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ABSTRACT

Statistical M odeling of Skewed D ata U sing N ew ly  Formed Parametric
D istributions

by

Kahadawala Cooray

Dr. Malwane M. A. Ananda, Examination Committee Chair 
Professor of Statistics 

University of Nevada, Las Vegas

Several newly formed continuous parametric distributions are introduced to an­

alyze skewed data. Firstly, a two-parameter smooth continuous lognormal-Pareto 

composite distribution is introduced for modeling highly positively skewed data. The 

new density is a lognormal density up to an unknown threshold value and a Pareto 

density for the remainder. The resulting density is similar in shape to the lognormal 

density, yet its upper tail is larger than the lognormal density and the tail behavior is 

quite similar to the Pareto density. Parameter estimation methods and the goodness- 

of-fit criterion for the new distribution are presented. A large actuarial data set is 

analyzed to illustrate the better fit and applicability of the new distribution over other 

leading distributions. Secondly, the Odd Weibull family is introduced for modeling 

data with a wide variety of hazard functions. This three-parameter family is derived 

by considering the distributions of the odds of the Weibull and inverse Weibull fami­

lies. As a result, the Odd Weibull family is not only useful for testing goodness-of-ht 

of the Weibull and inverse Weibull as submodels, but it is also convenient for modeling

iii
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and fitting different data sets, especially in the presence of censoring and truncation. 

This newly formed family not only possesses all five major hazard shapes: constant, 

increasing, decreasing, bathtub-shaped and unimodal failure rates, but also has wide 

variety of density shapes. The model parameters for exact, grouped, censored and 

truncated data are estimated in two different ways due to the fact that the inverse 

transformation of the Odd Weibull family does not change its density function. Ex­

amples are provided based on survival, reliability, and environmental sciences data 

to illustrate the variety of density and hazard shapes by analyzing complete and in­

complete data. Thirdly, the two-parameter logistic-sinh distribution is introduced for 

modeling highly negatively skewed data with extreme observations. The resulting 

family provides not only negatively skewed densities with thick tails, but also vari­

ety of monotonie density shapes. The advantages of using the proposed family are 

demonstrated and compared by illustrating well-known examples. Finally, the folded 

parametric families are introduced to model the positively skewed data with zero data 

values.

IV
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CHAPTER I 

INTRODUCTION

1.1 The background of some continuous univariate distributions 

As we know, statistics plays a vital role when making decisions under uncertainty. 

Once the uncertainty is formalized in terms of probability, then it can be modeled 

by using probability distributions. Therefore probability distributions play a critical 

and central role in statistics. Probability distributions which generally involve param­

eters, are divided into two classes, continuous and discrete. Continuous univariate 

parametric distributions are widely used in most applications due to their amenability 

to more elegant mathematical treatment. There exists well over 30 popular contin­

uous univariate parametric distributions. These distributions can be divided into 

two different classes, regular and nonregular. Here nonregular means the support de­

pends on the parameters of the distribution. Also, they can be divided into two other 

different classes, lifetime and non-lifetime distributions. For example, the normal dis­

tribution is regular non-lifetime distribution, whereas, the lognormal distribution is 

regular lifetime distribution. Also, the symmetrically truncated Cauchy distribution 

(Derman 1964) is a nonregular, non-lifetime distribution. Furthermore, the gener­

alized Weibull distribution (Mudholkar et al. 1996) or sometimes called embedded 

Burr (1942) distribution given by the following distribution function is a nonregular 

lifetime distribution.

1
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F(T, g, A) =  1 -  (1 -  A (a ;/0 n i/\  (1.1)

where 0 <  x <  0 <  o; < oo, 0 <  0 < oo, and —oo < A < oo.

The probability distributions can be variously specified, in terms of a cumula­

tive distribution function f  (.), a density function /( .) , or a quantile function Q{.). 

Some distributions do not have closed-form quantile functions, for example, inverse 

Gaussian and folded normal distributions. Also, most mixture distributions do not 

have closed-form expressions for the quantile functions. Furthermore, Tukey’s (1960) 

lambda distribution given by the following quantile fimction does not have closed- 

form expression for both density and distribution functions. This distribution is first 

introduced by Hastings et al. (1947).

Q{u, A) =  [u^ — (1 — u)^]/A; 0 <  u < 1, —oo < A < oo. (1.2)

Finally, any good continuous univariate probability distribution should have most 

of the following:

1. Closed-form expressions for density, distribution, quantile, and moment func­

tions.

2. Least number of parameters in the distribution.

3. Rich density and hazard shapes, including tail shapes.

4. Distribution must be regular.

5. Statistical inference should be technically convenient.

6. Distribution must arise as a plausible physical phenomenon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Motivation to construct new distributions

1.2.1 The lognormal-Pareto composite distribution

The Pareto distribution, named after an Italian-born Swiss professor of economics, 

Vilfredo Pareto (1897) who formulated a model to check how income or wealth was 

distributed among the individuals in society, is widely used in insurance and actuarial 

industry. This distribution models the upper portion of most insurance payment 

data that are commonly encountered in insurance industries. However, insurers are 

interested to model the entire portion of the payment data, which are frequently 

distributed in unimodal shape. The Pareto model is not a suitable model for such 

data due to its non-monotonic density shape, and therefore, the other parametric 

families such as loglogistic, lognormal, Weibull, inverse Weibull are considered as 

useful models. However, these parametric models, which possess semi-heavy tails, 

are inadequate for modeling the heavy tail area of the data  distribution. To remedy 

this situation parametrically, higher order parametric families such as Burr (1942), 

generalized Pareto models have already been discussed in the literature. In addition, 

splicing and mixing of the existing distributions have also been discussed. However, 

since all these remedies are less convenient for modeling and fitting purposes, they 

have become unattractive to practitioners. The pros and cons of such methodologies 

are found in Kingman et al. (1998) and Everitt and Hand (1981). Further, related 

works are found in Ramlau-Hansen (1988), Embrechts et al. (1999), Beirlant et al. 

(1996), Resnick (1997), Beirlant et al. (2004), McNeil (1997), Hogg and Kingman 

(1984), Hossack et al. (1983) and Patrik (1980).

Insurance payment data in actuarial industries are typically highly positively
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skewed and distributed with a larger upper tail. Therefore, researchers often tend 

to use the lognormal distribution or the Pareto distribution to model the data in this 

field (Kingman et al. 1998; Hogg and Klugman 1984). Furthermore, larger loss pay­

ments or reinsurance data (Hossack et al. 1983; Hogg and Klugman 1984; Beirlant 

et al. 1996) are often modeled by the Pareto distribution. Moreover, to model large 

claim data, generalized Pareto distribution has been used by several authors such as 

Resnick (1997) and Beirlant et al. (2004).

However, the Pareto distribution, due to the monotonically decreasing shape of the 

density, does not provide a reasonable fit for many applications when the frequency 

distribution of the data set is hump-shaped. In these cases, the lognormal distribution 

is typically used to model these data sets. Even though the lognormal model covers 

larger data, it fades away to zero more quickly than the Pareto model. In modeling 

insurance payment data, the lognormal model often fails to provide adequate coverage 

for higher losses, and thus underestimates payment losses, because the upper tail of 

the lognormal distribution is much thinner than the Pareto model. Therefore, instead 

of using the lognormal model for the full data set and ignoring the lower half of the 

data set, the large insurance payments are typically modeled by the Pareto model 

(McNeil 1997; Resnick 1997). In fact, the Pareto model covers the behavior of large 

losses well, but fails to cover the behavior of small losses. Conversely, the lognormal 

model covers the behavior of small losses well, but fails to cover the behavior of large 

losses.

The necessity of lognormal and Pareto composition was recognized by several 

authors through their practical knowledge of loss payment data (Klugman et al. 1998;
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Patrik 1980). They attempted to address the problem by combining the lognormal 

model and the Pareto model through splicing method. After partitioning the data into 

several domains, different probability models were fitted for each domain. Ramlau- 

Hansen (1988) attempted to handle these types of actuarial data using the loggamma 

distribution.

Therefore, taking into account the tail behavior of both small and large losses, we 

were motivated to look for a new avenue to remedy the situation. In order to achieve 

both of these behaviors in one model, we looked for a desirable composite model, 

which took the two-parameter lognormal density up to an unknown threshold value 

and the two-parameter Pareto density for the rest of the model. Differentiability 

and continuity at the threshold point yield a fine smooth density function called the 

lognormal-Pareto composite (LPC) distribution (Cooray and Ananda 2005) with two 

unknown parameters. The resulting density given in Chapter II has a larger tail than 

the lognormal density, as well as a smaller tail than the Pareto density. The shape 

of the density is similar to the lognormal density, yet its upper tail is larger than the 

lognormal density, and the tail behavior is quite similar to the Pareto density.

1.2.2 The Odd Weibull distribution

The Weibull distribution, named after the Swedish physicist Waloddi Weibull 

(1939), having exponential and Rayleigh as submodels, is frequently used for mod­

eling broad variety of lifetime data from reliability, survival, environmental and ac­

tuarial sciences. When modeling monotone hazard rates, the Weibull distribution 

may be an initial choice due to its negatively and positively skewed density shapes.
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However, the Weibull distribution does not provide a reasonable parametric fit for 

some practical applications where the underlying hazard rates may be bathtub or uni­

modal shapes. In addition, the underlying distribution may be highly negatively or 

positively skewed with thicker tails. In order to achieve these behaviors from a single 

distribution, researchers have used different modifications to the Weibull distribution 

by introducing an additional shape parameter. Such three-parameter extensions for 

the entire positive real line can be seen from generalized Gamma distribution (Stacy 

1962; see Glaser 1980 for all five hazard rates) and exponentiated Weibull family 

(Mudholkar et al. 1995). However, these interesting three-parameter Weibull exten­

sions do not support the modeling of comfortable bathtub-shaped failure rate data, 

which is often encountered in real life data analyses. In general, middle portions of 

the hazard curves of such distributions are nearly fiat and the corresponding densities 

have a positive antimode. A variety of distributions for modeling such data and their 

statistical analyses have appeared in literature. In particular, Rajarshi and Rajarshi 

(1988), and Shooman (1968) have discussed the issues of such data failure and related 

applications. Furthermore, to analyze such bathtub-shaped failure data, researchers 

often use mixture models, which generate a long flat period in the middle portion of 

the hazard function. However, most mixture models are of less interest to reliability 

analysts due to several reasons. These reasons include the lack of closed-form ex­

pressions in their quantile functions, the complicated natm e in parameter estimation 

techniques, and the necessity of large amount of data in the estimation process. In the 

case of bathtub-shaped failure distributions, Haupt and Schabe (1997) have pointed 

out tha t the main characteristics, such as moments and quantités, are not available in

6
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closed-forms. Even the estimations of parameters often resort to extensive iteration 

procedures.

In particular, distributions with one or two parameters impose strong restrictions 

on comfortable bathtub-shaped hazard curves, as well as the densities with positive 

antimodes. In general, at least three parameters are needed to form a flexible bathtub­

shaped hazard function. On the other hand, more flexible distributions usually have 

more than three parameters, and they will become unattractive due to parameter 

estimation problem.

In the reliability theory, the inverse Weibull distribution has received considerable 

attention during the past two decades. This inverse Weibull distribution is derived by 

Keller and Kamath (1982) as a suitable model to describe degradation phenomena of 

mechanical components such as the dynamic components of diesel engines: pistons, 

crank shaft, and main bearings. Keller et al. (1985) simultaneously used Weibull and 

inverse Weibull to model the engine parts failure time data of commercial vehicles. 

Chang (1998) used a mixture of three distributions (Weibull, inverse Weibull, and 

Gompertz) to analyze the changes in mortality patterns. Gera (1995) proposed a 

Weibull competing risk model involving a two-parameter Weibull and a two-parameter 

inverse Weibull distribution. In environmental sciences, Simiu et al. (2001) discussed 

the importance of the inverse Weibull distribution as a reasonable model for analyzing 

the extreme wind speed data. The other Weibull and inverse Weibull related models, 

techniques, and applications are found in Murthy, Xie, and Jiang (2004) related to 

reliability, survival, and environmental disciplines.

A three-parameter generalization of the Weibull distribution is presented in Chap-
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ter III to deal with general situations in modeling survival process with various shapes 

in the hazard function. This generalized Weibull family will be referred to as the Odd 

Weibull distribution (Cooray 2006) since it is derived by considering the distributions 

of the odds of the Weibull and inverse Weibull families. As a result, the Odd Weibull 

family is not only useful for testing goodness-of-ht of the Weibull and inverse Weibull 

as submodels, but it is also convenient for modehng and fitting different data sets, 

especially in the presence of censoring and truncation. In addition, this family ac­

commodates not only all five major hazard shapes: constant, increasing, decreasing, 

bathtub-shaped and unimodal failure rates, but also has a wide variety of density 

shapes including the bimodality with one mode at the origin. The model parameters 

for exact, group, censored and truncated data are estimated in two different ways 

due to the fact that the inverse transformation of the Odd Weibull family does not 

change its density function.

1.2.3 The logistic-sinh distribution

Highly negatively skewed data with extreme observations are frequently encoun­

tered in reliability and survival analyses. Such data may be incompatible with familiar 

probability models, and is motivate to explore new models, which are useful to prac­

ticing statistician or those who work in the related areas. For the purpose of modeling 

these data, commonly available parametric families have so far been used by consider­

ing such observations as outliers, even though they are true data  points. For example, 

highly negatively skewed distributions such as Gompertz or sinh-normal have been 

used by ignoring the extreme observations in the right-tail. In addition, distribu-

8
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tions (exponentiated Weibull, generalized gamma, and Weibull), which are flexible 

to model both negatively and positively skewed data, would not be good choices, 

since they possess thinner right-tails when they negatively skewed. To remedy the 

situation parametrically, one can suggest Cauchy or logistic type distributions with 

appropriate transformations. Moreover, nonparametric and graphical procedures can 

be used under the poor explanation of the data distribution. As an example to the 

nonpar ametric approach. Miller (1983) and Efron (1988) discussed the inefficiencies of 

the well-developed Kaplan-Meier product limit estimator, which is usually worthless 

when estimating extreme high quantités. In engineering sciences, poorly estimated 

quantités can lead to serious consequences such as structural failure in buildings and 

bridges or premature failure in mechanical components. Therefore, parametric mod­

eling is considered as a means of increasing the precision in the estimation of small 

tail probabilities as noted by Miller (1983). A two-parameter logistic-sinh distribu­

tion (Cooray 2005) is presented in Chapter IV to model highly negatively skewed 

data with extreme observations. The resulting family provides not only negatively 

skewed densities with thick tails, but also variety of monotonie density shapes. Also, 

the density function has a non-zero density value at the origin.

1.2.4 The folded parametric distributions

In some practical applications, measurements are recorded without their algebraic 

sign. As a consequence, the underlying distributions of measurements are replaced 

by distributions of absolute measurements, and the resulting distributions are known 

as folded distributions. In general, folded distributions are positively skewed and

9
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have non-zero density value at the origin. Therefore, these distributions are useful 

to analyze the data sets with zero data values. The folded normal distribution and 

its applications have already been discussed in detail in the statistical literature. In 

Chapter, we look at some properties and applications of the folded logistic, the folded 

Cauchy (Johnson, et al. 1994) and the folded Laplace distributions.

10
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CHAPTER II

THE LOCNORMAL-PARETO COMPOSITE DISTRIBUTION

2.1 Introduction

The actuarial and insurance industries frequently use the lognormal and the Pareto 

distributions to model their payment data. These types of payment data are typically 

very highly positively skewed. Pareto model with a longer and thicker upper tail is 

used to model the larger loss data values, while larger data values with lower fre­

quencies, as well as smaller data values with higher frequencies, are usually modeled 

by the lognormal distribution. Even though the lognormal model covers larger data 

values with lower frequencies, it fades away to zero more quickly than the Pareto 

model. Furthermore, the Pareto model does not provide a reasonable parametric fit 

for smaller data values due to the monotonie decreasing shape of its density. There­

fore, taking into account the tail behavior of both small and large losses, we were 

motivated to look for a new avenue to remedy the situation. Here, we introduce a 

two-parameter smooth continuous lognormal-Pareto composite (LPC) density that is 

a lognormal density up to an unknown threshold value and a Pareto density for the 

remainder. The resulting two-parameter smooth density is similar in shape to the 

lognormal density, yet its upper tail is larger than the lognormal density and the tail 

behavior is quite similar to the Pareto density.

Moment properties such as coefficient of variation, skewness, kurtosis, and limited

11
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expected values of this LPC distribution are derived in Section 2.3. Limited expected 

values of frequency distributions are widely used in insurance layer analysis. Insur­

ance layers occur due to different deductible and policy limits for each individual. 

Maximum likelihood parameter estimation technique is presented in Section 2.4 by 

providing the conditional coverage probabilities (Section 2.5) of those estimators for 

uncensored samples. Also, least squares parameter estimation method is discussed in 

Section 2.6, and the critical points for a quantile-quantile (Q-Q) plot correlation co­

efficient test is provided to assess the assumption of the LPC distribution for a given 

uncensored data points. Furthermore, Bayesian parameter estimation technique is 

presented in Section 2.7 by using the Jeffrey’s (1961) prior of the LPC distribution. 

Also related generalized maximum likelihood estimators and their standard errors are 

obtained by using the joint posterior pdf of shape parameter /? (> 0) and scale param­

eter 6 (>  0). Empirical distribution function (EDF) based goodness-of-fit criterion, 

the Kolmogorov (1933) and Anderson-Darling (1954) test statistics, are discussed 

in Section 2.8. Simulation studies are carried out to obtain the upper percentage 

points of these statistics for the LPC distribution. Maximum likelihood parameter 

estimation technique for right censored data is presented in Section 2.9. Finally, a 

simulated example and a well-known Danish fire insurance data set with 1492 data 

points are analyzed and parameters are estimated in Section 2.10 by using the above 

three methods. Also goodness-of-fit criterion such as chi-squared test statistic and 

above mentioned EDF based test statistics are used to compare with other leading 

distributions to show the importance and applicability of this LPC distribution.

12
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2.2 Model derivation

The lognormal-Pareto composite (LPC) density (Cooray and Ananda 2005) can 

be written as

. , I Gxp [-0.5{(/3/A:i) In (z/O)}^] if 0 < z  <  6*
J (®) —

09̂ if 6 <  X  <  o o

where $  (.) is the cumulative distribution function of the standard normal distribution 

and ki is a known constant which is given by the positive solution of the equation 

exp(—fcj) =  27rfcf. This value is ki =  0.372238898. Also 9 (> 0), and /? (> 0) are 

respectively scale and shape parameters of this distribution.

The cumulative distribution function and the quantile function of this distribution 

can respectively be written as

+  if 0 < a ; < ^

(i % ) j  if ^ <  a; <  oo

and

I 9exp{{ki/P){^~'^ {{l + ^{k-i))u) -  ki)}  if 0 < u < Uq
Q { u ) ^  <

g { ( l - , i ) ( l  +  $(A;i))}-^/^ if
(2.3)

where uq = ^  {ki) /  (1 +  $  (fci)). Furthermore, the shape of the density surface of the 

LPC distribution with unit scale (0 =  1) is given in Figure 2.1.

13
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Figure 2.1 Density surface of the LPC distribution for 0 =  1.

2.3 Moment properties

The raw moment, E[X*'], of the LPC distribution can be obtained from the 

following equation for t < p.

+ P

(2.4)

The coefficient of variation {CV  =  cr//r), skewness ( v ^  =  E  [(X — /i)®] /  , and

kurtosis ( / ? 2  =  E  [(X — /x)̂ ] /cr'*) for LPC distribution along with some common dis­

tributions are plotted in Figure 2.2 and 2.3, where /x =  E  [X] and a = E  [(X — /x)^]. 

The versus C V  graph for some common distributions can be found in Cox and 

Oakes (1984), and Meeker and Escobar (1998). Note that BISA and CNF stand for 

Birnbaum-Saunders (Birnbaum and Saunders 1969) and generalized F distributions, 

respectively. And also some abbreviations are given in the appendix A.

14
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The P2 versus Pi graph for some common distributions is available in Pearson 

and Hartley (1972), and Johnson et al. (1994). The reason of creating a {Pi, P2 ) 

plane may be due to having a linear relations between Pi and P2 of some Pearsonian 

family of distributions and as well as inverse Gaussian distributions. For example, 

the Pearson type III; 2/% — SPi — 6 =  0, Pearson impossible area of all frequency 

distributions: P2 — Pi — I = 0, and the inverse Gaussian: / ? 2  =  3 +  5/3j/3.

In Figure 2.3, the P2 versus graph is plotted for some common distributions, 

due to our interest expanded to the negative skewness regions of those distributions.

The limited expected value, E  [(X A æ)*] of the LPC distribution can be ob­

tained from the following equation.

E [(X A z)* ] =

, Kx/ef-P-p

!+$(%) | i g  2 '=!-I-/?ln(|) +  l | , for x > 9 , t  = P

e^HiP/k^) i n(x /e )+fc i - fc i t / /3)  ^ 4  {hip{t^-2pt)  ( 2 . 5 )

, iox X <  e.
t A _  ^(fcl+Wfcl)ln( /̂e))\

The limited expected values are involving in several actuarial quantities (Kingman et 

al. 1998), the mean excess loss, the loss elimination ratio, the expected amount paid 

per loss, the expected payment per payment, and etc.

15
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2.4 Maximum likelihood estimators for complete data

Let Xi, ^ 2 ,..., be a random sample from the LPC distribution given in equation

(2.1). Suppose the unknown parameter 9 is in between the observation and m+1*^ 

observation. Therefore, it is reasonable to assume that this is an ordered sample, i.e., 

< a; 2  <  ^ 3  < ....Xm <  ^ < Xm+\ <  < ^n- Then the log-likelihood function is

given by

lnT(/5,0 ) =  —n In ( 1  +  $  (fci)) +  n In/5 +  7T. / 5  In ̂  — ( 1  +  /5) In a;,

E i J n ' k / m -  (2 -6 )

An algorithm to evaluate maximum likelihood (ML) estimators 

Step 1: for each m (m =  1 , 2 ,..., n  — 1 ), calculate /3m and 6^  as follows:

For m =  1, =  n (EILi In ( z i / z j ) " ^ , ^  =  Zi

Otherwise

y /  (2A ), (2.7)

and

9ra =  (exp (nk^/Pmj  n r  '  > (2 .8 )

where A =  m (Inz^)^ -  (%][%! Inz^)^, and B  = n Y2T=i Inz* -  m YJi=i

If 9jn is in between Xm < 9^ < , then the ML estimators of 0  and 9 are

/3ml =  Pm, ^ML =  9m- (2.9)

Let us rewrite the equation (2.8) such that

17
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( n k l / p r r ^  + Y Z = 1  ln(Zi/0m) = 0. (2.10)

Prom equation (2.10), there must be at least one z, value less than 6m, since n,ki,  

and am are positive values. Therefore ML estimate of 9 cannot occur at zi.

Step 2: if there is no solution for 9 (i.e., z„ < 9m) with the conditions given in 

Step 1, the ML estimate of /3 and 9 are

Pml — Tlk\l \/B , (2 .11)

and

9uh = exp {k \ l0uL j  n r (2.12)

where D = n YJi=i (InZj)^ -  ( ^ ”= 1  Inzj)^ .

In addition, one can observe that these estimators are such that ^ml — uiin 

and /3ml =  max [Pm^ . However, the corresponding log-likelihood value, l{9), is not 

equal to max In L(/3m, 9m)- But, it is equal to 1 u L ( / 3 m l ,  ^ m l ) -
m

The associated observed information matrix for estimated parameters can be writ­

ten as

( / 3 m l , ^ M L ^  =

2 n

’'ML

®ML (2.13)

The asymptotic standard errors of / 3 m l  (BBs ) and 0 m l  (BEg^^) can be calculated 

by inverting the observed information matrix (Efron and Hinkley 1978). However, 

these asymptotic standard errors are conditional on Zm < 0 ml < Zm+i for a unique

18
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m  value. Therefore, the standard errors obtained by using the observed information 

matrix given in (2.13) are conditional standard errors.

2.5 Approximate conditional coverage probabilities for ML estimators

The coverage probabilities for the ML estimation method with intended confidence 

levels a = 0.1 and a  — 0.05 are given in Table 2.1. These coverage probabilities are 

based on 1 0 , 0 0 0  simulated random samples from the density given in equation (2 .1 ). 

The random samples are generated by plugging the known values of parameters 0  and 

9 (say 0  =  0.2, 9 = 10) to the quantile function given in equation (2.3). In addition, n 

(say n = 1 0 ), the number of ordered uniform random sample from the uniform distri­

bution, u ~  {7(0,1) is required to substitute as u in equation (2.3). In that way, one 

random sample with size n (say n  =  10) from the LPC distribution with parameters 0  

and 9 (say 0  = 0.2, 9 =  10) can be generated. In this simulation study, ten thousand 

such samples are generated to get a single cell value in Table 2.1. The approximate 

100 (1 — a) % confidence intervals for parameters, 0  and 9 are calculated by using 

{ P u h -  Z01/2 0 0Uh + ^ai 2 S E ^ ^  and (^ML — 9ul  + Za/2 S E g ^ ^

respectively.

From Table 2.1, one can clearly see that when the sample size increases, the ap­

proximate conditional coverage probabilities for the parameters under the maximum 

likelihood method is getting closer to the intended coverage probabilities. The values 

in Table 2.1 predict that the parameters are not too overly estimate under the max­

imum likelihood estimation method. But, one can obtain a desired confidence level 

by appropriately adjusting the confidence coefficient a.

19
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Table 2.1 Approximate coverage probabilities of LPC

n = 1 0 20 50

90% intended 6 — 1 0 2 0 50 1 0 2 0 50 1 0 2 0 50

/3 =  0 . 2 0: .903 .908 .912 .901 .905 .908 .899 .898 .905

e : .780 .793 .799 .840 .846 .838 .875 .878 .879

/3 =  0.5 0: .910 .910 .908 .903 .904 .906 .900 .898 .904

e : .837 .840 .840 .877 .874 .872 .890 .886 .887

/3 =  1.0 0: .905 .911 .911 .906 .901 .905 .899 .903 .906

e : .837 .845 .843 .872 .877 .874 .891 .895 .890

/? =  5.0 0: .906 .905 .915 .909 .909 .904 .900 .899 .898

e : .848 .841 .835 .873 .874 .873 .883 .892 .890

95% intended

/3 =  0 . 2 0- .956 .960 .961 .953 .955 .957 .953 .949 .954

9 : .827 .820 .824 .869 .872 .869 .907 .907 .910

/3 =  0.5 0- .961 .962 .961 .954 .954 .955 .951 .951 .954

9 : .878 .881 .878 .916 .917 .912 .934 .933 .935

/ ) =  1.0 0- .958 .960 .959 .956 .953 .955 .950 .952 .955

9 ; .888 .894 .892 .922 .924 .919 .934 .943 .941

,9 =  5.0 0- .964 .958 .961 .956 .955 .954 .952 .949 .951

9: .903 .897 .892 .925 .927 .926 .936 .944 .941
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2.6 Least square estimators for complete data

Let Xi, X 2 , ..., Xn be a random sample from the LPC distribution given in equation

(2.1). Suppose the unknown parameter 9 is in between the observation and 

m  +  observation. As before, it is reasonable to assume that this is an ordered 

random sample, i.e., z i < zg <  Z3  <  ....Xm < 9 < Xm+i <  ••• <  Zn. Then the least 

square estimators (Gujarati 2 0 0 2 ) can be calculated from linear form in equation 

(2.14) which is obtained by taking the natural logarithm of the quantile function 

given in equation (2.3) and replacing the cumulative probability with [i — 0.5)/n. 

Where n  is the total number of data points and i — 1 ,2 ,3 , ..., n.

{aXii +  6 if y; <  6
(2.14)

aX^i + b iî b < Yi

where X „  =  k, [* - '  {(1 +  $  (fc,)) } -  fci] . =  -  In {(1 +  #  {k,)) } ,

Vi InZj, a 1 j 0, h =  In 0 , z =  1 , 2 ,3 ,..., n.

An algorithm to evaluate least square (LS) estimators

Step 1: calculate 0m and 9m from the following equations for m =  1 { m — 1 , 2 ,...)

0m ~  1 / 9m — GXp(0m), (2.15)

here and bm are evaluated from

«m == p/q, bm = y  -  âmX,  (2.16)

wherep =  E ” . { Xu  - X ) { Y - Ÿ ) +  { Xu  -  X) (V). - F ) , F  =  E r .i

X  =  ( E l l  Xii +  E 1 .+ 1  Xu)  / n,  and g =  E l i  ( X . , - X ) '  +  E l _ + i  {Xu - X ) \  

Also, the variance-covariance matrix of a,m and bm can be written as

2 1
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V  vX
g g
vX sv
q nq

(2.17)

where s =  E “ , X& +  E lm + i X&, « =  (i -  fF/g) /  (n -  2), and « =  E l i  (Yi -  v f  ■

Step 2: If 6m € [xm, Xm+\\, then the least square estimators of 0  and 6 are

/3 l s  = /3 m ,  0 L S  =  0 m -  ( 2 . 1 8 )

Otherwise, repeat the step 1 for the next m  value. A unique value for m such that 

< 0LS <  Xm+1 C an be obtained from this algorithm.

The approximate conditional standard errors of /3ls («SB  ̂ ) and 0ls {SEg^^) can 

be obtained from the following equations. These equations are derived from the 

variance-covariance matrix of 3^. and bm for a unique m  by applying the delta method.

