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ABSTRACT

Incorporating Spatial Characteristics in Travel Demand Models

by

Valerian Kwigizile

Dr. Hualiang (Harry) Teng, Examination Committee Chair 
Assistant Professor 

University of Nevada, Las Vegas

The goal of this study was to address one of the major weaknesses of the ubiquitous 

four-step procedure for travel demand modeling: omission of spatial interactions between 

the variables. While contiguity of the analysis zones is eommonly used to define spatial 

interaction of the variables in spatial analysis, it might not eapture the interactions of 

travel demand variables. In this study, the efficacies of four alternative methods for 

defining spatial relationships: contiguity, separation, a combination of contiguity and 

separation, and economic linkages (accessibility), were evaluated. The home-based-work 

(HBW) spatial models and non-spatial models for trip attraction, and trip production were 

developed. For the destination choice, the spatial models were developed by using 

separation and aeeessibility alternatives for defining spatial relationship. Comparison of 

the trip attraction models indicated that the model estimated using the separation spatial 

relationship had the best fit. Furthermore, comparison of the best spatial model and the 

non spatial model indicated that the spatial model outperforms the non spatial model by 

increasing the prediction accuracy by 14%. For the trip production model, the results

111
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indicated that the spatial variable is unnecessary. For destination choice, the spatial model 

developed using separation spatial relationship was found to be the best based on 

statistical tests. To compare the spatial model and the non-spatial model, the foreeasted 

alternative destination shares were used. The results indicated that the difference between 

the forecasted alternative shares by using spatial and non-spatial models is small when 

there is a small percentage increase in casino/hotel and retail jobs. In order to use the 

developed destination choice models for long-term forecasting, additional variables such 

as housing location should be included. Also, since the design of the analysis zones used 

in this study may not be optimal, an attempt to design new analysis zones through a 

careful aggregation process in which homogeneity is carefully eontrolled, is 

recommended.

IV
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CHAPTER 1

BACKGROUND AND RESEARCH MOTIVATION

1.1. Background

Travel demand forecasting models are used by Metropolitan Planning Organizations 

(MPO) for developing design traffic for preliminary engineering and final design of 

highway improvements. They are also used for various planning studies such as air 

quality conformity analysis, major investment studies, congestion management system 

studies, and long range plan alternatives analysis. Furthermore, the models are used to 

assess the impacts of socioeconomics, demographics, land-use, and transportation system 

changes on the performance of the transportation system.

Travel demand analysis and forecasting have developed rapidly over the past three 

decades. The 1950’s rapid increase in car use resulted in major investments in new road 

infrastructures. This increase called for developing aggregate trip-based models to predict 

traffic flows between different zones. The developed models followed a four-step 

procedure: trip generation, trip distribution, mode choice and choice of the route. Weiner 

(1999) provides the detailed historical overview of the travel demand analysis and the 

urban transportation planning in the United States. In the 1970’s, the focus shifted to 

regional planning, which include the travel needs of individual persons. As a result, 

disaggregate trip-based travel demand models, also known as discrete ehoice models,
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were developed. For example, Ruiter and Ben-Akiva (1978) developed the disaggregate 

travel demand models for the San Francisco Bay area. However, similar to aggregate 

models, disaggregate trip-based models analyze each trip independent of other trips made 

by the same individual. The major weakness of both the aggregate and disaggregate trip- 

based models is their focus on individual trips, ignoring the spatial and temporal 

relationship between all trips and activities completed by an individual as well as other 

individuals. This implies that the models may produce poor forecasts in the cases where it 

is important to measure how individual trips relate to each other, both spatially and 

temporally.

To improve travel demand forecasting accuracy of the widely used traditional four- 

step procedure, there have been several attempts to identify and address its weaknesses. 

Together with such efforts, new rule-based models such as activity-based travel demand 

models and Bayesian networks have been under investigation. Bowman (2000) 

summarizes the most important elements of activity-based travel theory in two basic 

ideas. First, the demand for travel is derived from the demand for activities. Secondly, 

humans face temporal-spatial constraints, functioning in different locations at different 

points in time by experiencing the time and cost of movement between locations. A 

linkage exists between activities, locations, times and individuals (McNally, 1996). While 

new modeling approaches have been attempted, most planning agencies are still using the 

traditional four-step procedure models for travel demand forecasting because of 

institutional requirements and financial limitations. Therefore, it remains critical and 

imperative to address the weaknesses of the four-step procedure model with goals of 

improving its forecasting accuracy. One of the weaknesses of the procedure is its
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omission of the possible spatial autocorrelation present in travel demand variables. This 

is the main focus of this research.

The four-step procedure model consists of four steps: trip generation, trip distribution, 

mode choice and finally trip assignment. The purpose of trip generation is to determine 

the number of vehicle- or person-trips to and fi*om the Traffic Analysis Zones (TAZ) 

under consideration. Trip generation models consist of two types of models: trip- 

production models and trip attraction models. Trip production is defined as the home end 

of home-based (HB) trips or as the origin of a non-home-based (NHB) trip while trip 

attraction is defined as the non-home end of a HB trip or the destination of a NHB trip 

(Ortùzar and Willumsen, 2001). The models are usually estimated for different trip 

purposes such as home-based-work (HBW), home-based-other (HBO) and non-home- 

based (NHB). The common factors considered for trip generation models are available 

automobiles per household, income, household size, number of job opportunities 

available and residential density. The multiple regression analysis is one of the 

commonly used methods for modeling trip generation. It can be used with both aggregate 

(zonal) and disaggregate (household and personal) data to estimate trips generated. Cross­

classification (category analysis) is another common approach for modeling trip 

generation.

Trip distribution is the second step in which trip productions and trip attractions for 

each zonal pair are linked. Destinations for each trip are determined in order to produce 

origin-destination (O-D) tables. Therefore, trip distribution is essentially about 

destination choice fi*om which a trip matrix (or trip table) is generated for each trip 

purpose (McNally, 2000). Gravity models are eommonly used in trip distribution and are
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functions of activity system attributes (indirectly through the generated productions and 

attractions) and network attributes (typically, inter-zonal travel costs). Due to complexity 

of interaction between origin and destination, the distribution models have generally been 

reinterpreted in terms of discrete choice theory; and statistically correct estimation 

methods are generally used (Hensher and Button, 2000).

Mode choice is the third step used to split the total zone-to-zone trips using each 

available mode between each zone pair. Very often, the mode choice models are based on 

logit formulation and a simple multinomial logit technique is one of the methods used for 

estimation. The last step is traffic assignment in which the distribution of traffic in a 

network considering a demand between locations and the transport supply of the network 

is performed. The person-trips are converted to vehiele-trips by applying occupancy rates 

prior to network assignment. Generally, the assignment methods are looking for a way to 

model the distribution of traffic in a network according to a set of constraints, notably 

related to transport capacity, time and cost (Rodrigue, et al., 2006). Figure 1.1 is a 

schematic presentation of the travel demand four-step procedure.

1.2. Research Motivation

Modeling of trip generation and destination choice is based on observations made at 

different locations. For trip generation models, the zonal trip totals are used as response 

variables, while for destination choice models, the zones are used as origins and 

alternative destinations. Since the zones are geographical entities, their spatial 

relationship (relative locations) require consideration in the models. Specifically, this
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research is inspired by the theory that zonal trip generation totals are spatially distributed 

and hence affect each other.

Tnn Disoibuuon

M ode Choice

Figure 1.1. Sequence of the four-step procedure

Most linear regression trip generation models of the traditional four-step procedure do 

not ineorporate exclusive variables to aeeount for spatial autocorrelation possibly present 

in travel demand observations. If the observations of the variables such as zonal trip 

totals are spatially eorrelated, they eonstrain the possible analyses which can be applied 

to those observations and influence the final conclusions that can be reached. A 

fundamental geographieal concept is that nearby observations often share similarities 

than observations which are far apart. This leads to a concept of presence of spatial 

dependence in zonal trip total observations. It simply suggests that characteristics of 

proximal locations (zones) might be spatially correlated, positively or negatively.
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Significant positive spatial correlation means that similar observations are clustered 

while significant negative spatial correlation indieates that neighboring observations are 

more dissimilar. Spatial correlation means that whatever is contributing to trip generation 

totals in one zone also causes similar observation in nearby zones. For example, trip 

generation totals in nearby zones might be similar due to factors such as socioeconomic 

status and type of land-use. Spatial dependence in zonal trip generation total observations 

leads to spatial autocorrelation problem in statisties, similar to temporal autocorrelation in 

time series data. Spatial autocorrelation violates standard statistical assumptions of 

independence among the observations. This calls for investigating ways of incorporating 

the effects of spatial autocorrelation possibly present in travel demand variables. The 

fundamental question is how to quantify spatial relationship of the observations.

Spatial location of travel demand variables ean be considered in step one of the four- 

step procedure, which is trip generation, and in step two, whieh is trip distribution, or 

destination choice. For step one, consider an urban area divided in ten zones as shown in 

Figure 1.2. It shows clearly that zonal aggregated trip totals are observations taken at 

different geographieal locations.

There are two possible regression analysis approaches for estimating the impact of 

land-use, socioeeonomics and demographic variables on the zonal trip totals. In the first 

approach, which is commonly used, planners estimate linear models without explicitly 

considering spatial location of the observations which might be inducing spatial 

dependence in the observations. However, if there is spatial dependence, the models 

estimated with this approaeh are prone to poorly estimating the observed values in some 

locations.
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Figure 1.2. Example of zoned urban area

In the presence of spatial autocorrelation, the second approach, which is using spatial 

models, is necessary in order to account for the variation between observed quantities at 

different locations (Haining, 2003). Spatial dependence in a collection of sample data 

observations such as number of trips per zone refers to the fact that one observation 

associated with a specific location is spatially related to another observation at another 

location. Information loss occurs when two spatially dependent observations are made. 

Also, spatial dependence of the observations leads into wrong conclusions since it makes 

the test statistics invalid.

Consider a linear model of zonal trips, Yi, and explanatory variable, X,, which can be 

written as:

( 1.1)
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in which s. is the random error. The test statistic for the hypothesis testing of the 

coefficient, P , can be given as;

 ̂~ I— ) (1-2)

in which P  is the estimated coefficient, and Var(P) is the variance of the estimated 

coefficient. Standard statistical textbooks (for example Pindyck and Rubinfeld (1998), 

Gujarati (2003) and Greene (1997)) have shown that the variance of the estimated 

coefficient can be computed as follows:

Var(P) = E \c iS ,y  + )+ X + ... + j, (1.3)

in which c, = ^ . Under the assumption that the observations are not

correlated, that is e {^.£j )= 0 for ^  , the variance ean be estimated as:

Var( P ) = c,<T ,̂ (1.4)

in which cr  ̂ = var(s. ) .  However, if  spatial correlation exists in the observations, 

e {si£j ) ^  0 and the variance can be estimated as follows:

Var( P ) = c,.cr̂  + 2^c.Cy.Cov(£^.,£j, . (1.5)

It can be clearly seen from Equation (1.5) that if there is positive spatial correlation 

and the ordinary estimation method which uses Equation (1.4) is applied, the variance 

will be underestimated. The effect of this underestimation is the overestimation of the test 

statistic in Equation (1.2). With spatial dependence in the observations, the risk of 

committing a type I error is increased, meaning that the probability of rejecting the null
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hypothesis when it is true is greater than the nominal value selected for the hypothesis 

test.

For the destination choice models, the choice set is based on Traffic Analysis Zones 

(TAZ). Since the TAZs are geographical units, their spatial relationships may have an 

impact on individuals’ destination choices. It is equally important to consider the 

individuals’ socioeconomics, demographics and spatial relationship of origin and 

destination to more accurately study their destination choice decision making. Taste 

variation of destination zones may result not only from individuals’ and land-use 

characteristics, but also spatial relationships of the origin and destination. The spatial 

relationship may further depend on zonal characteristics such as shape and size. 

Therefore, ways to quantify spatial dependence in discrete choice models of destination 

ehoice requires exploration.

1.3. Problem Statement

The accuracy of the forecasts whieh are produced hy a transport demand model 

depends both upon the accuracy with which its inputs (or “planning variables”) can be 

forecast and on the analyst’s knowledge of how the coefficients and parameters of the 

model vary through time and space. Time variation can be captured by developing time 

series models. Although spatial relationships of the. analysis zones might have an effect 

on trip generation and destination choice decisions, they are not investigated explicitly in 

most of the existing four-step models. In a recent study, Gamas et al. (2005) estimated 

trip generation in Mexico City using spatial effects and urban densities. The coefficients 

for work, shopping and school trip generation models were estimated. To correct the bias
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in the coefficients estimated, spatial regression was used instead of the traditional 

ordinary least squares (OLS) estimation method. The models were run for both trip 

productions and trip attractions for all trip types. The spatial relationship of the 

observations was defined by using a contiguity matrix in which a value of one was 

assigned to neighboring zones and zero otherwise. Most models showed significant 

spatial autocorrelation, indicating that if they had not been specified accordingly, the 

coefficients would have been biased.

Using contiguity of the zones as the major criterion for defining spatial relationship of 

the observations may not explain spatial relationship correctly. Different definitions of 

spatial relationship may produce different model results. For example, the shape and size 

of the zones may have an impact on their spatial relationship when the two zones are 

barely contiguous but extend to opposite directions. Difference in the size of the zones 

may have a similar effect of reducing the spatial relationship of the zones. Such situations 

may invalidate the assumption that the zones are spatially neighbors. Figure 1.2 illustrates 

this by showing the possible effect of a combination of the sizes and shapes of the zones 

in defining their spatial relationships. For example, if using binary contiguity criterion 

only to define the spatial relationship, zones 1 and 8 would be deemed spatially unrelated 

while zones 1 and 6 would be deemed spatially related. However, zone 8 may be actually 

more spatially close to zone 1 than zone 6 is close to zone 1. Similarly, if the analysis 

zones are separated by man-made or natural features such as a freeway or a river, it is 

possible to have unrelated zones defined as spatially related.

Also, home-based work trips are normally viewed as trips involving long-term 

decisions such as job location and residential location. Since most job locations are fixed.
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workers have no alternative choices and therefore do not really make a destination choice 

for such trips. Some past studies that investigated the effect of spatial location in 

destination choice models concluded that work trips are fixed in space and therefore it is 

not possible to apply probabilistic models to explain this type of activity (e.g. Hamadou, 

et a l, 2004). However, this assumption may not be applicable to all urban areas, 

especially those in which numerous comparable job opportunities exist and are 

distributed over the area. Spatial relationship of the origin and the work destination may 

have an impact in the long-term decision of where to work.

The Las Vegas valley is a unique urban area in which the major employment industry 

(hotel/casino) provides numerous comparable job opportunities around the area. Based on 

the Las Vegas land-use data, hotel and casino employment constitute 30% of all 

employment opportunities available in the valley. Apart fi-om the resort corridor, 

popularly known as “the strip”, several comparable hotel/casino employment 

opportunities are available and distributed in other areas around the valley. Consequently, 

more than 50% of jobs are available from a combination of hotel/casino and retail 

employment opportunities. The retail job opportunities are also spatially distributed over 

the valley. Therefore, a high percentage of workers in the valley have wide choices of 

comparable employment opportunities at different locations. Therefore, spatial location 

of the job relative to the residence of the worker may be an important factor in estimating 

long-term trip generation as well as destination choice models for the valley. Alternative 

methods of incorporating the spatial relationship of origin and destination for urban areas 

with setting like Las Vegas valley require examination. Most models developed assume 

that the work location is fixed and therefore the choices for residence are made. These

11
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models are called residential choice models. Conversely, the assumption in this study is 

that individuals with fixed residences face a wide set of choices for working locations. 

Therefore, commuters make long-term travel and destination choice decisions by 

considering their residential location relative to their potential work destinations(s).

1.4. Research Objectives

The general objective of this research was to investigate the effect of spatial 

relationship of the observations for trip generation and destination choice models of the 

four-step procedure. More specifically, the objectives can be grouped into four 

categories:

• To test the presence of spatial autocorrelation in travel demand variables 

for trip generation and destination choice models.

• To develop a methodology for defining a spatial variable necessary to 

account for spatial autocorrelation and ways to incorporate it in the spatial 

model.

• To evaluate the efficiency of alternative methods for defining spatial 

relationship of the observations in trip generation and destination ehoice 

models.

• To compare the estimated spatial models for trip generation and 

destination choice with corresponding non-spatial models.

To fulfill the objectives, the home-based-work trips as reported in the 1996 Las Vegas 

Household Travel Survey conducted by the Regional Transportation Commission of 

Southern Nevada (RTC) were used to investigate the effect of spatial location of travel

12
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demand variables in long-term (work trip) trip-making and destination choice decisions. 

In the first part, trip generation linear regression models were developed by explicitly 

incorporating spatial relationship of observations in order to investigate its effect on the 

number of trips generated. Alternative approaches for quantifying the spatial relationship 

were examined. In the second part, the individual demographics and socioeeonomics, as 

well as the characteristics and spatial relationship of the origins and destinations were 

incorporated in the discrete choice models to investigate their effects on destination 

choice decision making process. Alternative approaches for quantifying the spatial 

relationship were also examined. Results of the spatial models were compared to those 

from the non-spatial models.

1.5. Significance of the Research

Most United States metropolitan planning organizations (MPO), including the 

Regional Transportation Commission of Southern Nevada (RTC), use the four-step 

procedure model for forecasting future traffic necessary for preliminary engineering and 

roadway design of highway improvements. The forecasts are also used for air conformity 

analysis, major investment studies, congestion management system studies, and long 

range plan alternatives. The accuracy of the forecasts produced by these models is of 

paramount importance to planners for the benefit of roadway network users. 

Understanding the effect of spatial relationship of the observations is required to improve 

the forecasting accuracy of the models. More importantly, identification of the most 

effective method for quantifying spatial relationship is needed. The results of this study 

can be used to explain the effect of spatial relationship of observations in explaining
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variability. In addition, the results of the study can establish basis for similar studies in 

urban areas with numerous jobs distributed over the area.

The developed spatial trip generation and destination choice models are expected to 

be used by transportation planners to forecast future travel demand more accurately. The 

new models can be integrated in the existing modeling platforms such as TransCAD used 

by the Regional Transportation Commission of Southern Nevada (RTC) to replace the 

existing non-spatial models. TransCAD is a package manufactured by Caliper 

Corporation that fully integrates Geographic Information Systems (GIS) with planning 

modeling and logistics application.

1.6. Scope and Limitations of the Research

Although the 1996 Las Vegas Household Travel Survey data contains different trip 

types, this study focused on home-based work (HBW) trips to fulfill the research goals. 

Aggregated models for trip attraction and trip production were used due to their 

simplicity in estimation as well as interpretation of the results. In addition, the 

disaggregate destination choice model was used to investigate the effect of spatial 

location on individuals’ work location decision making. It should also be noted that 

spatial models use zonal neighborhood information to investigate the effect of spatial 

autocorrelation. This information is subject to change due to administrative and planning 

requirements. This may affect forecasting capability of such models since the weight 

matrix defining neighborhood of the zones was based on the zonal structure. The matrix 

used for forecasting would be misleading if the urban area is restructured by redefining 

the boundaries of the zones. The districts created by the Regional Transportation
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Commission of Southern Nevada (RTC) by aggregating homogeneous Traffic Analysis 

Zones (TAZs) were used in this study. The districts may not be the optimal zones 

designed to eliminate the modifiable areal unit problem (MAUP). In order to create 

structure-insensitive spatial variables, it is important to have as much control over the 

configuration of the areal units as possible.

1.7. Dissertation Outline

Chapter two of this dissertation provides a review of travel demand models. The 

modeling approaches for trip generation and destination choice are presented together 

with their strengths and weaknesses. Past modeling efforts attempting to address the 

weaknesses are also summarized. Chapter three details the methodology followed in this 

study. Specifications of the spatial trip generation and destination choice models are 

given. The alternative methods for quantifying spatial relationship of the observations are 

also presented. Data collection for this study is presented, followed by selection of the 

variables for modeling. The tests for spatial autocorrelation in the selected variables are 

described followed by model estimation methods. A detailed method for interpreting the 

results is given followed by a presentation of methods used for comparing different 

models. The chapter is concluded by outlining the methodology for creating Origin- 

Destination (0-D) matrices using the results of the multinomial logit model of destination 

choice. Chapter four details the results obtained by implementing the methodologies 

explained in Chapter three. Chapter five provides the conclusions and recommendations 

for future work.
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CHAPTER 2

REVIEW OF TRAVEL DEMAND MODELING

2.1. Overview of Travel Demand Modeling

Typically, models developed in the travel demand modeling system integrate insights 

from the travelers’ psychology with neo-classical economic theory. They relate socio­

economic travel demand attributes and level of service or supply variables. 

Microeconomic demand theory, which is concerned with the interaction between buyers 

(in this case travelers) and suppliers (in this case the set of all attributes of transportation 

that have a bearing on the quantity and nature of transport activities that actually take 

place), underlies travel demand modeling. However, direct application of the 

microeconomic demand theory to transportation faces methodological difficulties such as 

specification of appropriate demand models and experimentation needed to validate these 

models. Individual travel behavior is subject to many more uncertainties than other 

consumption activities. Factors that affect the demand for and the supply of 

transportation are numerous and mutually dependent. The demand for travel is derived 

and takes place over space, while transport supply is a service and not a good. Therefore, 

in modeling travel demand, the socio-economic travel demand attributes and level of 

service or supply variables are used simultaneously.
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Demand for travel includes many choices made by individuals for trip making such as 

how many trips to make during a given period of time, what destination to choose, what 

mode of travel to use, and which route to take for the trip. Modeling requires a clear 

understanding of whether these choices are made independently of others, and if  they are 

dependent, whether they are made simultaneously or sequentially in some order. It is not 

possible to include all variables that can possibly influence the individual choices, and 

thus necessitate a model that can incorporate the stochastic nature of choice probabilities 

to take into account the missing variables. Stochastic choice probabilities can be 

measured at an aggregate market level, indicating for each alternative the probability that 

it is the choice of an individual chosen at random from the population when the sampling 

is defined over a given period of time during which it is postulated that a choice will be 

made (Kanafani 1983). At the disaggregate level, the choice probability of an alternative 

defines the number of times a choice is made if the individual faces the same choice 

environment.

2.2. Travel Demand Modeling Approaches

There are two basic approaches for modeling travel demand: the structured 

(sequenced) choice model approach, and the direct approach. Both of these approaches 

can be applied at the individual level (disaggregate) and the market level (aggregate). In 

the aggregate level, data items represent an average over a group of travelers while at 

disaggregate levels, the data is collected specifically for a single individual. For 

aggregation, the area in consideration is initially divided into zones, popularly known as 

Traffic Analysis Zones (TAZ).

17
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In the sequeneed choice model approach, the choice processes are modeled explicitly 

in order to forecast the number of trips made by an individual during a given period of 

time for specific purpose, from origin to destination, by specific mode, route, and at a 

specific time of the day. The typical sequence used is estimating the number of trips 

generated {trip generation), distributing the trips generated among the available 

destinations {trip distribution), distributing the trips among the mode alternatives 

available {mode choice), and finally distributing all trips among the available routes 

{assignment). This method is commonly referred to as the four-step procedure or Urban 

Transportation Planning System (UTPS).

In the direct approach, the concepts of microeconomic demand modeling are applied 

to derive the number of trips demanded by individuals as a function of demand and 

supply characteristics in a single function. Between the sequenced and direct approaches, 

the first two steps of the traditional four-step procedure is the focus of this research. The 

following sections detail modeling approaches for step one (trip generation) and two (trip 

distribution or destination choice). Previous efforts for addressing weaknesses of the 

modeling approaches for the two steps are also documented.

2.3. Classification of Trips

Ortüzar and Willumsen (2001) categorize trips into Home-based (HB) and Non­

home-based (NHB) trips. The home-based (HB) trip is the one where the home of the trip 

maker is either the origin or the destination of the trip, while, the non-home-based trip is 

the one where neither end nor origin of the trip is the home of a traveler. Trip production 

is defined as the home end of an HB trip or as the origin of a NHB trip, while trip
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attraction is defined as the non-home end of an HB trip or the destination of a NHB. 

Figure 2.1 which is reproduced from Ortüzar and Willumsen (2001) shows the difference 

between trip attraction and trip production as related to origin and destinations.

.dracîiOü
Home

?10dMCl!Ol

Work

ProdiKHoa
Work

Production

Figure 2.1. HB and NHB trip attraction and trip production

Furthermore, trips can be classified in three major ways: purpose, time of the day and 

person-type. Trips by purpose are further divided into two categories, which are 

compulsory (or mandatory) trips and discretionary (or optional) trips. Compulsory trips 

involve work and trips to school or college, while discretionary trips involve shopping, 

social and recreational activities and all trips not associated with work or school. For 

analytical purposes, non-home-based (NHB) trips are normally not separated because 

they only amount to 15 -  20% of all trips. Classification of trips by time of the day 

proportions trips according to peak and off-peak period trips. The proportion of journeys 

by different purposes usually varies greatly with time of the day. Classification of trips by 

person-type views individual travel behavior as heavily dependent on the socioeconomic 

attributes of individuals. Three major categories of trip classification by person-type are:

■ by income level.
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■ car ownership, and

■ household size and structure.

