
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2016

Innovative Fiber Optic/Thin Film Photovoltaic
Systems: Adequately Distributing Daylight While
Harvesting Energy
Sean Steven Zurko
University of Nevada, Las Vegas, zurkos2@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

Part of the Architecture Commons, and the Sustainability Commons

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations,
Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

Repository Citation
Zurko, Sean Steven, "Innovative Fiber Optic/Thin Film Photovoltaic Systems: Adequately Distributing Daylight While Harvesting
Energy" (2016). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2769.
https://digitalscholarship.unlv.edu/thesesdissertations/2769

http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/773?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1031?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2769?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


 

INNOVATIVE FIBER OPTIC / THIN FILM PHOTOVOLTAIC SYSTEMS: 

ADEQUATELY DISTRIBUTING DAYLIGHT  

WHILE HARVESTING ENERGY 

 

By 

 

Sean Zurko 

 
 

Bachelor of Science – Interior Design  
Texas Christian University 

2012  
 
 
 

 
 

A thesis submitted in partial fulfillment 
of the requirements for the 

 
 

 
 

Master of Architecture 
 

 
 
 

School of Architecture 
College of Fine Arts 

The Graduate College 
 
 

 
 
 

University of Nevada, Las Vegas 
May 2016 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2016 by Sean Zurko 
 

All Rights Reserved 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ii 
 

  

 

Thesis Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

April 15, 2016 

This thesis prepared by  

Sean Zurko 

entitled  

Innovative Fiber Optic / Thin Film Photovoltaic Systems: Adequately Distributing 

Daylight While Harvesting Energy 

is approved in partial fulfillment of the requirements for the degree of 

Master of Architecture 

School of Architecture 

 

 
                
Alfredo Fernandez-Gonzalez, M.Arch.  Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair    Graduate College Interim Dean 

 

Jon Champelli, M.F.A. 
Examination Committee Member 

        

Joshua Vermillion, M.Arch. 
Examination Committee Member 

 

Robert Boehm, Ph.D. 
Graduate College Faculty Representative 

 



iii 

ABSTRACT 

On any given year, Las Vegas will be exposed to an average of 85% sunlight during 

typical daylight hours, while averaging seven peak hours a day.  That alone makes Las 

Vegas a prime candidate for renewable solar energy systems (Solar Direct, 2016).  By 

implementing fiber optics into office buildings in conjunction with thin-film photovoltaics, 

interior spaces have the potential to be adequately illuminated while simultaneously 

harvesting electricity.  The study will be conducted through analysis and experimental 

field research with the intent of generating physical data, demonstrating that a hybrid 

fiber optic - photovoltaic system can at minimum match recommended foot-candle 

values and reduce a building’s electricity demand.  Supplementary information on 
 
United States energy generation and consumption of fuels and the experimental data 
 
from this study are cataloged under appendix 1 and 2.    
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CHAPTER 1: INTRODUCTION  

“A room is not a room without natural daylight.” 

-Louis Kahn 
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1.1 GLOBAL WARMING 

Climate change can be described as one of the greatest humanitarian crises of the 21st 

century. It has been linked to rising sea levels and shifts in weather conditions such as 

drought, heat waves, storms, floods, and a climbing trend in global temperatures. The 

United States Global Change Research Program states, “global warming is unequivocal 

and primarily human-induced” and that “climate changes are underway in the United 

States and are projected to continue to grow exponentially” (U.S. Global Change 

Research Program 2009, 13) 

 
Manmade refrigerants and aerosol propellants have contributed to changes in the Earth 

by deteriorating the ozone layer, allowing higher IR and UV rays to enter the Earth’s 

atmosphere.  However, the primary pollutant associated with global warming is the 

greenhouse gas known as carbon dioxide.  Research on current climate systems 

reveals that human induced environmental emissions of greenhouse gases are higher 

than ever before (U.S. Global Change Research Program 2009).  The last thirty years 

have demonstrated warmer surface temperatures over any previous decades since 

1850.  Additionally, “the past three decades have been recorded as the warmest period 

over the last 1400 years in the Northern Hemisphere with a combined land and ocean 

surface temperature increase of 0.6 to 0.9 degrees Celsius, or 1.1 to 1.6 degrees 

Fahrenheit” (Core Writing Team, R.K. Pachauri and L.A. Meyer 2014, 8) 
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Furthermore, the 2014 IPCC Climate Change report states they are “virtually certain 

that there will be a both higher and lower temperature ranges across most land areas 

during both daily and seasonal timescales”.  As the Earth’s temperature increases, “it is 

very likely that progressive heat waves will occur more often and for longer duration, 

Table 1.1 (NOAA GLOBAL ANALYSIS 2015) Table 1.1 (NOAA Global Analysis 2015) 
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while in some areas, extreme cold winters will continue to occur”(Core Writing Team, 

R.K. Pachauri and L.A. Meyer 2014, 8). 

 

Climate change continues to burden society’s ability to meet human development goals 

while maintaining the growth of natural resources and ecosystems. As a result, 

governments around the world are taking measures to limit emissions of carbon dioxide 

and other greenhouse gases. One way is through the Kyoto Protocol, an international 

agreement linked to the United Nations which proportionally commits developed nations 

to cut back on carbon dioxide emissions caused by more than 150 years of industrial 

activities (UNFCCC 2015).  Even though the framework set up by the Kyoto Protocol 

has yet to take precedent around the globe, an impending update may provide a much-

needed boost with the conclusion of the 2015 climate change conference held in Paris.  
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1.2 BUILDING SECTOR IMPACTS 

The United States building sector is responsible for 30% of the countries annual 

greenhouse gases and consumes 40% of the world’s total annual energy (United 

Nations Environment Programme, 2015). This allows the nation to become one of the 

leading countries in mitigating future climate change through innovative and adaptive 

sustainable technologies. 

According to the U.S. Energy Information Administration’s Electric Power Annual 2013 

analysis, the United States produced 2388 giga-watts of power by utilizing high carbon 

emissive resources such as coal, petroleum used for fuel, natural gas, and nuclear 

power for buildings’ electrical generation (Refer to Chart 1.1). In 2014, the United States 

generated about 4,093 billion kilowatt-hours of electricity.  While coal is still the largest 

source of electric generation with 39% of the overall used resources, the nation’s 

dependence on it has slowly begun to decline as natural gas and renewables continue 

to enter the market.  Currently 67% of electricity has been generated from fossil fuels 

such as coal, natural gas, and petroleum (U.S. Energy Information Administration 

2015). 
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Buildings account for about 47% of the energy consumed in the United States.  Heating 

and cooling systems use about 55% of this energy while lighting and appliances use the 

other 45% (Zhou and others 2015).  In regards to the environment, the effects caused 

by the building sector demonstrate huge threats to humanitarian, social, and economic 

ways of life. 

“In the buildings sector, an effective energy solution should be able to address long-

term issues by utilizing alternative and renewable energy sources” (IEA PVPS 

Programme, 2014, 5).  Buildings alone allow for numerous renewable energy strategies. 

However, solar energy is a promising and viable option considering that it is both 

renewable and abundant in nature. 

  

Table 1.2 (1990-2025 World Carbon Dioxide Forecast by the Department of Energy’s EIA) 

 
Table 1.3 (2011 U.S. Energy Information Administration)Table 1.2 (1990-2025 World Carbon 

Dioxide Forecast by the Department of Energy’s EIA) 
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1.3 OFFICE BUILDINGS 
 
Office buildings require a great deal of energy to deliver comfortable environments for 

inhabitants. As a passive energy saving strategy, daylighting has the opportunity to play 

a vital role in the growing industry of renewable energy with regards to reducing the use 

of electricity. Daylighting greatly impacts the energy consumption incurred by office 

buildings across the country.  

 

The United States Green Building Council states that buildings consume nearly half of 

the energy in the United States and contributes 46.7% of the country’s greenhouse 

gases.  In 2013, office buildings accounted for 21% of all commercial energy 

consumption, which averaged 1.4 billion BTU’s of energy with a consumption intensity 

of 97.2 kBTU/ft2 (U.S. Energy Information Administration 2014b). A decrease in energy 

use and the increase or utilization of renewable energy sources has been shown to lead 

to lower production of greenhouse gas emissions.  

Due to the growth of today’s 

modern building sector, buildings 

are the main source of power 

consumption and greenhouse gas 

emission, with a growing 

electricity demand of .07%/year in 

the United States.  The United 

States Energy Information 

Administration notes that 
Table 1.3 (2011 U.S. Energy Information Administration) 

 
Table 1.3 (2011 U.S. Energy Information Administration) 
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buildings expel 46.7% of the nation’s CO2 emissions (U.S. Energy Information 

Administration 2014b). Thus, a higher level of consideration has been given to energy 

consumption due to electric illumination in buildings, which is a major source of energy 

use.  The IPCC reports that energy consumption as a result of electric lights in office 

settings is approximately 40-50% of the total building energy cost (Hassenzahl 2012).  A 

significant reason for this is that lighting demands are increasing due to rising average 

luminance levels in buildings suggested by the IES, especially in new construction. 

 
As a way to combat the world energy crisis, “Net Zero” and “Low Carbon Emitting 

Buildings” have begun to redevelop the framework of architectural thinking. The World 

Commission on Environment and Development outlines sustainability as, “meeting the 

needs of the present without compromising the ability of future generations to meet their 

own needs” (Khamseh 2014, 161-166). 

 
A key component in sustainable design is to maximize solar energy on a given site by 

utilizing both solar energy capabilities as well as solar illuminating qualities. This is done 

through the application and use of photovoltaic energy and strategic daylight systems. 

Well-designed buildings utilizing efficient daylight strategies are estimated on average to 

reduce electric energy use by 50-80% (Khamseh 2014).  Therefore, an appropriate 

sustainable daylight strategy is encouraged and will lead to a solution to the current 

rising energy problem.   

 
In sustainable design, the interior of a building is well-lit through the use of daylight 

coming from exterior fenestration and daylight operating systems. The Illuminating 

Engineering Society recommends that an office buildings interiors have an average 
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illuminance of 30 Foot Candles plus task lighting (DiLaura 2016).  Depending on the 

location of the building’s fenestration and the size of the glazing, light entering the space 

will decrease in intensity rapidly, resulting in interior spaces lacking required light levels. 

As a result, the illumination can sometimes be inconsistent, resulting in dark patches 

and areas. 

 
It is unrealistic to achieve recommended light levels throughout the entirety of a given 

day through fenestrations and openings alone.  Therefore, society has relied on electric 

lighting to provide supplemental lighting. In 2014, The U.S. Energy Information 

Administration estimated about 412 Billion kWh of electricity was used to light 

residential and commercial sectors in the United States. This was approximately 11% of 

the total U.S. electricity consumption. (U.S. Energy Information Administration 2014a) 

(Refer to Chart 1.3) 

 
By utilizing the properties of daylight, we can reduce a building’s need for fossil fuel 

generated energy and lower the cost to sustain a building while simultaneously 

lessening the associated environmental damages. 
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1.4 DAYLIGHT METHODS 

 
Based off current technological trends and existing research, advances in daylight 

strategy usually focus on one of multiple methods at a time.  Some strategies focus 

primarily on a specific daylight catchment strategy while others focus on the 

improvement of photovoltaic systems. Several daylight-transferring systems already 

exist in the market today such as light pipes, light guides, and solar collectors, but most 

of these designs are either bulky in size or require a large area for installation on the 

project site.  While photovoltaics operate in the same manner, different materials can be 

applied to convert ultraviolet waves and solar radiation into usable energy (Oh and 

others 2013).   

 
In comparison to photovoltaic systems, fiber optic technology is in its infant stages, but it 

already provides significant benefits in regards to sustainable daylight design. Fiber 

optic daylight is an innovative technological system that can transmit harvested daylight 

to interior spaces using either side lighting strategies or top-lighting designs.  Today, 

daylight fiber optic strategies are categorized as being either passive or hybrid.  A 

passive system typically contains three major components: sunlight collectors (typically 

a Fresnel lens), optical fibers, and a luminaire to evenly distribute the collected light 

within a given interior space (ECW 2008) Hybrid systems are similar in design, but also 

include electric lamps and dimming controls to provide constant light levels.  Recent 

advances to the technology allow for minimal light loss through the cables due to the 

structure of the fibers themselves. Since the daylight is transmitted through a collector 

and lens, potential for heat gains within the building are eliminated. Current 
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developments in the glass fiber technology have allowed for a light transmission of 

98.6% per foot at a maximum of 66Ft. (Parans 2016).  These strategies will not only, 

improve indoor environmental conditions, but also conserve large amounts of energy. 

These systems have the opportunity to not only conserve large amounts of energy, but 

also improve indoor conditions.  

 

Photovoltaic industries as a whole have experienced rapid growth over the last decade 

due to environmental concerns.  The 2011 World Energy Outlook released by the 

International Energy Agency provided data denoting that an increased production of 

solar energy is essential to ensure a steady and secure energy stream while drastically 

limiting the effects of energy-induced climate change (IEA PVPS Programme 2014). 

While traditional silicon based PV systems continue to progress, developments in the 

industry focus on the discovery of new materials that will increase a system’s efficiency 

rate. Recent discoveries have allowed for the development of full spectrum photovoltaic 

systems. These new systems utilize a new semiconductor material made from indium, 

gallium, and nitrogen that can virtually convert the entire spectrum of sunlight into 

electricity (Kim and others 2009).  Typical photovoltaic systems have always had an 

unwieldy and opaque quality to them making it almost impossible for them to be used 

for any other purpose outside of generating electricity. However, Thin-Film photovoltaic 

has provided opportunities of transparency while offering the consumer significantly 

lower cost benefits.  Additionally, they require significantly less active materials in 

comparison to their crystalline silicon counterparts while allowing for unique flexibility, 

low weight, and lean production processes.  
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To offset the carbon footprint and energy consumption of buildings, the goal of this 

research is to develop an integrated Photovoltaic/fiber optic system. This system must 

be capable of converting collected solar radiation into electricity while also providing 

necessary illuminance values to an interior space beyond what would typically be 

achieved through vertical fenestration.  A hybridization of the two systems would be a 

unique prototypical strategy which combines the better of the two systems.  The fiber 

optic system would collect and redirect the daylight into a luminaire coupled with thin-

film photovoltaics.  By applying the photovoltaics to vertical fins within the fixture, a 

significant amount of the collected visual spectrum would be able to pass through and 

illuminate the interior space. Meanwhile, the collected solar radiation would be 

harvested and converted into energy that potentially allows the system to be self-

sustaining and net positive.   