(2.19)

Note that these standard errors are conditioned on Xm <  0 l s  < Zm+i-

Furthermore, one can easily use a quantile-quantile (Q-Q) plot to assess the as­

sumption of LPC distribution for a given uncensored point data  set. The Q-Q plot 

can be obtained by plotting the pairs of ordered observations {Xu, Yi) for * =  1 ,..., m 

and {X<2i, Yi) for i = m  + 1, When the points lie very nearly along a straight 

line, the LPC assumption remains tenable. The straightness of the Q-Q plot can 

be measured by calculating the correlation coefficient of the points in the plot. The 

correlation coefficient for the Q-Q plot is defined by

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Formally, we reject the hypothesis of the assumption of the LPC distribution at level 

of significance a  if tq falls below the appropriate value in Table 2.2. Note that a 

single entry of this table is obtained by simulating a 1 0 0 , 0 0 0  random samples from 

the LPC distribution with given sample size n.

Table 2.2 Critical points for the correlation coefficient test of LPC 

Sample size Significance levels a  Sample size Significance levels a

n . 0 1 .05 . 1 0 . 2 0 n . 0 1 .05 . 1 0 . 2 0

5 .774 .848 .885 .914 45 .926 .954 .964 .973

1 0 .849 .896 .916 .937 50 .929 .957 .967 .975

15 .879 .915 .932 .949 55 .933 .960 .969 .977

2 0 .896 .928 .942 .957 60 .937 .962 .970 .978

25 .904 .937 .949 .962 75 .943 .967 .974 .981

30 .912 .942 .954 .966 1 0 0 .952 .972 .979 .984

35 .917 .947 .959 .969 2 0 0 .969 .983 .987 .990

40 .922 .951 .962 .971 300 .976 .987 .990 .993
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2.7 Bayesian estimators for complete data

As given in Section 2.4, the likelihood function of the LPC density for the unknown 

parameters can be written as

(2 .21)

We employ the following Jeffrey’s (1961) prior (see appendix A for expected in­

formation matrix calculation for LPC) for 0 and 9,

4 /3 ,0 ) =  ^, o O ,  0 >O,  (2.22)

where constant c does not depend on the parameters.

For our simplicity, now let =  (l +  $ (A ;i))"n iL i^n  a» =  =

^ ^ j l n z j ,  Sm2 =  ln^3=i, and dm = Sm? -  s ^ / m / k i .  Then the joint posterior

pdf of 0  and 9 can be written as, (see Berger 1985),

 T.) = Pnj9
^  ^  g ^ ^g.23)

where constant c does not depend on the parameters. Also the value of j  can be 

obtained from the following equations by writing =  oq,

where
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The value of /„  can be obtained from the following recursive formula with 7i =  $  (ao) 

and I 2 = «0 ^  (<̂ o) +

In+2 — +  aO-fn+1 -

The marginal posterior pdf of parameter 0  can be written as

V ^ c f c i^  çi p/c^/m+g^] \p-ao/dm?

(2.26)

{0/Xi, ..., Xfi) , >  0 .

(2.27)

The Bayes estimator for the parameter 0, 0^  under the squared error loss function 

can be obtained from the following equation

max 6 ^  for small n
0 B  —

m

ao+\/a^+An «  ,max ^ ----  for large n
(2.28)

Suppose in equation (2.28), the maximum value occurred at m =  mi .Then the stan­

dard error of 0-q can be obtained as

\ /  In.In+2 — In+\

Pb dm^n
(2.29)

m=mi

The generalized maximum likelihood estimator for parameter 0, 0 qulj can be 

obtained from the following equation

0GMU — \/4 ( w -  1 ) + (2 dm) (2.30)
m=mi

The marginal posterior pdf of parameter 6 can be written as

7 t ( 0 / z i ,  . . . , z „ )  =  7r{0 ,0 /x i , . . . ,Xn)d0 ,  9 > 0. (2.31)

As before, the Bayes estimator for the parameter 9, 9b under the squared error 

loss function can be obtained from the following equation
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&  =  min 0 7 T (0 /z i ,Z ^ )d 0  =  ^ 2  3 2 )
1" " PnJVm

where

Jn -  J 7  P"~' ( 0  + nSm — m S n \  a ,

m /3 + 2m/32

(2.33)

does not exist. Hence the Bayes estimator, 0b does not exist. Similar problem 

occurred with the Lognormal (Zellner 1971).

Now we consider the conditional posterior pdf of parameter 0 (> 0) given /3 (> 0),

7t( /3 ,0 /z i , . . . ,z „)
7t( 0 / / 3 , Z i , . . . , Z „ )

7t ( / 3 / z i , . . . , Z „ )

_ _^V^_g-|m(/3/fci)2(ln0-(sm+nfcf//3)/T; (2.34)

Clearly, 7t( 0 // 3 , Zi, ...,z„) is lognormally distributed with p — (sm + nk l /0 )  /m , and

fc?^  Hence the conditional Bayes estimator for parameter 0 given 0  is.

^ s/ I =  /̂ B I =  exp I I Sm +  ^  +  - ^
0B 20b

m (2.35)

m—mi

The conditional standard error of 0b /  { 0  = 0 b ] can be obtained as 

BE =  exp I I Sm +  —  +  —
2)9B> m=m\ (2.36)

The generalized conditional maximum likelihood estimator for 0 is,

nk\  k\
0 GML, /3 =  /3,GMLi =  exp Sm + m

0GULi 0,GMLi, m=mi
(2.37)
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The generalized maximum likelihood estimators for parameters 0  and 0, i.e. ^gmLh 

and 0GMLii can be obtained from equations (2.38) and (2.39). These equations are 

derived by differentiating the joint posterior density given in equation (2.23) with 

respect to the parameters 0  and 0 .

(m s m 2  -  S m ) 0^ +  ijnSn ~  TiSm) k \0^  -  m n k l0 ^  -  n k ^ 0  +  =  0 | ^  .

2.38
2.39

Where, at rn =  mo, the posterior mode has the highest density value.

2.8 Goodness-of-fit tests

In this section we consider the test of fit based on empirical distribution function 

(EDF). The EDF is a step function calculated from the sample which estimates the 

population distribution function. EDF statistics are measures of discrepancy between 

the EDF and the given distribution function, and are used for testing the fit of the 

sample to the distribution. Here we consider our two-parameter lognormal-Pareto 

composite distribution. As we know the EDF test statistics are much powerful than 

the chi-squared test statistic, for example, in order to perform the chi-squared test 

data must be grouped in which case we may lose some information.

Extensions of EDF statistics to situations involving randomly censored data, the 

Kaplan-Meier (1958) estimator is generally used for the true distribution. For analog 

versions of the Kolmogorov-Smirnov, Kuiper, and Cramér-von Mises are found in 

Koziol (1980), Nair (1981), or Fleming et al. (1980). But, these three versions 

are not computationally convenient and hence we did not used such versions in this 

dissertation.
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The following definitions are taken from D’Agostino and Stephens (1986).

1. The Empirical Distribution Function (EDF)

Suppose a given random sample of size n  is Xi, ...,X„ and let X(i) <  ... < X(„) 

be the order statistics: suppose further that the distribution of X  is F{x). Here we 

assume this distribution to be continuous. The EDF is F„(x), and is defined as

„  , , number of observation < x
F nix )  = --------------------- ------------------------; - o o  <  z  <  oo.

More precisely, the definition is

0 , z  < X(i)

Fn(z) =  ■{ X(i) < z  <  X(i+i),i =  l , . . . , n - 1  •

Thus Fn{x) is a step function, calculated from the data; as z  increases it takes step 

up of height 1 /n  as each sample observation is reached.

2. Kolmogorov - Smirnov Statistics (Supremum Sta,tistics)

The first two EDF statistics, and D~ are respectively, the largest verti­

cal difference when F„(z) is greater th an E (z), and the largest vertical difference 

when F„(z) is smaller than F(z); formerly, D+ =  s\ip^{Fn{x) — F(z)} and D~ =  

supj,{F(z) — Fn{x)}. For calculation purposes, we can rewrite these statistics as, 

D+ =  maxi{^ -  F{x(i))} and D~ = max^{F(z(q) -

The most well known EDF test statistic is D { Kolmogorov 1933), and is defined

as

D =  max(D"^, D~).
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For large n, value of D  equals to zero, since n —>■ oo, |F„(z) — F{x) \ decreases to zero 

with probability one. Hence Fn(x) is a consistent estimator for F{x).

3. Anderson - Darling Statistic

Anderson - Darling (1954) test statistic is given by

=  - n - ( l / n ) ^ ,  (2 / - l ) [ ln F (x ( i) )+ ln { l-F (z („ + i_ i) )} ]

=  —n — (1 /n ) ^  ] [(2 / — 1 ) lnF(z(j)) +  (2 n +  1  — 2i) ln{l — F(z(q)}].

Anderson-Darling test statistic is much powerful than the Kolmogorov-Smirnov test 

statistic. Specifically Anderson-Darling test statistic is much sensitive to the tail area 

of the data distribution whereas the Kolmogorov-Smirnov is more sensitive to the 

middle portion of the data distribution.

We consider four different cases to calculate the upper percentage points of these 

statistics for the LPC distribution.

Case 0: both 0  and 6 known;

Case 1: 0  known, 6 unknown;

Case 2: 0  unknown 9 known;

Case 3: both 0  and 9 unknown.
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Table 2.3 Upper tall percentage points of D and statistics, case 0

n .250

Significance 

.100 .050

level a 

.025 . 0 1 0 .005

Case 0. Statistic D

5 .424 .510 .564 .613 . 6 6 6 .704

1 0 .306 .369 .409 .446 .488 .517

2 0 . 2 2 0 .265 .294 .320 .351 .373

50 .141 .170 .189 .205 .225 .239

1 0 0 . 1 0 0 . 1 2 0 .134 .146 .161 .170

500 .045 .054 .060 .066 .072 .076

1 0 0 0 .032 .038 .043 .047 .051 .054

Case 0. Statistic

5 1.237 1.950 2.539 3.164 3.992 4.611

1 0 1.250 1.944 2.510 3.102 3.923 4.569

2 0 1.243 1.941 2.508 3.097 3.924 4.561

50 1.242 1.922 2.496 3.083 3.911 4.501

1 0 0 1.249 1.947 2.504 3.072 3.890 4.486

500 1.249 1.938 2.485 3.055 3.813 4.433

1 0 0 0 1.249 1.936 2.485 3.067 3.863 4.474
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Table 2.4 Upper tail percentage points of D and statistics, case 1

n .250

Significance 

.100 .050

level a  

.025 . 0 1 0 .005

Case 1. Statistic D

5 .363 .435 .478 .519 .566 .593

1 0 .262 .315 .349 .379 .415 .439

2 0 .188 .226 .252 .274 .301 .319

50 . 1 2 1 .145 .161 .176 .194 .206

1 0 0 .086 .103 .115 .125 .138 .146

500 .039 .047 .052 .057 .062 .066

1 0 0 0 .028 .033 .037 .040 .044 .047

Case 1 . Statistic Â

5 .766 1.138 1.432 1.731 2.146 2.543

1 0 .771 1.154 1.460 1.767 2.234 2.582

2 0 .781 1.170 1.483 1.825 2.262 2.614

50 .776 1.168 1.486 1.816 2.242 2.581

1 0 0 .778 1.171 1.484 1.821 2.289 2.622

500 .780 1.173 1.500 1.838 2.313 2.705

1 0 0 0 .781 1.174 1.488 1.827 2.287 2.611
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Table 2.5 Upper tail percentage points of D and statistics, case 2

Significance level a

n .250 . 1 0 0 .050 .025 . 0 1 0 .005

Case 2. Statistic D

5 .416 .500 .562 .618 .693 .740

1 0 .296 .358 .398 .434 .476 .506

2 0 . 2 1 2 .257 .287 .313 .345 .366

50 .136 .164 .183 . 2 0 0 . 2 2 0 .235

1 0 0 .096 .117 .130 .143 .157 .166

500 .043 .053 .059 .064 .071 .075

1 0 0 0 .031 .037 .042 .046 .050 .054

Case 2. Statistic A^

5 1 . 1 0 1 1.749 2.404 3.209 4.360 5.822

1 0 1 . 1 0 0 1.736 2 . 2 1 2 2.688 3.376 3.978

20 1.073 1.740 2.275 2.805 3.468 4.032

50 1.071 1.744 2.307 2.881 3.657 4.221

1 0 0 1.069 1.745 2.291 2.871 3.609 4.219

500 1.061 1.723 2.281 2.857 3.682 4.259

1 0 0 0 1.071 1.754 2.310 2.883 3.648 4.281
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Table 2.6 Upper tail percentage points of D  and statistics, case 3

n .250

Significance level a 

.100 .050 .025 . 0 1 0 .005

Case 3. Statistic D

5 .292 .336 .364 .386 .407 .419

1 0 .215 .249 .272 .292 .316 .331

2 0 .155 .181 .199 .214 .232 .245

50 . 1 0 0 .117 .128 .138 .150 .158

1 0 0 .072 .084 .092 .099 .108 .114

500 .032 .038 .041 .045 .049 .051

1 0 0 0 .023 .027 .029 .032 .035 .037

Case 3. Statistic

5 .477 .615 .715 .803 .911 .996

1 0 .486 .646 .759 .872 1 . 0 2 2 1.129

2 0 .487 .654 .779 .897 1.064 1.187

50 .487 .661 .790 .917 1.085 1.209

1 0 0 .487 .658 .785 .914 1.084 1.205

500 .490 .663 .791 .918 1.087 1 . 2 1 0

1 0 0 0 .490 .664 .792 .926 1.098 1.218
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2.9 Maximum likelihood estimators for right censored data

In most cases with insurance payments, there is a limit for the maximum amount 

of payment, i.e., the data are Type I right censored. In this section, we look at the 

estimation of model parameters of the LPC distribution for such data.

Suppose we have n + f  sample values and /  of those values are censored at u and 

as in Section 2.4 the remaining n uncensored ordered values are: Xi ,  X 2 , X n -  If 

the unknown parameter 6 is in between the observation and m  +  observation, 

the log-likelihood function is given by

lnL(/3,0 ) =  - { n  + f ) h i { l  + ^  (ki)) + n l n 0  + {n + f ) 0 l n 6

~{0  +  1) ~~ 0.5(/3/A:i)^ V0{xi/d). (2.40)

An algorithm to evaluate maximum likelihood (ML) estimators:

Step 1: for each m (m  =  l , 2 , . . . , n - l ) ,  calculate 0rn and 6 m as follows:

For m =  1, =  n ( /ln (n /z i)  -f In {xi/xi))~^

0 1  =  Zi(«/zi)P+F«)/fe^ n iL i .

Otherwise

-F +  j  /  (2A), (2.41)

and

9m  =  ( e x p  ( ( n  +  f ) k f / 0 m ^  n r  , (2 .4 2 )

where A = (InzJ^ -  (ZliTiInzj)^, and C — m f l n u -  (n + +

If 9m is in between < 0^ < z ^ + i, then the ML estimators of 0  and 0 are
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/3ml =  0m, 0ML =  0m- (2.43)

Let us rewrite the equation (2.42) such that

((n  +  f )k j/0rn)  +  T Z i  H ^ i /9 m )  = 0. (2.44)

Prom equation (2.44), there must be at least one z* value less than Om, since n,fci, 

and am are positive values. Therefore the ML estimate of 0 cannot occur at z%.

Step 2: if there is no solution for 0 (i.e., z„ <  6m) with the conditions given in 

Step 1, the ML estimate of 0  and 0 are

)&L =  y  (2D ), (2.45)

and

0ML -  (exp ((n  +  f )k l /0Mhj  11"  ̂ , (2.46)

where D = n ^ 1 ^ = 1  (Inz*)^ -  (Y]Li In z i)^ , and E  =  ln(u/zj).

In this case as in Section 2.4, if 0ml is closer to z% or Xn, it is easy to show that 

the LPC distribution is inappropriate and depending on the situation, one need to 

use the Pareto or the lognormal distributions respectively.
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2.10 Illustrative examples 

Example 1: Simulated data set.

The following small data set is simulated from the LPC distribution with param­

eters 0 — 1 and 9 — 1 0 .

Data set: 7.00, 7.69, 9.19, 9.42, 9.48, 12.21, 15.16, 18.37, 30.07, 6816.38 

Table 2.7 provides the estimated parameter values and their standard errors of the 

fitted LPC distribution using the three different estimation methods. Furthermore, 

Kolmogorov-Smirnov (D) and Anderson-Darling (A^) test statistic values are added 

to this table. Figure 2.4 illustrate the joint posterior pdf surface of 0  and 6 for the 

simulated data set. Its contours are given in Figure 2.5.

Table 2.7 Estimated parameter, D  and A  ̂ values for simulated data

Estimation Method Parameter values D, A^

Maximum likelihood j:  =  0.9799 ±  0.3020 D =  0  .216

0 m l  ±  SE^^^ -  11.2685 ±  2.1517 A^ =  0.770

Least square ^  ±  B E ^  =  0.5226 ±  0.0989 D  =  0.286

0LS i  BEg^  ̂ =  9.6195 ±  3.4880 A2 =  1.142

Bayesian ^ d z B E g  = 0 .8092  ±0.2180
0 B

D = 0.279

0B ±  BEx =  13.2068 ±  2.1623 A^ =  1.285

Generalized rnle I 

(marginal) 

Generalized mle II

-̂ GML, ±  BE% -  0.7640 ±  0.2227
PGMLj

0GML. ±  SEk = 12.8132 ±  2.1978
^GMLj

^GMLn =  0.8360

D  =  0.262 

A2 =  1.142 

D = 0.261

(joint) ^MLn =  12.6272 A2 =  1.104
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Figure 2.4 Joint posterior pdf surface of (3 and 9 for the simulated data.

22  -

14 -

10 -

0.1 0.6 1.1 1.6
B eta

Figure 2.5 Joint posterior pdf contours of /3 and 6 for the simulated data.
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Example 2: Danish fire insurance loss data.

This actuarial data set (see appendix B) is taken from Cooray and Ananda (2005). 

The complete Danish data set consist of 2492 fire insurance losses in Danish Krone 

(DKK) from the years 1980 to 1990 inclusive. The loss figure is a total loss figure 

for the events concerned and includes damage to buildings, furniture and personal 

property as well as loss of profits.

The recorded data have been suitably adjusted to reflect 1985 values. The adjusted 

loss values in Danish Krone range from (in millions) 0.3134041 to 263.2503660. The 

figure 2 . 6  illustrate the histogram of the fire loss data.

As in the previous example, Table 2.8 provides the estimated parameter values and 

their standard errors of the fitted LPC distribution using the three different estimation 

methods. Kolmogorov-Smirnov (D) and Anderson-Darling (A^) test statistic values 

are added to this table. Figure 2.9 illustrate the Q-Q plot of lognormal, Pareto and 

LPC distributions to the Danish data under ML estimation method. According to 

this quantile plot, one can clearly see that the LPC distribution is more reasonable 

to model the Danish data than other models.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—I
2 5 0

— I— 

1 0 0
— I—

1 5 0

— j—  

2 0 00 5 0

F i r e  l o s s e s  i n  m i l l i o n s

Figure 2.6 Histogram of Danish fire loss data.

Table 2.8 Estimated parameter, D and values for Danish data

Estimation Method Parameter values D, 712

Maximum likelihood & L  ±  = 1.4363 ±  0.0270 D =  0.029

0ml ±  =  1.3851 ±  0.0135 A2 =  4.258

Least square Â.S ±  =  1.4126 ±  0.0017 D  =  0.036

^Ls i  — 1.4046 ±  0.0013 =  4.374

Bayesian ^b ±SB^  =  1.4363 ±0.0000
mb

D — 0.029

0 B ± S £ k  =  1.3852 ±0.0117 A2 =  4.258

Generalized mle I #GML, ±  SB ^ = 1.4358 ±  0.0005PGMhj
D = 0.029

(marginal) 0GMU ± S £ k  =  1.3852 ±  0.0117PGMLj
A^ =  4.246

Generalized mle II /̂ GMLii ~  1.4365 D  =  0.029

(joint) ^MLn =  1.3850 A2 =  4.264
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Figure 2.7 Joint log posterior pdf surface of and 6 for the Danish data.
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Figure 2.8 Joint log posterior pdf contours of /3 and 6 for the Danish data.
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Table 2.9 Estimated goodness-of-fit values for

different distributions

Distribution %9) D

LPC -3877.84 0.029 4.2585

Lognormal -4433.89 0.127 85.493

Pareto -5675.09 0.408 496.64

Loglogistic -4280.59 0.114 52.502

Inverse Gaussian -4516.31 0.172 137.48

Gamma -5243.03 0 . 2 0 1 212.58

Weibull -5270.47 0.255 219.37

: 0

i

Lognormal
s

8

S

8

g
Pareto

o

0 30050 1 0 0 150 200 250

Fire loss data (in millions)

Figure 2.9 Q-Q plot of Danish data for the three distributions.
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2.11 The Weibull-Pareto composite distribution

The Weibull distribution, which is frequently used for life data analysis, is com­

posited with the Pareto model to obtain a flexible, reliable long-tailed parametric 

distribution for modeling unimodal failure rate data. This smooth continuous compo­

sition, Weibull-Pareto composite (WPG) family, behaves as a two-parameter Weibull 

density up to an unknown threshold value, and as a two-parameter Pareto density 

for the remainder. The two-parameter resulting composite density is similar in shape 

to the Weibull density, yet the upper tail being larger than the Weibull density, and 

quite similar in the tail behavior to the Pareto density. The hazard function of the 

composite family accommodates decreasing and unimodal failure rates, which are sep­

arated by the boundary line of the space of shape parameter, gamma, when it equals 

to a known constant. The maximum likelihood parameter estimation techniques are 

discussed by providing approximate conditional coverage probabilities for uncensored 

samples. The advantages of using the new family are demonstrated and compared 

by illustrating well-known examples: guinea pigs survival time data, head and neck 

cancer data, and nasopharynx cancer survival data. Another set of authors (Preda 

and Crumara 2006) is formulated this density to compare with LPC density (Cooray 

and Ananda 2005) by analyzing a simulated data set. However here our aim is to 

discuss the flexibility of WPG density and its hazard function for modeling survival 

data.
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2 .1 1 . 1  Motivation to medical diagnostics

The Weibull distribution, having monotonie increasing, monotonie decreasing, and 

constant hazard rates, is often used for modeling survival data. However, this density 

is not an appropriate distribution to model non-monotonic failure rates, in particular 

bathtub or unimodal shapes. Even though the emphasis has traditionally been placed 

on models with bathtub-shaped hazard functions, the variety of applications in biosta- 

tistical area is appropriately modeled by the densities with unimodal (hump-shaped) 

hazard functions. This can be illustrated by such examples as survival times of guinea 

pigs infected with different doses of virulent tubercle bacilli (Bjerkedal 1960), nonre- 

sectable gastric carcinoma data (Stablein et al. 1981), nasopharynx cancer survival 

data (West 1987), and head and neck cancer data (Efron 1988).

Since there is an initial increase in risk after successful surgery in biomedical area, 

the unimodal hazard rate is often used to model survivability. This risk, due to infec­

tion, hemorrhage, or other complications after the procedure, is followed by a steady 

decline as the patients recovers. In another similar example found in epidemiology, 

patients with tuberculosis have a risk that initially increases and then decreases after 

the treatment.

The well-known such parametric distributions as loglogistic, lognormal, Birnbaum- 

Saunders, and inverse Gaussian, which produce unimodal-shaped hazard functions, 

are desirable for analyzing unimodal failure rate data due to their computational sim­

plicity and popularity among users. However, when these models are inadequate or 

inappropriate, alternative models or higher order parametric families must be consid­

ered for the purpose of modeling such failure rate data. In this regard, nonresectable
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gastric carcinoma data (Stablein et al. 1981) was analyzed by Ghitany (2001) using 

a two-parameter compound Rayleigh distribution, which is earlier used by Greenwich 

(1992) to model uncensored data regarding the survival times of guinea pigs infected 

with virulent tubercle bacilli (Bjerkedal 1960). This unimodal hazard rate function is 

particularly useful when the peak time of failure rate is prime interest. For example, 

if the peak failure time of certain individuals is less than their mean failure time, 

immediate care must be taken in order to reduce the risk of those individuals.

Furthermore, Glen and Leemis (1997) have used another two-parameter family of 

lifetime distribution, the arctangent survival distribution, for the purpose of modeling 

unimodal failure rate data. Efron (1988) used linear (three parameters), cubic (five 

parameters), and cubic-linear (six parameters) models to analyze the arm A head 

and neck cancer data. Later, Mudholkar et al. (1996) obtained an improved fit 

for the arm A head and neck cancer data using three-parameter generalized Weibull 

distributions. A two-parameter composite family of distribution, which is the main 

topic of this Section, is used to analyze the arm A head and neck cancer data. These 

analyses reveal tha t the underlying hazard function for the head and neck cancer 

data has quite thick upper tails with initial high-risk period. Even though the high- 

risk period can be modeled by the Weibull type distributions, one can recognize the 

partial-necessity of Pareto type families for fitting the tail area of such failure data.

In fact, the two-parameter Pareto model supports in modehng longer lifetimes, 

but fails to cover the behavior of shorter lifetimes. Similarly, the two-parameter 

Weibull model covers the behavior of shorter lifetimes than it does for the longer 

lifetimes. Taking into account the tail behavior of both short and long lifetimes, a
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natural composition from the Weibull and the Pareto family is found for the purpose 

of modeling unimodal failure rate data. The two-parameter Weibull density is up 

to an unknown threshold value and the two-parameter Pareto density for the rest 

of the model. Differentiability and continuity at the threshold point yield a fine 

smooth density function called the Weibull-Pareto composite (WPC) distribution 

with two unknown parameters. The resulting density has the larger right tail than the 

Weibull density has, and is similar to the Weibull density. Cooray and Ananda (2005) 

introduced one such two-parameter composition: the lognormal-Pareto composite 

(LPC) distribution for analyzing highly positively skewed data, which usually arise 

in insurance industry and actuarial sciences. However, the LPC is not suitable for 

survival data analyses due to its computational difficulties with the hazard function or 

survival function. Alternatively, the WPC distribution is a useful lifetime distribution 

because it has not only closed-form survival and the hazard functions but also a more 

flexible left tail than the LPC distribution. Finally, the heavy right tail of the WPC 

distribution is useful for evaluating survivors that fail with less risk once they have 

survived a certain time threshold.

2.11.2 Model derivation

Let A  be a random variable with the pdf

. (2.47)
I c/2 (z) if 6 < X < 00

where c is the normalizing constant, f i  (x) has the form of the regular Weibull density, 

and / 2  (x) has the form of the two-parameter Pareto density, i.e.,
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h  ( ^ )  =  ( r / x )  {x/<f>y exp  { -  {x / ( f )y]  , x  >  0, (2.48)

and

Î 2 (x) =  i'y/x) {O/ x f  , x > e .  (2.49)

Here 'y,0,T,(f) are unknown parameters such that 7 > O , 0 >O, r >O, ( / ) >O.

Let us impose the continuity and differentiability conditions at 6,

/ i  m = A  («) , / ;  ( « ) = Â  m , (2 -5 0 )

where f  (6) is the first derivative of /  (x) evaluated at Û. These conditions guarantee 

that we have a smooth probability density function. These two restrictions reduce 

the total unknown parameters from four to two. One can show that (see the proof in 

the end of the section) this composite density can be reparameterized and rewritten 

as

„  , _ I  S ë S ( D * - p { - ( ^ ) ( f ) * }  ‘ f

i  ( $ % )  (Î) ( ! ) '  if « < .  <  0 0  ’

where is a known constant which is given by the positive solution of the equa­

tion exp ( 1  +  ^) =  A: -t- 1. This value is Ag =  2.857334826. Here r / q  =  k2 and 

c = (k2 + l) /  (2 & 2  4 - 1). So this natural composite probability density has only two 

unknown parameters 0 > 0, and 7  >  0. It should be mentioned here that well-known 

distributions such as Normal, Gamma, inverse Gaussian, Birnbaum-Saunders, etc.,
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do not produce a simplified composite distribution with Pareto distribution like the 

WPC distribution given above.

The cumulative distribution function ( f  (æ)), hazard fxmction (/i(x)), and the 

quantile function (Q{u)) are, respectively, given by

f  *=2 + 1  \
\2k2 + l )

 ̂ \ 2k2+l J \x)

\  k2 J \e) J

h(x)
{ h  +  1 ) (^) ( f  ) 7 /C2

\  ^ 2 + 1 )

- 1

2
X

and

Q{u) — < "[(î*) 7<=2

if Q < X < 6

if 9 < X < 00

if 0 <  X < ^

if 6 < X < 00

(2.52)

(2.53)

if 0  <  u <  k2 / ( 2 & 2  +  1 ) 

if /%/(2 & 2  +  1 ) <  u < 1

(2.54)

0 . 02 -

W
0.01-

Figure 2.10 Weibull (dotted line), Pareto (dashed line), and W PC (solid line)

density curves ( 7  =  1, 0 =  50).
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Figure 2.10 illustrates the shape of the pdf of the W PC distribution, the Weibull 

distribution, and the Pareto distribution. In this figure, the two densities (Weibull 

and Pareto) are joining at 0 =  50 to make the WPC density. This composite density 

has a positive mode at Q |  |  )7 ^ 2  >  1, and a thicker tail than the Weibull

density.

In Figure 2.10, the dotted line, the dashed line, and the solid line indicate Weibull, 

Pareto, and W PC distributions respectively. From Figure 2.10, one may clearly see 

that the W PC density does not fade away to zero too quickly like the Weibull.

The shapes of the hazard function given in equation (2.53) of the WPC distribution 

is bounded by the parameter space 7  > 0  such that monotone decreasing ( 7  < I/&2 ) , 

and unimodal shape ( 7  >  I/&2 ) • In addition, the peak failure time, tp can be obtained 

as a solution of the following equation.