2.4. Models for Analysis of Trip Generation

Trip generation is the first and basic step in the conventional four-step procedure for 

travel demand forecasting. It is the step in which models forecasting the number of trips 

resulting Ifom land-use of a specific area (zone) as well as demographic and socio­

economic characteristics of the travelers are developed. Specifically, it predicts the 

number of trips originating or destined for a particular area (zone). Analysis in the main 

trip generation is focused on residences and is considered a function of the social and 

economic attributes of a household. Additionally, trip generation is particular to land-uses 

of different zones. The zones also comprise destinations of trips, thus called trip 

attractors. The analysis of trip attraction focuses mainly on non-residential land-uses.

The trip generation model estimates the number of motorized person-trips to and from 

each zone in the area of study. By looking at the number of trips aggregated over all 

modes, destinations, and routes, the implied assumption is these numbers represent an 

equilibrium between the demand for transportation and the supply conditions prevailing 

in the transportation system at the time observations are made (Kanafani 1983). 

Forecasting trip patterns using trip generation models imply that either the demand for 

transport is inelastic with respect to supply conditions, or the supply conditions will not 

change significantly between the time of analysis and the time of forecast. Supply 

conditions refer to all attributes of transportation, such as travel time, operating costs and
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delays in transit, that have an influence on the quantity and nature of transport activities 

that actually take place.

Trip production analysis predicts all trips generated or produced at an inhabited or 

activity location, often aggregated over a group of households or individuals in a zone. 

Key factors for trip productions include car availability (ownership), income, household 

structure, family size, residential density, accessibility, and value of land. Trip attraction 

analysis predicts all trips attracted to specific areas (zones) where the trip purpose can be 

fulfilled. Key factors affecting trip attractions include zonal employment in different 

sectors and measure of accessibility.

There are two major approaches for modeling trip generation: regression analysis and 

cross-classification (or category) analysis. Regression analysis involves setting up 

models, usually linear, that relate the trips generated to relevant explanatory variables 

such as socioeconomic characteristics of trip makers. The major drawback of linear 

regression analysis is the possibility of non-linearities among the independent variables. 

However, this can be overcome by transforming the variables into a suitable form. In 

cross-classification, all households are grouped into homogeneous groups on the basis of 

socioeconomic characteristics. The number of trip productions per household for a given 

trip purpose is estimated as a function of household attributes. One of the advantages of 

cross-classification is that there is no need for an assumption of linearity between 

independent and dependent variables. However, the approach requires detailed data to 

construct and predict trip generations.
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2.4.1. Multiple Regression Models for Trip Generation

In regression models, the dependent variable is assumed to be a function of a series of 

independent variables. The multiple regression model is of the form shown in Equation 

(2 .1).

1) = A  + Pl^li + P2^2i + '"  + ( 2 . 1 )  

where

Pq , ,..., are regression coefficients,

Xu,X2 i,...,x^. are k independent (explanatory) variables 

Yi is the dependent (response) variable 

e. is the stochastic error term 

i=  1,2, ..., andN\ indexesN  sample observations.

The parameters of Equation (2.1) can be estimated by two methods: (1) Ordinary 

Least Squares (OLS) and (2) Maximum Likelihood (ML). The method of OLS is used 

often, primarily because it is intuitively appealing and mathematically much simpler than 

the method of Maximum Likelihood. Gujarati (2003) mentions OLS assumptions made 

regarding Equation (2.1) as follows:

i. The regression model is linear in parameters,

ii. Explanatory variables (%J are non-random,

iii. Zero mean value of the stochastic error, s ., that is, E{s. / x, ) = 0,

iv. Homoskedasticity or equal variance of stochastic error term, g., that is, 

E{sf  / X; ) = var(g. / x,. ) = cr^,

V. No autocorrelation between the error terms, that is, cov(g., S j )  = 0 ,
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vi. Zero eovariance between error term s, and explanatory variable x, ; that is, 

cov(g,,x,) = % x ,.)  = 0,

vii. The number of observation, N, is greater than the number of parameters to be 

estimated,

viii. The x,. values in a given sample are not the same, 

ix. The regression model is correctly specified, and

X. There is no perfect multicolinearity among the explanatory variables.

Regression analysis is concerned with estimating the parameters of Equation (2.1). 

Consider a regression model with three variables: two independent variables and one 

dependent variable as shown in Equation (2.2).

= A  + Pi^ii + '  (2.2)

The coefficient Pi measures the change in dependent variable Y resulting Ifom unit 

change in x/ given that the variable xj is held constant, while the coefficient P2  measures 

the change in Y associated with a unit change in x  ̂ given that the variable xi is held 

constant. The objective of least-square estimation is to find the values of Pg,Pi and

P2  which minimize the sum of the squared deviations of the observations from the fitted 

line. Mathematically, the least square criterion can be represented as:

Minimize (2.3)
i= l

where

Assuming that there are more observations than the parameters to be estimated, three 

parameters in this case, and that the underlying equations are independent, standard 

textbooks (Pindyck and Rubinfeld 1998, Gujarati 2003, Greene 1997) show that
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Po — Y PiXj + P2 X2  (2.4)

where

X = and

Further computations and simplifications indicate that

A (Z  XZ 4  ) -  (E  XE ̂ 7,̂ 2, ) _

“  <Y14ÏZ4)-(ZvJ ‘ *

A _ (E ^ 2 'T iX E 4 )-(E :^ u T ,X E % J
(E 4 %E4 ) - ( Z v J '  ' '

In order to statistieally determine if the dependent variable is at all related to the 

explanatory variable, a “zero” null hypothesis test is conducted. If the errors are normally 

distributed, a t-ratio is computed as follows:

where se(P )  the estimated standard error of estimator.

To measure the proportion of variation in the dependent variable that is explained by 

the multiple regression equation, the multiple coefficient of determination, R ,̂ is 

determined as follows:

J ‘ - " ' Y i '  (2.8)
E )''

The value of R  ̂ lies between 0 and 1. The fit of the model is said to be better as the 

value is closer to 1. It should be noted that increasing the number of independent 

variables in a model can never decrease the eoeffieient of determination, but will likely 

increase it. Therefore, when comparing the goodness-of-fit of two models with the same
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dependent variable, an adjusted coefficient of determination should be used. This takes 

into account the number of independent variables present in the model. It can be 

computed as follows

' N - f

where R^ is the adjusted value.

(2.9)

In order to find out if, jointly, the explanatory variables do explain the variation of the 

dependent variable about its mean, the F  statistic is used. It is basieally used to test the 

significance of the eoeffieient of determination, , and is calculated as follows

R^
k - 1

(2.10)

However, it should be noted that, if the independent variables are highly correlated with 

each other, the F  test of the significance of a regression equation may allow for rejection 

of the null hypothesis even though none of the regression coefficients are found 

significant according to their individual t-ratio tests. It is therefore important to make sure 

that independent variables used in a multiple regression equation are not highly 

correlated.

2.4.2. Cross-Classification (Category analysis)

Rather than grouping households spatially (i.e., by zones) as in regression models, 

cross-classification analysis groups individual households according to common 

socioeconomic characteristics (auto-ownership level, income, household size, etc.) to 

create relatively homogeneous groups (Meyer and Miller 2001). The basic assumption of 

this method is that trip generation rates are relatively stable over time for certain
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household stratifications. Suppose t j j )  is the average number of trips with purpose p

and made by household of type j.  The standard method for computing the rate for each 

cell is to group households in the calibration data to the individual cell groupings and 

sum the observed trips T^( j )  by group purpose. To obtain the rate for each cell, the total

number of trips in that cell is divided by its number of households as shown in Equation 

(2.11). Table 2.1 presents an example of cross-classifieation analysis.

T ( i )
= ̂  (2.11)

2.4.3. Previous Efforts in Modeling Trip Generation

Trip generation is a key component of any transportation demand modeling system. 

Both regression analysis models and cross-elassification methods have been applied by 

different transportation planning agencies as well as researchers. However, the developed 

models do not address the issue of potential spatial autocorrelation that may produce 

inefficient estimates. Researchers and transportation planning agencies often use linear 

regression models due to their ability to test a number of variables thought to affect 

tripmaking behavior and ability to statistically select those which are proven more 

important. Effects of changes in individual and household travel behavior are assessed 

using coefficients of regression models, or by cross-classification of households and 

individuals on a few variables such as income, household size, number of workers in a 

household, and car ownership. The following are selected previous efforts to address 

some weaknesses of trip generation models.
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Table 2.1. Example of cross-classification analysis

a) Number of households (HH) and trips made
Available Vehicles

0 1 2+
HH
size

No. of 
HH Trips

No. of 
HH Trips

No. of 
HH Trips

1 354 531 236 689 387 875
2 1324 2164 1132 1965 1654 2897

3+ 1256 1987 987 1356 1124 1978

b) Households trip rates
Available Vehicles

HH
size 0 1 2+

1 1.50 2.92 2.26
2 1.63 1.74 1.75

3+ 1.58 1.37 1.76

c) Forecasted number of households in one zone
Available Vehicles

HH
size 0 1 2+

1 24 42 8
2 10 51 107

3+ 14 48 467

d) Forecasted number of trips from this zone
Available Vehicles

HH
size 0 1 2+

1 36 123 18
2 16 89 187

3+ 22 66 822
Total 74 277 1027

White (1976) examined the residual distributions in Ordinary Least Squares (OLS) 

household-based trip generation models using data obtained from Western Midlands 

Rural Travel Survey (1972). An OLS trip generation model was developed from 

household data and the residual distribution obtained from a typical estimated trip 

equation was examined in order to assess conformity with the assumptions of ordinary 

least squares. It was shown that the residual distributions obtained from typical OLS
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household-based trip generation models do not comply with the asssumptions inherent in 

the use of ordinary least squares. In particular, the author suggested that 

heteroskedasticity is likely to occur and therefore invalidate the estimation of eoeffieient 

standard errors by OLS procedure. Heteroskedasticity refers to violation of the 

assumption that error term has a constant variance. However, the author did not 

investigate the effect of spatial dependence.

Stopher and McDonald (1983) describes an alternative methodology for calibrating 

cross-classification models, namely multiple classification analysis (MCA). This 

technique was demonstrated to be able to overcome most of the disavantages normally 

associated with standard eross-elassifieation calibration techniques. The method was 

based on analysis of variance (ANOVA), which provides a structured procedure for 

choosing among alternative independent variables and alternative groupings of the values 

of each independent variable. This procedure was contrasted with standard procedure for 

cross-classification that estimates cell values by obtaining the average value of the 

dependent variable (e.g., trip rate) for those samples that fall in the cell and are unable to 

use any information fi*om any other cell. The process of selecting independent variables 

and selecting groupings of the chosen variables by ANOVA was illustrated with a case 

study. The degree to which there is statistical information provided to guide the analyst’s 

judgment was shown. The results showed that the best household grouping is one that 

combines two- and three-person households. Also, it was shown that the MCA procedure 

allows trip rates to be computed for some cells that are empty of data, and it removes 

some possibly spurious rates that arise in the conventional method Ifom small sample 

problems in some cells. The authors concluded that MCA provides a strong methodology
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for cross-classification modeling and that the procedure is effective in surmounting most 

of the drawbacks of conventional estimation of such models. However, as it is the case 

for conventional cross-classification analysis, the MCA procedure does not explicitly 

incorporate spatial dependence that might be present.

Said and Young (1989) discussed the General Linear Model (GLM) Ifamework as an 

alternative statistical method for estimating work trip rates for households in Kuwait. The 

authors suggested that the framework provided a flexible range of statistical models for 

respresenting the dependence of mean household trip rates on explanatory variables of 

interest and for selecting the distribution of trip rates of households within individual 

classification cells. Seven different household major groups were identified from the 

1985 census for Kuwait. One of these groups, Kuwaiti households living in villas, was 

used for some illustrative GLM analysis in which the results of an extensive home 

interview survey conducted in 1988 were utilized. The analysis showed that work trip 

rates of this household group were influenced by car ownership, household size, and an 

interactive effect of these two variables. However, none of spatial variables was 

considered in the model developed.

Jacobson (1982) proposed two models as alternatives to the ordinary least square 

model: an integer-dependent variable model and an error-component model of a time- 

series of cross-sections. The only difference across the proposed alternative models 

occured in the assumption regarding the distribution of random disturbances. It was 

hypothesized that significant differences would result in the model forecasts if  the 

appropriate a priori distributional assumption were chosen for the disturbances, without 

changes in the explanatory variables. The data used for this analysis was a 23-day diary
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of shopping travel by able bodied elderly individuals in Lawrence, Massachusets. The 

findings suggested that, when models are developed that consider explicitly the discrete 

nature of the daily trip generation variable (i. e., the number of trips taken by an 

individual on a given day), forecasts which are not significantly different from the 

ordinary least squares forecasts were obtained. However, spatial dependence was not 

investigated in this work.

Doubleday (1977) attempted to assess the temporal stability of one type of person trip 

generation model (the category analysis model with the individual as the behavioral unit) 

by conducting comparative studies based on the Reading Travel Surveys of 1962 and 

1971 data. Categories were defined with respect to a subset of the variables; employment 

status, socio-economic group, household structure, car availability and household car 

ownership. Particular attention was given to optional trips made by persons in certain 

employment status groups, notably housewives and retired persons. The differences in 

trip rates between the two years were tested for statistical significance. The temporal 

variation of trip rates were found to be dependent to a certain extent on the scheme of 

categorization adopted. However, due to methodological and data limitations, the study 

concluded tentatively that the trip rates of certain groups in the population are 

susceptible to variation in response to changes in the level of accessibility. The author did 

not assess the possible effect of spatial variation.

Meurs (1990) presented and estimated a number of models describing the correlation 

of trip making over time. Unobserved heterogeneity was taken into account using random 

effects. The author pointed out that one of the reasons for potential problems may be the 

omission of variables in the model. If the omitted variables are correlated with the
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included explanatory variables, model coefficients will be biased. Part of the effects of 

the omitted variables will be captured by the coefficients associated with the included 

variables. Furthermore, the author pointed out important omitted variables often as life­

styles, tastes and preferences, and sometimes residential and spatial characteristics. The 

basic models considered in this study were the serial correlation and the state-dependence 

models. Trip making in total and by transit was best described by using state-dependence 

models, while trip making by car was described by a model with lagged exogeneous 

variables. The generalized methods of moments were used for estimation of the models 

because it is asymptotically efficient and does not require assumptions about initial 

conditions. However, the author concentrated on temporal variations only.

2.5. Models for Trip Distribution

Trip distribution modeling is an important step for any travel demand model system 

because trip makers in an urban area normally face a number of destinations for trips of 

different purposes. There are two types of trip distribution processes (Kanafani 1983): 

long-term process, and short-term process. Distribution of home-to-work trips is an 

example of long-term process while convenience shopping trips is an example of short­

term trip distribution process. The first is a process that is stable and changes only in the 

long run, either by the change of residential location or of employment. Very often, the 

destination for work is defined by location of the work. For example, work destination for 

an instructor is fixed and defined by the location of the school. However, if a worker 

faces similar work opportunities at different locations, choice of working location is 

subjected to consideration of specific attributes of all available alternatives. The second
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process is more random in its nature, for it is possible that a trip maker may change the 

destination of even a regular shopping trip, from day to day. The first process is the focus 

of this research.

In the trip distribution step, models for forecasting destination choices are developed. 

There are three categories of trip distribution models: (1) physical models of spatial 

interaction, (2) choice models, and (3) origin-destination demand models. Each of these 

categories of models is introduced below.

2.5.1. Physical Models of Spatial Interaction

In the physical models of spatial interaction, gravity models are typically used. They 

start with assumptions about group trip-making behavior and the way this is influenced 

by external factors such as total trip ends and distance traveled. They were originally 

generated from an analogy with Newton’s gravitational law. Casey (1955) suggested an 

approach to synthesize shopping trips and catchment areas between towns in a region 

using the following functional form: 

aP.P.
a y

where P, and Pj are the populations of the towns of origin and destination, and dÿ is the 

distance between the two towns while a is a proportionality factor. Decreasing functions 

were further assumed that they could better model the effect of distance apart by 

representing the disincentive to travel as cost increases. The modified gravity model takes 

the following form (Meyer and Miller 2001):
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where

Pi = total number of trips produced in zone i 

Aj = total number of trips attracted to zone j  

fij = friction factor (deterrence function)

kÿ = adjustment factor for used when there are pairs of zones which have a 

special relationship in terms of trip making.

Popular versions of the ‘deterrence function’ include:

Exponential function: fy. = (2.14)

Power function: (2.15)

Combined function: (2.16)

where

Cy is the generalized cost between origin i and destination j  

^  and P  are calibration parameters to be estimated 

Calibration of the gravity model involves estimating the parameters such that the 

model closely reproduces the base year trip patterns. For example, the initial value for p 

can be ‘borrowed’ or guessed and the gravity model run repeatedly to produce trip 

patterns that are compared to the base year trip patterns until they are close. Although the 

gravity model is widely used for trip distribution, it has its own shortcomings. Butler 

(1972) mentioned one of the theoretical problems of the gravity models as the lack of 

theoretical base. The model deals with the theory of individual movement behavior at an 

aggregate level without having first aggregated behavior patterns. In addition to lack of
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ideal test of closeness of fit, the gravity models have may give less accurate long-term 

forecasts. A goodness of fit of the models is accepted when the calibrated trip distribution 

is statistically close to the observed trip distribution for the base year. However, 

comparison of trip length frequency distribution does not necessarily provide enough 

information for assessing how well the trip interchanges match (Duffus et al. 1987).

2.5.2. Choice Models of Trip Distribution

In choice models, the choice of destination is made on the basis of a comparison of 

the attributes of all the available alternative destinations. The socioeconomic 

characteristics of a traveler are also considered in the model. Models based on the 

principle of individual utility maximization are typically used. Trips between origin and 

destination are obtained by multiplying the choice probabilities with total trip 

originations.

In order to represent the attractiveness of the alternatives available, utility functions 

are defined for each alternative. These functions consist of variables representing 

attributes of the alternative and of the decision maker (traveler). Generally, they consist 

two parts:

■ The systematic, observable utility that is similar to the conventional 

microeconomic utiUty functions, and

■ A random term that is intended to capture such effects as variations in 

perceptions and tastes of individual trip-makers, misspecification of the 

utility function by the analyst and measurement errors on the part of the 

analyst (Manski 1973).
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The form of the utility function of an alternative j  to an individual n, Ujn, is assumed as 

follows:

(2.17)

where

Vjn = deterministic (systematic) component, and 

£/„ = an additive random component.

The deterministic (systematic) component is assumed to be a function of the attributes of 

the alternative, and the characteristics of individual, S„. From empirical investigation 

and from behavioral postulates, it is possible to specify the form of the function and to 

select the variables to include in it. The empirical observation of the random component 

of the choice function is less practical, for it requires the observation of an individual on 

repeated occasions, under experimentally controlled conditions, in order to observe the 

variability of perception and behavior in the face of a choice function (Kanafani 1983). 

Therefore, statistical assumptions are made regarding the distributional nature of the 

random component, ejn.

2.5.3. Types of Choice Models for Trip Distribution

One assumption concerning the distribution of the random term, is that they are 

each independently and identically distributed (IID) with a Gumbel Type I distribution 

whose cumulative distribution function is given as:

= e \  (P 0 ; (2.18)

Hensher and Johnson (1981), Maddala (1983), Ben-Akiva and Lerman (1985), Train 

(1986), Johnson and Kotz (1970) and Cramer (1991) have shown that if  the random
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components of the utility function are identically and independently distributed (IID) 

according to a Gumbel distribution, the probability that individual n will choose 

alternative i can be computed as shown in Equation (2.19). Absence of autocorrelation 

and heteroskedasticity are also assumed.

(2.19)

where j  = 1, 2,...,J is the number of alternatives and C„ is the choice set of alternatives 

available for individual n. The functional form of Equation (2.19) is a well-known form 

of the logit model referred to as the multinomial logit (MNL) model. The probability of 

individual n to choose alternative 1 given only two alternative choices can be represented 

as:

e  4 -e
(2.20)

and is known as Binary Logit model.

Another possible assumption on the random component of the utility function is that 

they are multivariate normally distributed. Generally, a vector-valued random variable X 

= {Xi, X 2 , .... X/t) is multivariate normally (MVN) distributed with mean m = (my, m2 , .... 

mi) and nonsingular matrix

27

2 2 2 1
^ 1 1 0-/2 ^ I k

2 7 1
Fki ^ k 2 ■ ^ k k _

i f its density function is
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0 ( x \ m , S )  = (2n:\S\) e x p \p (x -m )Z  ‘( x - m f  / 2\ (2.21)

The multivariate normal distribution assumption leads to the multinomial probit

(MNP) model. In the MNP model, the variances of the error terms ean be different and

the error terms may be correlated. Unfortunately, the choice function of a MNP model

cannot be easily written in a closed form, except for the case of two alternatives, and

thus must be evaluated numerically (Daganzo, 1979). Suppose and Sj„ are random

components of utility functions for alternatives i and j ,  and are both normal with zero

means and variances cr/ and crj, respectively, with covariance . The term - Cjn is

also normally distributed with mean zero and variance cr/ + cri -  2<7y = cr  ̂. Ben-Akiva

and Lerman (1985) used this result to show that the probability of individual n to choose 

alternative i can be computed as:

(2 .22)

where <p( ) denotes the standardized cumulative normal distribution. This model is 

called Binary Probit model.

The results from binary logit and probit model are not much different when the 

independence of utility is assumed. DeDormea (1971) compared the results of binary 

logit and probit models of mode choice and found that they are close. Since the 

predictions are so close, the choice between these two models should always be made on 

the basis of whether the independence assumption can be made or not. In general, the 

logit model is preferable because it approximates a normal distribution quite well and it is 

analytically convenient.
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2.5.4. Origin-Destination Demand Models

In the origin-destination demand models, the socioeconomic demand and supply 

system variables are multiplicative. Unconstrained gravity models are typically used to 

generate the total traffic flows rather than choice probabilities. Both trip production and 

trip attraction variables are included in the model.

2.5.5. Previous Efforts in Modeling Destination Choices

There have been several efforts of developing models for trip distribution in order to 

overcome the weaknesses of conventional models for trip distribution. The models 

developed include developing least squares estimation models and utility maximization 

models. Wansbeek (1977) analyzed the estimation of the parameters o f a standard trip 

distribution model by means of the ordinary least squares (OLS) method. In the context 

of the linearized trip distribution model, simple formulae were derived for the least- 

squares estimators of the parameters and their covariance matrix using a generalized 

inverse to solve the normal equations. An extension to the case of a non-linear distance 

function was given. However, the methods suggested did not specify explicit ways of 

incorporating spatial behavior in models of trip distribution.

Ashtakala (1985) developed a generalized power model for trip distribution, based on 

the the concepts of conventional trip distribution, linear regression analysis and power 

transformation on the independent variable. In the proposed model, the relationship 

between trips from an origin to a destination (dependent variable) and attraction of the 

destination (independent variable) were taken into consideration. Regression analysis 

was used to determine the parameters of the relationship which was optimized by varying
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the power parameter. Regression parameters and the optimum power parameters were 

used in formulating the trip distribution model. This model was termed as Generalized 

Power model for distribution. The model was developed by using cordon origin- 

destination (OD) survey data of Red Deer in Alberta. Evaluation of the model’s 

performance and application of power transformations indicated to have strengthened the 

model for trip distribution.

Kitamura (1984) developed a model of destination choice employing “prospective 

utility” of a destination zone as its attraction measure. The focus of the study was mainly 

on the effect of trip chaining on destination choice and on the adequacy of the 

conventional assumption that this linkage effect can be ignored and trips can be 

separately and independently analyzed. The prospective utility accounted for dependency 

of destination choice and therefore made possible relevant treatment of interdependent 

choices in a trip chain. A parameter was included in the model to represent the magnitude 

of the future dependency. The value of this parameter was estimated in the empirical 

analysis and was concluded to be significantly different from zero. It was also found that 

the estimates of travel time and zonal attribute coefficients differed substantially when 

this parameter was excluded from the model. The study demonstrated the effect of 

exclusion of important variables in trip distribution models.

Southworth (1981) calibrated multinomial logit models of mode and destination 

choice for a sample of car-owning households in the West Yorkshire Region of England. 

The models were calibrated using a disaggregate database. Previous practices such as 

conventional trip distribution methods were extended to investigate the effects on model 

parameter values of socio-economic standardization of trip making households for the
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journeys to work, shop and recreation. The models were calibrated at regional scale. All 

the model runs showed statistically significant results on the basis of maximum 

likelihood fitting criterion used. However, a number of model coefficients associated 

with important travel cost variables had large -standard errors, preventing many 

comparisons across socio-economic groupings. However, the author did not investigate 

the effect of spatial characteristics of both travelers and their origin and destination 

location, and ways of incorporating them in multinomial logit model.

D’Juran (1995) developed a combined fratar-gravity model for trip distribution with 

the objective of investigating its implementation in a three-dimensional modeling 

specification in order to combine the virtues of these two proven modeling techniques. In 

the ffatar model, information on the likely growth in the number of trips originating 

and/or attracted to each zone is used to develop growth factors used to forecast future 

trips. The model proposed in that study grouped zones in an urban area into larger 

superzones for use in the Fratar module. Superzones were defined as amalgamations of 

the zones in the Greater Toronto area by geographic location and by household growth 

categories. In the first stage, the Fratar approach was applied to a small superzone trip 

matrix in order to produce a predicted superzone matrix. The superzone matrix produced 

was then used as a third dimension constraint in a 3-D trip distribution model. The model 

was compared to the conventional gravity model to assess its performance in both long­

term and short-term prediction and was concluded to be only marginally better than the 

gravity model in predicting trip movements in the short term (5 years) period only. The 

model did require significantly more data input than the gravity model, and as a result.
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the use of the combined model proposed in this study might be inappropriate for some 

modeling applications.