 
Because this specific method of daylight collection has not been tested before, any data 

retrieved during this process of experimentation will have the potential to provide 

advancements in modern daylight strategies while assisting in the development of new 

sustainable lighting technologies.  Additionally, this research can lead to large energy 

savings helping to reduce overall carbon emission output caused by buildings.  

Adequately increasing the amount of daylight distributed throughout a building will lead 

to a much more enjoyable user experience that could theoretically lead to increased 

productivity levels and create more dynamic environments for high-rise typologies.   
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CHAPTER 2: LITERATURE REVIEW 

 
2.1 PREFACE 
 
Research that references daylight systems tends to focus on the exploration of 

enhancing key components within an existing strategy. It was essential for my own 

research to develop an understanding of the most recent advancements as well as 

current technological developments within the field of solar design.  I conducted my 

research in a manner that analyzed key components of both fiber optic systems and 

photovoltaic strategies in order to develop validity towards the intended research goals. 

This also helped to determine the most suitable assembly strategy that would best fit my 

own research explorations. 
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2.2 CHARECTERISTICS OF LIGHT  

The most natural and abundant source of light comes from the sun.  Sunlight plays a 

fundamental role in the survival of all living things on Earth.  By converting solar energy 

collected from the sun into sugars through the process of photosynthesis, plants are 

capable of sustaining all life forms on earth.   

 

Solar radiation most resembles that of a black body, with a maximum temperature of 

5,800 K (Russel 2012).  With a black body diagram, all colors of light can be 

categorized and accurately labeled. Through the process of nuclear fusion, the sun 

emits a broad range of electromagnetic radiation in the form of wavelengths in the 

ultraviolet, visible, and infrared portions of the light spectrum.  Electromagnetic radiation 

can commonly be viewed as a 

wave defined by wavelengths of 

frequencies.  Wavelengths are 

the distances between peaks, 

while frequency is the number of 

waves that travel past a fixed 

point per unit of time (Hz).   

“Visible light consists of 

wavelengths, between infrared and ultraviolet wavelengths with a range of 380-770 nm, 

and is commonly the only portion of the solar spectrum of radiation that is visible to the 

human eye” (Pal 2001, 387) .  

 

Figure 2.1 Diagram of a Wavelength taken from CIMSS 
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In his book, Architecture of Light, Russel best describes the nature of light and the 

importance of it in reference to the built form: 

“In the built environment, it is safe to say that the majority of our experiences are 

visual.  Sound, smell and touch certainly play various roles, but the typical person 

relies on vision to deliver a very large quantity of information.  Vision, by its very 

nature, is a product of light.  It is the result of the creation of light, the reflection of 

light and ultimately the absorption of light by our visual system.  Logic dictates 

then that if we want to have maximum control of the designed environment we 

must become intimate with light and learn to make it our ally” (Russel 2012, 115). 

 

Sunlight has natural spectral qualities that range throughout the entire visual spectrum. 

Because of this, sunlight helps to stimulate biological functions within the human body.  

Typical electric lamps do not compare to the diversity of the sun’s light.  Fluorescent 

lamps, the most commonly used fixtures across the country, fit in the yellow to red end 

of the spectrum. Incandescent lamps, which are becoming less widely used due to their 

inefficiencies, are concentrated within the orange to red portion of the spectrum.   

 

 

 

 

 

 

 

Figure 2.2 Diagram of the Solar Radiation Spectrum taken from Princeton.edu 

 
Figure 2.2 Diagram of the Solar Radiation Spectrum taken from Princeton.edu 
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Recently, companies have attempted to create products that can simulate the sun’s 

spectral range.  General Electric has released a new line of fluorescent fixtures 

including the “Reveal” full-spectrum lamp, which Edwards described as, “the first lamp 

that closely simulates natural light because it has wavelengths in the blue portion of the 

spectrum between 400-500 nm” (L. Edwards, and P. Torcellini 2002, 9-10). 
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2.3 HUMAN HEALTH 

Daylight used to light building interiors can improve indoor spaces, human health, 

lighting quality, and energy efficiency.  An electric lighting system often fails to produce 

comfortable indoor environments, which in turn affects the occupants’ health.  In office 

buildings, an average employee will spend most of their workday under an electric light 

source resulting in complaints of eyestrain and fatigue in 15% of office workers 

(Hoffmann and others 2008).  Both our eyes and skin require direct interaction with 

sunlight as a way to assist the body in absorbing non-visible wavelengths provided by 

the sun in order to synthesize D vitamins (A. Dunne 1989).  “Daylight provides us the 

ability to connect with the natural world, while balancing our biological clocks” (National 

Institue of General Medical Science 2012, 2).   

 

Well illuminated spaces utilizing daylight often demonstrated “better health, reduced 

absenteeism, increased productivity, financial savings, and preference of workers” (L. 

Edwards, and P. Torcellini 2002, 9-10).  While exposed to natural light, the pineal gland 

suppresses melatonin to allow for an alert state of consciousness.  Researchers at the 

University Medical Center in Hamburg, Germany determined that when a space utilizes 

natural lighting that replicates the 400-500nm spectral range of the sun, building 

occupants will be calmer and more efficient than those who were exposed only to a 

typical fluorescent system, which leads to happier and more productive occupants 

(Wessolowski and others 2014). 

 
Another benefit to introducing daylight into a space is the reduction of headaches and 

Seasonal Affective Disorder, which has been linked to a deficiency of appropriate light 
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levels.  SAD is a medical condition directly related to sunlight exposure.  Research 

suggests that SAD is primarily caused by an increase in melatonin levels, as a result of 

minimal sun interaction.  Treatment to the common office symptom includes increased 

interaction with daylight. In severe cases, patients sit in front of a device that replicates 

solar wavelengths for a medically prescribed period of time (Franta, G, Anstead, K). 
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2.4 COMMON DAYLIGHTING STRATEGIES 

Daylight was originally the primary source of illumination for indoor and outdoor spaces, 

while fire by candlelight was used during the evening hours to complete tasks in the 

darkness.  Over the last few decades, the need to rely on daylight drastically declined, 

as electric lighting became a wide spread technology.   Nonetheless, as global warming 

continues to become an issue, a variety of daylight devices have been designed and 

improved upon in order to maximize the sun’s potential thus increasing occupancy 

acceptance and reducing negative environmental effects.   

 
There are a multitude of different strategies that can be implemented that will allow 

daylight to enter the interior of a building. These strategies can be characterized based 

off their intended operations as well as the type of light they were meant to deliver.  Due 

to conciseness, strategies that are most relevant to the intent of this research are 

reviewed below.   
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2.4.1 BASIC DAYLIGHTING – FENESTRATIONS AND SKYLIGHTS 

VERTICAL FENESTRATION: 

The most commonly used strategy to provide direct daylight across the globe is the use 

of vertical fenestration applied to the exterior elevations of a building.  Vertical 

fenestration allows all qualities of the sun to enter the interior of a building while 

drastically reducing the need to use electric light during sun peak hours.  Fenestration is 

strongly encouraged especially in the work place primarily because it provides direct 

access to daylight as well as views of the outdoors, which is psychologically desired by 

most building occupants.  However, vertical fenestration has its weaknesses and 

limitations.  The use of direct daylight is an attractive way to deliver bright light, but it 

can also bring glare and contrast which can cause visual discomfort and fatigue.  In 

addition, vertical fenestration is limited to its location and orientation on the building.  

Daylight entering a space through exterior fenestration is limited to the perimeter of a 

building, increasing the need for electric lighting to provide appropriate light levels within 

an interior space.  Glazing also requires a great deal of attention due to high heat gains 

attributed to the materials’ low R-value (Walter T Grondzik, Alison G Kwok, Benjamin 

Stein, John S. Reynolds 2010).    
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However, manufactures have developed methods to reduce the inefficiencies of glazing 

and fenestration alike.  In the past, the use of tinted or reflective glazing was the primary 

strategy in controlling heat related variances. Today, the use of light diffusing glass such 

as frosted or fritted glass is another strategy to diffuse light. These methods drastically 

reduce the transparency qualities of the glazing.   

 
Recently, spectrally selective films applied to glazing have begun to grow within the 

market.  Spectrally selective films block IR and UV wavelengths while allowing a high 

amount of light to pass.  When comparing tinted films with a spectrally selective window 

film, researchers found that nearly all the light within 850-1200nm was reflected while 

having minimal loss of light transmission (R. Padiyath, C. Haak, L. Gilbert, 3M 

Company) 

  

Figure 2.3 Winter and Summer Window Daylight Analysis Taken From DN Architecture 
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SKYLIGHTS: 
 
Another common application very similar to vertical fenestration is the skylight. Skylights 

are essentially fenestration located within the framework of the roof.  They provide the 

advantage of increasing the amount of 

daylight that enters an interior space past 

the limits of what a vertical system located 

on the perimeter walls can offer.  

 
Nonetheless, a skylight is a large opening 

within the roof system.  The opportunity for 

unwanted drafts and leaks that cause an 

uncomfortable interior environment to occur 

are more common due to the implementation of a skylight.  Additionally, skylights are 

expensive systems that can only be utilized in spaces that have a direct connection to 

the roof.  Similar to vertical fenestration, another disadvantage to skylights is the 

amount of unwanted heat gain and heat loss that will occur in a given space, caused by 

an R-value that is a fraction of what a roof would be.  Because of the inefficiencies of 

skylights, HVAC systems expend more energy to keep a space at a comfortable 

temperature causing a higher energy bill.  “During the summer months a typical skylight 

is accountable for as much as four times the amount of heat gains over a standard 

exterior wall fenestration due to direct contact with the sun’s rays. While over the winter 

months a skylight will lose 35-45% more heat than a vertical window due to the process 

of convention” (California Energy Commission 2015, 5). 

 

Figure 2.4 Diagram of a Skylight taken 
from MEEB eleventh edition 
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 It has been shown that pyramid and domed shaped skylights have demonstrated a 

reduction of glare during solar peak hours while diffusing direct light during solar noon 

hours, thus lowering inefficiencies associated with skylights (McGowan, Desjarlais, and 

Wright 1998). 

  
Researchers at Southern California Edison constructed and tested a skylight, with 

design qualities similar to that of the ones found at the Kimball Art Museum by Louis 

Kahn.  The design intent was to analyze the effects of a skylight that utilized a reflector 

beneath a skylight aperture that would reflect direct sunlight to the ceiling plane in order 

to spread diffused light across a given space.  Results showed that the skylight provided 

a range of 30-60 fc while delivering “good” uniformity of light within the test space.  Test 

occupants stated broad opinions about their experience in the space, ranging from the 

space being too bright during certain hours of the day to “indifference” towards the light 

levels. However, all test subjects thought the change of light throughout the day was 

“pleasant, nice and friendly” (Lee, ES, Beltran, L.O., Selkowitz, S.E, Lau, H., Ander G.D. 

May 1996).   These results show that with proper construction and higher rated glazing 

components, it is possible to minimize the negative aspects of skylights while 

maximizing the advantages.    
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2.4.2 SHADING DEVICES – OVERHANGS, LIGHT SHELVES, VENETIAN BLINDS,   

AND VERTICAL LOUVERS 

Exterior fenestration accounts for the greatest direct heat gains entering a building, and 

therefore applied shading devices play a crucial role in blocking out undesirable light 

and heat. Buildings will most commonly provide shading to exterior windows through the 

use of external shading devices.  Shading devices such as a basic roof overhang can 

control sunlight to prevent glare and unwanted heat gains.  A benefit to these devices is 

their ability to substantial increase energy savings by allowing for a reduction in 

mechanical cooling equipment and cutting the use of electricity, simply by altering the 

building envelope.  There are several devices that can be applied to the exterior of a 

building in order to control daylight and maximize the benefits.   

 
It is common to see shading devices such as overhangs, screens, light shelves, 

venetian blinds, and vertical louvers.  All of the shading devices mentioned are proven 

to control daylight to some degree while still allowing the transmittance of light within a 

space.  For example, light shelves are used to bounce light towards the ceiling in order 

to reflect it deeper into a space, which then minimizes glare on workspaces.  In addition 

to the use of light shelves, blinds can be applied below the shelves as an additional 

strategy.  

 
Breitenbach, at Cardiff University in the United Kingdoms, found that by implementing 

variable angle slats to a venetian blind system, the user could have a higher degree of 

control allowing light to be distributed further into a space (Lawrence Berkley National 

Laboratory 2008). Beltran, Lee and Selkowitz applied a similar strategy using a curved 
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reflector that consisted of many small linear grooves used to project the sun’s rays onto 

a room’s ceiling at angles between twelve and fifteen degrees.  Results revealed that 

the system could provide a range of 4.6-28 fc throughout the year up to a distance of 

27ft. from the face of the vertical fenestration.  However, the researchers found that less 

uniformity occurred frequently when the sun angles were not directly oriented with the 

face of the glazing (Beltran, Lee, and Selkowitz 1997). 
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2.4.3 OPTICAL SYSTEMS – LIGHT TUBES  

The idea of light tubes were first imagined by William Wheeler. In 1880, he invented a 

system of light tubes lined with a reflective veneer that brightened a home by using light 

from an electric arc lamp. With the lamp placed in the basement, light was guided 

around the home through the use of pipes (Hecht 2004).  In an attempt to bring in 

daylight, the same strategy can be used, by replacing the lamp with the sun.  Today a 

typical light tube consists of a cylinder tube 

installed in a roof with a concentrating lens 

on the roof’s surface.  The interior of the 

tube is either coated in a reflective material 

or has the material applied to it so that light 

can reflect off the surface down into the 

building.  The primary function of the 

device is to distribute light and reduce 

glare from direct sunlight for interior 

occupants.  These systems are often 

better insulated, and are more 

economically viable than skylights.  