( l - 7 f c 2 ) e x p ^ - | i ? ^ ) ( | )  I + 7 * 2  ( I )  +  ( 1  -  T * 2 )  ( ; ^ )  =  0 .

(2.55)

Furthermore, the moment, E  {X*) of the composite family for t <  7  is given

by

2 /u2 +  1 / 1 \ / S 2  +  I y  \  7^ 2  /  V 7^ 2  ^2  J — t

(2.56)

Here, F(.) and F ( .;.) are complete and incomplete gamma functions such that, F(x) =  

> 0, F(x;y) — Jq -, x, y > 0. The moment does not

exist for t >  7 .

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The density and hazard surface for scale parameter 9 = 1 are respectively given 

in Figure 2.11 and Figure 2.12 to illustrate the shape variation with respect to the 

shape parameter 7  of the distribution.

Gammal

Figure 2.11 Density surface of the W PC distribution for 9 = 1.

Gammal

Figure 2.12 Hazard surface of the W PC distribution for 0 =  1 .
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P ro o f o f  the com posite density  g iven in  equation  (2 .5 1 );

For the density given in equation (2.47), once we impose the continuity and dif­

ferentiability conditions given in equation (2.50), we get 1 -h ^ =  exp ( l  -F ^) =  .

Since f  {x)dx = 1 , we get c  ̂ f i  (x) dx +  1  j  =  1 , here

f i { x ) d x  = ( r /x )  (x / 0 )^exp{-(x/(/»)''}dx =  l - e x p | - |  =  r / ( 7  + r ) .

Therefore, c =  ( 7  +  r)  /  ( 7  +  2r) which yields the equation (2.51).

2.11.3 Parameter estimation under the least square method

Let %2 , ..., Xn  be a random sample from the W PC distribution given in equa­

tion (2.51). Suppose the unknown parameter Ô is in between the observation and 

m  +  1**̂ observation. Therefore, it is reasonable to assume that this is an ordered 

random sample, i.e., xi <  xg < X3  <  ....x^ < 9 < Xm+i < ... <  x». Then the least 

square estimators (Gujarati 2002) can be calculated from the following linear form 

which is obtained by taking the natural logarithm of the quantile function given in 

equation (2.54) and replacing the cumulative probability with {i — 0.5)/n. Where n 

is the total number of data points and i — 1,2,3,..., n.

aXii + b if Yi <b
y; =   ̂ , (2.57)

aX2i + b if b <Yi

where Xii =  ^ I n ( s f e )  1  -  ( f ï f )  ( F " ) }] W »  =  -  in { ( t ÿ i )  ( M F ) } .k2

a — 1 / 7 , b — ln0, Yi =  InXj, i =  1,2,3, . . . , n .

An algorithm to evaluate least square (LS) estimators

Step 1: calculate 7 ^  and 9m from the following equations for m — 1 (m — 1,2,...)
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7m = 1/om, 9 m  = exp(6m)- (2.58)

Here Om and bm are evaluated from the following equations.

E ” . -  X )  {Yi - Ÿ ) +  E r™ + 1  { X2i - X ) { y , -  Ÿ )
- 1 Um —  1 —  u

(2.59)

Where % =  ( E ” , X u  + EL™ +i % )  /» . and F  =  E L i  «■

5tep g; If 9m E [xm, Xm+i], then the least square estimators of 7  and 9 are

7LS =  7m , ^LS =  (2 .6 0 )

otherwise, repeat the step 1  for the next m  value. A unique value for m  such that

Xm <  L̂S < Xm+i Can be obtained from this algorithm.

Approximate conditional standard errors (Fe) of 7 ls and 0ls can be obtained from 

the following equations which are derived from the variance-covariance matrix of dfn 

and bm for a unique m  by applying the delta method.

Se{9m) = exp{bm)Se(pm), Se^/m) =  a^^^Se{am).  (2 .6 1 )

Where Se{bm) and Se{am) are standard errors of the estimators and bm- Note

th a t  th e s e  s ta n d a r d  errors are c o n d it io n a l o n  X m  <  ^ ls  ^  ^ m + l -

One can easily use a quantile-quantile (Q-Q) plot to assess the assumption of 

W PC for a given uncensored point data set. The Q-Q plot can be obtained by 

plotting the pairs of ordered observations {Xu, Yi) for i = and (%2 «, Yi) for
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i = m +  1, When the points lie very nearly along a straight line, the WPC 

assumption remains tenable. The straightness of the Q-Q plot can be measured 

by calculating the correlation coefficient of the points in the plot. The correlation 

coefficient for the Q-Q plot is defined by

-  X) {Yi -  7 ) + (X2, -  X) (Yi -  Ÿ)

v'Ei, {Xu - x f + EF+. {X2i - x )y z t i  {Yi -yf'
(2.62)

Table 2.10 Critical points for the correlation coefficient test of WPC

Sample size Significance levels a Sample size Significance levels1 a.

n . 0 1 .05 . 1 0 . 2 0 n . 0 1 .05 . 1 0 . 2 0

5 .776 .848 .884 .913 45 .924 .952 .962 .972

1 0 .838 .890 .912 .934 50 .929 .956 .965 .974

15 .869 .911 .929 .946 55 .933 .958 .967 .975

2 0 .886 .924 .939 .954 60 .935 .960 .969 .977

25 .897 .932 .946 .959 75 .944 .966 .973 .980

30 .907 .939 .952 .964 1 0 0 .952 .972 .978 .987

35 .914 .945 .956 .967 2 0 0 .970 .982 .986 .990

40 .920 .949 .960 .970 300 .977 .987 .990 .992

Formally, we reject the hypothesis of the assumption of W PC at level of signifi­

cance a  if tq falls below the appropriate value in Table 2.10. Note that a single entry 

of this table are obtained by simulating a 100,000 random samples from the WPC 

distribution with given sample size n.
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2.11.4 Parameter estimation under the likelihood method

Let X i , X 2 , .. . iXn  be a random sample from the W PC distribution given in equa­

tion (2.51). As before by assuming the ordered random sample, i.e., xi <  X2  <  X3  < 

....Xm <  ^ < Xm+\ <  ... <  Xn, the log-likelihood function can be written as

l n L ( 7 , 6>) =  ( w  +  n ) ln ( A ;2 +  l ) - ( l + 7 ) J ] r = i l n X i

+  (A=2 +  1 ) 7 1 ]™ 1 In Xj +  n In 7  -  n In (2 ^ 2  +  1 )

-  Z H i [ j Y   ̂+ ' y i n - m { k 2 + l))lnd.  (2.63)

The maximum likelihood (ML) estimators of 7  and 6, 7 ml and 6ml can, respectively, 

be obtained by maximizing the log-likelihood function (/(0) =  lnL{'y,6)). In this 

case, the log-likelihood function is maximized by solving the score equation U{9) =  

=  0. For large samples, asymptotic normality results hold for the estimated 

parameters values, i.e., ^/n{0 — 0 )-^N 2 (O, F ^ ( 0 )), where N 2  denote the bivariate 

normal distribution and i{G) is the observed information matrix (Efron and Hinkley 

1978) of 6  such that i{0) = The following algorithm provides an easy and

straightforward way to compute the maximum likelihood estimators.

An algorithm to evaluate ML estimators

Step 1: calculate from the following nonlinear equation for m =  a +  1 (m =  

a +  l , a  +  2 , ...; where a =  \n/{k 2 +  1)J).

Xi
{ n - m  {k2 + 1 )) U m ' +  ( ^ 2  +  1 ) T Z i  Inxj -  E r= i Inxi +  ( n /% )  = 0 .

V l^i=i J
(2.64)

The corresponding values of 6, 6m, can be obtained from
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6m =  + 1) E H i x7’"^V (m (fc2  +  1) -  n^j ^. (2.65)

Step 2: If 6m E [x^, x^+i], then the ML estimators of 7  and 6 are

7 m l  =  7 m , & L  =  6m, ( 2 .6 6 )

otherwise, repeat the step 1  for the next m  value. As before, a unique value for m  such 

that Xm <  % L  <  Xm+i can be obtained from this algorithm. Furthermore, one can 

observed these estimators are such that ^ m l  =  min [êm] and 7 m l  =  max (7 ^ ) . How-
m  \  /  m

ever, the corresponding log-likelihood value, l{6), is not equal to maxlnL(7 m,^m)- 

But, it is equal to lnL(7 ML,%L)- Hence, the associated asymptotic standard errors 

are conditional on Xm < ^ml < x^+i for a unique m  value. Therefore, the calculated 

asymptotic standard errors given in Section 2.11.7 using the observed information 

matrix, i{6),  are conditional standard errors.

2.11.5 Approximate coverage probabilities for ML estimators

The coverage probabilities for the maximum likelihood estimation method with 

intended confidence levels a  =  0.1 and a =  0.05 are given in Table 2 .1 1 . These 

coverage probabilities are based on 1 0 , 0 0 0  simulated random samples from the density 

given in equation (2.51). The random samples are generated by plugging the known 

values of parameters 7  and 6 (say 7  =  0 .2 , 6 = 1 0 ) to the quantile function given 

in equation (2.54). In addition, n (say n  =  10) number of ordered uniform random 

samples from the uniform distribution, u ~  1 /( 0 , 1 ) is required to substitute as u  in 

equation (2.54). In that way, one random sample with size n (say n =  10) from the 

WPC distribution with parameters 7  and 6 (say 7  =  0.2, 6 = 10) can be generated.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.11 Approximate coverage probabilities of WPC

n = 1 0 2 0 50

90% intended e = 1 0 20 50 1 0 20 50 1 0 2 0 50

7 =  0 . 2 7 : .914 .913 .911 .909 .906 .902 .904 .906 .908

e : .775 .782 .780 .829 .828 .829 .870 .872 .867

7 =  0.5 7 : .911 .909 .906 .907 .902 .902 .900 .901 .908

6-. .828 .821 .824 .866 .860 .869 .892 .886 .887

7 =  1 . 0 7 : .915 .912 .915 . .907 .903 .901 .907 .904 .904

0-. .823 .831 .827 .871 .863 .865 .887 .890 .888

7 =  2 . 0 7 : .910 .915 .910 .906 .907 .908 .902 .901 .905

Q ; .823 .827 .832 .866 .859 .868 .882 .883 .887

95% intended

7 =  0 . 2 7 : .959 .962 .962 .955 .957 .953 .951 .955 .954

0  : .804 .807 .811 .855 .857 .856 .899 .901 .897

7 =  0.5 7 : .961 .958 .959 .957 .953 .953 .949 .954 .954

6> : .872 .863 .869 .910 .903 .910 .935 .931 .931

7 =  1 . 0 7 : .964 .959 .965 .957 .953 .953 .952 .952 .949

g : .879 .880 .879 .919 .917 .913 .936 .940 .939

7 =  2.0 7 : .963 .964 .962 .955 .957 .959 .951 .951 .955

6-. .880 .884 .885 .920 .915 .922 .936 .934 .939
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In this simulation study, ten thousand such samples are generated to get a single cell 

value in Table 2.11. For this purpose, the subroutine ZBREN in the IMSL (1991) 

package is used to solve the nonlinear equation given in (2.64). The approximate 

1 0 0  ( 1  — a) % confidence intervals for parameters, 7  and 6 are calculated by using 

( 7  -  Zocj^SE^, 7  +  Zaj^SEfy) and [o -  Za/^SEg, 6 +  Z ^ j i S E ^  respectively. Where 

SEk, and SE-^ are asymptotic standard errors of 7  and d respectively.

From Table 2.11, one can clearly see that when the sample size increases, the 

approximate coverage probabilities for the parameters under the maximum likelihood 

method are getting closer to the intended coverage probabilities. For small samples, 

the coverage probabilities of parameter 6 are somewhat lower than the intended level. 

But, one can obtain a desired confidence level by appropriately adjusting the confi­

dence coefficient a. Moreover, the procedure gives a slight over coverage for parameter 

7  for small samples.

2.11.6 The ML estimation for Type I right censored data

In order to model the Type I right censored data, using the WPC distribution, 

one can extend the log-likelihood function given in equation (2.63) by introducing an 

indicator variable & such that

&
0 if  observation is right-censored

, i = 1,2, ...,n.
1 if observation is not right-censored

(2.67)

Then the log-likelihood function for the censored sample, Xi < xg <  xg < ....Xm < 

6 ^  ^  ^  is
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lnL(7,0) = EZ=i (1 h  + (^2 + 1) exp

+  E r= m +1  I n { ( 1  +  Az) (^ /X i)^ }  +  I n ( 7 /X i )  -  n I n {2 k2 +  1)
i=l

. (2.68)

The parameter estimation procedure is quite similar to the algorithm given in Section 

2.11.4. As before, a unique value for m  can be obtained such that Xm <  ^ml <  ^m+i- 

However, due to the censoring of the data set, one cannot observed the estimators 

are such that ^ml =  min (dm) and 7 ml =  max (%.).
m  \  J m

In the analysis of numerical examples, especially for censored data, one can easily 

employ the LE program in BMDP (1992) to solve the nonlinear equations, U{6) =  0 

for the purpose of estimate the parameters. The LE routine also gives the asymptotic 

conditional standard errors (SE’s) of the estimates by inverting the Hessian matrix 

(Observed information matrix) used in the maximization of the likelihood function.

2.11.7 Illustrative examples

The object of this section, as given in Section 2.10, is to illustrate the use of WPC 

distribution and to demonstrate its applicability with the aid of real life data. In 

this regard, three distinctly different examples are presented based on well-known 

data, which were published in the statistics literature. Specifically, th e  first exam ple

and the rest respectively consider complete and right-censored data. For comparison 

purposes, the loglogistic (LLC) distribution {F{x\y>,6) =  1/(1 +  (y?/x)^); 0  < x, 

0 < y, 0 <  6 ), which is often used in biomedical area and the embedded Burr (EB)
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family (Mudholkar et al. 1996), F{x;a,P,X) — 1 — 1/(1 +  A(x/(t)^)^/^; 0 <  cr, 0 < /?), 

which is a three-parameter extension of the LLG distribution, are considered. Note 

that the range of the EB random variable x  is (0, oo) for A ^  0 and (0,<t/(—A)^/^) 

for A < 0 . Note that other composite parametric families, such as LPC and LLPC 

(loglogistic-Pareto composite) gives very poor fit to the following data sets, hence we 

disregard to present such analysis to reduce the length of this section.

Example 1. Guinea pigs survival time data

This example (see the Appendix B for the data set) is abstracted from Bjerkedal 

(1960) represents the survival times in days of guinea pigs after infected with virulent 

tubercle bacilli.

In this example, guinea pigs survival time data is analyzed by using the three 

models; LLC, WPC, and EB distributions. The expected deaths, Ej ,  j  = 1 , 2 ,..., 1 1 , 

the estimated parameter values, the log-likelihood (/(0 )) values, the chi-squared val­

ues, and the corresponding p-values are given in Table 2.12. Estimated values given 

in this table are obtained by using the maximum likelihood method. Note that the 

chi-squared test has been performed by dividing the survival times into 1 1  classes with 

upper limits 65, 75, 85, 95, 105, 115, 130, 150, 200, 300, oo. For our convenience, 

the number of classes is obtained by the formula (D’Agostino and Stephens 1986), 

M  ~  2n /̂®, where M  and n  are, respectively, the number of classes and the sample 

size.
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Table 2.12 Estimated values of three models for guinea pigs data

Time interval Observed Expected deaths Ej

(in days) deaths Oj LLG WPC EB

0 65 7 1 0 . 1 2 0 2 5.8134 6.7870

65 75 4 4.9156 5.5120 6.0610

75 85 10 5.5793 7.6829 7.3846

85 95 6 5.8731 8.5915 7.4753

95 105 11 5.8081 7.4037 6.7267

105 115 5 5.4629 5.6706 5.6858

115 130 5 7.1917 6.2924 6.6793

130 150 6 7.4949 5.7645 6.2649

150 2 0 0 8 10.5776 7.8834 8.4318

200 300 4 6.4282 5.9618 5.9639

300 up 6 2.5484 5.4238 4.5398

=  5.8142

S = 3.3450 7 =  1.8289 S E ^  =  1.2229

Parameters ±  S E
=  0.3348 SE^ = 0.2091 A =  2.8055

^ = 111 .69 g =  98.789 SE'^ =  0.8884

=  6.7602 =  5.6042 a  =  94.414 

=  6.9813

1(6) -401.575 -396.937 -397.260

Xg =  8.5266 =  4.9472 Xg =  5.2021

p-value 0.2020 0.7632 0.5182
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The estimated values indicate that the WPC distribution gives a very good fit to 

the guinea pigs survival time data. Furthermore, the adequacy of the fit is further 

strengthened by illustrating the survival function of the W PC distribution along with 

the Kaplan-Meier curve (see Figure 2.13). In order to compare, the fitted survival 

curves of the LLG and EB distributions are included in Figure 2.13. In addition, 

the least square estimators for this data set using the equations (2.58) and (2.59) 

are %g ±  = 1.9176 ±  0.0337, ^ls ±  =  97.3436 ±  0.9963. Also, the

estimated correlation coefficient using the equation (2.60), f q  = 0.9894, is well above 

the corresponding table value (see Table 2.10) for 20% significance level at sample 

size 75. Therefore the associated Q-Q plot, which have not been plotted to reduce 

the length of the chapter, can be assume as nearly a straight line. Hence the WPC 

distribution gives a better fit to the guinea pigs survival time data.

0.8

0.6

S(x)

0.4

0.2

100 200 300 400 600500

Figure 2.13. Fitted survival curves for guinea pigs data. Kaplan-Meier survival 

curve (step function), LLG (dotted line), WPC (solid line), EB (dashed line).
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Example 2. Arm A head and neck cancer data

This example (see the Appendix B for the data set) represents the survival times in 

days of head and neck cancer patients after a treatment considered earlier by Efron 

(1988). This clinical trial data consist of 51 patients with radiation therapy alone 

denoted by arm A. Nine patients were lost to follow-up and were regarded as right 

censored.

This data set is analyzed by Mudholkar et al. (1996) using the EB distribution. In 

this example, the W PC distribution is used to reanalyze the arm A clinical trial data 

to demonstrate and illustrate its flexibility towards modeling the unimodal failure 

rate data.

Using the estimation procedure describe above, it is easy to fit the WPC distri­

bution to arm A data. The expected deaths, the estimated parameter values, the 

log-likelihood {l{0)) value, the chi-squared value, and the corresponding p-value are 

given in Table 2.13. For comparison purposes, the estimated values of the LLG and 

EB models are also included in Table 2.13. Note that these estimated values are 

calculated before converting to the months of survival times.

The p-value for this right censored data is based on discretized method introduced 

by Efron (1988). In order to calculate the p-value, same discretization given by Efron 

(1988) and Mudholkar et al. (1996) is used in Table 2.13. The data given in this 

table includes the signed deviance residuals, Rj  given by the formula (McCullagh and 

Nelder 1998),
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( ç. /V- — 9- "1
R j  =  \ / 2s ign{Sj  — Ej )  In ^  +  {Nj — Sj )  In J  |  ,

(2 .69)

to the fitted hazard functions of three models for arm A clinical trial data. Where, 

N j — total no. of patients at risk at the beginning of each interval j,  j  = 1,..., 13 for 

arm A data, S j — observed death at the end of each interval, E j — expected death at 

the end of each interval, for details/ notations behind the procedure see Efron (1988).

The p-values given in Table 2.13 indicate that arm A clinical trial data fits bet­

ter with the WPG distribution. As in the previous example, the fitness is further 

strengthened by illustrating the survival curve of the WPG distribution along with 

the Kaplan-Meier curve (see Figure 2.14). In order to compare the fitness by graphi­

cally, the fitted survival curves of the LLG and EB families are also included in Figure 

2.14.

Note that, commonly available imimodal failure rate parametric distributions such 

as lognormal, loglogistic, Birnbaum-Saunders, inverse Gaussian, Pareto, Weibull, etc., 

are inappropriate for head and neck cancer high-risk (hump-shaped) failure data.
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Table 2.13 Estimated values of three models for Arm A clinical data

Time interval At risk Dead Expected deaths Ej

(in Months) Nj Sj LLG WPG EB

0 - 1 51 1 2.1579 0.8205 1.1041

1 - 2 50 2 3.7516 2.7763 3.3181

2-3 48 5 4.3510 4.5631 4.7337

3-4 42 2 4.1379 5.2975 4.8086

4-6 72 15 7.3402 10.0243 8.4241

6-8 49 3 4.8815 5.3995 5.1926

8 - 1 1 56 4 5.1725 4.5899 5.0092

11-14 45 3 3.6909 2.7672 3.2540

14-18 45 2 3.2224 2.1675 2.6454

18-24 46 2 2.7618 1.7016 2.1276

24-31 49 0 2.3790 1.3704 1.7393

31-38 47 2 1.8940 1.0494 1.3413

3&47 28 1 0.9489 0.5127 0.6578

(continued)
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Table 2.13 (continued)

f3 -  2.1285

1.5265 7  =  0.7650 gEg =  0.5273

SE^ = 0.1977 SE^ = 0.1127 A -  2.1522

y  =  238.34 ^  =  178.75 SE-^ -  0.9365

gEÿ =  38.453 SE-§ — 21.204 a =  182.26 

=  38.886

%G) -292.380 -290.383 -291.263

17.603, 11 11.295, 11 13.493, 10

p-value 0.0913 0.4189 0.1974

0.8

0.6

S(x)
0.4

0.2

1400200 400 600 800 12001000

Figure 2.14. Fitted survival curves for Arm A cancer data. Kaplan-Meier survival 

curve (step function), LLG (dotted line), WPG (solid line), EB (dashed line).
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Example 3. Nasopharynx cancer survival data

The data set (data are given in the appendix B) of this example is taken from 

McKeague (2000) and given by West (1987, 1992) who studied the data on 181 

nasopharynx cancer patients. Their cancer careers, culminating in either death (127 

cases) or censoring (54 cases), are recorded to the nearest month, ranging from 1 

to 177 months. Our analysis is restricted to these two variables, even though the 

data set contains several covariates. The WPG distribution is used to analyze the 

nasopharynx data set for further strengthen its flexibility in the analysis of unimodal 

failure rate data. As before, the estimated values of the three models are given in 

Table 2.15. Furthermore, fitted survival curves are illustrated in Figure 2.15 along 

with the Kaplan-Meier curve.
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Table 2.14 Estimated values of three models for cancer data

Time interval At risk Dead Expected deaths Ej

(in Years) Nj Sj LLG WPG EB

0-0.5 181 19 24.8687 18.9620 19.9235

0.5-1 160 35 27.5625 3&6312 34.4229

1-1.5 1 1 2 17 19.0157 24.9446 22.3195

1.5-2 93 16 14.8340 16.3005 15.3688

2-2.5 72 1 1 10.6288 9.7891 9.8764

2d»3 60 9 8.1670 6.6652 6.9629

3-3.5 50 1 6.2805 4.6961 5.0052

3.5-4 48 4 5.5787 3.9053 4.2147

4-4.5 41 4 4.4242 2.9423 3.2021

4.5-5 37 4 3.7203 2.3752 2.5999

5-5.5 32 3 3.0088 1.8583 2.0426

5.5-6 23 0 2.0292 1.2194 1.3445

6-6.5 22 0 1L8271 1.0729 1.1859

6.5-7 2 1 0 1.6466 0.9482 1.0500

7-7.5 2 1 0 1.5588 0.8828 0.9790

7d^8 2 1 1 1.4795 0.8258 0.9169

8-8.5 19 1 1.2735 0.7018 0.7800

8d^9 18 0 1.1502 0.6269 0.6973

9-9.5 16 0 0.9767 0.5271 0.5867

(continued)
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Table 2.14 (continued)

9.5-10 15 0 0.8764 0.4688 0.5221

10-10.5 13 0 0.7282 0.3865 0.4306

10.5-11 13 0 0.6993 0.3685 0.4108

11-11.5 1 2 1 0.6208 0.3250 0.3624

11.5-12 1 1 0 0.5480 0.2852 0.3182

12-12.5 8 0 0.3843 0.1990 0 . 2 2 2 0

12.5-13 6 0 0.2783 0.1434 0.1600

13-13.5 6 0 0.2690 0.1380 0.1540

13.5-14 6 1 0.2603 0.1330 0.1485

14-14.5 4 0 0.1681 0.0855 0.0955

14.5-15 1 0 0.0407 0.0207 0.0231

P = 2.0913

6 =  1.3012 9  =  0.6093 S E ^  =  0.3177

SEg -  .0957 SKy  =  0.0513 A =  3.0664

y  =  26.147 0 =  18.499 SE-^ =  0.8079

=  2.7275 SE^ = 1.8698 a = 15.862 

SEff = 2.5183

z(e) -607.318 -600.781 -600.883

41.708, 28 29.812, 28 :%k860, 27

p-value 0.0462 0.3722 0.3677
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Figure 2.15. Fitted survival curves for nasopharynx data. Kaplan-Meier survival 

curve (step function), LLG (dotted line), WPG (solid line), EB (dashed line).

Once again, commonly available parametric families are not appropriate to analyze 

the nasopharynx cancer survival time data.

Example 4- Stimulus-response time data (an additional example)

The data in this example (data set is given in the appendix B) represents the 

reaction time of one subject in 180 trials of a psychological experiment (Whitmore 

1986). In each trial the subject was asked to decide whether the distance between two 

dots displayed on a monitor placed 10ft away was long or short. The dots remained 

visible until the subject made a response. The reaction time for each trial is the 

length of tim e from stim ulus to  response in m illiseconds.

This data was analyzed by Whitmore (1986) using inverse Gaussian and normal- 

gamma mixture to obtain a proper fit. The sample log-likelihood values for the 

inverse Gaussian, normal-gamma mixture, and truncated normal-gamma mixture are
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-1186.8, -1179.5, and -1176.3 respectively.

In this example, stimulus-response time data is reanalyzed by the WPG distribu­

tion. Using the iterative procedure and the likelihood method given above, it is easy 

to fit the WPG distribution. The estimated parameter values and the log-likelihood 

{l{0)) value are given in Table 2.15.

Table 2.15 Estimated values of WPG for stimulus-response time data

Time 0-450 450-550 550-650 650-750 750-850

Oi 4 31 70 31 1 1

Ei 4.9925 32.8102 62.9321 33.7033 17.4904

Time 850-950 950-1050 1050-1150 1150-1250

Oi 1 0 7 2 3

Ei 9.8178 5.8611 3.6772 2.4034

Time 1250-1350 1350-1450 1450-1550 1550-up

Oi 2 0 4 5

Ei 1.6256 1.1321 0.8084 2.7458

a ±  SEq gdzEE^ p-value

3.8695 ±  0.27713 606.8435 ±  8.6987 -1169.5 7.6151 0.2677

T he stim ulus-response tim e data  are grouped w ith observed frequencies (Oj), i =  

1, ...,13 for the purpose of obtaining the goodness-of-ht chi-squared value. Expected 

frequencies (Ei) in Table 2.15 show that E\,  Eg, Eg, Eio, E n , E 1 2 , and E 1 3  are smaller 

than 5. The expected frequency, Ei is close to 5, hence kept it as it is. The other
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expected values are pooled such that {Es, Eg), and {Eiq, E u , E u , E u ) to get the 

chi-squared with 6  df, x f =  7.6151, with a p-value of 0.2677. This indicates that 

the WPG distribution gives an improved fit to the stimulus-response time data. The 

Figure 2.16 illustrates the fitted density curve of the WPG distribution to the response 

time data with its histogram.

Freq.

400 600 800 1000 1200 1400 1600 1800 2000

Figure 2.16. Histogram and WPG density for stimulus-response time data.

2.12 The loglogistic-Pareto composite distribution 

Let X  be a random variable with the pdf

y w  =  <
[ %/z (^) if w < z  < oo

where Cq is the normalizing constant, / i  {x) has the form of the regular loglogistic 

density, and /g {x) has the form of the two-parameter Pareto density, i.e.,

(2.70)

/ i  (a:) =  (r /x)  { x / \ y  [1 -f (æ/A)’’]  ̂, rr >  0, 

70
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and

fg (x) =  {6/x) {oj/xŸ , X >uj. (2.72)

Here 6 , T , A, w  are unknown parameters such that 6  > 0, T > 0, A > 0, w  > 0.

Let us impose the continuity and differentiability conditions at u,  where it yields,

f i  (w) =  / 2  (w), and f[  (w) -  fg (w ). (2.73)

Where f  (cu) is the first derivative of f  (x) evaluated at w. These conditions guar­

antee a smooth probability density function. These two restrictions reduce the total 

unknown parameters from four to two. One can show that (the proof is omitted due 

to similarity with the LPC distribution) the loglogistic-Pareto composite (LLPC) 

density can be reparameterized and rewritten as

+  i +  fc3 (;)‘=
/(%) =

if 0  <  a; <  w

i ( î ) ( ï ) ‘ if 72.74)

where = cq = (\/5  -L l)  /2  % 1.618034, which is called the golden ratio (<p), also 

known as the divine proportion, or golden mean. So this natural composite probability 

density has only two unknown parameters 5 > 0 , and w > 0 .

The cumulative distribution function, F  (z), and the quantile function, Q{u), are, 

respectively, given by

f ( % )

-1

if 0  <  z  <  w+  <5 2 _j_  ̂ (^3+1) <5

1 - ;L ( % ) ' if W < Z < O 0
(2.75)
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and

Q W  =
w f  ̂ 1y i —k s u  J

( l + * 3 )  « ^  0 <  W  <

1/s (2.76)

u ( W :;: ) )  ' if V^a <  « < i

The following three curves in Figure 2.17 demonstrate the shape of the pdf of the 

LLPC distribution, the loglogistic distribution, and the Pareto distribution. Here, 

the two densities, loglogistic and Pareto, are joined at w =  50 to make the LLPC 

density. The variation of the LLPC density with parameter S and parameter u> is, 

respectively, given in Figure 2.18 and Figure 2.19.

