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ABSTRACT

Thermochronological constraints on Mesozoic tectonism in southwest U.S. and New
Zealand; and “Ar/’Ar age spectra from artificially mixed micas

by
Joseph Kula
Dr. Terry Spell, Examination Committee Chair
Associate Professor of Geoscience
University of Nevada, Las Vegas
Dr. Michael Wells, Examination Committee Co-Chair
Professor of Geoscience
University of Nevada, Las Vegas
The four chapters in this dissertation consist of projects that utilized **Ar/*° Ar

thermochronometry. Chapters 1 and 2 are from a study of the Sisters shear zone on
Stewart Island, New Zealand. In these studies, thermal histories obtained using VAP Ar
thermochronometry were combined with field and microstructural observations collected _
from deformed rocks. These data indicate extensional deformation along the Sisters
shear zone was the youngest event related to the breakup of the paleo-Gondwana margin.
The Sisters shear zone is related to formation of the Great South Basin and thinning of
the Campbell Plateau. The shear zone is also spatially and kinematically linked to the
Pacific-Antarctic spreading ridge indicating the shear zone was involved in the separation
of New Zealand from West Antarctica. Comparison of timing constraints from Stewart

Island with those from other studies and locations indicates the breakup of the Gondwana

margin was likely the result of two distinct extensional events.
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Chapter 3 consists of a ** Ar/* Ar laboratory experiment dealing with the biotite
and muscovite micas. Artificial samples of mixed mica populations were analyzed using
the vacuum furnace step-heating method. These samples were prepared and analyzed to
test the possibility of recovering original ages of individual mica populations from natural
samples consisting of multiple generations. The results indicate this is not likely in the
vacuum furnace. Additionally, the results indicate that the compositional controls on
argon retentivity in nature may also be active during furnace heating in the laboratory.

Chapter 4 shows the results of a ** Ar/>’ Ar study of plutonic rocks that have cross
cutting relationships with structures of the Clark Mountains thrust complex in southern
California. These data indicate the earliest episode of crustal shortening occurred pre-
155 Ma. The Pachalka thrust at ~144 Ma was previously considered the oldest
deformation episode in the region. Diorite-granodioritic magmatism at ~155 Ma was
followed closely by felsic magmatism of the Ivanpah granite (>149 Ma). The ductile
Morning Star Mine thrust, which likely correlates to the Keaney-Mollusk Mine thrust

cuts the Ivanpah granite.

v
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CHAPTER 1

TWO-STAGE RIFTING OF ZEALANDIA — AUSTRALIA — ANTARCTICA:
EVIDENCE FROM “Ar/*’ Ar THERMOCHRONOMETRY OF THE
SISTERS SHEAR ZONE, STEWART ISLAND, NEW’ ZEALAND
Abstract

The Sisters shear zone is a newly discovered Late Cretaceous detachment fault
system exposed for 40 km along the southeast coast of Stewart Island, southernmost New
Zealand. Footwall rocks consist of variably deformed ~310 and 105 Ma granites ranging
from undeformed to protomylonite, mylonite, and ultramylonite. The hanging wall
includes non-marine conglomerate and brittlely deformed granite. K-feldspar
thermochronometry of the footwall indicates moderately rapid cooling (20-30C°/Ma) due
to tectonic denudation over the interval ~89-82 Ma. Return to slow cooling at 82 Ma
coincides with the age of oldest séaﬂoor adjacent to the Campbell Plateau, reflecting the
mechanical transition from continental extension to lithospheric rupture and formation of
the Pacific-Antarctic Ridge. Our findings support a two-stage rift model for continental
breakup of this part of the Gondwana margin. Stage one (~101-88 Ma) is the northward
propagation of continental extension and the Tasman Ridge as recorded in mylonite

dredged from the Ross Sea and the Paparoa core complex. Stage two (~89-82 Ma) is
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extension between the Campbell Plateau and West Antarctica leading to formation of the

Pacific-Antarctic Ridge.

Introduction
Plate reconstructions of Mesozoic Gondwana place Zealandia (New Zealand and

surrounding continental shelf, e.g. Mortimer, 2004) at the Pacific margin, adjacent to
southeast Australia and West Antarctica (e.g., Suther_land, 1999; Eagles et al., 2004).
Much attention has been directed toward extension between western Zealandia and
eastern Australia leading to opening of the Tasman Sea (Tulloch and Kimbrough, 1989;
Etheridge et al., 1989; Spell et al., 2000) and rift related deformation in Marie Byrd Land,
West Antarctica and the adjacent Ross Sea (e.g., Luyendyk et al., 2003; Siddoway et al.,
2005). These studies have outlined the timing and style of extension and breakup
between Australia and Zealandia, and of extension between East and West Antarctica.
This paper focuses on the outstanding problem of the nature and timing of extension in
eastern Zealandia leading to Pacific-Antarctic Ridge formation and separation of the
Campbell Plateau from West Antarctica.

| Field 0bservati0ns>and Y Ar/* Ar data from the Sisters Shear Zone on Stewart
Island, southernmost New Zealand, are presented here as evidence for a Late Cretaceous
detachment fault system that accommodated continental extension, thinning of the
Campbell Plateau, and was kinematically linked to formation of the Pacific-Antarctic
Ridge. The timing of extension and the transition from continental rifting to seafloor
spreading is documented using **Ar/*” Ar thermochronometry, which indicates this event

is 5-10 Ma younger than extension documented in the Ross Sea and western New
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Zealand. Our new results and observations, combined with published thermochronology
data from western New Zealand and West Antarctica, reveal a sequence of extensional
tectonism that can be best explained by a two-stage model for breakup of the Pacific

margin of Gondwana.

Sisters shear zone, Stewart Island

Stewart Island is part of the Median Batholith and Western Province of New
Zealand (Fig. 1). The Median Batholith represents the magmatic arc developed above a
paleo-subduction zdne along the Gondwana Pacific margin (Tulloch and Kimbrough,
2003). Major structures on Stewart Island include the northwest-striking Freshwater Fault
Zone, Escarpment Fault, and Gutter Shear Zone. These structures are related to pre-
breakup convergent margin tectonism and are described by Allibone and Tulloch (1997,
2004). In contrast, the Sisters shear zone, located along the southeast coast and oriented
obliquely to these structures, is here interpreted to represent an extensional detachment
fault system.

The Sisters shear zone is exposed along the southeast coastline of ‘ Stewart Island
for ~40 km (Fig. 1). At some localities it is as wide as 5 km (map view), however the
boundaries are not well constrained due to relatively poor exposure. The shear zone is
developed within Carboniferous and Early Cretaceous granitic rocks exhibiting varying
degrees of deformation from essentially undeformed to protomylonite, mylonite, and
ultramylonite, with widespread but generally minor brittle deformation overprints. Shear
bands, oblique-grain shape fabrics, sigma- and delta-type feldspar porphyroclasts and

mica fish indicate shear sense.
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The Sisters shear zone is divided into two segments based on the nature of ductile
fabrics, predominant kinematics, and along-strike offset of the western boundary of
ductile fabric (Fig. 1). The northern segment of the shear zone typically consists of
granite mylonite and protom).flonite with foliations dipping 20-30° SSE and top-to-
southeast shear sense. Footwall rocks here are locally overprinted by southeast-dipping
brittle normal faults, commonly subparallel to the ~060° strike of the foliation. In the
southern segment, foliations are generally less well developed than in the north, and
deformation tends to be localized into 5-50m thick high-strain zones including
ultramylonite. Ductile kinematic indicators in the southern portion exhibit both top-to-
northwest and top-to-southeast down-dip sheér sense, but brittle normal faults are
consistently top-to-southeast. Stretching lineations throughout the shear zone
consistently trend 330/150° + 15°. Because of apparent along-strike offset of the western
boundary of ductile fabric and differences in kinematics and foliation attitudes, we infer
the north and south segments of the shear zone are separated by a transfer fault (e.g.
Lister et al., 1986) (Fig. 1).

Microstructures in the deformed granites indicate greenschist facies metamorphic
conditions followed by decreasing temperatures during shearing. In thin section quartz
exhibits features of plastic deformation including oblique grain—Shape fabrics in
dynamically recrystallized grains (regime 2 of Hirth and Tullis, 1992) and ribbons with
patchy to undulose extinction, whereas feldspars exhibit dominantly brittle deformation.
Thé lack of post-deformational growth in ~30 pm grains of recrystallized quartz,
preservation of unrecovered quartz ribbons with undulose extinction, and cataclastic

‘crush zone’ overprinting collectively indicate cooling during deformation.
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A brittle detachment surface oriented 061/27S is expﬁsed in a small bay in the
northern segment opposite the Sisters Islets (Fig. 2). A 10cm-thick black flinty
ultracataclasite underlies the fault surface, and separates mylonite of the footwall from
chloritic hydrothermally altered and brecciated granitic rocks of the hanging wall.
Slickenlines measured on the detachment surface are of the same trend as stretching
lineations throughout the shear zone. The detachment fault/surface appears to be entirely
offshore in the southern segment of the shear zone (Fig. 1).

The Sisters Islets, a pair of ~200 x 400 m islets ~1 km offshore (Fig. 2) are
composed of essentially undeformed conglomerate (Fleming and Watters, 1974) and
represent the hanging wall of the Sisters shear zone. Conglomerate beds on the Sisters
strike ~070, dip 20-25° NNW, and consist of rounded, with lesser subangular,
dominantly granitic clasts enclosed in an arkosic sandstone matrix. Many clasts exhibit

ductile fabric, however a provenance from the footwall rocks has not yet been confirmed.

A% Ar thermochronometry
Samples were collected from granitic outcrops at locations shown in Figure 1 and
detailed in the PETLAB database (http://data.gns.cri.nz/pet/). **Ar/*° Ar analyses were
conducted at the Nevada Isotope Geochronology Laboratory at UNLV; data tables and
descriptions of analytical methods are given in appendices DR1 and DR2.

Footwall mica ages

Muscovite and biotite were collected from footwall rocks from the Knob Pluton in
the northern segment ~50-100m below the detachment surface (P76106, Fig. 1).

Muscovite yielded a relatively flat age spectrum with a plateau age of 93.8 + 0.4 Ma
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(uncertainties 20), incorporating 96% of the gas released (Fig. 3A). Biotite yielded a
plateau age of 90.0 + 0.8 Ma over 59% of the gas released and an isochron age of 90.6 +
1.2 Ma with a **Ar/*SAr intercept of 294.5 + 2.2, indicating no excess “’Ar in the sample.

Footwall and hanging-wall K-feldspar

Three K-feldspar separates were analyzed using detailed furnace step-heating,
including isothermal duplicates, to determine argon diffusion kinetics for application of
multiple diffusion domain (MDD) thermal modeling (Lovera et al., 1989; 1991). Two
samples were collected from footwall rocks: P76106, (discussed above); and P67866
from the western side of the southern segment of the shear zone (Fig. 1). The footwall
samples yield maximum ages of 89-90 Ma with sample P76106 exhibiting a prominent
age gradient over the initial gas release that is absent in sample P67866 (Fig. 3A). The
third sample (P62424) was collected from hanging-wall granite of North Traps (~120
Ma, U-Pb zircon, Allibone and Tulloch, 2004), 35 km southeast of the coast (Fig. 1). This
sample yields maximum ages ~25 Ma older than the footwall samples. Following an
initial age gradient over the first 10% of the gas release, the age spectrum flattens at 115—
116 Ma, close to the granite crystallization age.

Thermal history of the Sisters shear zone

The muscovite (93 Ma) and biotite (90 Ma) footwall ages and ‘nominal’ closure
temperatures of 400 and 350 °C (cf. McDougall and Harrison, 1999), respectively, yield a
crude cooling rate estimate of ~17 °C/Ma. The two footwall K-feldspars (P76106 and
P67866) (Fig. 3) yield similar MDD modeling results (Fig. 3B). Both show moderately
rapid cooling (20-30°/Ma) beginning at ~89 Ma followed by a transition to very slow

cooling at ~82—78 Ma (Fig. 3).
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Hanging-wall sample P62424 yields a distinctly diffe;ent thermal history from
those of the footwall samples. Rapid cooling from 116 to 105 Ma following emplacement
at ~120 Ma likely reflects conductive thermal re-equilibration with the surrounding
shallow crust. At 105 Ma a decrease to very slow cooling (nearly isothermal) (Fig. 3b)
indicates prolonged residence in the upper crust for over 40 Ma following cessation of

Median Batholith arc magmatism.

Discussion

The above field observations indicate the Sisters shear zone contains all the
elements of a continental extensional detachment fault system with a footwall of variably
mylonitic granitoids with localized brittle overprint, and a brittlely-deformed hanging
wall of unfoliated granite and conglomerate (Fig. 2B). Brittle overprinting of ductile
fabrics is consistent with exhumation of the footwall during deformation. Juxtaposition of
mid-crustal plutonic (lower plate) rocks against tilted sedimentary (upper plate) rocks is
typical of large-magnitude detachment faults such as those of the Basin and Range of the
western United States. (Wernicke, 1992).

An extensional setting for the shear zone is further supported by contrasting
thermal histories from footwall and hanging-wall samples. ** Ar/*® Ar mica ages from
footwall rocks indicate slow cooling from ~93—-89 Ma. This interval is followed by a
period of moderately rapid cooling (20-30 °C/Ma) from ~89-82 Ma, as determined from
K-feldspar thermal modeling (Fig. 3B), and is attributed to extensional exhumation along
the detachment fault. At ~82 Ma the cooling rate decreased substantially to nearly

isothermal conditions and thermal equilibrium with the hanging wall (Fig. 3B). The
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hanging-wall K-feldspar indicates thermal equilibration with the surrounding upper crust
~25 Ma earlier. From Figure 3B the currently exposed footwall rocks were ~200 °C
hotter than the hanging-wall rocks at 89 Ma. Assuming a pre-extensional geothermal
gradient of 20-30 °C/km (Rothstein and Manning, 2003), the thermal histories reflect 7—
10 km of crustal excision along the Sisters shear zone. Using these constraints and the dip
angle of the ultracataclasite described above (27°, assuming no rotation), a range of 15—
22 km of slip is estimated along the detachment fault.

The transition to slow cooling observed in footwall K-feldspar at ~82 Ma
corresponds with the age of oldest seafloor (chron 33r, 83.0-79.1 Ma) along the southeast
margin of the Campbell Plateau (Larter et al., 2002) and is consistent with the tectonic
model of Sutherland and Hollis (2001). Therefore, the decrease in cooling rate may
reflect the timing of transition from continental extension to lithosphere rupture and
formation of the Paciﬁc-Antarc;tic spreading ridge between the Campbell Plateau and
West Antarctica.

The discovery of the Sisters shear zone has at least three important implications
for Southwest Pacific Cretaceous tectonics. Firstly, the Sisters shear zone lies along strike
from the fault-bounded northwest margin of the Great South Basin (Cook et al., 1999).
Lineations in footwall rocks are coincident with the extension direction inferred for the
basin based on dip directions of seismically identified normal faults, indicating a major
role for the Sisters Shear Zone in the formation of this large hydrocarbon-prospective
basin. Secondly, the Sisters shear zone cuts acrosé the trend of thickened arc crust of the
Median Batholith (Tulloch and Kimbrough, 2003) indicating it is unlikely that

gravitational collapse was the driving mechanism for Sisters Shear Zone extension (cf.
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Dewey, 1988; Rey et al., 2001). Thirdly, YA Ar thermochronometry data from the
Sisters shear zone supports a two-stage rifting model for the Gondwana Pacific margin

(discussed below).

Two-stage Zealandia rifting model

The timing of cooling recorded by K-feldspar of the Sisters shear zone (~89—82
Ma) is younger than that in both the Ross Sea (~100-92 Ma; Siddoway et al., 2004) and
the Paparoa metamorphic core complex (~92-88 Ma; Spell et al. 2000) (Fig. 4A). This
discrepancy may be explained by a two-stage rift model that incorporates the model of
detachment fault control on the formation of asymmetric continental margins of Lister et
al. (1986). In this model, stage 1 (101-88 Ma) is asymmetric extension between a lower
plate of Zealandia/West Antarctica and an upper plate of Australia/East Antarctica,
resulting in formation of the Tasman Ridge (Tulloch and Kimbrough, 1989; Spell et al.,
2000). Thermal histories determined for mylonite dredged from the Ross Sea (Siddoway
et al., 2004) and the Paparoa footwall (Spell et al., 2000) would thus record the northward
propagation of the Tasman rift zone (Fig. 4). Stage 2 (89-82 Ma) is extension between a
lower plate of Zealandia and an upper plate of West Antarctica, producing the Pacific-
Antarctic Ridge; the thermal history of the Sisters shear zone footwall records this event
and lineations here are subparallel to Pacific-Antarctic Ridge spreading supporting a
kinematic relationship. A second, short-lived interval of rapid cooling at ~80 Ma from
West Antarctica (Fig. 4) may reflect a second stage of exhumation by rift flank uplift of
the upper plate in proximity to the newly formed spreading ridge (see Sutherland and

Hollis, 2001). This interpretation is consistent with rapid exhumation of a mid-crustal
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shear zone in the Fosdick Mountains that was subsequently tilted and cut by Late
Cretaceous normal faults (Richard et al., 1994). In this two stage rifting model, Zealandia
represents the lower plate to two asymmetric rift systems, Australia and East Antarctica
both represent the upper plates to an asymmetric rift, and West Antarctica changes from
the lower plate of the Tasman rift to the upper plate of the Pacific-Antarctic rift. This
model and the thermochronometry data presented herein are consistent with and support
previous assertions that the separation of New Zealand from West Antarctica was the

final stage of Gondwana breakup (Larter et al., 2002; Siddoway et al., 2004).

Figure captions
Figure 1. Generalized geologic map of southern Stewart Island (Modified from Allibone
and Tulloch, 2004) showing the dominantly plutonic nature (Median Batholith- black in
inset). Note distribution of ductile fabric, stretching lineation orientation, and inferred
transfer fault (see text). Sample locations are labeled with P-numbers (PETLAB database
(http://data.gns.cri.nz/pet/). North Traps are a set of low-lying rock and reefs consisting

of undeformed granite. Box indicates area of Figure 2. PP—Port Pegasus.

Figure 2. A. Stewart Island coast opposite the Sisters Islets showing outcrop relationships

of ductile fabrics, chloritic breccia, and conglomerate of the Sisters Islets. X-X line

marks section line for figure 2B. B. Schematic cross section depicting upper-lower plate

relationship between Sisters Islets, North Traps, and Stewart Island coast.
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Figure 3. A. Age spectra from samples P76106, P67866 (footwall), and P62424 (hénging
wall) (Fig. 1) (uncertainties 10). B. Comparison of thermal histories from footwall and
hanging wall samples (see text). Outer ehvelope of curves indicates 90% confidence
interval for the distribution of obtained thermal histories, inner envelope indicates 90%

confidence interval for the median.

Figure 4. Two-stage rift model for breakup of Gondwana margin. A. Comparison with
regional thermochronometry data from Western Province, New Zealand (Spell et al.,
2000) and Marie Byrd Land, West Antarctica (Siddoway et al., 2004). Onset of footwall
cooling occurs ~15 Ma after final phase of Median Batholith HiSY magmatism indicating
tectonic origin rather than conductive cooling. B. Rigid plate reconstruction (~95 Ma) of
the Gondwana margin — fragments of New Zealand represent the arc/forearc region (from
Mortimer et al. 2005). Thermal histories in A correspond to numbered arrows in B
representing two distinct stages of margin rifting: thick gray line: stage 1- northward
propagation of Tasman Ridge; thick black line: stage 2- Sisters Shear Zone extension
leading to opening of the Pacific-Antarctic Ridge (see discussion). (Camp—Campbell
Plateau; CR—Chatham Rise; HP—Hikurangi Plateau; W—Wishbone Ridge; Chall—
Challenger Plateau; SLHR—South Lord Howe Rise; STR—South Tasman Rise; ET—

East Tasman Rise; SNR—South Norfolk Ridge; IB—Iselin Bank)
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CHAPTER 2

THERMAL EVOLUTION OF THE SISTERS SHEAR ZONE, SOUTHERN NEW
ZEALAND; FORMATION OF THE GREAT SOUTH BASIN AND DRIVING
MECHANISMS FOR CONTINENTAL BREAKUP
Abstract
The separation of Zealandia from West Antarctica was the final stage in the
Cretaceous breakup of the Gondwana Pacific margin. Continental extension resulting in
formation of the Great South Basin and thinning of the Campbell Plateau leading to
development of the Pacific-Antarctic spreading ridge was partially accommodated along
the Sisters shear zone. This east-northeast striking ductile structure exposed along the
southeast coast of Stewart [sland, NZ is a greenschist facies extensional shear zone that
“separates a hanging wall of chloritic breccia and undeformed conglomeratic sediments
from a footwall of mylonitic Carboniferous and Early Cretaceous granites. Itis a
complex structure that exhibits bivergent kinematics and can be subdivided into a
northern and southern segment. *°Ar/*’ Ar thermochronology indicates cooling of the
shear zone footwall beginning at ~94 Ma with the most rapid cooling occurring over the
interval ~89-82 Ma. Structural and thermochronological data indicate a spatial and
temporal link with initial sedimentation within the offshore Great South Basin, extension

of the Campbell Plateau, and initiation of the Pacific-Antarctic spreadihg ridge. Based on
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thermochronological constraints and the observation that the Sisters shear zone cuts
across Zealandia basement terrane trends, it is evident that extension along the Sisters
shear zone began 5-10 Ma later than extension in western Zealandia related to the
opening of the Tasman Sea and was likely caused by interactions along the continental-

oceanic plate boundary (i.e. slab capture).

Introduction

The isolation of Zealandia in the South Pacific was a result of continental
extension leading to formation of the Tasman Ridge and the Pacific-Antarctic Ridge
oceanic spreading systems (Figure 1). Development of the Tasman Ridge and separation
of western Zealandia from eastern Australia due to Early Cretaceous metamorphic core

‘complex-forming continental extension is well documented [Tulloch and Kimbrough,
1989; Etheridge et al., 1989; Lister et al., 1991; Spell et al., 2000]. In contrast, details of
continental extension leading to formation of the Pacific-Antarctic Ridge and separation
of eastern Zealandia from West Antarctica are more cryptic. Increased understanding of
this latter phase of tectonism holds important implications for the development of
Zealandia as a continent because several offshore continental features (e.g. the Great
South Basin and the Campbell Plateau) formed contemporaneously with this event.

Kula et al. [2007] proposed the isolation of Zealandia resulted from two distinct
rifting events with separation from West Antarctica partially accommodated along the
Sisters shear zone located on the southeast coast of Stewart Island in southern New
Zealand. This tectonic model was based on comparison of **Ar/*° Ar K-feldspar

thermochronometry from the Sisters shear zone with that of other Early Cretaceous shear
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zones in New Zealand and Antarctica. Here, a detailed field, kinematic, and
thermochronometry study of the Sisters shear zone is presented. These data are used to
constrain the shear zone architecture, determine the deformation mechanisms active (and
thus temperature conditions) during extensional shearing of the footwall, and demonstrate
the Sisters shear zone played a significant role in the Cretaceous extensional tectonics
resulting in formation of the Great South Basin, thinning of the Campbell Plateau, and
development of the Pacific-Antarctic Ridge. Additionally, observations from the Sisters
shear zone indicate the driving mechanism for this episode of extension leading to
separation Zealandia from West Antarctica was likely plate boundary forces (i.e. slab

capture).

Stewart Island geology

Stewart Island is located just south of South Island and represents the southeastern
continuation of the Median Batholith and Western Province of New Zealand [Allibone
and Tulloch, 1997; 2004} (Figure 2). Mapping by Allibone and Tulloch [1997, 2004]
shows the basement rocks making up Stewart Island are dominantly plutonic and of
various granitoid compositions. Intrusions range from late Paleozoic through Mesozoic
marking pulses of magmatism during the Carboniferous (345-290 Ma), Early-Middle
Jurassic (170-165 Ma), latest Jurassic to earliest Cretaceous (151-128 Ma), and Early
Cretaceous (128-100 Ma) [Allibone and Tulloch, 2004]. The spatial distribution and age
constraints of pluton exposures on Stewart Island indicates that in the Early Cretaceous,
magmatism migrated southwards (paleo-continentward) into the Western Province

contemporaneous with episodes of crustal shortening [Allibone and Tulloch, 2004;
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Klepeis et al., 2004]. Additionally, the distribution and chemical signatures of plutons
exposed on Stewart Island supports the paired-plutonic belt interpretation of Tulloch and
Kimbrough [2003] where the southern portion of the island represents the continuation of
the thick HiSY belt and the north represents the thin LoSY belt with the Escarpment
Fault roughly marking the boundary between the two [Tulloch et al., 2006].

Structures present on the island include the Freshwater fault zone, the Escarpment
Fault, and the Gutter shear zone which are all northwest-southeast striking reverse faults
that, when restoring oroclinal bending through the Alpine Fault, are consistent with
accommodating arc-normal shortening [Allibone and Tulloch, 2004], and may correlate

to Early Cretaceous structures in the Fiordland region [Klepeis et al., 2004].

The Sisters shear zone

The Sisters shear zone strikes northeast along the southeast coast of Stewart
Island and consists of variably deformed granitoids that include breccia, protomylonite,
mylonite, and ultramylonite [Kula et al., 2007]. Recognition of the shear zone as a
significant structure is based on outcrop sites visited along ~40 km of the southeast coast
of Stewart Island (Figures 2, 3, 4). Descriptions of the outcrop locations visited and
microstructural observations made from oriented samples collected at these sites are
presented here to develop the shear zone architecture and to assess the conditions of
deformation.

Kula et al. [2007] initially described the Sisters shear zone as consisting of two
segments, North and South, based on deformation fabrics, kinematics, and apparent left

lateral offset of the northern boundary of deformation (Figure 2). Figure 3 shows the site
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locations studied in the southern segment and figure 4 shows the locations of sites studied
in the northern segment.

Field and microstructural observations — southern segment

In the southern segment, deformation fabrics are recorded in two granitic units;
the 105 Ma Gog and Kaninihi plutons of Allibone and Tulloch, [2004]. Outcrop
exposures tend to show high-strain zones on the order of tens of meters thick separated
by intervals exhibiting very weak fabric to virtually undeformed textures. The following
are descriptions of field and thin section data collected from key locations (shown in fig.
3) visited within the Sisters shear zone along the southeast coast of Stewart Island. The
northern boundary of deformation in the southern segment is estimated to occur in the
vicinity of South Arm (Figures 2, 3) based on a lack of deformation fabric in exposures to
the north of this inlet.

At site 1 near the southern tip of Stewart Island (Figure 3) exposures of fine-to-
medium grained biotite-K-feldspar-plagioclase-quartz granodiorite of the Kaninihi pluton
exhibit a north-dipping foliation (282°/24° N) and a poorly developed lineation oriented
at 314°/14°. The foliation is well defined by the grain-shape orientation of elongate 3-5
mm feldspar crystals. This ductile fabric is cut by a northwest-dipping high angle normal
fault. In thin section quartz occurs between larger feldspar and biotite crystals as
polycrystalline bands consisting of southwest dipping <50 um grains with lobate margins
(Figure 5a).

Site 2 also consists of outcrops of medium grained Kaninihi granodiorite. The
mineralogy is the same as site 1 with the addition of minor muscovite growth within

biotite clusters and along some grain boundaries. In outcrop there is a very weak
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foliation (085°/15° N) in the rock with a strong lineation (332°/12°) defined by elongate
plagioclase (4x1 mm) crystals. In thin section feldspar and biotite crystals are mostly flat
lying however, many are also oriented at high angles to the weak foliation plane.
Polycrystalline quartz bands occur between the larger feldspar grains (Figure 5b).