In a recent Ph. D. dissertation, Limanond (2001) conducted a study on effects of 

neighborhood setting and intra-neighborhood location on shopping travel behavior of 

residents in traditional neighborhoods. The activity-based approach was used to 

investigate how travel decisions of traditional neighborhood (TN) residents vary spatially 

within neighborhood and across neighborhoods of different regional settings. The 

primary focus was on shopping travel decisions, specifically to mode and destination 

choices for home-based shopping tours, and household shopping tour generation. A 

nested-logit model was constructed to consider five dimensions of shopping travel 

decisions: household tour generation, participating party, shopping tour type, mode and 

destination choices. The choice set of the destination choice model was uniquely 

constructed to separately represent the effects of neighborhood accessibility 

(characterizing how well a residential location interconnects to stores within the 

neighborhood) and regional aeeessibility (characterizing how well a residential location 

can access outside-neighborhood opportunities within the region). The model was 

calibrated using travel data collected in three neighborhoods in the Puget Sound, 

Washington area. The results revealed that both neighborhood and regional accessibility 

had interrelated effects on the mode-destination choice decisions for home-based 

shopping only tours, resulting in spatial variations of the travel decisions both within 

neighborhood and across neighborhoods.
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2.6. Spatial Models for Travel Demand Analysis

Spatial models are used for modeling data in which observations of the variables are 

themselves spatially dependent from each other. Spatial dependence in a collection of 

sample data observations refers to the fact that one observation associated with a location 

i depends on other observation at location j. Spatial models are designed to account for 

the variation between observed quantities at different locations (Haining, 2003). 

Variation can be represented through the mean or the correlation structure or a 

combination of both.

2.6.1. The rationale for incorporating spatial factors in travel demand models

Both space and time play an important role in travel demand behaviors—time being 

the most perceived variable. Planners have hypothesized that the spatial distribution of 

land use within a region influences the travel behavior of residents living in that region 

(Limanond and Niemeier, 2004). The concept of aeeessibility has been mostly used in 

past studies (e.g. Handy 1993, Koekelman 1997) to examine the effects of land use 

patterns on travel behavior. Koekelman (1997) concluded that, after demographics were 

controlled for, the measures of aeeessibility, land use mixing, and land use balance— 

computed for trip makers’ home neighborhoods and at trip ends—proved to be highly 

statistically significant and influential in their impact on all measures of travel behavior. 

Handy (1993) suggested that the amount that a person travels is influenced by both the 

character of the particular community in which he or she lives and the spatial structure of 

the region of which that community is a part.
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Srinivasan (2001) examined the effect of neighborhood characteristics such as land 

use, network, and accessibility-related charaeteristics quantified through the use of 

geographical information systems on travel behavior. The author suggested that sueh 

measures could be used in conjunetion with detailed surveys of travel behavior to specify, 

calibrate, and use models that are more sensitive to the fine-grained spatial structure of 

neighborhoods and transportation corridors in metropolitan areas. The eonelusion of the 

study was that spatial eharacteristics affect travel behavior even on the relatively 

(spatially) restricted non work tour and could be potentially useful for transportation 

planning. Bento et al (2005) examined the effects of urban form and public transit supply 

on the commute mode choice and annual vehicle miles traveled (VMT). In order to 

establish the relationship between urban form and travel demand, the author suggested 

that the spatial distribution of firms (and associated wage gradient) and the set of possible 

employment locations affect commute lengths by affecting where households choose to 

live and where they choose to work. The results of this study indicated that individual 

measures of urban form and public transit supply have a small but statistically significant 

effect on travel demand. Ghaeli and Hutchinson (1998) described analyses of the 

intraregional differences in travel behavior in the greater Toronto area. The travel 

characteristics of residents living in inner suburban stable and growing areas, outer 

suburban stable and growing areas, and downtown areas were compared. Two 

geographical (spatial) scales: municipality and zones within municipality were used for 

analysis. The results of this study indicated that the average household characteristics in 

stable and growing sections of the new suburban areas were quite different. In addition, 

significant difference existed in the household trip production rates for households
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located in the low- and high-growth areas of both the stable suburbs and the growing 

suburbs. Recently, Naess (2006) conducted a comprehensive research study in 

Copenhagen Metropolitan Area with the objective of identifying how spatial planning in 

urban areas can be used to influence the amount of travel and the proportions carried out 

by different modes of conveyance. The author hypothesized that the travel between 

different destinations is influenced on the one hand by the reason people may have for 

going to a particular place, and on the other hand by the discomfort involved when 

traveling to this location. One way of measuring the discomfort is by using the distance 

or accessibility between the origin and the destination. There are mutual influences 

between the urban structural situation of the dwelling (location relative to various centers 

and facilities, and local transport infrastructure) and individual and household 

eharacteristics. Certain socio-economic characteristics and attitudes (e.g. car ownership 

and transport attitude) may themselves be influenced by the urban structural situation. 

The author concluded that urban structure, in addition to its direct effects, may influence 

activity participation and travel behavior indirectly via car ownership, transport attitudes 

and some other variables.

Based on a sample literature review summarized above, it can be clearly seen that the 

effect of spatial variables in travel demand is a research question which has not been 

answered fully. Urban structure is viewed as one of the important variables affecting 

travel behavior—both directly and indirectly. The literature suggests that, although 

travelers may not consider the urban structure as an explicit variable, they consider it 

through other variables sueh as accessibility and travel distance between their origin and 

possible destinations. One study (Bento et al (2005)) indicated that spatial distribution of
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firms and the set of possible employment locations affect travel behavior. Given that the 

individuals have chosen where to live and have a choice between different working 

locations, their decision may therefore be influenced by the spatial distribution of 

possible employment locations.

2.6.2. Quantifying Location in the Model

In the spatial models, location is quantified by introducing an additional variable with 

spatial connectivity of the observations. Connectivity is established through a spatial 

matrix defining neighborhoods of the observations. In general, the criteria used for 

defining neighborhoods include (Haining, 2003):

• Straight line distance: each point is linked to all other points that are within a 

specified distance

• Nearest Neighbors: each point is linked to its A: (A: = 1, 2, 3,...) nearest neighbors.

• Delaunay triangulation: all points with a shared edge in a Diriehlet partitioning of 

the area are linked.

Figure 2.2 shows the details of the criteria for defining neighborhoods. In Figure 2.2a, all 

points within a specified distance from point P are deemed neighbors of point P, while in 

Figure 2.2b, a specific distance is first defined and point P is deemed a neighbor of k 

majority points within the specified distance of P. For example, using the inner circle, 

only red points are deemed neighbors of point P, while using the outer circle, green 

points are deemed neighbors of point P. Finally, Figure 2.2c shows that all points sharing 

an edge are deemed neighbors.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a. Straight line distance b. Nearest neighbors c. Delaunay triangulation

Figure 2.2. Some criteria used for defining neighborhoods

Spatial relationship can be represented in the form of a binary contiguity matrix in 

which if  there are n locations, the matrix developed will have n x n elements. If two 

objects i and j  are to be defined as mutually linked then W(i, j  )  = W(j, (1 = 1, otherwise it 

is assigned a value of 0. It should be noted that an object cannot be connected to itself, 

that is, W(i, (1 = 0 for all /. For example, considering the example of a zoned urban area 

in Figure 1.2, the contiguity matrix W can be defined as follows:

1 7 7 0 7 0 0 0 0 0 0  

7 0 7 0 7 7 0 0 0 0

0 0 0  7 0 7 0 0 0 0

| 7  0 0 7  7 0 7 7 7 0

j / O O  0  0 7 0 7 7 7 ,

10  0 0  0  0 7 7 0 7 7

l o o  0 0 0  7 7 7 0 7 '

17 7 0  0  0  0 7 7 7 0

(2.23)
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Another option of defining the spatial weight matrix is to make ftÿ a distance-based 

weight which is the inverse distance between locations i and j  (llàij). It compares the sum 

of the eross-produets of values at different locations, two at a time, weighted by the 

inverse of the distance between the locations.

2.6.3. Modifiable Areal Unit Problem in Spatial Data Analysis

The Modifiable Areal Unit Problem (MAUP) is a common problem in analysis of 

spatial data. The MAUP is a potential source of error that can affect spatial data analysis 

which utilizes aggregated data (Unwin, 1996). The MAUP consists of two major parts: 

scale effect and zonal aggregation effect. Scale effect refers to the variation that can 

occur when data from one scale of areal units is aggregated into bigger or disaggregated 

into smaller areal units. Understanding the scale effect is important for the analysis of 

land use-travel interaction (Kwan and Weber, 2007). The zonal or aggregation effect 

refers to variability of analytical or statistical results derived from data for the same 

region, but aggregated or partitioned in different ways, with the number of areal units in 

different partitioning schemes being the same (Wong, 1996).

There have been several attempts to address the MAUP effect in analysis of spatial 

data. Wong (1996) summarized these attempts into three potential approaches: data 

manipulation, technique-oriented, and error modeling approach. In the data manipulation 

approach, researchers argue that if  the chosen zones can be justified as the best among all 

possible spatial partitioning, the MAUP vanishes. For technique-oriented approach, 

Robinson (1950) argued that weighting areal units by population size or number of 

observations can eliminate the scale effect in aggregated data. For the error modeling
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approach, a spatial regression model in which a component for individual observation 

and the average of attribute values from surrounding areal units of the observations are 

incorporated, can minimize the MAUP. However, none of the three approaches have 

been proven to eliminate the MAUP effect.

Furthermore, Wong (1996) recommended three categories of guidelines for analyzing 

spatial data from different scales: using data from the finest scale, reporting error from 

aggregation, and using techniques insensitive to scale changes. Using data from the 

individual or at the most disaggregated level may be the most appropriate approach. 

However, individual observations or data at a very high level of resolution may be too 

massive and difficult to represent by cartographic means. Also, the author recommended 

that reporting the scale-sensitivity of results may indicate how reliable the results can be. 

Khatib et al (2001) conducted a study to determine how different TAZ structures and 

different roadway network details affect the ability of a statewide transportation planning 

(STP) model to replicate annual daily traffic counts on the network. One of their findings 

was that a more detailed network would achieve better assignment results no matter 

which level of TAZs is used. It was further concluded that the effect of interaction 

between the zoning structure and the detail of network should be considered. This implies 

that, not only the zoning structure, but also the details of the attributes of the zones play 

an important role in minimizing the MAUP in spatial data analysis. Kwan and Weber 

(2007) used the activity-travel diary data set collected in Portland (Oregon, USA) to 

evaluate the properties of a distinct type of accessibility by employing frame-independent 

and scale-invariant methods that do not produce results that are dependent on particular 

sets of zones or spatial scale. The importance of spatial scale to individual accessibility
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patterns was examined by carrying out analysis on the relationship between access and 

explanatory eharacteristics (e.g. socioeconomies and demographics) at a range of spatial 

scales. The results indicated that aeeessibility measure is scale independent and invariant.
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CHAPTER 3

RESEARCH METHODOLOGY 

To accomplish the objectives of this research, the spatial models of trip generation 

and destination choiee were specified. Alternative methods for quantifying spatial 

relationship of observations in these models were also identified; details of these 

specifieations are provided in this chapter. Also, the details of the methodologies for data 

collection, selection of modeling variables, model estimation, interpretation and analysis 

of model results and model comparisons are provided. Finally, the chapter provides 

details of the methodology for creating the trip distribution Origin-Destination (O-D) 

matrix using the results of the spatial multinomial logit model (MNL) developed.

3.1. Spécification of Spatial Models

In order to develop the spatial model, a variable necessary to account for spatial 

interactions between the observations was incorporated in the model. This variable uses 

spatial referencing associated with each data value (eg. trip attractions in different zones) 

that is specified within the geographical system under study. For a spatial variable, 

geographical location needs to be defined by establishing “spatial connectivity” between 

observations made at different locations. The following are the specifications for trip 

generation and destination choice spatial models.
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3.1.1. Spatial Trip Generation Models

There are two common types of spatial regression models: spatial lag and spatial error 

models. In this research, the two models were specified and their estimations compared to 

identify the best model. In the spatial lag model, observation at one location, Yj, was used 

as the independent variable to predict the observation at another location, f). The spatial 

connectivity between the locations was established a priori by using the spatial weight 

matrix, Wÿ. In this model, the observation at one location was tested for its effect on the 

adjacent observation at another location while taking into consideration spatial linkage of 

the observations. Equation (3.1) shows the general form of the spatial lag model.

^  = A  + P îjYj + PiXi, + p2̂ i2 + -  + Pk̂ ik (3.1)

where

Wÿ is the spatial weight (connectivity) matrix 

p is a spatial parameter to be estimated 

Pî  are the coefficients to be estimated

Yi is vector of observed trips at location i 

Yj is a vector of observations at location J 

%  are explanatory variables

e, are random errors

In the spatial error model, the stochastic errors are assumed to be spatially 

autocorrelated. Connectivity among the stochastic errors was established through spatial 

weight matrix. Equation (3.2) shows the general specification of the spatial error model.

Yi= Po+ P D u + P2Xi2 + ••■ + Pk^ik + + w, (3.2)

where

X is a spatial parameter to be estimated 

Yi is vector of observations at location i
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u- are random errors

3.1.2. Spatial Destination Choice Model

In this research, the discrete spatial destination choice model for Las Vegas was 

specified and estimated. There are two approaches for developing discrete destination 

choice model. The first approach is through collapsing the alternative choices into two 

(dichotomy), hence developing a binary logit model. This is done by assigning a value of 

one to the chosen alternative while others are assigned a value of zero. The second 

approach is to keep all the alternative choices and therefore develop a multinomial logit 

model. However, when multinomial data are treated as dichotomous, not only do the 

expected confidence interval widths become greater, but the penalty in terms of larger 

sample size requirements for hypothesis testing can be severe (Bartfay and Dormer, 

2000). There are clear advantages in preserving multinomial data on the original scale 

rather than collapsing the data into a binary trait. Therefore, the usual multinomial logit 

model modified to incorporate spatial relationship of the alternatives was developed for 

destination choice. The model is estimated through application of maximization concepts 

of alternatives, Ifom which the alternative with maximum utility is chosen (Ben-Akiva 

and Lerman, 1985).

To account for the spatial relationship, the utility function was modified to 

incorporate the spatial interaction term in order to minimize uncertainty resulting from 

spatial autocorrelation. Also, the socioeconomic variables were included in the utility 

function with alternative specific coefficients except for the base alternatives. The base 

alternatives were the two districts containing the resort corridor, popularly known as “the
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strip” and the downtown area. These districts contain most of the hotel and casinos. The 

function was defined as follows:

M
(3.3)

k = I  * m = l

where

Uj^ is the utility of alternative destination j  to individual n 

A: = 1, ..., K  are the attributes of the alternatives 

is the eoefficient of attribute k

Xj„î  is the A;* attribute associated with alternative destination j  and individual n 

m=  1, ..., M are the soeioeconomie charaeteristies of the individuals

is the alternative specific coefficient of socioeconomic characteristic m

is the socioeconomic characteristic associated with individual n 

p  is the coefficient associated with spatial variable

is the spatial variable defined by separation or accessibility between origin 

(/) and destination (/) for individual n 

is the stochastic error term

The probability of individual n to choose alternative destination j  is therefore computed 

as follows:

P„(j) = ----   i------- M---- --------. P ^ j  (3.4)

Z
k = l  m = I

peC„
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3.2. Methods for Quantifying Spatial Relationship

In order to quantify the spatial relationships of the zones, different N xN  spatial 

matriees, in which N is the number of zones, were developed. Four alternative methods 

for defining the elements of the matriees were adopted: (a) Contiguity, (b) Separation, (c) 

Contiguity-Separation, and (d) Economic linkages (accessibility measure). For each 

alternative, the spatial models of trip generation were developed and compared to identify 

the best alternative for defining spatial relationship of the observations. Similarly, 

different models of destination choice were developed and compared. The following 

sections provide details of each method while Appendix A presents the matrices created 

for each method.

3.2.1. Contiguity

Contiguity matrix is the popular method for defining spatial relationship of 

geographical units such as TAZs. In this method, if  two locations i and j  are to be defined 

as mutually linked, then W(i, j  )  = WQ, i) = \', otherwise it is assigned a value of zero. 

Because an object cannot be connected to itself, W(i, i) = 0 for all i.

3.2.2. Separation

Separation was measured as the inverse of the distance between the zones. The 

separation only was used in order to avoid omission of observations which are not 

contiguous to the specified observation, but are influencing it. Therefore, the influence of 

all other observations to a specified observation decayed as a function of their distance 

apart. Elements of the spatial weight matrix were generated as follows:
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(3.5)

where Dÿ is the distance between zone i and zone j.

3.2.3. Contiguity-Separation

In this specification, the effect of separation between observations is combined with 

contiguity to explain the spatial interaction between geographical entities. Separation was 

measured as the inverse of the distance between the observations. Since the distance is 

measured between zonal centroids, combination of contiguity and distance was expected 

to indicate how “truly” the zones are spatially close. Elements of the spatial weight 

matrix were generated by multiplying separation and contiguity as follows:

^  (3.6)

where Py = 1, if / is contiguous to j  ; otherwise /Uy=0. Dÿ is the distance between zone

i and zone j.

3.2.4. Economic linkages (accessibility measure)

Although two zones might be contiguous, if there is no accessibility between them, 

the spatial relationship measured by contiguity only, might not represent the reality. 

Therefore, accessibility between two zones is another way of defining spatial 

relationships. Traditionally, it is measured as the product of employment opportunities 

and the inverse of their separation distance (Stewart 1958 and Koenig 1980). The 

difference between the methods of combining contiguity and separation and that of 

combining employment opportunities and separation is that, the latter introduces 

economic linkage of the two zones. The accessibility measure between two zones can be
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used as elements of the spatial weight matrix to define interaction between the two zones. 

This means, a zone is spatially related to another zone if the accessibility measure 

between them is higher compared to other zones. Mathematically, the spatial weight 

matrix ean be written as follows:

(3.7)

in which Ej is the total employment in zone j  ( )

In my research, instead of using the straight line distance between the observations, 

the separation distance was measured along the shortest and potential network route of 

individuals moving fi-om one district to another. This reflected the typical distance 

traveled and the actual spatial separation of the observations. Free online mapping portals 

used for searching for driving directions were used to identify potential network routes. 

ArcGIS 9.0 software was then used to create the maps. Figure 3.1 illustrates the 

difference between straight line distance and network distance by showing the possible 

route from district 3 to district 15. While the “actual” separation distance along the travel 

route is 10.6 miles, the straight line distance is 6.28 miles: less by more than 40%. 

Therefore, using straight line distance may distort the effect of separation distance on 

spatial relationship. Appendix B presents the typical network routes for individuals 

originating from zone 3 to other zones.

3.3. Data Collection and Processing

The data used for this research included travel records of surveyed individual 

travelers, land-use attributes of their origin and destination districts, their demographic 

and socioeconomic characteristics, and geographic location of origin and destination of

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



each trip. The data were collected by extracting relevant information from two databases 

maintained by the Regional Transportation Commission of Southern Nevada (RTC): (1) 

The 1996 Las Vegas Household Travel Survey database, and (2) The Land-use database.

3.3.1. The 1996 Las Vegas Household Travel Survey Database

RTC conducted a household travel survey between April 1996 and June 1996 to 

collect retrospective travel information from both residents and visitors (RTC, 1998). The 

survey consisted of a stratified random sample of households based on the number of 

vehicles available and household size. Random-digit dialing was used to develop the 

sample list of telephone numbers. A total of 3,738 households were recruited for the 

study but only 1,887 (approx. 50%) households provided complete information during 

the survey. Each household member of age 16 and above was asked to record each 

activity they undertook during the 24-hour period from 3.00 a.m on the diary day to 3.00 

a.m on the following day. Nineteen (19) main activities were coded as well as a catch all 

“other” category. Using the 19 main activities, the resulting trips can be categorized into 

four trip purposes:

• Home-Based Work

• Home-Based non-Work

• Non-Home-Based Work, and

• Non-Home-Based Non-Work.
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Figure 3.1. Travel route from district 3 to district 15

For each stop made during speeifîed time period, the individuals were asked to record 

the correct addresses. This enabled geocoding the geographic location of their origins and 

destinations in the form of (x, y) coordinates. In addition, the diary was used to collect 

personal demographic and socioeconomic information such as age, gender, income, 

household size, number of vehicles available, etc. In this research, Home-Based Work 

(HBW) trips were identified and extracted from the database for developing models.
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3.3.2. The Land-use Database

The RTC also maintains a database o f land-use based on Traffic Analysis Zones 

(TAZ). TAZs are the basic geographical zonal units used for land-use and trip generation 

estimations. Their boundaries are made up of major streets, census tracts, natural or man 

made barriers like railroad tracks, or rivers. A general rule for the size of the TAZ per 

model area is one TAZ per 1000 in population. The RTC, local entities and consultants 

provided input to define the TAZ boundaries based on the criteria mentioned above. In 

1996, the Las Vegas Valley was divided into more than 1000 TAZs. Often, several TAZs 

are combined to form larger zones called districts based on certain criteria. Districts often 

follow travel corridors, political jurisdictions and natural boundaries. The Las Vegas 

Valley has been divided up into 18 districts based on natural and man-made barriers (for 

example freeways and railroads). The same agencies involved in defining TAZs also 

provided input to define the district boundaries based on the criteria for defining districts. 

In this study, the TAZ and districts definitions have been verified with relevant RTC 

personnel. Figure 3.2 shows the Las Vegas Valley districts.

The information available in the land-use database includes, but not limited to, district 

population, area of the district, available dwelling units, occupied dwelling units, average 

household income, average household size, employment opportunities available in 

different job categories, etc. In this study, the variables relevant to travel behavior were 

extracted from the land-use database and associated with their corresponding Home- 

Based Work trips extracted from the 1996 Las Vegas Household Travel Survey database.
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3.3.3. Database Merging and Processing

In order to merge the two databases, the 1996 Las Vegas Household Travel Survey 

data were geoeoded into geographical information systems (GIS) using the ESRI ArcGIS 

9.0 software. ESRI ArcGIS is an integrated collection of GIS software products for 

building a complete GIS. It enables users to deploy GIS functionality wherever it is 

needed—in desktops, servers, or custom applications; over the Web; or in the field 

(ESRI, 2007). The ArcGIS geodatabase framework allows accessing large volumes of 

geographic data stored in files and databases. It also allows extraction of specific data 

from the database. A map of the Las Vegas Valley districts with their land-use attributes 

was developed using the same software. The travel survey data was displayed on the 

same map in order to identify their location with relation to land-use data. Only 17 

districts were used in this study because there were no households interviewed from 

district 18. The trips that originated from home to work (main or second job), volunteer 

work, and work-related trips were identified and categorized as HOME-BASED WORK 

trips. The number of trip attractions and trip productions for each district were obtained.

The two trip types were modeled differently since their explanatory variables are not 

the same. Total trips per district for both trip attraction and production were obtained by 

aggregating individual trips. For destination choice modeling, destination districts for all 

trips were identified and used to form the choice set. Each of the 17 districts was assumed 

as a possible alternative destination for work to all individuals and therefore, the size of 

the choiee set was 17.
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Figure 3.2. Las Vegas Valley districts

3.3.4. Data Expansion

It should be noted that only sampled households participated in the survey, and 

therefore the total number of trips obtained from the database is not the actual number of 

trips per district. As a consequence, the procedure for data expansion to reflect the actual 

estimates of number of trips was adopted. The aim of data expansion was to estimate 

factors to be applied to each survey observation so that the estimated number of trips 

would provide valid statistical estimates of the actual number of sueh trips under actual 

population estimates of the analysis year. The factors were developed through a two-tier
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process, in which individual households were categorized by available vehicles and 

household size. Sampled households in each category were expanded to estimate the 

1996 total number of households in that category using the 1990 Census data as a base. 

The 1990 census data was used as a base because it contains the actual total number of 

households in 1990 for each category. For 1996, the household data available was the 

total number of households for all categories in each parcel-based planning area. The 

following are the details of developing expansion factors:

Let and be the sampled households and the total households in a

category of households with size h and v vehicles available in 1996, respectively. The 

relationship between the two can be given as:

= (3.8)

where F  is the expansion factor . Also, it should be noted that, since was not

available, the use of the 1990 census data was warranted. If T90^^^j is the he total

households in a category of households with size h and v vehicles available in 1990 

census, the 1996 and 1990 data for that category ean be related as follows:

(3.9)

in which GF is the growth factor. Combining Equations (3.8) and (3.9) yields the 

following relationship for the expansion factor:

F  ^G F. (3.10)

The growth factor for each district were derived and used to estimate the number of 

trips in each category as per 1996 Las Vegas population (Clark County, 1996). The factor 

for each district was used since the growth was not uniform over the valley. To derive the
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growth factor for each district, the map of the parcel-based planning areas was initially 

overlaid on a map of modeling districts using GIS. The pareel-based areas overlapping 

with each modeling district were identified and the growth factors were computed for 

these areas. If the modeling district contained more than one parcel-based area, the 

weighted average of the factors (weighted by households in each parcel-based area) was 

computed, otherwise, the pareel-based area factor was used as the growth factor for the 

modeling district. Figure 3.3 shows the growth factor levels for all districts while 

Appendix C shows the details of the pareel-based area growth factors.

