the oxide layer keeps growing if  there is no scale removal, or if  the 

scale removal rate is low. Similar to the model for zirconium, the growth rate is very high 

at the initial stage and becomes slower with oxidation processing.
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Figure 69. Total oxide layer thickness for r= l.

In Figure 70, all the cases neglect the atomic weight of oxygen in TiOi. The oxide 

layer growth for r=0 .6 , which considers the impact of the atomic weight o f oxygen in 

TiOi is examined and the results are shown in Figure 70. Compared with cases in Figure 

69, a slower growth rate of oxide layer can be found. For the cases with high scale 

removal rates, the maximum thickness of the oxide layer is less than the results without 

considering the atomic weight of oxygen. And erosion occurs much earlier if  the atomic 

weight o f oxygen is considered. In Figure 71 and Figure 72, the net volume change o f the 

specimen is shown. A positive value means a net increase of volume, whereas a negative 

value stands for a net decrease in the total volume. One interesting phenomenon is that 

the volume increases faster if  the atomic weight o f oxygen is considered even though the 

oxide layer thickness grows more slowly. This is because that the atomic weight of 

oxygen accounts for the volume expansion partly in the oxidation.
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Figure 70. Total oxide layer thickness for r=0.6.
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Figure 71. Net change in the total volume for r= l.
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Figure 72. Net change in the total volume for r=0.6.

From the comparisons between Figure 69 and Figure 70, and Figure 71 and Figure 

72, it can be concluded that the atomic weight of oxygen plays an important role during 

the oxidation, and it should be considered for a more accurate estimation.

3.5.5 Duplex Oxidation Simulation 

As mentioned earlier, this new model can be employed to estimate the duplex oxide 

layer growth for impure metal materials or alloys. By studying the two important 

parameters, w and p in Eq. (3-12), the total oxide layer can be analyzed as a sum of the 

compact inner layer and the porous outer layer after the total oxide layer thickness is 

calculated. The parameter w stands for the weight ratio of M in the structural material, 

and p is the ratio of reacted atomic M out o f the total reacted atomic M.
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Figure 73. The thickness o f the total oxide layer, the inner oxide layer and the outer oxide

layer for different values of w (p=0 .8).

Figure 73 demonstrates the impact of w for the cases with same value o f p=0.8. As it 

can be found, a high content of the reactive element will lead to a thinner thickness o f the 

total oxide layer. This is because that the remainder of noble elements still occupies the 

inner layer, and more impurity leads to a faster growth o f the inner oxide thickness, even 

though a high value of w will show a fast growth of the outer layer. Figure 74 shows the 

impact o f the parameter p for the same w=0.9. A larger ratio o f the inner action leads to a 

slower growth of the total oxide layer. Although a larger ratio of the inner action causes a 

faster increase of the inner oxide layer, a smaller ratio of the inner action accounts for a 

faster increase of the outer oxide layer. In all these cases, the growth of the oxide layer is 

observed to follow the parabolic law in both the inner and the outer directions.
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Figure 74. The thickness o f the total oxide layer, the inner oxide layer and the outer oxide

layer for different values of p (w=0.9).

3.6 Conclusions

A diffusion controlling oxidation model, with consideration of scale removal effect, is 

developed in oxygen containing liquid flow. In this new proposed model, the volume 

expansion effect caused by density difference, the weight gain caused by oxygen 

diffusion and chemical reaction were both taken into account. The governing equations 

are nondimensionalized and analogized with the Stefan problem in heat transfer, with 

phase change in the enthalpy formulation, and then solved numerically. The model is 

benchmarked with previous results and the experimental data, and good agreement is 

obtained. The dimensionless parameters were studied in order to check which one
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accounts more for the oxide layer growth. Finally, the duplex oxide layer structure was 

analyzed for metal-containing impurity or metal alloys. The model demonstrates 

successfully the growth of oxide layer in two directions, following the parabolic law.
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CHAPTER 4

AN IMPROVED MESOSCOPIC OXIDATION MODEL OF METALS IN MOLTEN

LEAD OR LBE

4.1 Introduction

Corrosion and oxidation of structure material in liquid lead or lead alloys have been 

the main challenge for the usage of lead or LBE, as an ideal coolant candidate and for 

other applications, in the nuclear industry [2-10]. In a high temperature liquid metal 

environment, the dissolution corrosion rate of stainless steels is controlled by the solid 

diffusion of iron into the molten metal/alloys. The oxidation process is controlled by both 

the outwards diffusion of iron and the inwards transport of oxygen, which may immigrate 

along the grain boundaries by some unclear mechanism. [21, 27]

The corrosion and oxidation o f stainless steel in molten lead or LBE have been 

studied from a macroscopic level for years. Some significant results were obtained, and 

useful information was concluded. However, to study such a problem at a microscopic 

level, such as from an atomic or molecular point of view, has always been a dream for the 

scientists and researchers in the field o f fluid mechanics, heat transfer, computational 

fluid dynamics (CFD), etc. However, to study so complex a macroscopic phenomenon at 

a microscopic level is difficult and time consuming. There is no perfect available 

microscopic theory to explain and calculate all macroscopic fluid mechanics phenomena.
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With the development of modem computers, it becomes possible to simulate a simple 

fluid problem at a microscopic scale, but still not for such a complex problem in which 

fluid mechanics, heat transfer, mass transfer, chemical reactions and other phenomenon 

all are involved.

Therefore, to build a mesoscopic model for the oxidation o f metal in lead or LBE 

environment will be significant and beneficial for the future study of oxidation problems 

at a mesoscopic scale. To the best o f knowledge, there has been no such mesoscopic 

work yet done, with consideration o f the diffusion of metal and transport of oxygen 

separately. Thus, this is one o f the main motivations for this part of the research.

4.2 Literature Survey

Usually, the corrosion and oxidation involve several macroscopic processes, e.g., 

corrosion, precipitation, passivation/depassivation, growth of oxide layer, mechanical 

stress, etc. Each of these processes may be the result of several processes on a 

microscopic scale. In addition, all these phenomena take place in ill-defined conditions 

resulting from the environmental evolutions. [84] At the same time, the combination of 

these processes may generate different kinds of interfaces.

In the domain of interface growth, there has been much theoretical investigation 

based on numerical simulations. [85] The Eden model [86] and the Diffusion-Limited 

Aggregation (DLA or LDA) [87] model represent two basic starting points from which a 

theoretical description of the growth processes can be elaborated.

The Eden model is the simplest model, which describes a growing cluster of particles. 

It is a lattiee model in which particles are added one at a time randomly to sites adjacent
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to occupied sites. [86 ] A particle on the perimeter o f the cluster aequires a new partiele 

on its empty nearest-neighbor sites with equal probability. The DLA model was first 

proposed by Witten and Sander [87] and further explored in Ref [88 , 89]. It is a variant of 

the Eden model. In the DLA model there are screening effects, which differentiate the 

exposed perimeter particles from the shadowed ones by assigning them different 

probabilities. The conneetion between the Eden model in finite dimensions and the DLA 

model has been discussed by Plischke and Racz. [90] The DLA model and the Eden 

model should eoineide in infinite dimensions sinee the exeluded-volume effeets disappear 

in a DLA model. This conclusion was proved by Parisi and Zhang. [91] The Eden model 

was extended by Saunier [84] by introducing a feedback effect of the layer formed onto 

the corrosion rate, based on the concept of cellular automaton (CA) whieh has been 

proposed to study the effeet of kinetie parameters involved in the eorrosion mechanisms 

on the corroded surface roughness [84, 92, 93].

