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ABSTRACT

Investigation of the Robustness of Star Graph Networks

by

Xiaolong Wu

Dr. Shahram Latifi, Examination Committee Chair 
Professor of Electrical and Computer Engineering 

University of Nevada, Las Vegas

The star interconnection network has been known as an attractive alternative to «-cube 

for interconnecting a large number of processors. It possesses many nice properties, such 

as vertex/edge symmetry, recursiveness, sublogarithmic degree and diameter, and 

maximal fault tolerance, which are all desirable when building an interconnection 

topology for a parallel and distributed system. Investigation of the robustness o f the star 

network architecture is essential since the star network has the potential of use in critical 

applications. In this study, three different reliability measures are proposed to investigate 

the robustness o f the star network. First, a constrained two-terminal reliability measure 

referred to as Distance Reliability (DR) between the source node u and the destination 

node I  with the shortest distance, in an «-dimensional star network, S„, is introduced to 

assess the robustness of the star network. A combinatorial analysis on DR especially for u 

having a single cycle is performed under different failure models (node, link, combined 

node/link failure). Lower bounds on the special case of the DR\ antipode reliability, are

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



derived, compared with «-cube, and shown to be more fault-tolerant than «-cube. The 

degradation o f a container in a S„ having at least one operational optimal path between u 

and /  is also examined to measure the system effectiveness in the presence o f failures 

under different failure models. The values o f MTTF to each transition state are calculated 

and compared with similar size containers in «-cube. Meanwhile, an upper bound under 

the probability fault model and an approximation under the fixed partitioning approach 

on the («-l)-star reliability are derived, and proved to be similarly accurate and close to 

the simulations results. Conservative comparisons between similar size star networks and 

«-cubes show that the star network is more robust than «-cube in terms of («-l)-network 

reliability.

IV
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CHAPTER 1 

INTRODUCTION

It has become generally accepted that an effective way to increase the system 

throughput is to gather a large set of processors to solve a single given complex 

engineering and science problem. There is a large class of problems that cannot be solved 

efficiently in the traditional sequential computers; however, many of them can be broken 

into smaller tasks and solved efficiently in the parallel fashion.

A parallel computer is one that consists of a collection of processing units, or 

processors, that cooperate to solve a problem by working simultaneously on different 

parts of that problem. The number of processors can vary from a few tens to several 

millions. Therefore, time required to solve the complicated engineering problem by a 

traditional uniprocessor computer can be significantly reduced using a parallel computer. 

This approach is attractive for a number of reasons. First, for many computational 

problems, the natural solution is a parallel one. Second, according to the latest technology 

development in the semiconductor industry [I], the cost and size o f computer 

components have declined so sharply in recent years that parallel computers with a large 

number of processors have become feasible. Third, it is possible in parallel processing to 

select the parallel architecture that is best suited to solve the problem or class of problems 

under considerations.
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Experiences of using parallel computers to solve various problems in the past decades 

by engineers and scientists in varieties of areas have indicated that the ultimate utilization 

o f parallel computers is heavily dependent on the topology of the interconnection 

network that connects processors.

Many interconnection network topologies for parallel computers have been proposed 

in literatures. Among them, hypercube [8][10] is one o f the most popular and has been 

studied extensively in different aspects. However, star networks [3] [4] have been 

proposed as an alternative to the hypercube recently. The purpose o f this dissertation is to 

investigate the robustness of the star graph by using the combinatorial methods and 

Markov methods. More specifically, we study the distance reliability, the degradation o f  

a container between two arbitrary nodes in an «-dimensional star graph, and the substar 

reliability in the star interconnection network under the probability fault model and the 

fixed partitioning, and simulation, to investigate the robustness of the star graph. 

Meanwhile, conservative comparisons with the hypercube are performed for each above 

proposed merits. Throughout this dissertation, we use the terms “edge” and “link”, 

“processor” and “node”, “network” and “graph”, and and “(«-m)-star”

interchangeably.

1.1 Interconnection networks 

A processor/communication interconnection network is often modeled as an 

undirected graph, in which nodes correspond to processors and edges correspond to 

communication links between processors. Communications over a network is achieved 

by a message passing protocol, and the delay in the communication is usually measured
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in terms of the edges traversed. Some of the key features of interest in an interconnection 

network are its degree, diameter, congestion, symmetry, connectivity, fault tolerance, 

routing algorithm, hierarchical structure, etc.

A number o f topologies o f interconnection networks have been proposed and some of 

them have been implemented in modem parallel computer systems [4][14][19][30][33] 

[34]. These topologies range from simple graphs such as linear array, ring, binary tree, 

and complete graph, to more sophisticated graphs such as hypercube, butterfly network, 

and star network. Before we start to introduce interconnection networks, we need 

following terms which are frequently used to describe an interconnection network.

Degree o f  a node is the number of nodes that are adjacent to it. We say a network is 

regular if  all nodes have the same degree. Degree o f  a regular graph is then the degree of 

any of its vertices. Distance between a pair o f nodes is the smallest number o f links that 

have been traversed to go from one to the other. Diameter of a network is the maximum 

distance between any pair o f nodes. Clearly, the degree of a graph is a measure of the 

cost of interconnection networks and the diameter is a measure of the communication 

delay. Consequently, it is desirable to constmct a large graph with small degree and small 

diameter.

A graph is vertex symmetric if  the graph looks the same from each of its vertices. 

More formally, given any two vertices u and v there is an automorphism of the graph that 

maps u to V. Similarly, a graph is edge symmetric if  every edge looks the same, i.e., given 

any two edges i and j  there is an automorphism of the graph that maps i to j .  Such 

symmetry properties of a graph are very important when viewed as an interconnection 

network. For example, a vertex symmetric graph allows for all the processors to be
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identical. A vertex/edge symmetric graph has the desirable property that the 

communication load is uniformly distributed on all the nodes or over all the 

communication links, so that there is no congestion across the interconnection network. 

Moreover, this symmetry allows for identical nodes with identical routing algorithms. It 

is also very useful in designing algorithms that exploit the structure of the network. For a 

typical «-dimensional symmetric network, if  it can be decomposed into a number of («- 

I)-dimensional networks which has the same topological properties as the original one, 

and if this decomposition can be carried out recursively, we call this network has the 

recursive decomposition property.

A graph is said to be f-fault tolerant if  whenever/ or fewer vertices are removed from 

the graph the remaining graph always remains connected. The fau lt tolerance of a graph 

is defined to be the largest /  for which it is /-fault tolerant. Thus, the fau lt tolerance of a 

graph can at most be d -\, where d  is the degree of the graph. The fau lt diameter o f a 

network is the maximum diameter of the network by removing d-\ nodes. A graph whose 

fault tolerance is exactly <7-1 is said to be maximally fault tolerant.

Given a set of generators for a finite group G, a Cayley graph [2] is defined as a 

graph, in which nodes correspond to the elements of the group G and edges correspond to 

the action of the generators in G. That is, there is an edge from an element a to an 

element b if  and only if there is a generator g  such that ag = b in G. For example, 

hypercubes and star graphs are two representatives of the Cayley graph. Each of the 

Cayley graphs contains the following properties, such as node/link symmetric properties, 

recursive decomposition property, maximally fault tolerant, etc. Before moving to the star 

network, we introduce some common interconnection topologies as follows.
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Linear Array: The linear array [19] is the simplest connection topology. It is a one­

dimensional network in which n nodes are connected by n-\ links in a line. Internal nodes 

have degree 2, and the terminal nodes have degree I . The diameter o f a linear array o f n 

nodes is «-I. Its structure is not symmetric and thus poses a communication inefficiency 

when n becomes large.

Ring: A ring [19] is obtained by connecting the terminal nodes o f a linear array with one 

extra link. A ring can be unidirectional or bidirectional. It is symmetric with a constant 

node degree 2. The diameter is \_n 12 J for a bidirectional ring, and n for a unidirectional 

ring.

Binary Tree: In this network [37], the nodes form a complete binary tree. A A:-level 

complete binary tree has « = 2* - 1 nodes. The maximum node degree is 3 and the 

diameter is 2 {k - 1).

Hypercube: The «-dimensional hypercube [14] shown in Fig. I, «-cube or Q„, has 

N  = 2" nodes and «2""' edges. Each node corresponds to an «-bit binary string, and two 

nodes are linked with a link if  and only if  their binary strings differ in precisely one bit. 

As a result, each node is incident to « other nodes. The edges of the hypercube can be 

naturally categorized according to the dimensions that they traverse. In particular, an 

edge is called a dimension i edge if it connected two nodes that differ in the bit 

position. In addition the «-cube is a completely symmetric topology and, consequently, 

minimizes congestion problems. It also permits the use of identical processors since 

every vertex plays an identical role in the topology. The «-cube has a very simple and 

optimal routing algorithm that routes messages between processors along a shortest path 

[12]. This enables the design of low-cost routing hardwares. Other attractive features of
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the «-cube include our familiarity and understanding of the topology, particularly the 

recursive decomposition of the «-cube into successive cubes of smaller sizes.

•  : Qo

:Qi

100 i

10 11

:Q2

g
110

0/ i o y ^

2 0 2

i
DIG 2

1

/ 0 /

111

:Q3

O il

000 001

1110 1111

0110 11 O f0111

0101
1010 2 1011

0010 0011

1000 1001

0000 0001

:Q4

Figure 1.1. Hypercube of dimensions 1 ,2 ,3 , and 4.

Each Qr, contains two disjoint 0„-i’s. Partitioning a Q„ can be done in « different 

ways. This is implemented by removing the set of /-links, 0 < / < « , every time. For 

example, partitioning a Q4 along the 5-links results in two disjoint Qs's, XXXO and 

XX XI ,  respectively (Fig. 1.1); while partitioning a Q4 along the 2-links results in two
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disjoint Qs’s, XX O X  and X X I X , where X  is either ‘0 ’ or ‘1’, and so on. It follows that 

the number of disjoint Q„.m’s in a g» is 2” , for 1 < m < « , whereas the number o f distinct

Q n -m  S IS T .

The characterization of distinct and disjoint paths between two given nodes for the 

hypercube has been addressed in [33]. If  u and v are two nodes in an «-cube with the 

Hamming Distance r = H ( u , v ) , then there are r\ distinct paths o f length r between u 

and V, where there are r disjoint paths of length r , and n - r  disjoint paths of length 

r + 2 between u and v. Thus in total we can construct a family of « disjoint paths 

between u and v, which is the maximum allowable number of parallel paths between two 

nodes in the «-eube.

There are also a number of other fault tolerant properties of the «-cube that make it 

very attractive. Due to the multitude of paths between vertices the «-cube not only 

possesses optimal fault tolerance properties but provides little or no degradation of 

performance in the presence of faults. The fault tolerance of the «-cube is «-1 and 

therefore said to be maximally fault tolerant [8][35],

Butterfly Network: The r-dimensional butterfly [19] has ( r + 1)2'' nodes and r2''^'

edges. The nodes corresponds to pair < w , i > , 0 < i < r  , where i is the level or dimension 

of the node and w is an r-bit binary number that denotes the row of the node. Two nodes 

<w, i>  and < w \ V >  are linked by an edge if  and only if / ' = / +1 and either:

1. w and w'  are identical, or

2. w and w'  differ in precisely the ith bit.
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If w and w'  are identical, the edge is said to be a straight edge. Otherwise, the edge 

is a cross edge. In addition, edges connecting nodes on levels i and i +1 are said to be 

level i +1 edges. A 3-dimensional butterfly network is shown in Fig. 1.2.

row 000  001 010  O il 100 101 110 111

level = 0

level = 1

level = 2

level = 3

Figure 1.2. A 3-dimensional butterfly network.

1.2 Star interconnection network 

An «-dimensional star network [4], S„, is defined as an undirected graph G = (V, E), 

where V is set o f «! nodes, and E  is the set of («-l)«!/2 links. Nodes are assigned with 

labels each of which is a distinct permutation on « different symbols (we use symbols 1, 

2, 3,..., «). Two nodes, u and v, are connected with a link labeled with link i if  and only if 

node V can be obtained through ug. = v , where g. ,  2 < i < n ,  is the generator swapping 

the first symbol with the symbol in the permutation of node u. For example, in a 4-star 

containing 24 nodes, node 3214 can be obtained by applying g j, swapping the first and 

third symbols in node 1234. Fig. 1.3 shows the star graph of dimensions 2, 3, and 4.
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1234 4231

Star graph o f  dim ension 2

132
Star graph o f  dim ension 3

& % @  #, all represent g4

3142 2143

Star graph o f  dim ension 4

Figure 1.3. Star graph of dimensions 2, 3, and 4.

Table 1.1. Comparisons between «-cube and «-star.

«-cube «-star graph

n
node

2"

degree

n

diameter

n

fault

diameter

n+1

«
node

n!

degree

n-1

diameter fault

diameter

Dia+1

1 128 1 7 8 5 120 4 6 1

9 512 9 9 10 6 720 5 7 8

12 4096 12 12 13 7 5040 6 9 10

15 32768 15 15 16 8 40320 7 10 11

19 524288 19 19 20 9 362880 8 12 13
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Several researchers have investigated the algebraic properties o f the star network 

using performance metrics such as number o f nodes and links, connectivity, diameter, 

surface area, fault diameter, diagnosability, etc [2][4][15][20][23][36][42], The star 

network can connect more processors with less interconnections and less communication 

delay than the popular hypercube [12][21]. More specifically, growth in the node degree 

and diameter is sub-logarithmic to the network size in star network, but logarithmic in the 

hypercube. Various networks have been mapped to the star network [6] [24] [29]. A 

treatment of communication aspects for this network is presented in 

[5][11][13][16][28][32]. Fault tolerance of the star network has also been investigated 

extensively in [3][9][ 17][ 18] [25][26] [27] [31 ] [38] [39][40].

Like the hypercube, the stat network has rich structure and symmetric properties as 

well as maximally fault-tolerant characteristics. The star network has superior node 

degree and diameter compared to the hypercube of a comparable size. More specifically, 

growth in node degree and diameter is sub-logarithmic to the network size in the star 

network but logarithmic in the hypercube. This can be visualized in Table 1.1. Next we 

list some major properties o f the star network.

1.2.1 Cycle representation

The node permutation can be decomposed into a sequenee of one or more disjoint 

cycles, each of containing a set of distinct symbols. For example, the node permutation 

[42651387] in a 8-star, can be decomposed into cycles: (145)(2)(36)(78). In our ease, 

cycles are built by identifying misplaced symbols in the node permutation, starting from 

the leftmost position. Note that, any digit already in the correct position appears in a 

cycle of length 1, or a 1-cycle. Depending on the symbol in the first position (leftmost) of

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the node permutation being ‘ 1’ or not, cycles can be categorized into:

• Ordinary cycle that contains ‘ 1 ’

• None-ordinary cycle that does not contain ‘ 1 ’

In above-mentioned example, cycle (145) is an ordinary cycle, and cycles (36), (78) 

are none-ordinary cycles.

For a given source permutation, cycles can move according to the following two 

rules:

• Cycles can appear in any order

• Cycles without “ 1” inside can be executed to reach the same destination 

regardless o f the number of cyclic shifts on the symbols;

After applying above rules, the following representations (145)(2)(36)(78), 

(36)(145)(2)(78), and (145)(2)(63)(78), all specify the same source permutation 

[42651387].

1.2.2 Transposition

A transposition is a permutation which exchanges two elements and keeps all others 

fixed [7]. For example, transposition (la ,) means permutation between 1 and a,. Cycles 

can be written as a product of transpositions using the following two rules:

•  ( ^ , ^ 2 ^ 3  =  (la, ) ( 1 « 2  ) ( 1 « 3  )  • • • ) ( 1 « I  )

• •■•%) = (1«,)(1«2)(1«3) " ( K )

where a\ through a* denote distinct symbols from 2 to n. For example, cycle (145) can be 

written as a product of transpositions (14)(15), and cycle (36) can be written as a product 

o f transpositions (13)(16)(13). If the number o f transpositions for a given node 

permutation is odd, we name this node permutation odd] otherwise we name it even. The

11
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identity permutation is considered as even, since it involves non transposition. Since the 

star graph is bipartite symmetry, the number o f the odd node permutations equals to the 

number o f the even node permutations.

1.2.3 Properties of cycles

Let us consider the star transposition tree with the following correspondence between 

transpositions and generators; g 2  = 02), g 3  = (13), g 4  = (14), g „ = ( l« ) .  Generators

are partially ordered according to the decreasing indices: g „> g „_ j>  ••• > g]> g ] •

Vertices are originally labeled as the identity permutation 1, with the symbol ‘ 1 ’ sitting in 

the center, as shown in Fig. 1.4(a). Therefore, a product o f  transpositions fo r  any cycle 

can be represented by a product o f  the corresponding generators, where, for simplicity, 

dots in products will be omitted. Based on the two different categories o f cycles, the 

product of generators can also be divided into two cases [28]:

i): Ordinary product o f  generators', where the first generator is different from the 

last one in the product of generators. This corresponds to the ordinary cycle. The general 

form for the ordinary product of generators can be described as g, g; g, ...g; , where

g ]  ^ g „ , a n d 2 < ; j .  < « .

ii): None-ordinary product o f  generators', where the first generator is the same as the last 

one in the product of generators. This corresponds to the none-ordinary cycle. The 

general form for this product can be described as g, g; g; ...g, g; .

For example, the ordinary product of generators corresponding to cycle (145) is 

g 4 g 5  , and the none-ordinary product o f generators corresponding to cycle (36) is 

S 386S3 ■ Next give details about the properties for each type of the product of generators.

12
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gn-1

n-1

g n -l

n-1
(b)n-2

Figure 1.4. Star transposition tree of dimension n.

Case 1: Properties of the ordinary product of generators

Lemma 1: For the star graph with «-1 generators, (g^ ~ I  holds.

Proof. The product & 3  S a ' " S n can be considered as a sequence of corresponding 

swapping of symbols on the transposition tree in Fig. 1.4(a). After applying the product, 

every symbol on the leaf will “travel” clockwise one step starting from the first symbol, 

and the last one moves to the center. The resulting placement is shown in Fig. 1.4(b). 

After n such operations on the product, symbols will return to the original positions. 

Q.E.D.

Each node permutations after applying the product every time is presented as follows:

12345 n - \ n
«1234........«-3«-2«-l

12345........n-2n-\n

Lemma 2: Lemma 1 holds for every ordinary product. In another word,

holds.

Proof: We can extract a subtree with an arbitrary set of k  generators and arrange its edges

13
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corresponding to some permutation of generators in asset. After repetitive applying k+\ 

times of product g, g, g, , symbols will reach their original positions by “traveling”

on the certain leaves o f the transposition tree. Q.E.D.

7 7 7
Figure 1.5. Traveling of symbols on the leaves of a transposition tree after applying g^g^.

For example, after applying the product g^g^ three times, the symbols in the vertices 

of tree (Fig. 1.5) will travel on the leaves (only grey ones) back to their original positions.

34

k-l m-1

n-1 n-1 n-2n-1 n-2
(a)

3

m-lm-1

n-1n-1n-1 n-2 n-2
(b)

Figure 1.6. Positions of symbols after applying g^gg ■■•g„g2 ggg^ •••g„g2 g 3 -

14
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Case IL Properties of the none-ordinary produet of generators 

Lemma 3: For the star graph with n-\ generators, the following holds:

=  g a & g s  '  '  '  g « g 2 g )   ..............=  ^ . ^ 2 ^ 3  '  '  '

Proof. When the first n-\ generators are applied, all the symbols will shift one step 

cloekwise on the corresponding leaf, as in Fig. 1.6 (only presenting the first two cases 

here, the remaining can be executed similarly). Then, when the last generator of the 

product is applied, the symbol 1 will return back to its original position (center), and we 

obtain the same permutation \ n23- - - {n-2){n- \ )  for all the products listed above. 

Q.E.D.