3.4. Selection of Variables for Modeling

3.4.1. Trip generation Models

The response variable for trip attraction model was the number of trips attracted to a 

district, while for the trip production models the response variable was the number of 

trips produced Ifom a district. Selection of explanatory variables was based on their 

reasonable relevance to the response variable and availability of such data in the 

databases. Also, the literature was reviewed to identify the variables used in similar 

existing trip generation models. Descriptive statistics and correlation tests were 

conducted in order to identify variables suitable for use in the model. In the presence of 

high correlation, the estimators are very likely to have large variances and covariances, 

making precise estimation difficult. Therefore, if  two variables were highly correlated, 

only one of them was included in the model. The Pearson-Produet-Moment Correlation 

eoefficient was computed for variables following normal distributions, while the non-
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parametric (Spearman Rank Correlation) coefficient was used for the remaining 

variables.
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Figure 3.3. Growth factor levels of Las Vegas between 1990 and 1996
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In order to satisfy the linear assumption, several transformations were tested to 

identify the suitable forms of variables. For the trip attraetion model, the number of 

employment opportunities available at destination districts was used. Since the gaming 

industry constitutes the higher percentage of job opportunities, it was separated from 

other job opportunities. Table 3.1 shows the details of the variables for the trip attraetion 

model with their description and codes used in the database.

Table 3.1. Variables for trip attraction model

Variable Description and Components of the Variable Unit (Code)

Gaming Hotel/Casino Employment Opportunities Total jobs per 
district

Regional Retail Employment Opportunities 
(r shop)
Community Shop Employment Opportunities 
(c shop)

Other Retail Employment Opportunities {other_ret)

Non-
Other Non Retail Employment Opportunities 
{other non) Total jobs per 

districtGaming Nellis Airforce Base Employment Opportunities

McCarran Airport Employment Opportunities {mia)

UNLV Employment Opportunities {unlv)

Office Employment Opportunities {other office)

Industrial Employment Opportunities {indust)

Spatial A variable quantifying spatial relationships of the 
observations

The general equation for the trip attraetion model was as follows:
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(a t t r a c t io n s ), = p , * (g a m in g  j o b s ),
+ p2* (n o n  -  GAMING j o b s ),

(  \
a t t r a c t e d )J

\  J
+ CONSTANT

(3 11)

where P 's  are marginal impact of the variables on trip attraction and Wy is the matrix

defining spatial relationship between observations at location i and j .  For the trip 

production model, the variables selected included trip makers’ socioeconomics and 

demographies. Table 3.2 shows the details of the variables for trip production model.

Table 3.2. Variables for trip production model

Variable Description Unit (Code)

poparea Population per Area of a district Population per Square 
Miles

hhsize Average Household size Persons

lowinc Number of household with income 
less than $17.5K Households

mediuminc Number of households with income 
between S17.5K and $47.5K Households

highinc Number of households with income 
greater than $47.5K Households

The general equation for the trip production model was as follows:
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(p r o d u c t io n s ), = p ,*  (p o p u l a t io n  d e n s it y ),

+ P2 * ( a v e r a g e  h o u s e h o ld s ) ,
+ (n o . o f  l o w  in c o m e  h o u s e h o l d s ),
+ (n o . o f  m e d iu m  in c o m e  h o u s e h o l d s ), , (3.12)
+ p ,*  (n o . o f  h ig h  in c o m e  h o u s e h o l d s ),

/
+ A * Y ^ i j *  i^RIPS p r o d u c e d )J

\  J
+ CONSTANT

3.4.2. Destination Choice Models

Based on relevance and availability in the databases, the variables for the destination 

choice model were selected. Contrary to the gravity model which uses attraetion and 

separation as the exclusive variables for trip distribution; socioeconomic and 

demographic characteristics of the trip makers were also used in this model. Table 3.3 

shows the details of the variables chosen. The deterministic parts of the utility functions 

for all alternatives are shown in Equation (3.13). District eight and fifteen which contain 

the resort corridor and the downtown area were used as the base; therefore, individual 

specific variables (socioeconomics) were not included in the utility function of this 

alternative. The two districts contain most of the hotels and casinos. The alternative 

specific coefficients for the socioeconomics were specified in order to capture their 

specific effects on each alternative. It was also assumed that the propensity of the number 

of jobs available at the destinations was equal regardless of the destination, and therefore, 

generic coefficients were used for the variables quantifying job opportunities. Similar 

assumption was made for the spatial variable and the relative measure of distance with 

regard to the opportunity at CBD —the propensity is the same regardless of the 

destination.
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Table 3.3. Variables for destination choice model
Variable Description Unit (Code)

CBD (cbd)

Distance from home to district i divided by 
distance from home to CBD/Resort, a 
relative measure with regard to the 
opportunity at CBD

-

Hotelre(H) Available job opportunities in hotel and 
retail

Number of 
Employments

Otherjo (0) Number of available jobs other than hotel 
and retail divided by area of the district

Employment
Density

Vehhhworker
(V)

Number of vehicles available divided by 
number of people with agel6+ in a 
household

Vehicles per 
Persons

Spatial (S)
A variable quantifying spatial relationship 
between origin district and destination 
districts
Age of trip maker Years

Income (I)
Income level indicator for trip make:

0. Less than US$ 47,499
1. Greater than US$ 47,500

Indicator of 
income level

Pin -  A + + A A  + A A + ̂ {cbd)j + ] H j +  TïOj + coS,

An = Q  + <̂ 2 A  + A  A  + A  A + ^{chd^j + + n02 +

An -  A  ^7 A  + A  A  + A  A + (f>{cbd\ + + tiO  ̂ +

An = )̂  +
An — A  CTpA ■*' A  A  ■*■ A  A ■*■ < {̂pbd)g + yHg + ;zOp + coSg

Pi4n = A  + A v A  + A^A + ^(cbd),^ + yH,^ + ttO,  ̂+ a>S
Ajn = )„  + / / / „ +  ;zOy, + œS,,

P i6 n  = Afi + ̂ mA + Ae A + AeA + ^ i p b d ) j ^  +
A/n ~ A /  ^ / 7A  A /A  A /A  ^(cbd)jj + yH^ + ryiS,

/■/

(3T3)

in whieh A« is the utility function for alternative j  to individual n 

Cj is the alternative specific constant

Œj is the alternative specific coefficient for vehicles available per workers 

A is the number of vehicles available per workers for individual n 

B, is the alternative specific coefficient for the age of individual n
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A  is the age of individual n

Sj is the alternative specific coefficient for the income of individual n 

/„ is the income of individual n

(j), y , 71 and a  are the generic coefficients for the relative measure of distance 

with regard to the opportunity at CBD, available job opportunities in hotel/casino 

and retail, available job opportunities in other industries, and spatial interaction of 

the origin and destination, respectively.

3.5. Testing for Spatial Autocorrelation in Selected Variables

In order to estimate spatial models, the variables were tested for spatial 

autocorrelation. There are two ways of cheeking for presence of autocorrelation in the 

variables: mapping the variables, and using analytical methods. When variables are 

mapped, one can identify the presence of any spatial patterns such as clustering. For 

example, when the income variable is mapped, one can identify whether high income or 

low income households form clusters. In a similar fashion, one can identify whether 

number of trips (attracted or produced) form clusters or spatial patterns. Analytical spatial 

correlation tests include the Moran-1 test, the Geary’s C test, and the Getis and Ord’s G 

test. In this research, the analytical methods were used because they allow for 

computation of statistics necessary for drawing conclusions. The following are the details 

of the common spatial autocorrelation tests:

3.5.1. The Moran's 1 Test Statistic

The Moran-1 test statistic is based on the value of the variable at any one location 

compared with the value at all other locations. The statistic is computed using the 

following formula:
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N
1 = (3.14)

where

I  is the Moran-I test statistic 

N  is the number of observations

Xi is the observation at a particular location /

Xj is the observation at another location j

X  is the mean of the variable

Wij is a spatial weight matrix applied to the comparison between location / and 

location j

The expected value of I  under the null hypothesis of no global spatial autocorrelation is

given as:

E{I) = -1
N - \

(3H5)

If the expected value E(I) is less than the test statistic 1, then the overall distribution of 

variable X can be seen as characterized by positive spatial autocorrelation and vice 

versa. The z-values, computed by subtracting expected value of I  from calculated 1 and 

dividing the difference by the standard deviation of 1, is used for inference and is 

computed as follows:

/ - W )
- std(I)

(3.16)

where

std (/) =
N-

(3.17)
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3.5.2. Geary’s C Test Statistic

The Geary’s C statistic is based on a comparison of related map values. The 

relationship of map values is defined using the spatial weights matrix, Wy. The statistic is 

computed as follows:

The Geary’s C statistic varies between 0 and 2. Under the null hypothesis of no global 

spatial autocorrelation, the expected value of Geray’s C statistic is 1. Values greater than 

1 indicate that the overall distribution of X is characterized by negative spatial 

autocorrelation, and vice versa, z-values, computed by subtracting expected value of 1 

from calculated 1 and dividing the difference by the standard deviation of 1, is used for 

inference, and is computed as follows:

3.5.3. Getis and Ord’s G Test Statistic

The Getis and Ord G-Statistic measures the overall spatial clustering of values o fX  It 

requires that the measured variable X  is positively valued and has a natural origin (Getis 

and Ord, 1992, cited by Haining, 2003). Also, it requires the weights matrix to be 

composed of binary non-standardized elements. The statistic can be computed as follows:

(320)
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Under the null hypothesis of no global autocorrelation, the expected value of G is 

eomputed as follows:

W,,

Values larger than the expected value indicate that the overall distribution of X  is 

eharacterized by positive spatial autocorrelation. The inference is based on z-values 

computed by subtracting the expected value of G from calculated G and dividing the 

difference by the standard deviation of G as follows:

_ G -E (G )
std(G)

(3.22)

3.6. Model Estimation

3.6.1. Trip generation Models

For trip generation (attraetion and production), the Ordinary Least Square (OLS) 

method of estimation was used to estimate non-spatial models while the Maximum 

Likelihood estimation (MLE) method was used for spatial model. OLS is a mathematical 

optimization technique which, when given a series of measured data such as zonal work 

trip totals, attempts to find a function which closely approximates the data (a "best fit"). It 

attempts to minimize the sum of the squares of the ordinate differences (called residuals) 

between points generated by the function and corresponding points in the data. MLE is a 

popular statistical method used to make inferences about parameters of the underlying 

probability distribution from a given data set. It is used to estimate the unknown 

parameters by fixing a set of data and then picking the parameters to the distribution that 

are most likely given the data. Non-spatial models for trip generation were estimated
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using Equation (2.1) while the spatial models were estimated using Equation (3.1) and/or 

Equation (3.2) whieh incorporated spatial characteristics.

The non-spatial and spatial models of trip attraction and trip production were 

estimated using the ST AT A® software. The software is a complete, integrated statistical 

package that provides most of the needed capabilities for data analysis, data management, 

and graphics. It was created in 1985 by StataCorp and is used as a statistical program by 

many businesses and academic institutions around the world. STATA®'s full range of 

capabilities includes data management, statistical analysis, graphics, simulations, and 

custom programming. The consistent, intuitive syntax of STATA® commands makes it 

straightforward to develop programs for complex or repetitious tasks (Hamiliton 2004). 

In recent years, STATA® has added many new features such as linear mixed models, 

balanced repeated replications, and multinomial probit. The software has become 

increasingly popular over the years because of its simplicity in design and usage of drop­

down menus compared to many other statistical software packages (e.g. SAS®).

3.6.2. Destination Choice Models

For destination choice model, the classic MLE method was used to estimate the

parameters of Equation (3.12). The Blerlaire Optimization toolbox for GEv Model 

Estimation (BIOGEME) software was used for estimation of the multinomial logit model 

of destination choice. This is a freeware designed for the maximum likelihood estimation 

of binary logit, multinomial logit, nested logit, and more complex models in the 

Generalized Extreme Value (GEV) family as well as mixtures of these models (e.g. 

mixed logit). The GEV is a family of models consistent with the random utility theory 

(Bierlaire 2003).
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3.7. Interpretation and Analysis of the Results

3.7.1. Spatial Autocorrelation Tests

Spatial autoeorrelation test results were interpreted by assessing the degree of spatial 

autocorrelation present in the observations. The Moran-1 statistic varies between -1.0 and 

+1.0. Areas close together (adjacent) that have similar observations are expected to have 

a high Moran-I result. Positive Moran-1 values indicate positive spatial autocorrelation, 

meaning that, similar observations are spatially clustered. Negative Moran-1 values 

indicate negative spatial autocorrelation, meaning that, neighboring observations are 

dissimilar. For the Geary’s C test, the expected value of C is one. If the calculated value 

is greater than one, it indicates negative spatial autocorrelation. If the calculated value is 

less than one, it indicates positive spatial autoeorrelation. For the Getis and Ord’s G, if 

the calculated value is greater than the expected value, it signifies positive spatial 

autoeorrelation with a prevalence of high-valued clusters, while the smaller G value 

signifies positive spatial autocorrelation, but with a prevalence of low-valued clusters. 

The significance of the results was decided based on the p-values. The p-values are 

measures of how much evidence we have against the null hypotheses (Ho) that no global 

spatial autocorrelation is present in the observations. The smaller the p-value, the more 

evidence we have against Hq

3.7.2. Trip Generation Models

For spatial trip attraction and trip production models, the estimated model parameters 

were assessed for correctness of sign (consistence with intuition), their level of 

significance in explaining the variability in the response variable, and the general
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goodness-of-fit of the model. Violation of intuitive expectations of the sign of the 

coefficient resulted in further investigation of the variable in order to decide whether it 

should be dropped from the model. It should be noted that “wrong sign” of the 

coefficients may result from eomputation errors, eoeffieient that do not differ fi*om zero, 

or multieolinearity. For the latter reason, the correlation test results were used for 

investigation of the variables.

The level of significance of the parameters was assessed by observing the resulting 

test statistic, p-value and their 95% confidence interval. The coefficient with a test 

statistic greater than the critical value was interpreted as significantly different from zero 

and was expected to have a p-value less than 0.05 (at the 5% level of significance). The 

critical value is a cutoff value determining the boundary between those samples resulting 

in a test statistic that leads to rejecting the null hypothesis and those that lead to a 

decision not to reject the null hypothesis. Consequently, for the coefficient to be valid, 

the confidence interval must not span over zero. A coefficient with confidence interval 

spanning over zero indicates that it can actually be zero. Variables with coefficients 

meeting these criteria were concluded as significant variables in explaining the variability 

in the response variable. The results of coefficient estimation for destination choice 

model were interpreted in a similar fashion.

In order to assess the goodness-of-fit of the model, the adjusted R squared was used 

for models with the same dependent variable. This is because the adjusted R-squared 

value takes into account the number of explanatory variables present in the model.
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3.7.3. Destination Choice Models

For the destination choice models, the goodness-of-fit was assessed by eondueting a 

log-likelihood ratio test. The test compares two models provided the simpler model (in 

this case, non-spatial model) is a special case of the more complex model (in this ease, 

the spatial model). Non-spatial model was deemed a special ease of the spatial model 

because it eliminates the spatial term (restricts the coefficient of spatial term to zero).

3.8. Model Comparisons

To compare the trip generation models, the Residual Sum of Squares (RSS), the 

Akaike Information Criterion (AIC), and the Schwarz Information Criteria (SIC) were 

eomputed and compared. Furthermore, the final loglikelihood was used to compare the 

spatial models. Comparison of the destination choice models was made by first 

comparing the spatial models estimated using different definitions of spatial 

relationships. Finally, the best spatial model was compared to the non-spatial model. The 

final loglikelihood was also used to compare the models. The model with maximum final 

loglikelihood represented the best fit model. The following subsections provide the 

details for each comparison method.

3.8.1. Residual Sum of Squares (RSS)

The RSS quantifies the deviation of the estimated observations from the actual 

observations by summing their squares. Mathematically, it is computed as follows:

where T is the estimated value for observation / and N  is the number of observations.
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3.8.2. Akaike Information Criterion (AIC)

The A ie is aimed at imposing a penalty for adding excessive independent variables in 

a model. The minimum AIC value represents a model with best goodness-of-fit. The AIC 

can be eomputed as follows:

(3.24)
N

where k  is the number of parameters.

3.8.3. Schwarz Information Criterion (SIC)

The SIC is designed to impose a harsher penalty for addition of excessive 

independent variables than the AIC. Similar to the AIC, the lower the SIC, the better the 

model. Mathematieally, it can be computed as follows:

k / Y ^  (Y .-Ÿ .Ÿ
SIC =  L _  (3.25)

V

3.8.4. Adjusted Rho-Squared Value {p^)

The adjusted rho-squared value {p^)  was used to compare the spatial multinomial 

models of destination choice. The model with highest represented the apt model. 

Mathematieally, it can be eomputed as follows:

 ̂  ̂ (3 2,6) 
z /o ;

where L (P )  is the final loglikelihood, L (O^is the initial loglikelihood, and K  is the 

number of parameters estimated.
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3.8.5. Likelihood Ratio Test

The best spatial model was compared to the non-spatial model by conducting the 

likelihood ratio test with the null hypothesis that the coefficient of a spatial variable is not 

different from zero. The test statistic was computed as follows:

- A u f > , y - L ( P y ) ~  x i,m  (3.27)

where L(Pf2g)is  the final loglikelihood of the non-spatial model, L(Pg)\?, the final

loglikelihood of the spatial model, and xl,o.os is the chi-squared critical value at 5% level

of signifieanee with r  degrees of freedom, r  is the number of restrictions, in this case, 1.

3.8.6. Forecasted Alternative Shares

The final comparison performed was between the short-term and long-term forecasts 

of destination shares. The comparison was made between the best spatial model and the 

non-spatial model. Three levels of increase in hotel/casino and retail jobs were used to 

forecast the destination shares and evaluate the difference between the two models.

3.9. Creating Origin-Destination Matrix Using MNL Results

The destination choice model shown in Equation (3.4) predicts the probability of 

individual n to choose destination j.  However, for planning purposes, the aggregate 

probability of all individuals who choose destination j, is required in order to estimate the 

proportion of population from origin i choosing alternative destination j .  The proportion 

is used to create the origin-destination (OD) matrix for the year of analysis. Suppose Ny is 

the number of individuals from origin i choosing alternative j  as their destination, the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aggregate probability for this group,/A O’ can be computed as shown in Equation

Ay
(3.28)

Principally, the individual probabilities of selecting a specific destination are 

generated from trip attractions (job opportunities at the destination and spatial relativity 

of all possible destinations). The aggregate probability ean be applied to trip productions 

estimated for the origin zone to create the 0-D matrix. Conceptually, this makes the 

analysis similar to the gravity model (ITE 1992). Given Pi as the estimated trip 

productions from zone i, and Aj as the trip attractions for zone j ,  the number of trips 

between origin i and destination j ,  Ty can be eomputed as shown in Equation (3.29). 

Table 3.4 shows the general form of the 0-D matrix for the logit model with 17 

alternative destinations, all available to each individual.

, (3 2 :9)

Table 3.4. General form of 0-D matrix from logit model

Attractions (at destination j)

1 2 ••• 17 Pi

.s
1 Z^ /̂rfZ/O* ZV PI

o
t;

2 z%:,,rz7; * z)2 P2

S
VIao

•

17 z)^L,7rz7;* Z)Z7 P17

2Clh A j A1 .42 .4Z7 Y A i  = Y P i  = T
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CHAPTER 4

RESULTS AND DISCUSSIONS

A. TRIP GENERATION MODELS

4.1. Expansion Factors

Table 4.1 shows the initial expansion factors developed and used to expand the trip 

generation observations to reflect estimates of the Las Vegas valley population in 1996. 

These were eomputed by using the following equation whieh was developed in Section 

3.3.4:

(4.1)
( h , v )

in which are the sampled households in 1996 and 790^*^; are the 1990 total

households in a category of households with size h and v vehicles, respectively. The 

growth factors developed for each district as explained in Section 3.3.4 were applied to 

these initial factors to obtain final factors used to expand the sample.

Table 4.1. Initial expansion factors
HH Size 

{h)
Available Vehicles per House bold (v)

0 1 2 3+
1 120.3 127.2 103.1 120.9
2 174.3 148.4 129.1 153.5
3 323 J 165.2 148.7 153.0

4+ 194.2 220.6 162.0 164.2
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4.2. Correlation Test Results

The correlation tests of the variables for trip attraetion and trip production models 

were performed. The dependent variable for trip attraction model was the number of trips 

attracted to a district (expattrac) and the explanatory variables from the database were the 

number of gaming jobs per district and the number of non gaming jobs. Table 4.2 

presents the results of the correlation test for trip attraction totals transformed by taking 

natural logarithm and the explanatory variables: gaming jobs and non-gaming jobs. The 

number in the bracket is the p-value associated with the correlation coefficient. The p- 

value less than 0.05 indicate that the variables are significantly correlated. The results 

indicated that the variables were not significantly correlated with a correlation coefficient 

of 0.0879 and a p-value of 0.7373.

It should be noted that when conducting a regression analysis, the assumption is that 

the residuals are normally distributed. One way to make it very likely to have normally 

distributed residuals, although not guaranteed, is to have a dependent variable that is 

normally distributed and predictors that are all normally distributed. Therefore, the 

variables were tested for normality, and the dependent variable was found to follow a 

distribution other than normal. To create linearity among the variables, several 

transformations and normality tests were performed. Close to normal and linear results 

were obtained for transformations by computing natural logarithm and/or by taking the 

inverse of the square root. Therefore, three types of models were estimated: using non­

transformed number of trips, transformed by taking natural logarithm, and transformed 

by finding the inverse of the square root.
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Table 4.2. Correlation coefficients for trip attraction model input variables

expattraclog Gaming Non-Gaming
expattraclog 1.0000

Gaming

0.5356
(0.0174)

1.0000

Non-Gaming

0.8006
(0.0001)

(10879
(0.7373)

1.0000

The dependent variable for the trip production model was the number of trips 

produced by a zone and the relevant explanatory variables were the population density, 

household size, and number of individuals with specific income level in a district. Table 

4.3 presents the results of the correlation test for trip production totals transformed by 

finding the square root and the explanatory variables. Significant correlation coefficients 

are highlighted.

The results indicated that the variables lowinc and mediuminc are highly and 

significantly correlated to each other compared to other variables as shown in Table 4.3. 

The variable mediuminc is also highly and significantly correlated with highinc. While 

the hh_size variable was highly and significantly correlated with highinc, the poparea  

variable was highly and significantly correlated with lowinc. As a result, poparea, 

mediuminc, and hhjsize variables were not included in the model.

Several transformations were performed and tested for linearity among the variables. 

Transformation indicated close to normal and linearity results for transformation by 

applying natural logarithm and for transformation by finding the square root. Three types 

of models were estimated: using non-transformed number of trips, transformed by taking 

natural logarithm, and transformed by finding the square root.
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Table 4.3. Correlation Coefficients or all trip production input variables
expproducsqrt lowinc mediuminc highinc hh size poparea

expproducsqrt 1.0000

lowinc
0.4802

(0.0253) 1.0000

mediuminc
0.8088

(0.0000) 1.0000

highinc
(18178

(0.0000)
11.1340

(0.6058)
0.6384

1.0000

hh size
0.2513

(0.2842)
0.2393

(0.3549)
0.2288

(0.3770)
0.3239

(0 0248, , 1.0000

poparea
0.0488

(0.5511)
0.4243 0.3913

(0.1203)
-0.0006
(0.9983)

0.3766
(0.1362) 1.0000

4.3. Trip Attraction Model Estimation Results

Different specifications for non-spatial model and spatial model were estimated using 

STATA® software. The Ordinary Least Square (OLS) method of estimation was used for 

the non-spatial model while the Maximum Likelihood Estimation (MLE) method was 

used for the spatial model. The following sub-sections give the details of estimation 

results.

4.3.1. Non-Spatial Models

The non-spatial trip attraetion model of home-based work trips was estimated using 

non-transformed number of trips (Equation 4.2), number of trips transformed by taking 

natural logarithm (Equation 4.3), and number of trips transformed by finding the inverse 

of the square root (Equation 4.4). Since the non-transformed number of trips violates the 

OLS assumption of linearity, the results of the model estimated using non-transformed 

number of trips were excluded.

(a t t r a c t io n s ), = p , * (g a m in g  j o b s ),
+ P 2 * ( n o n  -  GAMING jo b s ) ,  , 
+ CONSTANT

(4 2)
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(Ln(ATTRACTIONS;). =yg/ (GAMING JO B S\

+ P 2 * (n O N -G A M IN G  j o b s ), , (4.3)
+ CONSTANT

(  J \
-y— —  = P , *  (GAMING j o b s ),

ATTRACTIONS ) ,

+ p2* (n o n  -  GAMING j o b s ), , (4.4)
+ CONSTANT

The models with transformed number of trips were compared by using the Adjusted-

R squared value. It was found that the model estimated by using number of trips

transformed by applying natural logarithm was better than the model using non-

transformed trips in explaining variability in observed trips (Adj-R^ of 0.84 against 0.73).

Also, the t-statistics are consistently higher. Therefore, this model was chosen as the best

fit for non-spatial trip attraction model. Table 4.4 shows a summary of the results of the

selected non-spatial model of trip attraetion. Full model results are shown in Appendix D.

The positive sign of the coefficients of all variables {Gaming and NonjGaming) is

consistent with intuition. It is expected that the higher the number of jobs available in

gaming industry and other industries, the higher the number of trips attracted to a zone.