No matter how the Eden model and DLA model were explored, they were a simple 

way in whieh only the lattiees were eonsidered as the reaetion sites and diffusion 

pathway. Thus, the Eden model and DLA model are in the range o f “simple models”. For 

example, even in the extended model of Saunier, only the diffusion of iron was 

eonsidered. The role of oxygen was neglected and no inner reaction by iron and the 

inward transported oxygen was considered. However, as discussed in Chapter 1, the 

transport of oxygen plays an important role in the oxidation of stainless steel in molten 

lead or LBE. The reactions take plaee on the oxide/liquid interface, on the steel/oxide 

interface, and even inside the oxide films as well. Moreover, the transport o f oxygen is 

different from iron and other added alloying elements. The oxygen should be transported
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along the grain boundaries, or some other pores and vacancies by some unclear 

mechanisms. [27] Zhou et al. studied the oxidation process using the improved random 

walk CA model in an atomic scale. [94-97] However, one o f their models’ bases is the 

dissociation of oxides, which takes place at a very high temperature and is not usually 

involved during oxidation of iron or steel in a molten lead or LBE environment. 

Moreover, whether the CA model is suit for simple application to atomic level was not 

proved, since the metal or alloys are usually in different crystal structure instead of 

simple atomic lattice. The difficulties of movement of each atom are different in a 

specific crystal. Also, the tendency of the moving direction for each atom is not the same 

in most real cases. That is, the microscopic movement is nonisotropic at an atomic scale 

and the random walk model may not be rational. Furthermore, the scale removal effect 

and fluid conditions were not touched in Zhou’s models [94-97]. As reported, the 

hydraulic conditions, thermal conditions and even the mechanical and thermal stress all 

have important impact on the corrosion and oxidation o f stainless steel in non-isothermal 

molten lead or LBE coolant systems.

Therefore, it is necessary to build a suitable mesoscopic model for estimating the long 

term behaviors of stainless steel in the nuclear coolant systems. The proposed improved 

mesocopic oxidation model is trying to lay a new base for the future mesoscopic study of 

corrosion and oxidation of stainless steel in non-isothermal molten lead or LBE 

environments.

4.3 Methodology

To interpret the transport of oxygen and iron and the reaction processes during 

oxidation, an improved stochastic CA model is built. In this CA model, four main
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processes, the outwards diffusion of iron species across the oxide layer, the inwards 

transport of oxygen along the grain boundary, the reaction o f ionization, and the 

oxidation reaction between oxygen and iron are simulated at a mesoseopic scale. The 

diffusion and transport process is simulated by a random walk model. As the beginning 

of this topic, the model is set up based on a pure metal material (not neeessarily to be 

iron). Sinee the LBE or molten lead was reported to be turbulent flow, it is reasonable to 

assume that the coneentration o f oxygen in the turbulent flow is well mixed. The oxygen 

atom is assigned randomly at the interstitial sites in the fluid domain at each step of 

calculation.

In the simulation of random walk model, there are two sehemes of sites selection. 

One is an asynehronous dynamics scheme, in whieh one random single particle moves at 

a time. Another one is the synehronous dynamies scheme, in whieh all partieles move at 

each time. [98] In order to satisfy the physical phenomena, a synchronous dynamics 

scheme is applied. To make the model work randomly, a number of random seleetions 

will be conducted for the random walk model. The number of random selections equal to 

the total nodes of the caleulating domain.

With the help o f the present developed model, the researeh goals are to explore the 

gross features in the evolution o f morphology o f the structure material under the liquid 

lead or LBE environment. Also, the proposed model will lay a base for the further study 

considering the added alloying components in stainless steel and fluid conditions 

influence.
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4.4 An Improved CA Oxidation Model

Based on the analysis in Chapter 1, the morphology of pure iron under the mechanism 

of corrosion and oxidation in lead or lead-alloy environment is mimicked by an improved 

stochastic CA method. In the present proposed model, the simple mathematical model 

was used to investigate self-organization of oxide and metal in statistical mechanics. A 

global random walk method is included to characterize the diffusion process o f iron and 

transport o f oxygen. With this improved CA oxidation model, a duplex oxide layer 

growth model is simulated to explain the oxidation mechanism of steels in a high 

temperature corrosive liquid metal environment.

A cellular automaton is a mathematical idealization that describes the discrete spatial 

and temporal evolution of complex systems by applying local deterministic or 

probabilistic transformation rules to the cells of a lattice. [74] A CA model works in 

discrete time steps. The transport of iron or oxygen and the reactions of cells are 

governed by special rules. These local rules for many cellular automaton models in 

materials science can be derived through finite difference formulations of the underlying 

differential equations that govern the system dynamics at a mesoscopic level. [98] The 

state determined by the governing rules of a lattice point or an interstitial site is a function 

of its previous state and the state of its neighboring sites. After each time interval, the 

variables at each site are updated synchronously. [98]

In order to formulate the cellular automaton model for the simulation of 

corrosion/oxidation behavior of metal emerged in a liquid lead alloy system, several basic 

assumptions of the model are made as follows.
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(a) In order to describe the gross features of this interface, many o f the details at the 

microscopic level are assumed to be irrelevant [84].

(b) The metal is supposed to be pre-oxidized (only one layer of lattice on the surface 

of the metal). The direct dissolution o f metal in a liquid lead alloy system for the initial 

stage is neglected.

(c) The LBE flow is turbulent so that the concentration of oxygen is uniform.

(d) The formed oxide layer is insoluble.

(e) There exist micropores or other routes along the grain boundary inside the oxide 

layer for the transport of oxygen.

(f) The diffusion of iron is in ionic form only, i. e., the atomic iron movement is 

neglected.

(g) The reaction rate is much faster than the transport rate of oxygen and metal.

The stochastic CA model for the evolution of the structure of an oxide layer with the 

intrinsic rules could be defined as follows:

(a) In the proposed improved CA model, a square lattice with a width “a (m)” 

represents a site which will be occupied by metal or oxide in solid phase, or be occupied 

by LBE in liquid phase. The interstitial sites are routes for oxygen to occupy and 

transport, (as shown in Figure 75)

(b) The state of each interstitial site can be represented by the site state variable 

IntCyit) at the site (i, j) at time t. Two possible state values are involved in the present 

model:
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IntCç̂  denotes the site is not oecupied by oxygen (a “vacancy” site);

Inte^ denotes the site is occupied by oxygen (a “occupied” site).

Therefore,

IntCyj (t) e [inte^, fnte,} (4-1)

Oxygen sites 

LBE sites

Walker sites 

Oxide sites

Metal sites

Figure 75. Schematie o f CA model of corrosion/oxidation o f metal in LBE.