 
Usually a light tube functions vertically, collecting daylight from the roof. However, in 

some cases a light tube can be applied in a horizontal construction.  In this case, the 

collector would be on the south side of the building, or the side that receives the highest 

amount of direct sunlight.  Researchers applied a horizontal strategy in an office 

building plenum to determine the functionality of this strategy.  Results illustrated that 

Figure 2.5 Diagram of a Light Tube taken from 
SolarTubeSkylights.com 
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compared to a vertical application; the horizontal light pipe was significantly less 

efficient.  This was a result of having to reduce the pipe size to maneuver through 

existing building systems (Beltran and others 1994). 

 
Light tubes in general are cumbersome devices that require strategic planning for 

proper installment within a building, because they cannot interfere with the structure and 

mechanical systems.  Additionally the flexibility of the system is restricted to a limited 

degree of rotation before the quality and intensity of light is quickly compromised. 
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2.4.4 LIGHT TRANSPORT SYSTEMS – FIBER OPTICS 

While all systems mentioned are applicable and capable of accomplishing the task of 

making daylight available to an interior space, they are limited to the constraints of the 

building’s shell.  Over the last three centuries, technology has continuously proven 

Moore’s Law through exponential growth.  Sustainable systems, with respect to the built 

environment, are no exception.  In recent years, advancements in light transport 

systems have seen great strides in efficiencies due to the progressive success of fiber 

optics.  Collecting sunlight and funneling it through fiber optic cables is an effective 

method of harnessing the sun’s power to offset electric lighting while simultaneously 

solving glare, heat gain, controllability, and consistency issues that accompany 

traditional daylight strategies.  

 
Fiber optics have the ability to extend the distance daylight can enter a given space 

while providing a diffused output of daylight.  As the intent of this thesis is to investigate 

the potential of a fiber optic system, only fiber optic systems intended for daylight 

utilization are investigated experimentally.  
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2.5 HISTORY OF FIBER OPTICS   

The application of fiber optics can be defined as the science of data transmission by the 

passage of light through transparent fibers.  Fiber optic technology is one that has been 

around since the age of the Romans during the end of the first century B.C.  The 

Romans were the first to discover that glass could be manipulated into many different 

shapes and forms, including that of thin 

fibers, when inflated from the bottom of a 

tube.  During the early 1800’s great 

strides in optical science occurred when 

physicist Daniel Collodon, along with 

Jacques Babinet, demonstrated that light 

could be directed along jets of water 

(Tricker 2002).  Similarly, John Tyndall 

assembled a simple experiment revealing that light could travel through a curved 

stream, which proved that it was possible to bend the wavelengths of light.  Tyndall 

noted “the laser beam stays internal to the water, continuously reflecting at each 

boundary” (Hecht 2004, 340).  In the two decades prior to the 1900s, Doctors Roth, 

Reuss, and David Smith all patented bent glass rods used to illuminate the interior of 

the human bodies within their respective fields.  Between 1950 and 1960 research 

began to revolve around the introduction and advancement of the first laser.  Charles 

Townes and Arthur Schawlow developed the “maser” (microwave amplification by 

stimulated emission of radiation) or the first interpretation of what was soon to be 

labeled as the “Laser”.  Essentially the researchers developed a system that could 

Figure 2.6 Diagram of John Tyndalls 
experiment taken from Harvard 
University’s science center. 
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reflect light back and forth therefore amplifying the output of light from one point to 

another.   In 1961, Elias Snitzer demonstrated a laser directed through a thin glass 

single mode fiber.  This discovery found applicable uses in the medical industry but had 

a light loss too high to be effective for early communication applications.  Twelve years 

later, Bell laboratories developed a method of production that removed impurities and 

allowed for an ultra-transparent glass fiber that could be easily produced at a 

reasonable cost.  With that came the start of a new telecommunication era.  Throughout 

the 1980s, telecommunication companies such as Sprint have been replacing 

previously used copper wire lines with glass fibers to rebuild and extend the range of 

their soon to be globalized infrastructure. 

 
Today, fiber optic technology has allowed the transmission of data, or rapid light signals, 

over spans as large as the Pacific Ocean.  The uses and capabilities of the technology 

are still growing and can be found in various industries including military, medical, 

telecommunications, networking, and sustainability.  In the medical industry fiberscopes 

are used as a method of examining the internal aspects of the human body.  Within the 

sustainability realm, studies have demonstrated that a fiber optic system used to 

transmit daylight is a superior method of design due to its size, maneuverability, and 

efficiency potential both economically and environmentally.   
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2.6 FIBER OPTICS AS A LIGHT TRANSPORT DEVICE 

Fiber optic daylight systems are either applied as either passive or hybrid systems.  A 

passive fiber optic system is made up of three parts: daylight collector, optical fibers, 

and a luminaire diffuser to evenly distribute the collected light within a given interior 

space (ECW 2008). Hybrid systems are similar in design except that they include 

electric lamps and dimming controls to provide constant recommended illuminance 

values.  Some hybrid systems also utilize a small motor, which allows the solar collector 

to follow the sun’s path throughout the day, providing better daylight collection over the 

period of a full day.   
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2.6.1 CONCENTRATORS  

Numerous types of concentrators are available for culminating light. These types 

include Parabolic mirrors, Fresnel lenses, Mangin, and Conic Cassegrain, all of which 

have different performance and light output potential  (Muhammad Arkam C. Munaaim, 

Karam M. Al-Obaidi, Mohd Rodzi Imail & Abdul Malek Abdul Rahman 2014) .  Fresnel 

lenses and parabolic mirrors are the two most universally used concentrators due to 

their high solar yields and efficiency differences within commercial daylight applications.  

Because they are the most commonly used, analysis on system concentrators focused 

primarily on the parabolic mirror and the Fresnel lens.  

 
PARABOLIC MIRROR:   

The principal behind the design of 

a parabolic mirror relies entirely on 

the two dimensional shape defined 

as a three-dimensional object, and 

has been used as early as 1st 

century BC.  Diocles, a Greek 

mathematician, is accredited as 

being the first person to 

successfully prove the properties of a parabola in his work titled “On burning mirrors” 

(Michael N. Fried and Sabetai Unguru, Brill 2001, 162-164). A parabolic mirror, or 

parabolic reflector, is effective because of its inherent shape which can be used to 

collect or project different forms of energy.  With a reflective internal surface wrapped 

around a central axis, the reflector is capable of forcing a parallel beam of light, sound, 

Figure 2.7 Diagram of a Parabolic Mirror Taken From 
University of Texas at Austin Physics Department 
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or radio waves to converge to a specific focal point.  The strategy can be inversed as 

well to project the energy out in a specific direction. Today, parabolic reflectors are used 

in satellite dish designs as well as telescopes. Additionally, parabolic properties are 

used in many electric lightning devices such as spotlights, headlights, and lamp housing 

assemblies (Fitzpatrick 2007). 

 
In the case of a daylight strategy, parabolic mirrors are used to reflect sunlight to a 

secondary optical element in order to significantly lower thermal transfer by collecting 

only a specified range of wavelengths, including the visible spectrum. 

Cold mirrors are used for the secondary element of the system, because they have “an 

average transmission rate of 85-97% from 750-2500 nm with an average reflectance of 

95-97% for the wavelengths from 450-700nm” (Sapia 2013, 18).  Cold mirrors are a 

fundamental part of a parabolic daylight system because they decrease the 

transmission of undesirable heat caused by infrared wavelengths.  

 
Researchers at the Beijing Institute of Technology tested an experimental sunlight 

concentrating system that differed from a typical parabolic lens in that the light was 

focused in a continuous forward progression over typical systems that redirect the light 

back and forth. The research demonstrated an increase in solar collection with a 

transmittance of only 17.5% due to a lower reflectance factor within the concentrator 

(Xue and others 2011).  The efficiency increase was accredited to the position of 

secondary mirrors.  Because the light was in a continuous forward direction, the 

secondary mirrors did not cause shading variances on the parabolic concentrator.   
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Within the same field of design, researchers at the University of Nottingham compared 

the efficiencies of a parabolic dish concentrator to a conic shape concentrator. Through 

simulations, they determined that parabolic mirrors were far more efficient than conic 

shaped concentrators, which collected fewer daylight hours and had higher light loss 

through the transmittance process (Han and others 2013).  

 
FRESNEL COLLECTORS:  

A Fresnel lens as defined by the Encyclopedia Britannica is a succession of concentric 

rings, each consisting of an element of a simple lens, assembled in proper relationship 

on a flat surface to provide a shorter focal length.  In 1922, Augustin-Jean Fresnel 

created what is known to be the first Fresnel lens, assembled as a multi-part lens for 

early lighthouse beacons. This lens could refract light from a point into horizontal planes 

while capturing as much as 80% of the original light source.  The Fresnel lens is 

credited for reducing the amount of material required in comparison to a conventional 

lens by segmenting the lens into concentric annular sections (Calianno 2015) 

Figure 2.8 Comparison between Conventional Lens and Fresnel lens Taken from 
William Meehan 
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The theory behind the Fresnel lens is that the path of the collected light does not 

change within the lens. Rather, the directions of parallel rays are only altered at the 

surface of the lens.  Because of this, the Fresnel lens can be significantly thinner and 

more efficient due to less absorption of light through the material.  Depending on the 

orientation of the lens facets, the system will either collect or collimate light.  A Fresnel 

lens can easily collimate a point source by placing it one focal length away from the 

source.  Additionally the lens facets will be oriented away from the point source.  This 

will cause light collected from a single point source to be redirected into parallel rays  

(Davis 2011, 8) projected in a single direction.  As a light collector, the lens facets will 

face the light source, allowing the collected light to collimate to a specific focal point. 

Typical Fresnel concentrator systems will orient the facets towards an intended 

receiving material, such as a Photovoltaic panel.  “With the grooves in there is the 

potential advantage of minimizing the impingement of solar radiation and also to avoid 

buildup of dirt and debris within the facets”  (Davis 2011, 8) . 

 

“A well-crafted lens can concentrate sunlight to a single focal point with a ratio of around 

500:1.  Due to the physical properties of the lens, the collected light can be 

concentrated into a beam as narrow as 7 degrees or as wide as 70 degrees”  (Boudre 

2015, 1) . 

 
Today, Fresnel lenses are used in a multitude of different applications, ranging from 

lighthouse beacons to theatrical productions.  However, the characteristics of the lens 

show their greatest advantages in the field of solar concentration. 
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Fresnel daylight collectors utilize several different strategies ranging from a large single 

lens system to several smaller lenses assembled within a single system.   

 
Ulah and Shin demonstrated that a large lens system was not only equally efficient, but 

also significantly less costly; due to its size, the system becomes less manageable 

(Ullah and Shin 2014) .  A Fresnel lens magnifies collected daylight while separating a 

small amount of ultraviolet and infrared portions of the spectrum. Therefore, advances 

in the system have applied filters to the lenses in order to reduce around 85% of the 

transferred ultraviolet and infrared radiation  (Muhammad Arkam C. Munaaim, Karam 

M. Al-Obaidi, Mohd Rodzi Imail & Abdul Malek Abdul Rahman 2014) .  

 
However, there are some manufacturers who choose not to apply a filter to the system, 

thus allowing a spectral range of 400 – 2400 nm. This means that a significant portion of 

the infrared spectrum is transmittable  (Liang and others 1998) .  Fresnel lenses are 

ideal for any application requiring inexpensive, lightweight, and efficient lens.   
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2.6.2 FIBER OPTIC CABLES 

Fiber optic cables, or optical 

fiber, are essentially a 

transportation device that can 

move waves from one point to 

another. There are two major 

types of cables that accomplish 

this: single-mode and multi-

mode. A single-mode fiber 

allows for a manufactured 

specific wavelength to enter the fiber and travel with less movement within the fiber.  

With a diameter ranger of 5-10um, the single mode fiber is used primarily to transfer 

infrared light signals in Internet and telephone applications.  A multi-mode fiber is a 

bundle of fibers encased within a single cladding material that allow wavelengths to 

travel through a variety of different paths.  This strategy is better used for shorter 

distances, and can assist in data transfer systems.   

 
An optic fiber is generally made up of either glass or plastic, with each material having 

different inherent qualities and different outcomes. For example, light transfer systems 

use silica strands over plastic, because the internal properties of glass can better 

handle the internal heat associated with daylight.  Typically glass fibers have a diameter 

of 10um (.10mm), while with applied exterior cladding, the fiber’s diameter expands to 

125um (.125mm). The exterior cladding is essential for light transmittance, as it allows 

for a process known as total internal reflection.  This is a phenomenon that occurs when 

Figure 2.9 Multi-mode and Single-mode graphic taken 
from the Online Encyclopedia  
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a light wave hits the internal cladding wall at an angle that is larger than a given critical 

angle.  “When the internal side of the cladding around a fiber optic cable has a low 

refractive index and the angle of incidence is greater than the critical angle, the wave of 

light cannot pass through the medium and is therefore entirely reflected in a forward 

progression” (Kay 1999, 298). 

 
When a wave of light travels through the fiber, it will begin to lose its intensity through 

attenuation.  In long distance applications, telecommunication companies can install 

periodic repeaters that receive, amplify, and retransmit the wave.  By using a higher 

quality fiber, attenuation can be limited even after 18 miles  (FOA - Fiber Optic 

Association 2015) .  Light waves within a cladded fiber will also experience dispersion 

caused by the transporting medium, which would be either glass or plastic in this case.   

 
The visual phenomenon of the color 

spectrum creating a rainbow, best 

demonstrates dispersion.  With regards to 

fiber optics, dispersion occurs because 

different wavelengths of light travel 

through a fiber at different speeds.  

Shorter wavelengths will spend more time 

in the fiber, while longer wavelengths will travel through the fiber at faster and more 

efficient speeds, resulting in a lower light loss output  (Woodford 2015) .  