Also, the positive constant indicates that the number of trips attracted to a specific zone is

always positive. Mathematically, the resulting model can be written as:

(Ln(ATTRACTIONS) \  = 0.016 * (GAMING JOBS),

+ 0.033 * (n o n  -  GAMING JO B S ),, (4.5)
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Table 4.4. Non-Spatial Attraction Model using log transformed trips
C oef. Std. E rr. t P>|t| [95%  C onf. Interval]

Gaming jobs 0.016 0.003 4.65 0.000 0.009 &023
Non Gaming jobs 0.033 0.004 7.54 0.000 0.023 0.042

cons 8151.189 166.814 4& 86 0.000 7793.409 8508.969

Number of obs: 17
F( 2, 14): 42.66
Prob > F: 0.000
R-squared: 0.8591
Adjusted R-squared: 0.8389

4.3.2. Spatial Models of Trip Attraction

To investigate the effect of location on number of trips attracted to a particular 

district, the variables were tested for spatial autoeorrelation. The Moran’s 1, the Geary’s 

C and the Getis & Ord’s G statistics were estimated for all variables as well as three 

forms of the response variable. All three of the test results in Table 4.5 indicate that there 

is significant spatial autocorrelation in the number of trips attracted to zones transformed 

by applying natural logarithm. The results suggested incorporation of the effects of 

spatial location on trip attraction model.

Both spatial error and spatial lag models were estimated using the number of trips 

transformed by applying natural logarithm. Their final loglikelihoods were compared to 

identify the best fit model. Table 4.6a shows a summary of the spatial lag and spatial 

error trip attraction model results estimated using the binary contiguity spatial 

relationship. The results indicate that the spatial variable is not significant (p-value is 

greater than 0.05) at the 5% level of significance for both the spatial error and the spatial 

lag model. While the coefficients of the variables for the two models are similar, the final 

loglikelihood values indicate that the spatial lag model is slightly better than the spatial 

error model (loglikelihood o f -121.85 against -121.87).
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Table 4.5. Spatial autocorrélation statistics for trip attraction
MORAN’S I

Variables I E(D sd(I) z p-value
expattrac 0J89 41.063 0.125 2.811 0.002
expattracsqrinv 0.225 -0.063 0.125 2.290 0.011
expattraclog 0.277 -0.063 0.129 2.635 0.004
Gaming 0.078 -0.063 0.066 2.114 0.017
Non Gaming -0.086 -0.063 0T25 -0.192 0.424

GEARY’S C
Variables c E(c) sd(c) z p-value

expattrac 0.771 1.000 0.144 -1.589 0.056
expattracsqrinv 0.806 1.000 0.143 -1.359 0.087
expattraclog 0.751 1.000 0.135 -1.837 0.033
Gaming 1.026 1.000 0.217 0.119 0.453
Non Gaming 1.107 1.000 0.145 0.741 0.229

GETIS & ORD’S G
Variables G E(G) sd(G) z p-value

expattrac 0.459 0.309 0.039 :T892 0.000
expattracsqrinv 0.293 0.309 0.016 41989 0.161
expattraclog 0.317 0.309 0.003 2.679 0.004
Gaming 0.589 0.309 0.087 3.229 0.001
Non Gaming 0.358 0.309 0.026 L883 0.003

This model (spatial lag) can be written as follows:

(Ln(ATTRACTIONS)\ =0.016*{GAMING JO BS\
+ 0.032 * {n o n  -  GAMING JO BS\ 
+ 0.002*{SPATIAL\

(4.6)

Table 4.6b shows a summary of the spatial lag and spatial error trip attraction model 

results estimated using the separation spatial relationship. The results indicate that the 

spatial variable is significant (p-value is less than 0.05) at the 5% level of significance for 

both the spatial error and the spatial lag model.
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Table 4.6a. Spatial model o f attraetion using binary contiguity spatial relationship

Spatial Lag Modlei Spatial Error Model

Coef.
Std.
Err. z P>|z| Coef.

Std.
Err. z P>|z|

Gaming 0.016 0.004 4.31 0.016 0.016 0.003 4.56 0.000
Non Gaming 0.032 0.005 6.50 0.032 ' 0.032 0.005 6.59 0.000

cons 8083.894 347.954 23.23 0.000 8137.35 279.834 29.08 0.000
spatial 0.002 0.009 0.21 0.002 0.001 0.011 0.06 0.953

Likelihood ratio test of rho=0: 
chi2(l)= 0.046(0.830)

Likelihood ratio test of lambda=0: 
chi2(l)= 0.003 (0.953)

Number of obs = 17 Number of obs = 17
Log likelihood = -121.84752 Log likelihood = -121.86881

While the eoefficients of the variables for the two models in Table 4.6b are close, the 

final loglikelihood values indicate that the spatial lag model is slightly better than the 

spatial error model (loglikelihood of -118.91 against -119.00). This model (spatial lag) 

ean be written as follows:

{Ln(ATTRACTIONS)\ = 0.013 * {GAMING JO BS\
+ 0.029 * {n o n  -  GAMING JO BS\ 
+ 0.059* {s p a t ia l ),
+ 7574. ad

(4 7)

Table 4.6b. Spatial model of attraetion using separation spatial relationship
Sipatial Lag Model Spatial Error Model

Coef.
Std.
Err. z P>|z| Coef.

Std.
Err. z P>|z|

Gaming 0.013 0.003 4.56 0.000 0.013 0.003 4.62 0.000
Non Gaming 0.029 0.004 7^W 0.000 0.028 0.004 7.84 0.000

cons 7514.856 270.646 27.77 0.000 8063.099 136.273 59.17 0.000
jp a t ia l 0.059 0.022 2.66 0.008 0.068 0.025 2.67 0.007

Likelihood ratio test of rho=0: 
chi2(l)= 5.927 (0.015)

Likelihood ratio test of lambda=0: 
chi2(l)= 5.735 (0.017)

Number of obs = 17 Number of obs = 17
Log likelihood = -118.907 Log likelihood = -119.003
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Table 4.6c shows a summary of the spatial lag and spatial error trip attraction model 

results estimated using the eontiguity-separation spatial relationship. The results indicate 

that the spatial variable is signifieant (p-value is less than 0.05) at the 5% level of 

significance for both the spatial error and the spatial lag model. While the coefficients of 

the variables for the two models are close, the final loglikelihood values indicate that the 

spatial lag model is slightly better than the spatial error model (loglikelihood of -119.58 

against -119.73). This model (spatial lag) can be written as follows:

{Ln(ATTRACTIONS)\ = 0.012 * {GAMING JOBS),
+ 0.028 * {n o n  -  GAMING JOBS), 
+ 0.071* {s p a t ia l ),
+ 7363.54

(4 8)

Table 4.6e. Spatial model of attraetion using eontiguity-separation spatial relationship

Spatial Lag Model Spatial Error Model

Coef.
Std.
Err. z P>|z| Coef.

Std.
Err. z P>|z|

Gaming 0.012 0.003 3.88 0.000 A 0.013 0.003 4.10 0.000
Non Gaming 0.028 0.004 7.34 0.000 0.029 0.004 7.35 0.000

cons 7863.543 182328 43.13 0.000 ; 8543.65 230.40 37.08 0.000
spatial 0.071 0.031 2.29 0.022 0.079 0.035 226 0.024

Likelihood ratio test of rho=0: 
chi2(l)= 4.573 (0.032)

jg Likelihood ratio test of lambda=0: 
chi2(l)= 4.293 (0.038)

Number of obs = 17 Number of obs = 17
Log likelihood = -119.58413 MWLog likelihood = -119.72389

Table 4.6d shows a summary of the spatial lag and spatial error trip attraction model 

results estimated using the eeonomie linkage (aeeessibility) spatial relationship. The 

results indicate that the spatial variable is significant (p-value is less than 0.05) at the 5% 

level of significance for both the spatial error and the spatial lag model. While the
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coefficients of the variables for the two models are similar, the final loglikelihood values 

indieate that the spatial lag model is slightly better than the spatial error model 

(loglikelihood of -120.85 against -120.90). This model (spatial lag) can be written as 

follows:

{Ln(ATTRACTIONS)\ = 0.010 * {GAMING JO BS\
+ 0.024 * {n o n  -  GAMING JOBS), 
+ 0.005* {s p a t ia l ),
+ 3075.69

(4.9)

Table 4.6d. Spatial model of attraetion using eeonomie linkage (aeeessibility) spatial
relationship

Spatial Lag Model

1

s patial Error Model

Coef.
Std.
Err. z P>|z| Coef. Std. Err. z P>|z|

Gaming 0.010 0.005 2.15 0.031 0.011 0.005 2.19 0.029

Non Gaming 0.024 0.007 332 0.001 0.024 0.007 326 0.001

cons 8015.681 169.663 47.24 0.000 1 8054.397 158.467 50.83 0.000

spatial 0.005 0.003 1.47 0.141 0.005 0.003 1.53 0.125

Likelihood ratio test of rho=0: 
chi2(l)=  2.042(0.153)

Likelihood ratio test of lambda=0: 
chi2(l)=  1.943 (0.163)

Number of obs = 17 Number of obs = 17

Log likelihood = -120.84953 1SSSSSS3 Log likelihood = -120.89914

4.3.3. Comparison of Trip Attraction Models

The criteria for seleeting the best method of quantifying spatial relationships were based 

on the goodness-of-fit of the models estimated using different spatial relationships. Table 

4.7 presents the computed RSS, AIC, SIC and the final loglikelihood for the three spatial 

models. The results indieate that the model estimated using the spatial weight matrix 

defined with separation spatial relationship has the minimum RSS, AIC and SIC. In 

addition to minimizing RSS, AIC and SIC, it should be noted that the model estimated
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using contiguity-separation spatial relationship maximized the final loglikelihood. Figure 

4.1 graphically compares the results. Appendix F contains the computations of RSS, AIC 

and SIC. Therefore, the spatial lag model estimated using separation spatial relationship 

was selected as the best spatial model for trip attraction. The coefficients estimated were 

compared to those estimated by using non-spatial model of Table 4.5.

Table 4.7. Comparison of the models for trip attraction

Non
Spatial Contiguity Separation

Contiguity-
separation Accessibility

RSS L82 1.86 1.13 1.4 1.92
AIC 1.52 1.75 1.07 1.32 1.81
SIC 1.76 :Li3 1.30 1.6 2.21
Log
Likelihood -121.85 -118.91 -119.58 -120.845

s
p.

o
0
3

1

3

2.5 

2

1.5 

1

0.5

0

H Non-Spatial 
□ Separation 
■ Accessibility

RSS

■ Contiguity 
□ Contiguity-Separation

AIC

Comparison Criteria

SIC

Figure 4.1. Comparison of the models of trip attraction
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The comparison results showing the percentage change are presented in Table 4.8. 

Consistently, the comparison results indicated a decrease in the coefficients estimated 

with spatial trip attraction model. This suggests that non-spatial models of trip attraction 

overestimate the coefficients.

Table 4.8. Percentage changes in coefficient estimates for spatial models

Variable

Non Spatial Model Spatial Model % Change 
in

coefficientsCoefficient t-stat. Coefficient t-stat.
Gaming 0.016 4^6 0.013 4.56 -18.75

Non Gaming 0.033 7.54 0.029 7j# -12.12
cons 8151.189 48.86 7514.86 2T77 -7.81

spatial - - 0.059 2j&

In addition, the observed trips were compared to the modeled trips for both spatial 

and non-spatial trip attraction models. Figure 4.2a shows the bar-chari by district for 

spatial model while Figure 4.2b shows the bar-chari for non-spatial model. Figure 4.2c 

shows the linear comparison of modeled against observed trips for the spatial model 

while Figure 4.2d shows linear comparison for the non-spatial model. It can be clearly 

seen that the modeled trips are closer to the observed trips for the spatial model than for 

the non-spatial model. Figure 4.2e shows the percentage deviation of modeled trips from 

observed trips for both the spatial model and the non spatial model. The results indicates 

a smaller deviation for the spatial model, which suggests a much better prediction 

capability of the spatial model compared to the non-spatial model. Specifically, while the 

non-spatial model had an average absolute deviation of 31 %, the spatial model had an 

average absolute deviation of only 17%—an increase of 14% in prediction accuracy.
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Figure 4.2a. Bar-chart comparison of observed trips against modeled trips for spatial
model
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Figure 4.2b. Bar-chart comparison of observed trips against modeled trips for non-spatial
model
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Figure 4.2c. Linear comparison of observed trips against modeled trips for spatial model
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Figure 4.2d. Linear comparison of observed trips against modeled trips for non-spatial
model
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Figure 4.2e. Percentage deviation of modeled against observed trips for non-spatial
model

Furthermore, the percentage deviations were plotted against observed trips to identify 

any presence of special pattern, for example higher deviations for zones with higher trip 

totals. Figure 4.3a shows the plot for the spatial model while Figure 4.2b shows the plot 

for non-spatial model. The results indicated no special pattern in deviations, suggesting 

that the models estimated using the number of trips transformed by taking natural log, 

have the correct functional form.

4.4. Trip Production Model Estimation Results

Similar to the trip attractions, different model specifications for non-spatial and 

spatial trip production models were estimated. The Ordinary Least Square (OLS) method 

of estimation was used for non-spatial model while the Maximum Likelihood Estimation 

(MLE) method was used for the spatial model. The following sub-sections present the 

details of estimation results.
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4.4.1. Non-Spatial Models

The non-spatial trip production model was estimated using non-transformed number 

of trips (Equation 4.10), number of trips transformed by applying natural logarithm 

(Equation 4.11), and number of trips transformed by finding the square root (Equation 

4.12). Since the non-transformed number of trips violates the linear assumption, the 

model results were excluded. The models with transformed number of trips were 

compared by using the Adjusted-R squared value.

(PRODUCTIONSl (n O. OF LOW INCOME HOUSEHOLDS).
+ {n o . o f  h ig h  in c o m e  h o u s e h o l d s ). , (4.10)
-h CONSTANT

{Ln(PRODUCTIONS)). = p *  {n O. OF LOW INCOME HOUSEHOLDS).
+ p2*{NO.OF HIGH INCOME h o u s e h o l d s ). , (4.11)
+ CONSTANT

[^p r o d u c t io n s ], = p * {n o . o f  l o w  in c o m e  h o u s e h o l d s ),
+p , * {n o . o f  h ig h  in c o m e  h o u s e h o l d s ), , (4.12)
+ CONSTANT

It was found that the model estimated by using number of trips transformed by 

finding the square root was better than the model estimated using non-transformed

number of trips (Adj-R^ of 0.78 against 0.69). Also, the t-statisties are higher in the

model estimated using number of trips transformed by finding the square root. Therefore, 

this model was chosen as the best fit for non-spatial trip production model. Table 4.9 

shows a summary of the results of the selected non-spatial model of trip production. The 

final equation with numerical coefficients is shown in Equation (4.13). Mathematically, 

the resulting model can be written as follows:
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[^PRODUCTIONS\ = 1.118* {NO. OF LOW INCOME HOUSEHOLDS), 
+ 0.562 * {n o . o f  h i g h  INCOME HOUSEHOLDS), (4 13)

Table 4.9. Coefficient estimates of the non-spatial trip production model

Std.
Coef. Err t P>|t| [95% ContF. Interval]

lowinc 1.118 0.212 5^9 0.000 0.664 1.572
highinc 0.562 0.058 9.67 0.000 0.437 0.686

cons 6783.664 647.887 10.47 0.000 5394.085 8173.242

Number of obs; 17
F( 2, 14); 29.50
Prob>F: 0.0000
R-squared: 0.8082
Adj R-squared: 0.7808

4.4.2. Spatial Models of Trip Production

Similar to the trip attraction model, the variables were tested for spatial 

autocorrelation to investigate the effect of location on number of trips produced from a 

particular district. The Moran’s I, the Geary’s C and the Getis & Ord’s G statistics were 

estimated and are shown in Table 4.10. The results indicated that there is no significant 

spatial autocorrelation in the observations of the response variable. However, in order to 

confirm this finding, the spatial models were estimated and compared with the non- 

spatial model.

Both the spatial error and the spatial lag models were estimated using the number of 

trips transformed by finding the square root. Their final loglikelihoods were compared to 

identify the best fit model. Table 4.11a shows a summary of the spatial lag and the spatial
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error trip production model results estimated using the binary contiguity spatial 

relationship. The results indicate that the spatial variable is not significant (p-value is 

greater than 0.05) at the 5% level of significance for both the spatial error and the spatial 

lag model. In addition to the coefficients of the variables for the two models being close, 

the final loglikelihood value of the spatial error model is similar to that of the spatial lag 

model (loglikelihood o f -150.849 against -150.85).

Table 4.10. Moran’s I statistics for trip production model variables

MORAN-I
Variables I E(I) sd(I) z p-value

expproduc -0.167 -0.063 0.127 -0.823 0.205
expproduclog -0.109 -0.063 0.125 -0.371 0.355
expproducsqrt -0.147 -0.063 0.128 -0.664 0.253
lowinc 0.078 -0.063 0.114 1.232 0.109
highinc 0.001 -0.063 0.122 0.518 0.302

GEARYC
Variables c E(c) sd(c) z p-value

expproduc 1.149 1.000 0.140 1.065 0.143
expproduclog 0.987 1.000 0.145 -0.089 0.464
expproducsqrt 1.092 1.000 0T38 0.666 0.253
lowinc 0.904 1.000 0.164 -0.588 0J78
highinc 0.992 1.000 0.150 -0.050 0.480

GETIS & ORD G
Variables G E(G) sd(G) z p-value

expproduc 0.321 0.309 0.025 0.466 0.321
expproduclog 0.312 0.309 0.002 1.089 0T38
expproducsqrt 0.318 0.309 0.012 0.806 0.210
lowinc 0.447 0.309 0.065 2T39 0.016
highinc 0.330 0.309 0.035 0.616 0.269

Mathematically, the resulting model (spatial lag) can be written as follows:
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[[p r o d u c t io n s  )  =0.86* (NO. OF LOW INCOME HOUSEHOLDS), 
+ 0.48* {n o . o f  h ig h  in c o m e  HOUSEHOLDS),
+0.0012* {s p a t ia l ).

(4.14)

Table 4.11a. Spatial model of production using binary contiguity spatial relationship

Spatial Lag Model Spatial Error Model
Coef. Std. Err. z P>|z| ^ Coef. Std. Err. z P>|z|

lowinc 0.86 0.25 3.42 0.001 &88 0.26 3.31 0.001
highinc 0.48 0.07 7.15 O.OOi) 0.49 0.07 7.15 0.000
cons 7455.67 1893.05 3.94 0.000 # 7660.45 1522.12 5.03 0.000

spatial 0.0012 0.03 0.04 0.965 B -0.005 0.05 -0.10 0.923
Likelihood ratio test of spatial=0: Likelihood ratio test of spatial=0:
chi2(l) = 0.002 (0.965) chi2(l) = 0.009 (0.923)
Number of obs = 17 Number of obs = 17
Log likelihood = -150.85303 Log likelihood = -150.84926

Table 4.1 lb shows a summary of the spatial lag and the spatial error trip production 

model results estimated using the separation spatial relationship. The results indicate that 

the spatial variable is not significant (p-value is greater than 0.05) at the 5% level of 

significance for both the spatial error and the spatial lag model. While the coefficients of 

the variables for the two models are close, the final loglikelihood values indicate that the 

spatial error model is slightly better than the spatial lag model (loglikelihood of -146.15 

against -146.34 respectively). Mathematically, the resulting model (spatial lag) can be 

written as follows:

[[p r o d u c t io n s ] = 1.014 * {n o . o f  l o w  in c o m e  h o u s e h o l d s ), 
+ 0.582 * {n o . o f  h ig h  INCOME HOUSEHOLDS),
+ 0.073* {s p a t ia l ).

(4 15)
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Table 4.11b. Spatial model of production using separation spatial relationship

Spatial Lag Model Spatial Error Model
Coef. Std. Err. z P>|z| 0 Coef. Std. Err. z P>|z|

lowinc 1.014 0.217 4.68 0.000 1.022 0.230 4.45 0.000
highinc 0.582 0.055 10.50 0.000 0.573 0.054 10.65 0.000
cons 5393.864 1568.864 3.44 0.001 6456.935 796.109 8.11 0.000

spatial 0.073 0.077 0.95 0.341 0.111 0.152 0.73 0.467
Likelihood ratio test of spatial=0: 
chi2(l)= 0.882(0.348)

Likelihood ratio test of spatial=0: 
chi2(l)= 0.504 (0.478)

Number of obs = 17 Number of obs = 17
Log likelihood = -146.15213 Log likelihood = -146.3408

Table 4.11c shows a summary of the spatial lag and the spatial error trip production 

model results estimated using the contiguity-separation spatial relationship. The results 

indicate that the spatial variable is not significant (p-value is greater than 0.05) at the 5% 

level of significance for both the spatial error and the spatial lag model.

Table 4.11c. Spatial model of production using contiguity-separation spatial relationship

Spatial Lag Model Spatial Error Model
Coef. Std. Err. z P>|z| Coef. Std. Err. z P>lz|

lowinc Œ88 0.28 3.19 0.001 0.91 0.29 3.13 0.002
highinc 0.48 0.07 6.55 0.000 0.48 0.07 6.70 0.000
cons 7705.03 1437.47 5.36 0.000 7380.13 900.62 8.19 0.000

spatial -0.02 0.13 -0.14 0.887 -0.06 0.23 -0.28 0.778
Likelihood ratio test of spatial=0: 
chi2(l)= 0.020 (0.887)

Likelihood ratio test of spatial=0: 
chi2(l)= 0.080 (0.777)

Number of obs = 17 Number of obs = 17
Log likelihood = -150.84389 Log likelihood = -150.81381
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While the coeffieients of the variables for the two models are close, the final 

loglikelihood values indicate that the spatial error model is slightly better than the spatial 

lag model (loglikelihood of -150.81 against -150.84 respectively). Mathematically, the 

resulting model (spatial error) ean be written as follows:

[^p r o d u c t io n s ] = 0.88*{n O. OF LOW INCOME HOUSEHOLDS), 
+ 0.48* (n o . o f  h ig h  in c o m e  HOUSEHOLDS),
- 0.02* (s p a tia l),
+ 7705.03

(4 16)

Table 4.1 Id shows a summary of the spatial lag and the spatial error trip production 

model results estimated using the economic linkage (accessibility) spatial relationship. 

The results indieate that the spatial variable is not signifieant (p-value is greater than 

0.05) at the 5% level of significance for both the spatial error and the spatial lag model.

Table 4.1 Id. Spatial model of production using economic linkage (accessibility) spatial
relationship

Spatial Lag Model Spatial Error Model

Coef.
Std.
Err. z P>|z| Coef.

Std.
Err. z P>|zl

lowinc 0.87 0.27 3.25 0.001 0.89 0.28 3.23 0.001
highinc 0.48 0.07 7.15 0.000 0.49 0.07 7.08 0.000

cons 7563.62 1045.42 7.23 0.000 1 7649.5 967.4 7.91 0.000
spatial -0.0003 0.01 -0.04 0.964 -0.0022 0.01 -0.19 0.847

Likelihood ratio test of spatial=0: 
chi2(I)= 0.002(0.964)

Likelihood ratio test of spatial=0: 
chi2(l)= 0.038 (0.846)

Number of obs = 17 Number of obs = 17
Log likelihood = -150.85298 Log likelihood = -150.83507

While the eoeffieients of the variables for the two models are elose, the final 

loglikelihood values indieate that the spatial error model is slightly better than the spatial
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lag model (loglikelihood of -150.84 against -150.85). However, the spatial variable is not 

significant in both models. Mathematically, the resulting model (spatial lag) ean be 

written as follows;

[[p r o d u c t io n s  ), =0.87* (n O. OF LOW INCOME HOUSEHOLDS), 
+ 0.48* {n o . o f  h ig h  in c o m e  HOUSEHOLDS), 
-0.0003*{SPATIAL),
+ 7563.62

(4.17)

4.4.3. Comparison of the Trip Production Models

The eriteria for selecting the best model were based on the goodness-of-fit of the 

models. Table 4.12 presents the eomputed RSS, AIC, SIC and the final loglikelihood for 

the three selected spatial models, one for eaeh alternative quantification of the spatial 

relationship. The non-spatial model was used as a base for comparison.

Table 4.12. Comparison of the models of trip production

Non Spatial Contiguity Separation
Contiguity-
separation Accessibility

RSS (10^) 6.00 &81 6.17 &25 6.29

AIC (10^) 5.03 5.47 5.81 5 j# 5 92

SIC (10^) 5jC &65 7.07 7.16 7.21

Final
Loglikelihood

- -150.85 -146.15 -150.81 -150.84

The results indicate that while the spatial models minimize RSS, they have higher 

AIC and SIC. This implies that the spatial variable in the spatial models of trip 

production is unnecessary as shown in Tables 4.11b, 4.11c, and 4.1 Id. In addition, the 

likelihood ratio test indicates that the coefficient associated with the spatial variable is not

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



significantly different from zero (p-value greater than 0.05) as shown in these tables. 