(c) The state of eaeh lattiee can be represented by the site state variable Laty (/) ,

which denotes a different eomponent at the site (i, j) at time t. Four different state values 

are involved in the present 2-D model;

Lat^ represents the atomic metal site (solid phase);

Lat^ denotes the LBE site (liquid phase);
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Lat^ denotes the oxide site (solid phase).

Lat^ denotes the site of oxide with overlapping with ironic metal (solid phase). 

Similarly,

Lat- j {t) e [Lat2 , Lat^, Lat^ , Lat^} (4-2)

(d) Generally, the state o f a given site in the next time step will be determined by the 

state of itself and its neighbors in the previous time step. The control variables can be 

formulated as follows

fhfe, ̂  (f 4- &) = 0  (fhfe, ̂  (f), (f)}, (f)}, ) (4-3)

(f 4- &) = 0 ^  (0 , {lof J  6 (f)}, (f)}, ) (4-4)

where 0 ^̂  ̂ and 0 /„,̂  are the local evolution rules o f cellular automaton for lattiee 

sites and interstitial sites respectively. are the control variables, for lattice sites

and interstitial sites respectively. {Latfj  (f)} are the neighbor lattices and {Intefj (f)} are

the neighbor interstitial sites of Inte^j (t) or Lat^j (t) .

For a 2-D square lattice CA model, the following three types of neighborhoods are 

usually used (as shown in Figure 76 to Figure 78). Figure 76 shows the Von Neumann 

neighborhood. The Von Neumann neighborhood is a common and popular neighborhood. 

The neighborhood takes its name from John Von Neumann. Only the northern, southern, 

eastern, western sites are considered during the simulation. The Moore neighborhood is 

another type o f common neighborhood (Figure 77). The neighborhood takes its name
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from the pioneer, Edward F. Moore. Four more neighbor sites, e.g. northwestern, 

southwestern, northeastern and southeastern, are included during the calculation.

#
N orthern

*
w e s le m E a * e m

#
S ou thern

Figure 76. The Von Neumann neighborhood.
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Figure 77. The Moore neighborhood. 
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The extended Moore neighborhood (Figure 78) takes sixteen more sites into account, 

which locate at one more lattices away from the objeetive site. [99]

# # • # •

e #
N orthw estern

•
Northern

#
N ortheas te rn

#

# e
W este rn

•
E aste rn

#

# #
S ou thw estern

#
S o u th e rn

#
S o u th e a s te rn

#

# • • • #

Figure 78. The extended Moore neighborhood.

In this improved oxidation CA model, a neighborhood system with Moore 

neighborhood system for lattice sites, eoupling with four elosest interstitial sites, will be 

applied. For each lattice  ̂(f) , the status o f eight neighbor lattiees {Latfj{t))  

(northern, southern, eastern, western, northwestern, southwestern, northeastern and 

southeastern) and four interstitial sites {Intefj (f)} (northwestern, southwestern,

northeastern and southeastern) will influence its evolution for the next time step (as 

shown in Figure 79).
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Figure 79. The neighbor lattices {Lat^ j{t)}  and interstitial sites {Inte^ j{t)}  for

lattice Tat. y ( t ) .

L a t(i+ 1 ,j+ 1 )

lnte(i+1,j)

L at(i+1,j)Lat(i,j)

Figure 80. The neighbor lattices {Latfj (t)} and interstitial sites {Inte^j (t)} for

interstitial sits Inte^ j (t) .
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With this neighborhood system, both the impact of the neighbor element and the close 

oxygen transported along the boundary will be considered. For each interstitial 

site/«te,. ( t ) , the status of four neighbor lattices {Latfj (t)} (northwestern, southwestern,

northeastern and southeastern) and four interstitial sites {Inte^j (t)} (northern, southern, 

eastern, and western) will influence its evolution for the next time step (see in Figure 80).

A metal lattice is assumed to contain a number of (g +1) o f metal atoms (M). An 

occupied interstitial site contains a> atoms of oxygen. When the metal lattice is involved 

in a reaction, one of the (s  + 1) metal atoms in the lattice site is consumed and a lattice 

site of oxide is formed. At the same time, e  metal atoms ionize and begin to diffuse 

outwards. T h e f ionic metal (W), as a whole lattice overlapping with any oxide lattice 

site, diffuse through the oxide and react with oxygen when they meet at the oxide/LBE 

interface. Obviously, the value s  is connected to the Pilling and Bedworth factor that 

corresponds to the molar oxide volume/molar metal volume ratio. The basic rules for this 

improved oxidation CA model are listed below;

(a) In LBE, the oxygen concentration is kept constant and the oxygen distribution is 

uniform (randomly distributed for each step).

(b) For a metal site, if  none of the four nearest interstitial sites (southwest, southeast, 

northwest, northeast as shown in Figure 79.) is occupied by oxygen, no oxidation will

occur.

(c) For a metal site, if  there is one or more of the nearest interstitial sites is occupied 

by oxygen, a reaction will occur possibly.
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(c .l) If none of the eight neighbor sites (southwest, south, southeast, east, 

northeast, north, northwest, and west as shown in Figure 79) is oxide, no reaction 

occurs.

(c.2) If one or more of the eight neighbor sites is oxide, the oxidation reaction 

occurs immediately with a probability, . As mentioned previously, the reaction

speed is assumed to be much faster than the diffusion speed o f oxygen. One o f the 

oxygen sites is chosen randomly from the nearest interstitial sites for reaction and 

disappears. The site o f metal disappears and an overlapping site o f oxide and ionic 

metal substitutes. The ionic metal site always overlaps with an oxide site and the 

ionic metal site can diffuse in the oxide layer in any random direction and is called a 

“walker”. The higher is the value o f , the stronger the reactivity o f the substrate in 

contact with oxygen.

(d) In each oxygen transport step, the atomic oxygen transports randomly in four 

possible directions along the interstitial edge o f the lattices in the oxide layer or the metal 

zone. After each step of transport of all oxygen sites, the metal sites and their neighbors’ 

status are checked again, and the calculation code takes actions following the procedure 

3.

(e) After finite steps o f transport o f oxygen, for example, N qj , the “walkers” diffuse

steps in the oxide layer. The ratio of transport steps = N^j. /7V ^ depends on the

mass transport rate o f oxygen and ionic metal in the oxide layer. Usually the transport 

rate of oxygen is faster than the diffusion of ionic metal even though the self mass 

diffusivity of oxygen may be slower. In each calculating step, steps o f “walkers”
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diffusion, steps o f reaction between a walker site with oxygen on LBE/oxide 

interface, steps of transport oxygen, and steps of inner reaction of oxygen with 

metal will be involved.

(f) When a “walker” meets LBE, oxidation occurs immediately, since it is assumed 

the oxygen diffuses very fast in LBE. By controlling the number of the newly formed 

oxide by an ionic metal lattice (walker), the volume expansion effect can be realized.