 
A study by Fiberoptics Technology Incorporated continued to test the transmitting 

qualities of different optical fibers, determining that the “transmittance is dependent on 

Figure 2.10 Light Dispersion Through a Glass 
Prism taken from Tulane University - Sanelson 



 

39 
 

the refractive index and that transmitting through glass has a lower acceptance angle 

compared to the plastic and solid core fibers” (FTI 2014,5).   

 
The solar radiation spectrum begins at around 300nm and ends at 2400nm.  Depending 

on the intended task, a fiber optic cable will be designed to transmit a portion of the 

solar spectrum.  In most cases, fiber optics are either used for passive daylight systems 

or telecommunications.  When used to provide natural daylight, the fiber optic cable is 

designed to have a spectral allowance between 300-700nm, which allows the visible 

spectrum to pass through.  Telecommunication companies use fibers with a range 

between 800-1300nm, because this range encompasses the more efficient long wave 

infrared spectrum of light. 

 
During the 1980’s the United States government-funding agency DARPA started a 

program to develop an ultralow loss infrared fiber for undersea applications.  

Unfortunately the researchers were unable to develop a new fiber that had lower light 

loss characteristics than silica fibers.  Today infrared fibers are used for broadband 

purposes as well as transmittance of long wavelength radiation for military purposes. 

These fibers are not nearly as common due to the lack of applications and the fact that 

they are brittle due to the toxic material makeup of the fiber.  However, IR fibers have 

been shown to provide a transmittance range that exceeds 20um (Paul Klocek, George 

H. Sigel Jr. 1989).  
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In the last decade, researchers have 

developed unique fibers with specific traits 

in order to maximize solar radiation 

collection.  The PCS low OH vis-IR fiber is 

considered a cost effective alternative to 

fused silica fibers.  Its range of wavelength 

transmission is from 400-2400nm, making 

it a prime candidate for providing both the 

visible spectrum as well as solar radiation. 

Additionally, the researchers demonstrated 

that a 19-strand bundle was capable of 

transmitting up to 60W of power with an 

efficiency of 60%  (Liang and others 

1998) . 

 

Hayman conducted several studies using fiber optic photocells as a model for daylight. 

Although his experiments resulted in high light losses within the cables, the research led 

the way to significant advancements in fiber optic technology  (Hayman 1990)  

  

Figure 2.11 Diagram of Anhydroguide PCS 
Low OH VIS-IR Fiber 
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2.6.3 LUMINAIRES/DIFFUSERS 

The third major component associated with a fiber optic system is the luminaire, or in 

the case of a Parans system, the diffuser.  “The diffuser structure consists of two 

sheets, the one on the top is plastic with white color to reflect the incoming light and the 

second sheet is mostly a clear acrylic material which has one attachment hole to 

terminate the fiber optic end to diffuse the light” (Parans 2016, 5). 
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2.7 COMMERCIALLY VIABLE FIBER OPTIC SOLAR COLLECTORS 

The earliest attempt at a Fiber optic system was in 

the 1970’s when Dr. Kei Mori of the Himawari 

Corporation developed a prototypical solar collector 

using a large Fresnel lens to concentrate direct 

sunlight for interior use.  Within nine years Dr. Mori 

had further developed the solar collecting system into 

a prototype containing a series of Fresnel lenses 

mounted in a honeycomb pattern to form a single 

circular collector that concentrated direct sunlight to 

optical fibers for transmission.  Dr. Mori found that 

light distribution losses in polymer optical fibers were of significant concern due to 

internal contaminants within the fiber itself.  Additionally, “different portions of solar 

radiation were attenuating faster than others, making the end product of light look 

noticeably different from natural sunlight” (Lapsa and others 2007, 7-20). Later updates 

to the system used progressively more complex arrangements of Fresnel lenses and 

optical fibers to supply a greater number of light fixtures with brighter and more 

consistent light.  By using circular concentrators over the original hexagonal shape, the 

collection efficiency increased dramatically  (La Forêt Engineering Information Services 

Inc 2006). 

 

Figure 2.12 Photo of the Himawari 
Corporations Solar Collector taken 
from the Himawari Catalog. 
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Similarly, Parans, a solar lighting systems 

manufacturer based in Sweden, 

developed a collector using a series of 

Fresnel lenses.  Using a slightly different 

strategy than the Himawari. Parans 

systems use a collector about 3 ft. wide 

and 6in. deep, containing a series of sixty-

two circular Fresnel lenses mounted 

across the face of the collector. Each lens 

is held in place by a small V-shaped metal 

frame secured to a pivot point at its base.  The circular lenses are mounted in a grid 

across the collector’s face, each surrounded by enough open space to accommodate 

uniform movement as a group in response to changing sun position.  Articulation of 

each Fresnel lens allows for tilt angles of 60º in any direction, forming a 120º active 

cone capable of capturing direct sunlight for an eight-hour period.  Each circular Fresnel 

lens is mounted above a 0.75-mm optical fiber with the exposed end located at the focal 

point. The small fiber optic cables are bundled to form four separately large cables, 

each 6-mm in diameter and capable of supplying a separate luminaire with natural 

sunlight.  Each collector can supply multiple light fixtures or provide four connections to 

a larger fixture, increasing system flexibility without complicating the optical fiber 

distribution system. The efficiency of the cable is primarily dependent on the length: for 

every 6.5 meters, a 20% reduction of the luminous power output occurs.  Whatever the 

collector configuration, newer iterations of Fresnel lens collectors still contain the same 

Figure 2.13 Photo of the Parans SP3 Solar 
Collector taken from the Parans webpage. 
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basic components as the original: a series of lenses coupled to dedicated optical fibers 

routed out of the collector and into the building (Parans 2016) .  
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2.8 PHOTOVOLTAIC SYSTEMS: TYPICAL, SEMI TRANSPARENT, QUANTUM 

DOTS, AND THIN FILM 

Since 1990 and as early as the 1970s, concern for energy and the awareness of global 

warming has encouraged the development of the concept of sustainable design. This 

development boosted the demand for photovoltaics, allowing them to become a more 

applicable and desirable system (Dimitri Bigot, Miranville Frédéric, Harry Boyer and Ali 

Hamada Fakra 2010).  Meanwhile, the capacity of global photovoltaics has increased, 

exponentially, especially in countries like China and the United States, thus influencing 

the decline in commercial prices and the increase in governmental incentives.   

 
The United States Department of Energy developed an initiative called “Sunshot”, which 

aims to reduce the cost of photovoltaic generated electricity by about 75% by 2020 

(Department of Energy 2014).  Currently, photovoltaic systems are available ranging 

from conventional modules and photoelectric membranes to integrated window 

applications, thin-film cells, transparent photovoltaics, semi-transparent photovoltaics, 

and the still under development nano-crystalline solar cells. 

The photoelectric effect is the direct conversion of light into electricity at a microscopic 

level.  The origin of photovoltaics can be credited to Edmund Bequerel, a French 

physicist who discovered that certain materials had the ability to absorb photons of light 

and release electrons in exchange.  In 1905, Albert Einstein received a Nobel Prize in 

physics for defining the nature of light and the photoelectric effects on which current 

photovoltaic technology is based on. It was not until the 1960’s when NASA used solar 

cell modules to power the spacecraft that the technology became more prevalent.  As 
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the efficiency of photovoltaics increased alongside the demand caused by the energy 

crisis of 1970, photovoltaics became economically viable (Gil Knier 2002). 

 
A photovoltaic cell consists of several layers of materials sandwiched onto one another 

in order to create electricity. A photovoltaic cell consists of two layers of semi-

conductive material, which is typically chemically treated silicon.  The two layers are 

sandwiched between two electrodes: the top plate (-) and the bottom plate (+).  When 

sunlight hits the surface of the cell, many of the solar photons are reflected or absorbed 

by the solar cell.  Once enough photons are absorbed, they are released through the 

semi-conductive surfaces to the positive electrode layer, creating enough current to 

produce between 1-2W.  By increasing the number of cells to create an array, the 

amount of collected solar energy can be vastly increased (Anderton 2015) . 

  
As the global trend of sustainability continues to gain momentum, Photovoltaic 

technology will continue to progress both scientifically and economically. 

 

 

 

 

 

 

 

 

Figure 2.14 Photovoltaic Diagram taken from Dow Corning 
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2.8.1 SEMI-TRANSPTRANSPARENT PHOTOVOLTAIC  

Typically, photovoltaic systems are applied to the roof of a building or structure in order 

to maximize solar peak hours.  However, with the development of semi-transparent 

building integrated photovoltaics, conventional translucent surfaces can now be utilized 

as solar collective surfaces. 

 
Transparent properties can be achieved through two different processes. Small opaque 

thin-film cells can be inset in between glazing panels in a planned grid arrangement, 

allowing a majority of light to pass through the glass while still collecting energy.  The 

second and more complex approach is to create a device that utilizes all transparent 

properties within the cell layers.  This approach allows for even light distribution while 

maintaining a constant flow of solar collection.  Today, semi-transparent photovoltaic 

systems are available for commercial use while researchers search for new ways to 

advance technology even further.   

Figure 2.15 Semi-Transparent Photovoltaic Diagram taken from Onyx Solar 
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In 2003, The Lillis Business Complex at the University of Oregon earned a LEED 

certification surpassing the minimum code requirements by 40%. The business complex 

applied a south facing curtain wall made up of widely spaced semi-transparent glazing 

systems that utilized multi-crystalline solar cells capable of providing 5.9 kW of solar 

generated electricity  (Brown 2004).  

 

Clark, Holt, Schless, and Toevs later investigated the thermal efficiencies of the system, 

concluding that the photovoltaic array provides a measurable amount of electricity while 

blocking a significant amount of solar radiation from entering the interior.  In some 

cases, the researchers recorded a difference of 18 degrees between the exterior and 

interior sides of the glass system  (Clark, Edward, Schless, Colin, Holt, Marc, Toevs, 

Alex 2010) .    

 
Xu, Liao, Huang, and Kang determined that a vertical semi-transparent photovoltaic 

assembly can provide adequate daylighting while saving up to 30 percent of a room’s 

electric demand, when the optimal photovoltaic cell ratio is applied to each room  (Xu 

and others 2014).  Similarly, Cannavale’s experiments demonstrated a peak collection 

rate of 4.22mW/cm2 with an optical transmittance of over 50%, revealing that 

photovoltaic window systems are capable of increasing indoor natural light levels while 

converting energy into electricity  (Cannavale and others 2013) . 

 
In 2013, advancements in photovoltaic transparency technology have led to fully 

transparent photovoltaic.  Researchers at the University of California Los Angeles 

developed a transparent photoactive plastic made up of “tandem polymer solar cells” 
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which utilizes a cell composed of a new infrared-sensitive polymer layer capable of 

absorbing up to 80% of infrared light with a conversion rate of 7.3%  (Chen, Chun-Chao, 

Dou, Letian, Zhu, Rui, Chung, Choong-Heui, Song, Tze-Bin, Zheng, Yue Bing, Hawks, 

Steve, Li, Gang, Weiss, Paul S., Yang, Yang 2012) .  

 

Dr. Miles Barr at MIT developed a transparent glass solar cell that absorbs only infrared 

and ultraviolet light, allowing visible light to pass through the cells unimpeded.  The 

current system transmits more than 

70% of the visible spectrum with a 

power conversion efficiency 

expected to reach over 12%.  

Additionally, Dr. Barr believes that 

the transparent system could be 

applied to an existing building’s 

framework at very little extra cost 

(Lunt, Richard, Bulovic, Vladimir 

2011). Although the future of 

transparent photovoltaic technology is 

promising, even the most efficient configuration has too high of a cost for current market 

use.  Additionally the price for a transparent system does not allow for a realistic return 

on investment.    

 

  

Figure 2.16 Transparent Photovoltaic Diagram 
taken from MIT Energy Initiative 
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2.8.2 THIN FILM PHOTOVOLTAIC 

Thin film technology has received the label as the second generation of photovoltaic.  In 

comparison to the traditional silicon wafer based panels, thin film technology is a cost 

effective, efficient design.  The National Renewable Energy Laboratory released a study 

forecasting that by 2010 thin film cells would be used to produce 3,700 MW of electricity 

worldwide (H.S. Ullal 2008) .  In 2012, thin film energy generation represented close to 

20% of the world’s photovoltaic industry with a generation capacity of 28.4GW.  The 

European Photovoltaic Industry Association (EPIA) released the 2013 Global Market 

Outlook, which revealed a worldwide photovoltaic capacity of 102 GW, with thin film 

technology accounting for more than 10% of the world’s photoelectric capacity  

(Masson, Orlandi, and Rekinger 2014)  

 
Thin film photoelectric systems are known for the size and scale of the solar cell. Unlike 

silicon wafer cells, thin film solar cells have light absorbing layers that are just one 

micron thick. When broken down, the layers consist of several layers of semiconductors 

on a solid substrate like that of glass or metal.  Due to the efficiencies of the applied 

semi-conductors, the solar cell remains thin and durable.  Depending on the type of 
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semiconductor used, thin film solar cells can be broken down into three types: 

Amorphous Silicon, Cadmium Telluride, and Indium Gallium Deselenide silicon cells.   

 

Research has revealed that these cells lack efficiency when applied to large-scale 

projects, and are therefore often limited to smaller applications such as key chains and 

small children’s toys.  This is because the cell is susceptible to significant loss in power 

output when exposed to direct solar radiation. Additionally, these cells are a slimmed 

down version of the traditional wafer based cells, so the efficiency is equally cut  

(Kushiya 2014) . 

  
Researchers at the Department of Architectural Engineering at the Hanbat National 

University in the Republic of Korea applied a 48m2 vertical array of transparent 

amorphous silicon thin-film photovoltaics to the front facade (southwest) of a newly 

constructed sustainable R&D institute in Yongin city.  The researchers were interested 

in comparing the thin-film module specifications to the results while measuring the 

insulation efficiency of the system with respect to the generation of electricity. An 

Figure 2.17 Thin Film Photovoltaic Diagram taken from PV Magazine 
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analysis of more than two years of collected data revealed the system’s average 

monthly electrical energy generation was 1277 kWh/year with an insolation range 

between 700-900 W/m2.  The system’s specifications noted a module efficiency of 7%. 