Figure 4.4 shows the graphical comparison results. Appendix F shows the details of 

computations of RSS, AIC and SIC.
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Figure 4.4. Comparison of the models of trip production

Furthermore, the average absolute percentage deviation of modeled trips from 

observed trips were compared for non-spatial model and spatial models estimated using 

the four alternatives of defining spatial relationship. Figure 4.5 shows that the models 

developed with spatial variable do not minimize percentage deviation when compared to 

the non-spatial model.
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Figure 4.5. Comparison of the percent deviation for the models of trip production

4.5. General Findings on Trip Generation Models

The first finding was that for both trip attraction and trip production models, the non 

transformed observations do not satisfy the linear assumption of the models. This was 

resolved by transforming the response variable into other forms. The trip attraction 

observations were transformed by applying natural logarithm, while the trip production 

observations were transformed by finding the square root. The second finding was that 

the trip attraction observations are spatially autoeorrelated significantly while the trip 

production observations are not spatially autoeorrelated. This finding is consistent with 

intuition because for trip production, there is no direct linkage between one making a trip 

from one zone to someone else making a trip from an adjacent zone. Flowever, for trip 

attraction, it is possible that whatever attracts someone (from somewhere) to a specific 

zone is related to what attracts someone else (fi-om somewhere else) to an adjacent zone. 

If this case is true, the observations made at these two adjacent zones would be spatially 

correlated. The last key finding is that using the contiguity spatial relationship only does
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not fully explain the effect of spatial relationship in the observations. However, 

introduction of separation between the observations improves the explanation of the 

effect of spatial relationship.

B. DESTINATION CHOICE MODELS

4.6. Descriptive Statistics and Correlation Test

Table 4.13 shows the descriptive statistics of the variables used. The results indicate 

that the average age of people who participated in the survey was 46.53 years while the 

maximum age was 87.

Table 4.13. Descriptive statistics for selected variables
Variable Obs Mean Std. Dev. Min Max

cbd 1113 1.43 2.24 0.02 42.99
hotelre 1113 41939.39 35868.50 2709.58 116928.30
otherjo 1113 2143.64 130&28 172.34 4990.91
vehhhworker 1113 0.83 0.45 0 4
age 1112 46.58 13.47 16 87
income 1113 2.35 0.62 1 3

Table 4.14 presents the correlation coefficients for selected variables. The results 

indicate that the variables selected are less correlated. This suggests that all variables can 

be used together to estimate the destination choice model.

Table 4.14. Correlation eoeffieients of the variables
cbd hotelre otherjo vehhhworker age income

chd 1.000
hotelre -0.076 1.000
otherjo -0.145 0.410 1.000

vehhhworker -0.026 -0.008 -0.040 1.000
age -0.010 0.022 0.091 0.104 1.000

income -0.171 -0.008 -0.042 0.226 -0.031 1.000
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4.7. Destination Choice Model Estimation Results

The models with all variables were initially specified and estimated. Table 4.15 

presents a summary of the results for the model with all variables while Appendix G 

presents the full results. District eight and fifteen were used as basis since they eonstitute 

the resort corridor and the downtown area. The two locations contain most of the 

ho tel/casino jobs. The model results indicated that only hotel/easino and retail jobs 

{hotelre) and other jobs {otherjo) were the significant variables. The spatial variable was 

also signifieant in the spatial model. Since the alternative specific constant was also not 

significant, the final models were estimated with generic constant. It should be noted that 

a multinomial logit model with generic is the same as the one without a constant—the 

constant does not affect the utilities.

The non-spatial model and the spatial model using hotel/casino and retail, and other 

jobs only were finally estimated. The spatial model included a variable quantifying the 

separation between the origin and the destination.

Table 4.16 shows the results for the non-spatial model. The results indicate that all 

coefficients have the signs consistent with intuition. The coefficient for casino/hotel and 

retail jobs, which is the number of jobs in hotel/casino and retail available in a district 

have a positive sign indicating that the increase in casino/hotel and retail jobs results in 

increase in utility of the alternative being chosen as a destination. The same interpretation 

is applicable to the number of jobs other than hotel/easino and retail. Mathematically, the 

resulting model ean be written as follows:

^O.I7*{HOTEL / CASINO JOBS)j+0.47*{OTHER JOBS)j+0.24 

P „ ( j )  — ~ ^  0. 17*(hOTEL7 CASINO jo b s )  ,,+0.47*{OTHER JOBS),,+0.24 ’ (4.18)
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Table 4.15. Results for the model with all variables

Socioeconomics Destination Attributes

Alt.
Vehicles

per
drivers

age Income CBD
Jobs in 

hotel and 
retail

Other
jobs Spatial Constant

1 0.789
(1.82)

0.015
(0.87)

-0.350
(-0.73)

0.023
(f& o

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-2.143
(-1.15)

2 -0.306
(-0.65)

-0.018
(-1.27)

0.084
(0.20)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-0.360
(-0.47)

3 0.688
(1.96)

-0.008
(-0.64)

0.127
(0.32)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-1.320
(-1.80)

4 0.682
(0.99)

-0.030
(-1.09)

0.965
(0.89)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-1.057
(-0.60)

5 0.406
(0.83)

0.014
(0.85)

0.223
(0.43)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-2.890
fT 85)

6 0.644
(1.09)

-0.019
(-0.87)

-0.538
(-0.87)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-1.734
(-1.47)

7 0.286
(0.50)

-0.037
(-1.94)

-0.902
(-1.77)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-0.141
(-0.15)

8 0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

9 0.074
(0.22)

-0.010
(-1.03)

0.014
(0.05)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

0.605
(1.06)

10 -0.404
(-1.01)

-0.006
(-0.47)

-0.177
(-0.52)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

0.813
(1.21)

11 0.487
(0.96)

-0.011
(-0.61)

-0.436
(-0.86)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

0.947
(0.85)

12 0.188
(0.50)

-0.024
(-1.95)

0.610
(1.50)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

0.830
(1.13)

13 0.021
(0.04)

-0.033
(-1.96)

1.175
(1.80)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-1.007
(-1.00)

14 0.352
(1.29)

-0.009
(-1.04)

0.233
(0.87)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

0.478
(0.95)

15 Of%3
(1.54)

0T68
(20.21)

0.476
(17.56)

2.640
(3.15)

16 0.489
(1.63)

0.001
(0.10)

0.109
(0.36)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-0.652
(-1.13)

17 0.749
(1.40)

0.003
(0.14)

-0.389
(-0.66)

0.023
(1.54)

0.168
(20.21)

0.476
(17.56)

2.640
(3.15)

-1.926
(-1.60)
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Table 4.16. Non-Spatial model results

Name Value Std err t-test p-value Robust 
Std err

Robust
t-test p-value

B hotelre 0.17 0TW8 20.17 0.000 0.008 20.30 0.0000
B otherjo 0.47 0.026 17.70 0.000 0.026 17.69 0.0000
C 0.24 0.104 2.33 0.020 0.104 233 0.0200
Number of individuals: 1,113
Init log-likelihood: -3,153.366
Final log-likelihood: -2785.457
Likelihood ratio test: 735.818
Rho-square: 0.117
Adjusted rho-square: 0.116

Table 4.17a shows the results for spatial model using separation (distanee) as the 

definition of spatial relationships between the origin and destinations. The results indieate 

that all coefficients have the signs consistent with intuition. The coefficient for 

casino/hotel and retail jobs, which is the number of jobs in hotel/easino and retail 

available in a district have a positive sign indicating that the increase in casino/hotel and 

retail jobs results in inerease in utility of the alternative being chosen as a destination. 

The same interpretation is applicable to otherjo, whieh is the number of jobs other than 

hotel/easino and retail. The spatial coeffieient is positive indicating that the higher the 

spatial relationship between the origin and the destination, the higher the utility of the 

alternative to the decision maker. It should be noted that the higher separation measure 

means shorter distanee between origin and destination sinee the measure is an inverse of 

the distance. Mathematically, the resulting model for individual n to choose destination j  

ean be written as follows:

ft I 7*(H0TEL /  CASINO JOBS)j +0.47*(OTHER JOBS), +2.64*(SPAriAL +0.158

0.17*{HOTEL /  CASINO JOBS) +0.47*(OTHER JOBS) +2.64*(SPATIAL) +0.158 . P ^ J (4.19)
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Table 4.17a. S jatial model results using separation spatial relationship

Name Value Std err t-test p-value Robust 
Std err

Robust
t-test p-value

B hotelre 0.17 0.008 20.18 0.0000 0.008 20J0 0.0000
B otheijo 0.47 0.026 17.70 0.0000 0.026 17.69 0.0000
B spatial 2.64 0.838 3.15 0.0004 &834 3.17 0.0004
C 0.158 0.187 0.85 0.4000 0.191 &83 0.41
Number of individua 
Init log-likelihood: -3 
Final log-likelihood: 
Likelihood ratio test: 
Rho-square: 0.118 
Adjusted rho-square:

s: 1113
15L366
-2780.124
744.485

0.117

Table 4.17b shows the results for spatial model using economic linkage— 

aceessibility measure as the definition of spatial relationships between the origin and 

destinations. The results indicate that all eoeffieients have the signs eonsistent with 

intuition. The eoeffieient for easino/hotel and retail jobs, which is the number of jobs in 

hotel/easino and retail available in a distriet have a positive sign indicating that the 

increase in casino/hotel and retail jobs results in increase in utility of the alternative being 

chosen as a destination. The same interpretation is applicable to otherjo, which is the 

number of jobs other than hotel/easino and retail. The spatial eoeffieient is positive 

indicating that the higher the spatial relationship between the origin and the destination, 

the higher the utility of the alternative to the decision maker. Also, it should be noted that 

the spatial relationship variable has relatively higher marginal impact on the utility of the 

alternatives. Mathematically, the resulting model for individual n to choose destination j  

ean be written as follows:

0. / 7*{hOTEL / CASINO JOBS)j+0.47*(OTHER J O B S \ +4.69*(SPATIAL),,-0 .07  

P n ( j)~ ~ ^  ft I  7*(H0TEL /  CASINO JOBS),, +0.47*{OTHER JO BS),,+4.69*(SPATIAL -0 .07  ' P ^ J  (4.20)
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Table 4.17b. Spatial model results using economic linkage (accessibility measure) spatial
re ationship

Name Value Std
err t-test p-value Robust 

Std err
Rebus 
t t-test p-value

B hotelre 0.17 0.008 20T8 0.0000 0.008 20.30 0.0000
B otheijo 0.47 0.026 17.70 0.0000 0.026 17.69 0.0000
B spatial 4.69 2.110 2.22 0.0300 2.020 2.32 0.0200
C -0.07 0T68 -0.41 0.6800 0.164 -0.42 0.6700
Number of individuals: 1113
Init log-likelihood: -3153.366
Final log-likelihood: -2782.962
Likelihood ratio test; 740.808
Rho-square: 0.117
Adjusted rho-square: 0.116

4.8. Model Evaluation and Comparison

The final loglikelihoods and adjusted rho-squared values were compared to identify 

the best model as shown in Figure 4.6. The results indicated that while all models had the 

same initial loglikelihood, the non spatial model had the lowest final loglikelihood and 

adjusted rho-squared. The model developed using separation spatial relationship had the 

maximum final loglikelihood and adjusted rho-squared. This indicates that the spatial 

model developed using separation spatial relationship is the best fitted model. Intuitively, 

the model using accessibility as the measure of spatial interaction was expected to be the 

best fitted model. However, since the accessibility measure uses total employment which 

contains employments in hotel/easino and retail and other jobs, it creates dependence 

between the variables, and hence disqualifies it trom being the best fitted model.

The model estimated with separation measure was further compared with the non- 

spatial model by conducting the likelihood ratio test with the null hypothesis that the 

coefficient of the separation measure variable was not different fi-om zero. The test 

statistic obtained (10.67) was greater than the critical value (3.84), suggesting that the
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Adjusted Rho-Squared# — Loglikelihood

-2778 0.1172
Non Spatial Sepaiation Accessibility 0.117-2779

0.1168-2780
0.1166-2781
0.1164

-2782
0.1162

-2783 0.116
-2784 0.1158
-2785 0.1156

0.1154-2786
M odel

Figure 4.6. Comparison of the models of destination ehoiee

eoeffieient assoeiated with the spatial variable was signifieantly different from zero at 5% 

level of signifieanee. This suggests that the model ineorporating separation measure is the 

best speeifieation for the destination ehoiee model. In order to quantify the differenee 

between the model without separation measure and the model with separation measure, 

sensitivity analysis as well as foreeasting eapability was analyzed. The following seetions 

provide the details of sensitivity analysis. Finally, a demonstration of how to use the 

model results to ereate origin-destination (O-D) matrix in praetiee is given.

4.9. Sensitivity analysis

In order to perform sensitivity analysis, the Las Vegas valley was divided into two 

areas: (1) Inner Distriets (7, 8, 9, 10, 14, 15, and 16) and (2) Outer Distriets (1, 2, 3, 4, 5, 

6, 11, 12, 13, and 17). The inner distriets inelude all distriets eontaining resort eorridor
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(Strip) and central business distriet (CBD) and other neighboring distriets. The outer 

districts contain all other distriets, as shown in Figure 4.7. The reason for dividing the 

valley into these parts was the assumption that jobs in hotel/easino and retails may have 

different growth rates for the inner and outer distriets. Three scenarios were considered:

(a) Inerease in easino/hotel and retail jobs in outer distriets only,

(b) Increase in easino/hotel and retail jobs in inner distriets only, and

(c) Equal increase in easino/hotel and retail jobs in outer and inner distriets.

The increase in easino/hotel and retail jobs was assumed at 10%, 20% and 

combinations of 10%/5% and 20%/10%. The shares for each alternative destination were 

eomputed for each scenario by using the following equation:

'L p . i J )
/> "0 7  = ~ ------ . (4.21)

in whieh ^ P „ ( j )  is the sum of individuals, , who choose distriet y.
all Njj ,

The difference between spatial model forecasted shares and non-spatial model 

forecasted shares was analyzed. The spatial model was used for sensitivity analysis of 

scenario (a) and (b) in whieh the percentage change was measured as the differenee 

between the base year shares and the forecasted shares. Finally, the differenee in shares 

eomputed using the non-spatial model and those eomputed using the spatial model at 

different percentage changes in easino/hotel and retail jobs was compared in scenario (c) 

in whieh uniform inerease in easino/hotel and retail jobs in inner and outer distriets was 

assumed. The difference was eomputed by subtracting the shares eomputed using the 

non-spatial model from those eomputed using the spatial model.
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Figure 4.7. Inner and outer districts

4.9.1. Increase in easino/hotel and retail jobs in outer distriets only

In this scenario, the number of jobs in hotel/easino and retail {hotelre) was 

increased by 10% and 20% in outer distriets only. The spatial destination choice 

model was used for this analysis. The forecasted proportions (shares) of individuals 

choosing eaeh alternative destination distriet at each percentage inerease were 

computed. The change between base year shares and new shares was eomputed by 

subtracting the base share from the new share at a specified percentage inerease in 

easino/hotel and retail jobs. Figure 4.8 shows the changes in probability for each 

percentage inerease in easino/hotel and retail jobs. The results indicate that there is a 

small change in the shares for almost all districts. Also, the results indicate that the
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change is higher for higher percentage inerease in easino/hotel and retail jobs. The 

result imply that an inerease in hotel/easino and retail employment in outer distriets 

whieh exclude the resort eorridor and downtown areas is likely to change destination 

choice patterns. Individuals will prefer making work trips to outer distriets than inner 

distriets in response to the additional jobs in those districts.
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Figure 4.8. Inerease in easino/hotel and retail jobs in outer distriets only

4.9.2. Inerease in easino/hotel and retail jobs in inner districts only

In this scenario, the number of jobs in hotel/easino and retail {hotelre) was 

increased by 10% and 20% in inner districts only. The spatial destination choice 

model was used for this analysis. The forecasted proportions (shares) of individuals 

choosing eaeh alternative destination distriet at each percentage increase were 

eomputed. The change between base year shares and new shares was eomputed by 

subtracting the base share from the new share at a specified percentage inerease in
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casino/hotel and retail jobs. Figure 4.9 shows the changes in probability for each 

percentage increase in easino/hotel and retail jobs.

The results indieate that there is a reduction in the shares for almost all districts 

except district 15 and 14, which are among the inner districts. However, different 

from the case when there is an increase in outer districts only (Figure 4.7), the highest 

increase of share is only for district 15 which contains the resort corridor. The result 

suggests that increase in hotel/casino and retail jobs in the resort corridor will attract 

more workers. Also, minor changes in shares in other districts suggests that the base 

year shares for inner districts are higher and hence adding new jobs only in these 

districts only may not result into new destination choice patterns.
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Figure 4.9. Increase in easino/hotel and retail jobs in irmer districts only

4.9.3. Equal increase in easino/hotel and retail jobs in outer and inner districts

In order to compare the forecasts of the model with separation measure to those of the 

model without separation measure, the difference between forecasted destination shares
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at different percentage increase in hotel/casino and retail jobs were computed and plotted 

as shown in Figure 4.10. The difference was computed by subtracting the shares 

computed using the non-spatial model from those computed using the spatial model. The 

results indicate that the difference between the forecasted destination shares is negligible 

when there is a small percentage increase in easino/hotel and retail jobs. However, the 

difference between the forecasted shares is noticeable at higher percentage increase in 

easino/hotel and retail jobs. The implication of this finding is that the difference between 

spatial model and non-spatial model can be seen only when there is a higher percentage 

increase in hotel/casino jobs in the valley.
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Figure 4.10. Difference in forecasted destination shares

4.9.4. Implication of sensitivity analysis results

The sensitivity analysis focused on three scenarios: increase in easino/hotel and retail 

jobs in outer districts only, increase in easino/hotel and retail jobs in inner districts only, 

and equal increase in easino/hotel and retail jobs in outer and inner districts. The results
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indicated that if  there is an increase in easino/hotel and retail jobs in outer districts only, 

there is a change in the shares for almost all districts. Also, the results indicated that the 

change is higher for higher percentage increase in easino/hotel and retail jobs.

When there is an increase in easino/hotel and retail jobs in irmer districts only, there is 

a change in the shares for almost all districts. However, different tfom the case when 

there is an increase in outer districts only, the changes are only higher for irmer districts. 

This suggests that the base year shares for irmer districts are originally higher and hence 

adding new jobs only in these districts may not result in new destination choice patterns.

Comparing the non-spatial and the spatial models of destination choice, indicated that 

there is a negligible difference between the forecasted shares when there is low 

percentage increase in easino/hotel and retail jobs, but the difference is noticeable when 

there is high percentage increase in easino/hotel and retail jobs. It should be noted that 

higher percentage increase in ho tel/casino and retail jobs would be realized after a long 

time because, based on land use data, there was an increase of 5% in total employment 

between year 2000 and 2005. The models developed in this study did not incorporate 

housing location as a variable and hence they may not be accurate for long-term 

forecasting. Since the model with separation measure is comparable to the model without 

separation measure when there is less than 10% increase in hotel/casino and retail jobs, it 

can be concluded that the separation measure does not make a big difference in 

forecasting capabilities.
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4.10. Example Origin-Destination (0-D) Matrix

The aggregate probabilities for a group of individuals tfom a speeifie origin choosing 

a specific destination were computed using Equation (3.14). Table 4.18 shows a portion 

of the aggregate probabilities for each group at base year while Appendix H shows the 

detailed computations. The number of observed trip productions {Pi) and trip attractions 

(4/) at base year are also shown in Table 4.18. Multiplying the probabilities (shares) with 

trip productions provides distribution of trips among the available destinations.

Table 4.18. Aggregate O-D probabilities
A ttr a c t io n s  (a t  d esf In a tio n , /)

1 2 3 4 16 17 Pi

t
0

%
a

1
s

2

1 0.0226 0.0420 0.0334 0.0135 0.0988 0.0163 17126
2 0.0227 0.0420 0.0334 0.0135 0.0987 0.0163 16457
3 0.0226 0.0409 0.0333 0.0134 0.0985 0.0163 41721
4 0.0227 0.0413 0.0345 0.0109 0.0959 0.0150 9074
5 0.0226 0.0409 0.0334 0.0109 0.0956 0.0150 9023
6 0.0234 0.0405 0.0331 0.0127 0.0969 0.0158 2299
7 0.0216 0.0397 0.0467 0.0013 0.0958 0.0152 7529
8 0.0211 0.0377 0.0541 0.0020 0.0947 0.0146 11616
9 0.0172 0.0308 0.1057 0.0069 0.0854 0.0104 40485
10 0.0214 0.0383 0.0515 0.0017 0.0957 0.0149 10072
11 0.0199 0.0352 0.0710 0.0036 0.0919 0.0133 21047
12 0.0227 0.0409 0.0334 0.0067 0.0910 0.0129 23637
13 0.0226 0.0411 0.0334 0.0078 0.0922 0.0134 19699
14 0.0226 0.0409 0.0334 0.0082 0.0986 0.0163 48263
15 0.0229 0.0384 0.0338 0.0136 0.0998 0.0165 9258
16 0.0227 0.0321 0.0335 0.0135 0.0989 0.0164 21679
17 0.0227 0.0410 0.0334 0.0135 0.0988 0.0163 16375

Aj 7052 12676 15101 2963 30975 4824 325360

Table 4.19 presents a portion of the estimated O-D matrix at base year. In order to 

evaluate the performance of the logit model, the sum of the trips in a row should be equal 

to the total number of trips {Pi) originating from that zone. Also, the sum of the trips in a
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column should match the number of trips (Aj) attracted to that zone. It can be seen that 

the sum of the estimated number of trips (Aj) of Table 4.19 matches the sum of the 

observed number of trips (Aj) of Table 4.18 with an error of 1.33%. With the forecasted 

probabilities for each group of individuals, the trip patterns can therefore be forecasted.

Table 4.19. Estimated O-D trip distributions
Attractions (at destination, /)

1 2 3 4 16 17 Pi

t
0

S%
sa

1

2Pm

1 387 719 573 231 1692 280 17126
2 374 691 550 222 1625 269 16457
3 943 1706 1391 561 4109 680 41721
4 206 375 304 99 870 136 9074
5 204 369 301 98 863 135 9023
6 54 93 76 29 223 36 2299
7 163 299 352 10 721 114 7529
8 245 438 628 23 1100 170 11616
9 696 1247 4279 279 3459 422 40485
10 216 386 519 17 964 150 10072
11 419 741 1495 75 1934 279 21047
12 537 967 789 158 2150 304 23637
13 445 810 657 154 1816 265 19699
14 1091 1974 1611 396 4758 787 48263
15 212 356 313 126 924 153 9258
16 492 696 726 293 2143 354 21679
17 372 671 548 221 1617 267 16375

4 / 7054 12537 15112 2989 30967 4801 325360
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1. Spatial Trip Generation Models

Spatial models of trip attraction and trip production were estimated and the results 

were compared to those of non-spatial models. Only the home-based work (HBW) trips 

were considered in this analysis. Relevant explanatory variables for each model were 

tested for correlation prior to inclusion in the model in order to avoid multicolinearity 

effect. The dependent variable for the trip attraction model was the number of trips 

attracted to zone and the explanatory variables were employment opportunities in gaming 

industry {Gaming) and employment in other industries {Non Gaming). It was 

hypothesized that while employment opportunities in other industries might have similar 

impact (positive) on trip generations, the impact of employment in gaming industry might 

be different.

The dependent variable for trip production model was the number of work trips 

produced by a zone, and the relevant predictors were the district population density, 

average household size, number of households with income less than $17.5K, number of 

households with income between $17.5K and $47.5K, and number of households with 

income greater than $47.5K. A variable quantifying the effect of spatial relationship of 

the observations was included in both the models of trip attraction and trip production.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The spatial variable was developed based on four alternative methods for quantifying 

spatial relationship: contiguity spatial relationship, separation between districts, a 

combination of contiguity and separation, and a combination of employment 

opportunities and separation (accessibility measure).

The models developed were compared to identify the best method for quantifying 

spatial relationship. Different model specifications for the non-spatial and spatial models 

were estimated using ST AT A® software. The Ordinary Least Square (OLS) method of 

estimation was used for the non-spatial model while the Maximum Likelihood (ML) 

estimation method was used for the spatial model. In order to demonstrate the effect of 

omission of spatial correlation in trip generation models, comparison of trip prediction of 

the non-spatial model and the best spatial model, was conducted.

5.1.1. Trip Attraction Model

For the trip attraction model, the observed zonal trips were transformed by applying 

natural logarithm in order to establish linear relationship among the variables. In order to 

estimate the spatial trip attraction model, variables were tested for spatial dependency. 

The Moran’s I, the Geary’s C and the Getis & Ord’s G statistics were estimated for all 

variables as well as three forms of the response variable. All three test results indicated 

that there was significant spatial autocorrelation in the number of trips attracted to zones. 

This finding implied that it was important to develop trip attraction models accounting 

for spatial autocorrelation. Therefore, in addition to the non-spatial model, the models of 

trip attraction were developed using the four alternatives for quantifying spatial 

relationships. These models are shown in Equation (4.5) through Equation (4.9). The
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criteria for selecting the best method of quantifying spatial relationship were based on the 

goodness-of-fit of the models estimated using different spatial relationships and their 

accuracy in predicting the observed trips. The statistical tests (RSS, AIC, SIC and the 

final loglikelihood) for the four spatial models indicated that the model estimated using 

the spatial weight matrix defined with separation spatial relationship has the best fit.

The accuracy of this spatial model (Equation 4.7) in predicting the observed trips was 

compared with that of the non-spatial model (Equation 4.5) by computing the percentage 

deviation of modeled trips from observed trips for each district. The results indicated a 

smaller deviation for the spatial model, which suggests a much better prediction 

capability of the spatial model when compared to the non-spatial model. Specifically, 

while the non-spatial model had an average absolute deviation of 31%, the spatial model 

had an average absolute deviation of 17% only — an increase of 14% in prediction 

accuracy.