(g) The transported oxygen in the metal will walk randomly in the metal domain and 

cause “noise” in the simulation. They will be eliminated whenever the oxygen site 

reaches the far end of the calculating domain. Physically, it can be explained by the 

deposition o f oxygen in some pores and vacancies during transport. Furthermore, it 

makes the far boundary satisfy the Dirichlet boundary conditions.

Therefore, the simulated oxidation reactions are,

(g + l)M  + coO ^  MO., + sW
(4-5)

[1 lattice] [1 interstitial site] [1 lattice] [1 overlapping lattice]

and

eW[l overlapping lattice] + scoO[from LBE] sMO^ [s lattices] (4-6)

Eq. (4-5) accounts for the oxidation and ionization at the inner interface of 

oxide/metal. Eq. (4-6) shows the result o f outer surface reaction. The sco product of 

oxygen is of no concern in the LBE domain, since it is assumed that the concentration of 

oxygen in LBE is constant and enough oxygen can be acquired from the LBE domain. 

The products eW  are in a lattice and overlap with any oxide lattice. If  e  is assigned a
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value of 2, the ideal volume is expanded by about 3 times, since a molecular MO^ is 

assigned in one lattice.

From the proposed rules, a continuous oxide layer will be formed. The ionization of 

metal will take place in the oxide/metal interface and oxidation occurs on both the 

liquid/oxide and oxide/metal interface, which accounts for outer oxidation and inner 

oxidation in the formation of a duplex oxide layer. The volume expansion effect can be 

realized by control the parameter of e . The ideal volume expansion rate (the oxide layer 

volume by the consumed metal volume) is (g + 1) .

In summary, the present model contains three explicit parameters: £ , and . 

The volume control parameter s  is set to be unity in this dissertation, as an initial work 

o f the mesoscopic model. The diffusion step number of “walkers”, , is set to be unity

as well. Therefore, in each calculating step, one step diffusion of “walker” and steps 

of transport of oxygen are involved.

4.5 Results and Discussions

To save computational time, a two-dimensional domain with square lattices, 

considering the interstitial sites is employed for simulations. The mesoseopic model is 

first benehmarked with a pure diffusion problem. Later on, the chemieal reactions and 

transport process o f oxidation and iron are simulated and the results are mapped with 

some experimental data. A parametric study and result analyses are included as well.
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4.5.1 Benchmark the Pure Diffusion Process without Reaction 

The first step of this work is to study the transport of oxygen, in which no reaction 

takes plaee. The transport of oxygen follows the diffusion equation. For a diffusion 

equation:

du I 8 u
—  = ------  with
dt 2 8x

u(0 ,t) = 0

u (l,t)  = l (4-7)
u(x, t) = 0  (when x 1)

Eq. (4-7) can be solved analytically using Fourier series and the result is obtained as,

00 2 2 2 
u(x,t) = X + V[(-l)" — exp( t)^\nn7ix] (4-8)

nTi 2

And the steady state solution is expressed simply as,

u(x, t) = X (4-9)

To benchmark this diffusion problem, the partial difference equation (4-7) was 

simulated in a square domain o f 1000 by 1000 grids where the mesh is uniform. Since 

neither the diffusion of metal nor chemical reaction is involved in this simple problem, 

is set to one to make the diffusion steps equal to the calculating steps (N, ) .  The

calculated particle concentration distributions for different time steps are show in Figure 

81. As it can be found, the concentration distribution approaches to a steady solution with 

time steps increasing. After the calculation step exceeds 15,000 steps, no significant 

difference is observed.
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Figure 81. Particle concentration distributions for different time steps.

—  Steady-state solution 
— Brieger'sresult(1991,N,= 20,000) 
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Figure 82. Benchmark of the results form the present model with the analytical solution

and Brieger’s result [98].
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It was also proven that the concentration distribution profile of oxygen sites becomes 

smoother if  the grids number of the calculation domain was increased. For benchmark, 

the calculated concentration of oxygen sites at 20 ,0 0 0  steps from the present model is 

compared with the steady-state solution and Brieger’s result [98]. It can be seen that the 

result from the proposed model is in good agreement with the steady state solution and 

Brieger’s solution (see Figure 82). The benchmark shows the proposed CA model 

satisfies the anticipated estimate o f the transport o f oxygen at a mesoscopic level.

4.5.2 Oxidation Process with Transport of Oxygen and Metal 

The whole oxidation process considering the ionization of metal, diffusion of ions, 

transport o f oxygen along the grain boundaries, and oxidation reaction is simulated. First, 

the process is simulated with a square domain of 500 by 500 grids, with mesh size of 

a(m). The concentration o f oxygen in LBE is set at 0.2 and the reaction probability is

assigned a random value o f 0.5. The mass transport ratio is set at 2, in which oxygen

sites transport 2 steps after each diffusion step of the ionic metal sites. Hence, = N,

and N qj. = 2Nj base on the input values for the parameters.

After N, = 10,000 steps (calculating steps), the snapshot o f the simulated mesoscopic

structure is shown in Figure 83. In order to make the snapshot clear, the interstitial 

oxygen sites are not shown here. It can be found that the oxide layer grows inwards and 

outwards at the same time, since the volume expansion effect is considered. After 10,000 

steps, the consumption o f the metal is about 45 [a(m)] (45 lattice width) and the inner 

oxide layer front reaches the location of 215 [a(m)] of the domain. At the same time, the 

outer oxide layer front reaches about 275 [a(m)] and the outer oxide layer volume growth
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is about 25 [a(m)]. The metal ions (the walkers) can be observed moving outwards and 

the concentration of the “walkers” are decreasing from the inner interface to the outer 

interface.

LBE
Atomic Metal S ites 
Oxide Sites 
Ionic Metal S ites

K d=2, P a c t= 0 .5

Onginal Interface Zoom In R eaon

200 300
X [a (m)]

Figure 83. The snapshot o f the simulated mesoscopic structure after N, = 10,000 steps.

However, as mentioned above, the volume control parameter s  is set to be unity. 

Therefore, the oxide layer volume after expansion should be equal to twice that of the 

consumption volume of the metal. But the volume expansion rate is less than 2, by 

observation. The reason for this interesting phenomenon is that the “walkers” do not 

occupy any volume during the process because they are assumed to overlap with oxide 

sites. The volume expansion effect is realized by the reaction of walkers and the oxide in 

LBE domain. Therefore, if  a continuous oxidation (before the moment when the whole
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metal is consumed) is considered, the volume expansion rate is always less than the ideal 

value ( f  + 1).

After zooming in for a small region from Figure 83, the transport processes of oxygen 

and ionic metal in the oxide layer can be observed more clearly. The oxygen sites 

transport towards the metal, since the concentration o f oxygen in LBE is set at a constant 

value (0 .2) and the metallic ions (“walkers”) diffuse outwards at the same time because 

ions are produced at the oxide/metal interface. The dashed line shown in Figure 83 and 

Figure 84 stands for the original location of the interface of metal and LBE.
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Figure 84. The zoom in view of the simulated mesoscopic structure of oxide layer after

A, = 10,000  steps.