Corollary 3.1: For star graph with n-\ generators, the following does not hold:

& 2& 3&4 ’ S n - \ S n  ~  S î S aS s ' ' S n S l  ~ ............”  S n S l S ^  ' S n - 2 S n - \

Part of the proving process for Lemma 3 has shown that symbols on the center vertex 

in the star transposition tree are different before applying the last generator.

Corollary 3.1.2: The position of each symbol in the ordinary cycle for the cycle 

representation of the source permutation is fixed, while eyelie shift operations on 

symbols in a none-ordinary cycle are allowed.

Proof. Proof follows Corollary 3.1 since each symbol in the ordinary cycle corresponds 

to a distinct generator in the star transposition tree. This concludes that the cyclic shift 

operations on the symbols in an ordinary cycle are not allowable. Proof for the second 

part is already shown in Lemma 3. Q.E.D.

Lemma 4: If some products of generators in a star graph consists of two subproduets of 

distinct sets of generators = FI  ̂0 * , and if either of them is o f the none-ordinary type,

then n„ = n * = rii n„ •

15
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Proof. We can decompose the original star transposition tree into two substrees, 

corresponding to distinct sets o f generators and connected through the center vertex. Let 

us assume that symbol x  ( x e {1,2,3, • • -, «} ) was in the center vertex before applying the 

none-ordinary product. After applying the none-ordinary product, all symbols o f its 

subtrees will be shifted one position clockwise on the leaves, and the symbol x will be 

returned to the center vertex. Since sets o f generators in and are distinct, this

cannot affect any shifting of symbols on the other subtree; therefore, the ordering of two 

subproducts (either ordinary or none-ordinary) is arbitrary. Q.E.D.

Lemma 5; The none-ordinary subproduct of generators can be nested in other subproduct 

consisting of a distinct set o f generators, whether it is of ordinary or none-ordinary type. 

Proof Since the none-ordinary subproduct preserves the symbol in the center vertex of 

the star transposition tree and its distinct generators will not affect any shifting of 

symbols in the other subproduet, it can be nested in the other subproduet (whether it is of 

ordinary or none-ordinary type) without affecting the resulted final permutation. Q.E.D.

The following example will illustrate the nesting of subproduets and the 

corresponding cycles:

rio = g4g5g3g6g3, = 83g6ë3ë 4 8 ^  C, = (145)(36) = (14)(15)(13)(16)(13)

= g4 g3g6g3 = (13)(16)(13)(14)(15) = (14)(13)(16)(13)(15)

The previous lemmas can be generalized to k  subproducts of distinct sets of 

generators by the following lemma.

Lemma 6: If some produet of generators in the star graph consists o f k  subproducts 

{ 2 < k < n )  of distinct sets of generators Il„ = n ,  and if  at most one of them is

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an ordinary one, then the ordering of these subproducts is arbitrary, and the none- 

ordinary ones can be nested in the ordinary subproduct or/and other none-ordinary ones. 

Proof. Again we can divide a star transposition tree into k  distinct subtrees connected 

through the eenter vertex. Assume that symbol x (x e |l ,2 ,3 ,- - - ,« } ) was in the center

vertex before applying the none-ordinary products. Each none-ordinary subproduct will 

only shift the symbols of its subtree clockwisely on the corresponding leaves and return 

the symbol x to the center vertex. The ordinary subproduct will only shift the symbols of 

its subtree clockwisely on the corresponding leaves and replace the center vertex x with 

the last symbol form its subtree. Since the generators in the ordinary subproduct and 

none-ordinary ones are distinct, this cannot affect any shifting of symbols on other 

subtree, therefore the ordering of them is arbitrary. Due to the distinct sets o f generators 

in none-ordinary subproducts and the preserving of the center symbol, they can be nested 

in the ordinary subproduct or/and other none-ordinary ones. Q.E.D.

The following example explains the above lemma 6:

r i,

=  g 4  g 3 ^ 6 g 3  g ;  g 7 g » g 7  =  g 4 g ;  g 3  g 7 g 8 & 7  ^ 6 ^ 3  =  "  =  ^ 4 ^ 5  ^ 3 ^ 6  g 7 g » g 7  ^ 3

Corollary 6.1: If the cycle representation of the source permutation is the product o f k

distinct cycles of distinct symbols Q  = QC2  Q  , and if at most one of them is an

ordinary one, then the ordering o f these cycles is arbitrary, and the none-ordinary cyeles 

can be nested in the ordinary eycle or/and other none-ordinary ones.

Proof follows Lemma 6 and Corollary 4.1.

The following example explains the above Corollary 6.1 :

17
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C =45363787910119 = 45363910119787 = 45787910119363 = 45787363910119 = 

= 43635787910119 = 45736387910119 = 45783637910119 = 45787936310119

=43637875910119 = ••• = 45936378710119

= 43637879101195

This example shows how large the number o f alternative optimal paths between two 

arbitrary nodes can be in the star graph, even without taking into account all the cyclic 

shifts on each symbol in the none-ordinary cycle. If we do not consider the nesting of 

cycles and we assume all the cycles are of the none-ordinary type, the number of 

alternative optimal paths is , where k  is number of cycles and pi denotes the

number o f distinct symbols in each cycle Q .

1.2.4 Routing

The routing between two nodes in the star graph is accomplished by sending the 

message from the current node to the next node until the destination node is reached. 

Since the star graph is vertex symmetric, with no loss of generality, the destination node 

is assumed to have been labeled as the Identity Permutation /  = 123^ M̂ , hence the 

routing is equivalent to sorting the source permutation to the destination permutation.

Given the label o f the source node, there are two ways to specify the destination node. 

One way is to use the label of the destination node. The second way is to exploit the fact 

that in the star graph one label is simply a permutation on the digits of the other label. 

But, since any permutation can be viewed as a set o f cycles, i.e., cyclically order sets of 

digits with the property that each digit’s desired position is that occupied by the next digit

18
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in the set. Hence, after having the label of the destination node fixed to /, to specify the 

source node is to exploit the fact that the label, u, the source permutation, is simply a 

permutation on the digits of I. Routing between two given nodes is accomplished based 

on the following two rules [4]:

i) If  1 is the leftmost digit, move it to any position not occupied by the correct digit;

ii) If i is the leftmost digit { \< i< n ) ,  move it to its correct position.

It was shown that these two rules [4] ensure an optimal path o f the minimum 

distance:

f  0 , if  1 is first in the source permutation 
distance - c  + m~<

[2 , if  1 is not first in the source permutation

where c denotes the number of cycles o f length greater than 2 , and m is the total number 

o f symbols in these cycles, namely misplaced symbols. Next section continues to 

introduce the node-disjoint paths in the star graph.

1.2.5 Node-disjoint paths

A path originating from a node can be uniquely specified by the labels o f links it 

traverses. The length o f a path is the number of links it traversed. A path is operational if 

it passes through fault-free intermediary nodes and links. Two or more paths are node- 

disjoint if, except for the source and destination nodes, they do not have any node in 

common. It is important to have node-disjoint (or parallel) paths between two nodes in an 

interconnection network to speed up the transfer o f a large amount of data and provide 

alternative routes in the case o f node failures.

The maximum number o f node-disjoint paths of the shortest length between a given 

pair of nodes in the star graph has been derived in [12] and is known to be “n -I”. The 

notation n{i) is used to refer to the digit of the label of u. If the node permutation of u,
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expressed in its cyclic form, then it follows:

i) If ;t(I) = 1, there are n-\ node-disjoint paths between u and I  as follows:

a) m paths o f the shortest length c+m

b) n-m-\ paths of length c+m+2

ii) If  ^(1) ^  I , there are n-\ node-disjoint paths between u and I  as follows:

a) c paths of the shortest length c+m-2

b) m-c-\ paths of length c+m, and 

e) n-m paths of length c+m+2

The above results are very important as we shall make the extensive use of them in 

Chapters 3 and 4 of this dissertation. For the purpose of simplicity, we use r  to denote the 

shortest distance between u and /  in the rest o f this paper.

1.2.6 Antipodes

A Dimension Permutation (DP) 5 is a permutation on the set of dimensions of the 

network (or equivalently a permutation on the digits o f the label of each node in the 

network). The DP  is a bijection which assigns uniquely to any given node, a specific 

node in the network. The first node can be thought o f as the source and the second node 

as the destination. A DP 5  can be specified by a set o f cycles which maps the source to 

the destination. This set of cycles will be equivalent to the cycle representation of the 

source node label if  the destination node is /.

In a network, the farthest node(s) from a given node along the shortest path is called 

the node’s antipode(s) [22]. The antipode of a node is apart from it by (diameter of the

star network) and can be specified by a maximum permutation ( ^ ^  ). More specifically,

in with digit I in place, all cycles must be of length 2 for odd n. For even n, there
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may be two possibilities. There there may be one eyele of length 3 and the rest of length 

2 (again, digit 1 must be in place); or M/2 2-eyele with one eyele containing digit 1. 

Details are explained in [22] as follows:

a) When n is odd, all cycles o f must be of length 2 with digit 1 in place. Then

we have )(iJs) " ( L i l ), where l<i^,  n. And m = n - l  and

c  =  ( m - 1 ) / 2 .

b) When n is even, there are two possibilities. First, there is one cycle of length 3 

and the rest o f length 2 (digit 1 must be in place), therefore we have 

m̂ax = (1)(4Ÿ'4)(V'6) " (L ,C ) ,where 1 < 4 , zj,--, /„ < n. And m = m - 1  and c = ( m - 2 ) / 2 .  

Second, there are m / 2  2-cycles with one eycle containing digit I, therefore we have 

<̂max = (44)(V'4 )(44 ) " ) , where 1 < zj,--, z„ < n. And am =  m and c = m / 2 .

As an example, in a 5-star, one of the antipodes of a node can be specified by the 

following permutation: ^  = (1)(23)(45).

For a 6 -star, there are two possibilities to specify the antipodes of a node. For 

example, can be in forms of: (1)(234)(56) or (12)(34)(56) .

In S„, there exist more than one way to construct cycles so that a can be 

obtained. Two cases are distinguished to find the number of antipodes for a given node in 

a& [22]:

Case (i): n is odd. Then 5^^  ̂ = (l)(44)(44)“ ‘(4-i4) ’ where l<Z2 ,zj,-",z^ < n. Note that 

the order in which the cycles appear does not change the antipode. The number o f distinct 

cycles of which 2 is a member (i.e., 23, 24, •••, 2 m )  is ( m - 2 ) .  After selecting the pair for

2 1
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the first 2-cycle, there are (m-3) digits left. The number of distinct 2-cycles o f which a 

given digit, say 4, is a member is (m-4), and so on. It follows that the number o f antipodes 

for a given node in this case is = { n -  2){n -  4)(m -  6 ) • • • I .

Case (ii)-. n is even. Depending on we consider two possibilities. First, let 

m̂ax = (l)(4 4 4 )(4 4 )" '(4 -i4 ) • Using a similar argument as in Case (i) the number of

antipodes for a given node here is given by: 2  x
v3 y

(m -  5)(m -  7) • • • 1 (The factor of 2

is due to the fact that 3 elements x, y, and z can form two distinct 2-cyclces). Second, let 

m̂ax = (44)(44)(44)' ' ' (4-i4) • The number of antipodes corresponding to this 

permutation is: { n -  \){n -  3)(m -  5) • • • I . Summing the number of antipodes gives

= (» -  !)(» -  3)(» -  5) -1+ 2 X
v3 y

(m-5 ) ( m-7 )---1  .

Since the number of antipodes is more than one (for «>3), we define the antipode 

corresponding to the following DP's as the basic antipode.

m̂ax = (1)(23)(45) • • • (m -1 , n), for odd n;

<̂max = (I)(234)(56) • • • (m -1 , n), for even n
or(I2)(23)(45) -(M-I,M)

As an example, in a 5-star, there exists 3 antipodes for each node which can be 

reached from that node by applying the following permutations:

m̂axi = (1)(23)(45) (basic antipode)
^m «2=(lX 24)(35)

,y _ , = (I)(25)(34)

However, there is only one unique antipode for a given node in the hypercube 

network. This antipode is in distance n away from the given node, and its binary string
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representation is the complement o f the label o f the given node. This brings new 

requirements that communications between a given node and its antipodes in the star 

graph needs to be investigated extensively before applications.

1.2.7 Decomposition

Each S„ contains n disjoint 5„_i’s. Partitioning a S„ can be done in (m-1) different 

ways. This is implemented by removing the set of z-links, 2 < i < n , every time. For 

example, partitioning S4 along the 4-link will result in [X X X 4,X X X 3,X X X 2,X X X l] ,

while partitioning S4 along the i-link will result in { ^ XX 4 X, XX ' 3X, XX2X, XXI X]  ,

partitioning S4 along the 2-link will result in [ X 4 X X , X 3 X X , X 2 X X , X I X X ] . Fig. 3

illustrates a S4 where the mentioned substars Ss's are shown as hexagons. Partitioning S„ 

along dimension “ 1” will result in n! isolated nodes. This is the only case where 

partitioning does not produce “ m”  5 „ - i ’ s .  It follows that the number of disjoint S„.m's in a

S„ is AM !, for 1 < AM < A7 , whereas the number o f distinct is
ÂM y ÂMy

AM!

Each substar can be uniquely labeled as a string of symbols over the set 

|I,2,3,---,m-1,m,X} , where A  is a Don’t Care symbol. A service of 2Ts in the label of a

substar implies all permutations on the digits not appearing in the label. The first position 

(i.e. the leftmost one) of the label of any substar always equals to X  because of the 

connectivity conditions of the star graph, unless the substar is a single node (i.e. So). 

Notably, the number o f X  symbols in the string determines the dimension of the substar. 

Specifically, an w-dimensional substar, Sm, has exactly m X s  in its symbol
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representation, as it involves a group o f m\ nodes. For example, X 2 X I X , represents a 3-

star formed by the set of nodes |2 3 4 15,23514,43512,43215,53214,53412}.
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CHAPTER 2

RELIABILITY AND EVALUATION 

A fault-tolerant network is one that can continue to correctly perform its specified 

tasks in the presence of failures which could be in forms o f node failures, link failures, or 

combined node/link failures. The most prominent requirements to achieve a fault-tolerant 

network are reliability, availability, safety, performability, dependability, maintainability, 

and testability.

As the size of a system grows, the probability of a fault occurring in the network 

increases. It is important to quantify the effect of the faults, so the fault-tolerant network 

can be pursued. Normally, reliability is used to evaluate a multiprocessor interconnection 

network. The reliability R{t) of a system [1] is a function of time, defined as the 

conditional probability that the system will perform correctly throughout given

that the system was performing correctly at time . In other words, the reliability is the

probability that the system will operate correctly throughout a complete interval of time. 

The unreliability R{t) o f a system is a function of time, defined as the conditional 

probability that the system will perform incorrectly throughout , given that the 

system was performing correctly at time [2]. The unreliability is often referred to as

the probability of failure. Fault tolerance is a technique that can improve reliability, but a 

fault-tolerant system does not necessarily have a high reliability. In other words, the
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system ean achieve a high reliability but not possess attributes o f the fault tolerance. 

Before we introduce different reliability measures and reliability evaluation models, a 

brief description about some fundamental terms is given first.

2.1 Fault, error, and failure 

Three fundamental terms in the fault-tolerant design are fault, error, and failure  [6 ]. 

There is a cause-and-effect relationship between faults, errors, and failure. Specifically, 

faults are the causes of errors, and errors are the cause o f failures.

A fault is a physical defect, imperfection, or flaw that occurs within some hardware or 

software components. Essentially, the definition of a fault, as used in the fault tolerance 

community, agrees with the definition found in the dictionary. A fault is a blemish, 

weakness, or shortcoming of a particular hardware or software component. Examples of 

faults include shorts between electrical conductors, open or breaks in conductors, or 

physical flaws or imperfections in semiconductor devices. Similarly, in software, an 

example o f a fault is a program loop that when entered can never be exited.

An error is the manifestation of a fault. Specifically, an error is a deviation from 

accuracy or correctness. For example, suppose that a physical short results in a line 

within a circuit being permanently stuck at logic 1. The physical short is a fault within the 

circuit. If some condition occurs that requires the line to transition to logic 0, the value on 

the line will be in error. In other words, the correct value for the line will be logic 0 , but 

the existence o f the fault has caused the line to have an erroneous value. In other words, 

an error is the result of a fault.
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Finally, if  the error results in the system performing one o f its functions incorrectly, a 

system failure  has occurred. Essentially, a failure is the non-performance o f some action 

that is due or expected. A failure is also the performance of some function in a subnormal 

quantity or quality. As an example, suppose that a line in a circuit is responsible for 

turning a value on or off: logic 1 turns the value on and logic 0  turns the value off. If  the 

line is stuck at logic 1, the value is stuck on. As long as the user of the system wants the 

system the value one, the system will be functioning correctly. However, when the user 

wants to turn the value off, the system will experience a failure.

Fig. 2.1 illustrates the cause-and-effect relationship between faults, errors, and 

failures. Faults result in errors, and errors ean lead to system failures. One way to think of 

Fig. 2,1 is as a hierarchy. At the bottom of the hierarchy are faults. Errors are the effect of 

faults, and finally, failures are the effect o f errors.

FailureFault Error

Figure 2.1. Relationship between faults, errors, and failures.

Faults can be the results of a variety of things that occur within electronic 

components, external to the components, or during the component or system design 

process, ft is very important to understand all the possible causes of faults. Possible fault 

causes can be associated with problems in four basic areas: specifications, 

implementation, components, and external factors. The first cause of faults is the 

possibility o f specification mistakes, including incorrect algorithms, architectures, or
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hardware and software design spécifications. The next cause of faults is implementation 

mistakes, defined as faults during the process of transforming hardware and software 

specifications into the physical hardware and the actual software. The next cause is 

component defects, defined as manufacturing imperfections, random device defects, and 

component wear-out, etc. The final cause o f faults is the external disturbance, for 

example, radiation, electromagnetic interference, battle damage, operator mistakes, and 

environmental extremes.

To adequately describe faults, however, characteristics other than the causes are 

required. In addition to the causes, four major attributes are critical to the description of 

faults; nature, duration, extent, and value.

The fault nature specifies the type o f faults. This can specified using terms such as 

hardware, software, analog, and digital. The fault duration specifies that length of time 

that a fault is active. And this could be permanent, transient, or intermittent. The fault 

extent whether the fault is localized to a given hardware or software or whether it 

globally affects the hardware, the software, or both. The fault value ean either 

determinate or indeterminate. A determinate fault is one whose status remains unchanged 

throughout time unless externally aeted upon. Meanwhile, an indeterminate fault is one 

whose status at some time T may be different from its status at some other time T ’.

2.2 Quantitative evaluation methods 

The methods for evaluating fault-tolerant networks can be divided into two major 

categories; quantitative and qualitative. Qualitative measures are typically subjective in 

nature and describe the benefits of one network over another. Quantitative evaluation
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techniques produce numbers that can be used to compare two or more systems. Usually 

we discuss methods of evaluation that generate speeific numbers to compare two or more 

systems. Often, we find that certain attributes of a system that enter the design process 

are extremely difficult to quantity. And in practice, major decisions are often using more 

qualitative information than quantitative. These qualitative comparisons are flexibility, 

technology dependence, transparency to the user, and testability. The flexibility o f a 

system is referred as the ability to expand and improve as customer needs change and 

technological advance occur. Technology dependence is easy to understand as the ability 

o f the system capable of adapting itself to the new developed technology. Easy to 

understand, to operate, to test the system are also important concerns for qualitatively 

evaluating a fault-tolerant network. However, these qualitative evaluations are extremely 

difficult to determine and out of the scope of this dissertation. Therefore, we only stick to 

the quantitative evaluation techniques throughout the dissertation.

The purpose of quantitative evaluation is to assign a number to some attribute of a 

system such that this attribute can be compared among systems. For example, the 

reliability of one system may be greater than that of another. Next we introduce several 

quantitative evaluation techniques [6 ] ,  including the failure rate, reliability, mean time to 

failure (MTTF), mean time to repair (MTTR), mean time between failures (MTBF),.