5.1.2. Trip Production Model

For the non-spatial trip production model, the dependent variable was transformed by 

finding square root. Similar to the spatial model for trip attraction, variables were tested 

for spatial dependency in order to estimate the spatial trip production model. The 

Moran’s I, the Geary’s C and the Getis & Ord’s G statistics indicated that there was no 

significant spatial autocorrelation in the observations of the variables. This finding is 

consistent with intuition because for trip production, there is no direct linkage between 

someone making a trip from one zone to someone else making a trip from an adjacent 

zone. However, for trip attraction, it is possible that whatever attracts someone (from
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somewhere) to a specific zone is related to what attracts someone else (from somewhere 

else) to an adjacent zone. If this case is true, the observations made at these two adjacent 

zones would be spatially correlated. However, to confirm this finding, the spatial models 

were estimated and compared with the non-spatial model.

Similar to the trip attraction model, the criteria for selecting the best model were 

based on the goodness-of-fit of the models. These models are shown in Equation (4.13) 

through Equation (4.17). The results indicated that while the spatial models minimize 

RSS, they have higher AIC and SIC. This implies that the spatial variable in the spatial 

models of trip production is unnecessary. The result confirmed the initial finding of no 

spatial autocorrelation in the variables. Furthermore, the accuracy of the models 

developed was evaluated by comparing the average absolute percentage deviation of the 

modeled trips from the observed trips. The results indicated that the models estimated by 

incorporating the spatial variable do not improve prediction accuracy. Therefore, the non- 

spatial model was selected as the best model.

5.2. Destination Choice Models

Trip distribution is the second step of the widely used four-step procedure in which 

trip productions and trip attractions for each zonal pair are linked. Gravity models are 

commonly used in trip distribution and are functions of activity system attributes 

(indirectly through the generated productions and attractions) and network attributes 

(typically, inter-zonal travel times). Trip distribution is essentially destination choice and 

therefore discrete choice models can be used. The choice set for a destination choice
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model is comprised of Traffic Analysis Zones (TAZ). Since the TAZs are geographical 

units, their spatial relationships may have an impact on individuals’ destination choices.

Home-based work trips are normally viewed as trips involving long-term decisions 

such as job location and residential location. Since most job locations are fixed, workers 

have no alternative choices and therefore do not really make a destination choice for such 

trips. However, this assumption may not be applicable to all urban areas, such as Las 

Vegas, in which numerous comparable job opportunities exist and are distributed over the 

area. Thus, spatial locations of the jobs and residence of the workers may be important 

factors in estimating long-term trip generation as well as destination choice models.

The efficiency of alternative methods for quantifying spatial relationship of the 

origins and destinations in a multinomial logit model for destination choice was 

evaluated. Two alternative methods were evaluated: separation (distance only) and 

economic linkage (accessibility). The spatial model developed using separation spatial 

relationship was found to be the best fitted model with maximum adjusted rho-squared. 

The model estimated using separation spatial relationship was further compared with the 

non-spatial model by conducting the likelihood ratio test with the null hypothesis that the 

coefficient of the spatial variable is not different from zero. The test statistic obtained 

(10.67) was greater than the critical value (3.84), suggesting that the coefficient 

associated with the spatial variable was significantly different from zero, and therefore 

that the spatial model is the best specification for destination choice model.

In order to evaluate the impact of omitting spatial variable from the destination choice 

model, the difference between forecasted destination shares at different percentage 

increase in hotel/casino and retail jobs were computed. The results indicated that for
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when there is low percentage increase in casino/hotel and retail jobs, the difference 

between the forecasted destination shares is small while when there is high percentage 

increase in easino/hotel and retail jobs, the difference between the forecasted probabilities 

increases. The implication of this finding is that incorporation of spatial factors does not 

affect the destination choice pattern when there is a small change in employment 

opportunities in hotel/casino and retail. However, it is worthy noting that higher 

percentage increase in hotel/casino and retail jobs would be realized after a long time 

because, based on Las Vegas land use data, there was an increase of 5% in total 

employment between year 2000 and 2005. In order to evaluate the impact of spatial 

factors in long-term destination choice patterns, additional variables should be 

considered. For example, the models developed in this study did not incorporate housing 

location as a variable and hence they may not be accurate for long-term forecasting. 

Since the alternative shares of the model with spatial factor are comparable to the model 

without spatial factor when there is less than 10% increase in hotel/casino and retail jobs, 

it can be concluded that the factor does not make a big difference in forecasting 

capabilities when there is a small change in employment opportunities.

To demonstrate the applicability of the spatial multinomial logit model for destination 

choice, the origin-destination (O-D) matrix for base year was created. The sum of the 

estimated number of trips attracted to a specific zone matched the sum of the observed 

number of trips for that zone with a maximum absolute error of less than 1.33%.
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5.3. Recommendations for Future Work

The Modifiable Areal Unit Problem (MAUP) in spatial analysis, whieh consists of 

scale effect and zonal aggregation effect, needs to be addressed in fixture similar studies. 

Variation of spatial effect can occur when data from one scale of areal units is aggregated 

into larger or smaller areal units. Also, variability of analytical or statistical results 

derived from data for the same region, but aggregated or partitioned in different ways, 

with the number of areal units in different partitioning schemes being the same, can 

occur.

The models developed in this study were based on districts developed by the 

Regional Transportation Commission of Southern Nevada (RTC) by aggregating 

homogeneous Traffic Analysis Zones (TAZs). These districts may not be the optimal 

zones that minimize the MAUP. It is recommended that an attempt to design new 

analysis zones through a careful aggregation process be conducted. The basic unit to 

begin with could be the existing TAZs and aggregate them to a practical number that can 

be handled. Homogeneity of the zone attributes should be earefully controlled. 

Automated zone design procedure which implements statistical design rules can be used. 

Also, an analysis in which different number of zones or different configurations of the 

zones are utilized can be used to assess the best zonal structure by comparing the 

goodness-of-fit of the models and their forecasting capability.

There were no households interviewed from two districts. Two possible reasons for 

this were that the sampling design did not incorporate spatial distribution of the zones 

(districts), or individuals selected from these districts did not complete their diaries as 

required. The sample drawn for the survey was a stratified random sample of households
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based on vehicles available and household size—not location. It is important to have 

zones (districts) represented proportionally in the sample. The zones can be weighted by 

population.

While the results of the destination choice model suggested that spatial relationship of 

the origins and destinations have impact on work trips for the Las Vegas Valley, the 

conclusion may not be applicable to cities where there is no numerous comparative 

employment opportunities distributed over the area. However, for cities with numerous 

job opportunities distributed over the area similar to Las Vegas, the author recommends 

incorporation of spatial interaction of the origin and destination.

5.4. Research Contribution

This study contributed to the existing knowledge of the effects of spatial 

autocorrelation in travel demand models. First, it was found that the variables for trip 

attraction models are significantly correlated in space while the variables for trip 

production models are not significantly correlated. This finding called for the design and 

incorporation of specific variables to account for spatial autocorrelation in trip attraction 

models. The results from the developed models indicated an improvement in predicting 

the observed work trips when compared to models without specific variables to account 

for spatial autocorrelation. This improvement can lead to more accurate design traffic 

estimations and hence air quality emissions. The accurate estimates of emissions could 

lead to identifying the proper countermeasures and strategies for minimizing the 

emissions.
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Second, this research compared the alternatives for defining spatial relationship of the 

variables. It was found that different methods for defining spatial relationship give 

different model results. Most importantly, the study found that the widely used contiguity 

method does not capture the spatial relationship well. This is an important contribution to 

the knowledge since most of spatial analysis studies use contiguity as the sole method for 

defining spatial relationship.

Finally, the developed models established the basis for conducting similar studies for 

other trip purposes such as shopping trips. Also, the methodology established herein can 

be used to develop models for other areas.
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APPENDICIES 

A. Alternative spatial weight matriees

A. 1. Contiguity spatial relationship

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

2 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0

3 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0

4 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0

5 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0

6 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0

7 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

8 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0

9 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0

10 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0

11 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0

13 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

14 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

15 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0

16 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1

17 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
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B. Network route distance from district 3 to other districts
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Appendix B.l. Network distance from District 3 to District 1
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Appendix B.2. Network distance from District 3 to District 2
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Appendix B.3. Network distanee from District 3 to District 4
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Appendix B.6. Network distanee from District 3 to Distriet 7
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Appendix B.7. Network distanee from District 3 to District 8
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Appendix B.8. Network distance from District 3 to District 9

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TSOTÇAHA

12 12 14

Appendix B.9. Network distance from District 3 to District 10
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Appendix B.IO. Network distance from District 3 to District 11
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Appendix B.l 1. Network distance from District 3 to District 12
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Appendix B .l2. Network distance from District 3 to District 13
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Appendix B.13. Network distance from District 3 to District 14
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Appendix B.13. Network distance from District 3 to District 15
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Appendix B.14. Network distance from District 3 to District 16
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C. Parcel-based planning areas growth factors

AREA 1990 1996 F acto r A verage F acto r
D istrict 1

North Las Vegas 15070 31191 2.070 2.070
D istrict 2

Sunrise Manor 37173 59356 1.597 1.597
D istrict 3

Sunrise Manor 37173 59356 1.597 1.597
D istrict 4

Whitney 3975 6574 1.654 1.654
D istrict 5

Henderson 24241 58384 2.408 2.408
D istrict 6

Henderson 24241 58384 2.408 2.408
D istrict 7

North Las Vegas 15070 31191 2.070 2.070
D istrict 8

Las Vegas 106689 167413 1.569 1.569
D istrict 9

Paradise 61117 74102 1.212
Winchester 14679 15402 1.049 1.184

D str ic t  10
Paradise 61117 74102 1.212
Enterprise 2161 9952 4.605 1.614

D str ic t 11
Paradise 61117 74102 1.212
Henderson 24241 58384 2.408
Enterprise 2161 9952 4.605 1.940

D istrict 12
Enterprise 2161 9952 4.605
Spring Valley 21832 42402 1.942 2.448

D str ic tlS
Lone Mountain 1732 3048 1.760
Las Vegas 106689 167413 1.569 1.573

D str ic t 14
Winchester 14679 15402 1.049
Las Vegas 106689 167413 1.569 1.525

D istrict 15
Paradise 61117 74102 1.212
Las Vegas 106689 167413 1.569 1.460

D istrict 16
North Las Vegas 15070 31191 2.070 2.070

D istrict 17
Lone Mountain 1732 3048 1.760 1.760

OVERALL (AVERAGE) VALLEY GROWTH 1.820
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D. Trip attraction model results

D .l. Non-transformed non-spatial trip attraetion model

Source |
 + -

Model I 
Residual |

 + -

Total I

SS

2 . 8 4 1 7 e + 0 9
4 5 9 5 5 2 4 6 4

3 . 3 0 1 3 e + 0 9

df

2
14

16

MS

1 . 4 2 0 9 e + 0 9
3 2 8 2 5 1 7 6

2 0 6 3 3 1 0 6 2

Number of obs = 17
F{ 2, 14) = 4 3 . 2 9
Prob > F = 0 . 0 0 0 0
R-squared = 0 . 8 6 0 8
Adj R-squared = 0 . 8 4 0 9
Root MSE = 5 7 2 9 . 3

expattrac | Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

Gaming | 
Non Gaming | 

cons 1

. 3 1 1 1 0 2 8

. 5 0 2 7 3 3 6
- 3 2 5 8 . 8 5 7

. 0 5 7 0 6 3 5

.0714967
2 7 6 0 . 6 9 1

5 . 4 5
7 . 0 3

-1.18

0 . 0 0 0
0 . 0 0 0
0 . 2 5 7

. 1 8 8 7 1 3 7

. 3 4 9 3 8 8 5
- 9 1 7 9 . 9 5

. 4 3 3 4 9 1 8  

. 6 5 6 0 7 8 7  
2 6 6 2 . 2 3 5

D.2. Non-spatial trip attraction model transformed by inverse of the square

Source |
 + -

Model I

SS

2 1 1 3 1 6 0 . 8
Residual | 6 4 0 1 3 1 . 8 9 9

 + -----------------------------

df MS

Total I 2 7 5 3 2 9 2 . 7

2 1 0 5 6 5 8 0 . 4
14 4 5 7 2 3 . 7 0 7 1

16 1 7 2 0 8 0 . 7 9 4

Number of obs = 17
F( 2, 14) = 23.11
Prob > F 0 . 0 0 0 0
R-squared = 0 . 7 6 7 5
Adj R-squared = 0 . 7 3 4 3
Root MSE = 2 1 3 . 8 3

expattracs~v | C o e f . Std. Err. t P>lt| [95% Conf. Interval]

Gaming I 
Non Gaming | 

cons 1

- . 0 0 6 6 4 6 8
- . 0 1 5 3 2 1 6

1 5 6 5 . 2

. 0 0 2 1 2 9 7

. 0 0 2 6 6 8 4
1 0 3 . 0 3 5

- 3 . 1 2
-5.74
1 5 . 1 9

0 . 0 0 8
0 . 0 0 0
0 . 0 0 0

-.0112147
- . 0 2 1 0 4 4 8

1 3 4 4 . 2 1 2

- . 0 0 2 0 7 9
- . 0 0 9 5 9 8 5

1 7 8 6 . 1 8 8
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D.3. Spatial trip attraction models using contiguity spatial relationship

Weights matrix 
Name : W
Type : Imported (binary) 
Row-standardized: No

Spatial lag model Number of obs = 17
Variance ratio = 0.859
Squared corr. = 0.859

Log likelihood = -121.84752 Sigma = 313.74

expattracl~2 | Coef. Std. Err. z P>!z| [95% Conf. Interval]
 +--------------------------------------------------------------------------------------------------------
expattracl~2 |

Gam ing | . 0 1 5 6 5 1 1  . 0 0 3 6 3 1 8  4 . 3 1  0 . 0 0 0  . 0 0 8 5 3 2 9  . 0 2 2 7 6 9 2
N on_G am ing | . 0 3 1 9 3 2 3  . 0 0 4 9 1 6  6 . 5 0  0 . 0 0 0  . 0 2 2 2 9 7 1  . 0 4 1 5 6 7 6

c o n s  I 8 0 8 3 . 8 9 4  3 4 7 . 9 5 3 7  2 3 . 2 3  0 . 0 0 0  7 4 0 1 . 9 1 8  8 7 6 5 . 8 7 1
 +  ----------------------------------------------------------------------------

rh o  I . 0 0 1 9 8 2 5  . 0 0 9 2 3 2 8  0 . 2 1  0 . 8 3 0  - . 0 1 6 1 1 3 4  . 0 2 0 0 7 8 5

Wald test of rho=0: chi2(l) = 0.046 (0.830)
Likelihood ratio test of rho=0: chi2(l) = 0.046 (0.830)
Lagrange multiplier test of rho=0: chi2(l) = 0.045 (0.832)

Acceptable range for rho: -1.885 < rho < 1 . 0 0 0

Weights matrix 
Name : W
Type: Imported (binary) 
Row-standardized: No

Spatial error model Number of obs = 17
Variance ratio = 0.850
Squared corr. = 0.859

Log likelihood = - 1 2 1 . 8 6 8 8 1  Sigma = 314.13

I Coef. Std. Err. z P>Iz| [95% Conf. Interval]
 + :------------------------------------------------------------------------------------------------
expattracl~2 |

Gam ing | . 0 1 5 9 $ 6 8  . 0 0 3 4 9 6 3  4 . 5 6  0 . 0 0 0  . 0 0 9 1 0 4 1  . 0 2 2 8 0 9 5
N o n G a m i n g  | . 0 3 2 3 9 6 2  . 0 0 4 9 1 4 2  6 . 5 9  0 . 0 0 0  . 0 2 2 7 6 4 5  . 0 4 2 0 2 7 9

c o n s  I 8 1 3 7 . 3 4 9  2 7 9 . 8 3 4 4  2 9 . 0 8  0 . 0 0 0  7 5 8 8 . 8 8 3  8 6 8 5 . 8 1 4
 +--------------------------------------------------------------------------------------------------------

lam b da | . 0 0 0 6 4 6 1  . 0 1 0 9 6 8 6  0 . 0 6  0 . 9 5 3  - . 0 2 0 8 5 1 9  . 0 2 2 1 4 4 1

Wald test of lambda=0: chi2(1) = 0.003 (0.953)
Likelihood ratio test of lambda=0: chi2(l) = 0.003 (0.953)
Lagrange multiplier test of lambda=0: chi2(l) = 1.037 (0.309)

Acceptable range for lambda: -1.885 < lambda < 1.000
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D.4. Spatial trip attraction models using contiguity-separation spatial relationship

Weights matrix 
Name: W
Type: Imported (non-binary) 
Row-standardized: No

Spatial lag model Number of obs = 17
Variance ratio = 0.892
Squared corr. = 0.892

Log likelihood = -119.58413 Sigma = 274.48

expattracl~2 | Coef. Std. Err. z P>Iz| [95% Conf. Interval]
 +--------------------------------------------------------------------------------------------------------
expattracl~2 |

G am ing | . 0 1 2 3 3 6 7  . 0 0 3 1 7 7 5  3 . 8 8  0 . 0 0 0  . 0 0 6 1 0 9  . 0 1 8 5 6 4 4
N on_G am ing | . 0 2 8 4 2 2 4  . 0 0 3 8 7 4  7 . 3 4  0 . 0 0 0  . 0 2 0 8 2 9 4  . 0 3 6 0 1 5 4

_ c o n s  I 7 8 6 3 . 5 4 3  1 8 2 . 3 2 7 6  4 3 . 1 3  0 . 0 0 0  7 5 0 6 . 1 8 7  8 2 2 0 . 8 9 8
 +--------------------------------------------------------------------------------------------------------

rh o  I . 0 7 1 0 5 6 6  . 0 3 1 0 0 2 8  2 . 2 9  0 . 0 2 2  . 0 1 0 2 9 2 2  . 1 3 1 8 2 1

Wald test of rho=0: chi2(l) = 5.253 (0.022)
Likelihood ratio test of rho=0: chi2(l) = 4.573 (0.032)
Lagrange multiplier test of rho=0: chi2(1) = 4 . 2 7 1  (0.039)

Acceptable range for rho: -1.896 < rho < 1.000

Weights matrix 
Name : W
Type : Imported (non-binary) 
Row-standardized: No

Spatial error model Number of obs = 17
Variance ratio = 0.628
Squared c o r r . = 0.858

Log likelihood = - 1 1 9 . 7 2 3 8 9  Sigma = 276.71

I Coef. Std. Err. z P>Iz1 [95% Conf. Interval]
 + _  --------------------------------------------------------------------------------------------------

expattracl~2 |
G am ing | . 0 1 2 8 3 1 1  . 0 0 3 1 2 9 6  4 . 1 0  0 . 0 0 0  . 0 0 6 6 9 7 2  . 0 1 8 9 6 4 9

N on_G am ing | . 0 2 8 5 7 1 7  . 0 0 3 8 8 8  7 . 3 5  0 . 0 0 0  . 0 2 0 9 5 1 3  . 0 3 6 1 9 2 2
_ c o n s  I 8 5 4 3 . 6 8 4  2 3 0 . 3 9 5  3 7 . 0 8  0 . 0 0 0  8 0 9 2 . 1 1 8  8 9 9 5 . 2 5

 +--------------------------------------------------------------------------------------------------------
lam b da | . 0 7 9 4 1 0 3  . 0 3 5 0 8 2 4  2 . 2 6  0 . 0 2 4  . 0 1 0 6 5 0 1  . 1 4 8 1 7 0 5

Wald test of lambda=0: chi2(l) = 5.124 (0.024)
Likelihood ratio test of lambda=0: chi2(l) = 4.293 (0.038)
Lagrange multiplier test of lambda=0: chi2(l) = 2.745 (0.098)

Acceptable range for lambda: -1.896 < lambda < 1.000

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5. Spatial trip attraction models using economic linkage (aceessibility) spatial
relationship

Weights matrix 
Name : W
Type: Imported (non-binary) 
Row-standardized: No

Spatial lag model Number of obs = 17
Variance ratio = 0.875
Squared corr. = 0.875

Log likelihood = -120.84953 Sigma = 295.85

expattracl~2 | Coef. Std. Err. z P>Iz| [95% Conf. Interval]
 +--------------------------------------------------------------------------------------------------------
expattracl~2 |

Gaming | .0104074 .0048321 2.15 0.031 .0009367 .0198781
N on_G am ing | . 0 2 3 6 1 0 6  . 0 0 7 1 1 5 6  3 . 3 2  0 . 0 0 1  . 0 0 9 6 6 4 2  . 0 3 7 5 5 7

c o n s  I 8 0 1 5 . 6 8 1  1 6 9 . 6 6 2 6  4 7 . 2 4  0 . 0 0 0  7 6 8 3 . 1 4 9  8 3 4 8 . 2 1 4
 +--------------------------------------------------------------------------------------------------------

rh o  I . 0 0 4 6 3 4 4  . 0 0 3 1 4 6 2  1 . 4 7  0 . 1 4 1  - . 0 0 1 5 3 2 1  . 0 1 0 8 0 0 9

Wald test of rho=0: chi2(l) = 2.170 (0.141)
Likelihood ratio test of rho=0: chi2(1) = 2.042 (0.153)
Lagrange multiplier test of rho=0: chi2(1) = 1.912 (0.167)

Acceptable range for rho: -3.131 < rho < 1.000

Weights matrix 
Name : W
Type: Imported (non-binary) 
Row-standardized: No

Spatial error model Number of obs = 17
Variance ratio = 0.427
Squared corr. = 0.858

Log likelihood = - 1 2 0 . 8 9 9 1 4  Sigma = 296.72

I Coef. Std. Err. z P>Iz| [95% Conf. Interval]
 + '-----------------------------------------------------------------------
e x p a t t r a c l - 2  I

G am ing | . 0 1 0 5 2 9 2  . 0 0 4 8 1 1 9  2 . 1 9  0 . 0 2 9  . 0 0 1 0 9 8 1  . 0 1 9 9 6 0 3
N on_G am ing | . 0 2 3 5 7 8 4  . 0 0 7 2 3 5 8  3 . 2 6  0 . 0 0 1  . 0 0 9 3 9 6 4  . 0 3 7 7 6 0 4

c o n s  I 8 0 5 4 . 3 9 7  1 5 8 . 4 6 6 7  5 0 . 8 3  0 . 0 0 0  7 7 4 3 . 8 0 9  8 3 6 4 . 9 8 6
 +—■-----------------------------------------------------------------------------------------------------

lam b da | . 0 0 5 2 8 6 5  . 0 0 3 4 4 4 8  1 . 5 3  0 . 1 2 5  - . 0 0 1 4 6 5 2  . 0 1 2 0 3 8 2

Wald test of lambda=0: chi2(l) = 2.355 (0.125)
Likelihood ratio test of lambda=0: chi2(l) = 1.943 (0.163)
Lagrange multiplier test of lambda=0: chi2(l) = 0.052 (0.820)

Acceptable range for lambda: -3.131 < lambda < 1.000
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E. Trip production model results

E. 1. Non-transformed non-spatial trip production model

Source | SS df
 +------------------------------

Model I 1.5741e+09
Residual I 316427179

 + ----------------------------------------
Total I 1.8905e+09 16

MS

2 7 8 7 0 3 7 0 0 1
14 2 2 6 0 1 9 4 1 . 3

1 1 8 1 5 6 3 2 4

Number of obs = 17
F( 2, 14) = 3 4 . 8 2
Prob > F = 0 . 0 0 0 0
R-squared = 0 . 8 3 2 6
Adj R-squared = 0 . 8 0 8 7
Root MSE = 4754.1

expproduc2 | Coef. Std. Err. t P > | t | [95% Conf. Interval]

lowinc 1 
highinc | 

cons 1

2 . 4 9 5 5 3 1
1.290447
3 6 2 8 . 1 0 6

. 6 7 8 4 9 7 1

. 1 8 6 3 0 4 3
2 0 7 8 . 1 6 1

3 . 6 8  
6 .  93
1.75

0 . 0 0 2
0 . 0 0 0
0 . 1 0 3

1 . 0 4 0 3
. 8 9 0 8 6 4 1

- 8 2 9 . 1 0 5 9

3 . 9 5 0 7 6 3
1 . 6 9 0 0 3

8 0 8 5 . 3 1 7

E.2. Non-spatial trip production model transformed by applying natural logarithm

SSSource |
 +-■

Model I 
Residual |

 +--------------------
T o t a l  I 7 3 4 2 8 1 0 . 4 5

df MS

5 3 7 8 2 2 5 . 2 1
1 9 6 4 5 8 5 . 2 4

2 2 6 8 9 1 1 2 . 6
14 1 4 0 3 2 7 . 5 1 7

16  4 5 8 9 2 5 . 6 5 3

Number of obs = 17
F( 2 ,  14)  = 1 9 . 1 6
Prob > F = 0.0001
R-squared = 0.7324
Adj R-squared = 0.5942
Root MSE = 3 7 4 . 6

expproducl~2 | Coef. Std. Err. t P>|t [95% Conf. Interval]

lowinc 1 
highinc | 
_cons 1

. 1 2 7 9 6 9 9

. 0 7 8 3 0 7 8
8 7 6 8 . 3 0 6

. 0 5 3 4 6 2 2

. 0 1 4 6 7 9 8
1 6 3 . 7 4 8 6

2 . 3 9
5 . 3 3

53.55

0 . 0 3 1
0 . 0 0 0
0 . 0 0 0

. 0 1 3 3 0 5
. 0 4 6 8 2 2 6
8417.1

. 2 4 2 6 3 4 9

. 1 0 9 7 9 2 9
9119.512
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E.3. Spatial trip production models using contiguity spatial relationship