The mean concentration of “walkers” in the oxide layer is calculated by.
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(4 -10)

where,

1 i f  Lai. .(^) = Lat. 
I W . . = \  '

' 0 i f  Lat; {t) ^  Lat^
(4-11)

N is the lattice number in x direction. The concentration distributions of “walkers” in the 

oxide layer for different calculating steps are shown in Figure 85.

0.3

—  2,500 steps
— - 5,000 steps
— • 7,500 steps
— 10,000 steps

0.25

■q . 0.2

0.15

0.1

D)

0.05

220 240
X

260 280

Figure 85. The walker concentration in the oxide layer. 

The concentration o f “walkers” in the oxide layer is calculated by,

ly -r I

where.

(4-12)
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10 i f  Inte^ j  {t) =  Integ (4-13)

N+1 is the interstitial nodes number in x direction. The concentration distributions of 

oxygen sites in the oxide layer for different calculating steps are shown in Figure 8 6 . 

From the figure, it can be found that the concentration of oxygen in LBE domain is 

fluctuating around 0 .2 , the set value, since this is a stochastic random model. If the mesh 

is refined to a very large number o f lattices, a flatter curve will be observed in LBE 

domain. However, a finer mesh will increase the calculating time greatly. The 

concentration o f oxygen decreases in the oxide layer and reaches a small value (close to 

zero) in the metal domain. Since the large value of concentration locates in the LBE 

domain and is around 0 .2 , and the small value locates in the metal domain and is close to 

zero, the cross o f the concentration curves can be observed with the growth of the oxide 

layer in two directions.

0.25
Average Concentration in LBE 

\

2.500 steps
5.000 steps
7.500 steps
10.000 steps

150 200 250 300 .. 350 400 450 500

Figure 8 6 . The oxygen concentration for different calculating steps.
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To characterize the evolution of the front positions o f oxide/metal interface, the inner 

layer thickness based on the mean position of the interface o f oxide/metal interface is 

introduced,

(4-14)

where, is the original interface of metal/LBE, and ^  (i) is the minimum position 

o f the oxide site in Figure 83. Similarly, the outer layer thickness is defined as;

^ N ,o u t ^  (X o x ^ M a x  (0  “  ^0 )
^  i= \,N

(4-15)

where, (;) is the maximum position of the oxide site in Figure 83. The total

thickness o f the oxide layer is defined by.

^ N j o t  ^ N , in  ^ N .o u t (4-16)

N,im
N,o«t
N,tot

I.a
JZH
I
3

40 40

0 2000 4000 6000 8000 10000
Time Steps

Figure 87. The oxide layer growth vs. time steps.
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Figure 8 8 . Values of and vs. time steps.

Figure 87 shows the oxide layer growth with calculating time steps. Figure 88 shows 

the values of , and are close to straight lines. Therefore, the

thickness o f the inner oxide layer, outer oxide layer and the total oxide layer grow 

parabolically which accords with Wagner’s theory [47].

4.5.3 Mapping between the Mesoscopic Model and the Experimental Data 

As discussed in the last section, the growth of the total thickness, inner layer 

thickness and outer layer thickness all follow the parabolic law. Therefore, the growth of 

the total thickness can be fitted in the following parabolic relation.

(4-17)

where, is the parabolic rate coefficient for the CA model with distance based on the 

lattice number. For the case o f P=0.5, e = \ ,  and K . = 2, can be fit to 0.3434 from

Figure 87 and Figure 8 8 .
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According to the Wagner’s theory [47], the real thickness of the oxide layer follows 

the relationship,

(4-18)

where, ^  is the parabolic rate coefficient for real oxide layer growth. The time for 

forming thickness “a (m)” of oxide layer is assumed to be Ai (s). Then,

(4-19)

t = N ,A t (4-20)

Substituting Eqs. (4-19) and (4-20) into Eq. (4-18),

i^N,ioi^y -  (4-21)

Comparing Eqs. (4-17) and (4-21),

= (4-22)

From the Ref. [17], the fitted values of from the experimental data for LBE loop at 

temperature 550 °C with oxygen concentration controlled at 0.03 ppm are estimated to be 

2 . 2 9 x 1 0 for 316, 2.35x10“’’ for D-9, and 2.82x10” w ’ for HT-9

respectively. Therefore, the time step spans equal to 0.3749 s, 0.3653 s and 0.3044 s for

316, D-9, and HT-9 with the above conditions respectively for a length a=5 nm in the 

developed mesoscopic model.

4.5.4 Parametric Study 

The present stochastic mesoscopic model shows another way to predict the oxide 

layer growth at a mesoscopic level and the results was mapped with the experimental
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data. It is necessary to conduct a parametric study for the proposed model in order to 

check the factors impacting the model in the simulations, for a longer term.

The mass transport ratio is set at 1, and the oxygen concentration in LBE, , is

set at 0.2. The impact of the reaction probability is examined. The snapshots o f the 

simulated mesoscopic structures o f cases with = 0.0005, = 0.3, = 0.5, and

Pact -  0 8 after 200,000 calculating steps are shown in Figure 89 to Figure 92.

LBE
Atomic M etal S ites 
Oxide S ites 
Ionic Metai S ites

Kd=1, PactsO.0005

1 Oxide LayerJ

."ÿ".; Onginal Interlace

2 0 0  3 0 0
X [a (m)]

Figure 89. The snapshot of the mesoscopic structure for N, = 200,000, with = \ ,

^oxy ~ ~ 0.0005 .
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Figure 90. The snapshot of the mesoscopic structure for N, = 200,000, with =1,

Coxy =0 .2  and = 0 .3 .

The increases in thickness of the inner oxide layer, outer oxide layer, and the total 

oxide layer with calculating steps are compared in Figure 93 to Figure 95. From the 

comparisons, a small change of the reaction probability (in the same order) does not 

impact the thicknesses of oxide layer too much on a long time scale. For example, the 

thicknesses of the inner oxide layers are estimated at about 102 [a(m)] for = 0 .3 ,

F ^  = 0 .5 , F ^  =0.8 , and at about 68 [a(m)] for F^, =0.0005 at =200,000. The

outer layer thicknesses are about 88 [a(m)] for F ^  = 0.3, F ^  = 0.5, F ^  = 0.8  , and 62

[a(m)] for F̂ ,̂ = 0.0005 at FF, =200,000. The total thicknesses are about 190(a) for

F^, =0.3 , F ^  =0.5 , F ^  =0.8 , and 130 [a(m)] for F ^ =  0.0005 at A, =200,000 .

Between the cases o f reaction probability in the same order (for example,
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Pact -  0-3 and P„,,, = 0.8 in Figure 94), the difference of the thickness are very small. Only

a very small difference can be observed at the initial stage (see Figure 95). The reason is 

that such a high reaction probability will ensure most of the transported-in oxygen is 

consumed, sooner or later, in a long time. The oxygen keeps transporting randomly in 

four directions (some may go to and fro and react when they meet oxygen), and only a 

few of them will transported to the far end of the specimen, to cause “noises” of the 

simulation.