However, the tested system resulted in an efficiency of only 3%.  The average yearly 

energy generation per m2 was 580.5 kWh/kWp/year, which is aggressively inefficient in 

comparison to other systems. The researchers credit a portion of the systems 

deficiencies to shading occurrences caused by the building during certain times of the 

day and year.  The data also revealed a direct correlation between the system efficiency 

and the surface temperature of each module when comparing system efficiencies and 

system temperatures between the months of August and October (Yoon, Song, and Lee 

2011). 

 
In an effort to increase efficiency and lower product cost, non-silicon photovoltaics have 

grown industry wide.  The remaining two thin-film types are defined as a newer 

generation of thin-film photovoltaics that use either cadmium telluride (CdTe) or copper 

indium gallium deselenide (CIGS) rather than silicon based electrode layers.  In 

comparison to the wafer based crystalline photovoltaics, which have the current market 

advantage due to an anticipated higher efficacy, thin-film technologies offer lower 

production cost with comparable efficiency expectancy.  The more expensive traditional 

wafer cells have an average efficiency of 15-25%, while CdTe and CIGS solar cells 

have reached similar efficiencies ranging between 10-20% (Kushiya 2014)  

 
CdTe and CIGS thin film cell technologies are economical and currently offer the best 

approach for significantly surpassing the cost for performance levels of standard 
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crystalline silicon wafer photoelectric systems. The production of thin film solar systems 

in the United States has surpassed the first generation crystalline silicone cells.  In 

1990, NREL began research and development for thin film photovoltaics, since then 

they have achieved a solar cell efficiency of 19.2% with a three-stage, co-evaporative 

process (Delahoy and others 2004).  

 
However, the production of CdTe cells is in higher demand over the CIGS cells, 

primarily due to the complexity of the CIGS manufacturing process such as: 

“evaporation, metallic precursor deposition by magnetron sputtering and non-vacuum 

techniques like ink-jet printing, and electroplating” (Dhere 2011, 277-280) . “CdTe is a 

near perfect material for PV application since it is a direct band gap semiconductor with 

a high optical absorption coefficient in the visible portion of the photon spectrum, and 

has a band gap of approximately 1.5eV which is closely matched to the terrestrial solar 

spectrum for optimum conversion efficiency” (Birkmire and McCandless 2010, 139-142).  

Additionally, Birkmire’s research reveals that the highest performance CdTe cells are 

heterojunction devices using Cds as a transparent window layer and are fabricated in a 

substrate configuration where the light enters through the glass.  This layering strategy, 

which is considered to be the most common, demonstrated cell efficiencies between 11-

16% (Birkmire and McCandless 2010) . 
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2.8.3 QUANTUM DOTS  

On a smaller scale, researchers are in the 

process of further developing nano-crystals 

known as quantum dots.  This progressive 

technology is being described as the third 

generation of photovoltaics.  A quantum dot 

is a nanostructure semiconductor with the 

ability to confine band electrons’ valence 

and band holes, in all three geometrical 

axis.  Small quantum dots, such as colloidal 

semiconductor nanocrystals, can be as small 

as 2 to 10 nanometers, corresponding to 10 to 50 atoms in diameter and a total of 100 

to 100,000 atoms within the quantum dot volume. “Quantum dot technology allows for 

manipulation of light absorption, sensitivity to diffused light, and provides the ability to 

design flexible solar panels” (Kamat 2013, 908-919).  

 
In the field of photovoltaics, a Quantum dot photocell would collect the radiation from 

the sun in a similar fashion as first and second generation photovoltaics. This 

technology is expected to lower production cost as well as increase solar efficiencies.  

Edward H. Sargent, a professor of Electrical and Computer Engineering at the 

University of Toronto as well as a Canada Research Chair in Nanotechnology, believes 

that quantum dot technology has the ability to revolutionize solar cell applications as a 

whole  (Sargent 2012) . 

 

Figure 2.18 Quantum Dot Illustration taken 
from International Business Today 
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Currently the leading researcher on Quantum Dots is Prashant V. Kamat, whose 

developments have demonstrated 5%-6% efficiencies as opposed to current silicon 

panels which have efficiencies on average at 10–12%. Comparably, Beijing National 

Laboratory for Molecular Sciences determined that applying a thin nanoparticle film 

around a solar cell tube increases the efficiency by 4.16% while still maintaining what is 

considered to be a viable low cost commercial system (Kamat 2011).   

 

Unfortunately, the technology is in its infant stages and has many deficiencies to 

overcome before becoming widely available for commercial applications.  Once the 

technology becomes more efficient and cost effective, there is likely to be a place for it 

within the architectural market.   
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2.9 HYBRID SYSTEMS: SOLAR COLLECTION 

Hybrid daylight systems represent a new and innovative means of bringing direct 

sunlight into a building while simultaneously taking advantage of the collected solar 

radiation.  Hybrid systems are capable of maintaining the controllability and ease of 

applications usually reserved for electric lighting by collecting natural light and 

channeling it through optical fibers to luminaires within a given space.  A hybrid solar 

collection system, can surpass what wall fenestration is capable of providing, in that it 

will distribute sunlight further into a building’s interior without affecting the design of the 

space or creating glare, lighting variability, and heat gain issues that complicate most 

daylight strategies. 

 
Figure 2.19 Oak Ridge National Laboratory Hybrid Light system taken from ORNL 
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In 1993, a fiber optic daylight system coupled with photovoltaic technology was under 

development at Oak Ridge National Laboratory, but the research was discontinued due 

to technical problems  (Wilson 2014) .  Six years later, Oak Ridge National Laboratory 

revealed an updated parabolic system far exceeding the original design.  The collector, 

an acrylic parabolic mirror with a 2 ft. radius, was used over a traditional glass mirror to 

successfully reduce system cost while upholding collection efficiency.  The parabolic 

mirror reflects direct sunlight onto eight spectrally selective cold mirrors that allow the 

harvested infrared radiation to be transmitted through the mirror onto a photovoltaic cell 

mounted behind them while directing the visible spectrum of light into one of eight 

flexible large-core Polymethacrylate optical fibers.  By simultaneously generating power 

to operate the collector’s tracking mechanism, this design further improves end-use 

efficiency by allowing the collector to deliver 50,000-lm while consuming very little 

power during operation  (Lapsa and others 2007) .  

 
Researchers in the Solar Energy Laboratories at the University of Wisconsin-Madison 

applied a feasibility and economic analysis of a Parabolic lighting system based off the 

2004 Oak Ridge National Laboratory full spectrum hybrid lighting system.  The intent of 

the research was to determine if the technology was applicable for commercial use.  

The system under investigation was a two-axis system comprised of a circular parabolic 

mirror, a secondary cold mirror place at the focal point of the parabolic mirror, and 

flexible large-core Polymethacrylate optical fibers for light transmission.  The system 

utilized a unique strategy where the cold mirror allowed infrared energy to be 

transmitted while the visible energy is reflected back into a bundle of large-core fiber 

optics.  The otherwise wasted infrared spectrum would be redirected to a traditional 
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gallium antimonide thermal photovoltaic, which would convert the energy into electricity 

to be sent back to the local grid.  Using the TRYNSYS transient simulation program, the 

system was simulated in six cities within the United States to analyze lighting, heating, 

and cooling loads.  Results revealed that the system performs significantly higher in a 

location whose latitude is closest to the Equator because this allows for daylight hours 

in phase with typical building lighting hours.  For example, Hawaii’s sun consistently 

rises by 8am and sets after 5pm.  “Although Hawaii is closer to the equator, the high 

amounts of moisture in the Hawaiian climate leads to smaller amounts of annual beam 

radiation than drier climates like Reno, NV and Tucson, AZ” (Schlegel and others 2004, 

359-368). 

 
Economically, the researchers estimated that a commercially viable system could not 

exceed a cost of $3,000.00.  As a result, the researchers concluded that hybrid lighting 

systems have the potential for high levels of efficiency. Depending on location and the 

geometry of the building, hybrid lightning systems could achieve savings as little as 30% 

in energy usage and in some cases 55% savings in regions with stable sky conditions 

and high sun peak hours  (Mayhoub and Carter 2012) . 

Currently the technology is not economically viable due to the fact that it would be 

considerably challenging to achieve a realistic break even capital cost. 

 
Last year, researchers at Roma Tre in Rome developed a theoretical hybrid sunlight 

addressing / PV electric lighting system similar to a 1993 system developed by Oak 

Ridge National Laboratory.  The intended system was made up of a sun-tracking 

primary parabolic collector that was coated with an exceedingly reflective film that would 
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reflect solar radiation to a set of secondary collectors, which is identical to the Oak 

Ridge National Laboratory strategy. However, the researchers applied a Cassegrain 

antenna approach over the original method.  The Oak Ridge National Laboratory 

system reflects light to a specific focal point while the Cassegrain method has a hole at 

the primary mirrors focal point.  This means that the redirected radiation does not have 

to be focused into a single point but instead the faces of the various fiber optic bundles, 

permitting for greater flexibility and light collection at the start of the fiber bundles  

(Balanis 1997) . Through a reverse mathematical analysis, the researchers determined 

that in order to provide 120lm/W, the reflector would have to have a diameter of 2.6m 

with a radial depth of 0.79m.  It was calculated that the light system would give out 

about 43,500 lm, equivalent to replacing 12 fluorescent lamps with a luminous efficiency 

of 60 lm/W.  Technical results demonstrate that the system’s overall efficiency reached 

a maximum of 21%.  The system would have to collect twelve hours of direct solar 

exposure a day at a minimum of 320 days a year in order to meet feasible scenarios.  

With an anticipated cost around $7,028.00 “the proposed solution is not yet fully 

competitive with traditional lighting systems, but with future developments and 

refinements as well as the expected dissemination of the technology, should reduce, if 

not eliminate the gap” (Sapia 2013, 113-121). 

 

As the application of hybrid lighting systems increase, commercial viability will become 

realistic and even economically viable.  A hybrid daylight transferring system can 

improve a buildings indoor environment, while simultaneously reducing a buildings 

overall energy footprint.
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2.10 APPLICABLE LOCATIONS    

Arid regions of the world are known for their abundant supply of daylight, with the 

southwest desert region being no exception.  The National Renewable Energy 

Laboratory provides a graphic revealing that the southwest geographic region of the 

United States has a range of 5-6.8 kWh/m2/Day, with Las Vegas at the center of it all 

(Kristen Ardani, Dan Seif, Robert Margolis, Jesse Morris, Carolyn Davidson, Sarah 

Truit, Roy Torbert 2013, 1)(Table 1.4), 

  
According to the National Climate Data Center, Nevada has the second highest amount 

of sunny days, with Arizona having the highest.  Nevada’s cities experience 153.4 

sunny days a year on average, with Las Vegas experiencing an average of 210 sunny 

days annually. A sunny day as defined by The National Climatic Data Center is when 

the sky is mostly clear, with cloud covering up to 30% of the sky during normal daylight 

hours.  Throughout a given year however, Las Vegas can anticipate an average of 292 

days of sunny days including partly sunny days, where cloud cover exceeds 30%. 

Based on yearly averages that are again based on years of weather data, the NCDC 

reveals that Las Vegas is experiencing sunshine 85% of the time between sunrise and 

sunset with an annual average of seven peak sun hours a day, making Las Vegas the 

fifth sunniest city in the country (Osborn 2014, 1; National Climatic Data Center -NOAA 

2004, 5) (Chart 1.5) 

  
Along with Nevada’s inherent geographic location, the state’s economy allows for 

advantageous opportunities in the photovoltaic industry.  Nevada was ranked third in 

solar installations in 2014, behind California and North Carolina (Valasis 2015, 4).  
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According to Solar Energy Industries Association reports, the average installed 

residential and commercial photovoltaic system prices in Nevada have decreased 10% 

in the last year alone, and that the nation has seen drops between 5% from last year 

and 28% from 2010.  The current NV Energy residential rate is $0.13 per/kWh.  

Currently, the cost of a solar system over the life of the system is approaching the same 

cost to produce energy at the rate the utility is charging its consumer. “This decrease in 

system cost has made, according to the Center for American Progress, the middle class 

the biggest adopter of solar power in the U.S. with the majority of solar installations 

occurring in zip codes with median incomes ranging from $40,000 to $90,000. These 

economic aspects indicate, the timing is right for rooftop solar in Southern Nevada” 

(Valasis 2015, 4). 

 
The U.S. Energy Information Administration notes that Nevada is the country’s leader in 

solar power potential, making Nevada a prime location for advancements in solar 

technology.  
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2.11 BUILDING CODES & STANDARDS  

The success of a daylight system is dependent on several factors including cost and 

performance. With regards to performance, a given system must comply with local and 

governmental building and energy codes alike.  Building energy codes set the lowest 

expected requirements for resourceful energy design of new and existing buildings.  

The overall purpose of building energy codes is to save energy, while building codes 

and standards are put into place to ensure a comfortable and safe environment for the 

wellbeing of a building’s occupants.  This is considerably true with building lighting 

because of the inherent effect lighting can have on human function and capabilities 

within a space.  

 
“The requirement for states to adopt and enforce a building energy code is a 

direct result of the Energy Conservation and Production Act as amended 

by the Energy Policy Act of 2005. The legislation calls for the U.S. Department of 

Energy to make a determination of the energy efficiency level of new building 

energy standard versions of ASHRAE Standard 90.1. Based on this 

determination, the legislation then typically sets that new building energy 

standard version as the level of stringency that states must meet.”(IEA PVPS 

Programme, 2014, 6).     