0 .01 -

%x)

100 120 140 160 180 200

Figure 2.17 Loglogistic (dotted line), Pareto (dashed line), and LLPC (solid line)

density curves ( 6  =  0.5, w — 50).

In Figure 2.17, the dotted line, the dashed line, and the solid line indicate loglo­

gistic, Pareto, and LLPC distribution, respectively, and it is clear that the right tail
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of LLPC density graph does not approach to zero quicker than that of the loglogistic 

does.

In Figure 2.18, the dotted line, the dashed line, the dot-dashed line, and the solid 

line, respectively, represent the density curves of the LLPC family for the parameter 

values, 6 =  0.5, 6 - 1.0, 6 - 1.5, and 6 =  2.0.

In Figure 2.19, the dotted line, the dashed line, the dot-dashed line, and the 

solid line, respectively, represent the density curves of the LLPC distribution for the 

parameter values, w — 100, w — 75, w =  50, and w =  25.

0 .02 -

0 .0 1 -

200100 120 140 160 180

Figure 2.18 LLPC density curves with w =  50. For 8 — 0.5 (dotted line), 6  =  1.0 

(dashed line), 8 — 1.5 (dot-dashed line), and 8 = 2 . 0  (solid line).
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0 .02 -

100 120 140 160 180 200

Figure 2.19 LLPC density curves with 6 =  0.5. For u) — 100 (dotted line), lo = 75 

(dashed line), w =  50 (dot-dashed line), and cu — 25 (solid line).

2.13 The inverse Weibull-Pareto composite distribution 

Let y  be a random variable, like earlier, with the pdf

9 { y )  = (2.77)

Where k  is the normalizing constant, g\ (y) has the form of the regular inverse Weibull 

density, and Q2 (y) has the form of the two-parameter Pareto density, i.e..

(%/) =  ((/%/) (/̂ /%/)̂  exp -  (///I/) , y >  0, (2.78)

and

P2 (%/) =  (7 / 2/) , 2/ >  9?- (2.79)

Here 7 , y, ip are unknown parameters such that 7  >  0, >  0, ^ >  0, y  >  0.

The continuity and differentiability conditions at (p yield
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9\ (W =  92 {p>), and g[ {(p) =  ĝ  (cp) . (2 .80)

Where g' ((p) is the first derivative of g {y) evaluated at (p. These conditions guaran­

tee a smooth probability density function. These two restrictions reduce the total 

unknown parameters from four to two. One can show that (the proof is omitted) 

the inverse Weibull-Pareto composite (IWPC) density can be reparameterized and

rewritten as

f { y )  = *‘(î)
if 0 < y  <(p 

if y? <  2/ < oo
(2.81)

where =  K is a known constants, which is given by the positive solution of the 

equation exp (—A:) =  (1 — k)/k.  The approximate value is, A:̂  =  0.659046068445. As 

before, this natural composite probability density has only two unknown parameters 

7  > 0 , and (p > 0.

The cumulative distribution function, F  {y) , and the quantile function, Q{p), are, 

respectively, given by

F { y )  =

k^ exp ( ï ) " ^

1 — ki (;)'

if 0 < y  <p>

if p  ^  y < oo

(2.82)

and

if 0  <  p <  1  — A=4

if 1  — A:4 <  p < 1

(2.83)
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As previously done, the graph of pdf of the IWPC distribution and its construction 

through the inverse Weibull density and the Pareto density are given in Figure 2.20. 

In this figure, the two densities, inverse Weibull and Pareto, are joined at =  50 to 

make the IWPC density, and one can easily graph the variation of the IWPC density 

for a given values of parameters 7  and y).

0.01-

100 120 140 160 180 200

Figure 2.20 Inverse Weibull (dotted line), Pareto (dashed line), and IWPC (solid

line) density curves ( 7  =  0.5, </? =  50).

In Figure 2.20, dotted line, dashed line, and solid line indicate inverse Weibull, 

Pareto, and IWPC distributions, respectively. It is clear that the tail of the LLPC 

distribution does not approach to zero too faster than that of the inverse Weibull 

does.

2.14 Grouped likelihood procedure for Pareto composite distributions

For the purpose of analyzing the grouped data, first we consider the LLPC distri­

bution by estimating its parameters using the maximum likelihood method.
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Suppose that the data consists of r  intervals and the interval, i.e. ( c j_ i ,C j ) ,

has Uj observations for j  =  1, 2, 3, ..., r  ; cq =  0. The open interval, i.e.

(cr_i,oo), contains observations, and the total number of observations, n, can be

written as Now suppose the unknown parameter to is in the 2 *̂  interval such

that Ci-i ^  (f) ^  Ci, 1 ^  i ^  r. Therefore the log-likelihood function of the LLPC

distribution for grouped data can be written as

=  ^M jln[Fi(cj;6 ,w ) -  +njn[p2(c^;6,w) -
j=i

+  X I  6 , w) -  F 2 (cj_i; 5, w)]. (2.84)
j=i+l

Where Fi{.;6,u>) and T^(.; w) are such that

P' (cj) —
1 (ka+lfS'l if 0  <  C, <  W

+  ..........

F2 {cf ,S,Li)= 1- 4 (5 )'’

In this case, one can find the values of 6 and u> by changing u  over the interval 

(0 , 0 0 ) , and then maximizing the l{6) by solving the score equation U(0) =  =  0 .

There is a unique positive value for w, for fixed i such that Cj_i ^  w ^  Q can be 

obtained from this maximization. Note that one may need to check only (r — 1) such 

intervals. This procedure can be applied to the other Pareto composite distributions.

2.14.1 Grouped data example

Analysis of grouped data from Danish fire-insurance losses

The analyses are provided in Table 2.16. The estimated log-likelihood values, 

the chi-squared values, and the p-values indicate that the LPC distribution as the 

better-fit to the grouped data from Danish fire insurance losses.
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Table 2.16 Estimated values of four composite models for Danish data

Loss Number Expected frequencies for

(10® DKK) of fires LPC LLPC IWPC WPC

0 1 325 325.51 326.25 323.83 336.15

1 2 1263 1259.91 1256.65 1276.72 1226.75

2 3 371 385.23 387.87 370.53 411.06

3 4 169 169.26 169.97 165.11 175.78

4 5 1 1 0 92.42 92.63 91.08 94.10

5 6 6 8 57.19 57.23 56.82 57^3

6 7 29 38.41 38.39 38.41 38.01

7 8 26 27.33 27.29 27.49 26.75

8 1 0 2 2 35.89 35.79 36.35 34.66

1 0 1 2 24 2 2 . 2 1 2 2 . 1 1 2 2 . 6 8 2 1 . 1 2

1 2 15 25 20.64 20.52 21.24 19.33

15 2 0 24 18.83 18.68 19.57 17.30

2 0 DO 36 39.16 38.61 42.18 3&68

Parameter values $  = 1.364508 6  =  1.371934 7  = 1.325037 7  = 1.440740

1.372916 w =  1.361907 (p — 1.261128 e = 1.481544

Log-likelihood value -4120.68 -4120.74 -4121.07 -4123.27

Pearson Xio value 16.41 16.56 17.08 21.89

p-value 0.089 0.085 0.073 0.016
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CHAPTER III 

THE ODD WEIBULL FAMILY

3.1 Introduction

A generalization of the Weibull family is derived by considering the distributions 

of the odds of the Weibull and inverse Weibull families. This generalized Weibull 

distribution is henceforth referred to as the Odd Weibull family (Cooray 2006). The 

name “Odd Weibull” originates from the idea of evaluating the odds of death of a 

Weibull random variable. This generalization accommodates not only all five major 

hazard shapes; constant, increasing, decreasing, bathtub-shaped and imimodal fail­

ure rates, but also has a wide variety of density shapes including the bimodality with 

one mode at the origin. This bimodality corresponds to comfortable bathtub-shaped 

hazard curves (e.g. see figure by Shooman 1968). Furthermore, the maximum like­

lihood large-sample procedure, which is often used in life data analyses, can easily 

be implemented for this model, and is computationally convenient for censored data. 

The new family is suitable for discriminating between Weibull and inverse Weibull 

models, and is adopted for testing goodness-of-fit of Weibull and inverse Weibull as 

submodels. The inverse (reciprocal) transformation of the new family is the same 

as the original distribution, and is less common among the distributions with rich 

hazard rate functions, i.e., hazard rate functions that can take all five major hazard 

rate shapes. For example, inverse transformations of the lognormal, loglogistic, and
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Birnbaum-Saunders (1969) distribution are the same as their original distributions. 

This property can be used to estimate the Odd Weibull parameters for a given data 

set in two different ways. The first method parameters are estimated by considering 

them to be initially positive. In the other method, same parameters are estimated 

by taking the inverse sample of the data set considering parameters to be initially 

negative. Also, this two way estimation method is extended to analyze the group, 

right censored, left censored, interval censored, right truncated and left truncated 

data tha t frequently arise in survival analyses.

Moreover, the total time on test (TTT) transform procedure is used as a tool 

to identify the hazard behavior of the proposed distribution. To measure the dis­

crepancy between empirical and fitted TTT transforms, a previously proposed test 

statistic (Aarset 1987) is used. Simulation studies are carried out to obtain the upper 

percentage points of this statistic for the Odd Weibull family. To emphasize the flexi­

bility and better-fitness of this family over the other leading parametric distributions, 

we provided an analysis of three different examples to illustrate: increasing, bathtub, 

and unimodal failure rates. Specifically, the first example (Section 3.7.1) contains 

208 data points, which represent the ages at death in weeks for male mice exposed 

to 240r of gamma radiation (Kimball 1960). The second example (Section 3.7.2) 

represents time to failure of 50 devices put on a life test at time zero (Aarset 1987). 

The third example (Section 3.7.3) is.a twin data set, consisting of alluvial diamonds 

from the Bougban (683 stones) and Damaya (444 stones) deposits in Guinea of West 

Africa (Beirlant et al. 1996). In each of these examples, the scaled fitted T T T graph 

is plotted along with the scaled empirical TTT graph by providing an approximate
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pointwise confidence band to the scaled fitted TTT graph. Other than the likelihood 

estimation method, as a traditional small sample estimation procedure, the percentile 

matching technique is carried out.

To advance the applicability of this family; group, right censored and truncated- 

interval censored lifetime data is analyzed and compared with associated Kaplan- 

Meier (1958) curve and other leading lifetime distributions. Specifically, the fourth 

example (Section 3.7.4) is a positively skewed density shape and large grouped data set 

regarding the frequency distribution of hospital stays (in days) of 2311 schizophrenic 

patients (Whitmore 1986). The fifth example (Section 3.7.5) is a bimodal density 

shape interval censored data set regarding the drug resistance (time in months to 

resistance to Zidovudine) of 31 AIDS patients. Finally, the sixth example (Section 

3.7.6) is negatively skewed density shapes left truncated and interval censored large 

twin data set (Pan and Chappell 1998, 2002) regarding the loss of functional indepen­

dence of people of age 65 years or older. This twin data set consists of 421 non-poor 

male group and 609 non-poor female group.

We use the Odd Weibull distribution to compare and assess the accuracy for test­

ing the exponentiality (Section 3.8) of Kolmogorov-Smirnov (1933), Anderson-Darling 

(1954), and Cramer von Mises (1937) test statistics. Furthermore, the empirical 

method to find the Odd Weibull aliases (Section 3.9) of some common distributions 

is presented by calculating the Moor’s Kurtosis (1988) and Gallon’s skewness (1883). 

This method is useful for finding the aliases which do not have finite moments.

Moreover, the exponential transformation of the Odd Weibull distribution leads to 

a parent distribution for both smallest and largest extreme value distributions (Section

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.10). A large data set (Coles 2 0 0 1 ), consisting of two oceanographic variables - wave 

and surge height (2894 data points for each variable), is analyzed and compared with 

other leading distributions (Section 3.10.1). Lastly, the logarithmic transformation 

of the Odd Weibull family leads to a parent distribution for both Power and Pareto 

distribution (Section 3.11).

3.2 Model derivation

The Odd Weibull family is considered as a suitable answer to the following two 

questions found in survival analysis:

1. W hat are the odds that an individual will die prior to time X,  if X  follows a 

certain life distribution W1

2. If these odds follow some other life distribution L, then what is the corrected 

distribution of X ?

Obviously, the answer to the first question is very straightforward and depends 

on the distribution of W. However, the answer to the second question will vary due 

to the choice of both L  and W. Let’s answer the first question by representing odds 

that an individual will die prior to time X  in terms of its survival function Sx{x)  

as (1 — S x ix ) ) /S x{x ) ,  where Sx{x) = P r(X  > x), x  G (0, oo). Here one can denote 

this ratio, the odds of death, by y (y € (0 , oo)), and it can be considered a random 

variable. Suppose that we are interested in modeling the randomness of the “odds of 

death” using an appropriate parametric distribution, say, fy (y ). Then, we can write

P r(y  <  „) =  Fy(y)  =  Fy ■ (3.1)

Let us consider the loglogistic distribution to model this randomness with its cdf
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given by Fy(y) =  1 — (1 +  y' )̂  ̂ ; 0 < 7  <  oo. Perhaps, it is a desirable candidate to 

model this randomness, since the analog power transformation exists as follows

J  -  Sy(y) )  ■

Where S'y(y) =  1 — F y (y ), and 7  can be considered as a correction parameter of the 

W  distribution.

Now suppose the lifetime random variable X  follows the Weibull distribution with 

its survival function Sx{x)  =  0 <  x < 0 0 , 0 <  a , 0 < 0. Then the cdf of the

corrected distribution of X  is

Fx(x)  =  1 — ^ 1  +  — 1 )^^  ; 0  <  x  <  0 0 ,0  <  a , 0 <  7 , 0  <

(3.3)

If the lifetime random variable X  follows the inverse Weibull distribution with its 

survival function Sx{x)  =  1  — 0  < x < 0 0 , o; <  0 , 0  <  0 , then the corrected

distribution of X  as

Fx{x)  =  1 — ^1 +  ; 0 < X < 0 0 , 0 ! < 0, 0 <  7 , 0 < 0.

(3.4)

One can easily combine equation (3.3) and equation (3.4) by writing the correction 

parameter j3 =  ± 7 , 7  > 0, to obtain the cdf of the Odd Weibull family as

F{x;a,P,6)  =  1 — ^1 +  — l)^^  ; 0 < x < 0 0 , 0 < 6, 0 <  a^.

(3.5)

Hence the parameter /5 is the log odd ratio between the Odd Weibull and the Weibull 

distribution. The corresponding pdf, hazard function, and the quantile function are, 

respectively,
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f ( x ; a , 0 , $ )  = -  I)** ' ( l  + (e'5>“ -  1)**) ,

(3.6)

h(x;a,0,O) = ( ^ ) ( ^ ) “e‘**“ -  1 )" ’ ( l  +  -  l )^ )  ,

(3.7)

and

. /  /  „ \ i / f \
o < % < i .  (sa )Q{u) = F - \ u )  =  01n'/“ ^1 +  ;

It should be noted that there may be some other ways to derive this distribution by 

variable transformations and parameter addition (removal) of existing distributions, 

due to its simple form as a life distribution. It is clear that the 1/x transformation 

of the Odd Weibull family does not change its density form. Furthermore, the Odd 

Weibull gives the Weibull density when P = 1, and gives the inverse Weibull density 

when P = —1. The Odd Weibull family is asymptotically equivalent to the loglogistic 

distribution for larger values of 6.

Figure 3.1 and 3.2, respectively, show the Odd Weibull hazard and corresponding 

density curves for different parameter values. When both shape parameters, a  and P, 

of the Odd Weibull family are negative, the hazard function given in equation (3.7) 

is unimodal. When parameters a  and P are positive, the major shapes of the hazard 

function are separated by the boundary line of the space of shape parameters, a  =  1  

and aP = 1. Specifically, when (a > 1 , a/3 > 1 ) , (a <  1, a/3 < 1), (a  > 1, aP < 1 ) , 

and (a <  1 , aP  > 1 ) the shapes of the hazard function are, respectively, increasing, 

decreasing, bathtub, and unimodal. In addition, when a  and P are positive, some
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other shapes of the hazard function may appear in the two regions (cc > 1 , aj3 > 1 )  

and (cK < 1, a(3 <1).  However, due to complexities of the derivatives of the hazard 

function, the boundary lines of the parameter space are obtained numerically. Table

3.1 provides the various shapes of the hazard function for different Odd Weibull shape 

parameters.

0.0351

0.03

0.025

0.02
h(x)
0.015

0.01

0.005

Figure 3.1 Odd Weibull hazard curves. The dark dotted line {a = 9, (3 = 0.7,

9 = 85), the dashed line {a = 0.5, j3 =  0.3, 9 = 100), the dot dashed line {a =  1, 

f3 — 1, 9 = bO), the dark solid line {a = 8, /3 = 0.01, 9 =  45), and the solid line 

{a = —1.5, j5 =  —0.1, 9 =  75), respectively, represent increasing, decreasing, 

constant, bathtub, and unimodal failure rates.
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0.03
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0.02

0.01
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100

Figure 3.2 Odd Weibull density curves. These curves correspond to the hazard

curves given in Figure 3.1.

Table 3.1 Hazard behavior of the Odd Weibull family

Parameter Space Failure Rate Behavior

01=1, constant (exponential)

P = 1 monotone (Weibull)

a  = —1 , P = —1 unimodal (inverse exponential)

P — unimodal (inverse Weibull)

a ,P  < 0 unimodal

a ,a P  > 1 increasing (aP 1  —> inverse 8 -shape)

0 < a ,a P  < 1 decreasing {aP »  1  S-shape)

O' > 1 , 0  < afS < 1 bathtub

0  < a  < 1 , aP > 1 unimodal
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3.3 Parameter estimation under percentile matching technique

As an initial estimation method, the percentile matching technique can quickly 

implemented for the Odd Weibull distribution to estimate the parameters. These 

estimators are unique, since the Odd Weibull distribution function is strictly increas­

ing. This is a very historical estimation method and is available in most preliminary 

statistics books. To apply this method, first order the data set and find the median 

(æo.5 ) and then first (æo.2 5 ) and third (æo.7 5 ) quartiles. Hence one can easily formulate 

the following three equations to estimate the Odd Weibull parameters.

“  "  ^  In ^ (3.9)

3.4 Two way parameter estimation under the likelihood method

In the following five subsections, we presented the likelihood method of estimating 

the Odd Weibull parameters in two different ways, specifically applications to com­

plete, grouped, randomly right & left censored, randomly right & left truncated, and 

interval censored data. The likelihood function may be constructed by concerning all 

these events together (Klein and Moeschberger 1997, Lawless 2003).

L{0) =  ( u f  ^) ) ( n  ['5 (9 - 1 ;^) -  S  {cf, 6 >)]"M [ u s  (rcjj 0)
\jeE  J \jeG J \jeRC

n  [S {licj; 0) -  S  {riCj]0)] | . (3.10)

Where,
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L{6)— likelihood function, 6 — unknown parameter vector to be estimated, / — 

density function, S — survival function.

Also /  {xj] 0) — for exact or complete data points, Xj— exact data points, E — set 

of exact data points.

[S (cj_i; 0) — S  (cj] 0)]"^ — for grouped data points, n j — number of data points in 

the group, i.e., nj-e[cj_i, Cj), Cj— upper limit of the group, G — set of grouped 

data points.

S  {rcj] 0) — for right censored data points, rcj— right censored data points, E C -  

set of right censored data points.

[1 — iS {Icj] 0)] — for left censored data points, Icj— left censored data points, A C - 

set of left censored data points.

/  [rtj] 0) /  [1 — S  {rtj; 0)] — for right truncated data points, r t j— right truncated 

data points, R T  — set of right truncated data points.

/  {Itj; 0) / S  {Itj-, 0) — for left truncated data points, Itj— left truncated data points, 

L T — set of left truncated data points.

[S (licj',0) — S  (ricj] 0)] — for interval censored data points, licj— left limit of 

interval censored data points, ricj— right limit of interval censored data points, 

I C — set of interval censored data points.

The score function and the observed information matrix for 0 are, respectively.

07 _02/
æ  = d é d f f '  <3.11)

where I = log A(0 ).
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The likelihood procedures are available in Cox and Oakes (1984), Kalbfleisch and 

Prentice (2002), Rao (1973), and Lawless (2003). In our numerical examples given in 

Section 3.7, the asymptotic standard errors (SB's) of the estimates are obtained by 

inverting the observed information matrix of the log-likelihood function (Efron and 

Hinkley 1978).

3.4.1 Applications to the complete data

Large number of complete data examples are available in literature. Some exam­

ples are given in the appendix B. The standard maximum likelihood procedure can be 

used to estimate the Odd Weibull parameters, for such given data, by maximizing the 

log-likelihood function {l{6) =  \nL{a,0 ,9)) .  Lets assume æi,%2 , ■■■,Xn are an ordered 

random sample (i.e. x\  < X2 < ... < æ„) from the Odd Weibull family.

By using equation (3.10) the log-likelihood function of the Odd Weibull family 

can be written as

Z(0) =  E"=i {in  + ( « - ! )  Inzj +  ) +  {P -  1) In -  l )  }

- 2 E " , , l n ( l  +  ( e « > " - l ) ' ’) .  (3.12)

Let X i , X 2 , ...,%n be a random sample from the positive region (i.e., o; > 0, /3 >  0) 

of the Odd Weibull family. W ithout loss of generality, we can assume that this is 

an ordered sample, i.e., xi < < ... < x„. Let us denote the corresponding log-

likelihood function Z+(0) — lnL(o!+,/3+,0+), which can be obtained from equation

(3.12), where a+ =  a , /?+ =  P, 0+ =  6. Also these parameters and their standard 

errors can be estimated by using equation (3.11).
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Now suppose the inverse random sample of --, , i.e., 1 /A „, 1/Xn-i ,

1 /X i are coming from the negative region (i.e., a  < 0, /? < 0) of the Odd Weibull 

family. As before, we can assume that this is an ordered sample, i.e., l/æ„ < 

1/zm-i <  ... <  1/xi-  Let us denote the corresponding log-likelihood function l t(0)  — 

In A (a_,/)_,0_), which can be obtained from equation (3.12), where 0 !_ =  o;, /5_ =  P, 

9- = 6. Also these parameters and their standard errors can be estimated by using 

equation (3.11).

The following four relations then hold.

0 !+ =  - a _ ,  P+ =  - P - ,  9^ =  l / 6 >_, 1^( 0 ) =  r  (0 ) -  2 E "= ilna:j.

(3.13)

Note that without direct calculation, by using the delta method, the estimated 

standard errors of the negative parameter values can be obtained from observed in­

formation matrix of the positive parameter values. Clearly following standard error 

relations hold.

S E ^  =  S E s i ,  SE^_ = SE^^, SEg-  «  ^ S E g ^ .  (3.14)

According to these relations, the Odd Weibull family allows us to estimate its 

parameters in two different ways. Moreover, one can easily prove that this density 

is strictly unimodal and positively skewed when a  < 0, P < 0. Therefore, this two 

way estimation method is useful to avoid some computational issues involved in the 

likelihood procedure, especially when the Odd Weibull densities are non-unimodal.
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3.4.2 Applications to the grouped data

Grouped data are usually large samples and available in many fields such as ac­

tuarial sciences, demographic studies, reliability analysis, and etc. This type of data 

is usually arise due to grouping the original point data by data collectors. Some 

examples are given in the appendix B. Suppose that the data consists of r  intervals 

and the interval, i.e. (Cj_i,Cj), has rij observations for j  = 1, 2, 3, ..., r  ; cq =  0. 

The open interval, i.e. (c r _ i ,o o ) ,  contains observations, and the total number 

of observations, n, can be written as Therefore using equation (3.10) the

log-likelihood function of the Odd Weibull family for grouped data can be written as

l{0) =  ^ n j h i  ^ 1  -4- ~  - i j  ^

(3T5)

Let’s consider the following grouped data example. Table 3.2a represents the 

original grouped data. Table 3.2b is created by inverting the values in Table 3.2a. Let 

the data are in Table 3.2a coming from the positive region (i.e., a  > 0, /? > 0) of the 

Odd Weibull family. As in the previous subsection we can denote the corresponding 

log-likelihood function l%{0) = InL(o;+, /?+, 0 4 _), which can be obtained from equation 

(3.15), where a+ — a, P+ — P, 9.̂ . = 6. Also these parameters and their standard 

errors can be estimated by using equation (3.11).

Now suppose the inverted data in Table 3.2b are coming from the negative region 

(i.e., a  < 0, P < 0) of the Odd Weibull family. As before, we can denote the 

corresponding log-likelihood function i^ ( 0 ) =  In L(o!_, ;5_, 0 _), which can be obtained 

from equation (3.15), where o;_ — a, p... = /?, =  9. Also these parameters and

their standard errors can be estimated by using equation (3.11).
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Table 3.2 Grouped data and its inverted structure

Table 3.2a Table 3.2b

Data interval Frequency Data interval Frequency

0  <  æ  <  C l n i 0  < l / x  < 1 / C r _ i  M r

Cl < X < C2 «2 1 / C r _ i  < 1/x < l/Cr-2 U r _ l

Cr-i < X < 00 Ur 1 / c i  < 1/x  < 00  M l

The following four relations then hold.

0;+  =  - a _ ,  /3 +  =  - / 3 _ ,  6>+ =  l / 0 _ ,  / ^ ( 0 )  =  E { 9 ) . (3.16)

Once again, without direct calculation, by using the delta method, the estimated 

standard errors of the negative parameter values can be obtained from observed infor­

mation matrix of the positive parameter values. Therefore the same relations given 

in equation (3.14) are valid.

3.4.3 Applications to the randomly right censored data

Randomly right censored data mostly appear in reliability and survival analysis. 

These data are categorize into several parts due to the censoring nature of the data 

sets. Appendix B provides the data of Type I censoring. Type I progressive censoring, 

generalized Type I censoring, and random censoring. The likelihood function given 

in equation (3.17) is the general form to analyze all of these censoring data.

Suppose we want to analyze the randomly right censored data. Note that, as 

before, x i ,X 2 , ...,Xn are an ordered random sample (i.e. xi < X2 < ... <  x„) from the
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Odd Weibull family with some values are right censored. Then, by using equation 

(3.10), the log-likelihood function of the Odd Weibull family can be written as

Z(#) =  +  ( « - +  (/3 -  1 ) In -  l )  }

-  T.%1 (1 +  Si) In ( l  +  -  l)**) . (3.17)

where

0  if observation is right censored, j  — 1 , 2 ,..., n

1  else.

Similarly, by using equation (3.10), one can write the following log-likelihood 

function of the Odd Weibull family to analyze the left censored data.

Z(#) =  E ”=i {in  {pipQ-^) +  (a -  1) lux j  -1- -  In -  l )  |

+ /5 E "= ,ln  -  l )  -  E "= i ( 1  +  Si)ln ( l  +  (e<ï>" -  l)**) (3.18)

where Xi,X2 , ■■■,Xn are an ordered random sample (i.e. Xi < X2 < ... < x„) from the 

Odd Weibull family with some values are left censored, and

0  if observation is left censored, j  =  1 , 2 ,..., n

1  else.

Now let be an original random sample from the positive region (i.e.,

ct > 0, /5 >  0) of the Odd Weibull family with some values are right censored. Without 

loss of generality, we can assume that this is an ordered sample, i.e., xi < X2 < ... < 

Xn- Let us denote the corresponding log-likelihood function = In A(a+,/)+,^+),

which can be obtained from equation (3.17), where 0 ;+ = a, P+ — P, 0+ =  9. Also 

these parameters and their standard errors can be estimated by using equation (3.11).
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Now suppose the inverse random sample of Xi, X 2 , , i.e., 1/Xn, 1 /X n -i,..., 

1 /X i are coming from the negative region (i.e., o: <  0, /3 <  0) of the Odd Weibull 

family. As before, we can assume that this is an ordered sample, i.e., l/æ„ < <

... <  l /# i .  Let us treat this reciprocal data set as left censored and denote the 

corresponding log-likelihood function Z(f(0) — lnL(o;_, /3_, 6 L), which can be obtained 

from equation (3.18), where a -  =  &,/?_ =  /?, =  6. Also these parameters and

their standard errors can be estimated by using equation (3.11).

The following four relations then hold.

Q+ = - a _ ,  = «+ = 1/9-, iy(e) = t(e)-2E"=,«iin î.
(3.19)

Once again, without direct calculation, by using the delta method, the estimated 

standard errors of the negative parameter values can be obtained from observed in­

formation matrix of the positive parameter values. Therefore the same relations given 

in equation (3.14) are valid.

3.4.4 Applications to the randomly truncated data

Randomly truncated data mostly appear in survival analysis. These data are 

usually divided into two categories, namely left truncated and right truncated data. 

Left truncation usually arises due to delayed entry of individuals to a event of interest. 

Right truncation occurs when only individuals who have experienced the event are 

included in the sample, and any individual who has yet to experience the event is 

not observed (Klein and Moeschberger 1997). Examples are given in the appendix 

B. Suppose we want to analyze the randomly left truncated data. Note that, as
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before, Xi,X2 ,,..,Xn are an ordered random sample (i.e. x\ < x^ < ■■■ < æ„) from 

the Odd Weibull family with some values are left truncated at Ity, where Itj < Xj for 

j  =  1,2, ...,n. If Itj — 0 then the corresponding Xj value is not left truncated. Then, 

by using equation (3.10), the log-likelihood function of the Odd Weibull family can 

be written as

2(9) =  E ”=i {in  {oLpd- )̂ -b (a -  1) InXj +  { y  )  +  ( ^ -  l ) ln  -  l )  |

- 2  E?=i In ( l  +  ( e « ) “ -  l )" )  + E"=. In ( l  +  («''^1° -  l )^ )  • (3.20)

Similarly, by using equation (3.10), one can easily write the following log-likelihood 

function of the Odd Weibull family to analyze the right truncated data.