• Failure rate and reliability function

Intuitively, failure rate is the expected number o f  failures o f  a type o f  device or 

system per a given time period. For example, if  a computer fails, on the average, once 

every 2 0 0 0  hours, the computer has a failure rate of one failure per 2 0 0 0  hours, or 1 / 2 0 0 0  

failures/hour. The failure rate is typically denotes as À . The failure rate is one measure
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that can be used to compare systems or components. In selecting a banking application, 

one would like to select a computer that fails as infrequently as possible.

The reliability R{t) o f  a system is a function o f  time, defined as the conditional 

probability that the system will perform correctly throughout the interval given

that the system was performing correctly at time t^ . Suppose that we test N  identical 

components by placing all N  components in operation at time t  ̂ and recording the 

number o f failed and working components at time t . Let N  flt)  be the number of 

components that have failed at time t and N flt)  be the number of components that are

operating correctly at time t . It is assumed that once a component fails it remains failed 

indefinitely. The reliability of the components at time t is given by

n / . \  _  F f t )  _  Npit)

which is simply the probability that a component has survived the interval [tg,/]. The

probability that a component has not survived the time interval is called the unreliability 

and is given by

^ / ( t ) _____

N J t ) + N f ( t )
Note that at any time t, R{t) = 1 .0 - Q(t) because R{t) + Q(t) = ^  ^  =1 .0 .

If we rewrite the reliability function and differentiate R(t) with respect to time, we 

obtain — derivat ive o f Ny( t )  , dNj-(t ) ldt  , is simply the 

instantaneous rate at which components are failing. At time t, there are still N f t )  

components operational. Dividing d N f i t ) !  dt by N f t )  we obtain
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z{t) is called the hazard function, hazard rate, or failure rate function. The failure units 

for the failure rate function are failures per unit of time. The failure rate function can be 

expressed in different ways. For example, z{t) can be written strictly in terms of the 

reliability function R{t) as

z ( 0 - J.T dRjt)
dR(t)

dt
Æ( 0  '(A

Similarly, z(t) can also be written in terms of the unreliability Q{t) as

dR (t)  dQ(t)  

d t )  - __ ^  ^__

The derivative o f the unreliability dQ{t) / dt is called the failure density function.

If we assume that the system has a given constant failure rate À , the solution to the 

above differential equation is well known to be an exponential function given by 

R{t) = . This exponential relationship between the reliability and time is known as the

exponential failure law, which states that for a constant failure rate function, the 

reliability varies exponentially as a function of time.

The exponential failure law is extremely valuable for the analysis o f electronic 

components and is by far the most commonly used relationship between reliability and 

time. Many cases, however, cannot assume that the failure rate function is constant, so 

the exponential failure law cannot be used; other modeling schemes and representations 

must be employed. An example of the time-varying failure rate function is found in the 

analysis of software. Software failures are the result of design faults, and as a software 

package is used, design faults are discovered and corrected. Consequently, the reliability
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of software should improve as a funetion o f time, and the failure funetion should 

decrease.

A eommon modeling teehnique used to represent time-varying failure rate functions 

is the Weilbull distribution. The failure rate function associated with the Weibull 

distribution is given by z{t) = aÀ{Àty~^, where a  and T are constants that control the 

variation o f the failure rate function with time. The failure rate function given by the 

Weibull distribution is intuitively appealing. For example, if the value of a  is 1, z{t) is 

simply the constant T . If or is greater than I, z(t) inereases as time inereases; if  a  is 

less than I, z{t) decreases as time inereases. Consequently, we ean envision modeling 

software using the Weibull distribution with the constant a  being less than I. The 

reliability function that results from the Weibull distribution is given as R{t) = .

Although time-varying failure rate functions are important in the analysis o f software 

and other systems, by far the most common analysis is performed assuming a constant 

failure rate function and the exponential failure law. Thus we continue to use the 

exponential failure distribution for the remaining o f this dissertation.

• Mean time to failure

In addition to the failure rate, the mean time to failure (MTTF) is a useful parameter 

to specify the quality of a system. The MTTF is the expected time that a system will 

operate before the first failure occurs. For example, if  we have N  identical system plaeed 

into operation at time t = 0 , and we measure the time that each system operates before 

failing, the average time is the MTTF. If  each system i operates for a time t. before

encountering the first failure, the MTTF is given by MTTF = l . fLf i  / N .
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The MTTF can be calculated by finding the expected value of the time of failure. 

From the probability theory, we know that the expected value of a random variable X  is

E[X~\ ^  x f  {x)dx , where / (x) is the probability density function. In reliability

analysis we are interested in the expected value of the time of failure (MTTF), so

MTTF = i f)d t , where / (t) is the failure density function, and the integral runs from

0 to CO because the failure density function is undefined for times less than 0. Using 

integration by parts and the fact that / (t) = - d R ( t ) / d t , we can show that

MTTF = - ^ t ^ d t  = [-tR{t) + R{t)dt]; = JT R{t)dt

The term -tR {t) clearly disappears when t = 0 ; but, it also disappears when t = co 

because i?(oo) = 0 . Consequently, the MTTF is defined in terms of the reliability function

as MTTF  = R {t)d t, which is valid for any reliability function that satisfies i?(oo) = 0 .

If the reliability function obeys the exponential failure law, the result o f calculating the

MTTF is given by MTTF = JT e~^'dt = y . In other words, the MTTF o f a system that

obeys the exponential failure law is the inverse of the failure rate of the system.

• Mean time to repair

The mean time to repair (MTTR) is simply the average time required to repair a 

system. The MTTR is extremely difficult to estimate and is often determined 

experimentally by injecting a set o f faults, one at a time, into a system and measuring the 

time required to repair the system in each case. The measured repair times are averaged 

to determine an average time to repair. The MTTR is normally specified in terms of a 

repair rate p , which is the average number o f repairs that occur per time period. The

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



units of the repair rate are normally the number o f repairs per hour. The MTTR and the

repair rate p  are related by MTTR — 1

• Mean time between failure

The mean time between failures (MTBF) is the average time between failures o f  a 

system. If  we assume that all repairs to a system make the system perfect once again until 

it was when it was new, the relationship between the MTTF and the MTBF is as 

illustrated in Fig. 2.2. Once successfully placed into operation, a system operates, on the 

average, a time corresponding to the MTTF before encountering the first failure. The 

system then requires some time, MTTR, to repair the system and place it back into 

operation once again. The system then is perfect once again and will operate for a time 

corresponding to the MTTF before encountering its next failure. The time between the 

two failures is the sum of MTTF and MTTR and is the MTBF. Thus, the difference 

between the MTTF and the MTBF is the MTTR. Specifically, the MTBF is given by 

MTBT = MTTF + MTTR. In most practical applications the MTTR is a small fraction of 

the MTTF, so the approximation that the MTBF and MTTF are equal is often quite good.

MTBF = MTTF + MTTR MTTF

MTTF

MTTR

- s
c

Tim e

MTTR

Tim e of first failure T im e of se c o n d  failure

Figure 2.2. Relationship between the MTBF, MTBR, and MTTF.

2.3 Performance measures
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An undirected network G = (V,E)  is usually modeled as either a deterministic 

network or a probabilistic network [8 ], In deterministic networks it is considered that 

working elements can be sueeessfully attaehed by an adversary, resulting in their failure 

or inactivation. The failure of an edge means that it is removed from the network, while 

the failure of a node means that the node and all its incident edges are removed from the 

network. In deterministic network models the focus is typically on evaluating the worst- 

case performance of the network, in whieh the adversary intelligently ehoose eertain 

elements to inactivate, resulting in the maximum damage to the network. This type of 

model thus provides a conservative assessment of performance, and it would be 

particularly appropriate in the design o f robust military systems.

By contrast, in probabilistic networks it is usually assumed that, at any instant, 

elements fail randomly and independently o f one another, according to certain known 

probabilities. Specifieally, each node i has an associated reliability pi indicating the

probability that it is operational, and each edge / has a reliability p i , the probability that 

it is operational. Thus, at any instant the elements of the network fail independently with 

probabilities ^/ = I -  Pi and q i = \ -  Pi ,  respeetively. In these circumstances, one would

be interested in assessing the average performance of the network under the random 

failures. Thus, unless announced, most of our reliability analyses are based on the 

probabilistic network models.

For the case of probabilistic networks (in which nodes/links fail randomly and 

independently with known probabilities), a number of measures have been explored. 

Suppose G is directly, with j- and t being two distinguished nodes of G. A traditional 

measure of the reliability evaluation is the terminal reliability [8][9][I0], such as two-
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terminal reliability, distance reliability, ^-terminal reliability, and all terminal reliability. 

The two-terminal reliability R^tiG) is the probability that s and t are connected by a path 

of operating edges and nodes in G. The distance reliability (DR) is the probability of 

having an operational path with the shortest distance between two given arbitrary nodes s 

and t. The source-to-all-terminal reliability R{G)  is the probability that there is an 

operative path from node s' to all other nodes of the network. The all-terminal reliability 

would be an appropriate measure when all nodes are of equal importance in receiving a 

message sent from the source node, whereas the two-terminal reliability would apply 

when a critical message needs to be routed between specified sites in the network. The 

distance reliability is especially designed to achieve the efficient communication by only 

considering the message passing thought those paths of the shortest distance between two 

given arbitrary nodes 5  and t. A generalization of these concepts is embodied in the 

source-to-K-terminal reliability of the network, the probability RjçiG) that there is an 

operative path from node 5  to all nodes in some specified set K  œ N  . These probabilistic 

measures have analogous counterparts in the case where G is undirected. Notice that for 

undirected networks the all-terminal reliability simply expresses the probability that G 

remains connected.

One interesting measure is the task-based reliability [5], defined as the probability 

that some minimum number o f connected nodes are available in the system for the 

specific task execution. This task-based reliability is based on the assumption that a 

system works as long as there is a group of connected working nodes for satisfying the 

task requirement. However, this measure is extremely difficult to model exactly.
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An alternative probabilistic measure takes into account the fact that different ways of 

disconnecting a network are of different severity. For example, if  G is undirected and 

connected, then the failure o f certain edges and nodes could separate G into several 

connected components, , G2 , . All communication is then disrupted between

nodes in different components, and the resulting communication capacity can be

measured by the number of pairs of node able to communicate: É
/=! v2 y

, where tii is the

number of nodes in the component G; . The average number o f node pairs able to

communicate, taken over all possible nodes and edge failures, thus provides a quite 

different type of the probabilistic measure, the pair-connectivity of G [1].

In Chapter I, we mentioned some symmetric hierarchical networks have the recursive 

decomposition property, which means that an «-dimensional symmetric network can be 

recursively decomposed into smaller size networks with the same topological properties 

as the original one. Bhuyan [4] proposed a new idea of subcube reliability, defined as the 

probability that a subcube of a specific size is available in the system. Since the star 

network is strongly hierarchical as the hypereube, it is wise to explore the substar 

reliability in the star interconnection network. A similar idea with the aim o f finding the 

minimum number o f failed nodes or links to destroy all available substars has been 

studied and reported in [7]. Among these reliability measures, the subnetwork reliability 

is the most practical one because a user in the current multiprocessor network is given a 

specific subnetwork for the execution o f his/her program.

2.4 Reliability modeling methods
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Reliability is one o f the most important attributes o f systems. Almost all 

spécifications for systems mandate that certain values for reliability be achieved and in 

some way proved. We have seen in Section 2.1 that reliability can be determined 

experimentally if  a set of N  system is operated over a period of time and the number of 

systems that fail during that time period is recorded. One problem with the experimental 

approach is the number o f  systems that would be required to achieve a level of confidence 

in the experimental results. This is particularly a problem when costs limit the number of 

systems that can be built. For example, the space shuttle program could not afford to 

build 1 0 0 0  of its on-board processing systems that reliability could be experimentally 

verified. A second problem with the experimental approach is the time required to run 

such experiments. Many systems today are being designed to achieve reliability o f 0.9^, 

or higher, after ten hours of operation. Using the exponential failure law, a reliability of 

0.9^ corresponds to a failure rate of 1 0 “* failures per hour. Therefore, on the average, we 

would have to wait approximately 100 million hours, or approximately 11,416 years for 

the first failure to occur. Clearly, we need alternatives to the experimental approach.

The most popular reliability analysis techniques are the analytical approaches. O f the 

analytical technique, combinatorial modeling and Markov modeling [2][3] [6 ][8 ] are the 

two most commonly used approaches.

2.4.1 Combinatorial model

Combinatorial models use probabilistic techniques that enumerate the different ways 

in which a system can remain operational. The probabilities of the events that lead to a 

system being operational are calculated to form an estimate of the system’s reliability. 

The reliability of a system is generally derived in terms o f reliabilities of the individual
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components of the system. Two models that are most common in practice are the series 

and the parallel. In a series system, each element is required to operate correctly for the 

system to operate correctly. In a parallel system, on the other hard, only one o f several 

elements must be operational for the system to perform its functions correctly. In 

practice, systems are typically combinations of series and parallel subsystems.

a. Series systems

The series system is best thought o f as a system that contains no redundancy; that is, 

each element of the system is needed to make the system function correctly. One way of 

representing the series system is by the aid o f reliability block diagrams. The reliability 

block diagram can be thought o f a flow diagram from the input o f the system to the 

output of the system. Each element of the system is a block in the diagram and, for the 

series system, the blocks are placed in series to indicate that a path from the input to the 

output is broken if one o f elements fails.

ComponentComponent Component

Figure 2.3. The reliability block diagram of a series system.

The generalized reliability block diagram of a series system that contains N  elements 

is shown in Fig. 2.3. Each o f the N  elements is required for the system to function 

correctly. The reliability o f the series system can be calculated as the probability that 

none of the elements will fail. Another way to look at this is that the reliability of the 

series system is the probability that all of the elements are working properly.
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Suppose we let C.^{t) represent the event that component C. is working properly at 

time t, R.{t) is the reliability of component C,. at time t, and is the reliability of

the series system. Further suppose that the series system contains N  series components as 

shown in Fig. 9. The reliability at any time t is the probability that all N  components are 

working properly. In mathematical terms,

(0 = ^ ^  C2 (̂f) n  - - - n  

Assuming that each event, , is independent, we have

^series ( 0  =  ^1 (0-^2 ( 0  ' ' ' ( 0  or Rggries ( 0  =  H i?/ { t)
i~\

An interesting relationship exists in a series system if each individual component 

satisfies the exponential failure law such that the reliability o f each component is

Ri{t) = . Suppose that we have a series system made up of N  components, and each

component / has a constant failure rate À.. The reliability of the series system is given by

where k̂ ŷ tem = and corresponds to the failure rate of the system. In other words, the

failure rate of a series system can be calculated by adding the failure rates o f all the 

components that make up the series system. Thus, the value of the MTTF in the series 

system assuming that each component satisfies the exponential failure law can be

I
series yyv i. '

b. Parallel systems

The basic feature of the parallel system is that only one of N  elements is required for 

the system to function. The reliability block diagram of the basic parallel system that
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contains N  elements is shown in Fig.2.4. As ean be seen, a path exists in the reliability 

block diagram from input to output as long as one of the N  elements remains operational. 

The unreliability o f the parallel system can be computed as the probability that all of the 

N  elements fail at the same time. Suppose that we let C^(t) represent the event that

component i has failed at time t, Qi(t) be the unreliability o f the element, and

QparaiieA )̂ the Unreliability of the parallel system. Qp^raiteiiO can be computed as

Qparallel ( 0  = ^ ( Q /  ( 0  ^ 2^ (t) H  • • • n  (t)), or if  we assume that each event, ( 0 ,

N
is independent, we have (t) = Q (t)Q^(()■■■ Qn ( 0  = I T 0 (0 ■

i=l

C om ponent
1

C om ponent
2

•

C om ponent
N

Figure 2.4. The reliability block diagram of the parallel system.

The reliability of the parallel system can now be computed because we know that the 

reliability and the unreliability must add to 1.0. Mathematically, we must have 

R{t) + Q{t) = 1.0 for any system. Consequently, we ean write

^parallel ( 0  =  1“  Qparallel ( 0  =  1 -0 -  f l  0 /  ( 0  =  1 -0 “  O (1 -0 -  /?/ (t)) .
i=\ /=!
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If  each component i in the parallel system has a constant failure rate o f A,, also 

assume that eaeh component satisfies the exponential failure law such that the reliability 

o f each component is Ri(t) = . The reliability of the parallel system is given by

= 1 0 -  g  (l.O-jg^O) = 1 0 -  g  (1.0-e

i*j*k

where ^ U = l - A=l Xi+Xj+X^ +••• + ( - 1) ^  and

corresponds to the failure rate o f the parallel system. Thus, the value o f the MTTF in the 

parallel system assuming that each component satisfies the exponential failure law ean be 

obtained as = 1 / •

e. Series-parallel or parallel-series system

The series and parallel systems discussed in the previous sections form the basis for 

the analysis of more complex configurations. The general principle used is to reduce 

sequentially the complex eonfiguration by combining appropriate series and parallel 

braches of the reliability model until a single equivalent element remains. This equivalent 

element then represents the reliability o f the original eonfiguration.

d. r-out-of-iV systems

r-our-of-7V systems are a generalization of the ideal parallel system. In the ideal 

parallel system, only one of N  modules is required to work for the system to work. In 

the r-out-of-A system, however, at least r o f the total of N  identical modules are 

required to function for the system to function properly, and the system can tolerate at
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most N  - r  module failures. The expression for the reliability of an r-out-of-A system 

ean be written as (assuming each module has the same reliability R)

N
R r-out-of-N  (0  = Z V 1/?' (1 -  , where

V- y y
N \

Reliability evaluation teehniques described so far are limited in their applications to 

networks having a series or parallel type o f structures. Many systems either do not have 

this simple type of strueture or have eomplex operational logic. Additional modeling and 

evaluation techniques are neeessary in order to determine the reliability of such systems. 

Most of these more advanced techniques are formalized methods for transforming the 

logic operation of the system, or the topology of the system, into a strueture that consists 

only of series and parallel components, paths or braches. Next we continue to introduce 

techniques used for the reliability analysis in complex systems.

e. Conditional probability approach

One approach which can be used to evaluate the reliability o f a complex system is to 

reduce sequentially the system into subsystems structures that are connected in 

series/parallel and then to recombine these subsystems using the conditional probability 

method. The reliability under this approach can use the following equation

P(system success) = P(system success if component X is good) • P (X  is good)
+ /"(system success if component X is bad) • P(X  is bad)

The conditional probability approach is efficient to solve the bridge-type network in 

Fig. 2.5. However, in some engineering systems further subdivision before a 

series/parallel structure is needed. This is only an extension of the technique being 

discussed since each time a subdivision is made; the two subdivisions must recombined 

using the conditional probability approach starting with the two most recent subdivided
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subsystems, i.e., the lowest hierarehieal level. After creating a set o f subsystems in which 

all components are connected in series and parallel, the subsystems ean be evaluated 

using the principles of series and parallel systems discussed before and the overall system 

reliability evaluated using the conditional reliability approach. The conditional 

probability approach is a useful tool for reliability evaluation and is frequently used in 

many applications.

Figure 2.5. Example o f a bridge-type network, 

f. Minpaths; inclusion and exclusion

In the case of the two terminal reliability, minpaths [2] are paths with the minimum 

traveled links between the source node and the destination node. Suppose then that the 

minpaths of a given graph G have been listed. Let Ei be the event that

minpath P, is operational, and let Pr[ ] denotes the reliability of an event. Then the

reliability is just the probability that one (or more) of the events { p j  occurs.