 
Below are relevant codes and regulations that a daylight system must comply with if its 

intended purpose is to reduce and or replace electric light use during occupied hours of 

the day.  
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ASHRAE 90.1:  

Standard 90.1 is a United States standard that provides minimum requirements for 

energy efficient designs for buildings except for low-rise residential buildings.  The 

power consumption of lighting is reduced by setting limits on lighting power density 

(W/ft2) based on the specific use of the space.  ASHRAE 90.1 includes prescriptive 

requirements for the buildings HVAC, exterior envelope, domestic hot water, electric 

lighting, power and other equipment.  Under the section 9 lighting category, maximum 

indoor lighting power density expressed in Watts/ Ft2, minimum lighting controls, exterior 

lighting, and parking garage lighting are all addressed.  The Illuminating Engineering 

Society of North America provides the LDP baseline recommendations and current 

efficient technologies proven to be cost effective. According to Standard 90.1, the 

maximum allowable lighting power density is 1W/ft2.  In reference to lighting controls, 

the 90.1 standard requires an automatic shutoff control device for buildings more than 

5,000 ft2, and that each room has its own control that also automatically turns off 

lighting.  A control system can meet this requirement by being either time-based or 

occupancy based. 

 

IESNA LIGHTING HANDBOOK & CIBSE CODE FOR INTERIOR LIGHTING: 

The IESNA Lighting Handbook along with the CIBSE Code for Interior lighting provides 

illuminance criteria for different types of spaces as well as recommendations for 

different tasks.  For example, in an office environment where workstations are present, 

it is recommended that an illuminance between 27.8FC and 46.4FC is established to 

ensure a proper lighting design.    
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2.12 LEED CREDITS 

Leadership in Energy and Environmental Design (LEED) is a rating system set in place 

by the United States Green Building Council in 1994.  The Leadership in Energy and 

Environmental Design Green Building Rating System encourages and accelerates 

global adoption of sustainable green building and development practices through the 

creation and implementation of universally understood and accepted tools and 

performance criteria (2014 Reference Guide V4). The first iteration of LEED for New 

Construction was released in 1998 as a pilot version of the program and has since 

evolved and expanded to better meet the needs of construction projects in different 

market sectors. LEED has evolved through volunteer consensus-based committees of 

architects, engineers, construction managers, landscape designers, government 

officials, facilities managers, and others who modify criteria to better meet the goals of 

the LEED program and expand its applicability to all project types. LEED gives building 

owners and operators the tools they need to have an immediate and measurable impact 

on their buildings’ performance. LEED promotes a whole-building approach to 

sustainability by recognizing performance in eight areas of human and environmental 

health: Location and Transportation, Sustainable Sites, Water Efficiency, Energy and 

Atmosphere, Materials and Resources, Indoor Environmental Quality, Innovation, and 

Regional Priority (2014 Reference Guide V4). 

 
The rating system is point based, defining credits under each of the eight 

concentrations. Each credit is assigned certain criteria that building designers must 

demonstrate compliance with to obtain the given number of points associated with that 

credit.  LEED has four levels of certification that a project can attempt to achieve.  After 
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meeting the program’s minimum requirements, a project must earn at least a total of 40 

points to receive certification accolades.  (2014 Reference Guide V4) 

With proper design and implementation, the utilization of a hybrid daylight system could 

earn a project credits towards a LEED certification.  Listed below are the applicable 

credits based off the most recent version of the V4. LEED Rating System.   

 

APPLICABLE VERSION 4 LEED CREDITS (2014 Reference Guide V4): 

EA: Pre-requisite – Minimum Energy Performance 

The intent of this credit is to reduce the environmental and economic harms of 

excessive energy use by achieving a minimum level of energy efficiency for the building 

and its systems.  This pre-requisite has three available approaches to meet the credit 

intent.  Option 1: requires a 5% energy reduction compared to an equivalent baseline 

building performance rating, while still complying with all local and governmental codes 

and standards.  This option is conveyed through a whole building energy simulation and 

is highly recommended by the committee as it double dips into other credits.  Option 2 

and 3 would also be affected by the use of a daylight system, however these options 

are obtained by meeting prescriptive standards.  

 

EA: Credit - Optimize Energy Performance  

Points:  up to 20 points depending on the project type and percentage of energy 

reduction. 

The intent of this credit is to achieve increasing levels of energy performance beyond 

the prerequisite standard to reduce environmental and economic harms associated with 
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excessive energy use.  The greater the reduction of energy use a building has, relates 

to a larger amount of credits available.  

 
EA: Credit – Renewable Energy Production 

Points:  1-3  

The intent of this credit is to reduce the environmental and economic harms associated 

with fossil fuel energy by increasing self-supply of renewable energy.  The credit is 

based off the total percent of renewable energy represented as the equivalent cost of 

usable energy produced by the renewable energy system divided by the total building 

annual energy cost.   

 
EQ: Credit – Daylight 

Points: 1-3 

The intent of this credit is to connect building occupants with the outdoors, reinforce 

circadian rhythms, and reduce the use of electrical lighting by introducing daylight into 

the space.  To earn this credit, the project team must either demonstrate through annual 

computer simulations that spatial daylight autonomy of at least 55% is achieved, or 

achieve an illuminance level between 300-3000 lux for 9 a.m. and 3 p.m., both on a 

clear sky day at the equinox.   

 
IN: Credit – Innovation 

Points: 1 

The intent of this credit is to encourage projects to achieve exceptional or innovative 

performance.  To earn this credit, the project team must achieve significant, measurable 

environmental performance using a strategy not addressed in the LEED green building 
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rating system.  A hybrid daylight system is currently not a strategy defined by the LEED 

system and has the potential to provide huge reductions in a building’s energy 

performance. 

 
RP: Credit - Regional Priority 

Points: 1 – 4 

The intent of this credit is to provide an incentive for the achievement of credits that 

address geographically specific environmental, social equity, and public health priorities.  

A hybrid daylight system could possibly assist in earning points within this credit 

depending on where the project is located.  In the case of Las Vegas, Nevada, a hybrid 

system would assist in the earning of this credit, as it fits under the Renewable Energy 

Criteria. 
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2.13 ECONOMIC BENEFITS OF DAYLIGHT 

In 2012, the United States commercial sector consumed approximately 274 billion kWh 

for lighting or about 21% of the commercial sectors electricity consumption using non-

renewable materials like coal, natural gas and other carbon emitting fuels to necessitate 

the required energy.  (U.S. Energy Information Administration 2014b)  22% of office 

buildings’ overall energy consumption is strictly dedicated to electric lighting.  

 
Therefore as a strategy to reduce the state’s electricity demand, fiber optic daylight 

systems should be applied to all new and existing office buildings.  Studies have 

demonstrated that office buildings are inherently suitable candidates for this type of 

system, allowing for several benefits including an increase in office worker productivity 

and health.  The cost of employees in a building will typically be 75-100% larger than 

the overall rate of utility bills with employee payrolls constituting about 95% of the life 

cycle cost of a typical office building.   

When payroll and a company’s revenue are factored in, increased production rates and 

overall system savings are likely to surpass the cost of a typical buildings energy cost, 

thus resulting in a rapid payback period. 

 

In 1983, Lockheed Martin increased interaction by integrating daylight into their office 

layout. Production within the office raised by 15%, which was attributed directly to the 

integration of daylight within the interior of the building. (Romm 1994)  Lockheed Martin 

reported financial savings due to increased productivity by saying, “every minute less of 

wasted time per hour represents a 1.67 % gain in productivity, where a 2% increase in 

productivity is equivalent to 3 million saved per year”  (L. Edwards, and P. Torcellini 
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2002, 9-10)  Lockheed Martin officials commented on their increased productivity and 

financial savings in an article by Burke Miller Thayer: 

 
“The energy savings are over shadowed by the rewards of improved employee 

productivity…Officials have privately acknowledged that their gains in productivity 

offset the $2 million extra cost for the building in the first year of occupancy.” 

(Thayer 1995, 26-29) 

 

In 1986, the Reno, Nevada post office was renovated by an architectural firm named 

Leo A. Daly, who was hired to do everything necessary to reduce energy use.  In 

reference to the lighting design, they allowed for a more dynamic experience within the 

building by improving the interior light quality and replacing the electric down lights.  

(Light Corp 2010)   Once again, the quality of light was attributed to an increase in 

employee productivity levels, this case being by .8%.  Once completed, the Reno post 

office had a record level of productive employees within all the company’s branches 

across the entire western region. Additionally, “productivity gains of 400,000 to 500,000 

per annum at the Reno post office paid for the building’s renovation in less than a year” 

(Light Corp 2010, 2)   

 
Although there are sufficient case studies providing data to suggest that simply 

implementing daylight into a space will increase health benefits, it is difficult to justify.  

That’s why it is important that the daylight system demonstrates definitive results in 

regards to the substantial reduction of electricity use, thus resulting in a reduction in a 

building’s annual electric bill.    
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A creative daylight strategy like a fiber optic system must do more that create a suitable 

indoor environment; it must also demonstrate tangible benefits to the building owner 

that demonstrate financial offsets.  The primary financial validation for a fiber optic 

daylight system comes from its ability to replace electric lighting and reduce the 

operating cost of a given space.  Office buildings were the second largest market sector 

in terms of total electrical consumption, accounting for 211- billion kWh of power usage 

in 2003  (Light Corp 2010) . In any building type there is potential to displace electric 

lighting with collected sunlight during daytime hours. Because the operational hours of 

an office building are typically during peak sun hours, there is also a potential to reduce 

daytime power consumption by considerable amounts.     

 
A fiber optic system being applied in a typical 14,800 square foot office building would 

cost $735,000 with a payback of 13.2 years.  The fiber optic system would consist of 98 

separate roof top concentrators distributing daylight to 3 interior luminaires each.  On 

average, an office building uses electric lights 62 hours a week. By simply replacing the 

need for electric lighting during sun peak hours each day, the system will save over 

539,000 KwH each year, resulting in a cost savings of 53,933 dollars each year when 

the cost of electricity is ten cents per kilowatt hour.  Additionally, the cost of saved 

energy is eight cents per kilowatt-hour, in comparison the current cost of ten cents.  The 

payback period of 13.2 years is accrued by the offset of the system’s annual energy 

savings.  There are several other factors that attribute to an even quicker payback 

period.  Using an estimated incremental first cost increase of $0.50 to $0.75 per square 
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foot of occupied space for dimmable ballasts, fixtures, and controls, daylight has been 

shown to save from $0.05 to $0.20 per square foot annually  (Ander D. Gregg 2014) . 

 
Because a fiber optic system does not require a lamp, there are no lamp replacement 

costs for the system.  By offsetting the use of fluorescent lighting, the system will save 

another $3,800 dollars over the 13.2 years in bulb replacements at three dollars a bulb, 

not including installation cost. With the increase in environmental concerns, rebates are 

available through government programs that also reduce the upfront cost.   

  



 

72 
 

2.13.1 IPAT  

The IPAT attempts to describe the role of multiple factors in determining environmental 

degradation.  The formula is broken down into three terms: population, affluence, and 

technology.   The IPAT formula suggests that a passive fiber optic system used during 

sun peak hours 310 days a year in Las Vegas can provide a .11% decrease in an 

individual’s Watt-Hours each year.  This system allows an individual to continue with 

their current way of life since the change primarily occurs due to an increase in the 

technology used to illuminate an interior space.   

 
The offset of operating costs is beneficial to the owner even when considering a fiber 

optic system has a significantly larger upfront cost.  However, in a broader perspective, 

we are decreasing power generation and the accompanying environmental pollutants as 

well by displacing the consumption of electricity.   

 
With the price of electricity continues to rise and climate change concerns continue to 

Emerge, new technologies, and sustainable strategies will be expected to reduce global 

energy consumption, while improving overall system efficiencies.  Fiber optic daylight 

systems are as of currently, the best applicable strategy on the market to bring daylight 

deep into a building’s interior.  This technology provides better light quality distributed 

across the entire floor’s surface that replaces sizeable amounts of electric light while not 

requiring other building systems such as the HVAC to compensate for the increased 

temperature associated with typical electric lighting systems.   

  
Adequately increasing the amount of daylight distributed throughout a building will lead 

to a drastic reduction in an office building’s energy consumption, thus reducing the 
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nation’s energy demands. The increase in daylight will also provide for a much more 

enjoyable user experience with increased productivity and user happiness level, 

resulting in an even more profitable and dynamic office environment.  

 

  



 

74 
 

2.14 CONCLUSION 

While our knowledge about the earth is expanding, our society is beginning to see 

global and environmental effects associated with the creation of energy used to meet 

our daily demands. As our fossil fuels diminish and the effects associated with global 

warming increase, the desire to meet future energy demands more efficiently have 

become increasingly relevant.  
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CHAPTER 3: METHODOLOGY 

To determine the feasibility of the proposed fiber optic/ photovoltaic system, a 

qualitative quasi-experimental approach will be conducted to provide proof of concept 

data.  To appropriately quantify the efficiency of a given system, it will be imperative to 

test an actual prototypical device under controlled settings.  Due to the nature of 

daylight, it would be ideal to test the system at full scale because the system would 

demonstrate real scenario data, functionality, and efficiency.  This section has been 

broken down into four sub categories: Materials, Research Set-up, Data Collection 

Procedures & Metrics, and Product Specifications. 
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3.1 RESEARCH MATERIALS 

PROTOTYPICAL SYSTEM MATERIALS AND ASSEMBLY: 

A solar collector must be used in order to gather the sun’s energy.  For this experiment, 

a 1’3.5” x 5.5” collector is made to hold 12 Fresnel lenses from Thorlabs. (Refer to 

product specifications section)  The collector is made of solid wood with 2” evenly 

spaced holes drilled out of it.  Each Fresnel lens is 2” in diameter with a focal length of 

51mm.  Each lens rests on top of a 3D printed PLA frame designed to support the lens 

and the start of a fiber optic cable.  The design of the frame allows for a 51mm air gap, 

which is required to have the end of the fiber placed at the lens focal point.  Literature 

suggests that glass fiber optics allow for a higher daylight transfer percentage, and can 

handle higher solar temperatures than that of plastic fiber.  However due to budget 

restraints, plastic fibers are used for this experiment.   The Fiber optic cables are 25 

strand PMMA multi strand end glow fiber optic cable with a 6.4 active diameter and a 

black megolon S530 jacket, from Mica Lighting.  The cable has an acceptance angle of 

75 degrees, with an operating temperature range of 5-248 degrees Fahrenheit.  For this 

prototype, twelve 10’ long cables are used. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Diagrams of Concentrator 
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Each Fresnel lens concentrates daylight into the receiving end of a 6.4mm fiber cable 

that transfers the collected light to the distributing end of the cable. At the end of each 

segment a 20mm hemispherical collimator lens from Luxeon Star LEDs is applied to the 

face of the fiber. (refer to Product Specifications section)  The lens itself has a 180-

degree beam spread, which is used to evenly disperse the collected daylight into a 

modified Lithonia PT2U MV 2x2 T8 Parabolic Multi Volt Troffer.  For this study, the  

 

 

 

 

 

 

 

 

 

 

Lithonia fixture has been stripped of its lamps and ballasts.  A custom 3D printed mount 

is created to hold the collimator lens flush with the end of the fiber, while allowing it to 

be mounted within the fixture.  The selected fixture utilizes aluminum louvers to reduce 

glare and evenly distribute light leaving the luminaire. 2.5” x 1.5” SP3-36 6V Thin Film 

photovoltaics from PowerFilm are secured vertically to the internal louver faces. Using a 

single circuit strategy, all the Thin Film photovoltiacs are wired in series with the end 

wires left available for testing.  Connecting the Thin Film photovoltaics in series, allows 

Figure 3.2 Enlarged View of Hemispherical Collimator 
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the array to generate a max capacity of 24V.  The entirety of the system is placed into a 

testing module described below.   