Site 3 is located within the 105 Ma Gog pluton (Allibone and Tulloch, 2004).
Ourcrops consist of north-dipping slabs of ultramylonite with a prominent foliation
(099°/22° N) and lineation (354°/22°). The matrix is very fine grained with a banded
appearance supporting highly rounded feldspar clasts (Figure 5¢). Kinematic indicators
include - and §-shaped feldspar porphyroclasts and overturned microfolds (Figure 5c¢).

Site 4 is an outcrop of quartz-biotite-K-feldspar-plagioclase granite of the Gog
pluton. Feldspars are as large as ~1-3 mm across and thin section shows minor
muscovite growth within bands of biotite. Foliation (314°/38° N) and lineation (322°/ ©)
are both well developed in the outcfop. C’-type shear bands cm-scale ultramylonite
zones with winged porphyroclasts are visible in hand sample, quartz grain-shape fabric is
present in thin section (Figure 5d). Thin section analysis also shows cleavage fractures in
feldspar crystals.

Site 5 is an exposure of the Kaninihi pluton consisting of intermixed intervals of
dark and light granitic material. Both intervals consist of biotite-feldspar-quartz granite
with the more mafic intervals having an increased abundance of biotite. Feldspar crystals
range from ~0.5-3 mm across and sphene, zircon and epidote are relatively abundant.
The mixed intervals of granite are subparallel to the prominent foliation (310°/10° N)
which contains a lineation oriented 342°/5°. Thin sections show a well-preserved quartz

grain-shape fabric (Figure 5Se, f). Quartz is also present as ribbons and biotite shows
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mica-fish morphology. Feldspars are brittley deformed showing kink bands, dense
fractures, and rotation along microfaults (Figure Se, f).

Site 6 consists of exposures of quartz-K-feldspar-plagioclase-biotite granite of the
Kaninihi pluton. Rock outcrops consists of northeast-dipping slabs with a well-
developed foliation (130°/80° N) and lineation (125°/8°). Several south-dipping normal
faults are present that cut the ductile fabric. In thin section quartz appears as ribbons and
also exhibits a poor grain-shape orientation (Figure 5g). Feldspar crystals are highly
fractured and microfaulted (Figure 5g).

Site 7 consists of medium-to-coarse grained K-feldspar-plagioclase-quartz-biotite
Kaninihi granite. Foliation (044°/'17° S) and lineation (160°/17°) are well developed in
the outcrops with K-feldspar dominating the mineralogy and oriented in a framework
defining the duétile fabric. In thin section quartz occurs as polycrystalline bands and
biotite as mica-fish along the grain boundaries of larger feldspar crystals (Figure Sh).
Fracture and kink-banding occurs in microcline crystals.

Site 8 consists of the same Kaninihi granite described for sit_e 7. Ductile fabric in
the outcrops is defined by foliation (025°/24° S) and lineation (155°/13°), which is cut by
steep south-dipping normal faults. In thin section quartz is in polycrystalline ribbons and
feldspar clasts show asymfnetric wing-development as well as fracture and kink-banding
(Figure 5i). White mica growth occurs along fractures and the foliation.

Site 9 is exposures of coarse feldspar-quartz-biotite Kaninihi granite. The
outcrops appear weakly deformed with poorly developed foliation (265°/20° N) and

lineation (330°/14°). In thin section quartz appears as ribbons and feldspars exhibit
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strong undulatory extinction. Feldspar crystals are also fractured and rotated along
microfaults.

As stated above, some examples of the microstructures observed at these sites in
the southern segment are shown in Figure 5. To summarize observations, several
locations consist of ultramylonite (sites 3, 4, 5) either as a dominant component of the
outcrop (site 3) or as intervals within coarser mylonitic or lesser deformed rocks (sites 4,
5). Common to all observed ultramylonites is the presence of highly rounded and winged
feldspar porphyroclasts within a dark, banded very-fine-grained matrix (Figure 5).
Feldspar deformation is dominated by fracturing, microfaulting, and kink-banding.
Quartz is dominantely observed as ribbons and polycrystalline bands exhibiting grain-
shape fabric, that occur between the larger feldspar crystals oriented subparallel to the
foliation.

Field and microstructural observations — northern segment

Several sites studied in the northern segment of the Sisters shear zone are depicted
in Figure 4. Ductile fabrics include protomylonite, mylonite, and ultramylonite and are
present in three different plutons as mapped by Allibone and Tulloch [2004]— the Knob
(305 Ma), Blakies (115 Ma), and Easy (130 Ma) plutons. Figure 6 shows a summary of
the deformation fabrics observed in the northern segment and descriptions of these data
as obtained from field observations, field measurements, and thin section analyses,
follows.

Site 10 is within the Easy pluton on the western side of Pearl Island (Figure 4).
The outcrop is generally a granodiorite consisting of intervals dominated by an

assemblage of biotite-muscovite-quartz. The granodiorite exhibits a relatively weak
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south-dipping ductile fabric while the mica-rich intervals show a strong mylonitic fabric
with S-C texture. The foliation is south-dipping with a strong lineation plunging toward
150° (Figure 4). In thin section mica fish, polycrystalline quartz ribbons, and quartz
grain-shape fabric are all present (Figure 6a).

Site 11 is to the north-northeast of Pearl Island and also within the Easy Pluton
(Figure 4). Here outcrops consist of medium grained biotite-K-feldspar-plagioclase-
quartz granodiorite with rare hornblende. The exposures are undeformed and thus
constrain the northern boundary of the shear zone at this location (Figure 4).

Site 12 is within the medium grained two-mica Knob granite. The general
mineralogy cbnsists of biotite-muscovite-K-feldspar-plagioclase-quartz with biotite more
abundant than muscovite. There is a well-developed ductile fabric with foliation
(075°/49° S) and lineation (164°/45°) that is cut locally by several south-dippin‘g normal
faults (Figure 4, 6f). Thin section shows preservation of a strong quartz grain-shape
fabric, sigma shaped clasts, and shear bands (Figure 6b). Plagioclase exhibits kink-
banding and deformation lamellae.

Site 13 is the Sisters Islets for which the Sisters‘shear zone is named (Figures 4,
'6d). The islets consist of boulder conglomerate (Figure 6d) and were originally described
by Fleming and Watters [1974]. The conglomerate beds consist dominantly of clasts of
deformed granitoids within an arkosic sand matrix. Beds dip north at approximately 25°
and show some chloritization and/or hydrothermal alteration. Fleming and Watters
(1974) report zeolitization of feldspars.

Site 14 marks the only location where a fault surface has been observed and

measured (Figures 4, 6¢). The surface is marked by a black ultra-cataclastic ledge that
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separates brittley-overprinted granite mylonite below (north) from hydrothermally altered
chloritic brecciated granite above (south) (Figures 4, 6¢). The fault surface strikes
northeast at 061°, dips south at 27° and has slickenlines oriented 153°/27°. The black
ultracataclasite exhibits extreme grain size reduction and the overlying chlorite breccia is
highly fractured consisting mostly of feldspar fragments with minor interstitial sericite
and calcite growth. In thin section feldspar fragments show undulose extinction with
crush zones at the grain boundaries.

Site 15 consists of deformed two-mica Knob granite with muscovite more
abundant than biotite in the finer grained intervals and biotite more abundant in the
coarser intervals. Strong foliation (040°/19° S), lineation (145°/18°), C’-type shear
bands, asymmetric clasts, and cm-scale intervals of ultramylonite are observable in hand
sample (Figure 6g). Thin section shows well-preserved mica fish, winged o- and 8-
shaped clasts, polycrystalline quartz bands, and quartz grain-shape fabric (Figure 6e).

To summarize observations from the northern segment; all deformation fabrics
(foliation/lineation) measured are south-dipping as are all faults that cut these fabrics.
Quartz is preserved in deformed rocks as polycrystalline ribbons and exhibits a strong
grain-shape fabric. Feldspars exhibit some undulatory extinction in thin section and
show deformation by fracture and microfaulting. Heavily fractured granitic chlorite-
breccia sits above a fault surface and offshore conglomerate is oriented coaxially but

oppositely dipping to coastal mylonitic fabrics.
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A1/ Ar procedures

Sample locations are shown in Figures 2, 3, and 4. Biotite, muscovite, and K-
feldspar were separated from hand samples by crushing, sieving, heavy liquid density
separation, and hand-picking to >99% purity. Samples P77057 biotite and muscovite and
P77056 biotite were irradiated for 7 hours at the McMaster Nuclear Reactor at McMaster
University, Ontario, Canada. Samples P75092 biotite and muscovite, P75084 biotite and
K-feldspar, P75079 biotite, and P75086 biotite and K-feldspar were irradiated for 7 hours
at the Oregon State University Radiation Center in the In-Core Irradiation Tube (ICIT) of
the 1 MW TRIGA type reactor at Oregon State University. Sample P75092 K-feldspar
was irradiated for 14 hours at the Nuclear Science Center at Texas A&M University on
the core edge (fuel rods on three sides, moderator on the fourth side) of the IMW TRIGA
type reactor in a dry tube device, shielded against thermal neutrons by a 5 mm thick
jacket of B4C powder. Synthetic K-glass and optical grade CaF, were included in the
irradiation packages to monitor neutron induced argon interferences from K and Ca, and
Fish Canyon Tuff sanidine (27.9 Ma; Steven et al., [1967]; Cebula et al., [1986]) was
included in the irradiation to determine J-factors. These data are listed with the
respective samples in Table 3.

Following irradiation, samples were analyzed at the Nevada Isotope
Geochronology Laboratory at the University of Nevada, Las Vegas using the furnace step
heating method with a double vacuum resistance furnace similar to the Staudacher et al.
[1978] design. Reactive gases were removed by three GP-50 SAES getters prior to being
admitted to a MAP 215-50 mass spectrometer by expansion. Peak intensities were

measured using a Balzers electron multiplier by peak hopping through 7 cycles; initial
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peak heights were determined by linear regression to the time of gas admission. Mass
spectrometer discrimination and sensitivity was monitored by repeated analysis of
atmospheric argon aliquots from an on-line pipette system. The discrimination used in
calculating ages for each sample is also listed in Table 3.

K-feldspar samples P75086 and P75084 were interpreted using the multiple
diffusion domain (MDD) modeling approach of Lovera et al. [1989, 1991]. Activation
energy (E) was determined using a least squares linear regression of data from low-
temperature steps of the experiment plotted on an Arrhenius diagram [Lovera et al.,
1989]. The frequency factor (D,) for each diffusion domain was determined using the
calculated activation energy and modeling the form of the Arrhenius plot [Lovera, 1992].
Ten E-D, pairs were then randomly selected from a Gaussian distribution around the
values and their uncertainties obtained from the Arrhenius diagram. For each pair, a
single activation energy was assumed to be representative of all domains used in the
modeling. The number of domains along with their size and volume fraction was
modeled using a variational iterative technique to determine the best fit between the
experimental and modeled results on a domain size distribution plot [log (x/r,) vs. % Ar
released] [Richter et al., 1991]. Cooling histories were then determined for each E-D,
pair by fitting modeled age spectra to the experimental age spectrum using these
parameters and domain distributions. The cooling histories obtained were then used to
calculate 90% confidence intervals for the total distribution and the median of the

distribution [Lovera et al., 1997].
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A1/ Ar results
Age spectra obtained for muscovite, biotite, and K-feldspar are summarized in
Figure 7 with corresponding data tables presented in Appendix A. All ages cited in text
and figures are at the 20 level of uncertainty. Plateau ages are defined as three or more
consecutive steps totaling greater than 50% of the gas release that overlap at the 20 level
of uncertainty. In Figure 7 an asterisk denotes the age interpreted as representative for

each sample. Below are descriptions of the age spectra and isotopic behavior.

P75086 biotite and K-feldspar (Site 1)

Biotite yielded a total gas age of 92.9 + 0.8 Ma. A flat age spectrum was obtained
with 95% (14 of 15 steps) of the gas release corresponding to a plateau age of 93.1 + 0.8
Ma. Isochron regression of all 15 steps (MSWD = 0.19) results in an age of 93.7 + 0.7
Ma corresponding to an initial “*Ar/*®Ar ratio of 250.8 £ 7.4. The plateau age is the
preferred age for the sample.

K-feldspar yielded aﬁ age spectrum showing a progressive increase in age from
80-90 Ma (Figure 7). The first four steps of the analysis yield higher ages indicative of
excessive argon, however these only account for 0.3% of the total gas release. Arrhenius
data calculated from the *°Ar release pattern for MDD thermal modeling are E = 45.99 +
0.95 kcal/mol and Dy/t* = 4.35 + 0.23 sec”’ (Figure 8).

P75079 biotite (NW of Pearl Island)

The age spectrum for P75079 biotite shows an initial increase in age to a plateau-
like crest, a subsequent decrease in age to a trough, and a final staircase shaped increase
in ages. The total gas age for the sample is 91.2 + 0.6 Ma, however omission of the first

step (youngest age in spectrum) yields a preferred age of 94.6 + 0.6 Ma. The ‘plateau’
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(steps 3-5) and ‘trough’ (steps 8-11) yield weighted mean ages of 96.1 + 0.8 Ma and 91.1
+ 0.7 Ma, respectively. These two segments of the age spectrum can be expanded by
inclusion of adjacent steps to yield statistically acceptable (MSWD criteria) isochron
regressions. Steps 2-5 yield an isochron age of 97.0 + 2.4 Ma with a *°Ar/*°Ar intercept
of 122 + 350 and an MSWD of 2.7. Steps 8-13 yield an isochron age 0of 93.5 + 1.3 Ma
with a “Ar/*®Ar intercept of 160 + 84 and an MSWD of 2.3. Neither of these regressions
include 50% or more of the total gas released during the analysis and all regressions yield
initial “*Ar/**Ar ratios significantly less than atmosphere (295.5).

P77056 biotite (Site 10)

Biotite yielded a discordant age spectrum with ages ranging from ~50 to 90 Ma.
The total gas age for the sample is 82.2 + 0.9 Ma; omitting the first two steps (youngest
of spectrum) yields a preferred age of 86.6 + 0.9 Ma. Two segments of the age spectrum
can be identified that include contiguous steps with ages that are indistinguishable at 2o.
Steps 4-9 (36.6% of the gas release) yield an age of 86.4 + 1.2 Ma and steps 7-12 (27.3 %
of the gas release) yield an age of 85.7 + 1.2 Ma. Statistically valid isochrons were
obtained from regressions using steps 1-6 and 7-13 corresponding to ages (and “*Ar/**Ar
intercepts) of 92.5 £ 1.2 Ma (283.1 +2.9)and 93.1 + 3.1 Ma (266 + 17).

P75084 biotite and K-feldspar (Site 11)

The total gas age for the biotite sample is 90.3 + 0.7 Ma, however when the first
step is excluded (minimal age of spectrum) the remaining steps yield a preferred age of
93.3 + 0.7 Ma. The age spectrum is discordant with apparent ages range from ~75 to ~95
Ma in a spectrum consisting of a hill-trough-rise shape. These three identifiable

segments of the age spectrum yield ages of 94.4 + 1.0 Ma (steps 3-6), 90.3 = 1.0 Ma
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(steps 8-11), and 92.3 % 1.0 Ma (steps 12-15), respectively.. Thgse same increments of
gas release yield statistically acceptable (MSWD critéria of Wendr and Carl [1991])
isochron regressions with ages and **Ar/*°Ar intercepts of 95.6 + 1.4 Ma, 52 + 270; 90.3 -
+ 1.5 Ma, 308 + 88; and 93.0 £ 1.0 Ma, 195 + 170, respectively. Steps 3 through 6
account for 45.6% of the gas release, whereas steps 8-11 and 12-15 account for 11.3 and
12.0 %, respectively.

K-feldspar produced an age spectrum with an increase in ages over the analysis
from 80 to 89 Ma. Minor effects of excess argon are evident over the first ~9% of the gas
release based on age decreases for the second of isothermal duplicate steps. Arrhenius
parameters calculated from the *’Ar release are E= 42.77 + 1.06 kcal/mol and Do/t =
10.74 £ 0.28 sec™.

P77057 biotite and muscovite (Site 12)

The age spectrum from muscovite shows an initial increase in ages followed by a
plateau and a final high temperature increase in ages. The plateau segment consists of
76.8% (steps 3-13) of the gas release with an age of 93.2 + 0.4 Ma. This is the preferred
age for the sample. The total gés age for the sample is 92.7 = 0.3 Ma. Isochron
regressions reveal two thermally distinct trapped Y Ar/ Ar components [e.g. Heizler and
Harrison, 1988]. Steps 1-13 (MSWD = 1.6) result in an age of 93.6 + 0.6 Ma with a
“Ar/®Ar intercept of 271.9 = 6.2. Steps 14-16 (MSWD = 3.1) yield an age of 94.3 + 13
Ma and a “*Ar/*®Ar intercept of 448 + 900.  Although all of these ages are
indistinguishable at the 2¢ level, the plateau age is considered the accepted age for the
muscovite because the isochron ages and intercepts are more poorly constrained due to

the high radiogenic yields.
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Biotite yielded an age spectrum with a plateau over the final 64% (steps 4-13) of
the gas release following an initial stepwise increase in ages. The plateau age for this
volume of gas is 89.1 + 0.5 Ma, which is the preferred age for the sample. The same steps
define an isochron (MSWD = 1.6) corresponding to an age of 89.6 + 1.7 Ma and a
“Ar/*®Ar intercept of 300 + 17. The total gas age for the sample is 84.37 + 0.5 Ma.

P75092 muscovite, biotite, and K-feldspar (Site 15)

Muscovite produced a flat age spectrum with 95.4% of the gas release (steps 2-
16) yielding a plateau age of 92.9 £+ 0.7 Ma (preferred age), which is indistinguishable
from the total gas age of 92.7 + 0.7 Ma. Steps 2-16 also define an isochron (MSWD =
0.94) with an age of 92.8 + 1.4 Ma and a “*Ar/*°Ar intercept of 328 + 27, indicating a
minor component of excess *’Ar.

Biotite yielded a ‘plateau-trough-plateau’ shaped age épectrum corresponding to a
total gas age of 88.3 + 0.7 Ma. When omitting step 1 from the calculation, a preferred
total gas age of 89.5 + 0.7 Ma is obtained. Steps defining the two “plateaus’ (3-6; 40.1%
of gas release, and 12-14; 20.0% of gas release) yield weighted mean ages of 90.1 + 0.8
Ma and 90.0 + 0.8 Ma, respectively. Therefore, 60% of the gas release yiclded an age of
90 Ma. Statistically valid isochron regressions yield ages around 90-91 Ma, however the
Ar/*® Ar intercepts are significantly less than atmospheric (~190).

K-feldspar yielded a discordant age spectrum. Initially, ages progressively
increased as expected for samples fit for MDD thermal modeling, however dramatic
increases and decreases in ages resulting in a ‘hump-shaped’ spectrum indicate the
presence of excess argon in the middle-to-larger domains resulting in data unsuitable for

thermal history modeling.
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Discussion

Conditions of deformation within the Sisters shear zone

From the field and microstructural data described above and depicted in figures 3-
6, estimates can be made on the crustal conditions of deformation within the Sisters shear
zone. Additionally, these data provide evidence to support interpretation of the shear
zone as an extensional structure representing a detachment fault system. Interpretations
of the conditions of crustal deformation within the Sisters shear zone and the case for an
extensional tectonic regime is presented here.

Southern segment of the Sisters shear zone

The southern segment of the Sisters shear zone includes ductile mylonitic fabrics
preserved in the Kaninihi and Gog plutons (Figure 3). At several locations within .the
Kaninihi pluton (sites 1, 2, 7) thin sections show coarse feldspar crystals creating a
framework that appears to control the geometric plasticity of quartz. These thin sections
show smaller recrystallized quartz grains that are interconnected between the larger
feldspar grain boundaries and are sometimes isolated as lenses between the larger grains
(Figure 5a, b, h). Feldspar crystals at all southern segment sites show evidence of brittle
deformation including fracturing, microfaulting, and cataclasis. However, kink-banding
of feldspar crystals is also observed in several thin sections indicating deformation
temperatures in excess of ~350°C [Pryer, 1993]. Temperatures in this range are
consistent with ribbon development and subgrain rotation recrystallization of quartz
[Hirth and Tullis, 1992; Stipp et al., 2002], which are microtextures present at several
locations (Figure 5). The preservation of fine-grained oblique-grain-shape fabric and a

lack of annealing of recrystallized grains indicates cooling during deformation. Although
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brecciation has not been observed to overpfint the ductile fabrics to further support
progressive cooling during shearing, outcrop scale brittle faults that cut the foliation have
been observed in the vicinity of sites 7 and 8.

Northern segment of the Sisters shear zone

Photomicrographs in Figure 6 indicate the dominant deformation mechanisms in
the northern segment of the Sisters shear zone were subgrain rotation recrystallization of
quaﬁz and some fracturing and kink band development of feldspar grains. These features
indicate similar deformation ‘gemperatures (450 - 350°C) as the southern segment of the
shear zone. Evidence for cooling during shearing in the northern segment includes
cataclasis and brecciation overprinting the ductile fabrics as seen at site 14 (Figure 6c).
Also, high-angle, south-dipping, brittle normal faults cut mylonitic fabric in the vicinity
of Seal Point (Figures 4, 6f) indicating deformation under cooler conditions.

Progressive cooling during deformation is consistent with an extensional regime,
however the best evidence for the extensional nature of the shear zone and its
representing a detachment fault system is based on two key locations (sites 13 and 14).
Site 14 exposes critical structural relationships including a south-dipping fault surface
separating a mylonite zone below (footwall) from brecciated and chloritically altered
granitoids above (hanging wall) (Figure 5c). The orientation of slicken lines on the fault
surface is consistent with lineation orientations measured from mylonites throughout the
shear zone, implying kinematic compatibility of the detachment fault and footwall
mylonite [e.g. Davis, 1980].

Site 13 is the conglomerate beds of the offshore Sisters Islets. Bedding in the

conglomerate has a strike similar to the coastal mylonitic fabric (~070°), but dips
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oppositely to the north-northwest at 20-25°. This orientation indicates the Sisters Islets
are a remnant of rotated sedimentary hanging-wall rocks sitting above the mylonitic
footwall rocks exposed along the coast to the north (Figure 4). This relationship requires
the presence of an intervening detachment fault [e.g. Davis, 1980], evidence of which has
been recorded at site 14. Combined observations at sites 13 and 14 indicate a footwall of
ductile mylonites that are brittley overprinted in fault contact with a hanging wall
consisting of brecciated granite and tilted sedimentary rocks. These are the major
components of detachment fault systems as recognized in the Basin and Range Province
of the western U.S. [Wernicke, 1992].

Kinematics of the Sisters shear zone

Kinematic indicators in the southern segment of the Sisters shear zone include o-
and d-type winged porphyroclasts, quartz grain-shape fabrics, and rotation of crystals
along microfaults (Figure 5). There is some variation in foliation attitudes in the southern
segment, however lineations are consistently oriented 330-150" throughout the shear zone
(Figure 3). The southern segment is dominated by top-to-the-north ductile shear with the
exceptions of site 6, which exhibits top-to-the-south kinematics and site 7, which exhibits
both top-north and top-south shear (Figures 3, 5). Shear sense at site 7 is evident from
quartz shear bands and mica fish developed between rigid feldspar crystals (Figure Sh).

~ These small deformation zones show both top-to-north and top-to-south kinematics-
possibly reflecting dominant pure shear deformation at this location. This interpretation
requires the bivergent shear bands to have deformed simultaneously. A lack of Cross-

cutting relationships between these zones may support this assertion.
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Thin section analysis from a sample collected from site 8 indicates subgrain
rotation recrystallization in quartz (Figure 5i). The quartz grain-shape fabric indicates
top-to-north kinematics although the foliation and lineation dip and plunge south. This
site is the only location visited where kinematics appear updip; possibly reflecting roll-
over of foliation surface. Downdip top-to-north kinematics are recorded from all other
sites with the exception of site 6, which shows fop—to-south shear sense.

All fabrics observed in the northern segment exhibit top-to-the-south shear sense
based on C’-type shear bands (site 15), asymmetric wing growth on feldspar
porphyroclasts (site 15), well-developed mica fish (site 10), oblique grain shape fabrics
(site 12), and winged porphyroclasts (site 12) (Figuré 6). In addition to these
microstructural kinematic indicators, sites 13 and 14 show evidence for top-to-the-south
extensional deformation.

From the field and microstructural observations presented, it is evident the Sisters
shear zone consists of a top-to-the-north southern segment and a top-to-the-south
northern segment. The structural data also show that the north and south segments
contain consistently oriented lineations regardless of kinematics, microstructures
indicating similar deformation conditions including cooling during shearing, and yield
similar *°Ar/*’Ar data (discussed below). These consistencies indicate the two segments
likely represent a single fault system, however the architecture is complex. In map view
there is an apparent left-lateral offset in the shear zone boundary between the north and
south segments (Figure 2), which led Kula et al. [2007] to postulate the presence of a yet-
unidentified transfer fault. This interpretation is consistent with the presence of several

transform faults in the northern segment that juxtapose mylonitic footwall rocks and
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breccia outcrops across bays and inlets. This possible interpretation will be further
developed later when the Sisters shear zone is placed into the regional tectonic
framework.

Interpretation of mica ages

The approach taken in interpreting the discordant age spectra obtained for biotites
in this study is to use the total-gas age (K/Ar equivalent) calculated when excluding the
initial young step(s) (Figure 7). This interpretation applies to samples that did not yield
valid plateau or isochron ages. Paragraphs below describe some details of the biotite
analyses that led to this interpretation of ages.

Common to four biotites analyzed in this study (P75079, P77056, P75084,
P75092) is an age spectrum with a ‘rise-plateau-trough-rise’ shape; (Figure 7). Lo and
Onstott [1989] found this shape to be representative of **Ar recoil during irradiation from
high K-bearing sites (biotite) into low-K sites (typically chlorite). This interpretation
may be supported by an inverse correlation between age and *’ Ar released for each
furnace step indicating chlorite interlayers outgas lower *’Ar*/*°Ary due to recoil
implanted *°Ar from neighboring biotite during the irradiation. In this scenario it would
be expected that the resulting biotite ages (indicated by low *’ Ar signals) calculated
would be overestimates of the “actual’ age due to recoil induced increased **Ar*/*° Arg
values. Roberts et al. [2001] looked at argon isotopes *°Ar, *7Ar, and **Ar as ratios over
3% Ar and compared them with the ages calculated for each gas volume extraéted from
laser spot analyses. Inverse correlation of ®Ar*°Ar with age indicated that younger ages

were a reflection of alteration in biotite however, a lack of elevated 3TAr° Ar and
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A1/ Ar values with decrease in age indicated the alteration was not introducing calcium
or chlorine into the mineral.