Unfortunately, the {P,} s are not disjoint events, and hence we cannot simply sum their
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probabilities o f occurrence. To be specific, P r[£’j orP^] is P r[£’j] + P r[ii2 ] - 

Pr[/'j and ] - Now Re7(G) = Pr[P, or or -- or , and hence

R e/(G )=  I  (-iy + 1  I  [Ej].  
y=l

\l\=j

where P / is the event that all paths Pj with i e /  are operational. This is a standard 

inclusion-exclusion expansion.

g. Using minpaths: disjoint produets

Let us once again suppose that we have an enumeration P^,P^,---,P^ o f the minpaths, 

and let E. be the event that all nodes/edges in minpath are operational. As we have 

remarked, the events { p j  are not disjoint; we pursue the strategy here o f forming a set of 

disjoint events. Let E. denotes the complement of event P,. ; now define the event 

Di -  E l, and in general, D. = E \r \E i  n -- -n P /- i n P . . The events D. are disjoint, and

hence are often called “disjoint product ” events. Moreover, we ean get the reliability as a 

Boolean expression as follows (we use (+) to denote “or”, and times (■) or simply 

concatenation to represent “and”);

R e/(G )= ZPr[D ;]
i~\

= P r \E i] + P r[æ'iP'2 ] + P r [P 1 P 2 P 3  J + • • • + P r^ E \E 2 • • • Eh-\E^  j  

In employing this approach, one must obtain a formula for Pr[Z)/] in terms of the 

states of the nodes/edges. Each event E. can be written as a Boolean expression whieh is 

the product of the states o f the nodes/edges in the minpath E . Hence D ean also be
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written as a Boolean expression. For this reason, methods using disjoint products are 

sometimes called “Boolean algebra” methods.

h. Cut set method

The cut set method is a powerful one for evaluating the reliability o f a system for two 

main reasons:

(i) It can be easily programmed on a digital computer for the fast and effieient solution 

of any general network.

(ii) The cut sets are directly related to the modes o f system failure and therefore identify 

the distinct and discrete ways in which a system may fail.

A cut set can be defined as follows: A cut set is a set o f system components which, 

when failed, causes failure o f  the system. In terms of a reliability network or block 

diagram, the above definition can be interpreted as a set of components whieh must fail in 

order to disrupt all paths between the input and the output of the reliability network.

The minimum subset o f any given set o f components which causes the system failure 

is known as a minimal cut set, defined as follows: A minimal cut set is a set o f  system 

components which, when failed, causes failure o f  the system but when any one component 

o f  the set has not failed, does not cause the system failure. This definition means that all 

components of a minimal eut set must be in the failure state to cause the system failure.

In order to evaluate the system reliability (or unreliability), the minimal cut sets 

identified from the reliability network must be combined. From the definition o f the 

minimal cut sets it is evident that all components o f each cut must fail in order for the 

system to fail. Consequently, the components of the cut set are effectively connected in 

parallel and the failure probabilities of the components in the cut set may be combined
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using the principles of parallel systems. In addition, the system fails if  any one o f the cut 

sets occurs and consequently each cut is effectively in series with all the other cuts.

Ci C 2 Cn

Figure 2.6. Reliability diagram using the minimum cut set.

The use of this principle gives the reliability diagram (Figure 2.6) for a general

network. Although these cut sets are in series, the concept of series system cannot be

used because the same component may appear in two or more of the cut sets. The concept 

o f union does apply however and if the cut is designed as Q  and its probability of

occurrence is designated as P ( Q ) , then the unreliability of the system is given by

Ô5 =  - P ( Q  ^ 2  u  C3 U  • • • U  Cj u  • • • u  C „ )

= Z P (Q ) -  z  P(Q n  Cy) + ... + (-1)"-^P (Q  n  C2 n  - - - n  Q )
i=i i,j=\

i. Tie set method

The tie set method is essentially the complement of the cut set method. It is used less 

frequently, in practice, as it does not directly identify the failure modes of the system. A 

tie set is a minimal path o f  the system and is therefore a set o f  system components 

connected in series. Consequently, a tie set fails if any one of the components in it fails
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and this probability can be evaluated using the principle o f series system. For the system 

to fail, however, all o f the tie sets must fail and therefore all tie sets are effectively 

connected in parallel. A tie set diagram using these concepts is presented in Fig. 2.7.

Figure 2.7. Reliability diagram using the tie set method.

Although the tie sets are in parallel, the concept of parallel systems cannot be used 

because the same component can appear in two or more of the tie sets. The concept of 

union does apply however in a similar manner to that discussed for minimal cut sets. 

Then the reliability of the system is given as follows:

=  P ( T j  W 72 ^ ? 3  u " -  w v j ■ ■ - KjTyj^

= Z P (7 ;) -  Z P (? ;n7\.)+  . + ( - l) " -^ P (7 jn 7 ^ n ...n ? ;;) -
i=\ i , j=\

t^ j

2.3.2 Markov model

The primary difficulty with the combinatorial models is that many complex systems 

cannot be modeled easily in a combinatorial fashion. The reliability block diagrams can 

be extremely difficult to construct, and the resulting reliability expressions are often very
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complex. In addition, the process of repair that occurs in many systems is very difficult to 

model in a eombinatorial fashion. For these reasons, we use Markov models.

The two main concepts in the Markov model are the system state and the state 

transition. The state o f  a system represents all that must be known to describe the system 

at any given instant of time. For reliability models, eaeh state of the Markov model 

represents a distinct combination of faulty and fault-free modules. For example, suppose 

we have a TMR system with three identical computers in a majority voting arrangement 

with a perfect voter. We can define the state of this system as S = (8 ^,82 , S^) where

8 . =1 if  module i is fault free and 8  ̂ = 0  if module i is faulty. The TMR system has 

eight distinct states in whieh it can operate: (0 0 0 ), (0 0 1 ), (0 1 0 ), (0 1 1), (1 0 0 ), (1 0 1), (1 1 0 ), 

and (111). Each state represents a unique combination of faulty and fault-free modules 

within the system. For TMR, we know that at least two of the modules must be fault free 

for the system to operate correctly. Therefore, the states (000), (001), (010), and, (100) 

represent states in which the system has ceased to function correctly. The remaining 

states are those in which the system is functioning correctly.

The state transitions govern the changes o f state that occur within a system. As time 

passes and failures and reconfigurations occur, the system goes from one state to another. 

For example, if  the TMR system starts its operation in state (111) and at some time t 

module I fails, the system transitions to state (110) . The state transitions are 

characterized by probabilities such as the probability o f failure and repair.

We use TMR example to study the state transitions. We construct the TMR 

transitions using following assumptions. First, we assume that the system does not 

contain repair. In another word, once a module has failed, it remains failed permanently.
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Second, we assume that that only one failure will occur at a time. In a TMR system, the 

single failure assumption implied that the system cannot go directly from the state 

corresponding to all modules operating correctly to a state that corresponds to the system 

having failed. Finally, we assume that the system starts in the perfect state (111) where 

all o f the system’s modules are operating correctly.

l - 2 Â A t 1 — ÀA/

110 W 100

101 W 001 W 000

oil W 010

tw o  m o d u le s  
fa iled

th r e e  m o d u le s  
fa iled

o n e  m o d u le s  
fa iled

p e r fe c t  s ta te

V. yV

s y s t e m  failed

Figure 2.8. Markov model o f the TMR system.

The state diagram is shown in Fig. 2.8. As can be seen the system begins in state 

(111) and, upon the first module failure, transitions to state (110), (101), or (O il) , 

depending on whether module 1, 2, or 3 is the module that fails. Note that the transition 

exists for the module to remain in a state if  a module failure does not occur. The states 

can be partitioned into three categories: the perfect state (1 1 1 ) where all modules 

function correctly; the one-failed states (110),(101), and (Oil) where a single module
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has failed, and the system-failed states (1 0 0 ), (0 0 1 ), (0 1 0 ), and (0 0 0 ) ,  in which certain 

modules have failed to cause the system to fail.

Each state transition has associated with a transition probability that describes the 

probability of that state transition oceurring within a specified period o f time. If  we 

assume that each module in the TMR system obeys the exponential failure law and has a 

constant failure rate o f À , the probability of a modular being failed at some time t + A t, 

given that the module was operational at time t ,  is given by (for small value of A t)  

X ÀAt . In other words, the probability that a module will fail within At is 

approximately XAt . The state transition probability can now be specified for each 

possible state transition.

1

Figure 2.9. Reduced Markov model o f the TMR system with a minimal number of states.

It is possible to reduce the Markov model of Fig. 2.8. If we appropriately define the 

state transition probabilities, several states within the TMR model can be combined. 

Suppose we let state 3 correspond to the state in which all three modules in the TMR 

system are functioning correctly; state 2  is the state in which two modules are working 

correctly; state F  is the failed state in which two or more modules have failed. The 

resulting Markov model can be illustrated as shown in Fig. 2.9. The state transition 

probabilities shown in Fig. 2.9 have been derived to account for one of several failure
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occurring. For example, the probability of transitioning from state 3 to state 2 depends on

the probability of any one of three modules failing. Consequently, the transition

probability assigned to the transition from state 3 to state 2 is 2>ÀAt.

Equations for the Markov model o f the TMR system can be written easily from the

state diagram Fig.2.9. The probability o f the system being in any given state S  at some

time Î + At depends on the probability that the system was in a state from which it could

transition to state S  and the probability of that transition occurring. For example, the

probability that the TMR system will be in state 3 at time t + At depends on the

probability that the system was in state 3 at time t (since the system can only transition to

state 3 from state 3) and the probability of the system transitioning from state 3 back into

itself. In mathematical form, the equations from the three states are

Pj (t + At ) = (1 -  3/lAt) P3 (0

P 2 {t + At) = (3/lAt) P 3 (t) + (1 -  2ÀAt) P2 it)
Pp (t + At) = (2ÀAt)p^ (t) + pp it)

where p .it)  is the probability of being in state i at time t and p^it + At) is the 

probability o f being in state at time t +At _

The Markov models considered thus far have been discrete-time ones in which state 

transitions occur at fixed time interval A t . It is possible to model systems using the 

continuous-time Markov model [6 ], in which state transitions can occur at any point in 

time. The continuous-time equations can be derived from the discrete-time equations by 

allowing the time interval At to approach zero. After simple algebraic manipulations and 

taking the limit as At approaches zero results in a set of differential equations given by
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^  = - 3 M ( 0

^  = iXp,it)-2Xp2(t)

Using of the Laplace transforms (initial conditions: (0) -1 , (0) = 0, (0) = 0. )

results in the solution to the above differential equations

Pyr(t) = l-3 e -^ '^ + 2 e -^ ^ '

Reliability of the TMR system is the probability of being in either state 3 or state 2, so

= P3(^) + P2(0  = -2 g - 3 ^  _

The TMR system has been used as an example to show how the Markov model can 

be used to model systems which would be difficult to be modeled in the combinatorial 

models. Meanwhile, Markov models can also be used to model systems with repair. This 

is out of the scope of our investigation for the robustness of the star graph and will not be 

covered in our study. The interested readers can refer to [2][6] for more details.
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CHAPTER 3

DISTANCE RELIABILITY 

In this chapter, we propose a two-terminal reliability measure referred to as Distanee 

Reliability (DR) between any two given nodes u and I  with the shortest distance, in an 17- 

dimensional star graph, to assess the robustness of the star graph. Due to the fact that 

there exist numerous ways of constructing disjoint paths between u and I  if  w’s 

representation has more than one cycles, we only consider the special case of u having a 

single cycle under the node failure model, link failure model, and node/link failure 

models, respectively. For each failure model, two different cases depending on the 

relative positions of the source and destinations nodes are investigated to derive DR. This 

analysis gives us a basic understanding of DR. Conservative comparisons with the 

hypercube tell us that, DR o f the star graph is expected to be closer to that o f the 

hypercube when more cycles for the node representation and numerous ways of 

constructing disjoint paths are considered. Furthermore, DR for the antipodal 

communication is discussed as a special case. Lower bounds on the antipode reliability 

are derived under each failure model.

3.1 Background

Due to the high similarity between the hypercube and the star network [2] [3], the star 

network is highly robust. It has been proved that the conneetivity among nodes in this
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topology can be preserved despite a substantial number of failures (in terms o f node, link 

or node/link failures). This fact motivates us to look beyond the concept o f connectivity, 

and demand more of this topology in terms of efficient communications. This poses 

stringent requirements on the connection o f two nodes: i.e., not only two nodes have to be 

conneeted, but the distance between them must be the shortest. This idea consequently 

leads to a distance constrained reliability parameter which serves as a useful assessment 

to determine the communication delay, link-node utilization, and robustness in an 

interconnection network. Hence, we define Distance Reliability (DR) as the probability of 

having an operational path with the optimal distance between two given nodes u and /. A 

combinatorial approach has been used to evaluate DR especially for u having a single 

cycle in a S„, under the node failure model, link failure model, and node/link failure 

models, respectively. From Chapter 1, we know that antipode(s) is the farthest node(s) 

from a given node with the distance of diameter (d„) of the star graph [4]. There exists 

more than one antipode for a given node in the star graph. Thus, DR for the basic 

antipodal communication is discussed as a special case here. For the antipodal 

communication, different lower bounds on DR are also derived in this chapter.

3.2 Node failure model 

Let F  be the set of faulty nodes with |F| denoted as the number of the faulty nodes. 

Here, we only focus on the case with at most |F| node failures. Links are assumed to be 

perfect under this model. The objective in this model is to find DR, i.e. the probability of 

having at least one operational path with the shortest distance between u and 1 in the 

presence of node failures. A path is considered to be operational if  it passes through fault-
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free intermediary nodes between u and /. From Chapter 1, depending on the symbol in 

the leftmost position o f the source permutation label being ‘ 1’ or not, the node-disjoint 

paths between u and I  are categorized into two different cases, and the shortest distance 

between them is either c+w or c+m-2 , where c is the number o f cycles of length at least 

2, and m is the number of misplaced symbols for the node permutation of u. For the 

purpose o f simplicity, we use “r” to denote the shortest distance between u and I  in the 

rest of this chapter.

3.2.1 Case I; n{\) = \

There are m optimal node-disjoint paths of the shortest distance c+m, and n-m-\ non- 

optimal paths of distance c+m+2 between u and /, where m<n,  c < [ ( « - l ) / 2 j ,  and 

r = c + m .

Definition 1. The union of all m optimal disjoint paths existing between u and I  is 

referred to as a (u, 7)-container. Total distinct nodes existing in this container are 

m{r -1 ) + 2 . In the container, u and I  are always assumed to be fault-free.

Lemma 1. If 1F  |< m , there will be at least one optimal operational path between u and I. 

Proof. In a star network there are m node-disjoint parallel paths of the shortest distance r 

between u and 1. Each faulty node can at most belong to one path and since \ F \ <m ,  

there will be at least one optimal path remaining operational between u and 1.

Corollary 1. A star network is distance reliable for pairs of u and /, if  | F  |< w . Therefore 

it follows:

DR  = I, when \F \<m  

Now we investigate DR when \F\=m. If  all faults happen to locate in all but one o f the 

optimal paths, one optimal fault-free path between u and I  can be guaranteed. Here we
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consider the worst ease scenario: m faults distributions destroy all optimal paths. For a 

given u with only one cycle representation , where

2 < ij <n, 1 < j  <m, r  = w +1, the union of all m optimal disjoint paths between u and /  

in the {u, 7)-container can be listed as follows:

V2*3 ' ' '

hhH  ■ ■ ■ ^mhh 

hW5 ■ ■ ■ W ih h

' ' ' ^m-2^m—dm

All these disjoint optimal paths can be represented using a simple parallel reliability 

block diagram, where each path contains m distinct nodes. Scenarios that fail all optimal 

paths when | f |  = m , happen only where each path exactly contains one fault, including 

cases where all neighbors o f w or 7 are faulty. The probability associated with this event is

Pr(all r-pths destroyed when |f | = m)
m

vl y vl y v ly

m

v^ y y

The above equation accounts for all scenarios that destroy all m optimal paths. 

Subtraction o f the probability of occurrence of these scenarios from 1 will naturally give 

the probability o f having at least one operational optimal path in the container and thus 

the DR.

Now let us determine the probability of having at least one operational optimal path 

when m<\ F \ <m^  - m  (note that if  \F \>m ^ - m  , then DR^ = 0 ). In practice, | f |  is
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expected to be much less than this limit. We proceed to enumerate N i , the number of

faults distributions that render exactly one optimal fault-free path. For a container having 

nodes except u and I, any fault distributions that occur outside one optimal path

qualifies in our enumeration. It follows that W -
^ 2  ^m - m

,1̂ 1
. However, we cannot simply

multiply N-[ by m to get the total faults distributions as some distributions will be double

counted. To adjust this figure, we need to subtract by those occur outside any 2 optimal 

paths, and then add back those occur outside any 3 optimal paths, and so on (Principle of 

Inclusion and Exclusion). It follows that

/  2 \
m - im

,1̂ 1
, where 1 < / < w -  2

The total number o f fault distributions N  that will render at least one fault-free

m -2  I
optimal path is given hy. N  = E (-I)-'

7=1
N f . This can be interpreted as the

sum of the number of fault distributions that will render one optimal path fault-free, 

subtracted by the number o f fault distributions that will render two optimal paths 

fault-fee, added by the number of fault distributions that will render three optimal 

paths fault-free, and so on. Therefore, we have the following result.

Theorem  1; The probability of having at least one operational optimal path between u 

(with a single cycle representation (/j/ 2  - f,»), where 2 < i j  <n,  I < j  < m)  and I  when

m < \F \< n?‘ - m  is given by:

DR = N I
m-2  ,

= I  (-1)-/+'
7=1

N j /
v , ^ , y
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The result given in Theorem 1, however, does not consider the node cycle 

representation having cycles more than one. In [6], Misic proved that cycles for the node 

representation have such properties: cycles can appear in any order; cycles without “ I” 

inside ean be executed to reach the same destination regardless of the number of cyclic 

shifts on the symbols; and cycles without “ 1” inside can be nested in any other cycle. If 

we do not consider the nesting of cycles and we assume all the cycles are o f none-

ordinary type (without “1” inside), the number of optimal paths is , F , , where k  is

number of cycles and denotes the number of distinct symbols in each cycle Q . Day [2] 

gave one possible way of constructing a set o f node-disjoint paths between two given 

nodes. In fact there exist numerous ways of constructing disjoint paths between u and /  

when the number of cycles is greater than one.

Based on above-mentioned properties of cycles, for example, 24 optimal paths exist 

between «(13254) (decomposed into cycles (23)(45)) and 7(12345) through the following 

sequence:

2 - 3 - 2 - 4 - 5 - 4  3 - 2 - 3 - 4 - 5 - 4  4 - 5 - 4 - 3 - 2 - 3  5 - 4 - 5 - 3 - 2 - 3

2 - 3 - 2 - 5 - 4 - 5  3 - 2 - 3 - 5 - 4 - 5  4 - 5 - 4 - 2 - 3 - 2  5 - 4 - 5 - 2 - 3 - 2
2 - 4 - 5 - 4 - 3 - 2  3 - 4 - 5 - 4 - 2 - 3  4 - 2 - 3 - 2 - 5 - 4  5 - 2 - 3 - 2 - 4 - 5
2 - 3 - 4 - 5 - 4 - 2  3 - 2 - 4 - 5 - 4 - 3  4 - 5 - 2 - 3 - 2 - 4  5 - 4 - 2 - 3 - 2 - 5
2 - 5 - 4 - 5 - 3 - 2  3 - 5 - 4 - 5 - 2 - 3  4 - 3 - 2 - 3 - 5 - 4  5 - 3 - 2 - 3 - 4 - 5

2 - 3 - 5 - 4 - 5 - 2  3 - 2 - 5 - 4 - 5 - 3  4 - 5 - 3 - 2 - 3 - 4  5 - 4 - 3 - 2 - 3 - 5

Between these optimal paths, there exist more than one way of constructing four

disjoint paths between u and 7. Besides the set o f disjoint paths in Fig. 3.1 (a) (explained

in Day [2]), three more sets of node disjoint paths (shown in Fig. 3.1 (b)~(d) where

nodes/links different from (a) are plotted in grey color) ean also be constructed. The

number of optimal paths between two given nodes when the node permutation is
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decomposed into more than one cycle is going to be huge and difficult to determine. For 

instance, there exist more than 192 optimal paths between w(1325476) and 7(1234567) 

even only considering the nesting o f one cycle. Meanwhile the ways o f constructing 

disjoint paths will be more and it appears to be impossible to derive a deterministic 

formula to find out all. Therefore, we only discuss the distance reliability for the source 

node having a single cycle representation. When the number of cycles for the node 

representation is greater than one, the problem of determining DR appears to be difficult 

in the star graph. A thorough investigation of DR for the general case is still under 

development and remains to be an open problem.