Weights matrix 
Name : W
Type: Imported (binary) 
Row-standardized: No

Spatial lag model Number of obs = 17
Variance ratio = 0.808
Squared corr. = 0.808

Log likelihood = -150.85303 Sigma = 1728.08

expproducs~2 | Coef. Std. Err. z P>Iz| [95% Conf. Interval]
 +--------------------------------------------------------------------------------------------------------
expproducs~2 |

lo w in c  I . 8 6 4 3 5 6 3  . 2 5 2 7 3 8 8  3 . 4 2  0 . 0 0 1  . 3 6 8 9 9 7 4  1 . 3 5 9 7 1 5
highinc | . 4 8 4 7 3 1 6  . 0 6 7 7 9 7 9  7.15 0.000 . 3 5 1 8 5  .6176131

c o n s  I 7 4 5 5 . 6 7 4  1 8 9 3 . 0 4 8  3 . 9 4  0 . 0 0 0  3 7 4 5 . 3 6 8  1 1 1 6 5 . 9 8
  + -----------------------------------------------------------------------------------------------------------------------------------------------------

rh o  I . 0 0 1 2 0 6 1  . 0 2 7 6 8 5 3  0 . 0 4  0 . 9 6 5  - . 0 5 3 0 5 6  . 0 5 5 4 6 8 2

Wald test of rho=0: chi2(1) = 0.002 (0.965)
Likelihood ratio test of rho=0: chi2(l) = 0.002 (0.965)
Lagrange multiplier test of rho=0: chi2(l) = . 0.002 (0.966)

Acceptable range for rho: -1.885 < rho < 1.000

Weights matrix 
Name : W
Type: Imported (binary) 
Row-standardized: No

Spatial error model Number of obs = 17
Variance ratio = 0.813
Squared corr. = 0.808

Log likelihood = - 1 5 0 . 8 4 9 2 6  Sigma = 1727.70

I Coef. Std. Err. z P>Iz| [95% Conf. Interval]
 +  -----------------------------------------------------------------------------
expproducs~2 |

lo w in c  I . 8 7 6 3 1 5 4  . 2 6 4 5 5 2  3 . 3 1  0 . 0 0 1  . 3 5 7 8 0 3  1 . 3 9 4 8 2 8
highinc I .4850585 .0678064 7.15 0.000 .3521605 .6 1 7 9 5 6 6

_ c o n s  I 7 6 6 0 . 4 5  1 5 2 2 . 1 1 7  5 . 0 3  0 . 0 0 0  4 6 7 7 . 1 5 5  1 0 6 4 3 . 7 4
 +  -----------------------------

lam b da I - . 0 0 4 9 6 5 1  . 0 5 1 2 4 9 9  - 0 . 1 0  0 . 9 2 3  - . 1 0 5 4 1 3 2  . 0 9 5 4 8 2 9

Wald test of lambda=0: chi2(l) = 0.009 (0.923)
Likelihood ratio test of lambda=0: chi2(l) = 0.009 (0.923)
Lagrange multiplier test of lambda=0: chi2(l) = 0.652 (0.419)

Acceptable range for lambda: -1.885 < lambda < 1.000
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E.4. Spatial trip production models using contiguity-separation spatial relationship

Weights matrix 
Name: W
Type : Imported (non-binary) 
Row-standardized: No

Spatial lag model

Log l i k e l i h o o d  = - 1 5 0 . 8 4 3 8 9

Number of obs = 17
Variance ratio = 0.808
Squared corr. = 0.808
Sigma = 1727.09

expproducs~2 | Coef. Std. Err. z P>| z [95% Conf. Interval]

expproducs~2 |
lowinc 1 .8848052 

highinc | .4805628 
cons 1 7705.026

. 2 7 7 2 9 5
. 0 7 3 3 7 9 9
1437.465

3 . 1 9
6 . 5 5
5 . 3 6

0 . 0 0 1  .
0 . 0 0 0
0 . 0 0 0

.341317
. 3 3 6 7 4 0 8
4 8 8 7 . 6 4 7

1 . 4 2 8 2 9 3  
. 6 2 4 3 8 4 8  
1 0 5 2 2 . 4 1

rho 1 -.0188477 . 1 3 2 7 0 5 9 - 0 . 1 4 0 . 8 8 7 - . 2 7 8 9 4 6 5 . 2 4 1 2 5 1 2

Wald test of rho=0: 
Likelihood ratio test of rho 
Lagrange multiplier test of

=0:
rho=0:

c h l 2 (1)
chi2(1) 
chi2(1)

0 . 0 2 0
0 . 0 2 0
0 . 0 2 2

( 0 . 8 8 7 )
( 0 . 8 8 7 )
( 0 . 8 8 3 )

Acceptable range for rho: -1 . 8 9 6  < rho < 1 . 0 0 0

Weights matrix 
Name : W
Type: Imported (non-binary) 
Row-standardized: No

Spatial error model

Log likelihood = -150.81381

Number of obs = 
Variance ratio = 
Squared corr. = 
Sigma

17
0 . 8 1 0
0 . 8 0 8

1 7 2 3 . 3 7

1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

expproducs-2 |
lowinc 1 .912093 

highinc I .4778554 
cons 1 7380.128

. 2 9 1 6 4 5 7

. 0 7 1 3 4 6 2
9 0 0 . 6 2 4 3

3 . 1 3
6 . 7 0
8 . 1 9

0 . 0 0 2
0 . 0 0 0
0 . 0 0 0

. 3 4 0 4 7 7 8

. 3 3 8 0 1 9 5
5 6 1 4 . 9 3 7

1 . 4 8 3 7 0 8  
. 6 1 7 6 9 1 3  

9 1 4 5 . 3 2

lambda | -.06352 66 . 2 2 5 5 0 9 9 - 0 . 2 8 0 . 7 7 8 - . 5 0 5 5 1 7 8 . 3 7 8 4 6 4 6

Wald test of lambda=0:
Likelihood ratio test of lambda=0: 
Lagrange multiplier test of lambda=0:

c h i 2 (1)  
c h i 2 (1)
chi2(1)

0 . 0 7 9
= 0.080 

0.377

( 0 . 7 7 8 )
( 0 . 7 7 7 )
( 0 . 5 3 9 )

Acceptable range for lambda: - 1 . 8 9 6  < lambda < 1 . 0 0 0
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E.5. Spatial trip production models using economic linkage (aeeessibility) spatial
relationship

Weights matrix 
Name : W
Type: Imported (non-binary) 
Row-standardized: No

Spatial lag model

Log likelihood = -150.85298

Number of obs = 17
Variance ratio = 0.808
Squared corr. = 0.808
Sigma = 1728.08

expproducs~2 | Coef. Std. Err. z P> 1 z [95% C o n f. Interval]

expproducs~2 |
lowinc i .8714846 

highinc | .4846677 
cons 1 7563.622

. 2 6 8 2 6 2 9

. 0 6 7 7 4 1 9
1 0 4 5 . 4 2 3

3 . 2 5
7.15
7 . 2 3

0 . 0 0 1
0 . 0 0 0
0 . 0 0 0

. 3 4 5 6 9 9
. 3 5 1 8 9 5 9
5 5 1 4 . 6 3 1

1 . 3 9 7 2 7  
. 6 1 7 4 3 9 5  
9 6 1 2 . 6 1 3

rho 1 -.0002681 . 0 0 5 9 9 2 2 -0.04 0 .  964 - . 0 1 2 0 1 2 6 . 0 1 1 4 7 6 5

Wald test of rho=0: 
Likelihood ratio test of rho 
Lagrange multiplier test of

=0:
rho=0:

c h i 2 (1)  
c h l 2 ( l )  
c h i 2 (1)

0 . 0 0 2
0 . 0 0 2
0 . 0 0 2

( 0 . 9 6 4 )  
( 0 . 9 6 4 )  
( 0 . 9 6 4 )

Acceptable range for rho: -3 .131 < rho < 1 . 0 0 0

Weights matrix 
Name : W
Type: Imported (non-binary) 
Row-standardized: No

Spatial error model

Log likelihood = -150.83507

Number of obs = 
Variance ratio = 
Squared corr. = 
Sigma =

17
0 . 8 2 4
0 . 8 0 8

1 7 2 6 . 2 6

1 Coef. Std. Err. z P> 1 z i [95% Conf. Interval]

expproducs~2 j
lowinc 1 .890813 

highinc | .4865869 
cons 1 7649.465

. 2 7 6 0 2 3 9

. 0 6 8 7 1 3 1
9 6 7 . 3 8 0 5

3 . 2 3
7 . 0 8
7 . 91

0 . 0 0 1
0 . 0 0 0
0 . 0 0 0

. 3 4 9 8 1 6
. 3 5 1 9 1 1 8
5 7 5 3 . 4 3 4

1 . 4 3 1 8 1  
. 6 2 1 2 6 2  

9 5 4 5 . 4 9 6

lambda | -.00 2 2 5 7 8 .0117161 - 0 . 1 9 0 . 8 4 7 - . 0 2 5 2 2 1 . 0 2 0 7 0 5 3

Wald test of lambda=0:
Likelihood ratio test of lambda=0: 
Lagrange multiplier test of lambda=0:

c h i 2 (1) 
c h l 2 (1)  
c h i 2 (1)

0 . 0 3 7
0 . 0 3 8
0 . 6 8 5

( 0 . 8 4 7 )
( 0 . 8 4 6 )
( 0 . 4 0 8 )

Acceptable range for lambda: - 3 . 1 3 1  < lambda < 1 . 0 0 0
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F. Trip generation models comparison tests
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F.2. RSS, A ie, and SIC calculations for trip production models
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G. Destination Choice Model Full Results

Iteration 0 log likelihood = - 2 7 6 1 . 3 4 8 1
Iteration 1 log likelihood = - 2 7 2 1 . 4 6 5 7
Iteration 2 log likelihood = - 2 6 9 3 . 7 0 9 3
Iteration 3 log likelihood = - 2 6 8 5 . 5 1 8 8
Iteration 4 log likelihood = - 2 6 8 3 . 7 2 7
Iteration 5 log likelihood = - 2 6 8 3 . 5 9 5 2
Iteration 6 log likelihood = - 2 6 8 3 . 5 9 3 5
Iteration 7 log likelihood = - 2 6 8 3 . 5 9 3 5

Multinomial logistic regression

Log likelihood = -2683.5935

Number of obs 
LR chi2 (64) 
Prob > chi2 
Pseudo R2

1113
155.51
0 . 0 0 0 0
0 . 0 2 8 2

choice 1 Coef. Std. Err. z P>| z 1 [95% Conf. Interval]

vehhhworker
1
1 . 7 8 9 4 9 0 7 . 4 3 3 5 8 2 7 1 . 8 2 0 . 0 6 9 -.0603157 1 . 6 3 9 2 9 7

age 1 . 0 1 4 5 2 3 5 . 0 1 6 7 3 8 6 0 . 8 7 0 . 3 8 6 - . 0 1 8 2 8 3 6 . 0 4 7 3 3 0 6
income 1 - . 3 4 9 8 6 2 9 . 4 7 8 6 1 3 6 - 0 . 7 3 0 . 4 6 5 - 1 . 2 8 7 9 2 8 . 5 8 8 2 0 2 6

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0.014724 1 . 5 4 0.131 - . 0 9 5 8 2 5 3 .0915704

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 1 7 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - 2 . 1 4 2 8 4 8 . 9 9 5 9 2 5 4 -2.15 0 . 0 3 1 - 4 . 0 9 4 8 2 6 - . 1 9 0 8 7 0 4

vehhhworker
1
1 - . 3 0 5 6 2 4 6 . 4 6 9 3 0 6 5 - 0 .  65 0.515 -1.225448 . 6 1 4 1 9 9 2

age 1 ■ -.0176456 . 0 1 3 9 2 7 - 1 . 2 7 0 . 2 0 5 -.0449421 . 0 0 9 6 5 0 8
income 1 . 0 8 3 6 4 7 8 . 4 1 0 9 2 8 2 0 . 2 0 0 . 8 3 9 - . 7 2 1 7 5 6 6 . 8 8 9 0 5 2 3

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 .454265 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0.014724 1.54 0.131 - . 0 9 5 8 2 5 3 .0915704

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17.56 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - . 3 5 9 8 7 4 8 . 7 5 9 2 2 2 4 -0.47 0 .  635 - 1 . 8 4 7 9 2 3 1 . 1 2 8 1 7 4

Î
vehhhworker

1
1 . 6 8 8 1 2 4 .3505605 1 . 9 6 0 . 0 5 0 . 0 0 1 0 3 8 1 . 3 7 5 2 1

age 1 - . 0 0 8 2 2 7 8 . 0 1 2 7 9 1 6 - 0 . 6 4 0 . 5 2 0 - . 0 3 3 2 9 8 9 . 0 1 6 8 4 3 4
income 1 . 1 2 7 2 6 4 1 .3935141 0 . 3 2 0 . 7 4 6 -.6440095 . 8 9 8 5 3 7 6

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0.131 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 1 7 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - 1 . 3 1 9 9 4 9 . 7 3 2 9 0 0 5 - 1 . 8 0 0 . 0 7 2 - 2 . 7 5 6 4 0 8 . 1 1 6 5 0 9 4

I
vehhhworker

1
1 . 6 8 2 4 6 8 3 . 6 8 8 8 5 7 5 0 . 9 9 0 . 3 2 2 -.667667 6 2 . 0 3 2 6 0 4

age 1 - . 0 3 0 2 5 0 2 . 0278 -1.09 0.277 - . 0 8 4 7 3 7 2 . 0 2 4 2 3 6 8
income 1 . 9 6 4 6 3 7 6 1 . 0 8 1 8 3 1 0 . 8 9 0 . 3 7 3 -1.155711 3 . 0 8 4 9 8 7

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0.131 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 .  000 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17.56 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 -1.057457 1 . 7 5 7 8 4 1 - 0 . 6 0 0.547 - 4 . 5 0 2 7 6 2 2 . 3 8 7 8 4 7
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Full Destination Choice Model Results (continued)

5
vehhhworker

1
1 . 4 0 5 8 9 3 2 . 4 8 6 7 1 1 5 0 . 8 3 0 . 4 0 4 - . 5 4 8 0 4 3 9 1 . 3 5 9 8 3

age 1 . 0 1 4 2 3 1 . 0 1 6 6 5 8 7 0 . 8 5 0 . 3 9 3 -.0184195 . 0 4 6 8 8 1 5
income 1 . 2 2 3 0 5 1 3 . 5 2 0 6 9 1 9 0 . 4 3 0.668 - . 7 9 7 4 8 6 1 1 . 2 4 3 5 8 9

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3.15 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1 . 5 4 0 . 1 3 1 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - 2 . 8 8 9 9 , 1 . 0 1 2 8 2 8 - 2 . 8 5 0 . 0 0 4 - 4 . 8 7 5 0 0 6 - . 9 0 4 7 9 3 7

6
vehhhworker

1
1 . 6 4 3 8 8 9 8 . 5 9 2 0 0 7 8 1 . 0 9 0 . 2 7 7 - . 5 1 6 4 2 4 2 1 . 8 0 4 2 0 4

age 1 - . 0 1 9 2 1 8 5 . 0 2 2 0 9 9 4 - 0 . 8 7 0 . 3 8 4 - . 0 6 2 5 3 2 6 . 0 2 4 0 9 5 6
income 1 - . 5 3 7 6 5 1 6 . 6 1 9 7 3 6 7 - 0 . 8 7 0 . 3 8 6 - 1 . 7 5 2 3 1 3 . 6 7 7 0 0 9 9

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0 . 1 3 1 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 1 7 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - 1 . 7 3 3 9 3 6 1 . 1 7 8 4 8 5 -1.47 0 . 1 4 1 - 4 . 0 4 3 7 2 3 . 5 7 5 8 5 1 1

7
vehhhworker

1
1 . 2 8 5 5 3 1 5 .5714962 0 . 5 0 0 .  617 - . 8 3 4 5 8 0 3 1 . 4 0 5 6 4 3

age 1 - . 0 3 6 7 0 4 7 . 0 1 8 8 8 6 4 - 1 .  94 0 . 0 5 2 -.0737214 . 0 0 0 3 1 1 9
income 1 - . 9 0 2 1 7 4 2 . 5 0 9 2 2 8 1 -1.77 0 . 0 7 6 - 1 . 9 0 0 2 4 3 . 0 9 5 8 9 4 4

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0.131 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17.56 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - . 1 4 0 8 2 2 2 . 9 4 3 0 9 5 7 -0.15 0 . 8 8 1 - 1 . 9 8 9 2 5 6 1 . 7 0 7 6 1 1

8
vehhhworker

1
1 - . 0 4 6 6 2 3 6 . 3 2 5 5 4 6 9 - 0 . 1 4 0 . 8 8 6 - . 6 8 4 6 8 3 9 . 5 9 1 4 3 6 6

age 1 . 0 0 9 2 0 3 1 . 0 0 9 9 0 9 4 0 .  93 0 . 3 5 3 - . 0 1 0 2 1 9 . 0 2 8 6 2 5 2
income 1 . 0 2 1 6 6 7 1 . 2 9 6 8 3 5 6 0 . 0 7 0 . 9 4 2 - . 5 6 0 1 1 9 9 .6034541

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3.15 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1 . 5 4 0 . 1 3 1 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17 . 56 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - . 7 0 2 3 6 1 3 . 5 7 5 0 2 7 - 1 . 2 2 0 . 2 2 2 - 1 . 8 2 9 3 9 4 . 4 2 4 6 7 0 9

10 1
vehhhworker 1 -.4040309 . 3 9 8 2 7 5 6 -1.01 0 . 3 1 0 - 1 . 1 8 4 6 3 7 . 3 7 6 5 7 5

age 1 - . 0 0 5 5 1 9 7 . 0 1 1 8 6 2 5 -0.47 0 .  642 - . 0 2 8 7 6 9 8 .0177304
income 1 - . 1 7 7 2 2 4 4 . 3 3 9 1 5 1 2 - 0 . 5 2 0 .  601 - . 8 4 1 9 4 8 5 . 4 8 7 4 9 9 6

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 . 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0.131 - . 0 9 5 8 2 5 3 .0915704

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 1 7 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 . 8 1 2 8 4 4 .6741554 1 . 2 1 0 . 2 2 8 - . 5 0 8 4 7 6 2 2 . 1 3 4 1 6 4

11
vehhhworker

1
1 . 4 8 6 5 9 7 6 . 5 0 5 9 4 9 0 . 9 6 0 . 3 3 6 - . 5 0 5 0 4 4 2 1 . 4 7 8 2 3 9

a g e 1 - . 0 1 1 2 2 5 2 . 0 1 8 3 5 3 1 - 0 . 6 1 0.541 - . 0 4 7 1 9 6 5 . 0 2 4 7 4 6 2
income 1 - . 4 3 6 2 4 2 2 . 5 0 7 4 8 8 6 - 0 . 8 6 0 . 3 9 0 - 1 . 4 3 0 9 0 2 . 5 5 8 4 1 7 2

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0 . 1 3 1 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 1 7 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 . 9 4 6 7 0 4 4 1 . 1 0 8 7 7 2 0 . 8 5 0 . 3 9 3 - 1 . 2 2 6 4 4 8 3 . 1 1 9 8 5 7
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Full Destination Choice Model Results (continued)

12
vehhhworker | . 1 8 7 8 0 7 5 . 3 7 7 0 6 1 1 0 . 5 0 0 . 6 1 8 - . 5 5 1 2 1 8 6 . 9 2 6 8 3 3 6

age | - . 0 2 4 2 4 9 8 . 0 1 2 4 3 2 2 -1.95 0 . 0 5 1 - . 0 4 8 6 1 6 5 .0001169
income | .6101774 . 4 0 5 5 4 3 4 1 . 5 0 0 . 1 3 2 - . 1 8 4 6 7 3 1 . 4 0 5 0 2 8

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1 . 5 4 0 . 1 3 1 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre | 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo | 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17 . 56 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 . 8 2 9 7 0 3 7 . 7 3 4 2 2 8 5 1 . 1 3 0 . 2 5 8 - . 6 0 9 3 5 7 8 2 . 2 6 8 7 6 5

13 1
vehhhworker 1 . 0 2 0 6 8 9 2 . 5 2 9 0 3 2 2 0 . 0 4 0 .  969 -1.016195 1 . 0 5 7 5 7 3

age 1 - . 0 3 3 4 2 9 . 0 1 7 0 8 0 5 - 1 .  96 0 . 0 5 0 -. 0669062 . 0 0 0 0 4 8 2
income 1 1 . 1 7 4 7 9 2 . 6 5 2 7 3 4 8 1 . 8 0 0 . 0 7 2 - . 1 0 4 5 4 4 4 2 . 4 5 4 1 2 9

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1 . 5 4 0 . 1 3 1 - . 0 9 5 8 2 5 3 .0915704

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 .  000 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherj o 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 1 7 . 5 6 0 .  000 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - 1 . 0 0 7 1 7 9 1 . 0 0 7 7 8 9 -1.00 0 . 3 1 8 - 2 . 9 8 2 4 0 9 . 9 6 8 0 5 0 7

14
vehhhworker

1
1 . 3 5 2 4 8 8 7 .273767 1 . 2 9 0 . 1 9 8 - . 1 8 4 0 8 4 8 . 8 8 9 0 6 2 2

age ! - . 0 0 9 1 2 1 3 . 0 0 8 7 7 4 8 -1.04 0 . 2 9 9 - . 0 2 6 3 1 9 6 . 0 0 8 0 7 7
income 1 . 2 3 3 1 8 3 5 . 2 6 7 5 4 9 1 0 . 8 7 0 . 3 8 3 - . 2 9 1 2 0 3 .7575701
spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3.15 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5

CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0.131 - . 0 9 5 8 2 5 3 .0915704
hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0.000 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherj o 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17.56 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 . 4 7 8 0 5 4 6 . 5 0 2 5 5 9 1 0 . 9 5 0.341 - . 5 0 6 9 4 3 1 1 . 4 6 3 0 5 2

15 1
vehhhworker 1 . 2 8 4 9 9 9 8 . 2 7 6 5 4 2 4 1 . 0 3 0 . 3 0 3 - . 2 5 7 0 1 3 3 . 8 2 7 0 1 3

age 1 - . 0 0 3 6 8 3 2 . 0 0 8 7 6 3 1 - 0 . 4 2 0 .  674 - . 0 2 0 8 5 8 6 . 0 1 3 4 9 2 2
income 1 . 0 9 8 7 1 3 5 . 2 6 4 3 0 0 1 0 . 3 7 0 . 7 0 9 -.4193051 . 6 1 6 7 3 2 1

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 .15 0 .  004 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0 . 1 3 1 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 1 7 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 . 1 9 8 7 2 2 8 . 5 0 1 8 7 2 9 0 . 4 0 0 . 6 9 2 - . 7 8 4 9 2 9 9 . 1 . 1 8 2 3 7 6

16 1
vehhhworker 1 . 4 8 8 9 1 8 7 . 2 9 9 4 3 3 8 1 .  63 0 . 1 0 3 - . 0 9 7 9 6 0 7 1 . 0 7 5 7 9 8

age 1 .0010443 . 0 0 9 9 4 9 0 . 1 0 0 .  916 -.0184554 .0205441
income 1 . 1 0 9 4 1 2 7 . 3 0 2 8 3 8 9 0 . 3 6 0.718 - . 4 8 4 1 4 0 6 . 7 0 2 9 6 6

spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3.15 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5
CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0.131 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4

hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0.000 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherj o 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17.56 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - . 6 5 1 5 5 1 1 . 5 7 7 1 9 0 1 -1.13 0 . 2 5 9 - 1 . 7 8 2 8 2 3 . 4 7 9 7 2 0 8

17
vehhhworker

1
1 .74 8 64 65 . 5 3 4 2 9 1 1 . 4 0 0 . 1 6 1 - . 2 9 8 5 4 4 7 1 . 7 9 5 8 3 8

age 1 . 0 0 2 8 6 5 2 . 0 2 0 6 5 4 8 0.14 0 . 8 9 0 - . 0 3 7 6 1 7 4 . 0 4 3 3 4 7 9
income 1 - . 3 8 8 6 1 3 5 . 5 8 5 2 7 2 8 -0.66 0 . 5 0 7 - 1 . 5 3 5 7 2 7 . 7 5 8 5
spatial 1 2 . 6 4 0 2 1 5 4 0 . 8 3 8 1 6 3 3 . 1 5 0 . 0 0 4 . 4 5 4 2 6 5 3 . 2 9 5 9 0 1 5

CBD 1 0 . 0 2 2 6 8 1 2 0 . 0 1 4 7 2 4 1.54 0.131 - . 0 9 5 8 2 5 3 . 0 9 1 5 7 0 4
hotelre 1 0 . 1 6 8 4 3 2 4 0 . 0 0 8 3 3 4 2 0 . 2 1 0 . 0 0 0 . 0 8 4 7 1 6 3 . 2 8 9 6 4 2 4
otherjo 1 0 . 4 7 6 3 5 8 4 0 . 0 2 7 1 2 7 17 . 5 6 0 . 0 0 0 . 2 8 3 8 3 5 4 . 5 7 5 3 6 7 2

cons 1 - 1 . 9 2 6 1 3 8 1 . 2 0 0 9 3 7 - 1 . 6 0 0 . 1 0 9 - 4 . 2 7 9 9 3 2 . 4 2 7 6 5 6 2
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H. Creation of Origin-Destination (0-D) Matrix using logit model results
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