The biotites in this study yield different trends from those noted in these previous
studies. Aside from the gas released from the first furnace step, the release patterns for
isotopes “’Ar and *°Ar are basically uniform across the analyses indicating recoil may
only be a factor in producing the initial low ages but not the entire discordant age spectra.
In the case of *’Ar recoil from biotite layers into chlorite layers, the * ’Ar and “Ar*
release patterns would bé expected to be antithetic over the sample gas derived
dominantly from chlorite. Inverse correlations between *°Ar/*Ar, ** Ar/* Ar and age may
support arguments for degree of alteration as a factor controlling biotite ages [Roberts,
2001]. *Ar*, **Ar, and **Ar all show similar release patterns for all biotite age spectra,
however *°Ar shows an antithetic release pattern to these isotopes. Dominant **Ar release
occurs at two points during the step heat: the first step- 650°C and over the temperature
interval ~800-950°C. This is consistent with the temperature constraints of Lo and
Onstott [1989] for outgassing of chlorite interlayers. No appreciable *’Ar was measured
during the **Ar/*° Ar analyses resulting in low Ca/K values with only small fluctuations
over the analyses. The lack of correlation of Ca/K values with age indicates that if in fact
chlorite interlayering played a role in *’Ar recoil, then it likely accounts for only a small
volume in the mica. This is consistent with petrographic evidence indicating only subtle
chloritization of the biotites, and the pristine appearance of the biotites observed during
mineral separation under a binocular microscope.

Nearly all isochron regressions for the mica samples in this study yield VA CAr

intercepts less than atmosphere. While these values are typically deemed as impossible,
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they may reflect an artifact of **Ar recoil from more retentive high-K (biotite) sites into
less retentive low-K (chlorite?) interlayers. The effect of this would be reductions in the

39 Ar/*Ar values for the gas released from biotite (drive points left on isochron diagram)
and increases in the *’Ar/**Ar values for the chlorite (drive points to the right) resulting in
a steeper slope for the linear array and thus a higher **Ar/*Ar intercept.

Thermochronological constraints on the Sisters shear zone

Two samples yielded both muscovite and biotite ages (P77057 and P75092) and
in both cases the muscovite ages (~93 Ma) are 3-4 Ma older than the biotite ages (~89
Ma) (Figure 7). This is consistent with the results of Kula et al. [2007] indicating the
northern segment underwent relatively slow cooling (~17°C/Ma) during this time
interval. The remaining biotites yield ages ranging from 94.6 Ma to 86.6 Ma (Figure 7).
Samples P75079, P75084, and P77056 crudely define a systematic decrease in ages from
north-to-south consistent with progressive north-directed exhumation along a top-to-the-

* south detachment fault, however the uncertainty in the placement of the putative transfer
fault separating the north and south segments as well as the likely presence of other
transfer faults in the area (Figure 4) makes it difficult to attempt to quantify an
exhumation rate between these samples with any certainty.

K-feldspar from samples P75084 (northern segment) and P75086 (southern
segment) yielded very similar ages, however thermal modeling indicates some subtle
differences in the thermal histories recorded in these samples (Figures 8, 9). The thermal
history for P75084 K-feldspar is concave upward indicating a progressive decrease in
cooling rate from initially 25-30°C/Ma at 87-89 Ma to near 10°C/Ma at 80 Ma (Figure

8d). In contrast, the thermal history for P75086 K-feldspar appears slightly convex
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upward beginning at 89 Ma followed by a transition to concave upward at ~84 Ma
(Figure 9d).

Cooling during progressive northward exhumation is apparent from comparison
of the thermal history of P75084 K-feldspar to that from the northern segment reported in
Kula et al. [2007]. Both samples yield very similar shaped cooling curves, however the
thermal histbry for P75084 is ~75°C cooler than P76106 at any given time indicating the
sample reached cooler temperatures (or shallower crustal levels) earlier (Figure 10). As
sample P75084 was collected north of P76106, it is expected that the sample should
record a slightly earlier cooling if exhumation had occurred along a south-dipping
detachment fault. Because the microstructures developed during shearing indicate
cooling from deformation temperatures as high as ~350-400°C, the mica ages likely
reflect slow cooling during the earliest stages of shearing, and the subsequent increase in
cooling rate determined from K-feldspar MDD modeling reflects the beginning of
significant exhumation along the detachment fault at 89 Ma. Therefore, in the northern
segment, shearing may have initiated as early as ~93 Ma (muscovite ages) with
significant exhumation and cooling of footwall rocks taking place over the interval ~89-
80 Ma. Interpretation of cooling as a result of exhumation and not post-intrusion thermal
relaxation is supported by the ~10 Ma time lag between mica cooling ages and the age of
the youngest plutons cut by the Sisters shear zone (~105 Ma- Gog/Kaninihi, Table 1).

Comparison of P75086 K-feldspar with sample P67866 of Kula et al. [2007]
indicates these samples record virtually identical thermal histories (Figure 10). The
inflection to rapid cooling at 89 Ma as reported by Kula et al. [2007] (Figure 10) is

reproduced when the P75086 biotite age and a nominal closure temperature of 350° +
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25°C is plotted along with the K-feldspar cooling paths. A complexity that arises in
interpreting these data is that sample P75086 is in the footwall and P67866 is in the
hanging wall of a top-to-the-north sense shear zone, however they record the same

~ thermal history. This can be explained by considering the southern segment of the Sisters
shear zone within the footwall of the top-to-the-south northern segment, representing an
overall bivergent geometry.

Microstructures indicate deformation occurred at temperatures as high as 350-
400°C, therefore the 93 Ma biotite age from sample P75086 and the slow cooling rate
inferred for ~93-89 Ma may indicate cooling during initial top-to-the-north shearing,
which therefore did not accommodate much exhumation. A structurally higher top-to-
the-south detachment fault related to that in the northern segment (Figure 11) could have
initiated by ~89 Ma, and accommodated the cooling recorded in the K-feldspars. If
correct, then the lack of top-to-the-south overprinting fabric, brecciation, and cataclasis
(as seen in the northern segment) can be explained by the southern segment representing
a deeper portion of crust than that exposed in the northern segment.

Bivergent shear zones have been documented in the Paparoa metamorphic core
complex [Tulloch and Kimbrough, 1989] and the Otago Schist [Deckert et al., 2002],
which may lend further credibility to this hypothesis under the pretense that New Zealand
arc-crust and/or the dynamics of Cretaceous rifting was amenable to development of
bivergent geometries. An alternative explanation for the thermal histories and spatial
relationships of the southern segment is a structurally higher top-to-the-north detachment

fault exists north of South Arm. If so, hanging-wall sediments (perhaps similar to those
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of the Sisters Islets in the northern segment) would be expectedlto have been deposited
north of South Arm, however no evidence of this has been reported.

The Sisters shear zone, the Great South Basin, and the Campbell Plateau

Southeast of Stewart Island, the physiography of Zealandia fragments consists of
the broad Campbell Plateau and its internal sub-basins; specifically the Great South Basin
(Figure 1A). The Great South Basin (GSB) represents one of several Cretaceous basins
related to the final stages of separation of Zealandia from the dispersing Gondwana
supercontinent [e.g. Cook et al., 1999]. The northwest boundary of the GSB is denoted
by a prominent southeast dipping bathymetric scarp representing a basin-bounding
normal fault. The northeast strike of the Sisters shear zone can be extended offshore to
meet with this feature (Figure 12). The shape of the main depocenter (Central Sub-basin)
and related subbasins of the GSB may have implications for interpreting the Sisters shear
zone, especially the relationship between the northern and southern segments.

The western edge of the deepest part of the GSB, the Central Sub-basin, sits néar
the intersection of the arc-belt trend and the Sisters shear zone [Tulloch et al., 2006].
More specifically in the arc-belt, near the boundary between L.oSY and HiSY belts,
which represent thin, low-lying and thick, high-standing arc crust, respectively [Tulloch
and Kimbrough, 2003; Tulloch et al., 2006]. Formation of the GSB was synchronous
with deposition of Hoiho Group sediments, which are terrestrial sediments that
unconformably overlie basement rocks [Cook et al., 1999]. The onset of rapid cooling in
Sisters shear zone footwall-rocks at ~89 Ma from K-feldspar thermochronometry is
consistent with the inferred age for the base of the Hoiho Group sediments [Cook et al.,

1999]. Additionally, dip directions on normal faults that were active during Hoiho Group
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deposition are oriented subparallel to the lineation orientations measured throughout the
Sisters shear zone [Cook et al., 1999].

Sedimentation within the GSB may also reflect crustal deformation along the
Sisters shear zone fault system. Provenance directions for the Hoiho Group sediments
are from the southwest (the adjacent HiSY belt) and from the northwest (Sisters shear
zone footwall) (Figure 12) [Cook et a)., 1999]. The implications of these sources are 1)
the HiSY belt was a topographic high shedding sediment onto the low-lying LoSY belt
supporting assertions that the HiSY belt represents a once high-standing arc-plateau
[Tulloch et al., 2006], and 2) footwall exhumation along the Sisters shear zone provided
terrestrial detritus into the Central Sub-basin. Therefore at the time of extension along
the Sisters shear zone, the HiSY belt was being both extended (thinned) and erosionally
exhumed. The lack of volcanic and sedimentary units in this belt is typically explained
by widespread denudation due to the once high-standing topography of this belt of thick
crust [Tulloch et al., 2006]. Significant erosion and thinning of a high-standing arc-
plateau would likely required more isostatic adjustment than the adjacent thin LoSY belt
which may explain why Sisters shear zone exposures terminate to the northeast at the
paired belt boundary and the structure is inferred to likely continue submerged as
represented by the prominent scarp bounding the northwest edge of the Great South
Basin (Figure 12).

By assuming the interpretation of the role of the Sisters shear zone in formation of
the GSB is correct, features of the GSB may be used to help constrain the architecture of
the fault system. The location of the transfer fault between the northern and southern

segments of the Sisters shear zone is aligned with what may be left-lateral offset of the
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main bounding fault scarp defining the northwest margin of the GSB. If the northwest
margin of the Rakiura Trough correlates to the northwest margin of the Central Sub-
basin, then left-lateral offset within the GSB is apparent. This supports the hypothesis of
a structurally higher top-to-the-south normal fault system in the southern segment, that if
exposed would be expected to be farther to the south. This is also consistent with
inferences of a transfer fault separating the northern and southern segments of the Sisters
shear zone [Kula et al., 2007] in that the location of offset, though poorly constrained, in
both features is aligned (Figure 12). Additionally, the postulated transfer fault may be
suﬁported by seismic data interpreted by Davey [2005] to represent the Triassic suture
between the Brook Street island arc terrane and the Gondwana margin. An alternative
interpretation is that the seismic reflection data imaged the transfer fault separating the
north and south segments of the Sisters shear zone. This alternative view doesn’t require
the interpretation of Davey [2005] to be incorrect, as the suture could simply have been
reactivated as a transfer fault during Sisters shear zone extension.

The Campbell Plateau is a broad submerged feature consisting of sedimentary
basins (including the GSB discussed above) formed during mid-Cretaceous time [Cook et
al., 1999] (Figure 1). The plateau was separated from West Antarctica by initiation of the
Pacific-Antarctic spreading ridge during chron 33r (83-79 Ma; Sutherland, [1999]). The
timing of chron 33r corresponds with the timing of transition to slow cooling recorded in
K-feldspar from the Sisters shear zone (this paper; Kula et al., [2007]) indicating a
temporal link between continental extension along the Sisters shear zone and incipient
seafloor spreading. Additionally, the ~300°/150° trend of lineations is consistent with the

spreading directions for the Pacific-Antarctic ridge, thus supporting a kinematic link
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between the two [Kula et al., 2007]. Furthermore, the main tectonic features of the
Campbell Plateau, which include the Bounty Trough [Davey, 1993], the Bollons
Seamount [Davey, 2006], and the continental slope marking the southeastern boundary of
the plateau are all the result of continental extension and the resulting formation of the
Pacific-Antarctic Ridge [Cook et al., 1999]. The connection between the Sisters shear
zone and the spreading ridge based on lineation orientations and thermochronometry
indicates the deformation within the shear zone and the formation of the Campbell
Plateau were likely synchronous.

Based on this synthesis of data, it is proposed that the Sisters shear zone
represents a portion of a major extensional detachment fault system upon which the Great
South Basin was constructed and along which the Campbell Plateau as a whole may have
been extended and thinned prior to the final stage of Gondwana breakup and formation of
the Pacific-Antarctic spreading ridge.

Breakup of the Gondwana mé.rgin

The Sisters shear zone is the youngest extensional structure yet recognized related
to Gondwana breakup, accommodating footwall exhumation from ~89-80 Ma.
Additionally, it is the only structure we are aware of that demonstrates continental
extension continued until the timing of formation of oceanic spreading ridges. Elsewhere
in Zealandia, the record of continental extension and ocean ridge formation includes a lag
time of 5-10 Ma between cessation of the former and initiation of the latter [e.g. Spell et
al., 2000].

Recognition of continued extension from 89-80 Ma along the Sisters shear zone

has implications for the evolution of the Gondwana margin rift zone. The Sisters shear
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zone is kinematically linked to the Pacific-Antarctic Ridge, which rendered comparison
with the Paparoa MCC-Tasman Ridge, which is constrained by the same type of
thermochronometry data [Kula et al., 2005, 2007]. Extension in the Paparoa MCC began
up to 20 m.y. prior to that along the Sisters shear zone, and it is likely the Tasman and
Pacific-Antarctic Ridges represent the final products of two distinct stages in Gondwana
margin breakup [Kula et al., 2007].

Several different mechanisms have been proposed for initiating extension and
breakﬁp of the Zealandia-Australia-Antarctica portion of Gondwana. These include
cessation of subduction due to introduction of or nearing of a buoyant spreading ridge
[Bradshaw, 1989; Luyendyk, 1995], gravitational collapse of overthickened arc crust
[Waight et al., 1998], mantle plume activity coupled with ridge subduction [Weaver et
al., 1994], and one or more of these mechanisms ensuing following dextral-oblique slab-
rollback conditions [Forster and Lister, 2004; Gray and Foster, 2006]. Each of these
mechanisms appears to be plausible based on certain lines of evidence. However, the
new data from the Siste?s shear zone afford the opportunity to put constraints on the
likely driving mechanisms for extension leading to separation of Zealandia and West
Antarctica.

Figure 12 illustrates the relationship of the Sisters shear zone to the GSB as well
as the trends of Zealandia terrane boundaries, which are constrained by geophysics and
bore hole data [Cook et al., 1999; Tulloch et al., 2006]. The Sisters shear zone cuts
across the trend of the paired plutonic belts of the Median Batholith, and (when including
the northwest margin of the Central Sub-basin) the forearc, and Otago Schist terranes.

The HiSY belt of the Median Batholith represents a once high-standing arc-plateau that
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was constructed along the Gondwana margin [Tulloch and Kimbrough, 2003; Tulloch et
al., 2006]. Plateau collapse due to gravitational instability would be expected to occur in
the direction of the steepest gradient of gravitational potential energy [e.g. Rey et al.,
2001]. The steepest gradient would have been between the thick HiSY belt and the thin
LoSY belt and thus extension would have been perpendicular to the Gondwana margin.
However, as the Sisters shear zone cuts across the trace of the plateau, it is unlikely that
this extension was caused by collapse of overthickened crust [e.g. Waight et al., 1998].

Another interesting characteristic of the Sisters shear zone is the lack of syn- and
post-tectonic magmatism. The youngest pluton deformed by the shear zone is ~105 Ma
[Allibone and Tulloch, 2004], which is 10 m.y. older than the oldest **Ar/*’ Ar muscovite
cooling age yet obtained. The lag time between magmatism and deformation and the
lack of dikes or sills either cross cutting shear zone fabrics or being rotated into the fabric
may indicate that extension along the Sisters shear zone was not directly triggered by
anorogenic magmatism or mantle plume activity {e.g. Weaver et al., 1994].

A growing body of marine geophysical data has been aimed at deciphering the
tectonic evolution of the dispersed Gondwana continental fragments as recorded in ocean
floor features [e.g. Sutherland and Hollis, 2001; Eagles et al., 2004; Davey, 2006;
Worthington et al., 2006]. Based in part on this data, we propose plate boundary forces
as the driving mechanism for Sisters shear zone extension. Subduction along the
Chatham Rise portion of the Gondwana margin is considered to have stopped due to
collision of the buoyant Hikurangi Plateau (Figure 1). The timing of this event is not
well constrained, however, 97 Ma A-type granite and basalt from the eastern edge of the

Chatham Rise indicate subduction had ceased prior to this time [Mortimer et al., 2006].
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Additionally, extension along the Sisters shear zone from 89-80 Ma is incompatible with
models calling for Hikurangi Plateau- Chatham Rise collision at ~85 Ma [e.g.
Worthington et al., 2006}, because if this were the case, the buoyant plateau would likely
have acted as a backstop to impede extension. Therefore, it is likely that by ~100 Ma, the
Hikurangi Plateau and adjacent oceanic lithosphere (Phoenix/Pacific Plates) to the
northwest had stopped subducting and became coupled to the Zealandia portion of the
Gondwana margin. Subduction continued south and east of the Hikurangi Plateau and
Chatham Rise beneath West Antarctica [Bradshaw et al., 1997; McCarron and Larter,
1998]. Engebretson et al. [1985] propbsed a shift in Pacific Plate motion by ~85 Ma to a
northwest direction (in a hotspot reference frame). These data are compatible with a
tectonic model in which the post-subduction coupling of Zealandia and Pacific
lithosphere results in pulling Zealandia northward away from West Antarctica as
lithospheric failure and Tasman Ridge formation initiated to the west in the Tasman Sea
at ~89 Ma [see Spell et al., 2000]. Extension along the Sisters shear zone continued
resulting in thinning of the Campbell Plateau and by ~83 Ma, ridge formation began that
would eventually rift Zealandia away from West Antarctica [ Davey, 2006]. Initiation of
seafloor spreading resulted in cessation of spreading of the Osbourn Trough at this time,
leading to reactivation of the West Wishbone Ridge as an extensional feature as the new
Pacific-Antarctic spreading ridge plate boundary was established between the southeast
Campbell Plateau margin and Marie Byrd Land, Antarctica [e.g. Davey, 2004; Mortimer

et al., 2006; Worthington et al., 2006].
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Conclusions

The Sisters shear zone represents a Cretaceous extensional detachment fault
system that accommodated footwall denudation from ~93-82 Ma.. The shear zone
consists of two segments showing opposite kinematics that are likely separated by a left-
lateral transfer fault. Although the Sisters shear zone is only exposed along 40km of
Stewart Island coast, it can be inferred to project along the northwest boundary of the
Central Sub-basin of the GSB based on orientation, kinematics, timing of Hoiho Group
deposition, and the geophysically deduced structure of the GSB based on seafloor
bathymetry and seismic profiles [Cook et al., 1999]. *°Ar/*’ Ar mica and K-feldspar
thermochronometry indicate the Sisters shear zone is the youngest detachment structure
related to Gondwana breakup yet identified, with the main phase of extensional
exhumation occurring from ~89-82 Ma. The timing and orientation of the Sisters shear
zone supports tectonic models for slab capture of Zealandia lithosphere due to the
cessation of subduction along the Gondwana margin. Extension and crustal thinning
along the shear zone contributed in the formation of the GSB and may have lead to
separation of the Campbell Plateau from West Antarctica marking the final step in the

isolation of Zealandia from the dispersing Gondwana supercontinent.

Figure captions
Figure 1. A. Present day configuration of New Zealand and related environs (Zealandia)
in the South Pacific [from Sutherland, 1999]. Box around southern South Island refers to
the inset map in Figure 2. B. Rigid plate reconstruction of the Gondwana margin prior to

seafloor spreading along the Tasman and Pacific-Antarctic Ridges. Restored orientation
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of the SSZ is shown. Dark gray regions indicates continental crust submerged beneath
less than 2000m of water depth [from Mortimer et al., 2005; Kula et al., 2007]. (Camp—
Campbell Plateau; CR—Chatham Rise; HP—Hikurangi Plateau; W—Wishbone Ridge;
Chall—Challenger Plateau; SLHR—South Lord Howe Rise; STR—South Tasman Rise;

ET—East Tasman Rise; SNR—South Norfolk Ridge; IB—Iselin Bank).

Figure 2. Simplified geologic map of the SSZ along the southeast coast of southern
Stewart Island [from Allibone and Tulloch, 2004; Kula et al., 2007]. ‘P’ numbers refer to
thermochronology samples (see Figure 7) referenced to the PETLAB database
(http://data.gns.cri.nz/pet/); sample numbers in italics from Kula et al. [2007]. Boxes

indicate the areas shown in Figures 3 and 4.

Figure 3. Map depicting site locations in the southern segment of the SSZ. White arrows
denote motion of upper plate and site numbers refer to the adjacent foliation orientation
symbols. Sites also correspond to descriptions in Table 1. Equal area stereographic
projections in lower right corner show lineation orientations measured throughout the
SSZ indicating consistent NW-SE transport direction regardless of shear sense and
foliation attitude. Kamb contours at 2.0 contour interval and 3.0 o significance. Plots

were created using the program StereoWin [Allmendinger, 2002].

Figure 4. Map showing site locations in the northern segment of the SSZ. All sites show
top-to-the-south shear sense. Site numbers correspond to descriptions in Table 2, and

photomicrographs and field photos in Figure 6. Triangles indicate presence of chlorite
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breccia outcrops. Small offset south-dipping brittle normal faults cut breccia and

mylonitic outcrops at several locations along the coast.

Figure 5. Photomicrographs of microstructures in rocks of the southern segment of the
SSZ. Numbers in the top right correspond to the site locations in Figure 3 and Table 1.
A. Recrystallization of quartz occurs along boundaries of large feldspar grains. Zoom
shows quartz grain-shape fabric. B. recrystallized quartz bands in spaces between mostly
flat-lying feldspar grains, C. slab of ultramylonite showing rounded feldspar
porphyroclasts and kinematic indicators, D. ultramylonite interval with abundant white
mica growth, E & F. ultramylonite (F) and mylonite (F) intervals at site 5 demonstrating
heterogeneous strain, G. brittley deformed microfaulted feldspar grain, H. both top-to-
the-south and top-to-the-north shear sense indicators at site 7— top-to-the-north wing
development around feldspar grains and a top-to-the-south oriented biotite mica-fish, I.

Quartz grain shape fabric and kink-banding in K-feldspar is seen at site 8.

Figure 6. Photomicrographs and field photos from the northern segment of the SSZ
showing microstructures and field relations supporting interpretation of the SSZ as an
extensional detachment fault system. A. Strong mica-fish development (biotite and
muscovite) and S-C fabric observed at site 10. B. Strong quartz grain-shape fabric
preserved at site 12. C. Exposure of a detachment fault surface separating hanging-wall
chloritic breccia from mylonitic granite is at site 14. D. Site 13 is the north-dipping
conglomerate of the Sisters Islets. E & G. Site 15 consists of ultramylonite intervals with

rigid rounded feldspar porphyroclasts and strong quartz grain-shape fabric and coarse
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biotite and muscovite rich C’-type shear bands. F. brittle normal faults cutting ductile

fabric near Seal Point.

Figure 7. Summary of **Ar/°Ar results from muscovite, biotite, and K-feldspar.

Asterick denotes the preferred age for samples with complex age spectra (see text).

Figure 8. MDD thermal modeling results for K-feldspar sample P75084. A. Arrhenius
data. B. Domain distribution plot. C. Modeled age spectra compared with sample

spectrum. D. Confidence intervals for thermal histories corresponding to age spectra in C.

Figure 9. MDD thermal modeling results of K-feldspar sample P75086. A. Arrhenius
data. B. Domain distribution plot. C. Modeled age spectra compared with sample

spectrum. D. Confidence intervals for thermal histories corresponding to age spectra in C.

Figure 10. Comparison of K-feldspar MDD thermal histories in this study with those of

Kula et al. [2007] for the southern and northern segments of the SSZ.

Figure 11. Schematic cross-sections for the northern and southern segments of the SSZ
(see text for discussion). Northern segment section is from Kula et al. [2007]. Southern
segment schematic depicts hypothesis of structurally higher-detachment fault system
(now offshore- see text) cutting the top-to-the-north fabric as evidenced by brittle normal

faults observed in the field.
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Figure 12. Map of Stewart Island, SSZ, and the Great South Basin showing spatial
relationship between the SSZ (thick gray dashes), the Central Sub-basin, and the Rakiura
Trough (see text). Medium gray encloses area of 2000 m sediment isopach of the GSB.
Dark gray of Central Sub-basin and Rakiura Trough denotes 5-6000 m isopach. Thick
black features mark prominent bathymetric structures/scarps. Dotted lines mark the trace
of terrane boundaries labeled on the right hand side. Note the location of the deepest part
of the Central Sub-basin (dark gray) occurs on the low-lying LoSY belt and forearc
terranes with the HiSY-LoSY boundary marking the western boundary [from Tulloch et

al., 2006].
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CHAPTER 3

“Ar/* Ar AGE SPECTRA FROM ARTIFICIALLY MIXED MICAS
Abstract

Artificial mixtures of two age populations of muscovite and of biotite were
prepared at relative weight percents of 3:1, 1:1, and 1:3 and analyzed by the **Ar/*’Ar
vacuum furnace step-heating method. The starting materials consisted of Late Jurassic
and Late Cretaceous mica that yield flat age spectra with plateau ages defined by 97-
100% of the gas release and no evidence for excess argon. The age spectra from mica
mixtures yield patterns that systematically decrease with decreasing Jurassic mica content
and increasing Cretaceous component. The mixed muscovite spectra are relatively flat,
consistent with the two original samples showing similar degassing pafterns during their
original analyses. The mixed biotite spectra are highly discordant with an overall
decrease in age over the entire step-heating run. This is consistent with the degassing
patterns of the end member starting materials that indicate the Jurassic biotite (high
Fe/Mg) outgases at lower temperatures and the Cretaceous biotite (low Fe/Mg) remains
retentive until the higher temperature steps (~1100 °C). The individual degassing
patterns and compositions show consistencies with known compositional controls on
argon diffusivity indicating micas maintain argon retention characteristics rooted in

crystal chemistry during vacuum furnace heating. All but one of the mixed samples
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failed to yield ages reflecting the age of the starting materials. This result indicates
complex age spectra obtained for multiply-deformed rocks may yield geologically
meaningless ages as a result of simultaneous degassing (ie. mixing of sample reservoirs)
during heating. Based on the results of this study it is evident that compositional controls
on argon retention in mica are likely preserved during vacuum furnace step-heating, and
complex age spectra obtained from polymetamorphosed rocks consist of ages with no
geological significance. Comparison of laboratory degassing rates and crystal chemistry
indicates micas may degas/retain argon in a predictable manner, therefore supporting
assertions that recovery of fossil age gradients in slowly cooled samples may be possible

using furnace step-heating.

Introduction

Biotite and muscovite are two of the most commonly used minerals in VAP Ar
chronometry (McDougall and Harrison, 1999) due to their ubiquitous presence in
common igneous and metamorphic rocks and their relatively high K content. However,
the validity of interpreting mica step-heating data from a thermochronometry standpoint
falls into question largely because of concerns regarding the physical behavior of hydrous
phases during vacuum heating (e.g., Hodges et al, 1994; Sletten and Onstott, 1998; Lo et
al., 2000). Structural (i.e. delamination) and compositional (i.e. dehydroxylation)
breakdown of micas during vacuum heating has been implicated as compromising the
extraction of internal *’Ar* concentration gradients, resulting in erroneously shaped flat

age spectra (e.g., de Jong, 1992; Hodges et al., 1994). This has led some to believe the
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shape of mica age spectra does not correspond to the thermal history of the sample
(Dunlap, 1998).