C M -O -i-O
31254 21354 12354 52314 42315’

o ^ - o - ^ - o
23164 53124 43125 23145 32145

o-^=—O - ^
63214 43216 13245 31245 21345

43261 34251 24351 42351 52341

container (a)

0 - ^ - 0 - ^
31254 21354 12364 52314 42315

4 53124 43125 23145 3

0 ^ - 0 - ^ —Q
53214 43215 13245 31245 2134*

43251 23451 32461 42351 62341

container (c)

=(13254) u=(13254)

0 - ^ - 0 - ^
31254 21354 12354 52314 42315

—o~

O-^MD-2-O
53214 43215 13245 31245 21345

43251 34251 24351 42351 52341

container (b)

u-(13254) u=(13254)

31254 21354 12354 62314 42315

' o - ^ - o - ^ - o
23154 43162 K 142 23146 32145

0 - ^ - 0 - ^
>3214 43215 13245 31245 21345

o — o— o
62341

container (O)

Fig. 3.1. Multiple ways o f constructing four disjoint paths 

between w(13254) and 7(12345).

To compare DR of the star graph with that of the hypercube, we use the same shortest 

distance between two given nodes u and 7 for both networks. However, the number of 

optimal paths and nodes in the container o f the star graph is less than those o f the
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hypercube. The container in the star graph has r-\ optimal paths and { r - \ f  nodes, while 

the container in the hypercube has r! optimal paths and 2'̂  nodes. This explains why the 

DR of the hypercube is higher than that o f the star graph in Fig. 3.2. And the DR of the 

star graph in Fig. 3.2 shows an appreciable improvement with the increase o f the shortest 

distance r. If  more cycles for the node representation are considered, and more alternative 

ways o f constructing node disjoint paths in the star graph are taken into account; hence 

DR of the star graph is expected to be closer to that of the hypercube.

I s ta r B Hypercube lFl=2r-2

P 0.4

6 7 8 9
Shortest Distance (r)

10 11

Fig. 3.2. DRs for star graph and hypercube when \F\=lr-l.

3.2.2 Case II: ;r(l) ^  I

The container under this case has c optimal paths of the shortest distance c+m-2, m-c-

I paths o f distance c+m, and n-m paths of distance c+m+2 between u and /  

(m<n,  c < [ « / 2 j ,  a nd r  = c + m - 2 )  with c ( r - I )  + 2 distinct nodes. There will be at
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least one operational path between u and /  if  | F  |< c. For a given u with only one cycle 

presentation (l/p^ •••*)«) > where 2 < i j < n ,  1 < j < m ,  r = m - \ ,  there exists only one

optimal path and hence one arbitrary node fault will destroy it. On the other hand if w’s 

representation has more than one cycle, DR when [ F  |> c is difficult to determine due to 

the numerous ways of constructing disjoint paths between u and /. Therefore, we will 

only consider Case I for the link failure model and the combined node/link failure model.

3.2.3 Special case: antipode reliability

Since the number of antipodes is more than one (for n>3) [4], the antipodal 

communication we are concerned about is the communication between u and its unique 

basic antipode (assuming to be 7). Due to the symmetry property in the star network, 

similar analysis can be extended to the communication between the source node and 

other antipodes. The basic antipode can be reached from the source node by applying the 

following permutations:

<̂max = (1)(23)(45) •••(/,/ +1) ••• (n -1 , n), for odd n\ 

= (l)(234)(56)...(i,, + l ) . . ( » - ! , « )

for even n

As such, the antipodal communication can be performed concurrently according to 

the following sequences:

2 -  3 - 2 j -  (/ +1) - / • • • ( « - 1) - « - ( « - 1), for odd «;
2 -  3 -  4 -  2 • •• /- ( /  + 1) -  r •■•(«-1) - « - ( « - 1) or
2 -  3 -  4 -  3 • •• /- (/  +1) - / • • • ( « - 1) - « - ( « - 1), for even n.

To have at least one operational optimal path between u and 7, two different scenarios 

need to be considered.
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Scenario 1. When n is odd, there are a total of « -1  disjoint paths o f the shortest length 

between u and I  ( ;r(l) ~ l , m  = n - l , c  = ( n - l ) / 2 ,r = c + m = [3(« -1 ) / 2 J = ).

Paths distributions can be verified by the following example. For example, there are 

six node-disjoint paths between u and /  when n= l. Based on the above discussion, a total 

six disjoint paths can be formulated based on the following permutations:

(1) 2 - 3 - 2 - 4 - 5 - 4 - 6 - 7 - 6
(2) 3 - 2 - 4 - 5 - 4 - 6 - 7 - 6 - 3

(3) 4 - 5 - 4 - 6 - 7 - 6 - 2 - 3 - 2
(4) 5 - 4 - 6 - 7 - 6 - 2 - 3 - 2 - 5
(5) 6 —7 —6 —4 —5 —4 —2 —3 —2
(6) 7 - 6 - 4 - S - 4 - 2 - 3 - 2 - 7

Antipode reliability is actually a special case of the distance reliability discussed in 

Section 3.2.1. In which, the source node can be decomposed into { n - \ ) ! 2  cycles, each 

of length 2. From the discussion in Section 3.2.1 we know that the determination o f the 

antipode reliability using the combinatorial method when the number of cycles for the 

node permutation is more than one, is difficult due to the numerous ways of constructing 

the disjoint paths and many faults distributions. Under this circumstance, and for a given 

IF I obtained from the network reliability data and its mission time, we can develop a 

reliability expression based on a stochastic model as follows.

In the stochastic graph model G(F, E) for the star network S„, the following 

assumptions are made:

• Source and destination nodes are always fault-free;

• The operational probabilities of all nodes (links) are the same and equal to p„ {pi). For 

a given constant failure rate À , using the exponential model one can compute pi (p„ 

or pi) as pi(i) = exp(-/lt) ;
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• Failures are independent and identically distributed.

A Boolean technique for the reliability evaluation starts with a sum of products 

expression for min-paths and converts it into an equivalent sum of disjoint products 

(SDP) expression [5]. In the SDP form, an UP or success (DOWN or failure) state of a 

node is replaced by its reliability or { \ - p ^ ) ,  and the Boolean sum (product) by the

arithmetic sum (product). In other words, the SDP expression is interpreted directly as an 

equivalent probability expression of symbolic reliability. Let P \ , P 2 , ... , f/, be all r-paths 

between u and /. Then the SDP expression is obtained as follows: P̂  + P̂ P̂  +... +

where P . , denotes the DOWN event o f the path Pj. The probability of UP (operational)

for the term P ^P ^P ^  ■ ■ • P i - \  can be evaluated using the conditional probability and the

standard Boolean operations, and is called the disjoint product event. It has been shown 

that the reliability evaluation for star networks with non-disjoint paths is NP-hard [1]. As

mentioned in Chapter I, there are distinct optimal paths between u and I

even without considering the nesting o f cycles if we consider the maximum value o f m 

and c. Clearly, for the same reason, the determination of DR is also intractable. Thus, we 

will attempt to do the next best thing, i.e. derive bounds on DR of the node-disjoint paths.

A lower bound on DR can be obtained by considering only the set of n-\ node- 

disjoint paths between u and /  with the shortest distance r as

DK>i-(i-p:-'E

The above expression uses the principles for a simple parallel reliability block 

diagram. Note that this lower bound is quite pessimistic; even for small size star 

networks, it renders a large deviation. Next we present a tight lower bound by
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constructing the hexagons between u and I  since every cycle out of total 

c = ( « - l ) / 2  = r /  3 has two distinct symbols inside, and hence provides two alternatives 

to construct the disjoint paths. Consider two nodes u and /, i.e. r  = 3 when « is 3. There 

are only two node-disjoint 3-paths (Fig. 3.3 a). The expression for DRs can be attributed 

to the following: d r  ̂ ■

n-3

n-2n-1

n-2

n-3 n-1

(C)

Figure 3.3. Hexagon construction o f disjoint paths between u and its basic antipode I.

When n=5, there are two hexagons between u and I  having four node-disjoint paths. 

Since each cycle provides two alternative choices to construct the node-disjoint optimal 

paths, thus, the corresponding DR can be obtained as follows shown in Fig. 3.3 b:

Similarly, extending the above concept to the general case where r = 2(n -1 ) / 3, the 

following equation holds for DRp.
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D R > \ -

= p 7^ , where r  = 3,6,9,•••,3 (« -1 )/2

1

0.9

0.8

0.7

I 0.6CO
"05

0.5m

i o , 4
<

0.3

0.2

0.1

0

pn=0.92
lower bound (Sn) 
tight lower bound (Sn) 
hypercube

W '
\ \

'pn=€.^l
■'-v

5 10 15 20 25 30 35 40 45 50 55 60
Shortest distance between u and I

Figure 3.4. Lower bounds on the antipode reliability for different values of 

the node reliability (Scenario 1).

These two lower bounds are compared under different values o f the node reliability 

= 0.91 and 0.68, respectively. The gap between the tight lower bound on the antipode

reliability with the help o f constructing the hexagons and the lower bound applying the 

simple parallel reliability block diagram becomes larger with the increase o f the node 

reliability. Furthermore, results in Figure 3.4 verify that the tight lower bound shows the 

appreciable improvement on the antipode reliability over the pessimistic lower bound
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especially for the larger node reliability and large size of the star graph. The dashdot lines 

in Fig. 3.4 represent the antipode reliability in the hypercube. The large gap between the 

antipode reliabilities of the hypercube and the star graph is due to the fact that there is a 

single antipode for a given node in the hypercube. The antipode reliability in the star 

graph is expected to be even higher than that in the hypercube when numerous ways of 

constructing disjoint paths are considered.

n-2

n-3 n-1

n-1
(a)

4 n-2

n-3 n-1

n-3

n-2
(b)

Figure 3.5. Hexagon construction o f disjoint paths between u and its basic antipode /.

Scenario 2. When n is even, there are two choices of the permutations for the source node 

to reach the basic antipode, where m = n - l ,  c = ( n - 2 ) / 2  or m - n  , c = n / 2 , and 

r = ( 3 n - 4 ) / 2 .  Paths distribution shown in Figure 3.5, are similar to Scenario 1 except 

the first cycle of length either 3 or 1. The tight lower bounds for DR under this scenario
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are given as follows using the same strategy as Scenario 1. These two lower bounds are 

compared in Fig. 3.6 under different values o f the node reliabilities p„ = 0.91 and 0.68,

respectively. The antipode reliability between a given node and its single antipode 

reliability in the hypercube is also presented.

( r - 4 ) / 3 ( '• -0/3

and

D R ^ > \ - { \ - p I )  j ( l - p ] f  ,wherer = l ,4,--- , (3n-4)/2

  lower bound (Sn)
  tight lower bound (Sn)
- - hypercube

0.7

0.6

0,4

0.3

0-2

Shortest distance between u and i

1

0.9 

0.8 

0.7 

1 O.B

I
g- 0.4 

0.3 

0,2 

0.1 

0

......  lower bound (Sn)
......  tight lower bound (Sn)

hypercube

V'.

\ \ \
- \  \  \

'  \  \
-pn=i.i.E^^ ^

10 15 20 25 30 35 40 45 50 65 61
Shortest distance between u and I

Figure 3.6. Lower bounds on the antipode reliability for different values of 

the node reliability (Scenario 2).

3.3 Link failure model 

This section analyzes DR  under the link failure model with at most | F  | failures, 

where F  represents the set of faulty links. Nodes are assumed to be perfect under this 

model. As with the node failures, the interest is in the system configuration that has at
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least one operational optimal path between u and /  in the presence o f link failures. Since 

the DR analysis and the antipode reliability under the link failure model are same as what 

have been performed in the node failure model, detailed analysis are not repeated here. 

Hence we give the results directly. The only difference is that considered network 

elements per optimal path here are r-1 links instead o f r nodes per optimal path in the 

node failure model.

The probability of having at least one operational optimal path between u (with a 

cycle presentation (tp2  - where 2 < /,• < «, 1 < j  < m)  and/  when m<\ F \<m^ -  \ is

given by: 

m-2
D R= H (-1) 

y=i
7+1

J
N j /

'f '
VI

where N j  =
y

m(m + l ) - j ( m  + i) 

,1̂ 1
, 1 < j  < m - 2

The above result does not consider the node cycle representation having cycles more 

than one. Due to the fact that there exist numerous ways of constructing disjoint paths 

between u and /, the problem of determining DR when the number o f cycles for the node 

representation under the link failure model is greater than one appears to be difficult.

The antipode reliability under this model can be analyzed similarly to the node failure 

mode described in Section 3.2.3. For the case scenario 1 where n is odd, the pessimistic 

lower bound using the simple parallel block diagram, and the tight lower bound with the 

help of the construction o f hexagons, are given as follows:

f  \ 2 f / 3

> l - ( l - ; ? ; )  and

D R ^ > \ - 1- =  1- { ^ - P f  ) , where r = 3,6,9, - , 3 ( » - l ) / 2
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3.4 Combined node and link failure model 

In the previous two sections, we only assume either nodes or links eould fail. 

However, all network components (nodes or links) can fail in real applications. A 

combined failure model is developed to analyze DR  under the case with at most |F| 

failures, where F  represents the sum of faulty nodes and links. As with the node failure 

model, the interest is in the system that has at least one operational optimal path between 

u and I  in the presence of node/link failures.

3.4.1 Case I: 7t(\) -1

There are m optimal node-disjoint paths o f the shortest distance c + m , and n - m - \  

non-optimal paths o f distance c + m + l  between u and I  

{m<n,  c < [ ( n - l ) / 2 j ,  and r - c  + m).  Total distinct nodes and links in this container 

are m{2r -1 ) + 2 . The conclusion that there will be at least one operational path between 

u and I  can be guaranteed if | f |  < w .

Now we investigate DR when \F\=m. If all faults happen to reside in all but one o f the 

optimal paths, one optimal fault-free path between u and I  can be guaranteed. Here we 

consider the worst case scenario: m faults distributions destroy all optimal paths. For a 

given u with only one cycle representation {hh" ' ^m)  » where

2 <ij  <n,  1 < j  <m,  r = m + \ ,  scenarios that fail all optimal paths when | f |  = w , happen

only where each path exactly contains one fault (either node or link), including cases 

where all neighbors of w or /  are faulty. The probability associated with this event ean be 

obtained similarly as Case I in Section 3.2
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Pr(all r-pths destroyed when | f |  = m)
m

2/77 + 1 
1

2/77 + 1 
1

2/77 + 1 
1

777(2/77 + 1) 
777 m

The above equation accounts for all scenarios that destroy all m optimal paths. 

Subtraction o f the probability of occurrence o f these events from 1 will naturally give the 

probability of having at least one operational path in the container and thus the DR.

Now let us determine the probability o f having at least one operational optimal path 

when 777 <1F  |< (/77 -  l)(2/w +1) (note that if  |F | > (/77-l)(2/77 + l) , then D F ^ = 0 ) .  In

practice, | f |  is expected to be much less than this limit. The analysis can be carried out 

similarly to Case 1 in Section 3.2. The total number of fault distributions N  that will

777—2  ■ , 1
render at least one fault-free optimal path is given hy. N  = Z (-1)-'

7=1

7̂77̂

\ J  J

N j  , where

N j  =
777(2777 + 1) -  7 (2777 + 1)

If I
, and 1 < j  < m - 2 .  Therefore, we have the following result.

Theorem  2: The probability o f having at least one operational optimal path between u 

(with a cycle presentation (/j/ 2  " ' D  , where 2 < i j < n ,  l < j < m  ) and I  when

777 <1F  |< (777 - 1)(2/77 +1) is given by:

DR = N I
(777 -  1)(2/77 + 1) 

,1̂ 1
= Y ( - i ) ^ + '

7=1

7̂77̂

V
N j /

^ (7 7 7  -  I)(2/77 + 1)^

lf l

Theorem 2, similar to Theorem 1, however, does not consider the node cycle 

representation having cycles more than one. Due to the fact that there exist numerous 

ways of constructing disjoint paths between u and /, the problem of determining DR 

when the number of cycles is greater than one appears to be difficult.
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3.4.2 Case II: ;t(1) +1

There will be at least one operational path between u and I  if  | F  |< c . Now we 

investigate DR when |F|^c. For a given u with only one cycle presentation (b‘1 /2  ’

where 2 < ij <n, I < j  <m, r - m - l ,  there exists only one optimal path and hence one 

arbitrary node fault will destroy it. DR when | F  |> c is difficult to determine due to the 

numerous ways of constructing disjoint paths between u and I  if  the number of cycles for 

the node representation is greater than one.

3.4.3 Special case: antipode reliability

The antipode reliability under this model can be analyzed similarly to the node failure 

mode described in Section 3.2.3. For the case scenario 1 where n is odd, the pessimistic 

lower bound using the simple parallel block diagram, and the tight lower bound with the 

help of the construction o f hexagons, are given as follows

M , > l - ( l - p ; > ; r  and

= 1 - ( 1  -  "  ( 2  -  p Ip ] . where r = 3,6,9 ■ ■ ■ 3(n -1) / 2

These two lower bounds shown in Fig. 3.7 are compared under different values o f the 

node/link reliabilities, respectively. The gap between the tight lower bound on the 

antipode reliability using the hexagons and the lower bound applying the simple parallel 

reliability block diagram becomes even larger than the node failure model with the 

increase of the node/link reliability. This is due to the fact that both o f nodes and links 

can fail is closer to the real applications. The dashdot lines in Fig. 3.7 represent the 

antipode reliability under different node/link reliabilities in the hypercube. The large gap
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between the antipode reliabilities of the hypercube and the star graph is due to the fact 

that there is a single antipode for a given node in the hypercube.
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0.5
- oo
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— ■ hypercube

p=0.98, pl=0.93

\ ' 7 . ,

' \
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Shortest distance between u and I

50 55 60

Figure 3.7. Lower bounds on the antipode reliability for different node reliabilities.

3.5 Conclusion

In this chapter, a figure of merit called distance reliability was introduced for the 

reliability analysis o f star interconnection networks. This measure is appealing for the 

robust networks (such as star network) since it poses stringent requirements on the 

connection o f two nodes; i.e. not only do two nodes have to be eonnected, but the 

distance between them must be the shortest. We presented a deterministic formulation of 

the distance reliability especially between u having a single cycle representation and I  

when the number o f faults is bounded using the combinatorial method. For each o f the 

node, link and node/link failure models, two different cases depending on the relative
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positions of the source & destination, were analyzed to compute DR. The antipodal 

reliability was also considered as a special case to further demonstrate the fault tolerance 

o f star networks. Lower bounds on the antipode reliability were derived and proven to be 

more tolerant that the hypercube through the comparisons between similar size star and 

hypercube networks.
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CHAPTER 4

MARKOV RELIABILITY MODELING 

In this chapter, the degradation of a container between two given nodes u and I  in a S„ 

having at least one operational shortest path is examined to measure the system 

effectiveness in the presence of failures. This measure is evaluated under the node failure, 

link failure, node/link combined failure models, respectively. Failure o f the container is 

defined as being when no fault-free optimal path remains operational between u and 1. 

States of the degradation o f a container between u and I  in a S„ are modeled by a Markov 

chain. The solution to transition state functions is derived and the MTTF (mean time to 

failure) for them under each failure model is also computed. For comparisons the results 

o f similar size containers of the hypercube is presented.