               

 

 

  

Figure 3.3 Collimator Arrangement And Photovoltaic Placement Within the  
       Lithonia Fixture 
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3.2 TESTING MODULE ASSEMBLY 

A testing module provided by the UNLV School of Architecture, NEAT LAB, houses the 

experimental system in question.  The testing module dimensions are L8’ x W5’-4” x 

H10’-2”.  Built out of lumber, the module is constructed using 2x6 nominal beams 

(1.5”x5.5”) spaced 1’4” apart on center.  The module is insulated with 5 ½” of Batt 

insulation, providing an R-Value of 15.  The test module is located at the University of 

Nevada Las Vegas, Paul B. Sogg Architecture Building. (36.14548° N, -115.137° E).  

The module is located on the South East corner of the school lot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Module Drawings with Prototype Placement and Site Map 
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3.3 EXPERIMENTAL SET-UP 

The testing module houses the system’s modified fluorescent luminaire as well as the 

bottom end of the fiber cables, while the solar collector remains on the exterior fastened 

securely to the roof of the testing module.  The solar collector remains in a fixed position 

facing south, with the collector face tilted to match the position and solar altitude of the 

sun in Las Vegas at the time of data collection.  Within the module, the fixture is 

fastened securely to the corrugated steel roof using metal chains and hooks. It hangs 7 

feet off the ground and 4 feet 6 inches above a given work surface.  

   

  

Figure 3.5 Experimental set up, (Left) Module (Middle) Hybrid fixture (Right) Concentrator 
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3.4 DATA COLLECTION PROCEDURE AND METRICS 

Over a period of 7 days, data is collected manually at 9a.m., 12p.m., and 3p.m. in order 

to get an understanding of how the system would function throughout Las Vegas’ solar 

peak hours.  During each interval the solar concentrator must be prepped for the 

upcoming test. The plastic fibers used in this experiment have an operating temperature 

allowance of 5-248 Fahrenheit.  Simple tests revealed that the temperature at the focal 

point of the 2” Fresnel lens exceeded 320 degrees Fahrenheit. Because of this after 

every test, each fiber must be removed from the 3D printed frame and clipped back up 

to ¼”, revealing a clean non obstructed point of entry for the daylight to enter.  The solar 

concentrator will be orientated to align directly with the Suns azimuth and altitude.   An 

Ajax scientific dual scale thermometer is placed in the interior and exterior of the test 

module.  Recording the temperature differences between the two thermometers will 

determine the internal temperature difference caused by the system.  Using a thermal 

imaging camera, photos of the module’s interior are taken daily to determine if any solar 

radiation passes through the fiber.  Internal light levels are tested and recorded both 

manually and electronically.  Using a Konica Minolta light meter, six different points 

within the module will be measured.  The first point is located one foot below the 

luminaire, while the remaining five points will be located on a surface simulating a work 

surface.  Using the hand held light meter, measurements will be recorded at 7am, 12pm 

and 3pm throughout the course of the experiment.  In addition to point testing, battery 

powered hobo data loggers will be placed at the exact 5 measure points, taking lumen 

readings every two minutes over the length of the testing period.  Both sets of data will 
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provide comparative readings that will illustrate the fixtures light output potential as well 

as the beam spread of the fixture. 

 

 

 

 

 

 

 

To measure the amount of electricity that is generated by the system, a Fluke 87 III 

True RMS multi-meter is used to record both the voltage (V) and current (A) generated 

by the photovoltaic film components.  Using data provided by the National Oceanic and 

Atmospheric Administration, along with weather data from the Las Vegas, McCarran 

International Airport weather station, solar altitude for the month of February, 2016, 

Daily outdoor Temperature, PSM Direct Normal Irradiance levels, and daily weather 

conditions will all be recorded during each test day.  By testing and recording the light 

levels, thermal difference, Daily variables and electrical potential, it can be determined if 

the system can adequately provide recommended light levels while simultaneously 

generating natural energy in Las Vegas.  

 

 

 

Figure 3.6 Plan view of work surface table with measurement point locations 
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3.5 TESTING SCHEDULE CHART 

A larger version of this chart can be found in the Appendices. 

 

 

 

 

 

 

 

  

Table 3.1 Testing Schedule Chart 
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3.6 LENS SPECIFICATIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 2” Diameter Fresnel Lens by THORLABS 
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Figure 3.8 20mm hemispherical collimator lens from Luxeon Star LEDs 
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CHAPTER 4: RESULTS 
 
Over a period of seven consecutive days, data was recorded to determine the feasibility 

of a hybrid fiber optic daylight system that provided both code required internal light 

levels and generated enough electricity to be at minimum self-sufficient.  The system in 

question consists of three major segments working in tandem to allow for a continuous 

path for daylight to travel through.  Daylight is collected using a twelve lens concentrator 

to collect and transmit the harvested daylight into fiber optic cables.  Those cables then 

function as a vehicle for the light to travel through until it reaches a modified fluorescent 

fixture.  The fixture utilizes twelve collimator lenses to evenly distribute light down into a 

given space.  Additionally the fixture contains vertically oriented thin film photovoltaics 

that uses a small portion of the collected light in order to generate electricity.  Over the 

testing period, during the times of 9 am, 12 pm, and 3 pm, the solar concentrator was 

manually oriented to align with both the sun’s altitude and azimuth. During each of the 

mentioned intervals, interior light levels, indoor and outdoor temperatures, voltage, 

amperage, and both internal and external conditions were all recorded.   
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RECORDED ILLUMINANCE: 

 

 

 

 

 

 

 

 

 

Table 4.1 provides the overall average illuminance values at each of the recorded points 

within the test cell at work surface height (2.5’ above the finished floor).  Point C, 

located directly below the fixture produced the highest average illuminance value of 6 

lm/ft2, with a recorded range of 1.3 -15.06 lm/ft2.  While the surrounding points remained 

consistent with an average range between them of .12-2.45 lm/ft2.  At the end of the test 

period, the fixture produced an average illuminance of 1.94 lm/ft2.  At one foot below the 

fixture face, recorded measurements fluctuated from 6.28–39.1 lm/ft2, with an overall 

average value of 29.44 lm/ft2.   

 

 

 

 

 
 

Table 4.1 Average illuminance values at each recorded point on the simulated work 
surface 
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Table 4.2 provides results of all recorded data points at each daily interval. With a work 

surface area of 10ft2 within the test module, the maximum surface illuminance was 1.5 

lm/ft2.  While each of the twelve lenses within the concentrator provided 1.26 lumens 

per lens.  Results revealed that during this experiment, the highest transmission of 

daylight occurred at noon with an average illuminance of 6.92 lm/ft2, followed closely 

with 9am intervals with an average of 6.86 lm/ft2.  Figures 4.3 and 4.4 provide an 

analysis in weather conditions and outdoor temperatures and the effects they have on 

the amount of daylight that was harvested.  Table 4.3 suggests that during times of the 

day with higher cloud cover in the sky, the amount of harvested daylight is significantly 

reduced. This is primarily due to the fact that less daylight is available to make contact 

with the face of the concentrator lenses.  Table 4.4 reveals that when the outdoor 

temperature is below 65 degrees Fahrenheit, a higher percentage of daylight can be 

collected. A prime example of this can be seen on February 24, at 9 am. During this 

interval the National Oceanic and Atmospheric Administration (NOAA) observed the Las 

Table 4.2 Internal work surface Illuminance Values at each tested interval 
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Vegas sky as “Few Clouds” with a temperature of 54 degrees Fahrenheit.  Over the 

testing period this was the lowest temperature interval recorded, resulting in the highest 

yield of daylight within the test cell recorded at 15.06 lm/ft2.  On February 27, at 3p.m. 

NOAA observed the sky as “Mostly Cloudy” with an outdoor temperature of 79 degrees 

Fahrenheit.  At this interval, the lowest yield of daylight was recorded where the 

maximum illuminance value was 1.3 lm/ft2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 Internal Illuminance compared with NOAA recorded Daily 
Weather Conditions  

Table 4.4 Daily Temperature compared to the Internal Illuminance 
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Refer to Figures 4.7a/b and 4.8 for additional lumen values and recorded internal 

conditions generated by hobo data loggers placed within the module. 
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RECORDED VOLTAGE: 
 
At each interval, thin film photovoltaics within the fixture were monitored using a 

handheld multi-meter, with the highest voltage and amperage being recorded.  Results 

shown in Table 4.5 reveal that 12p.m. intervals on average generated a higher voltage 

yield over the 9a.m. and 3p.m. intervals.  On Average 12p.m. intervals reached up to 

10.21V, with a system high of 14.85V on February 24. While 9a.m and 3.pm. intervals 

reached up to 9.08V and 8.24V, with high of 10.90V and 11.17V respectfully.  The four 

thin film photovoltaic panels were connected in a single series to allow for a maximum 

capacity of 24V.  Over the length of the experiment the four panels averaged a total of 

9.18V or 38% of the total system capacity, with a maximum output of 3.95W.  The 

maximum amperage produced by the photovoltaics was .3 Amps with a minimum as 

low as .1 Amps.  Overall the system produced an average of .17Amps, throughout the 

length of the experiment.  

  

Table 4.5 Voltage generated by Thin Film Photovoltaics 
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Table 4.6 shows a direct correlation with regards to the daily irradiance and the 

generated voltage over the period of the experiment.  On days where direct horizontal 

irradiance was high, the voltage generated also demonstrated an upward trend, while 

on days were the irradiance was low, the recorded voltage yield was lower.  However 

on February 25, the results were uniquely different, in that while all irradiance levels 

were generally normal, the recorded voltage reached the lowest during the length of the 

experiment at 4.3V.  This is likely to have been the case, due to high daily temperatures 

and clear skies causing the tips of the fibers to melt, thus reducing the efficiency of the 

overall system.  

 

 

 

 

 

 

 

 

 

Overall, the system demonstrated that the tested assembly can simultaneously redirect 

daylight to the interior of a building while simultaneously generating electricity.  

However, the system did not provide the 50FC or XX lm/W required by code for office 

building settings.  Under the best tested conditions the system managed to 

produce .2lm/Ft2, while simultaneously producing .049W/Ft2, and 1.32V/ft2.   

Table 4.6 Daily Irradiance Recorded by NREL in comparison to the amount of voltage generated 
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Table 4.7a Internal illuminance values recorded by Hobo data loggers (Points A-C) 

ADDITIONAL RECORDED DATA AND CHARTS: 
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Table 4.7b Internal illuminance values recorded by Hobo data loggers (Points D-E) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 4.8 Internal test cell conditions 
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4.1 DISCUSSION 
 
HUMAN ERROR: 
 
The data retrieved with regards to the system in question, suggests that a passive 

assembly has the ability to generate a quantifiable amount of daylight at a given time, 

while simultaneously producing naturally generated electricity. However, human error as 

well as product materiality contributed to the systems overall inefficiencies.  When 

handling lenses, precision is key.  If the face of the lens is not parallel to the face of the 

fiber optics, then the collected daylight will not enter the fibers.  Because the optical 

grade lenses were mounted and secured within the wooden concentrator frame 

manually, it’s very likely that the faces were not perfectly aligned.  During some 

instances, it was visibly evident that up to 25% of the lenses were not directing equal 

parts of daylight into the fixture.  With the assistance of machine manufacturing these 

issues can be easily resolved, greatly increasing the overall amount of daylight 

concentrated into the systems fiber optics.  Another factor that affected the amount of 

harvested daylight was the manual positioning of the concentrator to align with the Suns 

position.  When the lenses are not directly aligned with the Sun, it was common to 

record less than 1lm/ft2 within the test module.  By applying a GPS guided solar tracker 

to the concentrator, human error with regards to proper solar alignment can be 

eliminated.  
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MATERIAL INEFFICIENCIES: 

For this experiment, plastic fibers were selected over glass fibers due to budget 

restraints.  Although, plastic fibers are economically viable with respects to their glass 

counterpart, they render the systems overall efficiencies vulnerable to high 

temperatures.  Glass fibers have an operating temperature capacity as high as 900 

degrees Fahrenheit, while plastic fibers have a maximum exposure threshold of 158 

degrees Fahrenheit.  This is the melting point of most PMMA fibers.  Over the course of 

the experiment temperatures at the face of the PMMA fibers far exceeded what the 

fibers could withstand.  A simple test using a digital thermometer was done to determine 

the temperatures occurring at the focal point of the Fresnel lens.  After five minutes the 

thermometer read as high as 316 degrees Fahrenheit, double what the plastic fibers 

were designed to handle.  It’s because of the extreme heat that caused the fibers to 

melt, thus causing substantial reductions in light transmission.  By utilizing glass fibers 

over plastic fibers, one can speculate that the amount of light entering the test module 

would be greatly increased, consequently increasing the voltage generated.  
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FUTURE SYSTEM OPPORTUNITIES: 