Relating the shape of the age spectrum to the thermal history (i.e. cooling rate) of
a sample requires degassing of the sample during vacuum heating to occur in the same
way as that during natural cooling of the sample (i.e. solid-state volume diffusion)
(Lovera et al., 1989; Richter et al., 1991; Lovera et al., 2002). Reproduction of natural
argon diffusion mechanisms in hydrous phases using the vacuum furnace has been
deemed impossible due to the structural instability of these minerals during Vacuufn
heating (e.g., Sletten and Onstott, 1998; Lee et al., 1991). However, staircase age spectra
from metamorphic micas have been successfully reproduced using numerical diffusion
models (Baldwin and Lister, 1996; Lister and Raouzaios, 1996; Wells et al., 2000)
indicating the degassing behavior of micas during furnace step-heating may in some
cases reflect natural geologic cooling. Therefore, it may be possible that the same
controls that define the argon diffusion kinetics in nature may also be active during
laboratory step—heating, where they dictate the sample degassing behavior.

In addition to uncertainties surrounding reproduction of natural argon diffusion
mechanisms in the laboratory, complications regarding the interpretation of mica
0 Ar/*® Ar data may also occur when samples having undergone complex geologic
histories are analyzed. Samples falling into this category would include metamorphic
tectonites that may have undergone multiple deformation and/or neo-recrystallization
events resulting in the presence of several age populations of mica (e.g., Lanphere and
Albee, 1974; Chopin and Maluski, 1980; Wijbrans and McDougall, 1986; Hames and

Cheney, 1997). Further complexity in these samples may be derived from the presence
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of internal age gradients reflecting ancient residence in the partial retention zone and/or
heterogeneous thermal overprinting of a mixture of coarse older crystals and fine
neocrystallized crystals. For many mica-bearing rocks with more complex thermal
histories than rapid monotonic cooling, “°Ar/*’ Ar dating using laser spot gas extraction
has beenksuccessfully applied (Wijbrans et al., 1990; Scailliet et al., 1990, 1992; Hames
and Hodges, 1993; Kramer et al., 2001; Putlitz et al., 2005). However, extraction of
meaningful information from multiply deformed rocks using the vacuum furnace may be
problematic, especially for samples yielding complex age spectra for which a ‘plateau
age’ (see McDougall and Harrison, 1999) is not obtainable.

Recently, Forster and Lister (2004) proposed a method to evaluate complex age
spectra obtained from mixed mica populations coexisting in multiply-deformed rocks
such as the Otago Schist of New Zealand. Their method consists of recognizing
asymptotes and limits within complex age spectra and statistical analysis of frequently
measured ages from samples within the same geologic region to assess the
thermotectonic significance. Although this method boasts independence from
«“...knowledge of the underlying system behavior” (Forster and Lister, 2004), Wijbrans
and McDougall (1986) had previously demonstrated a complication in interpreting age
spectra from mixed mica populations in deformed rocks when they recovered
intermediate ages by artificially mixing muscovite and phengite.

The study presented here builds upon the mixing experiment of Wijbrans and
McDougall (1986) to test if geologically meaningful ages can be obtained by the vacuum
furnace step-heating of mixed populations of micas. The results show complex age

spectra with an inability to recover original end member ages. This is due to
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contemporaneous degassing of each mica population during each heating step.
Additionally, the degree of sample homogenization for each increment of gas released
can be predicted using the degassing rates of the original mica analyses. These rates are
found to correlate with the mica chemistry and have implications for preservation of the

compositional controls on argon retentivity in the vacuum furnace.

Experiment design and methods

The purpose of this experiment was to evaluate the effects of mixing two distinct
age populations of micas on *°Ar/*’Ar age spectra derived by vacuum furnace step-
heating in order to gain insight into the validity of ages obtained for samples containing
multiple generations of the same mineral. To understand the effects of mixing two
mineral populations on **Ar/*’Ar age spectra we chose to use samples with good age
constraints and simple thermal histories (i.e. rapid monotonic cooling) to minimize
complexities in the degassing behavior and interpretation of ages due to heterogeneous
internal *°Ar* distributions. In this experiment artificial mixtures of biotite and
muscovite were prepared and analyzed by the **Ar/*® Ar furnace step heating method.
Igneous biotite and muscovite were used from four samples (two for each mica) that were
previously dated in other geologic studies. Selection of these micas was based on
previous A1/ Ar dating (discussed below) indicating 1) flat (plateau) age spectra, 2)
simple thermal histories, and 3) they yie]ded distinct ages- Late Jurassic and Late
Cretaceous. Based on these properties, it is assumed each mica has a uniform internal
“Ar* distribution and is free of excess “’Ar, therefore affording direct comparison of

‘actual’ end-member ages and ‘artifact’ mixed ages. Although previous YAr/* Ar dating
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studies of mixed micas are typically of metamorphic rocks (especially
polymetamorphosed terranes, e.g. Wijbrans and McDougal, 1986) the use of igneous
materials in this study allowed the simplest system in which to interpret age spectrum
complexities that arise solely as an effect of mixed sample volumes of gas. The effects of
partial resetting and neo/recrystallization including internal age gradients and chemical
heterogeneity were avoided.

Three aliquots of 2.5, 5.0, and 7.5 mg were handpicked from the 177-250 um size
fraction for each muscovite and biotite sample. The muscovite and biotite aliquots were
then combined to produce six ~10 mg samples (3 biotite and 3 muscovite) consisting of
weight ratios between Late Jurassic and Late Cretaceous aged crystals of 3:1, 1:1, and
1:3.

The six mixed samples were irradiated for 7 hours at the Oregon State University
Radiation Center along with 92-176 Fish Canyon Tuff sanidine, synthetic K-glass, and
optical grade CaF, to monitor neutron dosage (J-factor) and interfering neutron reactions
on K and Ca. Repeated analysis of K-glass and CaF fragments resulted in a measured
(40Ar/39Ar)K value of 5.1 (= 63.0%) x 10 and Ca correction factors of (36A1'/37Ar)ca =
2.7178 (+ 4.66%) x 107 and (PAr/*" Ar)ca = 6.7376 (£ 0.922%) x 107, J factors were
determined by fusion of 4-8 individual crystals of Fish Canyon sanidine using a 20 W
CO, laser and are listed with each sample in Appendix C.

During analysis of the six mixed samples in this study, measured **Ar/*°Ar ratios
determined by repeated analysis of atmospheric aliquots from an on-line pipette system
were 285.67 + 0.26% yielding a mass discrimination correction of 1.03441 (4 AMU) for

measured isotopes. Samples were step heated in a double vacuum resistance furnace
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similar to the Staudacher et al. (1978) design. Reactive gases were removed by three GP-
50 SAES getters prior to admittance to an MAP 215-50 mass spectrometer by expansion.
Peak intensities for argon isotopes 36-40 were measured using a Balzers electron
multiplief by peak hopping through 7 cycles for linear regression to the time of gas

admittance. All data are presented at the 10 uncertainty level.

Description of starting materials

Descriptions of the sample backgrounds and the results of *°Ar/*° Ar dating are
presented in this section. The four mica samples used in this study were previously dated
by the 40Af/ 9 Ar furnace step-heating method at the Nevada Isotope Geochronology
Laboratory at UNLV. Analytical and irradiation procedures for NY25 muscovite are
presented in Wells et al. (2005). Samples IV14 muscovite and IV8 biotite were irradiated
at the Nuclear Science Center at Texas A&M University for 14 hours. Sample PM1
biotite was irradiated for 7 hours in the McMaster Nuclear Reactor at McMaster
University. Correction and J-factors are presented in the data tables in Appendix A. The
chemical composition of these biotites and muscovites are summarized in Table 1.
Analytical procedures for electron microprobe chemistry determinations are presented in
Appendix B.

NY25 muscovite

Muscovite from sample NY25 was originally dated by the *Ar/® ’ Ar method as
part of a thermochronometry study of the Pinto shear zone in the New York Mountains of
southern California (Wells et al., 2005). The muscovite was separated from a quartz vein

within the shear zone and yielded a flat age spectrum with 99% of the gas release
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defining a plateau age of 71.85 + 0.39 Ma (1o uncertainty) (Fig. 1). This age is
indistinguishable from the total gas age (71.86 + 0.47 Ma) and isochron age (72.18 + 0.89
Ma), and is the accepted age of the sample as the isochron regression indicates a poorly
constrained initial **Ar/*°Ar value (282 + 15 Ma).

IV14 muscovite

Sample 1V14 was collected from the eastern margin of the Ivanpah granite in the
New Trail Canyon region of the Ivanpah Mountains in southern California as part of an
ongéing regional thermochronometry study of the eastern Mojave Desert (see Chapter 4).
This phase of the Ivanpah pluton is coarse two-mica granite with characteristic pink K-
feldspar and smoky quartz. This sample yielded a flat age spectrum with a plateau age of
148.83 + 0.79 Ma including all steps (100% of gas release) (Fig. 1). This age is within
uncertainty of the U/Pb zircon crystallization age of 147 + 7 Ma (Walker et al., 1995) and
is consistent with rapid cooling of the pluton margins during intrusion.

PM1 biotite

Sample PM1 was collected from a stock of fine-grained Late Cretaceous granite
in the southern Providence Mountains of southern California as part of a geo-
/thermochronometry study of Late Cretaceous magmatism and extension (Kula et al.,
2002; Wells et al., 2005). Biotite yielded a flat age spectrum with indistinguishable total
gas (75.28 + 0.40 Ma), plateau (75.31 + 0.40 Ma), and isochron (75.71 £ 0.71 Ma) ages
(Fig. 2). The plateau and isochron ages both include 100% of the gas release in their
calculations, but the plateau age is considered the ‘accepted’ age for the biotite because
the “’Ar/*®Ar intercept of the isochron is poorly constrained indicating a value less than

atmospheric (279 +15).
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IV 8 biotite
Sample IV8 was collected from the eastern margin of the Ivanpah pluton
approximately 1 km south of sample [V 14 as part of the same study mentioned above.
Indistinguishable total gas and plateau ages of 146.10 + 0.81 and 146.13 + (.82 Ma,
respectively were obtained. The plateau age includes 97.9% of the gas release and is
considered the accepted age for the biotite (Fig. 2). A statistically valid isochron was not
obtained, however regressions consistently yield “*Ar/°Ar intercept values of 295

indicating the sample is free of excess “Ar.

©Ar/*Ar results from mixed samples

Results in this section are from the six mixed samples (3- biotite, 3-muscovite)
created using the Jurassic and Cretaceous samples described above. Data tables
corresponding to the age spectra in Figures 1 and 2 are in Appendix C.

Muscovite

The three age spectra obtained’ from the mixed muscovite samples are shown in
Figure 1. The shape of these spectra are very similar to one another with moderately
discordant ages over the initial ~25% of the gas release, followed by a relatively flat to
gently increasing’age gradient over the next ~55% of the gas release and a final dramatic
decrease in ages over the last ~20% of the gas release. The ages making up each
spectrum systematically decrease with decrease in Jurassic muscovite component (I1V14)
and increase in Cretaceous muscovite component (NY25) (Fig. 1). Total gas ages for
each spectrum are 130.5 + 0.5 Ma for 3:1(IV14:NY25), 110.5 + 0.4 Ma for

1:1(IV14:NY25), and 91.9 + 0.4 Ma for 1:3(IV14:NY25). The 25% IV14 (Jurassic)
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mixture yielded a pseudo plateau age of 94.7 + 0.5 Ma over steps 5-8 consisting of 49.1%
of the gas release.
Biotite

Age spectra obtained from the three mixed biotite samples are shown in Figure 2.
All three age spectra are discordant with similar shapes showing a peak-valley-peak
pattern over the first ~60-70% of the gas release and then a progressive decrease in ages
over the final ~30% of the release. As with the muscovite spectra, each mixture yielded
an age spectra consisting overall of decreasing ages with decrease in the older biotite
component (IV8) and increase in the younger (PM1) component. There are no
contiguous segments of the same age consisting of greater than 25% of the gas release in
any of the three age spectra. The total gas ages for these mixed samples are 127.9 + 0.5
Ma for 3:1(IV8:PM1), 110.2 + 0.5 Ma for 1:1(IV8:PM1), and 92.7 + 0.4 Ma for

1:3(IV8:PM1).

Discussion

Comparison of original mica spectra with mixed spectra

A striking observation from Figures 1 and 2 is that nearly all steps from the mixed
samples yield ages that do not correspond to those of the original micas. This implies
that, as expected, both populations of mica in the mixed biotite and muscovite samples
were concurrently outgassing during each step and thus an ‘intermediate’ age was
obtained (e.g. Wijbrans and McDougall, 1986). Mixed biotite sample 1:3(IV8:PM1) was
the only sample that yielded any steps with ages reflecting an individual component of

the mixture (Fig 2; Appendix C). This occurred over the final two steps of the analyses
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(23% of the gas release) and indicates that at this point in the analysis IV 8 biotite (25
wt% of this mi‘xture) had completely outgassed. It seems the only way that ‘real’ ages
may be obtained from a mixed sample is if at any point during a step-heat analysis (1)
one population has completely outgassed earlier than the other, or (2) at any given
temperature during the step-heat, one population fails to release any gas. This result is at
odds with studies of metamorphic micas that yield staircase shaped spectra interpreted as
representing the duration of deformation (Kirschner et al., 1996). For the case of
staircase shaped spectra, there is an underlying assumption that the younger ages
obtained early in the step-heat reflect the later stages of progressive deformation. For this
assumption to be satisfactory, it would then be required that either (i) the crystals being
analyzed have identical internal age gradients and all true crystal shapes are preserved
and closely approximate a cylindrical diffusion geometry (e.g. Hames and Bowring,
1996), (2) the youngest ages are recorded in the smallest crystals and each increase in
furnace temperature progressively ‘taps’ a larger, older crystal population, or (3) there is
a natural correlation between age and retentivity during furnace heating that may or may
not be independent of composition. The mixed spectra results here indicate that, for
samples of uniform graih size, there is no reason to expect young crystals to outgas
earlier than older crystals during furnace step-heating.

Figures 1 and 2 also indicate that the mixed biotite samples yielded age spectra
with higher degrees of discordance than the muscovite. The general flatness of the mixed
muscovite age spectra compared to the biotite may indicate samples NY25 and IV14
have more similar degassing behaviors during vacuum step-heating than biotite samples

IV8 and PM1. All samples were prepared from the same 177-250 pm size fraction and
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there is no apparent systematic progression in the age spectra patterns (e.g. staircase
shape). Conséquently, it appears the degree of discordance in the age spectra is a
function of the difference in the degassing behaviors between the mixed populations at
each temperature step during an analysis.

39Ar release patterns and shape of the age spectra

From Figure 1 it is apparent that the components of NY25 and V14 muscovite
were degassing at very similar rates over the first 60-70% of the gas release, as
fluctuations in age are small. This is consistent with the gas release patterns from the
.original Ar/* Ar analyses of these samples (Fig. 3). The cumulative %>’ Ar release
patterns and stepwise %°° Ar release patterns in Figure 3 indicate two ‘degassing peaks’ at
850-900°C and ~1100°C for NY25 muscovite. A similar lower temperature degassing
peak exists for IV14, however this sample appears to have a less variable stepwise release
overall than NY25. The degassing rates in Figure 3 also indicate NY25 muscovite retains
more gas into the higher temperature steps than IV14, which is consistent with the
decrease in ages approaching the ‘actual’ age for NY25 seen in the mixed age spectra
(Fig. 1). Slightly higher retentivity of NY25 muscovite is consistent with this sample
showing less Fe replacement in the octahedral site (Table 1) than IV14 and a greater
amount of F; two properties attributed to lowering diffusivities in white micas (Wijbrans
and McDougall, 1986; Scaillet et al., 1992; Dahl, 1996).

In contrast to the muscovites that exhibit somewhat similar degassing patterns
(Fig. 3) and relatively flat age spectra (Fig. 1), the degassing patterns for biotites IV8 and
PM1 are quite different (Fig. 4) and the mixed age spectra are highly disturbed (Fig. 2).

The degassing patterns in Figure 4 indicate biotite IV8 releases ~60% of the gas by the
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860°C step. Conversely, biotite PM1 shows a more consistent gas release through the
step-heat until ~1100°C where there is a larger pulse outgassing (Fig. 4). These
degassing patterns indicate that when mixed, biotite IV8 should dominate the early
release, and biotite PM1 should dominate the later high-temperature release. This is
consistent with the age spectra from the mixed biotite samples (Fig. 2). Although the
spectra show a two-peak morphology, they also exhibit an overall trend indicating a
gradual decrease in age over the entire step-heat, as the final steps approach the age of
biotite PM1.

If earlier outgassing of biotite IV8 during the step-heat reflects a higher diffusivity
than biotite PM1, this is consistent with the higher Fe content in the IV8 versus PM1
(Table 1) (Harrison et al., 1985; Dahl, 1996; Grove and Harrison, 1996; Lo et al., 2000).
Biotite IV8 also shows a higher degree of Al"' incorporated into the octahedral site than
PM1 (Table 1), which would also be expected to lower the diffusivity of IV8. This fails
to balance the elevated Fe-Mg exchange effect (Dahl, 1996), indicating perhaps the
greater octahedral deficiency (i.e. vacancies) in IV8 may contribute to enhanced
degassing during lower temperatures.

Consistent relationships between degassing patterns and mixed age spectra
indicate that both muscovite and biotite retain properties that control degassing rates
during vacuum step-heating. This conclusion is at odds with several studies concluding
that structural and chemical breakdown during vacuum step-heating .compromise the
shape of the age spectra due to intracrystalline Y Ar* homogenization (e.g. Lo et al.,
2000). The mixed mica age spectra”indicate the shape of the age spectra obtained for

mixed populations of micas is directly related to the degassing patterns (rates) of the
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individual populations and the relative abundance of each population in the bulk sample
being analyzed. Therefore, if the age and degassing behavior of two micas are known, the

shape of the resulting age spectrum of a mixture can be predicted by the equation:

L= [B]/(B1+B2)*t1] + [B2/(B1+B2)*t,], Eq. 1

where t, = predicted age, B; = %’ Ar release from one mica at a given temperature step,
B, = %’ Ar release from the second mica at a given temperature step, t; = the accepted
age of the mica corresponding to B, and t; = the accepted age of the mica corresponding
to B,. This is based on the assumption that degassing patterns during vacuum furnace
step heating are constants specific to each individual sample. This assumption can be
tested by attempting to reproduce the mixed age spectra by prediction based on the
degassing patterns determined from the original samples.

Inherent to the accuracy of the age predictions is that the two initial samples
should be analyzed using the same heating schedule. The data presented here do not
conform to this requirement because previous analyses were used for the study, however
interpolation between temperature steps may provide insight into the consistency of
degassing patterns during vacuum furnace heating.

Figure 5 shows examples from two prediction models using biotites IV8 and
PMI1. These models assume equal volumes of each sample and thus correspond to the
1:1 biotite mixture (1:1(IV8:PM1). Figures S5a and 5b show the results of interpolating
the % Ar released from the original step-heating analyses to correspond to the step-

heating schedule used for the mixed samples. The cumulative % Ar release pattern was
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fit using the MATLAB curve fitting toolbox. From this model curve, the stepwise %’ Ar
release for each temperature step from the mixed mica heating schedule was obtained
(Fig. 5b.) The mismatch in the low temperature degassing pattern (F ig. 5a) demonstrates
the degassing pattern is influenced by the heating schedule, as interpolating between
temperature steps does not take into account the fixed volume of gas in the system which
requires the volume released at each step to be limited by the amount released by the
previous steps. The resulting predicted ages show a poor fit to the measured ages up until
845 °C where the modél ages roughly mimic the measured ages over the remaining steps
(Fig. 5b).

Figures Sc and 5d show the results of fitting the stepwise %>’ Ar release pattern
with a nearest neighbor line fit from the MATLAB curve fitting toolbox. The nearest
neighbor line fit assigns values (y-axis; % Ar released) along the model curve using the
closest (x-axis distance; temperatﬁre) point along the sample curve. The resulting age vs.
temperature plot (Fig. 5d) roughly mimics the measured pattern from the mixed sample
although there is some discordance. While the discordance is likely a result of
inconsistency between the heating schedules used for the original samples and that used
for the mixed samples, the somewhat close prediction of ages indicates the micas degas
during vacuum furnace step-heating according to their individual retention characteristics
that are likely rooted in their composition (Dahl, 1996).

Total gas ages of age spectra

Total gas ages were calculated by summation of the ages for each step weighted
by the %> Ar released for each step. Therefore, the total gas age should represent a

conventional K/Ar age reflecting the total parent-daughter ratio of the bulk sample. As
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such, the ages of the original starting materials could be scaled by weight % in the mixed
samples and combined to calculate an expected total gas age for the mixed samples.
Complexities to this theoretical framework can arise if the samples consist of different
abundances of K. However, the chemical analyses indicate the K-content of both biotites
and both muscovites are nearly identicai (Table 1) and therefore the mixed samples
should approximate the theoretical basis.

Using the ages obtained for the original muscovite samples V14 and NY25, total
gas ages based on mixture ratios of 3:1, 1:1, and 1:3 are 129.7 Ma, 110.5 Ma, and 91.1
Ma, respectively. For the biotite samples of the same ratios, calculated total gas ages are
128.4 Ma, 110.8 Ma, and 93.0 Ma. These ages are all within uncertainty to those obtained
from the furnace step-heating analyses discussed above. So, even though all but the last
two steps of the 1:3 (1:3(IV8:NY25)) muscovite mixture, yield meaningless ages with
respect to the starting materials, the full step-heat analyses correctly indicate the bulk
YArP?Ar (i.e. K/Ar age) of the mixed samples. This is an expected result for samples
free of excess argon, which is indicated by the similarity between plateau and total gas
ages for the original micas.

These results may also have implications for interpreting discordant age spectra
obtained from single mica populations. Discordant age spectra are commonly obtained
from biotites that have been affected by **Ar recoil during irradiation. Depending on the
degree of alteration/chloritization, the magnitude of discordance in the age spectrum can
vary, however, typically the ability to obtain a plateau is compromised. The success of
the total gas ages reflecting the bulk age of the mixed samples in this study indicates that

for samples yielding disturbed age spectra due to recoil and not excess argon, where the
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recoil redistributes parent or daughter atoms within the crystals and not out of them (e.g.
Lo and Onstott, 1989), the total gas age should represent the actual age of the sample.
The validity of this hypothesis may be tested by correlating isotopes indicative of
alteration/decrepitation with age for each step (e.g., Roberts et al., 2001) and comparison
of results from other chronometers within the same geologic region (e.g. Reiners et al.,
2004).

Recognition of meaningless ages as a result of mixing two samples of known age
indicates caution must be taken when interpreting complex age spectra from
metamorphic micas. Introduction of variables not dealt with in this study such as
chemical heterogeneity (Smith et al., 2005), fossil age gradients (Hames and Bowring,
1994; Hodges and Bowring, 1995), neo-/recrystallization at multiple grain-sizes
(Goodwin and Renne, 1991, Markley et al., 2002), and deformation induced structural
changes (Kramar et al., 2001) likely results in increasingly complex age spectra
consisting of mixed ages that have no geologic significance when vacuum furnace step-
heated.

Implications for multiple populations in natural samples

An important result of this study is the inability to reproduce the original mica
ages in any heating steps in all but one mixed sample (1:3(IV8:PM1) biotite). This is
consistent with the results of Wijbrans and McDougall (1986) where a 3:1
phengite:muscovite mixture was compared with pure phengite and muscovite spectra.
Therefore, when excess argon is not an issue, maximum ages from a mixed age spectra
should be treated as minimum ages for the oldest fossil isotopic signature in the samples

and vice versa (e.g., Forster and Lister, 2004). Additionally, this result appears to
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invalidate the method of asymptotes and limits to interpreting complex age spectra
produced from rocks containing multiple generations of mica (Forster and Lister, 2004).

Typically, mixed populations of micas are obtained from metamorphic rocks
(Wijbrans and McDougall, 1986; Kirschner et al., 1996) and therefore complications
exist that were avoided in the study presented here. The use of homogeneous, rapidly
cooled igneous micas from a specific size fraction afforded the opportunity to avoid the
effects of fos.sil age gradients, and complex grain size distributions due to neo- or
recrystallization (e.g. Scaillet et al., 1992, Kirschner et al., 1996). However, the results
herein indicate that for staircase spectra derived from deformed micas, initial young steps
should not be assumed to represent degassing of solely the youngest and finest
neocrystallized materials and therefore the youngest ages likely represent an overestimate
of the timing of final isotopic closure for the sample. The mixed spectra presented here
only approach an original mica age in the final steps of the analyses. Therefore,
preserved, unmixed ages should only be expected to be obtained when one population
(for a mix of two populations) has been shown to have completely outgassed already (i.e.,
the final portion of the age spectra). For the case of staircase shaped spectra, meaningful
initial young ages may only be obtainable if it can be demonstrated that at the lower
initial temperatures sample gas was extracted from one population and not the other due
to differences in their argon retention characteristics- most notably the grain size (i.e.,
diffusion radius).

Implications for mica stability during vacuum step-heating

The relationship between the shape of the mixed age spectra and the original

degassing patterns along with correlation between mica chemistry and the degassing
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patterns (discussed above) indicates micas maintain argon retention characteristics during
vacuum furnace step-heating. Therefore, sample degassing behavior in the laboratory is
controlled by the same crystal-chemical basis that governs argon retentivity during
geologic cooling (e.g. Dahl., 1996; Grove and Harrison, 1996). It then follows that some
stability with respect to argon diffusion mechanisms must be maintained during vacuum
furnace heating and therefore it may be possible to link the shape of mica-derived age
spectra to the thermal history of the sample.

This conclusion implies the possibility for recovery of fossil age gradients in
slowly cooled samples. Based on argon diffusion being approximated by a cylindrical
geometry (Hames and Bowring, 1994) it is likely that if age gradients are to be recovered
in the vacuum furnace, the original grain boundaries of the micas would need to be
preserved during sample preparation. For the case of neocrystallized subgrains with
dimensions significantly smaller than the original mica crystals, recovery of diffusion-
radius controlled age gradients may be possible especially if the pre-éxisting mica is

more retentive at higher temperatures (e.g. Wijbrans and Mc Dougall, 1986).

Figure captions
Figure 1. Age spectra from the end member (IV14, NY25) and mixed muscovite
samples. Note overall age of mixed spectra systematically decreases with decrease in
Jurassic (IV14) component and increase in Cretaceous (NY25) component. None of the

gas increments in the three mixed samples yield original ages.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2. Age spectra from end member (IV8, PM1) and mixed biotite samples. The
mixed spectra are highly discordant but show an overall decrease in age with decrease in
Jurassic (IV8) component and increase in Cretaceous (PM1) component. Only the final
two gas increments from 1:3(IV8:PM1) yield ages corresponding with one of the original

ages (PM1).

Figure 3. Degassing patterns for muscovites NY25 and IV14. Plot includes incremental
%°Ar released and cumulative %°°Ar released patterns. Note similar shape between
incremental outgassing patterns, although NY25 has more pronounced pulses at the 850-
900°C and 1100 °C steps. NY25 also appears to retain more gas into the higher

temperature steps.

Figure 4. Degassing patterns for biotites PM1 and IV8. Both the incremental release and
cumulative release patterns indicate IV8 outgasses at significantly lower temperatures

than PM1, shows a consistent outgassing pattern until ~1100 °C where there is a pulse.