Notation:

«-dimensional star network 

Sq system state with no failures

S j . system state - j: number of failed optimal operational paths in the (u, /^-container;

/: number of failures

^'-independent failure rate of system nodes 

À, i'-independent failure rate of system links

t time
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p. {t) Pr I system is in S j}

Pq Laplace transform of Pj

R j{t) probability that j  optimal paths in the (w, i)-container have failed 

Tj MTTF estimate when there are j  failed optimal communication paths between u 

and/.

4.1 Background

In the previous chapter, the distanee reliability (J)R) merit has been proposed to 

evaluate the reliability o f the star graph. With this merit, two given nodes u and /  in any 

{u, 7)-container in a S„ are expected to not only be connected but to be apart by the 

optimal distance (i.e. the shortest distance between the source and destination nodes). 

Although the first fault (node or link) makes one of optimal paths between u and I  in the 

(u, /)-container unavailable, it is important to know how many fault-Ifee optimal paths 

are available in the damaged structure? The degradation of a eontainer in a S„ having at 

least one operational optimal path with the shortest distance between two given nodes u 

and /  is examined to measure the system effectiveness in the presence of failures. System 

is considered failed when there is no operational optimal path between u and /. The 

process of the degradation can be modeled by a Markov chain [3]. It is difficult to give an 

explicit reliability expression for a large system when there are many components and a 

diverse reliability structure. Therefore, we turn our attention to MTTF (mean time to 

failure) [2] used to describe the robustness of star networks.

To compare the reliability and degradation of the star graph to those of the hypercube, 

a similar analysis o f impacts o f node and link failures on the star graph is provided here;
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the number o f nodes (and links) o f a container between two given nodes u and I  in the 

star graph is not the same as that for the hypercube interconnection topology. The star 

graph is based on a factorial growth in the number of nodes, while the hypercube is based 

on a power-of-2 growth in the number o f nodes. For example, a star graph o f dimension 

of 4 has 4! (24) nodes and a hypereube of dimension 4 has 2"* (16) nodes. Consequently, a 

container in a has 9 (maximum) nodes, while a container in Q4 has 12 (maximum) 

nodes. This makes a direct comparison difficult; however conservative comparisons are 

made where possible between the reliability and degradation o f similar size containers in 

the star graph and the hypercube.

Here we only consider arbitrary and i'-independent failure of nodes and links such 

that the probability of occurrences o f a specific node or link failure is not affected by the 

previous failures. The method for characterizing the degradation of a eontainer in a S„ is 

based on maintaining the maximum number o f optimal paths between two given nodes u 

and I  in the presence of tolerable number o f failures. In some cases, a particular sequence 

of failures can present different degradation possibilities; however, specific sequences of 

failures are unlikely to occur and are not included in analysis here.

We can assume that whenever a failure renders an r-path faulty, that faulty r-path no 

longer belongs to the container: r-paths are isolated as soon as they fail. The system at Sj, 

has, in general, additional fault-free nodes/links belonging to an already faulty r-paths in 

the (u, /)-container; they do not need to be considered in their subsequent failure analysis 

since they do not affect the system failure anymore.
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We start to analyze the degradation of the container in a S„ under the node failure 

model first, then continue the analysis under the link failure model and the combined 

node/link failure model.

4.2 Node failure model 

In this section, we focus on the scenario having at most F  failures, where |F| 

represents the set o f faulty nodes. Links are perfect and considered to be negligible 

compared to the processor failures under the node failure model. The general objective is 

to keep at least one operational disjoint path o f the shortest distanee between two given 

nodes u and /  in the presence of node failures. A path is operational if  it passes through 

fault-free intermediary nodes. And a path is said to be optimal if  it is o f the shortest 

distance between u and I. From Chapter I, we know that the shortest distance of paths 

between u and /  is either c+m or c+m-2  depending on the first symbol in the leftmost 

position of the permutation label of the source node being “ 1” or not.

4.2.1 Case 1 7r(l) = l

There are m optimal disjoint paths o f the shortest distance c+m, and n-m-\ non- 

optimal paths o f distance c+m+2 between u and /  { m < n ,c < \ j j i - \ ) l2 \ ,  r = c + m). 

Total distinct nodes in a {u, 7)-container are k  = m{r - 1) except u and /.

Consider a (u, i)-eontainer in a S„, the first failure o f an arbitrary node always leaves 

exactly one o f these m optimal paths failed and keeps the rest undamaged. To damage all 

o f the m paths, at least m node failures are necessary. On the other hand, although as few 

as m node failures (out of k  nodes in the {u, i)-container) could possibly destroy all the r-
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paths, this scenario is highly unlikely under the assumption that node failures are 

arbitrary and ^-independently distributed.

Consider three disjoint parallel paths o f the minimum distance 4 between the source 

node «(1342) and the destination node 7(1234) in a S4 shown in Fig. 4.1. Definition 1 tells 

that there are 9 distinct nodes except u and I  in this {u, 7)-container each of which 

containing 3 distinct nodes with the same possibility of failing (« and I  are assumed to be 

always fault-free).

3142 4132 2134

4312 2314 3214
/(1234)«(1342)

2341 3241 4231

Figure 4.1. Three node-disjoint optimal paths between «(1342) and 7(1234).

In Fig. 4.2, the first failure o f an arbitrary node damages one of three 4-paths, and the 

system enters state 5i,i; then the system has eight nodes which are equal likely to fail. At 

the next node failure, the system enters state 82,2 with the probability 6/8, and enters state 

S \2  with the probability 2/8. Similarly, other state transitions can be explained. For 

example, in state 82,2 any further node failure forces the system into state 82,2 with the 

probability 3/7, etc. In each of the states 82,\, 3 < / < 7 , there remains no operational 4- 

path. These system states are important collectively because the system fails when no 

fault-free 4-path is available. The states in Fig. 4.2 are arranged such that states that 

represent a common number of failed 4-paths is arranged vertically and the degradation
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of ̂ -paths is arranged horizontally. This analysis can be extended to any container in star 

networks with different sizes. Similar state diagrams can be achieved with the different 

width and height, but the pattern remains essentially the same.

3/76/8

2/8 4/7

6/7

3/61/7

6/6
’2,4

2/5

Sj,i w h ere  
j = #  o f failed r-path 
I = #  o f failed  n o d e s

1/4

' 2,6

Figure 4.2. State diagram for in a (u, /^-container of S4.

Consider Sjj, for a given {u, /)-container, there are {m-j) fault-free disjoint parallel 

optimal paths between u and I, each of which has (r-1) fault-free nodes; there are {k-i) 

fault-free nodes in the container. Because failures are ^-independent with the equal 

probability of failing, the probability that the next node-failure damages a fault-free 

optimal path is then:

k - i

Hence the probability that next node failure does not damage a fault-free optimal path

is:
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1
k-i

Starting with a fault-free state So, the state diagram for a {u, i)-container under the 

node failure model is demonstrated in Fig. 4.3. The corresponding state transition rates 

are rj = (w -  y )(r -1 ), 0 < j< m  .

1— 1— 1 —

   M S i )------------------------►( S 2  j ► • •  •  ----------7-M  S ,

Figure 4.3. Simple state diagram under the node-failure model for 

a (u, i)-container in a S„.

The state transition expressions for the first three states are:

/q (̂  + At) = (1 -  H)At )io  (0  => - ~ ^ qPq 

P\{t + St) = r^StPQ(t)4-(l-rjA t)P i(t) => - ^  = - rj/l

Pl{^ + At) = /|AtPi(t) + (l-r2 A t)i^ (t) => = rjPj - ^ 2 -^ 2

Similarly, we can derive the state transition function of the state j  as follows:

dP:
Pj (t + At) = ry_i AtPy_i + (1 -  r jS t)P j  = > - ^  = -  r jP j , for 1 < y < w

The initial and final conditions for the states probabilities are:

Po(0) = 1, P y ( 0 )  = 0 for 1 < y < OT

T’ (oo) = 0 for 0 < j  <m, f^(oo) = 1
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After the Laplace transformation,

sP , -1  = P ,  = ^  =■ Fo(0 = exp(-roO 

P . =  i î r P «  = ^  P, ( 0  =  ^ e x p ( - ^ 0  + ; ^ e x p ( - n / )

+ ^ + — )“ s+r2 * s+r2 5+P] 5+ro 5+̂ 0 5+P] s+r2

=> ^2(0 = A) exp(-rot) + 4  exp(-rit) + A2 exp(-r2t)

Next we are going to find these three parameters Ao-Ay.

A — 'bn / \| _ W \
^  “ (f-H/bX'̂ +nX'̂ +nz)̂  ~ (n-'bX'z-'b)

w _ nin _  nin
: ( ^ + n ) L .(■s+'bX‘5+nX.5'+'2) (fQ-nXnz-n)

A _  n>n n>n
(f+mX'̂ +nX'̂ +nz) (fQ-f̂ Xn-'b)

Now we have the solution to the f^ (t) :

To compute 4 , for 2 < y < w , observe that

P » = ^ P » - i = , n ^ ,  x_ ,=i  

This suggests a solution o f the form

P jit)=  i  A  exp(-/%t),
k=0

where Ak, 0 < k<  j  are constants of integration determined by solving this equation:

A p r V i A : .

which gives:
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ri n_i
A u - -  - 0 -

ri (n-nt)î=0, i^k

This gives a general form solution to P/t):

^ . ( 0  = (/on '

( t ) - n  )(nz - n  )" ( n  - n  )

(t) - f j  )(n - r j  )-(ry_, -ry )

7Îot(0 is the probability that there is no single fault-free optimal operational path in the 

(u, i)-container, i.e., the container has failed according to the failure definition. Hence, 

the probability that j  optimal paths in the {u, 7)-eontainer has failed, R jit)  is given as

follows

4 ) ( 0  = ^o(0

R j (0  = Rj_x (0  -h Pj (0 , for 1 < y < m

It is difficult to give an explicit reliability expression for a large system when there 

are many components and a diverse reliability structure. In our case, there exist 

numerous numbers o f nodes in a container between two given nodes u and /  with the 

increase o f the size of the star graph. One method of simplifying this situation is to 

calculate the MTTF (mean time to failure), T j ,  computed according to the following

formula:

_ 1 _ 1
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=  J_ + [ ü  + ̂ X ]  
n> n - 'b  ro 7b-n n

= -L+-L
D n 
 1

■ + -Â„m(c+m-l) Â„(m-l)(c+m-l)

In the same way, we can derive the mean time to failure for the state J, 

Tj  = ^ R j ( l ) d l

= Jo [ s  P m d t
k=0

k=0

y-i ^  "7' 

0-= ^ M  + jô  ^
k=0

= 7}._1+ Z ^
k=0 ^

= T. 1 + ___________  -L + ___________  ±  + ...
( ' i - ' b ) ( ' 2 - ' b ) - ( o  - ' ( 3 ) 'b  ( % - n X '2 - n )  " ( ' y - n )  n

W l - P j - l  1 j:- 1 .
+  7--------- 77--------- 7—7----------- r  —, f o r l <  j< m

( 'b  “ O' X rz ~ r j  )  " ( / ) _ ,  - r j  ) r j

The resulting Tj for a (u, 7)-containers of different sizes in a S„ are shown in Table

4.1 (Àfj =10”  ̂/ hours as in [1]), where we only consider containers with the maximum

values o f m and c. In other words, the eontainer we are considering here has the largest

number o f nodes for a given size o f the star graph. For comparisons with other popular 

interconnection networks. Table 4.2 shows the MTTF estimates for similar size 

containers in the hypercube network, where Tj captures a scenario that all faulty nodes

are confined into a eontainer of a . (In this ease, we are considering such situations
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where a (m, /)-container in Qr, having n node-disjoint parallel paths of the optimal 

distance n between u and I).

Table 4.1. MTTF Values (Hours) for various size containers in star networks

under the node failure model (Case 1), = 10 /hour.

n

# of 

nodes in 

container

To Ti T2 Ts T4 T5 Te T?

3 4 25000 75000

4 9 11111 27778 61111

5 20 5000 11667 21667 81667

6 30 3333 7500 13056 104722 121389

7 48 2083 4583 7708 116042 122292 134792

8 63 1587 3439 5661 144550 148254 153810 164921

9 88 1136 2435 3950 158496 160768 163799 168344 177435

Comparisons o f the star network and the hypercube are approximate because the 

number of nodes involved does not match, and the degradation methods of two systems 

differ: a container in the star graph consists o îm { m  = n - \ )  optimal paths of the shortest

distance, r = n - \  + n -\ , between u and I  while a container in the hypercube consists

of n optimal disjoint paths of the shortest distance n.

However, when a similar number of nodes exist for the containers in two different 

networks, the responses to the initial few failures can be used to compare the reliability 

and degradation of containers in the star graph to those in the hypercube. To be
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conservative, comparisons are generally made between the hypercube with a slightly 

lesser number o f nodes than the respective star graphs; e.g., 56 nodes in a container 

having 8 disjoint paths with the optimal length 8 in Qs compared to 63 nodes in a 

container having 7 disjoint paths with the optimal length 10 in %.

Table 4.2. MTTF Values (Hours) for various size containers in hypercube networks

under the node failure model, = 10 /hour.

n

# of

nodes in 

container

To Ti T2 T3 T4 Te Te Tj Ts

3 6 16667 41667 91667

4 12 8333 19444 36111 69444

5 20 5000 11250 19583 32083 57083

6 30 3333 7333 12333 19000 29000 49000

7 42 2381 5159 8492 12659 18214 26548 43214

8 56 1786 3827 6207 9065 12636 17398 24541 38827

9 72 1389 2951 4737 6820 9320 12445 16612 22862 35362

The time o f the first failure is a function of number of nodes, and is therefore 

equivalent to that o f a similar size container in the hypercube, e.g., 3,333 hours for the 30 

nodes in a container o f Se versus 3,333 hours for the 30 nodes in a container of Qe. 

However, the time of the second and subsequent failures for the 30 nodes in a container 

in a Se shows an appreciable improvement over the 30 nodes in a container in a Qe. As 

the number of nodes increases, the improved reliability of the star network becomes
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more apparent. For example, for a container (63 nodes) in Ss versus a container (56 

nodes) in Qg, the MTTF of the container in Qg is still less than 24,541 hours for the first 

seven states while the MTTF of the container in Sg continues to climb to nearly 164,921 

hours even the MTTF of the first three states of the degradation of the container in Qg 

show a little advantages over the container in Sg.

4.2.2 Case 2 ttQ) ^  1

There are c parallel disjoint paths of the shortest distance c+m-2, m-c-l paths of 

distance c+m, and n-m paths o f distance c+m+2 between u and /

{ m < n ,c <  Y , a n d r  = c + w - 2  ). Total distinct nodes in a {u, 7)-container are 

k = c(r -1 ) except u and 1.

1—ZqA? 1 —

W  S y ]  T ►( S 2  )-----------► •  •  •  ►( S ,

tqA /

Figure 4.4. State diagram in the node failure model for a (u, 7)-container in a S„ (Case 2).

This case is the same as Case 1 except the different numbers of disjoint paths and 

nodes in the container between u and 1. Hence, the Markov analysis o f the degradation of 

a container in S„ under this case can be implemented similarly to Case 1. The state 

diagram for this case under the node failure model is shown in Fig. 4.4. The state 

transition rates are given as

rj 0 < j< c .
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The corresponding MTTF to this case are derived based on the faeet 

R j (t) = Rj_^{t) + P j(f), for 1 < j < c  as

ro A„c(c+w-3)

1 + i f o r i < ; s c
k=0

Table 4.3. MTTF values (Flours) for various size containers in star networks 

under the node failure model (case 2), = 10“^/hour.

n
# o f nodes in 

container
To Tj T2 n T4 T, T6

4 6 16667 50000

6 18 5556 13889 30556

9 40 2500 5833 10833 20833

10 60 1667 3750 6528 10694 19028

12 90 1111 2444 4111 6333 9667 16333

14 126 794 1720 2831 4220 6071 8849 14405

The resulting Tj for a {u, /)-container o f different sizes are shown in Table 4.3

{Xfj =10”  ̂/ hours as in [1]). Since the Markov analysis for this case is the same as 

Case 1 except different transition rates, the analysis for the link failure model and the 

combined node/link failure model will only consider the first case where ;r(l) = 1.
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And for brevity, the definition o f the container is not going to be defined in next two 

fault models.

4.3 Link failure model

This section considers the robustness o f the star network under the link failure model 

with at most F  link failures, where |F| represents the set o f faulty links. Nodes are 

assumed to be perfect under this model. As with link failures, the interest is in the system 

configuration that has at least one operational optimal path between u and 1 in the 

presence of link failures. Total distinct links existing in the container is k = m{c + m) 

except u and /. Begin with a fault-free container in a S„, where the links can fail s- 

independently at a constant rate; then find when the container does not have an 

operational optimal path.

Compared with Case 1 in the node failure model, the only difference is that we 

consider mr links here instead of w ( r - l )  nodes in the node failure model while 

maintaining m disjoint optimal paths in a container between two given nodes u and /. 

Therefore, the Markov analysis of the degradation of a container in a S„ under the link 

failure model can be performed similarly as Case 1 in the node failure model. The state 

diagram under the link failure model is shown in Fig. 4.5.

1— 1—rjA/ \ - r 2 l4t

W Si )--------------►( S2 )------ ► • • •  ►( Si

Figure 4.5. State diagram in the link failure model for a (w, 7)-container in a S„.
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The state transition expressions are:

rj = À i(m - j) r ,  0 < j  <m .

The solutions o f the state equations are similar to those for the node-failure case. The 

initial and final conditions for the probabilities are:

F()(0) = 1, Pj(0) = 0 for 1 < j  <m

Pj{<x>) = 0 for 0 < j  <m, F^(oo) = 1

Pq(/) = exp(-roO, % = + m - \ )

Once P.{t), 0<]<m are determined, the expressions for Tj are derived similarly as that 

in the node failure model.

 ̂ -

Tf = T , _ i +  i  \  f o r l <  j< m  

The resulting Tj for {u, 7)-containers o f different sizes in star networks of various

dimensions are shown in Table 4.4; (A/ =10“^/hour as in [1]). Table 4.5 shows the 

reliability estimates (MTTF) for similar sized containers in hypercube. In this model, 

comparisons are made between hypercube with a slightly more number o f links than the 

respective star graph; e.g., 36 links in a container having 6 disjoint paths with the optimal 

length 6 in Qe compared to 35 links in a container having 4 disjoint paths with the 

optimal length of 5 in %.
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Table 4.4. MTTF values (Hours) for various size containers in star networks

under the link failure model, A/ = 10 ^/hour.

n

# o f  

links in 

container

To Ti T2 Ts T4 Ts Te T j

3 6 166667 500000

4 12 83333 208333 458333

5 24 41667 97222 180556 347222

6 35 28571 64286 111905 183333 326190

7 54 18519 40741 68519 105556 161111 272222

8 70 14286 30952 50952 75952 109286 159286 259286

9 96 10417 22321 36210 52877 73710 101488 143155 226488

The time o f the first failure is a function of the number of links, and is therefore close 

to that of a similar size container in hypercube, e.g., 28,571 hours for the 35 links in a 

container of a Sg versus 27,778 hours for the 36 links in a container of a Qe. However, 

the time of the second and subsequent failures for the 35 links o f a Se shows the 

appreciable improvement over the 36 links of a Qe. As the number of links increases, the 

improved reliability of the star network becomes more apparent. For example, the mean 

time to the fourth link failure in the container (35 links) in a Se has climbed to 326,190 

hours, while the mean time to the fourth link failure in the container (36 links) in a Qe 

just climbed to 241,667 hours. And this trend is believed to continue to improve for the 

MTTF of subsequent failures.
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Table 4.5. MTTF values (Hours) for vànous size containers in hypercube networks

under the link failure model, A/ = 10 /hour.

n

# of

links in 

container

To T, T2 Ts T4 Ts Te T? Ts

3 9 111111 277778 611111

4 16 62500 145833 270833 520833

5 25 40000 90000 156667 256667 456667

6 36 27778 61111 102778 158333 241667 408333

7 49 20408 44218 72789 108503 156122 227551 370408

8 64 15625 33482 54315 79315 110565 152232 214732 339732

9 81 12346 26235 42108 60626 82848 110626 147663 203219 314330

4.4 Combined node and link failure model 

So far cases were considered where either nodes or links eould fail. Realistically, all 

network eomponents ean fail. A combined model is developed by assuming s- 

independent and different failure rates for nodes and links in the star networks. All nodes 

have the same probability of failing , while all links have the same probability failing

Ài . Total distinct components including nodes and links existing in a eontainer is 

k = m[{c + m -1 ) + (c + m)] except u and /.