Z(#) =  E"=i{ln(o:/5^““) +  ( a - l ) l n a ; j - t - { y )  +  (/3 -  1) In -  1  ̂|

- 2 E ”= i ln ( l+ ( e < ^ > " - l ) ' ’)

+  E%=i In ( l  -  1 y  ( l  +  -  l )  )  )  , (3.21)

where X\,X2 i ...,æ„ are an ordered random sample (i.e. <  æg <  ... <  æ„) from the

Odd Weibull family with some values are right truncated at rtj, where rtj  < Xj for 

j  = 1,2, If rtj  — 0 0  then the corresponding Xj value is not right truncated.

Now let Xi ,  X 2 , ■■■,Xn be an original random sample from the positive region (i.e., 

a > 0, P > 0) of the Odd Weibull family with some values are left truncated at Itj, 

where Itj < Xj for j  — 1,2,..., n. If Itj = 0 then the corresponding Xj value is not left 

truncated. W ithout loss of generality, we can assume that this is an ordered sample, 

i.e., xi < X2 < ... <  Xn- Let us denote the corresponding log-likehhood function 

l+{0) = In A(o;+, 0+), which can be obtained from equation (3.20), where a+ = a,
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/3+ =  /3, 0+ =  6. Also these parameters and their standard errors can be estimated 

by using equation (3.11).

Now suppose the inverse random sample of %i, ..., A„ , i.e., 1/Xn,  1 /A „_ i,...,

1/X i are coming from the negative region (i.e., o; <  0, < 0) of the Odd Weibull

family. As before, we can assume that this is an ordered sample, i.e., l/x „  < 1/xn-i  < 

... <  1/xi.  These values are now right truncated at 1/ltj, where 1/xj < 1/Uj for 

j  = 1,2, ...,n . If I /It j  =  0 0  then the corresponding Xj value is not right truncated. 

Therefore, for this reciprocal data set we can denote the corresponding log-likelihood 

function Fj{0) =  In A(o!_,^_, 0_), which can be obtained from equation (3.21), where 

o;_ — a, P- — p, 9- =  9. Also these parameters and their standard errors can be 

estimated by using equation (3.11).

The following four relations then hold.

=  - a _ ,  /?+ =  9+ =  l /0_ ,  /“ (0) =  r l{0 )  -

(3.22)

Once again, without direct calculation, by using the delta method, the estimated 

standard errors of the negative parameter values can be obtained from observed in­

formation matrix of the positive parameter values. Therefore the same relations given 

in equation (3.14) are valid.

3.4.5 Applications to the interval censored data

Suppose we want to analyze interval censored data (see examples in the appendix 

B). Let us assume the actual data points lie between liCj and ricj, for j  = 1,2, ...,n, 

where liCj and riCj are, respectively, left and right limit of data point. Note that
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Iici,lic2 , l i C n  or rici,ric2 , .■■,ricn is not necessarily an ordered limit set. Therefore 

using equation (3.10) the log-likelihood function of the Odd Weibull family for interval 

censored data can be written as

1 + -  l)'
- 1

-  1 +  e< - -  l)'

(3.23)

Let’s consider the following interval censored data example. Table 3.3a represents 

the original interval censored data. Table 3.3b is created by inverting the values in 

Table 3.3a.

Table 3.3 Interval censored data and its inverted structure

Table 3.3a Table 3.3b

Censoring point Censoring point

left limit right limit left limit right limit

lici rici l /r ic i 1/licx

lic2 ric2 l/ric2 l/Zicg

liCn riCn l/ricn Ijli/Gfi

Let the data are in Table 3.3a coming from the positive region (i.e., a  > 0, 

/5 > 0) of the Odd Weibull family. As in the previous subsection we can denote the 

corresponding log-likelihood function /“ (0) — In L{a+,p+, 9+), which can be obtained 

from equation (3.23), where a+ — a, = p, 0+ =  9. Also these parameters and 

their standard errors can be estimated by using equation (3.11).
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Now suppose the inverted data in Table 3.3b are coming from the negative region 

(i.e., a < 0, P < 0) of the Odd Weibull family. As before, we can denote the 

corresponding log-likelihood function /!f(0 ) =  lnL (a_ , /?_, 0 _), which can be obtained 

from equation (3.23), where a_  — a, P- — P, =  9. Also these parameters and 

their standard errors can be estimated by using equation (3.11).

The following four relations then hold.

a+ =  -a _ ,  =  -)8_, 0+ =  l/0_, z;(0) =  Z:(0). (3.24)

Once again, without direct calculation, by using the delta method, the estimated 

standard errors of the negative parameter values can be obtained from observed infor­

mation matrix of the positive parameter values. Therefore the same relations given 

in equation (3.14) are valid.

3.5 Goodness-of-fit

Comparing the goodness-of-fit of a Weibull model is complicated by the large 

magnitude of the class of alternatives. By restricting the alternatives to the Odd 

Weibull family, we can use the usual likelihood ratio statistics for testing the adequacy 

of the Weibull and inverse Weibull submodels. The null hypotheses, ffoii : =  1,

H q i 2  : (a  =  1 , /? — 1 ), H q 2 i  : P  =  - 1 , and Hq22 ■ (a =  —1, P  = — f )  respectively corre­

spond to the Weibull, exponential, inverse Weibull, and inverse exponential submodels 

of the Odd Weibull family. The likelihood ratio statistics for {i — 1,2; ji — 1,2) 

are;

A =  sup L {a, p, 9) /  sup L {a, p , 9 ) , i = 1,2; j  =  1,2. (3.25)
Roij U R
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Where, R q̂j is the restricted parametric space corresponding to üfoÿ, i = 1,2; j  — 1,2. 

UR is the unrestricted parameter space.

In terms of the ML estimates, the likelihood ratio statistics reduce to:

A l l  =  L{ayj,p =  1,6.0})/ L  {a, p, 9) ] A i2 =  L {a — 1,P — l ,6 e ) /L  {a, P, 6)]

Agi =  L{aiyj,P = - 1 , 9iyj)/L {a ,P ,9)-, A22 = L {a = - 1 , P  = - l , 9 i e ) / L  {a,P ,9).

(3.26)

Under the null hypothesis, — 2  In (A n ), — 2  In (Aig), — 2  In (A2 1 ) , and — 2  In (A2 2 ) 

respectively follow distribution with degrees of freedom 1, 2, 1, and 2. The use of 

the Odd Weibull family for modeling and testing goodness-of-fit hypotheses is given 

in Section 3.8.

3.6 Total time on test transforms

3.6.1 T T T  transforms of the Odd Weibull family

In the analysis of lifetime data by the Odd Weibull family, predetermination of 

the sign and range of a  and P can be obtained by using the empirical TTT procedure. 

For this purpose, the empirical TTT transform (E ^^(r/u )) can be used as a tool to 

identify the hazard shape for the given data set.

The scaled empirical TTT is given by

pN{l~/n) — /n) /Hpp( l)  — ( E i = l  ^i-.n +  (u — r) Xrm) /  E i = l

(3.27)

Where r  =  1, ...,n  and i — 1, ...,n represent the order statistics of the sample.
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If the empirical T T T  transform is convex, concave, convex then concave, and 

concave then convex, the shape of the corresponding hazard function for such fail­

ure data is decreasing, increasing, bathtub, and unimodal respectively (Barlow and 

Campo 1975; Aarset 1987; Mudholkar et al. 1996).

The scaled T T T transform for the Odd Weibull family can be defined as

(u) =  .^p^u)/.E;:^(l); 0 < u < 1, (3.28)

where Hp^{u) = (1 — F(x)) dx. The F~^{u) is given in equation (3.8).

Adequacy of the model for the given uncensored data can be illustrated by using 

the plot of (j)F{u). The (Pf {u) of the Odd Weibull family is indeed a function of 

parameters a  and /3 for a given value u. The typical shapes of ^ f ( “ ) of the Odd 

Weibull family given by the following formula for 0 < tt <  1, are illustrated in Figure 

3.3.

4 > f { u )

(3.29)
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p

= -2.55  
= -0.7

a  =  -  0 .68 : a  = 0.44 
P = 0.98

o
d

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3 Typical shapes of <j)F{u) of the Odd Weibull family. The above line 

{a — 25.745, ^  — 0.149), the below line {a — 0.44, =  0.98), the lines (above:

a — 7.967, j3 =  0.098, below: a — 3.5, /? — 0.1), and the lines (above: a  =  —0.683, 

j3 =  —2.91, below: a  =  —2.55, P = —0.7) respectively represent increasing, 

decreasing, bathtub, and unimodal failure rates.

Note that, the ML estimates were used to plot the fitted 0f (w) curves for the 

examples given in Section 3.7. In these cases, we graphically investigate the effect 

of the substitution of ML estimates for the unknown parameters by constructing an 

approximate pointwise confidence band for 0 f (w). See Figure 3.4, 3.5, 3.6a, and 3.6b. 

This is done by calculating the asymptotic variance of 0^(u) for given u (0 <  u < 1), 

using the delta method.
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For the present purpose, to test the goodness-of-fit based on the T T T  plot, one 

can check the values of the following test statistic (Aarset 1987).

/  7:;(«)dM, (3.30)
Jo

where Tn{u) = ■\/n{J)N{r/n) — ppiu)},  and the asymptotic distribution of under 

exponentiality is obtained. The null hypothesis is rejected when is large, and we 

can use it to measure the discrepancy between an empirical and a fitted TTT plot.

3.6.2 Simulation studies

To gain some insight into the adequacy of the above test statistic (3.30) for the 

Odd Weibull family, simulation studies are conducted as follows: 100,000 random 

samples are generated from the Odd Weibull family and Rn values are calculated. 

90%, 95%, and 99% upper percentage points of Rn are recorded. This procedure is 

repeated for different parameter values and sample sizes. The results are given in 

Table 3.4. Parameters of the Odd Weibull family are chosen in a way to produce 

different types of failure rates.

From this table, one can see tha t the Rn values decrease with sample size, except 

when the parameters of the Odd Weibull family represent unimodal failure rates.
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Table 3.4 Upper percentage points of Rn for the Odd Weibull family

90% 95% 99%

Sample size

a P 1 0 2 0 50 1 0 2 0 50 1 0 2 0 50

-3.0 -0.5 1.632 1.900 2.597 1.917 2.405 3.379 2.672 3.445 5.162

-2 . 0 -2 . 0 0.141 0.152 0.161 0.198 0.217 0.230 0.363 0.419 0.447

-2 . 0 - 1 . 0 0.712 0.865 1.089 0.929 1.169 1.532 1.441 2.105 3.277

- 1 . 0 -2 . 0 0.612 0.730 0.915 0.815 0.999 1.309 1.305 1.923 3.061

- 1 . 0 - 1 . 0 3.598 5.090 8.014 4.099 5.879 9.460 4.999 7.359 12.04

-0.5 -3.0 1.054 1.315 1.813 1.321 1.693 2.413 1.863 2.536 4.406

0.5 0.5 1 . 0 2 0 0.844 0.733 1.378 1.199 1.047 2.105 2.043 1.831

0.5 1 . 0 1 . 0 1 1 0.895 0.814 1.382 1.271 1.161 2.190 2.169 2.018

0.5 3.0 0.425 0.431 0.448 0.588 0.602 0.633 0.963 1 . 0 1 1 1.085

0.5 5.0 0 . 2 0 0 0 . 2 0 1 0.205 0.281 0.285 0.290 0.484 0.486 0.506

1 . 0 0.5 0.423 0.327 0.282 0.660 0.497 0.414 1.284 0.999 0.773

1 . 0 1 . 0 0.365 0.321 0.300 0.546 0.472 0.430 1.025 0.880 0.773

1 . 0 5.0 0.054 0.053 0.052 0.078 0.075 0.074 0.140 0.132 0.127

5.0 0 . 1 0.058 0.041 0.034 0 . 1 0 1 0.067 0.051 0.265 0.156 0.103

5.0 0.5 0.058 0.050 0.046 0.097 0.078 0.067 0 . 2 1 1 0.163 0.129

5.0 1 . 0 0.030 0.028 0.027 0.048 0.041 0.039 0.099 0.083 0.071

8.0 0 . 1 0.050 0.036 0.029 0.091 0.062 0.045 0.251 0.150 0.098

8.0 1 . 0 0.014 0.013 0 . 0 1 2 0 . 0 2 2 0.019 0.018 0.047 0.039 0.033

8.0 5.0 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 2 0 . 0 0 1 0 . 0 0 1 0.003 0.003 0 . 0 0 2
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3.7 Illustrative examples

3.7.1 Increasing failure rate and uncensored data

This example contains 208 data points (data set is given in the appendix B), 

which represent the ages at death in weeks for male mice exposed to 240r of gamma 

radiation (Kimball 1960). The empirical TTT plot for this data set indicates an 

increasing hazard rate (see dark dotted line in Figure 3.4). The Odd Weibull family 

becomes versatile because it expands the Weibull family into a larger family due to 

an additional shape parameter. Therefore, it is important to identify the parameter 

space with increasing failure rate. From Section 3.2, when o; >  1, o;/3 > 1, the 

hazard function of the Odd Weibull family is increasing. Therefore, one can make 

an initial guess to estimate the parameters. Also, our quick parameter estimation 

method, the percentile estimation method also called crude estimation method given 

in Section 3.3, provides the estimated parameter values of the Odd Weibull family as 

5  =  10.5369, p  = 0.4299, 6 =  130.4599.

Table 3.5a provides the estimated parameter values and the log-likelihood values 

of the fitted Odd Weibull family to the original and inverse sample of mice data. 

Specifically, the inverse sample of mice data is analyzed by using the negative region 

(Section 3.4.1) of the Odd Weibull family.

Furthermore, the fitness of the Odd Weibull family to the original mice data is 

illustrated by the scaled fitted TTT graph (see dark solid line in Figure 3.4) with its 

5% confidence band (solid lines). The calculated Rn value of the original sample of 

mice data is 0.0107, which is smaller than 90% upper percentage point of Rn, 0.0249. 

Therefore, we do not reject the Odd Weibull fit for the mice data.
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Table 3.5a Estimated values of the Odd Weibull family for mice data

Sample a  ± g E a 1 (0 )

Original 6.2278 ±  0.8326 0.7495 ±  0.1221 131.45 ±  1.9535 -988.89

Inverse -6.2278 ±  0.8328 -0.7495 ±  0.1220 0.0076 ±  0.0001 993.25

o

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.4 Total time on test transforms of the mice data. Scaled empirical (dark 

dotted line), scaled Odd Weibull fit (dark solid line), 5% confidence band (light solid

lines).

Table 3.5b provides the likelihood ratio statistics of the Odd Weibull model for the 

two null hypotheses Hqh : /3 =  1  to the Weibull submodel (An) and Hq2 i : /3 =  — 1
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to the inverse Weibull submodel (A2 1 ). These values indicate an adequate fit to the 

Weibull model, whereas the inverse Weibull fit is inappropriate.

Table 3.5b Likelihood ratio tests of subhypotheses for mice data

Null hypothesis X? p-value

Hq\ i - 2  • In (All) — 2.62 0 . 1 1

Hq21 — 2  • In (A2 1 ) = 150.34 0 . 0 0

3.7.2 Bathtub-shaped failure rate and uncensored data

This example (data set is given in the appendix B) represents time to failure of 50 

devices put on a life test at time zero (Aarset 1987). The empirical TTT procedure 

indicates a bathtub hazard shape for this data set (see dark dotted line in Figure 3.5). 

As before, when modeling bathtub-shaped failure rate data it is important to identify 

the parameter space of the Odd Weibull family, which actually produces a bathtub 

hazard shape. It could be observed that the major shape of the hazard function of 

the Odd Weibull family is bathtub-shaped when 1  < o: <  00, 0 < n/3 < 1. Also, 

our quick parameter estimation method, the percentile estimation method given in 

Section 3.3, provides the estimated parameter values of the Odd Weibull family as 

S =  4.1694, 3  = 0.1775, 9 = 52.9565.

As in the previous example, the estimated values are given in Table 3.6a.
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Table 3.6a Estimated values of the Odd Weibull family for device data

Sample 0 ± S E ^ 1(6)

Original 6.9657 ±  0.5903 0.0921 ±  0.0171 53.509 ±  2.4733 -215.88

Inverse -0.0921 ±  0.0140 -0.0921 ±  0.0140 0.0187 ±  0.0006 92.02

In addition, the adequacy of the fit is strengthened by illustrating the scaled 

fitted TTT graph (see dark solid lines in Figure 3.5) with its 5% confidence band 

(solid lines). This indicates that the data is better-fit with the Odd Weibull family. 

The calculated Rn value of the device failure data is 0.0482, which is slightly smaller 

than the 95% upper percentage point of 0.0485. Therefore, it is hard to reject 

the Odd Weibull fit for the device failure data.

Mudholkar et al. (1996) used this example to illustrate the flexibility of their 

generalized Weibull family under the nonregular case. For comparison purposes, 

their generalized Weibull fit is illustrated in Figure 3.5 (see light dashed line).

Meanwhile, the likelihood ratio statistics given in Table 3.6b of the Odd Weibull 

family for the null hypotheses Hon P = I and ffo2 i :/? =  —! corresponding to the 

Weibull and inverse Weibull submodels indicate their inappropriateness.
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0.0 0.6 0.8 1.00.2 0.4

Figure 3.5 Total time on test transforms of the device data. Scaled empirical (dark 

dotted line), scaled Odd Weibull fit (dark solid line), scaled Mudholkar’s generalized 

Weibull fit (light dashed line), 5% confidence band for the Odd Weibull fit (light

solid lines).

Table 3.6b Likelihood ratio tests of subhypotheses for device data

Null hypothesis Xi p-value

Hon —2 • In (All) — 50.65 0.00

Ho21 —2 • In (Agi) - 98.28 0.00
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3.7.3 Unimodal failure rate and uncensored data

The twin data set (data sets are given in the appendix B) consists of alluvial 

diamonds from the Bougban and Damaya deposits in Guinea of West Africa (Beirlant 

et al. 1996). The sampling program on Bougban recovered 683 stones, whereas the 

Damaya sampling recorded 444 stones. In fact, the empirical TTT procedure gives 

unimodal hazard shapes for the twin data set (see dark dotted lines in Figures 3.6a 

and 3.6b). From Section 3.2, we observed that the hazard function of the Odd Weibull 

family is unimodal when its shape parameters, a  and /3, are both negative or a  < 1 

and aP > 1. Therefore, to estimate its parameters for unimodal failure rate data, 

one can pick the values from one of these ranges as an initial guess. The best-fitting 

parameters for the Odd Weibull family can be obtained by choosing the maximum 

value out of the following two likelihood functions, one from the range of both shape 

parameters a  < 0, P < 0 and the other function is from a  <  1, aP > 1. The percentile 

estimation method given in Section 3.3, provides the estimated parameter values of 

the Odd Weibull family for Bougban as 5  =  —2.4026, P =  —0.7473, 6 =  0.2232 and 

for Damaya as 5  =  —2.0561, P — —0.8561, 6 = 0.3933.

The estimated values are given in Table 3.7a. Specifically, the inverse samples of 

diamond data are analyzed by using the positive region (Section 3.4.1) of the Odd 

Weibull family.

The Odd Weibull fit to the original diamond data using scaled fitted TTT graphs 

(dark solid lines) with their 5% confidence bands (light solid lines) are illustrated 

in Figure 3.6a (Bougban) and Figure 3.6b (Damaya). The calculated Rn values of 

the Bougban and Damaya data are, respectively, 0.1111 and 0.0464, which are quite
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smaller than their 90% upper percentage points of 4.9550 and 2.6762.

Table 3.7b gives the likelihood ratio statistics of the Odd Weibull family for the 

twin data set. These values indicate that the Weibull and inverse Weibull submodels 

are inappropriate for the diamond data.

Table 3.7a Estimated values of the Odd Weibull family for diamond data

Original sample of Inverse sample of

Bougban Damaya Bougban Damaya

a -1.3431 -0.6107 1.3430 0.6107

± S E a ±  0.1372 ±  0.1811 ±  0.1372 ±  0.1811

P -1.2884 -2.9853 1.2885 2.9853

±  0.1501 ±  0.9173 ±  0.1502 ±  0.9173

0 0.2008 0.2642 4.9807 3.7844

± S E ^ ±  0.0064 ±  0.0460 ±  0.1594 ±  0.6585

113.49 -167.06 -1564.67 -773.02

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



p

§

to<3

0.0 1.00.2 0.4 0.6 0.8

Figure 3.6a Total time on test transforms of the Bougban data. Scaled empirical 

(dark dotted line), scaled Odd Weibull fit (dark solid line), scaled Mudholkar’s 

generalized Weibull fit (light dashed line), 5% confidence band (light solid lines).

Table 3.7b Likelihood ratio tests of subhypotheses for diamond data

Null Bougban Damaya

hypothesis Xl p-value %i p-value

^011 - 2  • In (All) =  483.19 0.00 - 2 -In(All) -  230.90 0.00

- 2 - l n ( À 2 i ) =  5.90 0.02 - 2 - ln(A2 i ) =  46.79 0.00
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Figure 3.6b Total time on test transforms of the Damaya data. Scaled empirical 

(dark dotted line), scaled Odd Weibull fit (dark solid line), scaled Mudholkar’s 

generalized Weibull fit (light dashed line), 5% confidence band (light solid lines).

3.7.4 Positively skewed density shape and grouped data

This example presents in Table 3.8 is a hospital-stay frequency distribution for 

2311 schizophrenic patients taken from the Maryland Psychiatric Case Register. This 

data set was earlier analyzed by Eaton & Whitmore (1977) to discuss the appropri­

ateness of the inverse Gaussian distribution as a model for the hospital stay pattern. 

Later, Whitmore (1986) noted that any simple model is inappropriate to explain the 

hospital stay pattern. Therefore, he formulated the normal-gamma mixture model to 

provide a clear improvement in fit relative to the unmixed inverse Gaussian model.
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Table 3.8 The estimated values of the Odd Weibull family for hospital data

Stay Observed Fitted Stay Observed Fitted

0 10 113 112.4490 160 170 24 33.8400

10 20 188 189.9422 170 180 41 30.9542

20 30 190 184.6042 180 190 33 28.4141

30 40 163 164.3855 190 200 20 26.1680

40 50 125 142.8408 200 300 164 179.6849

50 60 127 123.4291 300 400 102 99.5764

60 70 122 106.8266 400 500 78 63.1077

70 80 83 92.8782 500 600 48 43.5385

80 90 90 81.2119 600 700 33 31.8453

90 100 67 71.4399 700 800 23 24.3075

100 110 76 63.2195 800 900 14 19.1666

110 120 52 56.2659 900 1100 21 28.3075

120 130 51 50.3484 1100 1300 20 19.9163

130 140 38 45.2815 1300 1500 15 14.7866

140 150 43 40.9168 1500 2000 14 24.3998

150 160 44 37.1349 2000 00 89 79.8125

a ± S E a  =: -0.3623 ±  0.0633 l{6) =  - 7448.9394

: -2.3778 ±  0.4280 xis “  35.0182

6 ±  SEg = 30.7417 ±  5.2278 p-value == 0.1693
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Figure 3.7 Fitted survival curves for the hospital-stay pattern data. The upper step 

function, the lower step function, and the solid line are, respectively, represent the 

Kaplan-Meier upper bound, Kaplan-Meier lower bound, and the fitted Odd Weibull

curve.

Estimated log-likelihood values of unmixed inverse Gaussian and normal-gamma 

mixture model are, respectively, —7474.9 and —7452.9. He added an extra parameter 

for both models to provide an exact fit in class 0-10 days. Then the fitted chi-squared 

values and p-values of unmixed inverse Gaussian and normal-gamma mixture model 

are, respectively, xls =  82.7, p-value — 0.0000 and xie — 44.2, p-value =  0.0144. 

This is a large data set and hence this fit is much better than the inverse Gaussian 

fit. We used our Odd Weibull model to analyze this hospital-stay pattern and the 

estimated values of the fitted Odd Weibull family are given in Table 3.8. The fitted 

chi-squared value (xgg =  35.0182) and the p-value (— 0.1693) of the Odd Weibull
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model indicate that it is a better model to analyze the hospital-stay pattern data. 

Furthermore, Figure 3.7 illustrate the fitted Odd Weibull survival curve along with 

the Kaplan-Meier survival band. But, we do not include the fitted survival curves for 

inverse Gaussian and normal-gamma mixture model, since they do not have closed- 

form survival functions.

3.7.5 Bimodal density shape and interval censored data

This interval censored data (data set is given in the appendix B) is taken from 

Ryan and Lindsey (1998) and is originally analyzed by Richman et al. (1990) re­

garding the drug resistance (time in months to resistance to Zidovudine) of 31 AIDS 

patients. To analyze this type of data Kaplan-Meier related nonparametric techniques 

have been developed, see for instance Peto (1973) and Turnbull (1976). Due to com­

putational simplicity, Turnbull’s (1976) method (self consistency iterative algorithm; 

R-codes for this algorithm are given in the appendix B) have been used by many 

authors. The Kaplan-Meier survival curves usually well bracket the Turnbull’s (1976) 

survival curve. However, due to heavy censoring or may be specific configuration of 

the drug resistance data set, the Kaplan-Meier survival curves does not bracket the 

Turnbull’s (1976) survival curve. Therefore Ryan and Lindsey (1998) recommended 

parametric models to analyze the drug resistance data set. They used Weibull, piece- 

wise exponential and logspline models which we were not plotted in Figure 3.8, to 

track the survival curves of the drug resistance data set. Note that other paramet­

ric families may be better choices to estimate the true survival curve of the drug 

resistance data set.
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Figure 3.8 Fitted survival curves for interval censored resistance data.

In this regard, we used the drug resistance data set to illustrate the flexibility 

and applicability of the Odd Weibull family for modeling interval censored data. 

The estimated parameter and log-likelihood values of the Odd Weibull family for 

the drug resistance data are, respectively, a. ±  SEâ  =  9.4445 ±  14.0762, (5 ±  SE^  — 

0.1569 ±  0.2613, 6 ± S E ^  = 13.3759 ±  3.0019, l(j9) =  -19.0405. Figure 3.8 illustrate 

the Odd Weibull survival curve along with the Kaplan-Meier survival curves. Also for 

comparison purposes, we plotted the fitted Gompertz and loglogistic survival curves 

in Figure 3.8. The Kaplan-Meier survival curves, as expected, well bracket the fitted 

Odd Weibull survival curve than the fitted Weibull survival curve. Also the right 

tail area of the Odd Weibull survival curve well matches with the Turnbull’s (1976)
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survival curve. Therefore, the Odd Weibull family may be useful to make further 

analysis of the interval censored drug resistance data set.

3.7.6 Negatively skewed density shape and left truncated interval censored data

This example is a left truncated and interval censored increasing failure rate twin 

data set (Pan and Chappell 1998, 2002), regarding the loss of functional independence 

of people of age 65 years or older. This twin data set (data are in the appendix B) 

consists of 421 non-poor male group and 609 non-poor female group. In this example, 

we do not motivate to provide nonparametric graphical comparison with Odd Weibull 

family since left truncated and interval censored data are a very complicated form 

of incomplete data arising in survival data analysis. Here, our aim is to show the 

flexibility of Odd Weibull family for modeling complicated form of incomplete data.

The estimated parameter and likelihood values of the Odd Weibull family for the 

functional independence data are;

Non-poor female: a  ±  SEâ — 10.0451 ±  1.3515, j3 ±  SE-^ — 0.9808 ±  0.2452, 

9 ± S E ^  = 81.4178 ±  1.2653, l{6) =  -629.9040.

Non-poor male: a ± S E a  = 6.9247d: 1.1200, f t ± S E ^  = 0.6583±0.1903, 9 ± S E ^  = 

71.4860 ±  5.0491, l{9) = -473.2271.

The fitted Odd Weibull survival curves, for the non-poor female (dotted line) and 

for the non-poor male (solid line), are given in Figure 3.9
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Figure 3.9 Fitted survival curves for functional independence data. Non-poor female 

(dotted line) and non-poor male (solid line).
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Figure 3.10 Fitted Odd Weibull density curves for examples 1 through 6.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example  1 Ex a m p le  4

§ -

I  3 -

8 - .

0 50  100 150 200 250 300

Exam ple 2 E xam ple  5

8-
40 8020 60

Exam ple 3 E xam ple  6

/  \  C am ay  a
I  \ h a z 8 id  c u rv e

I  /S o u g b a r*
! V h a z a r d c u iv e

0.5 1.0 1.5 2.0

N o n -p o o r fem aleJ

Non-poof male

40 60 1000 20

Figure 3.11 Fitted Odd Weibull hazard curves for examples 1 through 6.

3.8 Exponentiality test

A graphical device called isotones (equal tensions or strengths) is first formulated 

by Lin (1977) and later used by Mudholkar et al. (1991) for testing normality of the 

Shapiro-Wilk W— test, Vasicek’s entropy test, and Lin and Mudholkar’s Zp— test by 

the generalized Tukey lambda family. Also Kollia (1989) used this graphical device 

to construct isotones of four tests namely; Xcsy test (Csorgo et al. 1975), entropy 

test Ks^2 0 , the two-sided bivariate F-test (Lin and Mudholkar 1980), and Gnedenko’s 

(Gnedenko et al. 1969) Q{r) test for testing the exponentiality by the generalized 

Weibull family (Mudholkar et al. 1996).

In this section, we used isotones to compare and assess the accuracy for testing 

the exponentiality of Kolmogorov-Smirnov (T(D), 1933), Anderson-Darling (T(A),
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1954), and Cramer von Mises (T{U),  1937) test statistics by the Odd Weibull family. 