Figure 5. Degassing patterns and age vs. temperature plots comparing model attempts to
predict age spectra shape using original degassing patterns. a. incremental degassing
pattern determined from line-fitting the original cumulative release pattern for biotites
IV8 and PM1. Discordance in fit of incremental release pattern for IV8 reflects the
dependence of the release pattern on the heating schedule. b. relatively poor fit of
predicted ages vs. measured mixed ages 1:1(IV8:PM1) based on incremental degassing

pattern from plot a. ¢. measured incremental degassing patterns and model patterns based
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on nearest neighbor line-fitting. d. comparison of model age vs. temperature based on
patterns in ¢ with that measured for 1:1(IV8:PM1). Shape of the spectra is better bit than
b, however discordance occurs at the low and high temperature ends reflecting poor

assumptions regarding degassing patterns inherent in the models.
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Biotite spectra
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Table 1
Electron microprobe chemical composition of micas used in the experiment.

Muscovite Biotite
NY25 V14 Iv8 PM1
SiO, . 44.67 44.87 35.55 34.94
TiO, 0.78 0.24 191 2.99
ALO; 32.17 30.63 21.46 16.33
FeO 3.39 5.68 23.32 18.92
MnO 0.09 0.28 2.10 0.24
MgO 1.30 124 1.14 11.07
Ca0 0.00 0.00 0.00 0.01
Na,O 0.49 0.27 0.14 0.09
K20 10.42 10.57 9.20 9.53
F 0.56 0.00 2.28 2.04
Cl 0.01 0.01 0.22 0.04
Total
(Anhydrous) 93.87 93.79 97.29 96.19
Fe/(Fe+Mg) 0.593 0.719 0.920 0.489
CVK 0.001 0.001 0.031 0.005
F/F+OH) 0.030 0.000 0.142 0.125
11 Oxygen
Si 3.084 3.122 2.776 2.708
Ti 0.041 0.013 0.112 0.174
AlY 0.876 0.865 1.113 1.118
Sum 4.000 4.000 4.000 4.000
AM 1.741 1.647 0.862 0.373
Fe 0.195 0.330 1.523 1.226
" Mn . 0.005 0.017 0.139 0.016
Mg 0.134 0.129 0.133 1.279
Sum 2.076 2.122 2.656 2.894
"~ Ca 0.000 0.000 0.000 0.001
Na 0.065 0.036 0.021 0.013
K 0.918 0.938 0.916 0.942
Sum 0.983 0.974 0.937 0.956
F 0.121 0.000 0.563 0.499
Cl 0.001 0.001 0.029 0.005
OH 3.877 3.999 3.408 3.496
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CHAPTER 4

THE TIMING OF MESOZOIC MAGMATISM AND TECTONISM IN THE CLARK
MOUNTAINS REGION OF THE EAST MOJAVE DESERT, CALIFORNIA
Abstract

New U/Pb zircon and *°Ar/*’ Ar hornblende, biotite, and K-feldspar ages have
been obtained from several plutons exposed throughout the Clark Mountains thrust
complex of southeastern California. These plutons have crosscutting relationships with
several thrust faults making their emplacement and cooling ages applicable to
constraining the timing of crustal shortening. The new ages and field relations indicate
the earliest episode of thrust faulting occurred prior to ~154 Ma when the Mescal diorite
and Oro Wash/Ji granodiorites intruded into the Mesquite Pass allochthon. Deformation
then stepped westward with development of the Winter Pass/Pachalka allochthon in the
Early Cretaceous. The final episode of shortening along the Keaney/Mollusk Mine thrust
can be correlated south into the Ivanpah Pluton along the ductile Morning Star Mine
thrust. Portions of several plutons show evidence for argon loss due to reheating during
e.mplacement of the Teutonia Batholith. The youngest Mesozoic magmatic event in the
region is represented by the Kessler Spring adamellite, which intrudes the southern
Ivanpah pluton and yields a thermal history that indicates cooling in the upper crust prior

to Late Cretaceous extension.
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Introduction

The Jurassic-Cretaceous history of the southwestern margin of North America
includes alternating episodes of extension and convergence. Jurassic (~170 Ma)
extension has been suggested within the magmatic arc based on graben fills consisting of
craton-derived sands interfingered with volcanic rocks (Busby-Spera, 1988; Busby et al.,
2002) and upper crustal emplacement of chemically heterogeneous plutons (Fox and
Miller, 1990). Timing of this intra-arc extension overlaps with episodes of crustal
shortening within the East Sierran thrust belt (~188-140 Ma), which displaced arc rocks
eastward over rocks of the craton margin (Dunne and Walker, 2004). Transitions from
extension to convergence are also seen in the western arc ove£ this time frame.
Extension led to development of the Josephine, Coast Range, and Smartville ophiolites
(172-162 Ma), and was quickly followed by shortening (prior to 158 Ma) related to the
Nevadan Orogeny (Saleeby and Busby-Spera, 1992). Walker et al. (2002) suggest an
abrupt shift from extensioﬁ to shortening took place at ca. 160 Ma, however this timing
constraint may not apply to the entire continental/arc margin.

In the Late Jurassic-Early Cretaceous convergence continued as east-vergent
thrust faults of the Sevier Orogen developed in the back-arc region (Liviccari, 1991;
Burchfiel et al., 1992; Walker et al., 1995; DeCelles, 2004). This generally north-south
trending deformational belt intersects the magmatic arc in southeast California in the
Clark Mountains thrust complex (Fig. 1) (Burchfiel and Davis, 1971). The Clark
Mountains area represents the eastern limits of the early and late foreland fold-thrust belt
and the Cordilleran magmatic arc and thus contains a record of Jurassic and Cretaceous

magmatism that interacts with folding and thrusting related to subduction along the
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western margin of North America (Burchfiel and Davis, 1988). North of the Clark
Mountains area, the eastern fold-thrust belt exhibits thin-skinned decollement style
thrusts (Sevier) separated from earlier ductile structures along the eastern margin of the
magmatic arc (East Sierran thrust belt) by 10s of kilometers (Walker et al., 1995). The
short <10 km cross-strike distance of the Clark Mountains thrust complex contains both
early ductile and late brittle structures along with igneous bodies (Burchfiel and Davis,
1971, 1988; Walker et al., 1995). With shortening structures to the south typically
involving Precambrian basement and Mesozoic plutonic rocks, the Clark Mountains
thrust complex marks a transition in tectonic style along the Cordilleran trend (Walker et
al., 1995; Howard et al., 1995).

The Clark Mountains area is considered to expose structures representing the
earliest and latest thrusting events related to the Sevier Orogeny at this latitude, however
the timing from initiation to culmination of tectonism and the rates of deformation are not
well constrained. The thrust system consists of three plates from west to east, the
Winters Pass/Pachalka allochthon, the Mesquite Pass allochthon, and the
Keaney/Mollusk Mine allochthon (Fig. 1). Burchfiel and Davis (1971, 1988) suggested
these three east-directed thrust plates accommodated a minimum of 65-80 km of
movement during two distinct episodes; one in the latest Triassic and one in the Mid-to-
Late Cretaceous. Walker et al. (1995) suggested the first thrusting event began during the
Latest Jurassic along the Pachalka thrust (Fig. 2) based on U/Pb zircon ages from plutons
interpreted to be pre-and post-kinematic, while dismissing a Cretaceous K/Ar age for a
synkinematic diorite intrusion. Therefore, they concluded that initiation of the Clark

Mountains thrust complex was either late in the history of the East Sierran thrust belt or
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early in the history of the Sevier thrust belt (~144 Ma). The second Cretaceous thrusting
event has been constrained by U/Pb dating of the 100 Ma Delfonte volcanic suite, which
sits folded in the footwall of the easternmost thrust in the Clark Mouﬁtain thrust complex,
the Keaney/Mollusk Mine thrust (Fig. 2). The Keaney/Mollusk Mine thrust is in turn cut
by plutons of the Teutonia batholith (~93 Ma) (Fleck et al., 1994; Miller et al., 1994;
Walker et al., 1995). The best exposure of these crosscutting relationships is in the New
York Mountains where the Sagamore Thrust (southern continuation of the
Keaney/Mollusk Mine thrust) places Cambrian to Triassic rocks over 100 Ma
metavolcanic Delfonte equivalents and is cut by the ~90 Ma Mid Hills monzogranite
(U/Pb zircon by Smith et al., 2003).

While the timing of these two episodes of thrust faulting seem well-constrained,
the presence of plutonic rocks with crosscutting relationships to thrust faults but lacking
geochronological data affords an opportunity to better develop the sequence of
deformation within the thrust complex as a whole. We report U/Pb zircon and *°Ar/*° Ar
amphibole, biotite, and K-feldspar ages from previously undated plutons within the Clark
Mountains area with focus on the Ivanpah Mountains. These new timing constraints on
magmatism, when c;)upled with field relationships, indicate thrust fault deformation did
not evolve across the region from west to east as previously suggested (Burchfiel and
Davis, 1988; Walker et al., 1995; Sheets, 1996). The proposed sequence of deformation
is as follows: the earliest shortening within the region was emplacement of the Mesquite
Pass allochthon prior to ~154 Ma. Deformation along the Pachalka Springs thrust to the
west occurred next, but may be younger than ~144 Ma. The youngest deformation along

the easternmost Keaney/Mollusk Mine thrust may be correlated to the south to the
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Morning Star Mine thrust within the Ivanpah Pluton, representing a deeper crustal level

of the deformation belt.

Samples and chronometry results

Clark Mountains

The Pachalka thrust on the western side of Clark Mountain (Fig. 2) represents the
westernmost and structurally highest thrust fault in the Clark Mountains thrust complex
(Burchfiel and Davis, 1988; Walker et al., 1995). It is interpreted to represent the earliest
episode of thrust deformation at this latitude by Walker et al. (1995) who reported a Late
Jurassic zircon age for a granitic pluton that is ductiley deformed above the Ediacaran-
Cambrian Wood Canyon quartzite along the thrust fault. Sample GABE was collected
from west of the trace of this east-vergent thrust from fractured, but undeformed granite
(Fig. 2). Biotite was separated to obtain a cooling age for the hanging wall rocks, and
yielded a discordant age spectrum with an initial increase in ages followed by a slight
decrease then increase again over the final gas release. Ages range from 16-99 Ma,
yielding a total gas age of 83.9 = 0.5 Ma (Fig. 2). Omission of the first step because of its
low age and high *°Ar signal from the age calculation yields a total gas age of 87.5 Ma.

Sample Scott was collected from the Late Jurassic Pachalka pluton (Fig. 2)
(Walker et al., 1995). This pluton is interpreted as post-kinematic with respect to the
Pachalka thrust and therefore amphibole was separated from the sample to obtain thermal
history information. Unfortunately, amphibole from sample Scott yielded unreliable

ages due to excess argon (Fig. 2). The youngest age obtained in the analyses was 413
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Ma, which is significantly older than the Late Jurassic zircon age for the intrusion
reported by Walker et al. (1995).
Mohawk Hill

Sample JKO5SMH-2 was collected from a granitic stock in western Mohawk Hill
(Fig. 3). This granite intrudes into the Cambrian Bonanza King limestone of the
Mesquite Pass allochthon and exhibits an intermediate fine-to-coarse crystal size and sub-
porphyritic texture indicating shallow crustal to hypabyssal emplacement. Since no
previous geochronological data are available, biotite was separated from the sample to
constrain the timing of emplacement of the stock and a minimum age for motion along
the Mesquite Pass thrust. Biotite from the Mohawk Hill stock (JKO5MH-2) gave a U-
shaped age spectrum with a minimum age of 126.7 Ma and a total gas age of 135.4 +.5
Ma (Fig. 3).

Mescal Range

Sample JKOSMR-1 was collected from a diorite intrusion in the Mescal Range
referred to as the “hornblende diorite ‘breccia’ pluton” (e.g. Sheets, 1996) that we refer to
as the Mescal diorite (Fig. 4). This pluton intrudes into the Mesquite Pass thrust sheet
and has been assigned an age of 200 Ma based on previous K/Ar geochronology and
correlation of this intrusion with the Oro Wash granodiorite to the south (Sutter, 1968;
Sheets, 1996). Porphyritic texture and the sharp nature and lack of skarn mineralization
at the contact of the diorite roof with overlying limestone indicates shallow emplacement.
Amphibole was separated for a constraint on the timing of emplacement/cooling.
Amphibole from sample JKOSMR-1 of the Mescal diorite pluton yielded a U-shaped age

spectra with a minimum age of 157.4 Ma and a total gas age of 161.9 + 0.7 Ma (Fig. 4).
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Steps 9-13 yield an isochron with an age of 156 + 3.8 Ma and a OArPSAr intercept of 460
+210.

Oro Wash and Ji granodiorites; eastern Ivanpah Mountains

The Oro Wash and Ji granodiorites are small stocks intruded within the Cambrian
Bonanza King Formation to the east of the Ivanpah pluton (Fig. 5). These intrusions
were sampled and analyzed to determine the timing of magmatism, constrain the timing
of thrust faulting within the Bonanza King Formation, and test for significant offset along
the planar eastern contact of the Ivanpah pluton and the southern portion of the Kokoweef
syncline, as it remains uncertain whether this contact is intrusive or a fault. Ion probe
U/Pb zircon analyses yield very similar results for the two intrusions indicating they were
emplaced contemporaneously in the Late Jurassic (Fig. 6). The weighted mean ages of
~154 Ma are considered the best estimates of the emplacement age for these units as the
Tera-Wasserburg intercept ages point to an upper intercept greater than the age of the
Earth (Fig. 6).

Amphibole from both granodiorites yielded disturbed age spectra with total gas
ages older than the U/Pb zircon ages indicating the presence of excess argon (Fig. 6).
Biotite from both samples gave age spectra with initial low ages followed by a
progressive increase into a plateau (Fig. 6). The Ji granodiorite (JK03IV-1) biotite
yielded a plateau age of 150.0 + 0.4 Ma and the Oro Wash (JK03IV-3) biotite yielded a
plateau age of 154.1 + 0.8 Ma (Fig. 6). K-feldspar from the Ji stock (JK03IV-1) yielded

an age spectrum with ages ranging from ~40-159 Ma (Fig. 6).
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Ivanpah pluton; Ivanpah Mountains

The majority of the central Ivanpah Mountains consists of the Ivanpah granite
(Fig. 5). This pluton was originally interpreted to have intruded into an anticline paired
with the Delfonte/Kokoweef syncline (Burchfiel an(_i Davis, 1988). Walker et al. (1995)
reported a Late Jurassic age for the granite and Fleck et al. (1994) determined the age of
the Delfonte syncline to be younger than ~100 Ma. Therefore, the pluton intruded prior
to faulting and folding related to the Keaney/Mollusk Mine thrust. The pluton is also cut
by the ductile Morning Star Mine thrust (Fig. 5). This thrust fault is one in a system
consisting of at least two other small strands of ductile deformation with poor exposures.
These structures are described in Sheets (1996). The timing constraints on motion along
the Morning Star Mine system are unclear aside from the structure being younger than
the Ivanpah pluton. However, Sheets (1996) reported that the thrust truncates small
diorite dikes near its southern extent in the Kewanee Hills region of the Ivanpah
Mountains (Fig. 5). In this section *°Ar/*’Ar age determinations are presented for several
samples from the Ivanpah pluton and the diorite dike described by Sheets (1996).

Nine samples from the Ivanpah pluton (Figs 5, 7) wére dated by the *°Ar/*’ Ar
method. In the northeast region of the pluton samples JK03IV-8 and JK03IV-14 yielded
biotite and muscovite ages of 146-149 Ma. K-feldspar from these samples yielded
complex age spectra with ages ranging from ~80-145 Ma (Fig. 7). Both age spectra have
a hump in the first 10% of the gas release with maximum ages of ~120 and ~129 Ma
(JK03IV-14 and JKO3IV-8, respectively). Following the hump, the ages steadily increase

with final ages approaching those of the coexisting micas.
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In the northwest part of the Ivanpah pluton, sample JK061V-1 was collected from
an amphibole-bearing phase near the contact with the Striped Hills pluton (Fig. 5).
Amphibole yielded a moderately discordant age spectra with ages progressively
decreasing throughout the analysis (Fig. 7). Ages range from 173-352 Ma, with a total
gas age of 181.8 + 0.8. Biotite gave a slightly U-shaped age spectrum with a minifnum
age of 132 Ma and a total gas age of 138.2 + 0.4 Ma. K-feldspar yielded an age spectrum
exhibiting highly discordant ages over the first 5% of the release due to excess argon
followed by an increase in ages from ~80 Ma to ~120 Ma over the next 5%. The slope of
the spectrum then decreases as the ages increase to ~140 Ma.

Three samples JKO5IV-2, JK06IV-7, and JK06IV-11 were collected near the
center of the (north-south) aerial extent of the Ivanpah pluton and west of the Morning
Star Mine thrust (Fig. 5). Biotite from JK05IV-2 gave a slightly discordant age spectrum
(Fig. 7) shaped similar to that reflecting the effects of recoil (e.g. Lo and Onsott, 1989).
The total gas age for the sample is 122.1 + 0.8 Ma with ages ranging from 111-129 Ma.

In the Kewanee Hills region of the southern Ivanpah Mountains (Fig. 5), dikes
and lenses of diorite intrude into the Ivanpah granite. Biotite (JK05IV-4) yielded a
slightly disturbed age spectrum with a total gase age of 103.4 + 0.4 Ma (Figs. 5, 7).

Kessler Spring adamellite: southern Ivanpah Mountains

At the southern end of the Ivanpah Mountains near Cima Dome, the Ivanpah
granite is intruded by the Kessler Spring Adamellite (Fig. 5). A sample from the Kessler
Spring adamellite was collected and biotite and K-feldspar were analyzed to obtain

thermal history information for this phase of the Teutonia batholith. Biotite yielded a
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plateau age of 79.8 = 0.4 Ma with K-feldspar recording 78-80 Ma over the majority of the
gas release (Fig. 8).
Timing constraints on magmatism and faulting

Clark Mountain, Mohawk Hill, the Mescal Range, and the Ivanpah Mountains all
contain portions of the Clark Mountains thrust complex. The rocks making up these
mountain ranges all consist of granitoid stocks and plutons that have crosscutting
relationships with faults. Several of these intrusive rocks were sampled and dated by
U/Pb zircon and/or **Ar/*’ Ar chronometry to attempt to constrain the timing of
magmatism and faulting. Below are brief descriptions of the geochronological and
thermochronological data and discussions of the implications of these data and the field
relationships of the rocks for constraining the timing of tectonism.

Clark Mountains

The shape of the biotite age spectrum obtained from sample Gabe is typically
associated with recoil effects due to chloritization (e.g. Lo and Onstott, 1989). **Ar and
37 Ar release patterns indicate alteration and chloritization of the sample, which is also
evident in thin-section. The high *’Ar release in the fusion step may be an affect of
sphene intergrowths within the biotite (Lo and Onstott, 1989). The 87.5 Ma age is
considerably younger than the ~146 Ma crystallization age reported by Walker et al.
(1995) and is consistent with biotite ages from the Halloran Hills to the west (DeWitt et
al., 1984). Therefore, other than providing a minimum age for the timing of thrust
deformation, the Late Cretaceous age likely reflects thermal resetting due to extensive

~90 Ma magmatism in the region.
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Mohawk Hill
The hypabyssal nature of the Mohawk Hill intrusion indicates the biotite cooling
age may approximate the timing of pluton emplacement, which results in a minimum age
of ~126 Ma (when taking the minimum age in the age spectrum as a maximum age for
the sample) for Mesquite Pass allochthon emplacement. However, field relations and
data from the Mescal Range to the south of Mohawk Hill offer a better constraint
(discussed below).
Mescal Range
The amphibole age from the Mescal diorite is similar to that of the Oro Wash and
Ji granodiorites in the eastern Ivanpah Mountains (discussed below) and thus supports
previous correlations between these units based on petrologic data. Additionally, this
new age (~156 Ma) indicates the previously assigned age was overestimated by nearly 50
m.y. Therefore, the tectonic models (i.e. Burchfiel and Davis, 1988; Sheets, 1996) |
suggesting the Mesquite Pass thrust sheet was active prior to 190 Ma, can be revised with
a new minimum age for emplacement of the Mesquite Pass allochthon of ~152 Ma (156 =
3.8 Ma isochron age).

Oro Wash and Ji granodiorites. eastern Ivanpah Mountains

The Oro Wash and Ji granodiorites yielded similar chronometry results. However,
considering the similarity in zircon age, intrusion size (aerial exposure) and stratigraphic
level of intrusion, it is unexpected for the biotite ages of Ji and Oro Wash to be different
by 4 m.y. Steps 11-15 define the plateau for JK03IV-3 (Oro Wash), however, steps 11-
14 define an isochron with an age of 152.9 + 2.3 Ma and a *’Ar/**Ar intercept of 511 +

250 (MSWD = 0.60) indicating excess argon in the sample. This age coincides within
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uncertainty with the plateau age of sample JK03IV-1 (Ji). Additionally, the total gas ages
for biotite from Ji and Oro Wash are in agreement at 149.1 = 0.4 Ma and 150.7 = 0.6 Ma,
respectively. Therefore it is evident these two granodiorite stocks likely intruded at the
same time and have the same subsequent thermal histories.

The high temperature steps of the Ji K-feldspar age spectrum consist of ages
greater than the biotite ages, but within uncertainty of the U/Pb zircon ages. Isochron
regressions of these steps to test for large domain excess argon (e;g. Foster et al., 1990)
did not yield *°Ar/*®Ar values greater than atmosphere, so these older ages (With respect
to coexisting biotite) may reflect a high closure temperature for the large domains. MDD
modeling (Lovera et al., 1989; 1991) was attempted, however satisfactory reproduction of
the arrhenius data, domain distribution plot, and the shape of the sample age spectrum
was not obtained. Regression of the low temperature linear array of the sample arrhenius
data indicates an activation energy of E = 51.2 £ 1.5 kcal/mol, however a hump in the
accompanying domain >distribution plot indicates this value is likely an underestimate.
Although acceptable model fits were not obtained for the complete data, satisfactory
reproductions of the high temperature portion of the age spectrum yield thermal histories
indicating large domain closure temperatures of 300-350° C. This result is not
compatible with age discrepancy between the K-feldspar and the biotite mentioned
above. Additionaly, the poor model reproductions of the initial steps of the age spectrum
may be a result of the sample violating the monotonic cooling assumption inherent in the
MDD model. It is possible the increase in ages over the first ~10% of the gas release is a
result of reheating due to emplacement of other younger magma bodies (i.e. Teutonia

batholith, discussed below) rather than monotonic cooling following emplacement.
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The ages determined for the Ji and Oro Wash granodiorites also place timing
constraints on faulting in the eastern Ivanpah Mountains. Mapping around the Oro Wash
granodiorite indicates the intrusion cuts thrust faults within the Cambrian Bonanza King
Formation, and therefore this deformation is older than ~154 Ma and may correlate to
deformation associated to emplacement of the Mesquite Pass thrust sheet in the Mescal
Range (discussed above). Along the western edge of the Ji granodiorite a deep brown
gouge with slickenlines locally separates the intrusion from the Bonanza King Formation,
indicating the presence of a fault. The contact between these units, however, is
dominated by a calc-silicate interval typical of skarn development along an intrusive
contact, but the presence of gouge and slickenlines indicates some shearing along this
contact after intrusion (post ~154 Ma).

Ivanpah pluton, Ivanpah Mountains

The muscovite and biotite ages from the northeastern Ivanpah pluton are
consistent with the 147 =+ 7 Ma U/Pb zircon age presented by Walker et al. (1995). The
similarity between biotite and muscovite ages for these two samples is consistent with
rapid cooling of this portion of the pluton through ~300°C upon intrusion into overlying
Paleozoic platform sedirﬁents (Burchfiel and Davis, 1988; Walker ét al., 1995). The
coexisting K-feldspar age gradients may indicate relatively slow cooling following rapid
cooling through mica closure upon intrusion.

All thé amphibole ages from JK06IV-1 in the northwest Ivanpah pluton are older
than the U/Pb zircon age (147 + 7 Ma) reported by Walker et al. (1995), indicating either
the effects of excess argon in the sample resulting in erroneous ages, or this sample

represents a small older intrusion of which, the amphibole was not thermally disturbed by
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emplacement of the Ivanpah granite. The biotite and K-feldspar results are consistent
with the 142 = 11 Ma U/Pb zircon age reported by Walker et al. (1995) for the Striped
Mountain pluton. Together these data may indicate the Striped Mountain pluton is
slightly younger than the eastern Ivanpah pluton and the ages recorded from sample
JKO06IV-1 record Early Jurassic emplacement (amphibole age) followed by Early
Cretaceous reheating and subsequent cooling (biotite, K-feldspar) at ~138 Ma.

The JKO5IV-2 biotite age (~122 Ma) from the central Ivanpah pluton is consistent
with the oldest ages recorded in the high-temperature steps of K-feldspar from JKO6IV-7
and JK06IV-11 (Fig. 7). This age is approximately 20 m.y. younger than the timing of
initial closure recorded in Ivanpah micas and K-feldspar to the north (discussed above).

Since these samples are all within 2-3 km map distance from a pluton margin, it
seems unlikely the discrepancy in ages can be satisfactorily explained by slow cooling.
An alternative explanation may be that these samples represent a previously
unrecognized Early Cretaceous magmatic event that contributed mass to the western
portion of the composite Ivanpah pluton. Emplacement of this portion of the pluton may
have occurred at ~122 Ma (approximated by JK05IV-2 biotite), which corresponds with
the age of the humps in the eastern Ivanpah K-feldspar age spectra (JK031V-14, 8; Fig.
7). Hump-shaped age spectra from K;feldspars are typically attributed to thermal
disturbances that dominantly only affect smaller diffusion domains (Warnock and van de
Kamp, 1999; Harrison et al., 2004), therefore the similarity between western Ivanpah
biotite/K-feldspar ages and eastern Ivanpah K-feldspar humps may indicate the presence

of multiple intrusions making up the Ivanpah pluton.
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The ~122 Ma biotite and K-feldspar ages may also indicate the timing of initial
motion along the Morning Star thrust. This interpretation may explain the 5 m.y.
discrepancy between oldest ages recorded by the three western Ivanpah samples just
discussed and sample JK06IV-12 from the southeastern Ivanpah pluton (Figs 5, 7).
Walker et al. (1995) report and dismiss 120 and 126 Ma hornblende ages from a diorite
intrusion along the Pachalka thrust as thermally disturbed, while neglecting to explain a
130 Ma minimum age for the unit. It is possible the similarity in these ages and their
spatial relationships to thrust faults is geologically significant. Alternatively, sample
JK06IV-12 may represent yet another small intrusion making up the Ivanpah plufon.
Mapping along the eastern contact of the Ivanpah pluton indicates several northwest
striking sheet-like units may be distinguished based on abundance of maﬁé minerals,
color of feldspar crystals, and overall crystal size, however more detailed and aerially
extensive mapping is requiréd to confirm this postulation.

Biotite from the Kewanee Hills diorite (sample JK051V-4) yielded a slightly
discordant age spectrum similar to those reflecting recoil effects (L.o and Onstott, 1989)
and a total gas age of 103.4 + 0.4 Ma (Figs. 5, 7). This age is slightly older than that
reported by Fleck et al. (1994) for the Delfonte volcanic suite to the north in the eastern
Mescal Range (Fig. 5).

Rhyolite dikes interpreted to be feeders to the Delfonte suite outcrop
discontinuously along the eastern margin of the Ivanpah pluton and therefore, the small
diorite intrusions in the Kewanee Hills may be related to the magmatism leading to

eruption the Delfonte sequence. Small diorite stocks have also been observed to the west
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in the Ivanpah pluton (southwest of samples JK06IV-7, 11 in figure 5) and are likely
related to the same magmatic event.