The metal ions (“walkers”) concentration distributions for the cases with 

Pact -  0-0005, = 0.3, = 0.5, F ^  = 0.8  after 2 00 ,000  calculating steps are shown

in Figure 96 to Figure 99.

LBE
Atomic M etal S ites 
Oxide S ites 
Ionic M etal S ites

450 K d=1, P ac taO .5

Onginal Interlace

200 300
X [a (m)]

400 500

Figure 91. The snapshot of the mesoscopic structure for V, = 200,000, with =1,

= 0  2 a n d F ^  = 0 .5 .
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Figure 92. The snapshot of the mesoscopic structure for N, = 200,000, with =1,

= 0 . 2 a n d 7 ^  = 0 .8 .
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Figure 93. The comparison of the oxide layer thickness o f cases with 

= 0.0005andF ^ = 0 .5atN,  = 200,000, with K , = l ,  = 0.2.
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Figure 94. The comparison o f the oxide layer thickness o f cases with 

FL = 0.3and7^,, = 0 .8 a t# , = 2 0 0 ,0 0 0 , with 0 .2 .
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Figure 95. The comparison of the oxide layer thickness of cases with 

Pact = 0.3 andF ,̂ ,̂ = 0.8 at the initial stage, with =1, = 0.2.
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Figure 96. The walker distributions for = 200,000, with = \ ,

= 0.2 and^L =0.0005.
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Figure 97. The walker distributions for = 200,000, with i f  ̂  = 1,

^oxy ~ ^^^Pact -  0.3 .
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Figure 98. The walker distributions for N, = 200,000, with 1 ,

0.5
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Figure 99. The walker distributions for N, -  200,000, with = \ ,

^oxy ~ 0 2 andP^^, -  0 .8 .
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Figure 100. The oxygen distributions for N, = 200,000, withÆ^ = 1,

= 0.2 a n d C  =0.0005.
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Figure 101. The oxygen distributions for = 200,000, withÆ^ = 1,

=0.2 and = 0 .3 .
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Figure 102. The oxygen distributions for = 200,000, with = 1,

^oxy ~ 0 2  andP^^, -  0.5.
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Figure 103. The oxygen distributions for = 200,000, withÆ^ = 1,

^oxy -  0 .2 andT^g  ̂ - 0 .8 .
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The oxygen concentration distributions for the cases with = 0.0005, = 0.3,

Pact =0-5,  =0.8 after 200,000 calculating steps are shown in Figure 100 to Figure

103.

From the comparisons, a small change of the reaction probability does not much 

affect the results o f the concentration distributions o f oxygen and “walkers” in a long 

time scale, either. The concentration distributions of oxygen and walkers look similar for 

cases of = 0.3, = 0.5, = 0.8. The difference is mostly because that the model

is a stochastic and the random walk and the random selection for each lattice or 

interstitial site. However, a much lower concentration distribution of metal ions can be 

observed in the case of = 0.0005. The observation illustrates that a slower ionization 

process accompanies a slower oxidation reaction. One reason is the reaction rate is 

relatively lower, and another is that the extra oxygen is transported into the metal domain, 

as shown in Figure 100. By this model, the oxygen enriched substrate layer beneath the 

oxide layer is simulated. Another phenomenon observed is that a very low reaction 

probability (e.g. = 0.0005 ) will cause a coarse interface of the oxide and metal (as

shown in Figure 89).

The comparison above shows the reaction probability does not impact the results 

markedly. The study will be conducted on cases o f = 0.0005 and F ^  = 0.5 only with 

different values of  K^.

The snapshots at = 200,000 o f the mesoscopic structure of oxide layer with 

Kj  - 2 ,Cg = 0.2 andF^g; = 0.0005 is shown in Figure 104.
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Figure 104. Snapshot o f the mesoscopic structure with Kj  -  2,  = 0.2

andF^g; =0.0005 at =200,000.

Figure 105 shows the snapshot for case of F ^  = 0.5 with same parameters. Since the 

ratio of the transport steps -  2,  each of the “walkers” diffuses for an average step of 

= 200,000 and each oxygen transports N qj. = 400,000 steps in average, during the 

simulation.

Figure 106 shows the comparison o f the oxide layer thicknesses for cases 

F ^  = 0.0005 and F ^  = 0.5 (both with K ^ = 2 ,  = 0.2 ).
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Figure 105. Snapshot of the mesoscopic structure with K ^ = 2 ,  C = 0.2 = 0.5

at iV, = 200,000.
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Figure 106. Comparison o f the oxide layer thicknesses for cases = 0.0005 and

Pac, = 0.5 (both with K j = 2 ,  = 0.2  ).
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A coarser interface can be observed in Figure 104, which agrees with the previous 

observation, in which a very low reaction probability causes a coarse interface of the 

oxide and metal (as shown in Figure 89). From Figure 104 to Figure 106, the thicknesses 

o f the oxide layers grow faster significantly, with the value of Kj  increasing from 1 to 2 . 

The comparison of thicknesses for different value of will be presented later. When 

K ^ = 2 ,  the difference between the thickness o f cases =0.0005 and =0.5 are 

more obvious. For example, the thicknesses o f the inner oxide layers are estimated at 

about 150 [a(m)] for =0.5 and at about 105 [a(m)] for =0.0005 at

A, =200,000. The outer layer thicknesses are about 110 [a(m)] forP^^  ̂ =0.5 and 88 

[a(m)] for P̂ ^̂  = 0.0005 at A, = 200,000 . The total thicknesses are about 260(a) 

forP^^, = 0.5 and 193 [a(m)J for 7 ^  = 0.0005 at A, = 200,000.
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Figure 107. The oxygen distributions for A, = 200,000, with = 2 ,

= 0.2 an d ;^ , =0.0005.
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Figure 108. The oxygen distributions for A, = 200,000, with = 2,

^oxy ~ 0 2 andi^^; -  0.5.
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Figure 109. The walker distributions for A, = 200,000, with = 2 ,

^oxy ~ ^-2 ^^^Pact ~ 0.0005 .
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Figure 110. The walker distributions for N, = 200,000, with = 2,

= 0  2 a n d 7 ^  = 0 .5 .

The oxygen distributions for =0.0005 and =0.5 are shown in Figure 107 

and Figure 108 respectively, both with = 2 , = 0.2 and at iV, = 200,000 . The

distribution profiles of “walkers” for = 0.0005 and = 0.5 are shown in Figure 

109 and Figure 110 respectively, both withFT^ = 2 , = 0.2 and at = 200,000.

Similarly, a very low reaction probability (e.g. P̂ ,̂ = 0.0005 ) causes a deeper

penetration of oxygen in the metal, which is because o f a fast transport rate of oxygen 

and a lower reaction probability. The observation also illustrates a slower ionization 

process for a lower reaction probability. The concentration of “walkers” is much lower in 

the oxide layer in Figure 109 than that in Figure 110. The cases o f = 2 have a larger

value of “walker” concentration than that in cases of = 1 .
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The oxidation process for FT̂  = 4 is studied as well, in which each of the “walkers” 

diffuses for an average step o f = 20 0 ,0 0 0  and each oxygen site transports 

N q̂  -  800,000 steps in average during the simulation 200,000). The snapshots at 

Af, = 200,000 of the mesoscopic structure of oxide layer with and = 0.0005 and 

7 ^  = 0.5 are shown in Figure 111 and Figure 112 (both are o f K^ = A and = 0.2). 