Similar analysis as the node failure model in Section 4.2 is carried out here. The state 

diagram under the combined node/link failure model is shown in Fig. 4.6. The state 

transition rates are given as follows:
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Vj j){c  + m - \ )  + X i{m - j){c  + m), 0 < j  <m .

\ —r ç ^  1—

W :Sl I---------------------►( S 2 I----------► • • • ---------- —M 81
%Af V i /

Figure 4.6. State diagram in the combined node and link failure model 

for a {u, 7)-container in a S„.

The state transition analysis will be same as the node failure model. The 

corresponding MTTF to each state are given as follows:

Ta = 1

Tj = Tj_i + Z — , for 1 < j  <m

The resulting reliability estimates for different containers in star networks and 

hypercubes o f various dimensions are shown in Tables 4.6 and 4.7. Comparisons of the 

star graph and the hypercube under the combined node/link failure model, is 

approximately done between similar size containers; e.g., 44 elements (including nodes 

and links) in a container having 4 disjoint paths with the shortest distance 6 in a 5^ 

compared with 45 elements in a container having 5 disjoint paths with the shortest 

distance 5 in a Q 5 .
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Table 4.6. MTTF values (Hours) for various size containers in star networks 

under the combined node/link failure model, = 10~^ /hour, A/ = 10“  ̂/hour.

n
# o f elements 

in container
To Ti T2 T3 T4 Ts Te T i

3 10 21739 65217

4 21 9804 24510 53922

5 44 4464 10417 19345 37202

6 65 2985 6716 11692 19154 34080

7 102 1873 4120 6929 10674 16292 27528

8 133 1429 3095 5095 7595 10929 15929 25929

9 184 1025 2196 3562 5201 7250 9982 14081 22278

Table 4.7. MTTF values (Hours) for various size containers in hypercube networks 

under the combined node/link failure model, = 10 '^ /hour, Xj - 10“^/hour.

n

# of 

elements in 

container
To T, T2 T3 T4 Ts Te T? Ts

3 15 14493 36232 79710

4 28 7353 17157 31863 61275

5 45 4444 10000 17407 28519 50741

6 66 2976 6548 11012 16964 25893 43750

7 91 2132 4620 7605 11336 16311 23774 38699

8 120 1603 3434 5571 8135 11340 15614 22024 34844

9 153 1248 2653 4258 6131 8378 11187 14932 20550 3r%6
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The time of the first two failures in S5 is slight higher than Qs, but the MTTF of the 

subsequent failures for 44 elements in a container in a Ss show the appreciable 

improvements over the 45 elements in a container in a Qs. For example, the mean time to 

the third failures (either node or link) in a container in a Ss (44 elements) has climbed to 

37,202 hours, while the mean time to the third failures (either node or link) in a container 

(45 elements) in a g j i s  still 28,519 hours.

4.5 Conclusion

In this chapter, the robustness of star networks was studied under the node, link, and 

combined node/line failure models. The degradation of a container in a S„ having at least 

one operational optimal path with the shortest distanee between two given nodes u and 1 

was examined to measure the system effeetiveness in the presence of failures. For each 

failure model, two different cases depending on the relative positions o f the source & 

destination nodes were considered to assess the star network. The states of the 

degradation o f a container were modeled by a Markov chain. The solution to each 

transition state was derived, and values o f MTTF (mean time to failure) for each failure 

model were computed and compared with similar size containers in the hypercube.
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CHAPTER 5

SUBSTAR RELIABILITY ANALYSIS 

In this chapter, we derive an upper hound on the («-l)-star reliability in a S„ using the 

probability fault model. We also compute an approximation on the («-l)-star reliability 

by considering only disjoint {n-\) stars under the fixed partitioning. The numerical results 

show that the (w-l)-star reliabilities under the probability fault model and the 

approximation approach are in good agreement especially for the low value o f the node 

reliability. And the numerical results are also shown to he consistent with and close to the 

simulation results. Conservative comparisons are made where possible between the («-1)- 

network reliability of similar size star graphs and hypercubes.

Notation:

N\ N -n  !, the number o f nodes in a 5"».

p\ node reliability defined as the probability that the node is operational at time t.

SnA{af. defined as , which is a (n-l)-star in a S„ such that the position

o f its label has the fixed value a,-, where a, e  {1,2,3, - -, n} and i e  {2,3,4, • • -, n},

and all other positions are assigned with J f s  and superscripts are the repetition 

factors.

R„-i(ad'- defined as the reliability o f the (n-l)-star S'„_i(a,j.

Rn,n-m(p)- defined as the probability that there exists a fault-free S„.m in a S„.
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7 î„„ -l(p ,/) : defined as the R„^n-\ip) under the fixed partitioning along the

dimension, where 2 < i < n . 

f .  number of faulty nodes in a S„.

_  n (n  1) (n  m + l ) . of combinations o f m components selected from a set of
m'.

n components.

5.1 Background

As the size o f a system grows, the probability of a fault occurring in the system 

increases. It is important to quantify the effect of the faults, so the fault-tolerant design 

can be pursued. Normally, reliability is used to evaluate the fault toleranee o f a 

multiprocessor system. The reliability of a system as a function o f time, R(t), is defined 

as the probability that the system has survived the interval [to, t], given that it was 

operational at time /q. A traditional measure o f the reliability evaluation is terminal 

reliability, such as all terminal reliability and distance reliability, o f a computer network

[6] [7]. Others are task-based reliability, defined as the probability that some minimum 

number o f connected nodes are available in the system for the task execution [3], and 

substar reliability [2], defined as the probability that a fault-free subnetwork (a smaller 

dimension network with the same topological properties as the original one) is still 

available in the network in the presence o f a tolerable number o f faults. A similar idea 

with the aim of finding the minimum number of failed nodes or links to destroy all 

available substars has been studied and reported in [5]. In designing parallel processors 

using the star network as the interconnection topology as well as in designing real
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applications on such processors, the estimates o f these reliabilities are important in 

choosing algorithms and predicting their performance under different failure conditions. 

Among these reliability measures, the substar reliability is the most practical one because 

a user in the current star multiproeessors is given a speeific substar for the execution of 

his/her program.

In this chapter, we adopt the probability fault model (originally proposed in [2] to 

derive the suhcube reliability in the hypercuhe network) to study the substar reliability of 

the star graph. An upper bound for the Rn,n-\iP) using the probability fault model is

derived. The Rn,n-\iP) is obtained by forming all available distinct S„-\'s first, and then

applying the principle of inclusion and exclusion [1] to get an upper bound while only 

considering the first three terms in the reliability formula since the fourth term is negative 

and dominate all the remaining terms. Meanwhile, an approximation on the R„^n-\(p) is

obtained by considering only disjoint («-l)-stars under the partitioning along the fixed 

dimension. Numerical results show that the probability fault model and the 

approximation approach are in good agreement especially for the low value of the node 

reliability. A search algorithm is developed to find the R„ yi^\{p) in the star graph under

a given number o f node faults.

The reliability of the hypercube network is well known. Models exist to analyze the 

reliability of the hypercube under both node and link failure schemes [2] [4] [6]. To 

compare the reliability of the star graph with that of the hypercube, a similar analysis of 

impacts o f node failures on the star graph is provided here; the number of nodes in the 

star graph is not the same as that for the hypercube interconnection network. The star 

graph is based on a factorial growth in the number of nodes, while the hypercube is based
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on a power-of-2 growth in the number of nodes. This makes a direct comparison difficult; 

however conservative comparisons are made where possible between the reliability of 

similar size star graphs and hypercubes.

We assume that processors in the system have the homogenous reliability function. 

The failures of processors are assumed to be statistically independent and link failures are 

negligible compared to the processor failures. The reliability function of each node can 

have any failure distribution. The node reliability function can include the maintenance 

and repair capabilities of the node.

5.2 Analysis o f the (»-!)-star reliability under the probahility fault model

In this section, an upper hound on the («-l)-star reliability under the prohability fault 

model is derived first. In the probability fault model, the probability that a suhstar is 

operational is represented hy the reliability o f processors in the suhstar. The («-w)-star 

reliability of an «-dimensional star graph, can be formulated as the union of the 

probabilistic events that all possible («-«î)-stars are operational. Since the terms in the («- 

«z)-star reliability obtained above may not be mutually disjoint, a technique to convert the 

reliability formula into one with only mutually disjoint terms is needed. The basic method 

used to compute the network reliahility in the probability fault model is called the 

Principle o f  Inclusion and Exclusion {PIEI). This principle is not efficient for calculating 

the reliability of the general networks. However, we show that it is useful for the star 

network reliability analysis.

To derive the («-l)-star reliability in this model, all distinct = « ( « - ! )  («-!)- 

stars are formed first. Then the («-l)-star reliahility is expressed as the union of the
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reliability o f these « (« -1 ) («-l)-stars. Since the prohahilistic terms in the expression of 

the («-l)-star reliahility are not mutually disjoint, the key to calculate the («-l)-star 

reliability is to convert the original reliability expression into one containing only disjoint 

terms. Let Q  denote the probahility that one («-l)-star is operational, then the (o-l)-star 

reliability can be represented according to the PIE  as follows:

n (« - l ) - l  j
Z Q + ( - l )  Z CjCj (pair)

!=0 i ,j=0,l,-,n{n-Y)-\

+ (—1) Z CjC jCj^Cj (quadra) ■
(1)

;=0

Each Cj can be represented by the reliability o f the (« - ! ) !  nodes in its corresponding S„.

1, . In the following, we derive an upper bound on the R„^„-iip) in a S„. We

consider a simple case first. The 5", reliability can be easily obtained as

R„^l(p) = p ) ^  because the only instance where there is no fault-free 5", in a S„ is

when all the nodes are faulty. Before deriving the main result, we need the following 

lemmas.

Since terms in (1) are not mutually disjoint, we need to find the common nodes in any 

two or more 5'„.i’s by considering the intersection between them to derive the R„^„-\(p) .

To find these common nodes between any 5'„.i’s, first we study how distinct S„.\’s pair 

up. In the following, three different ways in which 5’„.i’s pair up are listed:

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) paired S„.Ts with the empty intersection where fixed digits in the («-!)-stars are 

distinct and in the same position. For instance, the empty intersection between 

X X X 4 and XXX3  in a S4.

(b) paired V -i’s with the empty intersection where fixed digits in the («-l)-stars are 

the same and in different positions. For instance, the empty intersection hetween 

X X X 4 and X X 4 X  in a S4.

(c) paired 5/,-i’s with the non-empty intersection where fixed digits in the («-l)-stars 

are distinct and in different positions. For instance, the non-empty intersection 

between X X X 4 and X X 3 X  inaS'.^.

Based on the construction conditions o f the pairs between distinct 5'„.i’s listed above, 

the number of total pairs for each case in a S„ are given as follows:

(a)
v2y

(« - ! )  since two distinct fixed digits can be selected from n distinct digits.

(b) n

and the same position can be the one, where 2 < i < n .

v2 y
since the fixed digit can be any of n distinct digits, and two different

positions can be selected from these i positions, where 2 < i < n .

(c) 2

v2y v2 y
since two distinct fixed digits can he selected from n distinct digits.

and two different positions can be selected from these i positions, where 2 < i < n .

n { n -V f
The total number of above-mentioned S„.\ pairs in a S„ equals to 

example, there are 15 pairs o f % 's in a % as follows:

v2
. For

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)
(ZY3,A%2), (AT3,A%1), (AT2,A%1), (%3%,%2W), (W3W,%1%),
(^2yir,WLir)

(b) (A T3,W 3Z), (A%2,vir2vr), (vQTl,%lvir)

(A%3,W2Z), (A%3,yiriW), (A%2,%1Z), (AT2,W3yir), (ATl,yir3yir), 
(A%1,%2%)

Cases (a) and (b) can be combined and extended to the general scenario where the 

intersection between m { 2 < m < n )  % .i’s is empty, while case (c) can he generalized to 

the scenario where m distinct %-i’s intersect into a S„-m- Thus, the above results can be 

generalized to the following lemmas.

LEMM A 1. There are { 2 n - m - l ) ways that the intersection between m disjoint (n-

\)-stars is empty.

Proof. Cases (a) and (b) can be generalized to the intersection between m disjoint %-i’s;

respectively.
« -1 ^

or (b) are (« -1 ) and n

Adding them gives (2« -  « 7  -1 ) . The intersection between these %-i’s is empty since

they are disjoint to each other. Q.E.D.

LEM M A 2. There are m\
y

ways that m distinct %-i’s in a n-star intersect into

a (n-m)-star.

Proof for this lemma can be obtained directly from the process o f generalizing type (c) S„. 

I’s, where m fixed digits for each of these %-i’s are distinct and in different m positions. 

This number happens to be the same as the number of distinct %-m’s in a S„\
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m!

(n-m)-star equals to Z (-1) 
/=!

i-\

LEM M A 3. The total number o f  nodes in m distinct %-i’s (type c) which intersect into a

(n -  z) !.

Proof. We shall see that m type (c) S„.\’s intersect into a (zz-z«)-star. Thus, hy the PIE, the

(zz-z)!, i.e., the sum of
W 7 -1

number of nodes in these %-i’s can be obtained as Z (-1)
Z = 1

the number of nodes in these %-Ts, subtracted by the number o f nodes in the intersections 

hetween any two % .,'s, added hy the number o f nodes in the intersections between any 

three % .,'s, and so on. Q.E.D.

For example, the intersection between three (5-l)-stars (type c) XXXX5, XXX4X, and 

XX3XX, is a (5-3)-star X¥234. It is easy to see that the total number o f nodes in these 

three (5-1 )-stars equals to 3 x 4 !-2x3 !+ 1x2! = 62.

To derive the 7?„ „_j(/z), we not only need to consider scenarios where (zz-1)-stars

overlap with either empty or non-empty intersections as stated in Lemmas 1-3, also 

scenarios where (zz-l)-stars intersect in other numerous ways. For example, there are four 

scenarios where three distinct (zz-l)-stars intersect, and more than eight scenarios where 

four distinct (zz-l)-stars intersect, etc. To keep the problem tractable, we only consider 

seenarios where up to three (zz-l)-stars are selected to derive the R„^„-\{p) . Before

deriving the general formula to find the total number o f scenarios when three (zz-l)-stars 

intersect in a S„, we start with a simple example as the following.

Besides the two scenarios (a) and (b) shown in Fig. 5.1 as stated in Lemmas 1 and 2, 

there are two more scenarios where three out o f twelve (4-l)-stars intersect in a %.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Scenario (c): there are 36 ways to seleet two (4-1)-stars such that they intersect 

into a (4-2)-star according to Lemma 2. For each of them, there are two ehoices to 

select the third (4-l)-star whieh dose not interseet with either of them. For 

instance, %Qf4,ÆY3%,%QT3 and %Qf4,A%3%,AT4vir.

Scenario (d): similar to (c), there are 36 ways to select two (4-l)-stars such that 

they intersect into a (4-2)-star. For each of them, there are three ehoiees to seleet 

the third (4-l)-star which will only intersect with one of the two earlier selected 

(4-l)-stars. For instanee, X X X 4 , X X 3 X , X X 2 X  , X X X 4 , X X 3 X , X X 1 X  , and

XXX4 XXX3 XXX2

scenario (a)

XXX4 XX3X XXX3

XX3X XXX4 XX2X

XX3X X2XX

scenario (b)

XXX4 XX3X AX4X

scenario (c)

Œ 0
XX3X XXX4 X3XX  

scenario (d)

Figure 5.1. Scenarios where three (4-l)-stars intersect.

The results of the above example now can be generalized to the scenario where three 

% .i’s intersect in a S„ in the following lemma.

LEM M A 4. There are (4 « -6 )

scenarios (c) and (d) in Fig. 5.1.

« - V

v2y v2 y
ways that three %_,'s intersect similarly to
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Proof: Lemma 2 gives 2!
V /

ways that two % .i’s intersect with each other. For
y

each of these ways, there are two choices to seleet the third S„.\ which does not intersect 

with either o f the earlier selected %_i’s similarly to scenario (c) in Fig. 5.1; while there 

^ n - 2 \  (  n - 3 ^
are +

y v l  y
= 2/7-5 choices to select the third S„.\ which intersect with only one

of the earlier selected % .,'s similarly to scenario (d) in Fig. 5.1. Adding them gives the 

total number o f ways that three % .i’s intersect similarly to scenarios (c) and (d) in Fig.

5.1: (4/7-6)
/̂7^

v^y

^/7-V
. Q.E.D.

V • y

Summing numbers in Lemmas 1 ,3 , and 4 when m equals to 3 gives the total ways

that three (//-l)-stars intersect:
^ n ( n - V f

. The number o f nodes in these three (/7-l)-stars

under each scenario are 3(/7-l)! , Z (-1)
i=\

i - l ( n - i ) \  , 3 (/7 -l)! - ( / / -2 ) !  , and

3(/7 -1 ) ! - 2(/7 -  2) !. The corresponding probabilities o f these three (/7-l)-stars under each

scenario are given as (2/7-4)
/̂7^

v3y
3(/7-1)! ^ /7 -l^

P
V ^ y v ^  y

v2y v 2  y

(2 /7 -5 )p3(/7-l)!-2(/z-2)!^ ^ n

v3y v 3  y

3 m (3
/-)/=i , respectively.

Before using these Lemmas to derive the , two simple examples are

introduced as follows.

Example 1. For n=3, there are 6 distinct (3-l)-stars in a %. Based on the PIE, the 

i? 3  3 _l(;/) can be computed as:
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5 j  j^ k  j^ k ^ l
i q -  z  q C j +  z  q C j Q -  z  q q q q

1=0 07=0,1, ,5 ;V ,t= 0 ,l,„ ,5  ;,7 ,t,;= 0 ,l,-,5

+ I  CjCjCi^CiC^ -  n  Cj
i,j,k,l,m=0,\,-,5  i=0

the R^^s-iip) can be interpreted as the sum of the reliability of (3- l )!=2 nodes in six

distinct (3-l)-stars, subtracted by the reliability of nodes in the union of fifteen pairs of 

distinct (3-l)-stars, added by the reliability of nodes in the union of twenty triple of 

distinct (3-l)-stars, and so on. Each term in the R^^^-iip) is listed as:

• First term: C q + C j + C2 + C3 + C4 + = bp^

CqCj + CqCj + CqCj + CqC^ + CqCj + CjC2 + + C"jC4 +
• Second term (pairs): QC5 + C2C3 + C2C4 + C2C5 + C3C4 + C3C5 + C4C5

= 9p ‘̂ + 6p^

+ Q Q Q  + C q Q Q  + Q Q V 5  + C0 C2 C3  + C0 C2 C4  + 
CQC2 C5  + CQC3 C4  + CQC3 C5  + CQC4 C5  + CjC2 C3  +

• Third term (triple) : Cj C2 C4 + Cj C2 C5 + Q  C3 C4 + Cj C3 C5 + Cj C4 C5 +
C2 C3 C4  + C2 C3 C3  + C2 C4 C3  + C3 C4 C3  

= 2p^ +I2p^ + 6p ‘̂

CqCjC2C3 +  CqCjC2C4 +  CqCjC2C3 +  CQCJC3C4 +

+ C0C1C4C5 +  C0C2C3C4 +  C0C2C3C5 +

• Fourth term (quadra-): CQC2C4C3 + CqĈ Ĉ Ĉ  + CJC2C3C4 + C2C2C3C5 +
CJC2C4C3 +  CJC3C4C3 +  C2C3C4C3

= 9p^ + 6p^

C0Q C 2C3C4 +  C0C1C2C3C5 + Q Q C 2C4C3 +  C0Q C 3C4C5 +
• Fifth term (five): ,

C0 C2 C3 C4 C5  + q C 2 C3 C4 Q  = 6 ;,^

• Sixth term (six): C0QC2C3C4C3 = p^
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Adding above six terms gives the exact value of the %  3 _i (p) as

% 3 - l  ( P )  =  ^ P ^  -  ^ P ^  -  ' ^ P ^  +  -  ' ^ P ^  ■

Example 2. For «=4, there are 12 distinct %-i’s in a %. Each Q  can be represented by 

the reliability o f (4-l)!=6 nodes in its eorresponding %.i, for 0 < z < 11. Based on the PIE, 

the 4 _i(/z) can be computed as

11 j  z#  j ^ k
& , 4 _ i W =  Z Q -  Z Q C .  + Z Q C y Q  -

z-O  z j = 0 , l , - , l l  / , M = 0 , 1 , - , 1 1

j ^ k ^ l  11 ’
z CjCjCiçCi+— n Q

z , y , L / = 0 , l , - , l l  z=0

where each term is the reliability o f the union of several %_i’s. The i ? 4  4 _i(/z) can he

interpreted as the sum of the reliability o f (4-l)!=6 nodes in every %_i, subtracted by the 

reliability of nodes in the union of any pair % .i’s, added by the reliability of nodes in the 

union of any triple %_i’s, and so on. Following presents the first three terms for the

• First term: \ 2p^  which corresponds to the scenario where each individual is 

operational.