The 103 Ma biotite age from the diorite may also have implications for timing of
motion along the Morning Star Mine thrust. Sheets (1996) demonstrated the Morning
Star Mine thrust truncated a diorite unit referred to as the Morning Star dike. If all
dioritic intrusions in the vicinity of the Kewanee Hills are coeval and can be
approximated by the biotite cooling age, then deformation along the Morning Star thrust
post-dates 103 Ma. The similarity of this age with the Delfonte volcanic sequence
indicates possible correlation of the near surface Keaney-Mollusk Mine thrust in the
Mescal Range (Fig. 4) to the deeper seated Morning Star thrust as the two structures were
likely active contemporaneously.

In the southwest Ivanpah Mountains sample JK061V-20 yielded discordant biotite
and K -feldspar ages (Figs. 5, 7). K-feldspar ages are greater than those from biotite
indicating either higher retentivity than the coexisting mica or excess argon. The
disturbed form of the age spectra indicates excess argon is the more likely explanation.
The slightly disturbed age spectrum from the biotite gave a ~91 Ma total gas age. This
age is consistent with ages reported for the widespread Teutonia Batholith (Beckerman et
al., 1982; Anderson et al., 1992; Barth et al., 2004; Wells et al., 2005) and thus likely
reflects thermal resetting due to this major magmatic event.

Kessler Spring adamellite, southern Ivanpah Mountains

Barth et al. (2004) report a U/Pb zircon age of 82.3 = 1.6 Ma for the Kessler

Spring Adamellite and shallow emplacement into the crust has been inferred by

Beckerman et al. (1982) and Anderson et al. (1992). The ages reported here indicate that
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cooling through biotite and K-feldspar closure occurred very shortly after emplacement,
which is consistent with rapid cooling due to emplacement into the upper crust. MDD
modeling of the K-feldspar age spectrum and gas release indicates the Kessler Spring
Adamellite had cooled through ~200°C by 75 Ma followed by a transition to very slow
cooling at ~72 Ma. Therefore, the Ivanpah Mountains area was in the upper crust prior to
the onset of widespread extension through the east Mojave Desert region in the Late

Cretaceous (e.g., Wells et al., 2005).

Discussion

The new U/Pb and *°*Ar/*’ Ar chronometry data presented above may be used to
constrain the temporal evolution of magmatism and deformation within the Clark
Mountains thrust complex. The Mescal diorite, Oro Wash granodiorite, and Ji
granodiorite appear to have all been emplaced contemporaneously at ~154 Ma. The
Mescal diorite intruded into the Mesquite Pass allochthon, and the Oro Wash and Ji
stocks intrude internally thrusted Cambrian Bonanza King Formation dolostones
indicating this deformation is all older than the ~154 Ma emplacement age. This early
deformation may be related to thrust fault deformation documented to the south in the
Clipper Mountains at ~160 Ma (Howard et al., 1995), however it can also be older. A
minimum age of ~154 Ma for imbrication of Cambrian rocks within the Mesquite Pass
allochthon makes thié the oldest event in the Clark Mountains complex.

To the west of the Mesquite Pass thrust, is the Mescal thrust (Fig. 4), which places
a thick sequence of Cambrian to Neoproterozoic rocks above the imbricated Cambrian

sequence (Burchfiel and Davis, 1988). The Mescal thrust carries the Striped Mountain
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syncline, which Burchfiel and Davis (1988) attribute to deformation along the Winters
Pass/Pachalka thrust further to the west. Therefore, imbrication involving the Mesquite
Pass thrust occurred by ~154 Ma, after which deformation jumped westward developing
the Winters Pass/Pachalka thrust at ~144 Ma (Walker et al., 1995) and producing the
Striped Mountain syncline. Then the Mesquite Pass allochthon was evidently partially
reactivated along the Mescal thrust. As mentioned above, the Pachalka thrust may be
younger (~120 Ma), which would require several thrust faults cut by the Pachalka pluton
to be related to an older deformation event (i.e. initial Mesquite Pass?), however this is
highly speculative.

To the south of the Clark Mountains area in the Ivanpah Mountains, the Ivanpah
pluton was emplaced at ~147 Ma (Walker et al., 1995) and rapidly cooled through
muscovite and biotite closure at its eastern contact. Ivanpah muscovite ages reported
here (JK03IV-14) indicate a minimum age of ~149 Ma for emplacement, thus requiring a
revision to the Walker et al. (1995) emplacement age. Even so, intrusion of the Ivanpah
pluton appears to have followed emplacement of the Oro Wash and Ji granodiorites by a
few million years. Sheets (1996) determined an emplacement pressure of ~0.2 GPa for
the Oro Wash granodiorite, and ~0.6 GPa for the Ivanpah pluton indicating that if the two
were emplaced relatively contemporaneous, a vertical throw equivalent to ~13 km (~0.4
GPa) is required to be accommodated along a structure between these units. Gouge
formation and slickenlines along the eastern contact of the pluton indicate some thrust
deformation occurred following emplacement, however the limited presence of fault rock
and prevalent calc-silicate skarn outcrops indicates a significant amount of offset was

unlikely accomplished.
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The Morning Star Mine thrust cuts the Ivanpah pluton and may have a speculative
Early Cretaceous initiation, based on K-feldspar *°Ar/*’ Ar ages. However, it is likely the
thrust was active after 100 Ma during formation of the Delfonte and Kokoweef synclines
below the Keaney/Mollusk Mine thrust. This interpretation is based on the ~103 Ma
biotite age from diorite that is truncated by the thrust in the Kewanee Hills. Therefore,
the Morning Star thrust may be a deeper-seated correlative to the Keaney/Mollusk Mine
thrust. Although the depth of the Morning Star thrust is constrained to the mid-to-upper
crust by the ages recorded in surrounding Ivanpah K-feldspar (Fig. 7) the magmatism
represented by the prekinematic diorites in the Kewanee Hills may have provided the
heat to accommodate the >450°C deformation temperatures inferred by Sheets (1996).

The sequence of deformation and magmatism presented here indicates that the
Clark Mountains thrust complex contains a record of episodic deformation spanning the
Middle Jurassic to the late Early Cretaceous. The youngest magmatism yet recorded in
the area is the emplacement of the Kessler Spring adamellite. The thermal history
recorded for this intrusion indicates the Ivanpah Mountains area was cooled to upper-
crustal temperatures prior to the onset of Late Cretaceous extension throughout the east

Mojave Desert region (Wells et al., 2005).

Figure captions
Figure 1. Simplified map of major thrust sheets in the Clark Mountain area.
(from Walker et al., 1995). KRD = Kingston Range detachment, SM = Spring
Mountains, MM = Mesquite Mountains, CM = Clark Mountain, IM = Ivanpah

Mountains.
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Figure 2. a. Simplified map of the western Clark Mountain showing the Pachalka thrust
and the Pachalka pluton (from Burchfiel and Davis, 1988; Walker et al., 1995; Miller et
al., 2003). Dots indicate thermochronology sample locations. b. Age spectra obtained
for biotite and amphibole from the Pachalka thrust hanging wall and Pachalka pluton,

respectively.

Figure 3. a. Simplified map of Mohawk Hill showing the Mesquite Pass thrust, Keaney
thrust, and granite stock intruding into the Mesquite Pass sheet (from Burchfiel and
Davis, 1988; Miller et al., 2003). Dot indicates thermochronology sample location. b.

Age spectrum obtained from biotite separated from the Mohawk Hill granite.

Figure 4. a. Simplified map of the Mescal Range (from Walker et al., 1995; Miller et al.,
2003) showing the Mesquite Pass thrust and a small diorite pluton that intrudes into the
thrust sheet. Also shown is the Keaney-Mollusk Mine thrust cutting the Delfonte
volcanic rocks (north) and also cutting a small outcrop of Ivanpah granite (south). Dot
indicates therrﬁochronology sample location. b. Age spectrum and isochron obtained

from amphibole from the Mescal diorite that intrudes into the Mesquite Pass thrust sheet.

Figure 5. Simplified map of the Ivanpah Mountains (from Burchfiel and Davis, 1988;
Miller et al., 2003). The majority of the range consists of the Jurassic Ivanpah granite,

which is cut by the Morning Star Mine thrust. East of the Ivanpah pluton, two
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granodiorite stocks- Oro Wash and Ji- intrude into lower Paleozoic rocks. Labelled dots

indicate thermochronology sample locations.

Figure 6. U/Pb zircon and *’Ar/*’ Ar chronometry results for sample a. JKO3IV-1
collected from the Ji granodiorite and b. JK03IV-3 from the Oro Wash granodiorite in the

eastern Ivanpah Mountains.
Figure 7. “*Ar/*’Ar age spectra for samples from the Ivanpah Pluton of the Ivanpah
Mountains. Spectra are spatially organized consistent with the sample locations depicted

in figure 5.

Figure 8. a. “Ar/*°Ar spectra for biotite and K-feldspar from the Kessler Spring

Adamellite sample JKO6KS-1. b. Isochron plot for biotite.

Figure 9. K-feldspar MDD model results for sample JKO6KS-1. a. Arrhenius plot. b.

Domain distribution plot. c. Age spectra diagram. d. Thermal histories.
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Appendix Table DR1 - “°Ar/**Ar data tables

P76106 muscovite, 5.36 mg, J = 0.00173333 £ 0.0762% . Collection location: 47.17296 °S, 167.75776 °E (NZGD49)
4 amu discrimination = 1.02740 + 0.35%, 40/39K = .010817 + 99.4%, 36/37Ca = 0.000284 + 5.75%, 39/37Ca = 0.000685 * 2.37%
step T(C) t(min.) 36Ar 37Ar  38Ar 39Ar 40Ar %40Ar* % 39Arrisd CalK 40Ar*/39ArK Age (Ma) 1s.d.
1 725 12 10.318 0.046 2.666 48.361 4276.340 30.7 4.17 0.006468 27.1850 83.07 1.01
2 775 12 1555 0.031 1300 70.695 2598320 832 6.09 0.002982 30.5944 9322 048
3 820 12 1.341  0.015 3.144 222307 7240190 94.8 19.16 0.000459 31.0060 9444 042
4 850 12 0.540 - 0021 2561 184.824 5837680 97.5 15.93 0.000773 30.9167 9418 0.41
5 875 12 0.364 0.023 1.475 106.795 3370.740 973 9.20 0.001464 30.7530 9369 0.41
6 900 12 0.318 0.012 0.964 68.037 2165.260 96.5 5.86 0.001199 30.6496 93.38 0.41
7 915 12 0263 0.022 0.618 43290 1395950 957 3.73 0.003456 30.6674 9344 042
8 930 12 0.230 0.017 0479 34125 1105.450 95.5 2.94 0.003388 30.6227 93.30 042
9 945 12 0.205 0.020 0437 30.168 979.180 95.6 2.60 0.004508 30.6701 9345 043
10 960 12 0.194 0.016 0.434 30.873 998.032 96.0 2.66 0.003524 30.6866 9349 0.41
1 980 12 0215 0.015 0511 37999 1219670 96.3 3.27 0.002684 30.6378 9335 042
12 1000 12 0.215 0.017 0634 47953 1528.370 97.0 413 0.002411 30.7516 9369 041
13 1030 12 0.199 0.018 0.927 68.853 2175.980 98.1 5.93 0.001778 30.9433 9426 0.41
14 1100 12 0.174 0.052 1698 129.055 4041.650 99.3 11.12 0.002740 31.1081 9475 0.41
15 1150 12 0.096 0.072 0.346 25.134 802.421 99.4 217 0.019480 31.0239 9450 040
16 1400 12 0.163 0.104 0190 11.846 407.273 95.9 1.02 0.059700 30.5641 9313 047
Cumulative %39Ar rlsd = 100.0 Totalgas age= 93.54  0.51
note: isotope beams in mV, risd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma  Plateauage= 93.77 0.23
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) (steps 2-16)
P76106 biotite, 9.63 mg, J = 0.00174095 * 0.0615% Collection location: 47.17296 °S, 167.75776 °E (NZGD49)
4 amu discrimination = 1.02617 * 0.16%, 40/39K = 0.010817 + 99.4%, 36/37Ca = 0.000284 + 5.75%, 39/37Ca = 0.000685 £ 2.37%
step T(C) t(min.) 36Ar 37Ar  38Ar 39Ar 40Ar %40Ar* % 39Arrisd Ca/K 40Ar*/39ArK Age (Ma) 1s.d.
1 850 12 93586 0.058 21.144 75347 28824.010 6.5 4,75 0.006607 24.95033932 76.71 2.01
690 12 86.531 0.087 23.007 151.995 29374930 15.2 9.59 0.004939 29.45613977 9022 0.99

720 12 44283 0.066 16.859 198.030 18527.770 31.2 12.49 0.002876 29.31724823 89.81  0.50
750 12 28.693 0.054 16.756 260.734 15917.960 48.1 16.44 0.001787 29.51806558 90.41  0.40
780 12 10.807 0.024 7.411 121.372 6681.200 53.5 7.65 0.001706 29.566560213 90.55 0.35
820 12 12.004 0.030 5.770 73.709 5602.280 38.3 4.65 0.003512 29.26236977 8964 045

DA wWwN



‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

wl

7 860 12 13.296 0.040 5.358 59.225 5549.820 ~ 31.0 3.74 0.005827 29.21050752

8 900 12 13.337 0.037 5404 62699 5663.770 32.2 3.95 0.005092 29.23794377

9 940 12 12.388 0.032 6.159 86.480 6048.780  41.1 5.45 0.003193 28.85194348
10 970 12 10.817 = 0.023 7.044 117.282 6525.270 52.3 7.40 0.001692 29.23894756
11 1000 12 13.401 0.022 8723 145584 8120.720 52.5 9.18 0.001304 29.43404886
12 1030 12 12.559 0.028 6.903 107.105 6758.820 46.5 6.75 0.002256 29.49965454
13 1070 12 10.190 0.032 4.954 71.041 5051.180 42.0 4.48 0.003887 29.9627789
14 1400 12 7.791 0405 3.822 54988 3761.990 40.8 3.47 0.06355 27.80556755

Cumulative %39Ar risd = 100.00 Total gas age =

note: isotope beams in mV, risd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma  Plateau age =

(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) (steps 2-8)

fsochron age =

P76106 K-feldspar, 18.32 mg, J = 0.00164713 + 0.2107%

step T(C) t(min) 36Ar 37Ar  38Ar 39Ar 40Ar %40Ar* % 39Ar risd Ca/K 40Ar*/39ArK Age (Ma)
1 448 18 1336 0.015 0.336 2.951 415.278 8.2 0.06 0.027121 11.27674409 33.20
2 473 18 0.419 0.017 0.143 4275 166.268 30.1 0.09 0.021218 11.03342141  32.49
3 473 43 0412 0.018 0184 7.705 206.080 491 0.15 0.012465 11.65562698  34.31
4 514 18 0.291 0.029 0.257 14.851 266.242 717 0.30 0.010419 12.43091642  36.57
5 514 43 0.356 0.032 0430 27.684 481.857 83.2 0.56 0.006167 13.84740385 40.69
6 555 18 0.240 0.057 0633 45115 761.055 92.2 0.91 0.006741 15.45207051 45.34
7 555 43 0293 0.072 0959 71.460 1316.340 95.4 1.44 0.005376 17.36888346  50.89
8 596 18 0193 0.098 1.123 85502 1713.050 97.5 1.72 0.006115 19.512815 57.07
9 596 43 0257 0.128 1539 116.841 2568.250 98.1 2.35 0.005845 21.49300042 62.76
10 638 18 0.166 0.149 1443 113690 2712.830 98.7 2.29 0.006993 23.59620031 68.79
11 638 43 0.258 0.200 1.802 139.470 3571.340 98.6 2.80 0.007651 25.24463653  73.50
12 679 19 0.159 0.173 1.382 105.112 2830.520 98.8 2.1 0.008782 26.67039543 77.56
13 679 44 0.255 0.207 1.649 124.420 3477.340 98.6 2.50 0.008877 27.54646024 = 80.05
14 720 19 0176 0.191 1231 94058 2675.680 98.6 1.89 0.010835 28.088806 81.59
15 720 44 0.247 0.202 1.415 109.561 3175.220 98.6 2.20 0.009837 28.52907647 82.84
16 761 19 0.169 0.151 1.013 73.727 2155.700 98.3 1.48 0.010928 28.77435131  83.54
17 761 44 0.232 0151 1175 89.146  2625.560 98.5 1.79 0.009038 28.90513275  83.91
18 802 19 0.151 0.130 0.807 63.174 1866.710 98.7 1.27 0.01098 29.05075127 84.32

19 843 19 0211 0.167 1160 89.044 2635130 984 1.79 0.010007 29.10223698

89.49
89.57
88.42
89.57
90.16
90.35
91.74
85.28
89.26
90.02

90.6

Collection location: 47.17296 °S, 167.75776 °E (NZGDA49)
4 amu discrimination = 1.03120 * 0.11%, 40/39K = 0.01868 * 52.3%, 36/37Ca = 0.0002586 + 10.31%, 39/37Ca = 0.0008080 + 27.74%

84.47

0.49
0.48
0.39
0.32
0.32
0.36
0.44
0.62
0.50
0.35

0.62

1s.d.
2.02
0.48
0.24
0.15
0.14
0.13
0.14
0.15
0.16
0.18
019
0.20
0.20
0.21
0.21
0.22
0.21
0.21
0.22
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P67866, K-feldspar, 19.96 mg, J = 0.0015535 £ 0.5%
4 amu discrimination = 1.01907 + 0.39%, 40/39K = 0.0002 + 0.03%, 36/37Ca = 0.000272 £ 23.61%, 39/37Ca = 0.000701 % 1.75%

step T(C) t(min.)

SO®NDOAWN -

473
514
514
555
555
596
596
636
638
679
679
720
720
761
761
802
843
884
910
935
961
976
1002
1018
1033
1048
1064
1074
1084
1089
1089
1089

43
18
43
18
43
18
43
18
43
19
44
19
44
19
44
19
19
19
19
19
19
19
19
19
19
19
19
19
19
24
29
39

36Ar

0.950
0.663
0.803
0.573
0.804
0.598
0.723
0.561
0.533
0.355
0.387
0.251
0.279
0.166
0.230
0.116
0.116
0.121
0.100
0.105
0.115
0.115
0.130
0.142
0.149
0.159
0.181
0.184
0.204
0.224
0.252
0.306

37Ar
0.024
0.028
0.033
0.052
0.061
0.083
0.138
0.206
0.241
0.261
0.368
0.363
0.461
0.399
0.662
0.486
0.726
0.956
0.851
0.748
0.594
0.401
0.344
0.273
0.229
0.209
0.201
0.193
0.187
0.195
0.201
0.217

38Ar
0.189
0.176
0.215
0.201
0.333
0.371
0.534
0.595
0.693
0.557
0.820
0.672
1.049
0.825
1.679
1.198
1.718
2.395
2.269
2.234
2.160
1.941
2.125
2.113
2.035
2.150
2.091
1.942
1.762
1.794
1.708
1.658

39Ar
1.846
2.970
5.458
7.016
13.554
18.913
30.206
37.413
45.087
39.465
56.687
49.200
75.773

63.678

126.519
89.533

129.054
183.537
172.735
170.654
166.165
147.311
163.329
162.534
160.010
162.714
160.749
145.889
132.861
137.322
125.714
124.390

40Ar

326.897
270.652
377.090
360.613
620.511
739.629
1122.790
1312.850
1552.050
1330.800
1876.560
1604.890
2446.690
2038.270
4025.960
2839.020
4082.530
5820.540
5488.570
5463.310
5338.200
4763.190
5294.260
5286.320
5222 960
5327.190
5277.660
4813.460
4397.710
4564.560
4211.120
4191.530

Collection location: 47.23197 °S, 167.57142 °E (NZGD49)

%40Ar* % 39Ar risd

16.9
30.1
40.2
55.0
64.3
77.2
82.6
88.0
91.1
92.7
94.9
96.8
97.4
97.9
98.8
99.0
99.6
99.5
90.6
99.5
99.5
99.4
99.4
99.4
99.3
99.3
99.2
9.1
98.9
98.8
98.6
98.3

0.04
0.07
0.12
0.16
0.30
0.42
0.67
0.83
1.00
0.88
1.26
1.09
1.68
1.41
2.81
1.99
2.86
4.07
3.83
3.79
3.69
3.27
3.62
3.61
3.65
3.61
3.57
3.24
2.895
3.05
2.79
276

Ca/K
0.04058
0.029426
0.018872
0.023134
0.014047
0.013698
0.01426
0.017186
0.016684
0.020642
0.020262
0.023029
0.01899
0.019557
0.016332
0.016943
0.017559
0.016258
0.015377
0.013681
0.011158
0.008496
0.006574
0.005243
0.004467
0.004009
0.003903
0.004129
0.004393
0.004432
0.00499
0.005445

40Ar*/39ArK Age (Ma)

28.4596253
27.1166914
26.70370656
28.09124231
28.7667033
30.16037641
30.3878916
30.91307604
31.13785281
31.28263224
31.2665441
31.30395897
31.36233029
31.40910683
31.43081078
31.48283066
31.51090086
31.65763184
31.74261578
31.97253781
32.06243089
32.24599974
32.32581154
32.41800027
32.5191975
32.60391497
32.65340089
32.77825644
32.80600524
32.92113745
33.07605306
33.12632386

78.05
74.44
73.33
77.06
78.87
82.61
83.22
84.62
85.22
85.61
85.57
85.67
85.82
85.95
86.01
86.15
86.22
86.61
86.84
87.45
87.69
88.18
88.40
88.64
88.91
89.14
89.27
89.60
80.68
89.98
90.40
90.53

1s.d.
2.10
1.1
1.11
0.70
0.67
0.64
0.62
0.62
0.61
0.61
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.80
0.60
0.60
0.62
0.61
0.61
0.61
0.61
0.62
0.62
0.62
0.62
0.63
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1089
1089
1089
1089
1089
1089
1089
1089
1141
1200
1230
1255
1300
1350
1400
1500

59
74
74
74
74
89
119
149
19
15
15
15
15
15
15
15

0.389
0.405
0.337
0.290
0.268
0.269
0.256
0.289
0.080
0.122
0.173
0.250
0.649
0.5618
0.524
0.712

0.247
0.231
0.182
0.147
0.121
0.105
0.079
0.069
0.046
0.098
0.152
0.172
0.257
0.120
0.095
0.126

1.857
1.716
1.256
1.019
0.838
0.770
0.561
0.544
0.167
0.310
0.494
0.695
1.776
1.876
2.144
3.007

137.904
125.134
96.253
73.138
61.071
55.813
39.312
39.789
12.118
23.510
36.746
50.500
127.267
135.595
162.030
223.340

Cumulative %39Ar risd =

4667.070
4266.460
3231.220
2525.420
2110.870
1940.410
1379.280
1404.610
424.403
825.469
1289.900
1762.270
4447.900
4614.520
5468.280
7633.890

98.2
98.0
98.0
98.0
97.9
98.2
98.8
99.2
97.9
971
97.0
96.5
96.0
97.2
97.6
97.6

3.06 0.00559 33.17922478
2.78 0.005762 33.29967419
2.1 0.005964 33.39011915
1.62 0.006273 33.52111688
1.36 0.006184 33.43891191
1.24 0.005872 33.53275401
0.87 0.006272 33.35746751
0.88 0.005413 33.34283107
0.27 0.011848 33.22575098
0.52 0.013011 33.71972623
0.82 0.012911 33.86167937
1.12 0.010631 33.58831466
2.82 0.006303 33.60595988
3.01 0.002762  33.056546
3.60 0.00183 32.94364115
4.96 0.001761 33.39237105
100.0 Total gas age =

note: isotope beams in mV, risd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations)

P62424, K-feldspar, 14.82 mg, J = 0.00165007 + 0.1479%
4 amu discrimination = 1.02934 + 0.62%, 40/39K = 0.01868 + 52.3%, 36/37Ca = 0.0002586 *+ 10.31%, 39/37Ca = 0.0008080 * 27.74%

step T(C) t(min.)

1

N2 OO~NO oA WRN

448
473
473
514
514
555
555
596
596
638
638
679

18
18
43
18
43
18
43
18
43
18
43
19

36Ar

1.849
0.506
0.509
0.241
0.368
0.233
0.400
0.274
0.397
0.319
0.400
0.314

37Ar
0.024
0.013
0.025
0.032
0.047
0.051
0.088
0.100
0.110
0.139
0.151
0.146

38Ar
0.371
0.118
0.116
0.102
0.145
0.166
0.256
0.251
0.366
0.379
0.522
0.445

39Ar
0.636
1.229
2.018
3.565
6.021
8.642
13.058
156.360
22.465
23.869
33.585
30.003

40Ar

547.803
162.465
174.707
127.290
215.492
252.700
428.356
499.975
793.340
861.938
1265.440
1159.850

90.67 0.63
9099 063
9123 063
9158 064
91.36 0.63
9161 064
91156 0.64
91.11 0.63
90.80 0.65
9211 064
9249 0.65
91.76 0.64
9181 0.64
90.35 0.63
90.04 0.63
91.24 063
88.81 0.46

Collection location: 47.37 °S, 167.88433 °E (NZGD49)

%40Ar* % 39Ar risd Ca/K

3.0
11.0
18.5
49.9
57.6
76.9
77.8
86.6
88.8
90.8
93.0
93.3

0.02 0.186696 25.70650598
0.03 0.052331 13.56578148
0.06 0.061289 13.61317865
0.10 0.044407 16.22251031
0.17 0.038618 18.14044073
0.24 0.029196 21.55871148
0.37 0.03334 24.05793929
0.43 0.032208 27.49632604
0.63 0.024224 30.33058976
0.67 0.02881 32.41160821
0.95 0.022243 34.40925604
0.84 0.024074 35.82691055

40Ar*/39ArK Age (Ma) 1s.d.

7495 156.04
390.904 228
40.08 241
4766 064
5321 064
63.06 0.62
7023 0.70
80.05 0.69
88.10 - 0.75
93.99 0.78
9963 0.81
10362 0.83
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48 1350 20 0.505 0.024 0293 13.484  682.789 92.3 0.38 0.008819 40.28069692
49 1400 20 0463 0.030 0.202 8.073 461.889 91.0 0.23 0.018384 41.15040268
50 1500 20 0.834 0.033 0.377 15.723 874.684 82.0 0.44 0.010383 40.72830951

Cumulative %39Ar risd = 100.0 Total gas age =

note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma  Plateau age =
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) (steps 24-48)

116.09
118.52
117.34
112.58
114.84

1.01
1.02
1.03
0.29
0.42



Appendix DR2 - Textural Documentation

Figure DR1. Crossed polarized (top) aﬁd plane polarized light (bottom) photomicrographs of
granitic mylonite sample collected from the Port Pegasus region of the northern segment of the
Sisters Shear Zone. Biotite mica fish and quartz grain-shape fabric indicate top-to-south sense of

shear.
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Figure DR2. Polished siab of coarse Knob Pluton sample (P75092- PETLAB database) from the

northern segment of the Sisters Shear Zone. Shear bands indicate top-to-south kinematics.