T{D),  T{A),  and T{U)  are modified forms for testing exponentiality given by the 

following equations.

T(D ) = { D -  0 . 2 / n ) ( ^  +  0.26 +  0.5/Vn).

T(A) =  A2(1.0 +  0.6/n).

T(C/) =  [/2(1.0 +  0.16/n).

Where D  and are given in Chapter II Section 2.8, and

= E i ,  { F ( h o ) -  (2i -  l)/(2n)}" + 1/(12").

The isotones are based on ideal samples called profiles from the members of the 

two-shape parameter (X — a, p  = /a,  6 = 1) Odd Weibull family. The sensitivity 

surface of the values of the goodness-of-ht test statistic calculated from these profiles 

on the (A, p) plane for the three statistics are, respectively, illustrate in Figure 3.12a, 

3.12b, and 3.12c. The isotones are the contours of these surfaces and are, respectively, 

illustrate in Figure 3.13a, 3.13b, and 3.13c. The contours visualize the exponentiality 

departure of the statistics on the {X, p) plane starting from X = 1, p = 1. A sample 

size of 50 (see Mudholkar et al. 1991) is used to construct these surfaces and their 

contours.

Figure 3.14a, 3.14b, and 3.14c are, respectively, illustrate the upper tail 90% and 

95% probability contours of T{D),  T{A),  and T{U) for testing exponentiality with 

sample size 50 by the Odd Weibull family. Also, figure 3.15a, 3.15b, and 3.15c are, 

respectively, illustrate the upper tail 90% probability contours with sample size 20 and
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50 of T{D),  T(A), and T{U) for testing exponentiality by the Odd Weibull family. 

These upper percentage values are well tabulated by Pearson and Hartley (1972). 

From the two set of figures (3.14 and 3.15), one can clearly see that the isotones 

shrink closer to the exponential point as rejecting probability level (a) or sample size 

(n) increase. This is analogous to the increase in power as a  or u  increases.

Figure 3.16a and 3.16b are, respectively, illustrate the 90% and 95% probability 

contours of superimposition of the three statistics with sample size 50 for testing 

exponentiality on the (A, p) plane. From these two figures, we can clearly see that 

T{A)  and T(U)  have relatively higher strength for testing exponentiality than the 

T{D)  test statistic. As we expected, the square tests {T{A) and T{U))  are more 

powerful than the T{D).  Also, EDF based test is more powerful than the chi-squared 

tests.
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Figure 3.12a Kolmogorov-Smirnov sensitivity surface.

Figure 3.12b Anderson-Darling sensitivity surface.

Figure 3.12c Cramer von Mises sensitivity surface.
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Figure 3.13a Kolmogorov-Smirnov contour plot.
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Figure 3.13b Anderson-Darling contour plot.
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Figure 3.13c Cramer von Mises contour plot. 
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Figure 3.14a The a  — 0.05 and 0.10 of T{D).
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Figure 3.14b The a = 0.05 and 0.10 of T{A).
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Figure 3.14c The a  =  0.05 and 0.10 of T{U).  
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Figure 3.15a The a  =  0.10 of T{D)  for n  =  20, and n  =  50.
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Figure 3.15b The a  =  0.10 of T{A)  for n — 20, and n  =  50.
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Figure 3.15c The a  = 0.10 of T{U)  for n — 20, and n  =  50.
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Figure 3.16a The a  =  0.05 of T{D),  T{A),  and T{U).
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Figure 3.16b The a  =  0.10 ofT(D), T{A),  and T{U).
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3.9 Odd Weibull aliases of some common distributions via Galton’s skewness and 

Moor’s kurtosis

To enlighten the structure of the Odd Weibull family, one can compare it with 

commonly available parametric families in the coefficient of skewness (-\/A) kur­

tosis plane. Similar analysis has done by Johnson et al. (1982) and Mudholkar 

at al. (1994, 1996) using the (/3i, P2 ) plane. However, these analysis are limited 

to the distributions with finite moments. For example, Cauchy related distributions 

such as half Cauchy, folded Cauchy, truncated Cauchy, and log Cauchy which are 

use in lifetime data analysis, cannot be compared with other commonly available 

parametric families in the (/3i, P2 ) plane. Furthermore, some two-parameter com­

mon distributions such as loglogistic, Pareto, inverse Pareto, inverse Weibull, inverse 

Camma, paralogistic, inverse paralogistic, and etc., do not have a finite moment of 

some values of their shape parameter space. Also, some Odd Weibull aliases do not 

have a finite moments and hence creating a (/?i, /%) or ( v ^ i  Az) plane for the Odd 

Weibull family is less important.

It is well known, the moment base kurtosis value is 6 for the Laplace and infinite 

for the Cauchy. Balanda (1987) has pointed out that the moment base comparison is 

inadequate for the Laplace and the Cauchy distributions. Since it does not recognize 

the dominant features such as the Laplace’s dramatic peak and the Cauchy’s long 

tail. Furthermore, Horn (1983) identified that the Laplace has more peaked than 

that of the Cauchy, while Rosenberger and Casko (1983) identified the heavier tail 

of the Cauchy than the Laplace. The skewness and kurtosis comparison of the two 

models may support this argument.
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As an answer to the above discussion we can use quantile function based skewness 

(S) and kurtosis (K)  plane to compare almost all of the commonly available para­

metric families. This quantile based idea has been mentioned by Moor (1988), but 

a continuation of such work does not appear during the last two decades. However, 

our aim here is not just to create a quantile based (S', K)  plane, but also to find the 

Odd Weibull aliases in the (S, K)  plane.

Galton’s (1883) measure of skewness (—l < S < l ) i s  defined by

(Upper quartile — Median) -f- (Lower quartile — Median)
S  =

Interquartile distance

(3.31)

Moor’s (1988) measure of kurtosis {K > 0) is defined by

^  _  (Seventh octile — Fifth octile) 4- (Third octile — First octile)
Interquartile distance

(3.32)

One can easily obtain the S  and K  values for the Odd Weibull distribution (A =  û, 

/X =  P/oL, 0 < / /  <  DO, —oo < A <  g o )  as

In^/^ (1 +  3^/^) -F In^/^ ( l +  3~^/^) -  21n^/^ 2 
"  (1  -F 3V/^) -  In^/^ (1  -i- 3 - V m) ’

and

In^/^ (1 -H 7^/^) -  In^/^ (l +  7~^/^) -  In^/^ ( l +  (5/3)^/^) -h (l -h (5/3)~^/^)
In^/^ (1 +  3Vm) -  in^/^ (l +  3 -V/^)

(3.34)

Note that skewness and kurtosis values does not depend on the location and scale 

parameters of a distribution. The Quantile, Galton’s skewness and Moor’s kurtosis
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functions for various continuous univariate distributions are given in the appendix A. 

In order to identify such distributions the following abbreviations are used.

Uniform (U), Normal (N), Logistic (L), Laplace (LA), Cauchy (C), Sinh-normal 

(SN), Sinh-logistic (SL), Sinh-Cauchy (SC), Smallest extreme (SEV), Largest ex­

treme (Cumbel) (LEV), Half-normal (HN), Half-logistic (HL), Half Laplace (Ex­

ponential) (EXP), Half-Cauchy (HC), Folded-logistic (FL), Folded Laplace (FLA), 

Folded-Cauchy (FC), Lognormal (LN), Loglogistic (LL), LogCauchy (LC), Power dis­

tribution (PO), Pareto distribution (PA), Weibull Distribution (W), Camma distri­

bution (CA), Compertz distribution (C), Logistic-sinh distribution (LS), Compertz- 

sinh distribution (CS), Birnbaum-Saunders distribution (BS), Inverse exponential 

distribution (lEXP), Inverse Weibull distribution (IW), Lognormal-Pareto composite 

distribution (LPC), Weibull-Pareto composite distribution (WPG), Weibull-inverse 

Weibull composite distribution (WIW). Note that due to the computational difficul­

ties of calculating the (S', K)  values for folded normal and inverse Gaussian distribu­

tion, we will ignore them in our current study.

Figure 3.17a represents some common distributions (maximum one shape param­

eter) in the (S, K)  plane, whereas its magnified graph is given in Figure 3.17b. The 

location-scale parametric families gives a single point on the (S, K)  plane, whereas a 

single curve represents one shape parameter family of distributions. From these two 

graphs, one can see th a t most of the commonly available distributions are crowded in 

a specific region in the (S', K )  plane, and this may be the reason most natural data 

sets arise from tha t region.
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Figure 3.17a Some common distributions in the (S', K)  plane.
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Figure 3.17b Some common distributions in the (S, K)  plane (magnified).
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Figure 3.18a and 3.18b, respectively, represent the Galton’s skewness surface and 

contours of the Odd Weibull family on the (A, /i) plane. Figure 3.18c and 3.18d, 

respectively, represent the Moor’s kurtosis surface and contours of the Odd Weibull 

family on the (A, //) plane. Figure 3.19 shows the Odd Weibull aliases of some common 

distribution on the (A, /i) plane.

Figure 3.18a Galton’s skewness surface. Figure 3.18b Galton’s skewness contours

Figure 3.18c Moor’s kurtosis surface. Figure 3.18d Moor’s kurtosis contours.
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Figure 3.19 Odd Weibull aliases of some common distributions.

3.10 The exponential Odd Weibull family

An exponential transformation of the Odd Weibull family leads to the following 

distribution.
- 1

F{x;^ , 11, a) = 1 -  [ 1 +  [e^ - I (3.35)

where —oo < x < oo, —oo < fj, < oo, and 0 < pa  < oo.

When P = I this exponential Odd Weibull (EOW) model reduces to the small­

est extreme value (SEV) distribution, whereas, when P = —1 this exponential Odd 

Weibull (EOW) model reduces to the largest extreme value (LEV, Gumbel) distribu­

tion.

The density and the quantile function of the distribution are, respectively,
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(3.36)

and

Q{u) =  fj, +  a l n l n  | l  +  ^ j  (3.37)

Where —oo < æ <  oo, —oo < fj, < oo, 0 < Pa < oo, and 0 <  u <  1.

The Galton’s skewness and Moor’s kurtosis functions for the EOW family can 

respectively be written as

l n { l n ( l + 3 W ) l n ( l  +  3 ^ W ) / ( l n 2 f |  
ln{ ln ( l  +  3>//î)/ ln(l +  3 -W )}  '

and

1 /  ln(l+7V^)ln(l-t-(5/3)-V'^) \
" \ l . ( l + 7 - W ) l n ( H - ( 5 / 3 ) W ) /

l n { l n ( l + 3 W ) / l n ( l  +  3 -W )} ’

where —oo < P < oo.
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Figure 3.20 Exponential Odd Weibull density curves. The dark solid line ( / i  =  —50, 

a = —10, P =  —0.1), the light solid line (/r — 50, cr =  10, /3 =  0.1), the dark dotted 

line (/i =  0, cr =  —20, P =  —1), the light dotted line {fx — 0, a — 20, P — 1), and the

dashed line (/x =  28, o' =  80, /5 =  5).
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Figure 3.21 Shape of EOW and GEV distributions in the {S, K)  plane
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3.10.1 Analysis of wave-surge data

This example is a concurrent measurements of two oceanographic variables - wave 

and surge height at a single location off south-west England (Coles 2001). This is a 

large data set with 2894 data points (see appendix B) for each variables - wave and 

surge heights measured in meters. As noted by Coles (2001), the scatter plot of wave 

and surge data suggests a tendency for extremes of one variable to coincide with ex­

tremes of the other. The importance of this example is to identify such phenomenon, 

as the impact of simultaneous extremes may be much greater than if extremes of 

either component occur in isolation. Therefore to calculate the probability of simul­

taneously extreme events, multivariate extreme value models can be used. For this 

purpose, Coles (2001) used three different bivariate models: logistic (one parameter), 

bilogistic (two parameters) and Dirichlet (two parameters) for wave-surge data under 

the point process analysis. Maximized log-likelihood values of three bivariate models 

indicate that the Dirichlet model is a better fit for wave-surge data. To apply these 

bivariate models, each variables, wave and surge heights are individually modeled by 

the generalized extreme value (GEV) distribution and the parameters are estimated 

under the likelihood method, and then the data are transformed according to the 

standard Frechet scale.

Alternative to the GEV distribution, one can used better extreme value models 

to transform the data  according to the standard Frechet scale to apply the above 

mentioned bivariate models. Therefore, we used the exponential Odd Weibull (EOW) 

distribution for individual modeling of these variables and the fitness is compared 

with Gumbel and GEV distributions. Estimated values of these three models are
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given in Table 3.9 and Table 3.10. These estimated values indicate that the EOW 

model gives a better fit than the Gumbel or GEV models for both wave and surge 

data. Alternatively, the other known parametric families gave a very poor fit than 

the EOW fit given on Table 3.9 and 3.10.

The chi^squared tests given in Tables 3.9 and 3.10 are performed according to 

the computer generated (arbitrarily chosen) class intervals for wave and surge height 

data. It would be more appropriate if we use equal probability class intervals. The 

number of classes can be chosen by the formula (D’Agostino and Stephens 1986), 

M  M where M  and n  are, respectively, the number of classes and the sample

size. Then M  ~  48 for both wave and surge data. Hence, fitted chi-squared values 

and p-values for wave and surge data are given in Table 3.11. The pros and cons 

of chi-squared test and related methodologies are found in Greenwood and Nikulin 

(1996).
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Table 3.9 Estimated values of three models for wave height data

Height interval Observed Expected frequencies for

(in meters) frequency Gumbel GEV EOW

—oo 0.625 18 64.1174 32.1974 21.5226

0.625 0.875 78 70.8973 65.8626 64.1641

0.875 1.125 131 110.7791 122.0659 137.3998

1.125 1.375 211 152.2238 178.8105 205.4916

1.375 1.625 217 188.5474 221.9692 241.2622

1.625 1.875 239 214.7636 245.1004 245.7542

1.875 2.125 254 228.6314 249.0507 232.8437

2.125 2.376 216 230.4802 238.5196 213.5211

2.375 2.625 205 222.3554 219.0020 193.1621

2.625 2.875 188 207.0552 195.1452 173.6982

2.875 3.125 143 187.3871 170.2461 155.5782

3.125 3.375 126 165.7373 146.3468 138.7694

3.375 3.625 118 143.9034 124.5391 123.1561

3.625 3.875 109 123.0999 105.2771 108.6621

3.875 4.125 97 104.0497 88.6271 95.2638

4.125 4.375 76 87.1037 74.4413 82.9692

4.375 4.625 63 72.3539 62.4707 71.7927

4^25 4.875 63 59.7276 52.4321 61.7373

4.875 5.125 49 49.0576 44.0456 52.7850

continued
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Table 3.9 (continued)

Height interval Observed Expected frequencies for

(in meters) frequency Gumbel GEV EOW

5.125 5.375 48 40.1311 37.0538 44.8948

5.375 5XB5 35 32.7222 31.2291 38.0055

5.625 5.875 41 26.6114 26.3759 32.0407

5.875 6.125 30 21.5962 22.3286 26.9149

(hl25 6.375 20 17.4965 18.9488 22.5389

6.375 6.625 22 14.1557 16.1214 18.8242

6.625 6.875 19 11.4403 13.7513 15.6860

6.875 7.125 18 9.2376 11.7602 13.0459

7.125 7.375 10 7.4537 10.0835 10.8326

7.375 7XB5 10 6.0109 8.6682 8.9826

7.625 7.875 9 4.8451 7.4705 7.4400

7.875 8T25 11 3.9040 6.4544 6.1564

8.125 8.375 8 3.1447 5.5902 5.0903

8.375 oo 12 12.9797 42.0148 24.0136

2.1625 ±  0.0224 2.0739 ±  0.0232 2.2106 ±  0.0224

1.1495 ±0.0174 1.0744 ±  0.0182 -0.7400± 0.0240

0.1476 ±  0.0173 -0.5743± 0.0230

i(6,) -5068.6830 -5026.0151 -4996.7272

X# %28 ~  161.8114 =  77.9198 =  33.5904

p-value 0.0000 0.0000 0.2546
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Table 3.10 Estimated values of three models for surge height data

Height interval Observed Expected frequencies for

(in meters) frequency Gumbel GEV EOW

—oo -0.2875 7 0.5621 3.1221 10.4720

-0.2875 -0.2625 8 1.9241 4.8425 7.9928

-0.2625 -0.2375 10 6.0040 10.1775 12.8678

-0.2375 -0.2125 39 14.9255 19.1956 20.0009

-0.2125 -0.1875 29 30.7155 32jW39 30.0720

-0.1875 -0.1625 54 54.0305 51.4877 43.7736

-0.1625 -0.1375 50 83JWÜ2 74.6222 61.6716

-0.1375 -0.1125 87 115.6717 100.8121 83.9835

-0.1125 -0.0875 108 146.6319 127.8993 110.2860

-0.0875 -0.0625 128 172.6052 153.4106 139.2261

-0.0625 -0.0375 158 191.0922 175.0273 168.3851

-0.0375 -0.0125 202 201.0899 190.9772 194.4808

-0.0125 0.0125 209 202.9098 200.2607 214.0069

0.0125 0.0375 219 197.7585 202.6890 224.1724

0.0375 0.0625 235 187.2826 198.7707 223.7496

0.0625 0.0875 230 173.2011 189.5101 213.4033

0.0875 0.1125 179 157.0661 176.1805 195.3470

0.1125 0.1375 184 140.1428 160.1210 172.5551

0.1375 0.1625 132 123.3783 142.5828 147.9411

continued
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Table 3.10 (continued)

Height interval Observed Expected frequencies for

(in meters) frequency Gumbel GEV EOW

0.1625 0.1875 124 107.4229 124.6337 123.8115

0.1875 0.2125 103 92.6789 107.1129 101.6713

0.2125 0.2375 83 79.3562 90.6260 82.2910

0.2375 0.2625 73 67.5254 75.5652 65.8937

0.2625 0.2875 51 57.1627 62.1435 52.3572

0.2875 0.3125 36 48.1843 50.4340 41.3783

0.3125 0.3375 38 40.4734 40.4072 32.5850

0.3375 0.3625 22 33.8976 31.9645 25.6037

0.3625 0.3875 24 28.3220 24.9648 20.0941

0.3875 0.4125 17 23.6166 19.2456 15.7629

0.4125 0.4375 13 19.6607 14.6380 12.3661

0.4375 0.4625 13 16.3452 10.9773 9.7056

0.4625 0.4875 10 13.5736 8.1094 7.6228

0.4875 oo 19 6&3486 18.6454 28.4693

/i±  SEfi -0.0069 ±  0.0026 0.0026 ±  0.0027 -0.0484± 0.0100

a ±  SEa 0.1308± 0.0018 0.1323 ±  0.0018 -0.2726 ±  0.0281

-0.1341± 0.0083 -2.4329± 0.2637

z(e) 1465.4623 1540.0158 1561.9937

X# =  221.2781 =  79.7487 X2 9  ~  41.2333

p-value 0.0000 0.0000 0.0657
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Figure 3.22 Fitted EOW, GEV, and Gumbel densities for Wave data.
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Figure 3.23 Fitted EOW, GEV, and Gumbel Q-Q plots for Wave data.
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Figure 3.24 Fitted EOW, GEV, and Gumbel densities for Surge data.

EOWGumbel

GEV

- 0.2 0.0 0.6 0.80.2 0.4

Surge heights (in m eters)

Figure 3.25 F itted EOW, GEV, and Gumbel Q-Q plots for Surge data.
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Table 3.11 Chi-squared and p-values under equal probability classes 

Gumbel GEV EOW

Wave data

X4 5  =  173.1569 =  91.6199 =  49.4250

p-value 0.0000 0.0000 0.2655

Surge data

X45 =  201.9834 X44 =  81 4029 x l  =  40.5681

p-value 0.0000 0.0005 0.6195

3.11 The log Odd Weibull family

The following Power-Pareto model (PPG) is presented by Gilchrist (2000) by 

multiplying the quantile functions of Power and Pareto distribution. The quantile 

function of the PPG distribution is given by

Q{u) = 6 u^/{ l  — uY; 0 <  7 , 6 , 6  < 0 0 , 0 <  tt <  1. (3.40)

Note that the PPG  distribution does not provide closed-form expressions for either 

density or distribution even though Pareto and Power distributions are submodels.

Alternatively here we presented the better Power-Pareto distribution by logarith­

mic transformation to the Odd Weibull distribution. I t ’s cumulative distribution 

function, density function, hazard function and quantile function are, respectively, 

given by

F(x)  =  1 -  1 / | 1  +  { { x / e r  -  1}'’!, (3.41)
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/w  = (a/3/T)(a;/0)«{(a;/gr -  -  1 ]̂', (3 42)

&(a;) =  (a/3M (z/0)«{(z/0)=  -  +  {(a:/0)" -  1}^, (3.43)

and

I/))'» 1/°=
Q(u) =  0 <( 1 +  ( • (3.44)

Where, if o; <  0, and /5 <  0, then 0 < x <  0, otherwise 9 < x  < oo, and 0 < w < 1. 

Note tha t when /5 =  1 and /3 =  — 1 this density represents the Power and Pareto 

distributions respectively. When 9 = 1, a, P < 0, the shape of the arising distribution 

is exactly as the beta distribution. Also note th a t when a  =  — 1 this Power-Pareto 

Model reduces to a submodel of the following distribution given by Balakrishnan 

(1992). I t ’s distribution function is

- 1

Fix) = | l  + e-’ (^ -  ') I . (3.45)

where 0 < y < l ,  0 < 7 < o o ,  and 0 < S < oo.

Finally, the study of the log Odd Weibull family is an open question to interested 

readers.
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CHAPTER IV 

THE LOGISTIC-SINH DISTRIBUTION

4.1 Introduction

A two-parameter family of distributions is derived to model highly negatively 

skewed data with extreme observations. This distribution is referred to as the logistic- 

sinh (LS) distribution, since it is derived from the logistic distribution by appro­

priately replacing an exponential term with a hyperbolic sine term. The resulting 

family provides not only negatively skewed densities with thick tails but also vari­

ety of monotonie density shapes. The space of shape parameter, lambda greater than 

zero, is divided by the boundary line of lambda equals one into two regions over which 

the hazard function is, respectively, increasing and bathtub-shaped. The maximum 

likelihood parameter estimation techniques are discussed by providing approximate 

coverage probabilities for uncensored samples. The advantages of using this distribu­

tion are demonstrated and compared through well-known examples. In addition, the 

proposed family permits proportional hazard modeling. If a baseline hazard function 

of a distribution is h(t) (or equivalently survival function S(t)),  then for any ^ > 0, 

the new hazard function, ^h{t), (or equivalently the new survival function, [<5'(t)]̂ ), is 

also its member. This closure property of the proposed family is desirable, interest­

ing, and convenient in studies involving multi-sample occurring in repair-reuse type 

reliability situations.
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In the literature, two-parameter bathtub-shaped failure rate distributions are pre­

sented by several authors. Smith and Bain (1975) introduced the exponential power- 

life-testing distribution, and they used it to analyze the fifth bus motor failure data 

given by Davis (1952). Later, Dhillon (1981) used it to analyze some field failure 

data. Chen (2000) introduced a two-parameter bathtub-shaped failure rate lifetime 

distribution. However, this model is not convenient for parametric inferences due to 

the lack of scale parameter of the family. For the purpose of modeling life data, an 

extension of this two-parameter model is presented by Murthy et al. (2004).

Inspired by the work done by several authors, the LS family was derived to model 

highly negatively skewed data with extreme observations. After introducing the lo­

gistic distribution (Verhulst 1838, 1845) as a tool to study the population data, many 

other authors used it to solve some bioassay problems, used it as an income distribu­

tions and a growth model, etc., (see Balakrishnan 1992). For the first time, Plackett 

(1959) used it to analyze the survival data. Later, Balakrishnan and Cohen (1990) 

illustrated single-parameter half-logistic as a useful lifetime distribution. Burr (1942) 

proposed the replacement of random variable of type I logistic function with hyper­

bolic sine function; see also Johnson et al. (1994). Smith and Naylor (1987) analyzed 

the glass fiber strength data by using three-parameter Weibull distribution for the 

purpose of modeling unusually shaped likelihoods. Finally, using the exponentiated 

Weibull distribution, Mudholkar et al. (1995) advanced the analysis of the classical 

bus motor failure data while Lindsey (1997) gave an alternative analysis to the bus 

motor failure data using parametric multiplicative intensity models.
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4.2 The model and its properties

Consider the half-logistic distribution with its cdf F(x) =  1 — (1 4- .5 (e^ — 1))~^ ; 

0 <  X < oo. The logistic-sinh (LS) distribution is obtained by replacing the term 

(e® — 1) of the half-logistic distribution by sinh (e^ — 1) to obtain a negatively skewed 

density function. Alternative functional forms are discussed at the end of this section.

After suitably setting the parameters A(> 0) and 9(> 0), the cumulative distribu­

tion function, probability density function, hazard function, and the quantile function 

of the LS distribution can respectively be written as

F(x; A,0) =  1 — (1 -f A sinh (exp (x/0) — 1))~^, (4.1)

/(x ; A, Û) = (A/0) exp (x/0) cosh (exp (x/0) — 1) (1 -f A sinh (exp (x/0) — 1))~^ ,

(4.2)

h(x; A, 0) — (A/0) exp (x/0) cosh (exp (x/0) — 1) (1 +  A sinh (exp (x/0) — 1))"^,

(4.3)

and

Q(u) =  F~^{u) =  0 In ^1 4- arc sinh ^ ^ ( l ^  (4-4)

Where 0 < x <  oo, 0 <  A < oo, 0 < 0 < oo, and 0 < u < 1.

The kth moment of the LS distribution,

E(X'=)= rQ \ii)d T i, (4.5)
Jo

with Q{u) given by (4.4), does not have a closed-form expression and must be evalu­

ated numerically.
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The quantiles of the distributions in the family, which are readily available from

(4.4), can be used to construct quantile analogs of moment-based descriptive mea­

sures. In addition, the quantiles permit us to generate random data that describes the 

density given in (4.2). See Gilchrist (2000) for a comprehensive account of statistical 

modeling with quantile functions.

The LS distribution can be useful in the analysis of human survival time data, 

since it can be highly negatively skewed and non-zero density at the origin. For larger 

values of 6 , and A =  2, the LS distribution converges to an exponential distribution.

Figure 4.1 shows the LS density curves for different parameter values. The solid 

line, the dotted line, the dashed line, and the dot-dashed line indicate the parameter 

values (A =  0.025,0 — 40), (A =  0.7,0 — 40), (A =  1,0 =  30), and (A =  3,0 =  100), 

respectively.

Figure 4.2 illustrate the hazard curves of the LS distribution for different param­

eter values. The solid line (A =  0.5,0 =  40), the dotted line (A =  1,0 =  20), the 

dashed line (A =  7,0 — 15), and the dot-dashed line (A =  10,0 =  30).

Table 4.1 gives the mean {E[X/9]) and the standard deviation {y/V{X/9))  for 

given parameter 0, and the coefficient of variation (CV)  for different values of param­

eter A of the LS distribution. This table would be useful to the reliability analysts in 

order to get starting points for the iterative method employed in Section 4.4.
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f(x) 

0.015

0.005

Figure 4.1 Typical density curves of the logistic-sinh distribution. The solid line 

(A =  0.025,6 — 40), the dotted line (A — 0.7, 6  = 40), the dashed line 

{X = 1,0 — 30), and the dot-dashed line {X = 3,6 = 100).

0 .5 l

0.4-

0.3-

h(x)

0.2

Figure 4.2 Typical hazard curves of the logistic-sinh distribution. The solid line 

(A =  0.5,9 = 40), the dotted line (A =  1,0 =  20), the dashed line {X = 7,9 = 15), 

and the dot-dashed line (A =  10,9 =  30).

For example, when 9 = 15 and A =  0.2, the mean and the standard deviation can 

be calculated from this table such that, the mean =  15 x 1.1357 =  17.0355, and the

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



standard deviation =  15 x 0.4763 =  7.1445. The corresponding coefEcient of variation, 

C V  can directly be read from the table such that C V  — 0.4194.

Figure 4.3 illustrates the shape variation (Y) of E [ X / 6 ] (dotted line), ^JV{X/9)  

(dashed line), and C V  (solid line) against the parameter A of the distribution.

Table 4.1 Mean, standard deviation, and CV of the LS distribution

A y V (X /0 ) CV A \ / y ( x / g ) CV

0.01 1.7952 0.3250 0.1810 1 0.6902 0.4732 0.6857

0.02 1.6696 0.3614 0.2165 2 0.5134 0.4350 0.8472

0.05 1.4794 0.4124 0.2787 5 0.3210 0.3592 1.1190

0.10 1.3157 0.4485 0.3409 10 0.2129 0.2941 1.3813

0.20 1.1357 0.4763 0.4194 20 0.1355 0.2314 1.7077

0.50 0.8817 0.4889 0.5545 50 0.0708 0.1609 2.2726

0.6

0.4

0.2

L am bda

Figure 4.3 Mean, standard, and CV shape variations of LS. For given 6  E [ X / 6 ] 

(dotted line), ^ / V { X | 6 ) (dashed line), and CV (solid line) with respect to

parameter A.
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Furthermore, the C V  does not depend on parameter 6 . Consequently, the pa­

rameter A is directly related to the C V  of the distribution. The C V  is important 

in reliability analysis. Barlow and Proschan (1981) showed that any life distribu­

tion with increasing (decreasing) hazard function has a C V  < 1 {CV > 1). The 

theorem 4.1 (given below) shows that the logistic-sinh hazard function is increasing 

when A < 1, i.e. C V  < 0.6857. In addition, the numerical investigation shows that 

C V  =  1 when A =  3.45. This is due to mixture of decreasing and increasing shapes 

(bathtub-shaped) of the hazard function of the LS distribution, when A > 1.