• Second term: two scenarios for any pair operational ’s.

• Scenario (a): paired % .i’s with the empty intersection with the reliability

. Scenario (b): paired % .,'s which intersect into a %_i with the reliability

36fW .

• Third term: four union scenarios for three operational ’s shown in Fig. 5.2.
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Scenarios (a): empty intersection between any pair of three % .i’s with the 

reliability \ 6 p ^ ^ .

Scenario (h): three distinct %_,'s intersect with each other with the reliahility

Scenario (c); two out of three (4-l)-stars intersect in a with the reliability 

7 2 p ^ \

Scenario (d): one intersects with the other two respectively with the 

reliahility 108/?^^.

(a) (c) (d )

Figure 5.2. Four scenarios when three out o f twelve (4-l)-stars intersect in a %.

As the number of the %.i ’s in each term for the 7?4 4 _ i(p) increased, scenarios where 

(«-l)-stars intersect become more complicated, making it difficult to enumerate all. Thus, 

we give an upper bound on the / ? 4  4 _j(/>) here since the next term is negative and

dominate all the remaining ones as R ^ / ^ _ i { p ) < \ 2p ^ -  (36/)^®+30p^^) +

(2 4 /3 + 1 0 8 ^ 1 4  ^  7 2 / ^ + 1 6 / ^ ) .

Theorem 1. Given a homogeneous node reliability p  in a n-star, an upper bound on the
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_ n  »(»-!)!_ nUj n - \

v2 y
î=\

+
v3y

-l/3\
+ 6

' 'n -Ÿ \  2 ; (-1)' . |(«-0!
p i = \  V Iv3 r

Proof: According to the PIE, the probability o f having a fault-free (n-l)-star is obtained

as

k(m-1)-1 /V j
Z ^ w -l(« /)  +  ( - l )  I  R n - \ { a i ) R „ _ \ { a j )  +

/=0 / ,7=0,l,- ,«(w-l)-l
rt J

(-1) I  Rfi_i(ai)R„_i(aj)Rfj_i(ai^) + --- (3)

i=0

where a, e  {1,2,3, •••,«}, and i e  { 2 ,3 ,4 ,- ,» } . Terms in (3) can be interpreted as, the sum

of the probability that each (n-l)-star is operational, subtracted by the probabilities that 

any two (n-l)-stars are operational, added by the probabilities that any three (n-1 {-stars 

are operational, and so on.

Since it is difficult to enumerate all scenarios in (3) when four or more S„.\'s are 

selected as the size of the star graph increases, thus we give an upper bound on the 

Rn,n-l(p) by only considering the first three terms in (3) as

«(«-l)-l j
^ n , n - \ ( p ) -  S 22 R^_faj)Rj j_i{aj)  +

i=0 i,7=0,l,-,«(«-l)-l
j ^ k
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because tbe fourth term is negative and dominate all the remaining ones. Next we derive 

the expressions for tbe first three terms in terms o fp\

First term is tbe sum of probabilities that each (n-l)-star is operational as

Second term is tbe union o f probabilities that two S„.\ \  are operational. There are two 

possibilities: one is tbe i'n.i’s pair with tbe empty intersection (Lemma 1); tbe other is tbe 

S'n-i’s pair that intersects into a S„.2 (Lemma 2). Tbe corresponding probabilities are

(2» -3 ) and 2
v2; v2.

Third term is tbe union o f tbe probabilities that three 5„.rs are operational. There are 

four different possibilities same as those in Fig. 5.2: tbe first is that tbe intersection 

between three S„.\'s is empty; tbe second is that three intersect into a tbe third 

is that only two out of three 5'„.i’s intersect into a S„.2', tbe last is that tbe middle Sr,.\ 

intersects with tbe other two respectively. Tbe corresponding probabilities under each

3(«-l)!-(«-2)!

and

scenario are given as (2n -  4) 'X
pi{n 1)! 2), 4

\ ^ ) J

(Lemma 4),
v2y v 2  y

(Lemma 4),

v3y v3  y
(Lemmas 2 and 3).

Adding tbe above three terms, we obtain tbe proof for Theorem 1. Q.E.D.

5.3 Approximation on i?„ „_i(/?) using tbe fixed partitioning
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The basic idea is to determine , the probability of having at least one

operational Sn-\ in a S„, given that p  is the reliability o f each node. It is well known that 

the star graph is a highly robust network containing increasingly numerous substars as the 

size of substars decreases. Therefore, we proceed to derive by a combinatorial

approach.

In this section, the (n-1 {-reliability is approximated by considering tbe probabilities of 

disjoint 5{,.i's under partitioning along tbe fixed dimensions. To do so, we first give a 

pessimistic lower bound on tbe Rn^n-\iP) considering tbe set of disjoint 5„.i’s

along one fixed dimension. However, this approximation does not take into account any 

disjoint Sn~\^ that may work correctly if  we considered tbe partitioning along fixed 

dimensions other than one. Thus, a tighter approximation on tbe ,j_i(jo{ is derived

later by ignoring tbe fact that Rn,n-\iPP) values along two or more dimensions are not 

independent.

There are total n { n - \ )  distinct S„.\^ in a S„. Partitioning a S„ along any dimension /, 

2 < i < n ,  will render a set o f n disjoint 5'».fs. Tbe labels of these s are obtained by

assigning an integer k, \ < k < n , X o  dimension i, and X  to all other dimensions. Clearly if  

all nodes in at least one o f these S„.\^ are working properly with tbe node reliability p, 

then R„^n-\ (P)-^ ■ Unfortunately, nodes in these distinct S„.i’s are not disjoint and

therefore we use a method to derive an approximate figure for tbe Rn,n-\iP) ■ doing

so, we first consider only tbe set of disjoint S„.\s by fixing one dimension (without tbe 

loss of tbe generality we select tbe dimension{. For a given S„.\, tbe reliability of this 

S„.\ is represented by tbe reliability of tbe (n-l{! nodes in it. For a given node reliability p.
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this can be However, we cannot simply multiply this reliability by n to get the

Rn,n-\iP) along the dimension. To adjust this figure, we need to subtract the

probabilities that two 5„-i’s along the dimension are working correctly, and then add 

hack the probabilities that three SnXs  along the dimension are working correctly, and 

so on according to PIE. This is equivalent to the scenario where the probability that each 

(n-l)-star is working correctly is disjoint to each other. Hence, a lower bound on the 

Rrt,n-\iP) by considering disjoint («-l)-stars partitioned along the n'* dimension only, is 

given as:

The approximation figure given in (4), however, does not take into account any 

disjoint iS'n-i’s that may work correctly if  we considered the partitioning along dimensions 

other than the n'^ one. To improve this result, we could consider two different 

approaches. One is to employ a second level o f PIE  by finding the probability o f at least 

one fault-free S„.\ along (i) one dimension, (ii) two dimensions, etc. This approach 

becomes quickly complicated as we consider several dimensions at a time due to the 

numerous ways that two or more S„.\'s can intersect, making it very difficult to 

enumerate the common patterns. The second approach which yields an approximation is 

by ignoring the fact that the (/>,/) values along two or more dimensions are not

independent. After this relaxation, applying the PIE  will give a more accurate 

approximation on the Rn,n~\(^P) as the following:

n -\

i=\ y
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5.4 Results and analysis 

In this seetion, we plot and compare the numerical results for the n-\^P)  star

graphs of different sizes with the simulation. The node reliability is assumed to be 

homogeneous and follows an exponential distribution with a eonstant failure rate À 

(failures/hour). A seareh algorithm was developed to find the (n-1 {-reliability in the star 

graph under a given number of faulty nodes. The number of nodes eonsidered to be faulty 

is determined using equations /  = n ![l-ex p (-/lt{ ]. The faults were generated randomly 

using a random permutation generator. The ranges for n and /  are chosen to be; 

5 < « < 1 0  and 0 < /  <100, respectively. For each scenario, the simulation was carried 

out for 10,000 iterations and the results are compared with the numerical results under the 

probability fault model and the fixed partitioning.

Fig. 5.3 depiets the Rn^n-\iP) using the results from the probability fault model in

(2{, the approximation in (4{ and (5{, and the simulation. The results from (4{ are far 

below those from (5{ and the simulation since only disjoint 5'„_i’s partitioned along the 

dimension are eonsidered. It is seen that the numerieal results under both the probability 

fault model and the approximation approaeh (5{ are getting overlapped as the node 

reliability decreases, and elose to the simulation results. This further verifies that the 

Rfj,n-\(P) under these two approaehes are similarly aecurate. The large gap between the

probability fault model and the simulation results, especially under the large value o f the 

node reliability, is due to the fact that the fourth term in (2{ is negative and large when 

the size o f the star graph increases.
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Figure 5.3. The («-l)-reliabilities of star graphs of sizes 5, 7, 8, and 10.
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Comparisons of the star networks and hypercubes are approximate because the 

number o f nodes involved in both networks does not match, and the partitioning of an n- 

dimensional network into («-l)-dimensional networks differs: a star graph S„ can be 

partitioned into n{n-\) distinct («-l)-stars in n-\ different ways, while a hypercube Q„ can 

be partitioned into 2n distinct («-l)-cubes in n different ways. However, when a similar 

number of nodes exist for the two networks, the Rn^„-\{p) can be used to compare the

reliability between the star graph and the hypercube. To be conservative, comparisons are 

generally made between hypercube with a slightly lesser number o f nodes than the 

respective star graphs; e.g., 32,768 nodes in a Q\s compared to 40,320 nodes in a S%.

The dropping rate o f the («-l)-network reliability shown in Fig. 5.4 is faster for the 

hypercube than that for the star graph, e.g., the dropping rate for a Qj (128 nodes) versus 

that for a S 5  (120 nodes). This is due to the fact that there are 20 distinct Ss.i's in a S 5 ,  

while 14 distinct g?-I’s in a Qj. Furthermore, this trend continues to be even more 

appreciable as the size o f the networks increases. For example, for a Ss, (40,320 nodes) 

versus a g i ;  (32,768 nodes), the (M-l)-network reliability in Q\s quickly drops to zero 

around 600 hours, while the («-l)-network reliability in S% is almost one at the instance 

t=600 hours and slowly decreases to zero until 2,000 hours. This is due the fact that there 

are 8 x (8 -1 ) = 56 distinct %_/s in a 8-dimensional star graph %, while 2x15 = 30 

distinct Qis-i’s in a 15-dimensional hypercube network Q\$,
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Figure 5.4. Approximate reliability comparisons between different size 

star graphs and hypercubes.

5.5 Conclusion

Two different methods, the probability fault model and the approximation approach, 

have been used to predict the substar reliability o f the star interconnection network. An 

upper bound on the («-l)-star reliability in a S„ using the probability fault model was 

derived, while an approximation on the («-l)-star reliability by considering only disjoint 

(M-l)-stars under the fixed partitioning was computed. A search algorithm was developed 

to find the («-l)-star reliability in the star graph for a given number of node faults. The 

numerical results under the probability fault model and the approximation approach were
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shown to be in good agreement especially for the low value of the node reliability, also 

consistent with and close to the simulation results. Conservative comparisons between 

similar size star graphs and hypercubes proved that the star graph is more tolerant than 

the hypercube in terms of the (n-l)- network reliability.

Derivation of the («-k)-star reliability can be represented by the reliability of (n-k)\ 

nodes in each («-k)-star under the probability fault model by the PIE, and also can be 

performed using the same approximation approach by considering disjoint (M-k)-stars 

along a fixed set of dimensions and applying the PIE. This task, however, is not simple 

(computationally) and becomes complicated as the size o f the star graph and the value of 

k  become large due to the numerous ways that («-kj-stars intersect. A more detailed 

analysis using these approaches is currently under development to obtain a reasonably 

accurate approximation on the actual («-k)-star reliability for k>\.

References

[1] R. Billinton and R. Allan (2"^ Edition), “Reliability evaluation of engineering

Plenum Press, 1992.

[2] Y. Chang and L. Bhuyan, “A combinatorial analysis of subcube reliability in 

hypercube," Transactions on Computers, vol.44, no.7, July 1995, pp.952-956.

[3] C. Das and J. Kim, “A unified task-based dependability model for hypercube 

computers, IEEE Transactions on Parallel and Distributed Systems, vol.3, no.3. May 

1992, pp.312-324.

[4] S. Latifi and S. Rai, “A robustness measure for hypercube networks,” in Proc. o f  the 

36th Midwest Symposium on Circuits and Systems, vol.l, Aug. 1993, pp.546- 549.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[5] S. Latifi, “A study of fault tolerance in star graph,” Information Processing Letters, 

vol. 102, no.5, May 2007, pp. 196-200.

[6] S. Soh, S. Rai, and J.L. Trahan, “Improved lower bounds on the reliability of 

hypercube architectures,” IEEE Transactions on Parallel and Distributed Systems, 

vol.5, no.4, April 1994, pp.364-378.

[7] X.L. Wu, S. Latifi, and Y. Jiang, “A combinatorial analysis o f distance reliability in 

star network,” in Proc. o f  the 2P ‘ IEEE International Parallel & Distributed 

Processing Symposium IPDPS, March 2007, pp. 1-6.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

CONCLUSION AND DISCUSSION 

In this dissertation, three different reliability measures have been proposed to 

investigate the robustness o f the star network under three different failure (node, link, and 

combined node/link) models, respectively. The first is the distance reliability. The second 

is the degradation of the container having at least one operational optimal path between 

two given nodes in the star graph. The most practical one is the third one: substar 

reliability.

The distance reliability, probability of having an operational path with the optimal 

distance between two given nodes u and I, poses stringent requirements on the connection 

o f two arbitrary nodes in the star graph; i.e. not only do two nodes have to be connected, 

but the distance between them must be the shortest. The combinatorial method was used 

to determine the distance reliability when the number of faults is bounded especially for 

the node permutation label having a single cycle representation. For each o f the failure 

models, two different cases depending on the relative positions of the source & 

destination, were analyzed to compute DR. Conservative DR comparisons with the 

hypercube was carried out when the shortest distance between two given nodes is the 

same for both the star graph and the hypercube. Even the DR in the hypercube is higher 

than that in the star graph (for a single cycle representation), this study gave us an
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understanding of DR in the star graph. And the DR in the star graph showed an 

appreciable improvement with the increase the shortest distance. The DR in the star graph 

was expected to be closer to that of the hypercube when more than one cycles 

representation and the numerous ways of constructing disjoint paths were considered. 

The communication between a given node and its basic antipode was considered as a 

special case o f DR to further demonstrate the fault tolerance o f star networks. Lower 

bounds on the antipode reliability were derived and compared with the antipode 

reliahility in the hypercube. Comparisons results showed that the antipode reliability in 

the star graph is higher than that in the hypercube due to the fact that there is more than 

one antipode for a given node when the size of the star graph is greater than 3 while a 

given node in hypercube has a single antipode.

The degradation of a container having at least one operational optimal path with the 

shortest distance between two given nodes in a star graph was examined to measure the 

system effectiveness in the presence of failures under three different failure models, 

respectively. For each failure model, two different cases depending on the symbol in the 

first position being “ 1” or not were considered to assess the star network. The states of 

the degradation of a container were modeled by a Markov chain. The values o f MTTF for 

each transition state were computed and compared with the similar size containers in the 

hypercube. Comparisons showed that the star graph is more robust than the hypercube.

Two different methods, the probability fault model and the approximation approach, 

were used to derive the substar reliability. An upper bound on the («-l)-star reliability in 

an «-dimensional star network under the probability fault model were derived by only 

considering the first three terms since the fourth one is negative and dominate the
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remaining ones, while an approximation on the («-l)-star reliability by considering only 

disjoint («-l)-stars under the partitioning along the fixed dimensions was computed. A 

search algorithm was developed to find the («-l)-star reliability in the star graph for a 

given number o f node faults, where faults were generated by a random permutation 

generator. For each scenario, the simulation was carried out for 10,000 iterations. The 

upper bound under the probability fault model and the approximation results by the 

partitioning along the fixed dimensions, were shown to be in good agreement espeeially 

for the low value of the node reliability, also consistent with and close to the simulation 

results. Conservative comparisons between similar size star graphs and hypercubes 

proved that the star graph is more tolerant than the hypercube in terms of the («-1)- 

network reliability.

Future research work includes:

• The determination o f the distance reliability between the source node with more 

than one cycle representation and the destination. Computer modeling to find out 

the distance reliability and comparisons with the hypercube are necessary to 

further investigate the robustness o f the star graph.

• The («-l)-star reliability when considering the link failure only or combined 

node/link failure is going to be determined in the future. Simulation results are 

necessary to further verify the numerical results.

• A more detailed analysis using the probability fault model or the fixed 

partitioning is appreciated to obtain a reasonably accurate approximation on the 

actual («-k)-star reliability for k>\. Simulation to find the (n-k)-star reliability is 

also demanded to verify the numerical derivations.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX

MATLAB SIMULATION CODE 

function [R sub sim] = simulation R (n, lamda, t)

N = factorial(n); % generate n! nodes

No n 1 = n*(n-l); sum = 0; R =0;

max fault = round( N* (l-exp(-lamda*t)) );

% Number o f fault nodes related with the node reliability 

iterations = 10000;

% run 10,000 times to find the no. of (n-l)-stars remaining operational 

f  = zeros(max_fault,n);% initialization of the fault matrix 

if  (max fault < n )

R_sub_sim = 1; % if no. o f faults is less than n, reliability is T'

else

for k = 1:1 : iterations

for i=l:m ax fault

fault = randperm(n); % randomly generate a node fault 

f(i,:) = fault(l,:);

% add each node fault to the faults matrix [dimension 

%(max_fault, n) ]
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end

% node faults matrix 

f  = sort(f,l);

% sort the elements in each columns (2 to n) in ascending order 

count = 0;

% used to record the no. o f different symbols in every column 

%from 2 to n .

% This number is equal to the no. of (n-l)-star being destroyed, 

for j = 2 :l;n

for i = 2.T m a x fa u lt

i f ( f ( i j ) > f ( i - l j ) )

count = count + 1 ;

end

end

count = count +1; 

end % end of counting of the no. o f distinct Sn-1 being destroyed 

if  (count >= No_n_l)

R = 0;

% if count is greater than total no. o f Sn-ls, then R=0

else

R = l ;

end

sum = sum + R; % record how many times that R=1
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end % end of the iterations 

sum;

R_sub_sim = sum/iterations; 

end % end of if  statement

end
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