North =

Figure DR3. Polished slab of ultramylonite sample (P75074 PETLAB database) collected from
the southern segment of the Sisters Shear Zone. Overturned microfold and delta-type clast are

pointed out as indicators of top-to-north shear sense.
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Appendix DR3 - Analytical Procedures for *’ Ar/*’Ar analyses

YA Ar analyses were done at the Nevada Isotope Geochronology Laboratory at
the University of Nevada, Las Vegas using a MAP 215-50 mass spectrometer.
Atmospheric argon (**Ar/’ ®Ar ratio) and corresponding mass discrimination (4 AMU)
factors are measured weekly and are recorded in the data tables for individual samples.
Prior to analysis, samples were wrapped in Al foil and stacked in 6 mm inside diameter
Pyrex tubes. Individual packets averaged 3 mm thick and neutron fluence monitors (FC-
2, Fish Canyon Tuff sanidine) were placed every 5-10 mm along the tube. Synthetic K-
glass and optical grade CaF, were included in the irradiation packages to monitor neutron
induced argon interferences from K and Ca. Loaded tubes were packed in an Al
container for irradiation. Sample P67866 was irradiated at McMaster Nuclear Reactor at
McMaster University, Ontario, Canada. The sample package was in-core for 7 hours in
the 5C position where they are surrounded by fuel rods on all four sides. Samples Sest-2
and P62424 were irradiated at the Nuclear Science Center at Texas A&M University
were in-core for 14 hours in the D3 position on the core edge (fuel rods on three sides,
moderator on the fourth side) of the IMW TRIGA type reactor. Irradiations were
performed in a dry tube device, shielded against thermal neutrons by a 5 mm thick jacket
of B4C powder, which rotates about its axis at a rate of 0.7 revolutions per minute to
mitigate horizontal ﬂuence gradients. Correction factors for interfering neutron reactions
on K and Ca for both irradiation facilities were determined by repeated analysis of K-
glass and CaF, fragments. J-factors were calculated using single crystal laser fusion of 3

to 5 Fish Canyon Tuff sanidines from each level throughout the irradiation package.
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Samples analyzed by the furnace step heating method utilized a double vacuum
resistance furnace similar to the Staudacher et al. (1978) design. Reactive gases were
removed by three GP-50 SAES getters prior to being admitted to a MAP 215-50 mass
spectrometer by expansion. The relative volumes of the extraction line and mass
spectrometer allow 76% of the gas to be admitted to the mass spectrometer for furnace
heating analyses. Peak intensities were measured using a Balzers electron multiplier by
peak hopping through 7 cycles; initial peak heights were determined by linear regression
to the time of gas admission. Sample ages were calculated using an age of 27.9 Ma
(Steven et al., 1967; Cebula et al., 1986) for the Fish Canyon Tuff sanidine. Plateaus are
defined as three or more consecutive steps totaling at least 50% of the **Ar released with
ages that overlap at 20 analytical uncertainties (excluding J uncertainty). Isochrons are
defined by greater than three consecutive steps corresponding to at least 50% of the *’Ar

released, and follow the MSWD criterion of Wendt and Carl (1991).

| References

Cebula, G.T., M.J. Kunk, H.H. Mehnert, C.W. Naeser, J.D. Obradovich, and I.F. Sutter,
The Fish Canyon Tuff, a potential standard for the **Ar-3*Ar and fission-track
dating methods (abstract), Terra Cognita (6th Int. Conf. on Geochronology,
Cosmochronology and Isotope Geology), 6, 139, 1986.

Staudacher, T.H., Jessberger, E.K., Dorflinger, D., and Kiko, J., A refined ultrahigh-
vacuum furnace for rare gas analysis, J. Phys. E: Sci. Instrum., 11, 781-784, 1978.

Steven, T.A., H.H. Mehnert, and J.D. Obradovich, Age of volcanic activity in the San

Juan Mountains, Colorado, U.S. Geol. Surv. Prof. Pap., 575-D, 47-55, 1967.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wendt, 1., and Carl, C., 1991, The statistical distribution of the mean squared weighted

deviation, Chemical Geology, v. 86, p. 275-285.

130
{1 P76106
1201 muscovite [
‘E“ 1104 Plateau age = 83.77 £ 0.23 Ma }
1 Steps 2 through 18 -
o 100 udes 95.8% of 39 i
<
i
o
© 01 Dbiotite _
% 60 - Plateau age = 90.02 + 0.35 Ma I
< 1 Steps 2 through 8 .
50 Includes 58.5 % of 39Ar [
40 o -
30 ol L ol € " T - . —
0 20 40 60 80 100

% 39Ar Released

0.004
P76106 biotite
Age = 90.60 + 0.62 Ma

0.0039 ~._ 40/36 intercept: 294.6 + 1.1
3 MSWD =1.3
2 1 \\ Steps 2-8
'S 0.0021
<
<o N
™ .

0.0014

0.000 ———pin

0.00 0.01 0.02 0.03 0.04
33Ar/40Ar

Figure DR4. Summary of sample P76106 mica ages
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Figure DRS. Summary diagram of K-feldspar age spectra

Summary of MDD modeling of K-feldspar procedures

K-feldspars were analyzed using detailed furnace step-heating including
isothermal duplicates to obtain diffusion properties (E, Do/r2) for application of the
multiple diffusion domain (MDD) modeling approach} of Lovera et al. (1989, 1991).
Activation energy (E) and frequency factor (D,) for each sample was determined using a
least squares linear regression of low-temperature steps of the experiment plotted on an
Arrhenius diagram (Lovera et al., 1989). Ten E, D, pairs were then randomly selected
from a Gaussian distribution around the values obtained from the Arrhenius diagram
based on the uncertainties. For each pair, E was assumed to be representative of all
domains used in the modeling. The number of domains along with their size and volume

concentration was modeled using a variational iterative technique to determine the best fit

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



between the experimental and modeled results on a domain size distribution plot [log
(t/ro) vs. % ° Ar released] (Richter et al., 1991). Five cooling histories were then
determined for each E, D, pair by fitting modeled age spectra to the experimental age
spectrum using these parameters and domain distributions. The distribution of the 50
calculated cooling histories for each sample reflects the uncertainty in the obtained
activation energies. The cooling histories were then used to calculate 90% confidence

intervals for the total distribution and the median of the distribution (Loveraet al., 1997).
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Figure DR6. P76106 summary of K-feldspar MDD modeling
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Figure DR7. P67866 summary of K-feldspar MDD modeling
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Appendix B. “Ar/*Ar data tables

P750886, biotite, 7.88 mg J= 0.00198 £ 0.3667 %
4 amu discrim. = 1.0425 £ 0.42 % 36/37Ca= 0.00025 £4.51 %
40/39K = 0.0071 £ 0.56 % 39/37Ca=_ 0.00068 + 2.07 %

step T(C) t(min.) 3BAr 37Ar 38Ar 39Ar 40Ar % 39Arrisd  %40Ar* Ca/K 40Ar+/39ArK Age (Ma) 1s.d.
1 650 12 3.85 002 263 9263 3404.88 44 66.7 0.0028 24,6311 85.78 0.61
2 680 12 078 002 217 100.53 2876.45 4.8 92.3 0.0029 26.5533 92.30 0.53
3 710 12 0.56 0.03 288 141.67 392044 6.8 96.1 0.0059 26.7392 9293 0.52
4 735 12 044 003 351 17064 4668.66 8.2 97.6 0.0060 26.8478 93.30 0.52
5 770 12 0.42 002 438 219.69 5964.86 10.5 98.2 0.0035 26.8292 9324 0.51
6 810 12 0.39 003 386 19271 523891 9.2 98.1 0.0057 26.8317 93.25 0.51
7 845 12 036 003 226 - 110.58 3053.97 5.3 97.0 0.0073 26.9098 93.51 0.52
8 875 12 0.27 002 143 69.39 1921.64 3.3 96.6 0.0106 26,7784 93.07 0.52
9 910 12 026 005 123 57.51 1599.79 2.7 96.3 0.0206 26.7405 92.94 0.52
10 950 12 0.34 003 146 70.83 1974.34 3.4 95.8 0.0077 26.7076 92.83 0.52
11 980 12 0.34 002 1.81 85.74 2370.84 41 96.5 0.0045 26.7158 92.86 0.52
12 1020 12 035 002 256 124.85 342658 6.0 97.5 0.0033 26.8680 93.37 0.51
13 1070 12 039 0.05 366 18214 495546 8.7 98.0 0.0067 26.8161 93.19 0.52
14 1100 12 0.31 0.056 3.05 153.70 4177.91 7.3 98.3 0.0107 26.8461 93.30 0.51
15 1400 12 062 115 650 31945 8718.93 15.3 98.3 0.1155 26.9731 93.73 0.51

' Total gas age = 92.90 0.40
note: 36Ar through 40Ar are measured beam intensities in mV, corrected for decay in age Plateau age = 93.14 0.40

calculations, age uncertainty includes J uncertainty, risd = released, all uncertainties 1 sigma

P75086, K-feldspar, 9.95 mg J=  0.00202 +0.186 %

4 amu discrim. = 1.0351 £0.39 % 36/37Ca= 0.00026 £ 1.61 %

40/39K = 0.0024 £ 76.1 % 39/37Ca=0.00070 £ 10.1 %
step T(C) t(min.) 36Ar  37Ar 38Ar 39Ar 40Ar % 39Arrisd  %40Ar* Ca/K 40Ar*/39ArK Age (Ma) 1s.d.
1 450 18 1.01 0.03 0.23 3.63 421.76 0.1 30.3 0.0274 34,3994 12126 2.11
2 475 18 0.20 0.04 0.07 2.72 124.17 0.1 59.2 0.0487 24.8854 88.53 0.66
3 475 43 017 0.03 0.07 2.82 115.89 0.1 78.9 0.0235 24.0909 85.77 0.50
4 500 18 0.08 0.03 0.05 2.39 80.73 0.1 81.9 0.0242 242185 86.21 0.56
5 500 43 0.12 0.03 0.07 3.54 113.34 0.1 95.4 0.0328 22.5210 80.30 0.36
B 540 18 0.07 0.04 0.08 4.75 132.46 0.1 93.9 0.0331 24,3074 86.52 0.52
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calculations, age uncertainty includes J uncertainty, risd = released, all uncertainties 1 sigma

P77056, biotite, 5.60 mg J= 0.001649 +0.1771 %
4 amu discrim. = 1.0279 £ 0.5 % 36/37Ca= 0.000259 £ 10.31 %
40/39K = 0.0187 +52.3 % 39/37Ca= 0.000808 £27.74 % v

step T(C) t(min.) 36Ar  37Ar 38Ar 39Ar 40Ar % 39Arrisd  %40Ar* Ca/K 40Ar*/39ArK Age (Ma) 1s.d.
1 650 12 5491 0.07 1353 80.73 17649.25 8.3 8.1 0.0035 17.2210 50.51 3.18
2 690 12 30.74 006 10.04 108.45 11849.38 11.2 23.4 0.0021 25.4359 7412 1.58
3 720 12 156.06 0.03 597 8462 6868.94 8.7 35.3 0.0016 28.6078 83.15 117
4 750 12 1066 0.04 504 8558 5672.92 8.8 44.6 0.0017 29.5523 8583 0.95
5 780 12 6.85 0.04 384 7449 425499 7.7 52.7 0.0022 30.0526 87.256 0.82
6 820 12 452 0.04 306 6506 3294.34 8.7 59.8 0.0023 30.2070 - 8769 0.75
7 860 12 294 004 218 49.09  2333.97 5.1 63.3 0.0034 29.9444 86.94 0.70
8 900 12 263 004 181 40.42 1966.29 42 61.5 0.0021 29.5802 85981 0.70
9 940 12 3.0 004 190 39.69 2068.89 41 56.6 0.0028 29.1910 8481 075
10 970 12 332 006 201 40.30  2145.73 4.2 55.1 0.0051 29.0414 84.38 0.77
11 1000 12 3.51 0.03 224 4487 235111 4.6 56.7 0.0012 29.4542 8585 " 0.76
12 1030 12 335 003 236 4979 245898 5.1 60.5 0.0006 29.6235 86.03 0.71
13 1070 12 364 001 280 6290 2956.31 6.5 64.3 0.0001 30.0583 87.27 068
14 1400 12 709 004 6.13 14220 6453.48 147 68.5 0.0011 30.8187 89.42 066

Totalgas age = 82.156 042

note: 36Ar through 40Ar are measured beam intensities in mV, corrected for decay in age

calculations, age uncertainty includes J uncertainty, rlsd = released, all uncertainties 1 sigma

P75084, biotite, 5.97 mg J= 0.002011 £ 0.3241 %

4 amu discrim. = 1.0425 £ 042 % 36/37Ca= 0.000254 +4.51 %
40/39K = 0.0071 + 0.56 % 39/37Ca=_0.000685 + 2.07 %

step T(C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar % 39Arrisd  %40Ar* Ca/K 40Ar*/39ArK Age (Ma) 1s.d.
1 650 12 6.86 0.05 507 24710 7190.81 16.5 71.9 0.0044 21.0556 74.82 049
2 680 12 062 002 263 167.09 4536.69 11.1 96.2 0.0017 26.2907 92.96 049
3 710 12 035 0.02 307 202.18 5462.24 13.5 98.4 0.0028 26.7475 9453 0.50
4 735 12 025 003 296 199.04 5360.86 13.3 98.9 0.0042 26.8101 9474 0.49
5 770 12 022 003 274 18424 494990 12.3 99.0 0.0046 26.7595 94.57 0.49
6 810 12 024 001 150 99.08 2675.00 6.6 97.8 0.0025 26.5068 93.70 049
7 845 12 033 001 084 5269 1453.08 3.5 94.3 0.0077 25.9822 91.89 049
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calculations, age uncertainty includes J uncertainty, risd = released, all uncertainties 1 sigma

P77057, muscovite, 7.53 mg

J=

0.00175 £ 0.0589 % _

4 amu discrim. = 1.0274 £ 0.34 % 36/37Ca= 0.00028 £5.75 %
40/39K = 0.0108 +99.4 % : 39/37Ca=_ 0.00069 +2.37 %
step T(C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar % 39Arrlsd  %40Ar* Ca/K 40Ar*/39ArK Age (Ma) 1s.d.
1 725 12 11.30 022 2.81 51.55  4553.30 3.2 26.7 0.0301 23.5222 72,92 = 0.93
2 775 12 239 016 150 8277 3150.59 52 77.9 0.0135 29.6760 9152 0.39
3 820 12 1.53 012 281 198.82 6446.04 12.4 93.2 0.0040 30.3176 9345 0.34
4 850 12 0.66 010 328 244.07 7567.92 15.2 97.6 0.0027 30.3857 93.66 0.32
5 875 12 0.38 008 212 16043 493363 10.0 98.0 0.0032 30.2195 93.16 0.32
8 900 12 0.33 0.07 149 113.17 3486.94 7.1 97.7 0.0036 30.1228 9287 0.34
7 915 12 0.27 007 106 . 79.70 246538 5.0 97.4 0.0050 30.0984 9279 0.32
8 930 12 024 006 088 6561 2038.03 41 97.4 0.0050 30.1689 93.00 0.32
9 945 12 0.21 0.06 081 59.18 1838.97 3.7 97.5 0.0080 30.1949 93.08 0.33
10 960 12 0.21 0.06 077 56.95 1767.62 3.6 97.5 0.0061 30.1296 92,89 0.33
11 980 12 022 005 088 6381 1989.04 4.0 97.6 0.0041 30.3304 9349 0.33
12 1000 12 0.23 007 1.04 7723 239487 48 97.9 0.0052 30.3199 93.46 0.33
13 1030 12 022 008 146 111.75 3435.57 7.0 98.6 0.0045 30.3364 9351 0.32
14 1100 12 019 023 203 15649 481256 9.8 99.3 0.0104 30.5778 9423 0.32
15 1150 12 0.12 031 057 4387 1380.29 27 99.2 0.0496 30.8754 9513 0.34
16 1400 12 027 080 052 37.04 1227.17 2.3 96.1 0.1543 31.2009 96.10 0.35
Total gas age= ©92.76 0.18
note: 36Ar through 40Ar are measured beam intensities in mV, corrected for decay in age Piateauage = 93.21 0.20
calculations, age uncertainty includes J uncertainty, risd = released, all uncertainties 1 sigma
P77057, biotite, 7.27 mg J= 0.001748 £ 0.0618 %
4 amu discrim. = 1.0274 £ 0.35 % 36/37Ca= 0.000284 £5.75 %
40/39K = 0.0108 £+ 994 % 39/37Ca = 0.000685 +2.37 %
step T(C) t(min) 36Ar  37Ar 38Ar 39Ar 40Ar % 39Arrisd  %40Ar* Ca/K 40Ar*/39ArK Age (Ma) 1s.d.
1 650 12 5028 0.08 1197 7930 18057.13 6.1 7.5 0.0061 14.7617 4595 220
2 690 12 2584 009 1035 18113 12158.05 13.8 37.2 0.0034 25.0070 7717 0.77
3 720 12 10.54 0.07 828 21142 9003.18 16.1 65.5 0.0021 27.9745 86.12 0.46
4 750 12 473 005 586 16913 6244.26 12.9 77.8 0.0019 28.8107 88.63 0.39
5 780 12 3.16 005 370 10575 3988.80 8.1 76.9 0.0027 29.041 89.32 0.41
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Appendix A. *Ar/’Ar data tables for original micas.

NY25 muscovite, 3.65 mg, J = 0.0011893 + 0.5%
4 amu discrimination = 1.01641 =+ 0.48%, 40/39K = 0.0505 + 94.4%, 36/37Ca = 0.0002771 + 1.6%, 39/37Ca = 0.0007433 + 8.5%

step T (C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar  %40Ar* % 39Arrlsd Ca/K 40Ar*/39ArK  Age (Ma) 1s.d.
1 650 12 2.10 0.17 0.51 7.89 864.94 30.6 1.03 0.110053 32.34087 68.09 1.16
2 725 12 1.28 0.15 0.42 14.35 872.74 59.6 1.86 0.054389 34.91955 73.41 0.74
3 800 12 2.47 0.22 1.30 67.64 3028.70 77.1 8.79 0.017224 34.23633 72.00 0.63
4 850 12 1.40 0.18 2.31 157.66  5796.65 93.4 20.49 0.005873 34.25719 72.04 0.58
5 900 12 0.88 0.15 2.22 159.16  5681.04 96.0 20.69 0.004804 - 34.16745 71.86 0.57
6 950 12 0.80 0.11 1.45 101.73  3699.17 94.6 13.22 0.005420  34.14902 71.82 0.57
7 1000 12 0.81 0.10 1.04 69.08 2581.89 92.1 8.98 0.007680 34.01905 71.55 0.58
8 1075 12 0.76 0.09 1.49 105.39  3800.65 95.0 13.70 0.004294 34.04136 71.60 0.57
9 1130 12 0.28 0.08 1.10 80.76 2845.86 98.6 10.50 0.004959 34.33625 72.21 0.57
10 1200 12 0.21 0.08 0.08 3.15 166.34 85.4 0.41 0.130616 33.88862 71.28 0.69
11 1400 12 027 0.08 0.08 2.54 162.42 74.9 0.33 0.155821 33.48676 70.46 0.79
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gasage=  71.86 047
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) Plateau age =  71.85 0.39
Isochron age = 72.18 0.89
V14, muscovite, 5.82 mg, J = 0.001657 + 0.5%
4 amu discrimination = 1.02357 + 0.31%, 40/39K = 0.0002 + 0.03%, 36/37Ca = 0.00027 + 2.46%, 39/37Ca = 0.00063 + 0.98%
step T(C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar  %40Ar* % 39Arrlsd Ca/K 40Ar*/39ArK Age(Ma)  lIs.d.
1 - 725 12 3.17 0.12 1.10 38.73 2885.66 68.4 2.99 0.014919 51.20875 146.93 1.03
2 775 12 1.34 0.06 0.88 49.92 2967.91 87.1 3.86 0.005883 52.00727 149.13 0.95
3 820 12 0.83 0.06 1.61 111.44 . 5994.34 96.0 8.62 0.002592 51.91462 148.88 0.92
4 850 12 0.42 0.06 1.69 125.69  6600.99 98.2 9.72 0.002183 51.85032 148.70 0.92
5 875 12 0.33 0.06 1.76 131.34 685829 98.7 10.16 0.002163 51.78167 148.51 0.91
6 900 12 033 0.06 1.78 13320 697542 98.7 10.30 0.002241 51.94877 148.97 0.92
7 915 12 0.28 0.04 1.41 106.17  5573.04 98.6 8.21 0.001632 52.00654 149.13 0.92
8 930 12 0.28 0.03 1.34 100.77  5287.03 98.5 7.79 0.001624 51.96076 149.00 0.92
9 945 12 027 0.03 1.44 104.80  5501.10 98.7 8.10 0.001332 52.04143 149.23 0.92
10 960 12 0.24 0.02 1.16 87.33 4587.47 98.6 6.75 0.001213 52.03270 149.20 0.92
11 980 12 0.16 0.03 1.04 76.48 3985.43 98.9 5.91 0.001700 51.81218 148.59 0.92
12 1000 12 0.09 0.03 0.88 66.72 3465.76 99.4 5.16 0.002237 51.85722 148.72 0.91
13 1030 12 0.05 0.04 0.92 69.86 3623.94 99.7 5.40 0.002412 51.95459 148.99 0.92
14 1100 12 0.03 0.06 1.03 79.31 410545 99.8 6.13 0.003339 51.93061 148.92 0.92
15 1150 12 0.01 0.03 0.1 7.75 402.86 100.0 0.60 0.016771 51.89682 148.83 0.95
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16 1400 12 0.02 0.02 0.04 3.60 189.67 99.9 0.28 0.032062 51.81836

148.61 1.04
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gas age =  148.85 0.79
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) Plateau age = 148.83 0.79
(steps 1-16)
PM1, biotite, 10.21 mg, J = 0.001733302 + 0.3814%
4 amu discrimination = 1.03795 = 0.55%, 40/39K = 0.00960 + 66.73%, 36/37Ca = 0.000276 + 3.81%, 39/37Ca = 0.000702 £ 1.71%
step T(C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar  %40Ar* % 39Arrisd Ca/K 40Ar*/39ArK  Age (Ma) Is.d.
1 700 12 2.74 0.20 2.38 126.15  -3829.24 79.8 6.87 0.028129 24.28778 74.39 0.66
2 725 12 0.99 0.15 2.10 131.75  3482.98 92.2 7.18 0.019600 24.44910 74.88 0.61
3 750 12 0.71 0.16 2.28 148.11 3812.40 95.0 8.07 0.018503 24.52977 75.12 0.60
4 775 12 0.60 0.16 2.16 138.76  3561.85 - 95.5 7.56 0.020762 24.58945 75.30 0.60
5 810 12 0.62 0.17 2.11 138.52  3553.67 954 7.55 0.021559 24.53110 75.12 0.60
6 845 12 0.51 0.16 1.81 121.01 3100.66 95.7 6.59 0.023661 24.58345 75.28 0.60
7 890 12 0.62 0.25 1.88 120.34  3133.02 94.8 6.56 0.035909 24.72350 75.70 0.60
8 940 12 0.68 0.38 2.02 131.14  3427.65 94.7 7.15 0.051437 24.79688 75.92 0.61
9 980 12 0.34 033 2.00 135.82  3422.61 97.5 7.40 0.042941 24.62246 75.40 0.59
10. 1020 12 0.26 0.37 2.04 140.45  3508.79 98.2 7.65 0.046779 24.59545 75.32 0.59
11 1070 12 0.31 0.50 3.00 211.94  5267.74 98.5 11.55 0.041277 24.58578 75.29 0.59
12 1110 12 0.24 0.86 2.57 181.70  4510.51 98.9 9.90 0.083340 24.61646 75.38 0.59
13 1180 12 0.14 3.10 1.29 88.27 2203.94 99.1 4.81 0.617207 24.70950 75.66 0.59
14 1400 12 0.13 0.64 0.33 21.33 561.81 97.5 1.16 0.528005 24.63480 75.43 0.60
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gas age=  75.28 0.40
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) Plateau age =  75.31 0.40
(steps 1-14)
Isochronage=  75.71 0.64
1V8, biotite, 3.96 mg, J =0.0016435 = 0.5%
4 amu discrimination = 1.02357 £ 0.31%, 40/39K = 0.0002 =+ 0.03%, 36/37Ca = 0.00027 + 2.46%, 39/37Ca = 0.00063 + 0.98%
step T(C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar  %40Ar* % 39Arrlsd Ca/K 40Ar*/39ArK  Age (Ma) 1s.d.
1 650 12 8.28 0.13 2.20 45.30 4701.20 49.2 6.05 0.013837 50.86880 146.00 1.19
2 725 12 2.75 0.15 2.47 147.30  8328.82 90.5 19.66 0.004954 51.01282 146.39 0.92
3775 12 1.64 0.12 2.28 150.02  8166.79 94.2 20.03 0.003982 51.13618 146.73 0.91
4 820 12 1.37 0.12 1.46 92.46 5083.08 92.3 12.34 0.006196 50.54026 145.09 0.91
5 860 12 1.40 0.12 1.24 75.12 4204.93 90.4 10.03 0.008083 50.44130 144.82 0.91
6 900 12 1.37 0.10 1.26 76.64 4294.25 90.9 10.23 0.006645 50.73062 145.61 0.92
7 940 12 1.14 0.12 1.17 72.88 4059.43 92.0 9.73 0.008198 51.04619 146.48 0.92
8 970 12 0.56 0.09 0.64 41.29 2278.86 93.0 5.51 0.011148 51.10606 146.65 0.92
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9 1000 12 0.30 0.08 0.35 21.96 1214.11 93.2 2.93 0.018731 51.22617

10 1030 12 0.14 0.06 0.15 10.36 572.10 93.2 1.38 0.026475 51.05526

11 1400 12 0.30 0.19 0.26 15.77 897.89 90.9 2.1 0.059000 51.36664
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gas age =
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) Plateau age =

(steps 1-10)

146.98
146.51
147.37
146.10
146.13

0.92
0.93
0.98
0.81
0.82



Appendix B. Analytical Procedures for Electron Microprobe Chemistry Determinations
Muscovite and biotite grains were mounted in epoxy, stepwise polished down to
1.0 um corundum paste, and analyzed for major element chemistry using a JEOL 8900
Electron Probe Microanalyzer at the Electron Microanalysis and Imaging Laboratory
(EMIL) at the University of Nevada, Las Vegas. A 5 um diameter beam spotsize was
used with a 15 pA beam current and 15 keV accelerating voltage. Eight spot analyses
were collected for each sample and a representative analysis for each is presented in

Table 1.
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Appendix C. **Ar/’Ar data tables for mixed mica samples.