The proof of Theorem 4.1 can be verified using elementary calculus, and the 

shapes of the hazard function given by the theorem are illustrated in Figure 4.4. The 

solid line, and the dotted line indicate the parameter values (A =  20, ^ — 40), and 

(A =  0.5, 6  = 45) respectively.

Theorem ^ . 1

The shapes of the LS hazard function (4.3) are bounded by the parameter space 

A(> 0) such that monotone increasing (A < 1) and bathtub-shaped (A > 1).

Proof

Consider the following form of the hazard function given in (4.3).

h{x) = {X/6 ) exp {xld) /  (sec h (exp {x / 6 ) -  1) +  Atanh (exp {x / 6 ) -  1)),

where 0 <  æ < oo, 0 < A < oo, and 0 < 0 <  oo. One can show th a t lim h{x) oo,
X -^ O O

and h{0) =  X/9.

The first derivative of h{x) is,

/ Xe^!^ I  (eV® -)- A/2) sinh (e®/® -  l)  — Ae®/® +  cosh (e^® -  l)
W  =  (l  +  A s inh(eV ^-l) ) '
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Now h'{0) =  (p )  (1 — A), hence h '(0) ^  0, if A ^  1. If h{x) has a local maximum 

or minimum at c, then h'(c) =  0. It follows that, Ae /̂  ̂ =  .SAsinh — 1)) +

cosh — l)  +  sinh — l) .

The second derivative at c is,

» . Ae^/^. /  A (cosh — 1)) — l) +  2 sinh (e^/^ — l) +  cosh — l)
W =  i - 0 ^ )  ( l +  A s in h (c c /^ - l) ) '

Clearly, h"{c) >  0, if c > 0. Therefore, x =  c is a local minimum of h{x). i.e., the 

hazard function is bathtub-shaped. This is possible only if A > 1 due to the first 

derivative result at x =  0, h' (0) < 0. Furthermore, when A < 1, the hazard function 

is increasing.

0.5 i

0.4

0.3

h(x)
0.2

0.1

100

Figure 4.4 The hazard curves describe by the theorem 4.1 of LS. The solid line 

(A = 20,6 = 40), the dotted line (A =  0.5 , 6  = 45).
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Alternative functional forms for the LS distribution 

Consider the following function,

F{x; X, 6 ) = 1 — {1 + Xg (x; 6 ))~^, 0 < A < o o ,  0 < ( 9 < o o ,

where g (.) is any increasing function in R+ such that p (0) =  0 and g (oo) =  oo, is also 

a distribution function over 0 <  x <  oo. In order to obtain a negatively skewed density 

function over 0 <  x <  oo, one can select g (.) such that lima;_,oo(fi'(a:)/sinh(x)) —>• oo. 

For example, following functional forms would be possible for g[.)\ 

gi (x; 9) =  sinh (sinh (x / 6 ) ) , g2 (x; 9) — exp (exp (x/9)  — 1) — 1, 

gs (x; 9) = exp (sinh (x/9)) — 1 .

The hazard function of (.) selection gives only bathtub-shaped failure rates. The 

hazard function corresponding to 5 2  (•) selection would be interesting due to sharp

bounds of the hazard rate such that A > 2 bathtub-shaped, and A < 2 increasing.

Although, this selection does not provide rich density shapes as the LS distribution. 

For example, the second bus motor failure data (Davis 1952) given in Example 2, 

Section 4.7, does not give a good fit with g; (.) selection. The g^ (.) selection also gives 

sharp bounds of the hazard rate such that A > 1 bathtub-shape, and A < 1 increasing. 

This selection provides better density shapes than 9 2  (•) selection. However, the 5 3  (.) 

selection does not provide rich monotonie density shapes like the LS distribution. In 

addition, the density graph of the 5 3  (.) selection shows a light positive antimode, 

which is not very apparent like in the LS density graph. This may lead to getting 

lower p-values in the analysis of data sets like the bus motor failure data (Davis 1952).
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4.3 Parametric inference

Typically, parametric inference of distributions like the LS to the given data are 

based on likelihood methods and their asymptotic theory (Cox and Oakes 1984; Law­

less 2003; Rao 1973). Estimates of the parameters are obtained by maximizing the 

log-likelihood function {l{0) — In L{xi,X 2 , . . . , A, 6 )).

The log-likelihood function of the LS distribution is given by

^  £ j= i  (^ /9) + - ^  + In (cosh — l) )  j

-  E ”=i (1 +  ■5. ) In (1 +  A sinh (s''/' -  l)) , (4.6)

where Sj is such that

{ 0 if observation is right censored
j  ~  1)2,..., n.

1 if observation is not right censored

For the purpose of analyzing the grouped data (see example 2, Section 4.7) by 

estimating the parameters of the LS distribution under the ML method, one can 

assume that the data consists of r  intervals and the j th  interval, i.e. (cj_i,Cj), has 

Uj observations for j  =  1, 2, 3, ..., r  ; cq =  0. The rth  open interval, i.e. (cr_i,oo), 

contains observations, and the total number of observations, n  can be written as 

Therefore the log-likelihood function of the LS distribution for grouped data 

can be written as

1(6) =  ^  n , In [F(c,; A, «) -  f (c ,_ i; A, 0)], (4.7)
i=i

where F{.]X,9) is the cumulative distribution function of the LS distribution.
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In this case, the log-likelihood function is maximized by solving the score equation 

U(0) =  =  0. For large samples, asymptotic normality results hold for estimated

parameters due to the convergence in distribution, i.e., ^/n(0 — 0) —> Ng(0, I~^{0)), 

where Ng denotes the bivariate normal distribution and I{0) is the expected Fisher

aedo' . Because the limiting distribu-information matrix of 0  such that I{0 ) =  —E 

tion N 2  is continuous, the convergence is actually uniform. The variance-covariance 

matrix, / (0 ) is useful to construct approximate confidence intervals for individual pa­

rameters and functions of such parameters (Rao 1973). Moreover, whether the data 

are complete or right censored, inference procedures based on maximum likelihood 

large-sample theory can be applied in a straightforward way (Lawless 2003).

The fitting of the LS distribution by solving the score equation involving in the 

log-likelihood function can be facilitated using computer programs such as DNEQNF 

in IMSL (1991) and LE in BMDP (1992). The LE program in BMDP (1992), which 

uses Newton-Raphson type algorithm to maximize the likelihood function. It can be 

employed to estimate unknown parameters, whether the data is in complete, grouped, 

truncated, or right censored form. The LE routine also gives the asymptotic standard 

errors (SE’s) of the estimates by inverting the Hessian matrix used in the maximizar 

tion of the likelihood function, unless the information m atrix is ill-conditioned. The 

information m atrix may be ill-conditioned due to singularity or near singularity of 

the Hessian matrix. In this situation, the LE routine will set the asymptotic standard 

error of a parameter to zero by warning the following: Linear dependence among the 

parameters; The parameter is fixed; The parameter is on the boundary. For exam­

ple, in the analysis of Sample 2 in Example 1, Section 4.7 using the three-parameter
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Weibull distribution, one can see that the LE in BMDP (1992) produces invalid re­

sults.

4.4 Approximate coverage probabilities

The coverage probabihties for the maximum likelihood estimation method with 

intended confidence levels a  — 0.1 and a = 0.05 are given in Table 4.2. These cov­

erage probabilities are based on 10,000 simulated random samples from the density 

given in equation (4.2). The random samples are generated by plugging the known 

values of parameters A and 6  (say A — 0.01, ^ =  10) to the quantile function given in 

equation (4.4). In addition, n  (say n = 10) number of ordered uniform random sample 

from the uniform distribution, u ~  C/(0,1) is required to substitute as u in equation

(4.4). In that way, one random sample of size n (say n  — 10) from the LS distribution 

with parameters A and 9 (say A — 0.01, 9 = 10) can be generated. In this simulation 

study, ten thousand such samples are generated to get a single cell value in Table 

4.2. For this purpose, the subroutine DNEQNF in the IMSL (1991) package is used 

to solve the nonlinear equations involving in the likelihood procedure. The approx­

imate 100 (1 — O') % confidence intervals for parameters, A and 9 are calculated by 

using ^A -  Za/2 SEi ,  A -f Zaf2 S E ^  and ( 9  -  Za/2 SE^, 9 + respectively.

Where SE'^ and SE^  are respectively asymptotic standard errors of A and 9, which 

are taken from the observed information matrix (Efron and Hinkley 1978).
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Table 4.2 Approximate coverage probabilities of the LS

n  = 10 20 50

90% intended 6  = 10 20 50 10 20 50 10 20 50

A == 0.01 A : .815 .802 .767 .812 .807 .791 .849 .849 .847

e : .914 .916 .883 .894 .891 .873 .894 .888 .893

A == 0.10 A : .758 .766 .758 .842 .854 .838 .872 .871 .869

6 : .841 .836 .824 .885 .886 .879 .887 .890 .890

A:= 1.0 A : .782 .782 .753 .835 .837 .842 .881 .874 .877

d : .775 .766 .752 .832 .836 .839 .879 .872 .874

A == 10.0 A : .532 .501 .414 .676 .670 .680 .793 .791 .800

e : .498 .486 .410 .639 .628 .630 .770 .762 .767

95% intended

A - 0.01 A : .839 .829 .797 .842 .840 .821 .887 .882 .886

e : .955 .956 .929 .939 .941 .922 .942 .936 .942

A = 0.10 A : .792 .800 .790 .878 .888 .875 .911 .913 .903

6  : .888 .884 .876 .928 .934 .926 .936 .938 .936

A =: 1.0 A : .820 .818 .798 .873 .873 .879 .920 .917 .916

9: .815 .811 .796 .876 .878 .877 .923 .918 .921

A — 10.0 A : .573 .638 .451 .723 .717 .724 .836 .834 .841

9 : .532 .522 .443 .678 .668 .667 .810 .802 .806
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Prom Table 4.2, one can see that when the sample size increases, the approximate 

coverage probabilities for the parameters under the maximum likelihood method is 

getting closer to the intended coverage probabilities. Although, the coverage prob­

abilities decrease, when the shape parameter A increases from one. But, one can 

obtain a desired confidence level by appropriately adjusting the confidence coefficient 

a. Moreover, the procedure gives an over coverage for parameter 9 for small samples 

(e.g. when n  =  10) and small values of parameters {9 =  10,20; A =  0.01). Except for 

this case, the values in Table 4.2 predict that the parameters are not overly estimate 

under the maximum likelihood estimation method.

4.5 Actual coverage probabilities

The coverage probabilities for the maximum likelihood estimation method with 

intended confidence levels o  =  0.1 and o  — 0.05 are given in Table 4.3. These coverage 

probabilities are based on 10,000 simulated random samples.

In this simulation studies, the subroutine DNEQNF in the IMSL (1991) package 

is used to solve the nonlinear equations involving in the likelihood procedure. The ap­

proximate 100 (1 — a) % confidence intervals for parameters A and 9 are calculated by 

using ^A -  ZccI2 SE^,  A +  Za/2 S E -^  and (9 -  Zaj^SEg, 9 -h Za./2 S E ^  respectively. 

Where SE-^ and SE-g are respectively asymptotic standard errors of A and 9, which 

were taken from the expected information matrix. In order to find the expected val­

ues involving in the information matrix, the Monte Carlo simulation method is used. 

For this purpose, 100,000 samples were used from the estimated LS density.
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Table 4.3 Actual coverage probabilities of the LS

6 = 100

n x  = .100 .500 1.00 2.00 5.00 .100 .500 1.00 2.00 5.00

90% intended

10
X : .760 .770 .767 .745 .563 .749 .750 .765 .734 .552

9 : .833 .781 .757 .714 .572 .823 .775 .758 .716 .579

20
X : .811 .843 .835 .825 .774 .819 .832 .837 .823 .771

9 : .862 .851 .839 .813 .740 .848 .851 .837 .806 .741

30
A : .826 .861 .862 .850 .812 .826 .855 .862 .851 .803

9 : .867 .868 .860 .829 .787 .866 .868 .855 .836 .782

50
A : .855 .875 .875 .872 .847 .854 .879 .875 .873 .848

9 : .882 .879 .874 .863 .821 .876 .878 .876 .863 .820

95% intended

10
A : .794 .811 .805 .785 .613 .782 .792 .806 .779 .604

9 : .884 .828 .804 .759 .612 .871 .823 .800 .759 .618

20
A : .851 .878 .872 .863 .813 .849 .869 .872 .861 .812

9 : .908 .897 .879 .854 .780 .909 .893 .878 .847 .781

30
A : .865 .898 .898 .889 .852 .868 .891 .898 .887 .846

9 : .921 .917 .902 .875 .824 .919 .915 .898 .876 .819

50
A: .900 .917 .913 .911 .885 .896 .921 .918 .912 .886

9 : .932 .926 .921 .903 .862 .929 .931 .919 .906 .862
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Prom Table 4.3, one can clearly see that as the sample size increases, the actual cover­

age probabilities for the parameters under the maximum likelihood method is getting 

closer to the intended coverage probabilities. On the other hand, the coverage proba­

bilities decreases, when the shape parameter A increases from one. However, one can 

obtain a desired confidence level by appropriately adjusting the confidence coefficient 

a. Moreover these values predict that the parameters are not overly estimate under 

the maximum likelihood estimation method.

4.6 Illustrative examples

The object of this section is to illustrate the use of proposed LS distribution and 

to demonstrate its applicability and better fit with the aid of real life data. In this 

regard, three distinctly different examples are presented based on well-known data, 

which were published in statistics literature. Specifically, first, second, and third 

examples respectively consider complete, grouped, and right censored data.

Example 1. Glass fiber strength data

The following glass fiber data (see data in the appendix B) are experimental 

strength values of two lengths, 1.5cm, and 15cm, from the National Physical Labora­

tory in England (Smith and Naylor 1987). Preliminary inspection of the data reveals 

possible outliers in the lower end point of the sample, the smallest observation in 

Sample 1 (strength value =  0.55) and the smallest two in Sample 2 (strength values 

=  0.37, 0.40). The authors used three-parameter Weibull distribution to model the 

two data sets and concluded that the Bayesian techniques appear to be better choice
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for handling unusually shaped likelihoods than the maximum likelihood techniques. 

Furthermore, they attempted to fit alternative models, but they do not match with 

the end points of the data distribution, even though such models reduce the dis­

crepancy between maximum likelihood and Bayesian analysis. In general, the tested 

glass material’s experimental strength values have a wide statistical spread due to, in 

part, grip-induced breakage. Therefore, longer tail distributions would be appropriate 

to model such data. Hence, we can use these data sets to show the flexibility and 

applicability of the LS distribution in the presence of some extreme observations.

Furthermore, in order to select the best fitting model out of the three-parameter 

Weibull distribution and the LS distribution, the Akaikie information criterion (AIC) 

can be used. This criterion is based on the log-likelihood value l{0), and the number 

of parameters in the distribution (p). The AIC attem pts to balance the need for 

a model which fits the data vary well to that of having a simple model with few 

parameters. It is defined as r = l{6 ) — 2p. The distribution with the largest r  value 

is the distribution that fits the data the best.

The estimated parameter values, mean failure time (e) with their asymptotic 

standard errors, and the r  values for the LS distribution are given below.

Sample 1: Strengths 1.5cm Fiber (A ±  SEy^ = 0.01820 ±  0.008429, 6  ±  SE^  =  

0.89622 ±  0.035912, e ±  SEg -  1.512434 ±  0.355602; r  =  -16.371).

Sample 2: Strengths 15cm Fiber (A ±  SEly =  0.03495 ±  0.016598, 9 ±  SE-§ = 

0.72346 ±  0.034692, e ±  5Eg -  1.126601 ±  0.289001; r  =  -6.647).

Estimated parameter values and the r  values for the three-parameter Weibull
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distribution {F{x; (3,0, fi) = 1 — exp j  ^ < x < oc, —oo < /r < oo, 0 <  /3,

4> < oo) are as follows. Note that for Sample 2, the LE program in BMDP (1992) does 

not produce correct values for asymptotic standard errors due to the Hessian matrix 

is nearly singular. Therefore, the calculations are done using the IMSL (1991).

Sample 1 : Strengths 1.5cm Fiber {(3 ±  SE^  — 11.855837 ±  9.832166, <t> ±  SE-^ — 

3.235026 ±  2.624502, p ± S E , i  =  -1.593400 ±  2.614103; r  =  -20.285).

Sample 2: Strengths 15cm Fiber {j3 ±  SE^ — 21.311912 ±  49.031591, 0 ±  SE-^ = 

4.720435 ±  10.677731, p ± S E j i  = -3.471851 ±  10.664725; r  =  -8.082).

0.8

S(t)

0.4

0.2

0.2 0.4 0.6 0.8 2.2

Figure 4.5 Fitted LS and three-parameter Weibull curves for fiber data. Dark lines 

for sample 1, light lines for sample 2. Kaplan-Meier survival curve (solid lines), 

logistic-sinh (dotted lines), three-parameter Weibull (dashed lines).

The r values of AIC given under the Sample 1 and 2 indicate better fit to the 

LS distribution than the three-parameter Weibull distribution. Furthermore, the
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adequacy of the fits for the two samples (dark lines for Sample 1, light lines for Sample 

2 in Figure 4.5) is further strengthened by illustrating the LS survival curve (dotted 

lines) along with the Kaplan-Meier curve (solid lines). For comparison purposes, 

the three-parameter Weibull survival curves for the two samples are also included in 

Figure 4.5 (dashed lines).

It should be mentioned here that negatively skewed distributions such as Gom- 

pertz, Weibull, exponential power-life-testing distribution, etc., provide a good fit to 

Sample 2 as well. However, the well-known distributions such as lognormal, gamma, 

Pareto, Weibull, exponential power-life-testing distribution, etc., perform very poorly 

with the data set given in Sample 1, and even the Gompertz distribution gives a very 

poor fit with r value of AIC, r  =  —18.808. This is because the final data point in 

Sample 1 (strength value =  2.24) is an outlier to the Gompertz distribution.

Example 2. Bus motor failure data.

The classical five bus motor failure data (see data in the appendix B) are firstly 

considered and analyzed by Davis (1952). The results take into account the time 

to the first and succeeding major motor failures for 191 buses operated by a large 

city bus company, with time being the number of thousand miles driven. Failure was 

either abrupt, in which some part broke or the motor would not run; or, by definition, 

when the maximum power was produced, as measured by a dynamometer, motor rate 

fell below a fixed percentage of the normal rated value. Failures of motor accessories, 

which could be easily replaced, were not included in these data.

Davis used the truncated normal distribution to analyze the first two motor fail­

ure data and the exponential distribution for the second and succeeding failures. In
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the analysis, in terms of the chi-squared goodness-of-fit, he found that both mod­

els are poorly fit to the second bus motor failure data. Bain (1974, 1978) adapted a 

three-parameter quadratic hazard model for the purpose of obtaining a good fit to the 

second bus motor failure data. Later, Mudholkar et al. (1995) used three-parameter 

exponentiated Weibull model to analyze the five motor failure data. Lindsey (1997) 

gave an alternative analysis to the bus motor failure data using parametric multiplica­

tive intensity models. However, he considers data that are grouped more coarsely than 

the data given by Davis (1952).

In this example, the two-parameter LS distribution is used to reanalyze the five 

classical bus motor failure data. The reanalysis is based on the data given in the 

appendix B, which can be compared (see Table 4.4) with the three-parameter expo­

nentiated Weibull model ( F  (y; 7 , 5 ,  </>) =  (1 — exp (— ( y / y ; ) ^ ) ) ^  ; 0 <  y <  0 0 , 7 >  0, 

6 > 0, y? > 0, Mudholkar et al. 1995). Table 4.4 gives the estimated parameter values, 

log-likelihood values {l{0)), chi-squared values {Xdf)i and p-values for the bus motor 

failure data. The estimated mean failure, 'e and its asymptotic standard error, SEg, 

are also included. In this estimation process, equation (4.7) is used as a log-likelihood 

function, l{0). The asymptotic standard errors are calculated by inverting the Hessian 

matrix. The Hessian matrix is obtained by partially differentiating equation (4.7). 

The e value is calculated by substituting the estimated parameter values, A and 9 into 

equation (4.5), with A: — 1. Its standard error is calculated from the inverse of the 

Hessian matrix (observed information matrix) and a direct application of the delta 

method. For this purpose, partial differentiation with respect to the parameter A and 

9 of equation (4.5) with A: =  1, is used.
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Table 4.4 Estimated values of LS for the five bus motor failure data

1st 2nd 3rd 4th 5th

The two-parameter logistic-sinh distribution

A 0.155413 0.644780 1.328801 1.487961 1.484886

±  0.03023 ±  0.16110 ±  0.36493 ±  0.41183 ±  0.41032

e 79.94892 841.1361368 138/42888 68.32537 59.90192

±  2.4516 ±  5.7378 ±  10.2375 ±  7.7739 ±  6.69700

e 96.16751 68.62946 54.40017 40.05453 35.14708

±  11.7328 ±  11.9867 ±  9.84241 ±  7.56824 ±  6.78529

1(6) -380.541 -202.447 -177.167 -147.709 -125.207

Xs =  11738 =  3.6084 =  0.9779 X̂  =  0.8239 X% =  &9557

p-value 0.9474 0.4616 0.8066 0.6623 0.2281

The three-parameter exponentiated Weibull distribution

7 7.234813 18.8858 3.9365 16.9445 0.9584

±  SE^ ±  1.82478 ±  7.1188 ±  4.3156 ±  2.4063 ±  0.7917

6 0.277454 0.0506 0.1909 0.0385 1.8311

±  0.0878 ±  0.0203 ±  0.2344 ±  0.00 dz 3.3503

138.99086 134.7123 118.0331 98.0984 24.8345

±  SEf ±  6.00212 ±  5.4195 ±  23.1313 ±  6.5577 ±  37.8164

%6) -381.811 -201.707 -176.987 -147.372 -123.826

X# x i =  2.6700 Xg =  1.9485 Xz =  0.6438 Xf =  0.1343 X̂  =  0.0868

p-value 0.4454 0.5832 0.7248 0.7140 0.7683
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These values indicate excellent to moderate fit to the two-parameter LS distribu­

tion. In view of Theorem 4.1, the first two motor failures indicate increasing hazard 

shapes (A <  1), whereas the other three motor failures indicate bathtub hazard shapes 

(A > 1). However, the slope changes for the 3rd motor failure given in Figure 4.6 are 

subtle and hard to see graphically. A similar problem was pointed out by Mudholkar 

et al. (1995) in the analysis of second motor failure data using the exponentiated 

Weibull distribution.

Figure 4.6 shows the fitted LS hazard curves for the five motor failure data. The 

dark solid line, the dark dashed line, the dotted line, the dashed line, and the solid 

line represent first, second, third, fourth, and fifth motor failures respectively.

0.08

0.06

h(x)
0.04

0.02

100 120 140

Figure 4.6 F itted  LS hazard curves for five m otor failure data. First (dark solid  

line), second (dark dashed line), third (dotted line), fourth (dashed line), and fifth

(solid line).
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Example 3. Oklahoma diabetic data

The following survival times (in years) represent the first 4 O male patients enrolled 

in a mortality study (see data in the appendix B) of Oklahoma diabetic Indians (Lee 

and Wang 2003). This example is a part of larger sample of 1012 Oklahoma Indians 

with non-insulin-dependent diabetes mellitus (NIDDM)), and the data were examined 

in 1972-1980.

This example is analyzed to convince the applicability and better-fitness of the LS 

distribution for right censored data. The estimated parameter values, mean failure 

time (e) with their asymptotic standard errors, and the log-likelihood value for the 

LS distribution are (A ±  SE^ = 0.169642 ±  0.100923, 6 ±  SEg = 11.42646 ±  1.641168, 

e±  SE^ — 13.4802 ±  4.42253; l{0) = —74.362). The equation (4.6) is used as a log- 

likelihood function, l{0) to estimate the parameter values. The asymptotic standard 

errors are obtained by inverting the Hessian matrix of equation (4.6). As in the 

previous example, the e value is calculated by substituting the estimated parameter 

values, A and 6 into the equation (4.5), with /c =  1 . In order to find its standard errors 

by using the delta method, the partial derivatives of equation (4.5) with respect to 

the parameter A and 6 have to be evaluated.

The p-values for this right censored data are based on discretized method intro­

duced by Efron (1988). This data was discretized as in Table 4.5, which includes 

the signed deviance residuals, Rj  given by formula (2.69) (McCullagh and Nelder 

1998); to the fitted hazard function of the LS distribution. Where, Nj is the total 

number of patients at risk at the beginning of each interval j ,  j  = 1,..., 14. Sj and 

Ej  are respectively observed and expected deaths at the end of each interval j .  The
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p-value in Table 4.5, indicates that the LS distribution provides a good fit for the 

diabetic data, and the fitness is illustrated in Figure 4.7 (the dotted line) along with 

the Kaplan-Meier curve (solid line). Once again, well-known distributions, such as 

lognormal, gamma, Weibull, Pareto, etc., are not appropriate to analyze this data set 

due to their poor fits.

Table 4.5 Residual analysis of LS hazard for the diabetic data

3 0 - 1 1 - 2 2-3 3-4 4-5 5-6 6-7

Nj 40 39 39 38 36 35 33

Sj 1 0 1 2 1 2 2

Ej 0.62 0.65 0.71 0.77 &82 0.91 0.99

Rj 0.45 -1.15 0.32 1.18 0 . 2 0 1 . 0 1 0.91

3 7-8 8-9 9-10 1 0 - 1 1 1 1 - 1 2 12-13 13-14

Nj 31 31 31 30 29 28 29

Sj 0 0 1 0 1 3 5

Ej 1 . 1 0 1.32 1.62 1.94 2.36 2.88 4^3

Rj -1.50 -1.64 -0.54 -2 . 0 0 -1.03 0.08 0.40

15.37 d.f. =  1 2 p-value =  0.2216
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Figure 4.7 Fitted LS survival curves for diabetic data. Kaplan-Meier survival curve

(solid line), logistic-sinh (dotted line).

4.7 Reanalyzing the bus motor failure data using the ELS 

In this section, a third parameter /3(> 0) to the LS distribution (4.2) is introduced 

to reanalyze the bus motor failure data given in the appendix B. The cumulative 

distribution function, the probability density function, and the hazard function of 

this extended logistic-sinh model (ELS) can respectively be written as

F[x\ A,/?,0) =  1 — ( l  +  Asinh*® (exp [x/9) -  1)) ^ ,

St  ̂ a n\ /A/)^exp {x/e) cosh (exp (z/#) -  1 ) sinh^“  ̂ (exp {x/6) -  1 )

(4.8)

(4.9)

and

\ o  / A/) \ exp (z /0) cosh (exp (z/^) -  1 ) sinh^  ̂(exp(z/g) -  1)
h ( z , A , / 3 , 0 ) _ ( g )  l-p A sin h ^ (e x p (z /0 )- l)

(4.10)
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where 0 < z  < oo, 0 <  A < oo, 0 <  /3 <  oo, and 0 < 0 < oo.

The likelihood procedure given in Section 4.4 can easily be extended to estimate 

the parameters of the ELS model given in (4.9).

Table 4.6 gives the estimated parameter values, log-likelihood values {l{0)), and 

chi-squared values (Xdf) with respective p-values of the ELS model for the bus motor 

failure data given in the appendix B. The fitted ELS density functions, and hazard 

fimctions are given in Figure 4.8, and 4.9, respectively.

Table 4.6 Estimated values of ELS for the five bus motor failure data

1 st 2 nd 3rd 4th 5th

A 0.16951 0.47710 1.13889 1.11165 5.15389

0.04039 0.12686 0.50098 0.45011 7.03415

P 1.18860 0.69817 0.91209 0.81119 1.55681

0.23276 0.17728 0.21683 0.23771 0.39121

e 86.8134 68.9998 81.6755 58.3025 97.7103

8.88948 9.72197 17.8659 12.7621 49.3878

Z(0) -380.181 -201.242 -177.089 -147.428 -123.803

=  0.4038 =  1.0225 =  0.8594 Xi =  0.2409 Xi =  0.0406

p-value 0.9822 0.7958 0.6507 0.6236 0.8403

Unlike the other parametric families, which were given in literature, the associated 

p-values of the chi-squared goodness-of-fit test to the ELS model for the five motor
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failure data is over 60%. Furthermore, using a simple calculator, the log-likelihood 

functions of the ELS model can be maximized for the five motor failure data.

Figure 4.8 shows the fitted ELS density curves for the five motor failure data given 

in the appendix B. The dark solid line, dark dashed line, dotted line, dashed line and 

solid line represent first, second, third, fourth, and fifth motor failures respectively.

0 .02-

180160100 120 140

Figure 4.8 Fitted ELS density curves for five motor failure data. The dark solid line, 

the dark dashed line, the dotted line, the dashed line, and the solid line, respectively, 

represent the first, the second, the third, the fourth, and the fifth motor failure data.

Figure 4.9 shows the fitted ELS hazard curves for the five motor failure data 

given in the appendix B. The dark solid line, dark dashed line, dotted line, dashed 

line and solid line represent the first, second, third, fourth, and fifth motor failures 

respectively. This figure indicate three different hazard shapes for the five different 

bus motor failure data. Specifically, the first motor failure indicates an increasing
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failure rate; and the second, third, and fourth motor failures indicate bathtub shape 

failure rates; the failure rate of the fifth motor indicates initially increasing and again 

increasing.

0.05]

0.04

0.03

h(x)
0.02

0.01

10040

Figure 4.9 Fitted ELS hazard curves for five motor failure data. The dark solid line, 

the dark dashed line, the dotted line, the dashed line, and the solid line, respectively, 

represent the first, the second, the third, the fourth, and the fifth motor failure data.