For this experiment twelve Fresnel lenses were used to concentrate daylight into twelve 

6mm PMMA fiber optic strands, which distributed the light into a modified 2’x2’ 

fluorescent fixture containing four 4”x5” thin film photovoltaics.  This assembly produced 

a maximum of 15.06 FC at work surface height, while simultaneously generating 

14.85V.  Theoretically, by tripling the amount of lenses on the concentrator to 36, and 

increasing the number of photovoltaic panels to 36, the number of faces within the 

fixtures louver system, it’s possible that it could provide if not exceed 45-50 FC and 

generate over 125V per fixture.  Furthermore, by applying a GPS guided mount the 

concentrator and replacing the PMMA fibers with suitable glass fibers, the system would 

be able to collect daylight evenly throughout the entire day maximizing solar peak 

hours.  Simply by utilizing more resilient materials and increasing both the number of 

lenses and photovoltaic panels, it’s possible that a hybrid daylight fixture could produce 

enough daylight to meet code requirements while generating enough electricity to, at 

minimum be self-sustaining.   
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CHAPTER 5: TABLES, CHARTS, AND FIGURES CITATIONS 
 
TABLE 1.1 
2015 Globally Averaged Combined Land and Ocean Surface Temperature Anomaly by 
NOAA 
https://www.ncdc.noaa.gov/sotc/global/201509 
 
 
TABLE 1.2 
Carbon Dioxide Emissions by Region, 1990-2030 
http://rainforests.mongabay.com/09-carbon_emissions.htm 
 
 
TABLE 1.3   
U.S. CO2 Emissions by Sector 
2001 2030 inc. / Architecture 2030 / U.S. Energy Information Administration 2011 
 
 
Figure 2.1 
Illustration of a Wavelength taken from Cooperative Institute for Meteorological Satellite 
Studies. 
https://cimss.ssec.wisc.edu/satmet/modules/3_em_radiation/img/wavelength.jpg 
 
 
Figure 2.2 
Illustration of the Solar Radiation Spectrum taken from Princeton.edu 
https://www.princeton.edu/~willman/observatory/oseti/spectrum.jpg 
 
 
FIGURE 2.3 
Winter and Summer Window Daylight Diagram taken from DN Architecture 
http://dnarchitecture.com/passive-solar-design-principles/ 
 
FIGURE 2.4 
Skylight diagram taken from Mechanical and Electrical Equipment for Buildings 11th 
edition. Page 596 

Walter T Grondzik, Alison G Kwok, Benjamin Stein, John S. Reynolds. 2010. 
Mechanical and electrical equipment for buildings. 11th ed. Hoboken, New Jersey: 
John Wiley and Sons. 

 

 

https://www.ncdc.noaa.gov/sotc/global/201509
http://rainforests.mongabay.com/09-carbon_emissions.htm
https://cimss.ssec.wisc.edu/satmet/modules/3_em_radiation/img/wavelength.jpg
https://www.princeton.edu/~willman/observatory/oseti/spectrum.jpg
http://dnarchitecture.com/passive-solar-design-principles/
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FIGURE 2.5 
Diagram of a Light Tube taken from Solar Tube Skylight website 
www.solartubeskylight.com 

Figure 2.6 
Diagram of John Tyndalls laser through water experiment taken from Harvard 
University’s Science Center  
http://scictr.fas.harvard.edu 

Figure 2.7 
Diagram of a Parabolic Mirror taken from Richard Fitzpatrick, Professor of Physics at 
the University of Texas at Austin 
http://farside.ph.utexas.edu/teaching/302l/lectures/node136.html 
 
 
Figure 2.8 
Diagram comparing a conventional lens with a Fresnel lens taken from William Meehan. 
http://laser.physics.sunysb.edu/~william/journal/ 
 
 
Figure 2.9 
Multimode and Single mode graphic taken from the online Encyclopedia 
http://encyclopedia2.thefreedictionary.com/Chromatic+dispersion 
 
 
Figure 2.10 
Light Dispersion demonstrated through a glass prism taken by Tulane University- 
Sanelson 
http://www.tulane.edu/~sanelson/eens211/proplight.htm 
 
Figure 2.11 
Diagram of Anhydroguide PCS Low OH VIS-IR Fiber taken from SYS Concepts 
http://www.sys-concept.com/Large_Core_Fiber.htm 

 
Figure 2.12 
Photo of the Himawari Corporations Solar Collector taken from the Himawari Catalog. 
http://www.himawari-net.co.jp/e_page-index01.html 
 
 
Figure 2.13 
Photo of Parans Inc. Solar Collector taken from Parans SP3  
http://www.parans.com/eng/sp3/ 
 
Figure 2.14 
Photovoltaic Diagram taken from Dow Corning 
http://www.dowcorning.com/content/solar/solarworld/solar101.aspx 

http://www.solartubeskylight.com/
http://scictr.fas.harvard.edu/
http://farside.ph.utexas.edu/teaching/302l/lectures/node136.html
http://laser.physics.sunysb.edu/~william/journal/
http://encyclopedia2.thefreedictionary.com/Chromatic+dispersion
http://www.tulane.edu/~sanelson/eens211/proplight.htm
http://www.sys-concept.com/Large_Core_Fiber.htm
http://www.himawari-net.co.jp/e_page-index01.html
http://www.parans.com/eng/sp3/
http://www.dowcorning.com/content/solar/solarworld/solar101.aspx
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Figure 2.15 
Semi-Transparent Photovoltaic Diagram taken from Onyx Solar 
http://www.onyxsolar.com/standard-photovoltaic-glass.html 
 
Figure 2.16 
Transparent Photovoltaic Diagram taken from MIT Energy Initiative 
http://mitei.mit.edu/news/transparent-solar-cells 
 
Figure 2.17 
Thin-Film Photovoltaic Diagram taken from PV Magazine 
http://www.pv-magazine.com/news/details/beitrag/north-america--hosiden-and-hisco-
sign-distribution-partnership-agreement-to-meet-growing-pv-demand-
_100000431/#axzz3rroZFQ2P 
 
Figure 2.18 
Quantum Dot Illustration taken from International Business Today 
http://www.ibtimes.co.uk/nasa-tech-miniaturised-allow-integration-quantum-dot-
spectrometers-into-smartphones-1509147 
 
Figure 2.19 
Oak Ridge National Laboratory Hybrid Light System taken from ORNL 
http://web.ornl.gov/~webworks/cppr/y2001/pres/117989.pdf 
 
Chart 1.1 
U.S. Energy Information Administration 2013 Electric Power Annual 
https://www.eia.gov/electricity/annual/html/epa_01_01.html 
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CHAPTER 6: CHARTS AND DIAGRAMS  

 

 

 

 

 

 

 

Chart 1.1 U.S. Energy Information Administration 2013 Electric Power Annual 
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Chart 1.2 U.S. Energy Information Administration 2013 Electric Power Annual 

Chart 1.3 U.S. Energy Information Administration 2013 Electric Power Annual 
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Chart 1.4 NREL solar resource maps 
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Chart 1.4 NREL solar resource maps 
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Chart 1.5 National Climatic Data Center – Annual Sunshine and Solar Hours analysis 
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Released: September, 2008

Table E5. Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003

Total Electricity Consumption (billion kWh)

Total

Space 
Heat-
ing

Cool-
ing

Venti-
lation

Water 
Heat-
ing

Light-
ing

Cook-
ing

Refrig-
eration

Office 
Equip-
ment

Com-
puters Other

All Buildings* ........................ 890 34 116 113 15 335 6 104 19 43 105

Building Floorspace

(Square Feet)

1,001 to 5,000 ......................... 113 5 13 5 3 27 2 40 2 3 11

5,001 to 10,000 ....................... 77 4 10 5 2 24 1 16 2 3 10

10,001 to 25,000 ..................... 119 6 14 13 2 44 1 15 3 6 16

25,001 to 50,000 ..................... 103 4 16 15 3 35 (*) 10 2 5 12

50,001 to 100,000 ................... 119 5 17 19 2 46 1 9 2 5 13

100,001 to 200,000 ................. 141 5 18 23 1 57 (*) 7 Q 9 16

200,001 to 500,000 ................. 106 2 15 16 1 48 (*) 3 2 6 13

Over 500,000 .......................... 112 2 14 16 1 53 (*) 4 2 7 13

Principal Building Activity

Education ................................ 109 4 22 24 3 33 (*) 5 1 9 6

Food Sales .............................. 61 2 4 2 Q 14 1 35 1 1 3

Food Service .......................... 63 3 8 7 3 12 4 20 (*) 1 4

Health Care ............................. 73 2 10 12 1 31 (*) 2 1 3 11

Inpatient ................................ 52 1 7 11 1 22 (*) 1 1 2 6

Outpatient ............................. 20 1 3 1 (*) 8 (*) 1 (*) 1 4

Lodging ................................... 69 4 7 4 3 36 1 3 Q 2 7

Retail (Other Than Mall)........... 62 2 7 5 1 33 (*) 6 1 1 6

Office ...................................... 211 10 30 18 2 82 (*) 10 9 22 27

Public Assembly ..................... 49 1 10 18 (*) 8 (*) 3 Q 1 7

Public Order and Safety ......... 17 1 2 3 1 5 (*) 1 (*) (*) 3

Religious Worship ................... 18 1 3 2 (*) 5 (*) 2 (*) (*) 5

Service ................................... 44 2 4 7 (*) 18 Q 3 (*) 1 8

Warehouse and Storage ........ 72 1 4 6 1 39 Q 10 1 1 9

Other ....................................... 39 1 5 3 Q 17 Q 3 Q 1 6

Vacant .................................... 4 (*) (*) (*) Q 1 Q (*) Q (*) 2

Year Constructed

Before 1920 ............................ 26 1 2 3 Q 10 (*) 5 1 1 4

1920 to 1945 ........................... 61 1 5 9 1 26 (*) 7 1 2 9

1946 to 1959 ........................... 68 2 8 10 1 26 1 8 1 3 8

1960 to 1969 ........................... 96 3 13 15 2 33 (*) 12 2 5 11

1970 to 1979 ........................... 168 8 21 22 3 65 1 17 4 8 20

1980 to 1989 ........................... 184 8 27 19 4 69 1 19 4 11 21

1990 to 1999 ........................... 202 7 29 26 4 72 2 25 5 10 23

2000 to 2003 ........................... 86 3 13 9 1 34 1 11 1 3 9

Census Region and Division

Northeast ................................ 147 6 11 20 2 60 1 17 4 9 19

New England ........................ 32 1 2 4 1 12 (*) 6 1 2 4

Middle Atlantic ....................... 116 4 9 16 1 48 (*) 11 3 7 15

Midwest .................................. 216 13 15 30 3 84 1 26 4 10 28

East North Central ................. 153 8 10 23 2 61 1 17 3 8 20

West North Central ............... 62 5 5 7 1 23 (*) 9 1 3 8

South ...................................... 375 10 71 45 8 132 3 45 5 16 39

South Atlantic ....................... 210 6 36 25 6 76 2 26 3 10 21

East South Central ................ 50 2 7 7 1 19 (*) 7 1 2 6

West South Central ............... 114 2 28 13 2 37 1 13 1 4 12

West ....................................... 152 5 19 18 2 59 1 15 6 8 19

Mountain ............................... 56 2 7 7 1 23 Q 5 Q 2 6

Pacific ................................... 96 3 12 11 1 36 1 10 4 6 12

Climate Zone: 30-Year Average

Under 2,000 CDD and --

More than 7,000 HDD ............ 120 7 6 18 2 46 1 17 2 5 15

5,500-7,000 HDD .................. 224 13 16 29 3 91 2 26 5 11 29

4,000-5,499 HDD .................. 166 7 17 20 2 67 1 18 5 9 19

Fewer than 4,000 HDD ......... 219 5 33 28 5 81 2 27 4 10 26

2,000 CDD or More and --

Fewer than 4,000 HDD ......... 161 3 44 18 3 50 1 16 2 8 16

Number of Floors

One ......................................... 334 15 45 32 7 113 4 67 5 10 37

Two ........................................ 202 7 26 29 5 75 1 20 5 9 25

Three ...................................... 84 4 9 12 1 33 (*) 6 2 5 11

Four to Nine ............................ 174 5 24 29 2 70 1 7 4 12 21

Ten or More ............................ 96 3 12 11 1 44 (*) 2 3 7 11

Elevators and Escalators

(more than one may apply)

Any Elevators ......................... 416 14 57 65 5 170 1 16 11 28 50

Number of Elevators................

One ....................................... 104 4 14 18 2 39 (*) 6 2 6 12

Two to Five ........................... 172 7 23 26 2 68 1 6 5 12 20

Six or More ........................... 141 3 20 21 1 63 1 3 4 9 17

Any Escalators ....................... 57 1 9 9 (*) 23 Q 1 Q 3 6

Number of Workers (main shift)

Fewer than 5 .......................... 109 5 11 8 2 35 1 27 1 2 17

5 to 9 ....................................... 73 4 9 6 2 23 1 16 1 2 9

10 to 19 ................................... 89 5 12 9 2 30 2 15 1 3 10

20 to 49 ................................... 154 5 21 20 3 56 1 20 4 6 17

50 to 99 ................................... 118 5 16 20 2 44 1 11 2 5 12

100 to 249 ............................... 135 5 20 20 2 55 1 8 3 7 14

250 or More ............................ 213 5 28 29 2 92 1 6 6 19 25

Page 1 of 4

11/18/2014http://www.eia.gov/consumption/commercial/data/archive/cbecs/cbecs2003/detailed_tabl...

Chart 1.6 EIA – Commercial Energy Consumtion break down, 2003 
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CHAPTER 7: APPENDICES 

APPENDIX 1: Table 3.1 Testing Schedule Chart is located in attachment one of the 

supplemental material 

APPENDIX 2: Chart 2.1 U.S. Energy Information Administration 2013 Electric Power 

Annual is located in attachment two of the supplemental material 
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