Similarly, Figure 111 (P^^, =0.0005) shows a coarser inner interface and Figure 112 

i^act = 0.5 ) illustrates a much thicker oxide layer.

OMde S ites

_3oo

Original Inteiface

200 300
X [a(m)]

Figure 111. Snapshot o f the mesoscopic structure with = A, C = 0.2

andP^^, = 0.0005 at N, = 200,000.
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Figure 112. Snapshot o f the mesoscopic structure with K j=  A, = 0.2 = 0.5

at N, -  2 0 0 ,0 0 0 .
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Figure 113. Comparison of the oxide layer thicknesses for cases ^  = 0.0005 and 

F ^ = 0 . 5  ( b o t h w i t h Æ ^ = 4 , C ^ = 0 . 2 ) .
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Figure 113 shows the comparison of the oxide layer thicknesses for cases 

Pact = 0.0005 and = 0.5 (both with = 0.2). Much thicker oxide layers

can be seen for both cases, and a more obvious difference can be observed between the 

cases o f = 0.0005 and 7^, = 0.5, since the value o f is much higher.

The distribution profiles of “walkers” for 7^, = 0.0005 and = 0.5 are shown in 

Figure 114 and Figure 115 respectively, both with K ^ - A  , -  0.2 and

at = 200,000 . Figure 116 and Figure 117 show the oxygen distributions for 

Pact = 0.0005 and = 0.5 respectively, both with = A , = 0.2 and at

N, = 200,000.
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® 0.15

® 0.05

0 50 100 150 200 250 300 350 400
X [a(m)]

Figure 114. The walker distributions for iV, = 200,000, with

= 0.2 andf^  =0.0005.
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Figure 115. The walker distributions for = 200,000, with = 4 ,

C ^ = 0 .2 a n d 7 ^ = 0 .5 .
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Figure 116. The oxygen distributions for = 200,000, with = 4 ,

C ^ =  0.2  and 7 :^= 0 .0005 .
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Figure 117. The oxygen distributions for N, -  200,000, withÆ^ = 4 ,
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Figure 118. Comparison o f thickness for different value o f K j , with C__ = 0.2,

c ,  =0.0005.
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Figure 119. Comparison of thickness for different value of , with C = 0.2,

C = 0 . 5 .

More evidently, a lower reaction probability (e.g. = 0.0005 ) causes a faster

transport oxygen in the metal when the value of is increased to 4. Also, a much 

slower ionization process was found since the “walker” concentrations are much lower in 

a case of 7^, = 0.0005.

The comparison o f thickness for different values of , and with same values of 

^oxy ~ 0.2 and = 0.0005 at calculating time N, = 200,000 step, are shown in Figure 

118. The comparison for 7^^ = 0.5 with the same conditions are shown in Figure 119.

From the comparisons, the transport ratio in the model has great impact on the 

thickness of the oxide layer, especially on the inner thickness. Increasing the value o f the 

transport ratio will increase the oxide film growth greatly for the same calculating
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steps. The first reason is, the transport steps for oxygen sites are times that o f the

metal ions for a particular calculating step number. The second reason is that a relatively 

fast transport will lead to more extra oxygen penetration into the metal, especially for a 

low reaction probability case.

4.6 Conclusions

An improved stochastic mesoscopic model, based on cellular automaton, is proposed 

to investigate the development of a continuous oxide layer of metals.

The ionization o f metal taking place in the oxide/metal interface, and oxidation 

occurring on both the liquid/oxide and oxide/metal interface, were simulated with 

consideration of the mesoscopic transport of oxygen along the grain boundary and the 

mesoscopic diffusion of metal ions. With this model, a duplex oxide layer growth is 

observed. The volume expansion effect can be realized by changing the volume control 

parameter, s .

The model was benchmarked with a pure diffusion process, both with the analytical 

solution and with the previous work in Ref. [98]. Significant agreement was reached 

between the data, which shows the basic abilities of the present model for mesoscopic 

studies. From the present model, the thicknesses o f inner oxide layer, outer oxide layer 

and the total oxide layer grow parabolically which accords with Wagner’s theory [47]. 

The model is also mapped with the experimental data from an LBE loop, to show the 

developing of the oxide layer quantificationally.

A parametric study was conducted in order to check the importance o f the three main 

explicit parameters o f the mesoscopic model, the volume control parameter ( e ) ,  reaction
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probability and transport steps ratio of oxygen and metallic ions {K^).  A small

change of the reaction probability (in the same order) does not impact the thicknesses of 

oxide layer too much in a long time. A slower ionization process accompanies a slower 

oxidation reaction. A very low reaction probability will cause a coarse interface of oxide 

and metal. The transport ratio in the model has great impact on the thickness o f the 

oxide layer, especially on the inner thickness. To increase the value of the transport ratio, 

K j  will increase the oxide film growth greatly for the same calculating steps. One of the

reasons is that the oxygen sites transport more steps than metallic ions sites for a 

particular calculating step number. Another reason is that a relatively fast transport leads 

to a deeper oxygen penetration into the metal, especially for a low reaction probability 

case. A large transport ratio , and a small reaction probability, may cause an oxygen 

enriched substrate beneath the oxide layer.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Based on the studies in the previous chapters on the corrosion and oxidation o f steels 

in lead or lead alloys coolant systems, some conclusions can be summarized:

From the models for corrosion and precipitation:

1. The analytical solutions for corrosion model were obtained.

Analytical expressions were obtained for the local corrosion/precipitation rate and the 

bulk concentration of the corrosion products. The temperature difference between the 

maximal and minimal temperatures affects the corrosion/ precipitation rate significantly.

2. Numerical solutions were also accomplished. The eddy mass diffiisivity is 

important.

From the comparison of numerical and kinetic models, the eddy mass diffiisivity has 

obvious effect on the corrosion/precipitation behaviors, especially when the temperature 

difference is large. At the test leg, where temperature is at a maximum, the eddy mass 

diffiisivity increases the corrosion rates. In addition, at the temperature dropping region, 

right after the test leg, the eddy mass diffiisivity leads to a much higher deposition rate. 

For a higher inlet velocity, a higher corrosion rate can be found in the test leg region and 

a higher precipitation rate at the temperature dropping region right after the test leg.
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From the diffusion controlling oxidation model:

The diffusion controlling oxidation model was benchmarked with experimental data 

and some previous study. Good agreement was obtained and advantages over the 

previous models were shown.

3. Scale removal effect was considered.

Scale removal plays an important role during the oxidation if the scale removal rate is 

relatively high comparing with the oxide layer growth rate. The present model shows the 

ability to estimate the scale removal effect during the simulation of oxide layer growth.

4. Volume expansion effect was studied.

The volume expansion effect, which is important for oxidation for many metals, due 

to the density change from metal to oxide was simulated successfully.