3:1(IV14:NY25), muscovite, 9.20 mg, J = 0.00205557 = 0.3113%
4 amu discrimination = 1.03441 =+ 0.26%, 40/39K = 0.0071 + 56%, 36/37Ca = 0.00025397 + 4.51%, 39/37Ca = 0.00068493 + 2.07%

step T(C) t(min) 36Ar 37Ar 38Ar 39Ar 40Ar %40Ar* % 39Arrlsd  Ca/K  40Ar*/39ArK Age (Ma) Is.d.
1 725 12 1059  0.12 357 92,06 6137.52 50.9 32 0.036 33.99 121.86 0.75
2 775 12 1.39  0.02 1.23 7449  3128.33 88.1 2.6 0.009 36.87 131.81 0.61
3 820 12 1.53 0.04 2.74 185.53 7118.49 94.3 6.4 0.006 36.26 129.69 0.58
4 850 12 .14 0.03 443 32739 11860.89 97.5 11.2 0.003 35.48 127.00 0.57
5 875 12 1.09 0.05 6.64  487.57 18061.60 98.4 16.7 0.003 36.67 131.10 0.58
6 900 12 097 0.04 7.04 510.07 19149.24 98.7 17.5 0.002 37.26 133.15 0.59
7 915 12 0.90 0.01 492 35236 1334397 98.3 12.1 0.001 37.40 133.61 0.59
8 930 12 0.58 0.02 272 199.97 7657.46 98.2 6.8 0.003 37.71 134.69 0.60
9 945 12 043 003 209 15196 5846.33 98.4 5.2 0.005 37.90 135.33 0.60
10 960 12 033 0.02 1.60  114.81 4403.71 98.5 39 0.004 37.76 134.86 0.60
11 980 12 0.28  0.02 1.36 97.70  3737.85 98.6 33 0.007 37.64 134.46 . 0.59
12 1000 12 022  0.02 1.12 8047  3036.68 98.9 2.8 0.005 37.16 132.79 0.59
13 1030 12 0.21 0.04 1.15 82.50  3050.96 99.1 2.8 0.012 36.45 130.36 0.57
14 1100 12 0.25 0.02 1.55  115.69 3694.66 99.1 4.0 0.005 31.54 113.33 0.50
15 1400 12 0.52 0.02 0.70 47.30 1440.18 92.6 1.6 0.010 27.49 99.17 0.50

note: isotope beams in mV, risd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gas age=  130.47 0.45

(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations)

1:1(IV14:NY25), muscovite, 9.70 mg, J = 0.00203765 £ 0.2866%

4 amu discrimination = 1.03441 £ 0.26%, 40/39K = 0.0071 + 56%, 36/37Ca = 0.00025397 + 4.51%, 39/37Ca = 0.00068493 + 2.07%

step  T(C) t(min.) 36Ar 37Ar 38Ar  39Ar 40Ar %40Ar* % 39Arrlsd  Ca/K  40Ar*/39ArK  Age(Ma)  Is.d.

1 725 12 1081 0.14 395 104.06 6223.25 50.5 35 0.036 30.33 108.19 0.66
2 775 12 1.44  0.04 1.56 101.34 3596.88 89.0 34 0.010 31.66 112.79 0.50
3 820 12 1.94  0.07 2.88 199.84 6747.15 92.0 6.8 0.009 31.21 111.24 0.49
4 840 12 0.82 0.04 298 22271 6878.87 96.8 7.5 0.004 30.05 107.21 0.46
5 860 12 083 006 437 326.00 10333.14 97.8 11.0 0.005 31.19 111.16 0.48
6 880 12 0.79  0.05° 526 39095 12696.05 98.3 13.2 0.003 32.13 114.40 0.49
7 895 12 075 0.05 469 34940 11334.81 98.2 11.8 0.004 32.06 114.17 0.49
8 915 12 0.66 0.01 356 264.72 8611.95 98.1 8.9 0.001 32.06 114.17 0.49
9 935 12 0.63 0.02 3.06 22423 7364.7t 97.8 7.6 0.002 32.28 114.92 0.49
10 955 12 0.58 0.01 249 185.88 614537 97.7 6.3 0.001 32.42 115.39 0.49
11 975 12 0.44 0.01 1.79 133.25 4264.68 97.6 45 0.003 31.30 111.55 0.48
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12 1000 12 033 001 1.41 105.04 3322.40 97.8 3.6 0.002 3097 110.41 0.46
13 1030 12 029 0.0 1.27 9490  2923.93 97.9 32 0.004 30.17 107.64 0.46
14 1100 12 0.31 0.02 208 161.59 4276.64 98.4 5.5 0.004 26.09 93.46 0.40
15 1400 12 067 002 1.28 9402 2371.22 93.3 3.2 0.006 23.34 83.81 0.37
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gasage=  110.46 0.36
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations)
1:3(IV14:NY25), muscovite, 9.3 mg, J = 0.00207412 + 0.4310%
4 amu discrimination = 1.03441 £ 0.26%, 40/39K = 0.0071 + 56%, 36/37Ca = 0.00025397 + 4.51%, 39/37Ca = 0.00068493 £ 2.07%
step  T(C) t(min) 36Ar 37Ar 38Ar 39Ar 40Ar %40Ar* %39Arrisd  Ca/K  40Ar*/39ArK Age (Ma)  Is.d.
1 725 12 10.00 0.19 3.82 109.82 5575.05 49.0 3.8 0.047 24.88 90.79 0.63
2 775 12 1.78  0.07 1.59 98.11  2988.19 83.8 3.4 0.020 2541 92.66 0.52
3 820 12 255 007 315 212,02 6018.54 88.3 7.4 0.009 25.10 91.57 0.50
4 850 12 133 006 455 340.72 8783.32 96.0 11.9 0.004 24.83 90.59 0.49
5 875 12 128 008 651 49339 13065.36 974 17.2 0.004 25.92 94.46 0.51
6 900 12 1.16  0.05 6.32 - 468.74 12375.78 97.6 16.4 0.003 25.88 94.32 0.51
7 915 12 0.81 0.02 344 258.02 688424 97.1 9.0 0.002 25.96 94.63 0.51
8 930 12 062 002 247 18593 5007.06 97.2 6.5 0.003 26.16 95.32 0.51
9 945 12 0.49  0.02 1.77 13222 3591.60 97.1 4.6 0.004 26.29 95.79 0.51
10 960 12 036  0.01 1.25 91.03  2434.70 97.3 32 0.003 25.80 94.06 0.51
11 980 12 0.33 0.03 1.07 78.93  2079.94 97.2 2.8 0.010 25.33 92.38 0.50
12 1000 12 029  0.01 0.89 65.17  1706.67 97.3 2.3 0.002 25.11 91.61 0.50
13 1030 12 0.28 0.03 0.91 68.28  1749.13 97.5 24 0.010 24.62 89.85 048
14 1400 12 1.21 0.05 351 263.94 5915.05 94.9 9.2 0.005 21.24 77.79 0.42
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gas age = 91.91 0.43
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations) Pseudo plateau age = 94.68 0.51
49.1% of release
3:1(IV8:PM1), biotite, 9.80 mg, J = 0.00197456 + 0.3682%
4 amu discrimination = 1.03441 + 0.26%, 40/39K = 0.0071 + 56%, 36/37Ca = 0.00025397 + 4.51%, 39/37Ca = 0.00068493 = 2.07%
step  T(C) t(min) 36Ar 37Ar 38Ar  39Ar 40Ar %40Ar* % 39Arrlsd  Ca/K _ 40Ar*/39ArK  Age (Ma) Is.d.
1 650 12 1047 0.41 9.15 262.58 12587.02 76.3 10.1 0.045 36.81 126.59 0.67
2 680 12 426 0.09 507 171.67 8121.70 85.1 6.6 0.014 40.52 138.86 0.70
3 710 12 252 009 6.60 24933 10714.18 93.4 9.5 0.010 40.37 138.38 0.68
4 735 12 2.55 0.09 674 251.74 10789.96 934 9.6 0.011 40.26 138.00 0.68
5 770 12 1.51 0.13 6.96 270.56 11009.15 96.2 104 0.014 39.39 135.12 0.65
6 810 12 094 007 446 18274 7096.50 96.4 7.0 0.011 37.64 "129.32 0.63
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7 845 12 0.8 0.07 357 14772 575543 96.0 5.7 0.014 37.57 129.11 0.63
8 875 12 0.88  0.05 3.86 157.16 6302.58 96.3 6.0 0.010 38.79 133.14 0.64
9 910 12 140  0.19 644 261.64 10629.92 96.4 10.0 0.021 39.40 135.16 0.65
10 950 12 130 0.28 8.14 370.62 13161.78 97.3 14.2 0.022 34.77 119.81 0.58
11 980 12 042 046 339 187.80 5508.43 98.2 7.2 0.070 28.91 100.14 0.49
12 1020 12 0.15 0.81 0.97 56.16  1560.60 98.7 2.1 0.412 27.25 94.55 0.46
13 1070 12 0.10 026 033 20.93 560.38 99.1 0.8 0.354 25.67 89.22 0.49
14 1400 12 026 019 040 21.43 619.77 934 0.8 0.251 25.59 88.92 0.48
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gas age=  127.93 0.48
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations)
1:1(1V8:PM1), biotite, 8.9 mg, J = 0.00208115 + 0.5040%
4 amu discrimination = 1.03441 + 0.26%, 40/39K = 0.0071 + 56%, 36/37Ca = 0.00025397 + 4.51%, 39/37Ca = 0.00068493 + 2.07%
step  T(C) t(min.) 36Ar 37Ar 38Ar  39Ar 40Ar %40Ar* % 39Arrlsd  Ca/K  40Ar*/39ArK  Age (Ma) 1s.d.
1 650 12 12.00 048 8.59 24505 11417.11 70.1 10.5 0.052 32.82 119.21 0.78
2 700 12 4.43 0.19 790 29349 11676.12 89.4 12.6 0.017 35.71 129.33 0.77
3 725 12 2.03  0.08 515  201.44 7561.66 92.7 8.6 0.011 34.88 126.44 0.75
4 750 12 0.76 007 4.00 17137 5930.21 96.8 7.3 0.01 33.56 121.79 0.72
5 775 12 0.60 = 0.05 3.08 141.21 4535.84 96.9 6.0 0.010 31.11 113.17 0.67
6 810 12 064 007 2,60 12537 3913.04 96.1 54 0.014 29.93 109.01 0.65
7 845 12 058 006 243 11020 3588.72 96.2 4.7 0.015 31.24 113.65 0.68
8 875 12 0.56 0.06 233 102.86 3489.68 96.3 4.4 0.016 32.58 118.35 0.70
9 910 12 0.73 0.11 3.02  127.72  4502.20 96.2 5.5 0.024 33.86 122.86 0.72
10 950 12 0.80  0.21 4.10  200.05 6277.21 96.9 8.6 0.028 3045 110.85 0.66
11 980 12 046  0.21 3.40  207.56 - 5228.17 98.2 8.9 0.027 24.73 90.56 0.54
12 1020 12 . 035 033 3.04 21006 4704.01 98.6 9.0 0.041 22.08 81.04 0.48
13 1070 12 027  0.67 1.85  131.74 2863.69 98.5 5.6 0.135 21.30 78.24 0.47
14 1110 12 0.21 0.91 0.59 41.28 951.89 97.5 1.8 0.588 21.71 79.74 0.48
15 1180 12 029 096 0.32 1727  472.89 89.6 0.7 1.473 22.69 83.23 0.54
16 1400 12 065 033 0.22 7.87  356.15 54.9 0.3 1.118 21.77 79.94 0.60
note: isotope beams in mV, rlsd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma Total gas age = 110.175043 0.53
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations)
1:3(IV8:PM1), biotite, 10,50 mg, J = 0.00199605 + 0.3487%
4 amu discrimination = 1.03441 + 0.26%, 40/39K = 0.0071 £ 56%, 36/37Ca = 0.00025397 + 4.51%, 39/37Ca = 0.00068493 + 2.07%
37Ar  38Ar  39Ar 40Ar %40Ar* %39Arrisd  Ca/K  40Ar*/39ArK  Age (Ma) is.d.

step  T(C) t(min) 36Ar
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650
680
710
735
770
810
845
875
910
950
980
1020
1070
1400

12
12
12
12
12
12
12
12
12
12
12
12
12
12

8.33
5.36
2.39
1.16
0.72
0.88
0.62
0.50
0.58
0.73
0.45
0.33
0.34
0.72

0.50
0.12
0.13
0.10
0.09
0.13
0.10
0.09
0.16
0.29
0.29

035 -

0.56
4.60

5.54
3.50
3.63
3.57
3.73
3.57
248
2.19
2.49
3.24
2.98
3.66
4.67
3.52

145.58
118.42
156.87
171.30
196.41
201.95
136.92
115.65
126.55
173.05
197.42
264.46
348.15
252.19

6347.89
5409.45
5697.01
5634.78
5887.36
5561.05
3905.28
3437.56
3960.60
5174.40
4933.76
5950.01
7516.17
5569.67

62.6

71.9
88.3
94.4
96.8
95.8
95.9
96.3
96.3
96.4
97.8
98.8
99
97

5.6
4.5
6.0
6.6
7.5
7.8
5.3
4.4
4.9
6.6
7.6
10.2
13.4
9.7

0.098
0.029
0.024
0.017
0.012
0.019
0.021
0.021
0.036
0.048
0.042
0.037
0.046
0.515

note: isotope beams in mV, risd = released, age uncertainty includes J uncertainty, all uncertainties 1 sigma
(36Ar through 40Ar are measured beam intensities, corrected for decay in the age calculations)

27.46
33.01
32.19
31.18
29.13
26.47
2742
28.68
30.20
28.90
24.51
22.30
21.46
21.45
Total gas age =

96.28
115.11
112.35
108.92
101.97
92.90
96.12
100.42
105.60
101.19
86.18
78.55
75.66
75.63
92.74

0.55
0.62
0.55
0.52
0.48
0.44
0.46
0.48
0.50
0.48
041
0.37
0.36
0.36
0.36
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Appendix A

“Ar/*Ar data for samples from the Clark Mountains, Mohawk Hill, and Mescal Range

Clark Mountains

Gabe, biotite, 7.14 mg

4 amu discrimination = 1.0274 + 0.35 %
40/39K = 0.010817 £ 99.4 %

J =0.00175643 £ 0.0564 %
36/37Ca =0.000284 + 5.75 %
39/37Ca = 0.000685 + 2.37 %

step T(C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar % 39Ar risd %40Ar*  Ca/K  40Ar*/39ArK Age (Ma) 1s.d.
1 650 12 80.61 0.52 17.85 55.65 24165.44 5.1 14 0.066 5.248 16.55 4.84
2 725 12 48.08 0.96 2043 24456 20419.17 223 30.4 0.028 25.410 78.77 0.90
3 775 12 9.15 0.37 917 160.50 7329.68 14.7 63.2 0.016 28.951 89.48 0.49
4 820 12 4.38 0.49 5.41 101.67 4227.73 9.3 69.6 0.033 28.999 89.63 0.45
5 860 12 4.63 0.86 4.04 70.95 3339.25 6.5 59.3 0.085 27.929 86.40 0.50
6 900 12 8.59 1.66 491 74.30 4523.64 6.8 441 0.158 26.820 83.04 0.66
7 940 12 7.73 1.71 5.45 88.13 4734.37 8.0 51.9 0.137 27.918 86.36 0.58
8 970 12 4.88 0.86 5.07 89.49 4057.12 8.2 64.8 0.067 29.377 90.76 0.50
9 1000 12 3.97 0.79 4,94 88.48 3868.73 8.1 70.0 0.083 30.631 94.54 0.47
10 1030 12 2.39 1.68 2.95 52.94 2323.65 4.8 70.2 0.225 30.745 94.88 0.47
11 1400 12 2.27 28.50 3.71 68.13 2831.58 6.2 77.4 2.976 32.142 99.08 0.44

Total gas age= 83.88 0.46

Scott, amphibole, 10.96 mg J=0.0017289 + 0.0954 %

4 amu discrimination = 1.03795 £ 0.55 % 36/37Ca = 0.000284 = 5.75 %

40/39K = 0.010817 £ 99.4 % 39/37Ca = 0.000685 + 2.37 %

step T(C) t(min.) 36Ar 37Ar  38Ar 39Ar 40Ar % 39Ar risd %40Ar*  Ca/K  40Ar*/39ArK Age (Ma) 1s.d.
1 750 12 122.61 1275 23.82 1.88 36612.30 1.9 1.0 29.516 148.845 413.13 386.18
2 850 12 13.39 24 .54 3.56 2.91 4866.54 3.0 18.8 36.118 321.510 797.45 19.54
3 950 12 17.93 278.23 2579 34.13 14644.74 34.9 64.2 35.369 284.076 720.80 511
4 990 12 10.57 11798 16.13 21.61 6638.80 22.1 53.3 23.459 167.595 459.05 435
5 1020 12 6.04 50.32 7.08 9.66 3093.48 9.9 427 22.230 139.358 389.44 451
6 1050 12 3.07 20.89 2.64 3.91 1485.52 4.0 394 22761 151.561 419.85 8.00
7 1070 12 1.01 10.98 1.19 2.08 610.52 2.1 52.7 22.485 154.652 427.48 4.06
8 1095 12 1.36 13.57 1.39 2.29 763.78 23 48.5 25.258 162.740 447.27 452
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note: isotope beams in mV, risd = released, error in age includes 0.5% J error, all errors 1 sigma Plateau age = 147.62 0.80

(Not corrected for decay) (steps 2-13)

JKO03IV-8, biotite, 3.96 mg J =0.0016435 £ 0.5%

4 amu discrimination = 1.02357 £ 0.31% 36/37Ca = 0.00027 £ 2.46%

40/39K = 0.0002 + 0.03% 39/37Ca = 0.00063 + 0.98%

step T(C) t(min.) 36Ar 37Ar  38Ar 39Ar 40Ar % 39Arrisd  %40Ar*  Ca/K  40Ar*/39ArK Age (Ma) 1s.d.
1 650 12 8.28 013 220 45.30 4701.20 8.0 49.2 0.014 50.869 146.00 1.19
2 725 12 275 015 247 147.30 8328.82 19.7 90.5 0.005 51.013 146.39 0.92
3 775 12 1.64 012 228 150.02 8166.79 20.0 94.2 0.004 51.136 146.73 0.91
4 820 12 1.37 0.12 1.46 92.46 5083.08 12.3 92.3 0.006 50.540 145.09 0.91
5 860 12 1.40 0.12 1.24 75.12 4204.93 10.0 90.4 0.008 50.441 144.82 0.91
6 900 12 1.37 0.10 1.26 76.64 429425 10.2 90.9 0.007 50.731 145.61 0.92
7 940 12 1.14 0.12 1.17 72.88 4059.43 9.7 92.0 0.008 51.046 146.48 0.92
8 970 12 0.56 0.09 064 41.29 2278.86 5.5 93.0 0.0 51.106 146.65 0.92
9 1000 12 0.30 0.08 0.35 21.96 1214.11 29 93.2 0.019 51.226 146.98 0.92
10 1030 12 0.14 0.06 0.15 10.36 572.10 1.4 93.2 0.026 51.055 146.51 0.93
11 1400 12 0.30 019 026 15.77 897.89 2.1 90.9 0.059 51.367 147.37 0.98

Cumulative % 100 Total gas age= 146.10 0.81

note: isotope beams in mV, risd = released, error in age includes 0.5% J error, all errors 1 sigma Plateau age = 146.13 0.82

(Not corrected for decay) (steps 1-10)

JKO3IV-8, K-feldspar, 13.61 mg J=0.001561 2 0.5%

4 amu discrimination = 1.01743 £ 0.33% 36/37Ca = 0.000272 + 23.61%

40/39K = 0.0002 + 150.0% 39/37Ca = 0.000701 £ 1.75%

step T(C) t{(min.) 36Ar 37Ar  38Ar 39Ar 40Ar % 39Arrisd  %40Ar  Ca/K  40Ar*/39ArK Age (Ma) 1s.d.
1 422 18 4.49 002 085 0.33 1338.86 0.0 2.8 0.265 120.786 311.62 2470
2 448 18 1.91 0.03 036 0.47 576.51 0.0 4.2 0.268 53.211 143.95 7.83
3 448 43 1.67 002 0.33 0.79 519.26 0.0 7.3 0.117 47.851 129.96 4.43
4 473 18 072 .002 0.15 0.68 230.39 0.0 10.7 0.148 36.927 101.11 5.19
5 473 43 0.96 0.03 0.19 1.28 317.57 0.0 13.6 0.093 32.478 89.22 2.15
6 514 18 1.27 0.03 028 2.85 718.34 0.1 49.3 0.043 125.019 321.62 2.36
7 514 43 1.1 0.04 028 4.66 472.42 0.2 33.3 0.039 32.692 89.79 0.90
8 555 18 245 . 004 059 10.75 2187.68 0.4 67.6 0.016 138.199 352.42 2.1
9 585 43 0.88 0.05 033 13.57 673.30 0.5 64.2 0.016 31.087 85.49 0.55
10 596 18 1.48 0.05 052 18.40 1483.62 0.6 71.1 0.013 57.423 154.87 0.94
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47 1200 20 1.80 0.26 1.50 90.17 4879.34 3.0 89.5 0.013 48.524 131.72 0.75
48 1230 20 3.19 0.38 268 15945  8595.51 53 89.4 0.010 48.301 131.14 0.74
49 1300 20 9.89 0.56 1016 64459 35944.50 21.5 92.1 0.004 51.517 139.54 0.78
50 1350 20 5.91 0.19 624 39231 22578.30 13.1 92.5 0.002 53.405 144.46 0.81
51 1400 20 1.22 0.09 0.92 52.80 3138.66 1.8 89.2 0.007 53.088 143.63 0.81
52 1500 20 0.39 004 026 13.25 808.84 04 87.9 0.012 53.405 144.46 0.83
Totalgas age= 131.96  0.63
JKO03IV-14, muscovite, 5.82 mg J=0.001657 + 0.5%
4 amu discrimination = 1.02357 £ 0.31% 36/37Ca = 0.00027 £ 2.46%
40/39K = 0.0002 £ 0.03% ' 39/37Ca = 0.00063 + 0.98%
step T (C) t(min.) 36Ar 37Ar  38Ar 39Ar .40Ar % 39Arrisd  %40Ar*  Ca/K  40Ar*/39ArK Age (Ma) 1s.d.
1 725 12 3.17 0.12 1.10 38.73 2885.66 3.0 68.4 0.015 51.209 146.93 1.03
2 775 12 1.34 0.06 0.88 49.92 2967.91 3.9 87.1 0.006 52.007 149.13 0.95
3 820 12 0.83 0.06 1.61 111.44 5994.34 8.6 96.0 0.003 51.915 148.88 0.92
4 850 12 0.42 0.06 1.69 12569  6600.99 9.7 98.2 0.002 51.850 148.70 0.92
5 875 12 0.33 0.06 1.76 131.34  6858.29 10.2 98.7 0.002 51.782 148.51 0.91
6 900 12 0.33 0.06 1.78 133.20 697542 10.3 98.7 0.002 51.949 148.97 0.92
7 915 12 0.28 0.04 141 106.17  5573.04 8.2 98.6 0.002 52.007 149.13 0.92
8 930 12 0.28 0.03 1.34 100.77  5287.03 7.8 98.5 0.002 51.961 149.00 0.92
9 945 12 0.27 0.03 1.44 10480 5501.10 8.1 98.7 0.001 52.041 149.23 0.92
10 960 12 0.24 0.02 1.16 87.33 4587.47 6.8 98.6 0.001 52.033 149.20 0.92
11 980 12 0.16 0.03 1.04 76.48 3985.43 59 98.9 0.002 51.812 148.59 0.92
12 1000 12 0.09 0.03 0.88 66.72 3465.76 52 99.4 0.002 51.857 148.72 0.91
13 1030 12 0.05 0.04 0.92 69.86 3623.94 54 99.7 0.002 51.955 148.99 0.92
14 1100 12 0.03 0.06 1.03 79.31 4105.45 6.1 99.8 0.003 51.931 148.92 0.92
15 1150 12 0.01 0.03 0.11 7.75 402.86 06 100.0 0.017 51.897 148.83 0.95
16 1400 12 0.02 0.02 0.04 3.60 189.67 0.3 99.9 0.032 51.818 148.61 1.04
Cumulative % 100 Total gas age = 148.85 0.79
note: isotope beams in mV, risd = released, error in age includes 0.5% J error, all errors 1 sigma Plateau age = 148.83 0.79
(Not corrected for decay) (steps 1-16)
JKO03IV-14, biotite, 5.17 mg J=0.001656 £ 0.5%
4 amu discrimination = 1.02357 + 0.31% 36/37Ca = 0.00027 + 2.46%
40/39K = 0.0002 + 0.03% 39/37Ca = 0.00063 £ 0.98%
step T(C) t(min.) 36Ar 37Ar  38Ar 39Ar 40Ar % 39Arrisd  %40Ar*  Ca/K  40Ar*/39ArK Age (Ma) 1s.d.
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Appendix D

“Ar/*Ar data for samples from the Kessler Spring Adamellite, southern lvanpah Mountains

JKO6KS-1, biotite, 6.60 mg

4 amu discrimination = 1.03432 + 0.45 %

40/39K = 0.0024333 £ 76.1 %

J =0.00194597 + 0.1768 %

36/37Ca = 0.0002575+ 1.61 %
39/37Ca = 0.00070416 + 10.06 %

step T(C) t(min.) 36Ar 37Ar 38Ar 39Ar 40Ar % 39Arrisd %40Ar*  Ca/K  40Ar*/39ArK Age (Ma) 1s.d.
1 650 12 3.77 0.44 156  55.80 2077.51 26 46.5 0.044 17.346 59.89 0.59
2 700 12 1.03 032 157 89.83 2316.15 4.1 87.5 0.019 22.623 77.72 0.41
3 725 12 0.47 023 158 101.37  2470.69 4.7 95.0 0.012 23.219 79.73 0.39
4 750 12 0.33 0.20 1.87 12056 2892.18 5.6 97.2 0.009 23.405 80.35 0.39
5 775 12 029 020 187 12412  2953.89 5.7 97.6 0.008 23.332 80.11 0.39
6 810 12 0.36 0.19 197 12760  3057.67 5.9 97.0 0.008 23.352 80.17 0.39
7 845 12 0.35 0.17 1.55 100.62 2430.02 4.6 96.3 0.009 23.335 80.12 0.39
8 875 12 0.32 0.18 115 7177 1744.63 3.3 95.4 0.012 23.226 79.75 0.39
9 910 12 0.32 0.19 092 57.21 1397.97 2.6 94.6 0.017 23.014 79.04 0.39
10 950 12 043 0.27 098 61.05 1509.75 28 92.9 0.023 22.878 78.58 0.40
11 980 12 0.51 0.30 117  73.99 1830.37 3.4 92.8 0.022 22.919 78.72 0.40
12 1020 12 0.53  0.41 174 111.30 2693.24 51 95.4 0.020 23.029 79.09 0.40
13 1100 12 0.71 2.20 468 30622 7265.55 141 97.6 0.041 23.247 79.82 0.39
14 1180 12 0.87 18.11 9.57 63097 1484167 291 98.5 0.166 23.321 80.07 0.38
15 1400 12 0.36 2.55 210 13418  3217.97 6.2 98.2 0.109 23.398 80.33 0.39

Totalgas age= 79.27 0.24
note: isotope beams in mV, risd = released, error in age includes J error, all errors 1 sigma Plateauage= 79.84 0.39
Isochron age = 80.71 0.35

KAS-Big, K-feldspar, 10.42 mg J=0.0015522 £ 0.145 %

4 amu discrimination = 1.02661 £ 0.27 % 36/37Ca = 0.00031335+ 7.09 %

40/39K = 0.0002 £ 150 % 39/37Ca = 0.00073573+9.92 %

step T(C) t(min.) 36Ar 37Ar 38Ar  39Ar 40Ar % 39Arrisd %40Ar*  Ca/K  40Ar*/39ArK _Age (Ma) 1s.d.
1 450 18 494 002 0.91 0.43 1421.51 0.0 2.7 5.281 -95.369 -289.02  88.40
2 475 18 0.82 0.02 0.16 0.65 255.12 0.0 5.1 3.497 18.550 51.21 10.61
3 475 43 0.73 0.02 0.16 1.16 232.02 0.0 9.1 1.773 15.621 43.22 1.66
4 500 18 0.35 0.02 0.09 1.26 126.90 0.0 20.9 1.986 19.482 53.75 0.84
5 500 43 0.48 0.02 0.13 2.25 183.66 0.1 29.5 1.016 20.203 55.70 0.54
6 540 18 0.34 0.02 0.12 3.66 190.84 0.1 49.7 0.687 24,798 68.14 0.45
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