5. Duplex oxide layer structure was investigated.

Duplex oxide layer structure was simulated and the influence of important parameters 

was studied based on the present model.

From the mesoscopic CA model of oxidation:

6 . The development of a continuous oxide layer o f metals was investigated.

The oxide layer growth was studied successfully at a mesoscopic scale. The oxide 

layer grows in two directions which accounts for the outer interface reaction and inner 

interface reaction. Volume expansion effect was observed in the simulation.

7. The ionization of metal, oxidation reaction, and transport o f oxygen and 

metallic ions were simulated.
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The corrosion/precipitation model can be extended to corrosion cases for the 

developed turbulent wall-bounded shear flows in a non-isothermal system with a high 

Schmidt number, in which the mass diffusion layer is submerged under the hydraulic 

boundary layer. The diffusion controlling oxidation model is suitable for estimating the 

oxide layer growth of steels in oxygen containing liquid flow, not necessarily LBE or 

molten lead. The mesoscopic oxidation model can be used to simulate the oxidation 

growth of metals in a turbulent flow, except for molten lead or LBE, at a mesoscopic 

scale.

5.2 Recommendations for future work

For the corrosion/precipitation model, the analytical solutions coupling with the eddy 

mass diffiisivity, and considering a buffer zone in the turbulent flow will be an interesting 

topic.

For the diffusion controlling oxidation model, how to couple it with the flow 

conditions is a new task.

In the mesoscopic oxidation model, the study o f added alloying elements has not been 

done. To link the transport steps ratio with the real transport rate is another unfinished 

task. Finally, to study the oxidation o f stainless steel in flowing LBE/lead considering the 

mesoscopic movement o f liquid (fluid mechanics) at a mesoscopic scale, can be a 

meaningful research topic. How to link the mesoscopic with a real physical model is one 

o f the most important future tasks for the present mesoscopic model.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX NOMENCLATURE

a{m) the width o f a square lattice in CA model

gg mean wall concentration

a coefficient constant

Ai Airy function
coefficient for solubility 

Ap coefficient for density of lead or lead alloy

B Pilling-Bedworth ratio

coefficient for solubility 
Bp coefficient for density of lead or lead alloy

c concentration of corrosion product (in Chapter 2)
C concentration o f oxygen (in Chapter 3)

c. bulk concentration of corrosion production

Cj concentration o f corrosion product in laminar sub-layer

cl mean concentration in the turbulent core region

c oxygen concentration in LBE liquid

c, a part of the Fourier series of c,
c solubility of the corrosion product

c wall concentration of the corrosion product

Cqq concentration o f oxygen at the oxide/liquid interface

concentration of oxygen at the oxide/steel interface (on oxide side)

concentration of oxygen at the oxide/steel interface (on steel side)

Coxyj mean concentration o f oxygen sites in j-th line for interstitial sites

j  mean concentration of “walkers” in j-th line for lattice sites

D  mass diffiisivity

molecular diffiisivity 

D; eddy mass diffiisivity

mass diffiisivity o f oxygen in steels
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Dq̂  mass diffiisivity of oxygen in oxide layer

/  the Fanning friction factor
H  specific enthalpy 

i node number of the calculating domain

Inte^ (t) state variable o f the interstitial sites

In tefj (t) state variable of the neighbor interstitial sites of the lattice (i, j)

Inte^ a “vacancy” interstitial site

Inte^ a “occupied” interstitial site by oxygen

lO^ j oxygen state value for an interstitial site

IWf j walker state value for a lattice site

J  corrosion production flux in y-direction

K  mass transfer coefficient
k  iteration step number

scale removal rate constant

kp parabolic rate coefficient based on CA model

kp parabolic rate coefficient for real oxide layer growth

K j  ratio of transport steps o f an oxygen site and diffusion steps o f a walker

L reference length (loop/pipe)
L(t) far end location o f the specimen

Lq original thickness o f the specimen (in Chapter 3)

Zg test leg length (in Chapter 2)

Laty it) state variable o f the lattice site

Latfj (t) state variable o f the neighbor lattice sites of the lattice (i, j)

Lat2 an atomic metal lattice site (solid phase)

Latj a LBE lattice site (liquid phase)

Lat^ an oxide lattice site (solid phase)

Lat^ a lattice site o f oxide with overlapping with ironic metal (solid phase) 

m combined volume expansion factor

atomic weight of metal element
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M q atomic weight of oxygen

N qj. transport steps of oxygen in a calculating step

diffusion steps of walker in a calculating step

calculating steps

jV lattice number in x direction

p  ratio of inner reacted metallic atoms
p  effective pressure, p+pgh
Pr Prandtl number, Pr = v l a
p  reaction probability of oxygen sites and metal sites

act

q corrosion/precipitate rate at the wall 
r the fraction o f mass o f atomic M in the oxide molecular

R radius o f the pipe/loop
R net rate o f production/consumption o f the corrosion product

gas constant

Re Reynolds number
Sc Schmidt number S c - u /

Sh Sherwood number Sh = Kd,^ /
t time

At a short time difference

T  temperature

âverage ^verage temperature

maximal temperature 

minimal temperature 

i^iddle temperature 4 , ={T^,+T^^)I2  
Ü velocity of the melt flow
u the friction velocity

the metal phase moving velocity

Vq,^ the moving velocity of the oxide-metal interface

Vi velocity in boundary layer

bulk velocity

w the weight ratio o f M in the material

X coordinate in longitude direction
X beginning coordinate of the test leg
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limit o f laminar sub-layer 

7  ̂ coefficients of the Fourier series of C; 

y  coordinate in transverse direction o f x (in Chapter 2)

y  transformed coordinate o f x (in Chapter 3)

7q original interface o f metal/LBE

Yox_Min ( 0  minimum position o f the oxide site at i-th column

Yox Min ( 0  maximum position o f the oxide site at i-th column

Z integral of normalized D and C

Greek Symbols
Ô thickness o f laminar sub-layer 
(5̂  mean inner layer thickness

mean outer layer thickness

mean total thickness o f the oxide layer

Ç variable for similarity solution 
Tj dimensionless coordinate o f transverse direction
^  dimensionless coordinate of longitude direction
p  viscosity
p  density o f fluid

p^^ density o f the steel

density of the inner oxide layer

density of the outer oxide layer

wall shear stress 

V kinematic viscosity
F Gamma function
A difference
At (s) the time for forming thickness a(m) of oxide layer 

AZ thickness o f metal consumed for forming A<5.̂  of inner oxide layer

increase o f inner oxide layer

A<ŷ , increase o f outer oxide layer 
AJ,g, increase of the total oxide layer
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0 ^̂ ; local evolution rules for a lattice site

local evolution rules for an interstitial site 

control variables for an interstitial site 

control variables for a lattice site 

e  volume control parameter

œ number of oxygen atoms at an interstitial site

V gradient operator
V • divergence operator

Subscript and superscript 
* normalized value
ave average value
max maximum value
min minimum value
ini medium value
0  beginning or initial value
oxy properties of oxygen
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