4.8 The Gompertz-sinh distribution

In this section, we explore two- and three-parameter families of distributions in 

order to model highly negative-skewed data which arise frequently in survival analy­

sis. Since the two-parameter distribution is derived from the Gompertz distribution 

by appropriately replacing the index of the exponential term  with a hyperbolic sine 

term, it is henceforth referred to as Gompertz-sinh (GS) distribution. The resulting 

distribution possesses a lighter right tail than that of the Gompertz distribution,
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which is often used to model highly negative-skewed data. Moreover, we generalize 

the Gompertz-sinh distribution by simply adding a second shape parameter as an ex­

ponent to its distribution function to accommodate a variety of density shapes as well 

as non-decreasing hazard shapes. This generalization is referred to as exponentiated 

Gompertz-sinh (EGS) distribution. The maximum likelihood parameter estimation 

techniques are discussed by providing approximate coverage probabilities for uncen­

sored samples. Furthermore, the applicability and flexibility are demonstrated and 

illustrated by citing real data examples.

4.8.1 Motivation to analyze the aging process

The Gompertz distribution (Gompertz 1825), developed from the mortality law, 

is often used to model highly negative-skewed data in survival analysis. However, the 

Gompertz distribution does not provide a reasonable fit for highly negative-skewed 

data found in some practical applications in which the underlying distribution pos­

sesses a thinner and shorter right tails. Such situations have so far been remedied 

with nonparametric and graphical procedures although they poorly analyze the data, 

see Miller (1983) and Efron (1988). Moreover, some researchers use higher order 

parametric models or combine the existing distributions even though they need large 

amount of data to estimate the parameters. One such two-parameter composite model 

was introduced by Cooray and Ananda (2005) to model highly positively skewed data 

which usually arise in insurance industry and actuarial sciences.

Many researchers in actuarial sciences, demographic studies and statistics have so 

far used different modifications closely related to the Gompertz or exponential dis-
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tribution, for example, the two-parameter exponential power life-testing distribution 

(Smith and Bain 1975), a quadratic hazard function (Bain 1974), the two-parameter 

lifetime distribution (Chen 2000), and the well known three-parameter Gompertz- 

Makeham distribution (Makeham 1860) to model some failure data or to construct 

life tables.

Burr (1942) first suggested the hyperbolic sine transformations to the logistic dis­

tribution function, see also Johnson et al. (1994). Interestingly, Barndorff-Nielsen 

(1978) introduced a family of generalized hyperbolic distributions by analyzing di­

rectly the density functions of the exponential family. Later Rieck and Nedelman 

(1991) used hyperbolic sine transformation in the standard normal distribution by 

establishing the relationship between the sinh-normal and the Bhnbaum-Saunders 

distributions (1969). In addition, Cooray (2005) proposed the two-parameter logistic- 

sinh family which possesses bathtub-shaped and increasing failure rates to model 

lifetime data.

4.8.2 The model and its properties

The Gompertz distribution is widely used as a parametric model to identify the 

natural death behavior of a population of humans or animals. For example, deaths 

caused by chronic disease conditions (e.g. diabetes) occur more frequently than the 

natural deaths. To model such death data, the Gompertz distribution,

F{x-, 7 ,0) =  1  — exp ( - 7 (6 /̂*̂  -  1)) ; 0 <  æ, 0 <  7 , 0 < 0 (4.11)

is modified by replacing the term (e^/^ — 1 ) with sinh(e®/® — 1 ) giving
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F(x-,fj,,6) = 1 — exp (—/i sinh(e®/^ — 1)) ; 0 <  æ < oo, 0 <  ju <  c», 0 < 0 < oo,

(4.12)

which is now called as Gompertz-sinh (GS) distribution. This transformation assigned 

more probabilities to the left tail of the distribution than that of the Gompertz 

distribution. Its probability density function is given by,

f(x] p., 9) = {p/9) cosh(e*/® — 1) exp {—p  sinh(e^'^^ — 1)) , (4.13)

where 0 < æ < oo, 0 < / i < o o ,  and 0 < 9 < oo. Furthermore, the quantile function 

and the hazard function are, respectively, given by

Q(u) = F~^(u) = 91n ( l  — arcsinh (/i“ ^ln(l — u))) , (4.14)

and

h(x; p, 9) =  {p/9) cosh(e '̂^^ — 1); 0 <  x <  oo, 0 < /i <  oo, 0 < 0 < oo.

(4.15)

Where 0 < u < l ,  0 < x < o o ,  0 < / i < o o ,  and 0 <  0 < oo.

The GS family can be useful in the analysis of human survival time data, since this 

highly negative-skewed distribution has a non-zero density at the origin. For large 

values of 9, the GS family converges to an exponential distribution with a mean 9/p,  

i.e., the GS density curve moves to the left hand side by keeping its unimodality. On 

the other hand, limx^oo Fgs{x ; p, 9) /Fa{x-,'y,(l)) —> 0 will show that the GS density 

has a thinner right tail than that of the Gompertz density. Here, Fgg(x; //, ^) and 

Fg{x ] 7 , (f)) are distribution functions of GS and Gompertz distributions, respectively.
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Figure 4.10a and Figure 4.10b, respectively, represent the GS density and its hazard 

curves for parameter values / i  =  0.01 (solid line), ji = 0.1 (dashed line), / i  =  0.5 

(dotted line) for 0 =  50.

Furthermore, in order to visualize the different tail behavior of the Gompertz 

and the GS densities, we matched the first and the third quartiles, Q\  and <53, of 

the two models. They are illustrated in Figure 4.11, the solid lines and the dashed 

lines, respectively, represent the GS and the Gompertz distributions. The matched 

quartile values in the figure from left to right are, respectively, (<5l =  25, <53 =  55), 

(Ql =  50, <53 =  70), and (Q1 =  80, Q3 =  90). These density curves indicate that 

the GS density function possesses a thicker left tail and thinner right tail than that 

of the Gompertz density function.
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Figure 4.10a GS density curves. Figure 4.10b GS hazard curves.
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Figure 4.11 Matched first and third quartiles of Gompertz (dashed lines) and GS

(solid lines).

Figure 4.12a and Figure 4.12b, respectively, represent the skewness (S = \ /K )  and 

kurtosis (K =  P2 ) variations against the shape parameters of the two models. The 

solid lines and the dashed lines, respectively, represent the GS distribution with /x =  X 

and the Gompertz model with 7  =  X. These quantities, the skewness and the kurtosis 

are not depend on the scale parameters of the two models. From figure 4.12a, one 

can clearly see that the GS distribution is more highly negatively skewed than the 

Gompertz distribution. For example, when 7  =  0.001, the Gompertz distribution 

gives the skewness value, -1.0076 with its kurtosis value, 4.5018. The minimum 

attainable kurtosis for the G om pertz fam ily is 2.2717 and it occurs when 7  =  0.181 

with skewness value, 0.0527. Similarly, when /x =  0.001, the GS distribution gives 

the skewness value, -2.4592 with its kurtosis value, 15.2929. The minimum attainable 

kurtosis for the GS distribution is 1.9945 and it occurs when /x =  0.696 with skewness
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value, -0.0133.

0.5

0.4 0.6

Figure 4.12a Skewness (S) variation with shape parameter (X) of GS (solid line) and

G (dashed line).

Overall, the GS distribution is more highly negatively skewed than the Gompertz 

distribution and the upper tail of the GS distribution is thinner than that of the 

Gompertz distribution. Therefore, in the presence of highly negatively skewed data, 

the new GS distribution provides a better fit than the Gompertz distribution. The 

details of this assertion are exemplified by the data given in the examples in Section 

4.8.6.
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Figure 4.12b Kurtosis (K) variation with shape parameter (X) of GS (sohd line) and

G (dashed line).

Alternative functional forms for the GS distribution

Consider the following function,

F{x; /X, 6>) =  1 -  exp {-fxg (z; d) ) ,

where 0 < æ < o o ,  0 < / 4 < o o ,  O < 0 < o o ,  and g (.) is any increasing function 

in R+ such that g (0) =  0 and g{oo) =  oo. Then F{x',fi,6) is also a distribution 

function over 0 <  re < oo. In order to obtain a negatively skewed density function 

over 0 < re <  oo, one can select g (.) such that lima;_,oo(5 '(2 :)/® '̂®) oo. The value 3.6 

is obtained as a minimum value of the shape parameter for negative skewness of the 

Weibull distribution. For example, the following functional forms would be possible 

for g(.) to model highly negatively skewed data.

gi (rr; 6) — sinh (sinh {x /9 ) ) , g g  (rr; 6) =  exp (exp ( r r /0 )  — 1) — 1, 

g^ (rr; 9) =  exp (sinh {x/9)) — 1.
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The density function corresponding to g\ (.) selection gives an antimode for lower 

g, values, even though it gives higher skewness than the GS density. The distribution 

of (.) selection skewed negatively much less than the GS distribution and hence it 

may not be much different from the Gompertz distribution in the analysis of highly 

negatively skewed data. The density function corresponding to S's (.) selection is 

interesting, since it shows much closer relation to the GS distribution in terms of 

density shapes, hazard shapes, skewness, and kurtosis. Although, in the analysis of 

data sets like the Badenscallie burial data given in Example 1  in Section 4.8.6, gives 

a lower p-values than that of the GS distribution. Therefore, in this section we are 

not interested in providing a detail analysis of the gz{-) selection.

4.8.3 The exponentiated Gompertz-sinh family

In survival analysis, increasing failure rates and bathtub-shaped failure rates or 

the curve of deaths (Bowers et al. 1986) which represent the shape of human mortal­

ity (see the solid line in Figure 4.13) are commonly encountered. Distributions with 

one- or two-parameters impose strong restrictions on bathtub hazard shapes or the 

shapes of the curve of deaths. In general, at least three parameters are needed to form 

flexible bathtub-shaped hazard functions. On the other hand, more flexible distribu­

tions usually have more than three parameters and they will become unattractive 

due to problems related to parameter estimation. These arguments, together with 

consideration of computational simplicity, led us to search for a useful generalization 

with a minimum number of parameters, with the capacity to describe increasing and 

bathtub-shaped hazard as well as the curve of deaths. In this section, we generalized
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the GS distribution by exponentiating its distribution function with an additional 

shape parameter. Therefore, this proposed family of distributions is referred to as 

the exponentiated Gompertz-sinh distribution (EGS).

The distribution function and the probability density function of the EGS distri­

bution are, respectively, given by

F{x)  =  ( l -  exp -  1)))^ , (4.16)

and

f[x) =  ( ^ )  e*^'cosh(e“'''’ -

(4.17)

Where 0 < æ < oo, 0 < g < oo, 0 < j3 < oo, and 0 < 6 < oo.

Figure 4.13 shows the EGS density curves for different parameter values. Solid 

line, dashed line, dotted line, and dot dashed line indicate, respectively, the parameter 

values {g — 0.01,13 =  0.4,^ =  45), {g = 1,P = 0.75,6 = 70), {g = 7 ,P = 3,6 = 120), 

and {g = 0.2, P = 2,6 = 60). The graphical analysis of the density function shows 

that the curve of deaths of this family will appear whenever g < P < 1. Moreover, 

when {g < 1  and ^  1 ) or (/x ^  1  and P > I) the density is unimodal-shaped.

The Figure 4.14 shows the EGS hazard curves for different parameter values. Solid 

line (which illustrates the so called curve of deaths), dotted line, dashed line, and dot 

dashed line indicate, respectively, the parameter values {g = 3, P = 0.1,0 =  100), 

( / i  =  0.8,p  = 2,6 = 80), {g = 100,p  =  4,0 =  600), and {g = 10000,/? = 1,6 = 

100000). Except for larger values of 6, whenever /? ^  1, the EGS hazard function is, 

respectively, bathtub-shaped or increasing.
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Figure 4.13 EGS density curves. Solid line (/i =  0.01,/) =  0.4,9 — 45), dashed line 

= 1,P = 0.75,6 =  70), dotted line {/j. = 7,P = 3,6 = 120), and dot dashed line

(/r =  0 .2 ,/) =  2 , 0  =  60).
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Figure 4.14 EGS hazard curves. Solid line (/.t =  3,/) =  0.1,0 =  100), dotted line 

(/J, — 0.8, P — 2,6 = 80), dashed line {fx =  100, /) =  4,0 =  600), and dot-dashed line

{fj, =  10000, / ) =  1, 0 =  100000).
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4.8.4 Parametric inference

The parametric inference of distributions like the GS and EGS family for the given 

data are typically based on likelihood methods and their asymptotic theory (Cox and 

Oakes 1984; Lawless 2003; Rao 1973). For our simplicity, we provide the estimation 

procedure for the EGS model. One can obtain the required results for the GS model 

by setting the parameter /) =  1. The estimates of the parameters are obtained by 

maximizing the log-likelihood function {l{0) =  lnL(a:i,a;2 , ...,æ„;/x,/), 0 )).

The log-likelihood function of the EGS family is given by

n
1(0) =  ^  6j {in (cosh -  l) )  -  /isinh -  l)}  

j = i

+  |ln  (/i/3/0) +  y  +  (/) -  l) ln ( l -  exp(-/isinh -  l ) ) ) |  
j = i  n

-f ^  (1 — 6j) In ( l — (1 — exp(—/isinh — l)))^) , (4.18)

where 6j is such that

{ 0 if observation is right-censored
j  =  1,2, ...,n.

1 if observation is not right-censored

For the purpose of analyzing the grouped data by estimating the parameters of 

the EGS model under the ML method, one can assume that the data consists of r  

intervals and the / th  interval, i.e. (cj-i,Cj), has nj observations for j  = 1, 2, 3, ..., r  ; 

Co =  0. The r th  open interval, i.e. (cr_i, oo), contains observations, and the total 

number of observations, n  can be written as Therefore the log-likelihood

function of the EGS model for grouped data can be written as

r

[-^(9 ; (3,0) -  F(c j - 1 ] //, 0)], (4.19)
j = i
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where F{.; ii,P, 6) is the distribution function of the EGS family.

In this case, the log-likelihood function is maximized by solving the score equa­

tion U{9) = = 0. For large samples, asymptotic normality results hold for

estimated parameters values, i.e., ^Jn{9 — 0 )-^N 3 (O, I~^{9)), where N 3  denote the 

trivariate normal distribution and I  (9) is the expected Fisher information matrix 

of 9  such that I  (9) =  —E . The variance-covariance matrix, I (9) is useful to

construct approximate confidence intervals for individual parameters and functions 

of such parameters (Rao 1973). Moreover, whether the data are complete or right 

censored, inference procedures based on maximum likelihood large-sample theory can 

be applied in a straightforward way (Lawless 2003).

The fitting of the EGS family by solving the score equation involving in the log- 

likelihood function can be facilitated using computer programs such as DNEQNF in 

IMSL (1991) and LE in BMDP (1992). The LE program in BMDP (1992), which uses 

Newton-Raphson type algorithm to maximize the likelihood function. It can easily be 

employed to estimate unknown parameters, whether the data is in complete, grouped, 

truncated or censored form. The LE routine also gives the asymptotic standard errors 

(SE’s) of the estimates by inverting the Hessian matrix used in the maximization of the 

likelihood function, unless the information matrix is ill-conditioned. The information 

matrix may be ill conditioned due to singularity or near singularity of the Hessian 

matrix.
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4.8.5 Approximate coverage probabilities of the GS distribution 

The coverage probabilities of the GS distribution for the maximum likelihood 

estimation method with intended confidence levels a: =  0.1 and a = 0.05 are given 

in Table 4.7. These coverage probabilities are based on 100,000 simulated random 

samples from the density given in (4.13). The random samples are generated by 

plugging the known values of parameters [i and 6 (say /i =  0 .0 1 , 6 = 1 0 ) to the 

quantile function given in equation (4.14). In addition, n  (say n = 10) number of 

ordered uniform random sample from the uniform distribution, u ~  t/( 0 , 1 ) is required 

to substitute as tt in equation (4.14). In that way, one random sample with size n  (say 

n = 10) from the GS distribution with parameters ^  and 6 (say fx = 0.01, 9 =  10) 

can be generated. In this simulation study, ten thousand such samples are generated 

to get a single cell value in Table 4.7. For this purpose, the subroutine ZBREN in 

the IMSL (1991) package is used to solve the following nonlinear equation of 9, the 

ML estimator of 0,

n n n

cosh{e^*F — 1 ) — tanh(e'''/^ — 1 ) — — n 0  =  0 ,
2 = 1  2= 1  2 = 1

(4.20)

where /r , the ML estimator of fx, is given by,

-1

/%= I - ÿ ] sinh(e=^/^-  1) ) . (4.21)
2 = 1

Approximate 100 {1 — a) % confidence intervals for, fx and 0  are, respectively, 

calculated by using (jx — Za/^SEp, 'jx +  Z a /^SE ^  and ^0 — Za/^SE-^, 9 +  Za/2 S E ^ . 

Where SE-p and SEp  are, respectively, asymptotic standard errors of 'jx and 0, which 

are taken from the observed information matrix (Efron and Binkley 1978).
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Prom Table 4.7, one can see that when the sample size increases, the approximate 

coverage probabilities for the parameters under the maximum likelihood method are 

getting closer to the intended coverage probabilities. In addition, the approximate 

coverage probabilities decrease when the shape parameter /x decreases from 0.5. The 

values in Table 4.7 predict that the parameters do not overly estimate under the 

maximum likelihood estimation method.
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Table 4.7 Approximate coverage probabilities of the GS

n  = 1 0 2 0 50

90% intended 6 = 1 0 2 0 50 1 0 20 50 1 0 2 0 50

ji =  .005 /i : .690 .690 .688 .767 .769 .769 ^39 .840 .840

e : .822 ^24 ^23 .860 .861 ^59 .884 .886 .884

fj, =  . 0 1 0 //: .704 .702 .704 .779 .782 .784 .846 .845 .845

e-. ^22 .823 .859 .862 .864 .884 .883 .883

pi - . 1 0 0 fx : .756 .757 .759 .821 .823 .824 .867 .867 .868

d : a i3 .812 a i6 .859 .859 .858 .882 .884 .882

/i .500 /i : .771 .770 .770 .832 .832 ^31 .877 .875 .875

6: .762 .763 .762 .827 .827 .825 a75 .875 .872

95% intended

H =  .005 : .716 .718 .716 .798 .801 .800 .874 .874 .874

e : ^74 ^75 ^75 .911 .912 .912 .934 .936 .935

fj. =  . 0 1 0 /i : .733 .731 .733 .812 .814 .817 ^82 .881 .881

e : .874 jl74 jl74 .910 .913 .913 .935 .934 .933

H = . 1 0 0 11 : .790 .791 .794 ^57 ^58 .859 .907 .908 .909

d : .861 aeo .864 .905 .906 .906 .931 .932 .932

fj, — .500 p. : .811 .810 a09 .872 .871 .870 .917 .916 .916

6 : .810 .812 .810 .873 .872 .871 .919 .918 .917
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4.8.6 Illustrative examples

In this section, two different examples are provided to illustrate the applicability 

and flexibility of the GS and the EGS models over the Gompertz distribution.

Example 1. Badenscallie burial data

This example (see data in the appendix B) is provided by Sprent and Smeeton 

(2000) regarding the death times of male members of Scottish clan. The authors 

provided several uncensored data sets, and they pointed out that the McAlpha clan 

data set possesses reasonably approximate pattern of death ages. Furthermore, the 

sample sizes of the other data sets are quite small and therefore we analyze only the 

McAlpha clan data set using Gompertz, GS, and EGS family.

The ordered data given below are the age of death of 59 male members of Scottish 

McAlpha clan in the burial ground at Badenscallie in the Coigach district of Wester 

Ross, Scotland. Ages are given for complete years, e.g. 0 means before first birthday, 

and 79 means on or after 79th but before 80th birthday, according to the information 

on the tombstone.

This example was analyzed using Gompertz, GS, and EGS models, by treating 

the observations Xi, i = 1,2, ...,59 as Xi = where A i, Aq, ..., A 5 9  have one of 

the distributions specified previously.

The EGS family is used by replacing the Xi  values with max(Aj, 6) for some 

small 6  > 0 and to pretend that the latter values come from the EGS model. Then 

the results depend strongly on the threshold 6. Table 4.8a provides the estimated 

values by varying <5 for the EGS model. It also includes the estimated values for the 

Gompertz and GS model with 5 =  0. It should be mentioned here that among the
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other well known distributions, the Gompertz distribution is the closest and natural 

competitor for the GS distribution. In addition, the well-known distributions such 

as, lognormal, gamma, Weibull, Pareto, etc., perform very poorly with this data set, 

and even the Gompertz distribution gives a very poor fit with p-value 0.02.

The Pearson’s goodness-of-fit chi-squared test has been performed by using a 10- 

year class width by treating the data as grouped data (see table 4.8b). For this 

purpose we use the log-likelihood function given in equation (4.18), Section 4.8.4 to 

estimate the parameters of the GS and EGS model.

From Table 4.8a and 4.8b, one can see that the values for measures of log- 

likelihood, Kolmogorov-Smirnov (D) statistics and especially the higher p-values have 

emphasized that the EGS gives very good fit to the death data for McAlpha clan, 

whereas GS provides an acceptable fit. Note that the fitted log-likelihood values of 

the EGS model for two threshold values should not be taken too seriously, since the 

EGS densities are unbounded at zero if /? <  1. The fitness is further strengthened 

by illustrating the fitted survival function of the EGS model with threshold parame­

ter 5 =  0.1 along with the Kaplan-Meier curve. For comparison purposes the fitted 

survival function of GS and Gompertz models are also included. Figure 4.15, the 

Kaplan-Meier curve, the EGS survival fit with 5 = 0 .1 , the GS survival fit, and the 

Gompertz survival fit are, respectively, represented by the step function, the dark 

solid line, the dashed line, and the dotted line. Note that one can obtain different 

chi-squared values by considering the minimum expected frequencies as 5.
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Table 4.8a Estimated values of three models for the burial data

Model 6 Parameters ±  S E Z(6 ) D

Gompertz 0

7  =  0.02626± 0.014869 

ÿ  =  19.9801± 2.689128
-267.85 0.17

GS 0

/2 =  0.14440± 0.049334 

e =  58.73104: 3.211787
-259.75 0 . 1 1

^  =  0.00292 ±  0.003789

EGS 0 . 0 0 0 1 ^  -  0.29550 ±  0.070728 

43.1740 ±2.995459

-242.23 0.07

=  0.00925 ±  0.010309

EGS 0 . 1 p  =  0.39100 ±  0.098251 

0 =  46.0917 ±3.413815

-251.37 0.07

0.6
S(x)

0.4

0.2

20 4 0 60 8 0

Figure 4.15 Fitted G, GS, and EGS survival curves for burial data. Kaplan-Meier 

curve (step function), Gompertz (dotted line), GS (dashed line), and EGS with

6  =  0 . 1  (dark solid line).
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Table 4.8b Estimated values of three models for the grouped burial data

Age interval Observed Expected frequency

(Years) frequency Gompertz GS EGS

0  1 0 6 1 . 1 0 2 0 1.6556 5.8041

1 0  2 0 1 1.7183 1.9638 1.9771

20 30 3 2.6405 2JW32 1.8631

30 40 1 3.9641 3T852 2.1943

40 50 4 5.7341 4.4185 3.0079

50 60 5 "7^181 ().4113 4.5862

60 70 6 9.7035 9.3444 7.5013

70 80 14 10.3798 12.4262 12.4324

80 90 15 8.7871 11.9957 15.7652

90 up 4 7.1523 5.1659 3.8685

S =  0.00452

7  =  0.03154 a = 0.15732 ±0.00894

Parameters ±  S E
±0.01828 ±  0.05623 p  =  0.34298

ÿ =  21.3360 e =  60.4329 ±0.16552

±  3.13861 ±3.79220 e = 44.2816 

±5.28530

%4) -131.03 -125.29 -120.52

=  34.33 % 7  -  16.27 Xe — 2.74

p-value 0 . 0 0 0 . 0 2 0.84
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Example 2. Diabetic data

In this example (see data in the appendix B), we analyze the following right 

censored data set related to the survival times (in years) of 149 diabetic patients who 

were followed for 17 years (Lee and Wang 2003):

For this data set, we are not providing Kolmogorov-Smirnov statistic values due 

to computational complexities for censored samples. However, one such method to 

handle right censored data is given in Fleming et al. (1980). The p-values for this 

right censored data are based on discretized method introduced by Efron (1988). The 

data were discretized as of Table 4.9b in which includes the signed deviance residuals, 

Rj, given by the formula (2.69) (see McCullagh and Nelder 1998); where, Nj  is total 

number patients at risk at the beginning of each interval j , j  — 1, ...,11, Sj is observed 

death at the end of each interval, Ej is expected death at the end of each interval, 

for the three hazard models (Efron 1988).

The results from three models are given in Tables 4.9a and 4.9b. Once again, 

both likelihood values and p-values indicate that the EGS, GS distributions fit better 

than the Gompertz distribution. Note that the parameters of the EGS family are 

estimated by replacing the data, Xi,  values with max(%«, 6) for some small 6  > 0  and 

to pretend that the latter values come from the EGS model. Then the results depend 

strongly on the threshold S. However, not like the previous example, the effect of S is 

not too considerable, since the data set consists a single zero data value. Therefore, 

we analyze this example using S — 0.05. Once again, the well-known distributions 

such as, lognormal, gamma, Weibull, Pareto, etc., are not appropriate to analyze this 

example due their poor fits.
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Table 4.9a Estimated values of the three model for the diabetic data

Model Parameters ±  S E p-value

Gompertz
7  -  0.013074= 0.0051 

ÿ  = 2.97980± 0.2443
-343.84 0 . 0 1

GS
a  =  0.122294= 0.0271 

e = 9.954904= 0.3396
-335.97 0.30

a  = 0.07245 4= 0.0394

EGS g  = 0.80240 4= 0.1546 

0 =  9.41168 4=0.5448

-33&29 0.37

0.8

0.6

0.4

0.2

Figure 4.16 Fitted G, GS, and EGS survival curves for diabetic data. Kaplan-Meier 

(step function), G (dotted line), GS (dashed line), and EGS (dark solid line).

As before. The fitness is strengthened by illustrating the fitted survival functions 

of the EGS and GS models along with the Kaplan-Meier curve. For comparison
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purposes the fitted survival function of the Gompertz model is also included. In 

Figure 4.16, the Kaplan-Meier curve, the EGS survival fit, the GS survival fit, and 

the Gompertz survival fit are, respectively, represented by the step function, dark 

solid line, dashed line, and the dotted line.

Table 4.9b Residual analysis of the three hazard models for the diabetic data

Class Expected death {Ej) Deviance residual (Rj )

interval Nj Sj G* GS EGS G* GS EGS

0 1 149 2 0.78 1.93 3.16 1.16 0.05 -0.71

1 2 147 5 1.07 2.13 2.63 2.77 1.69 1.32

2 3 141 2 1.44 2.32 2.60 0.44 -0 . 2 2 -0.39

3 4 138 3 1.97 2.63 2.77 0.67 0 . 2 2 0.14

4 5 133 4 2.65 3.01 3.04 0.78 0.55 0.53

5 6 128 3 3.57 3.52 3.45 -0.32 -0.29 -0.25

6 7 123 3 4^0 1,24 4.07 -0.90 -0.65 -0.57

7 8 117 5 6.39 5.22 4.94 -0.59 -0 . 1 0 0.03

8 9 109 5 &32 6.50 6 . 1 1 -1.29 -0.63 -0.48

9 1 1 205 17 26.20 20.52 19.23 -2.04 -0.84 -0.54

1 1 17 246 75 88J5 93.12 91.85 -1.85 -2.42 -2.25

* where G stands for G om pertz distribution.
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CHAPTER V 

FOLDED PARAMETRIC FAMILIES

5.1 Introduction

Physical measurements like dimensions including time and angles in scientific ex­

periments are frequently recorded without their algebraic sign. The directions of 

those physical quantities measured with respect to a frame of reference in most prac­

tical applications are considered to be unimportant and ignored. As a consequence, 

the underlying distribution of measurements is replaced by a distribution of absolute 

measurements. When the underlying distribution is normal, logistic, Laplace, and 

Cauchy the resulting distribution is, respectively, called the “folded normal” , “folded 

logistic” , “folded Laplace” , and “folded Cauchy” distribution.

For example, whenever a difference or deviation is measured, or measurements like 

length, distance, or angle is taken on either side of a line of reference, and when the 

algebraic sign is unknown, disregarded, or lost, the resulting distribution of these ab­

solute measurements can range in shape from thinnest right tail (half normal; Daniel 

1959) via medium right tail (half logistic; Balakrishnan 1992) to thickest right tail 

(half Cauchy; Johnson et al. 1994) or concerning the more variability thinnest right 

tail (folded normal; Leone et al. 1961) via median right tail (folded logistic; Cooray 

et al. 2006) to thickest right tail (folded Cauchy; Johnson et al. 1994). The effect of 

dropping the sign adds the otherwise negative values to the positive values. Geomet-
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rically, this amounts to the folding of the negative side of the distribution onto the 

positive side. Traditionally, for the convenience of writing properties of distributions, 

researchers have been folding distributions at the mean. The half normal (Daniel 

1959), half logistic (Balakrishnan 1992), and two-fold t  distribution (half t distribu­

tion) (Psarakis and Panaretos 1990) are some examples for such half distributions.

But, Leone et al. (1961) folded the normal distribution at a general point from 

the mean and, using first and second moments, gave the method of moment estima­

tors. Later, Elandt (1961) proposed an alternative method of moment estimators for 

these parameters using the second and the fourth moments. Sundberg (1974) gives 

statistical inference procedures for the folded normal distribution, and for some other 

related work see Nelson (1980) and Risvi (1971).

In this section, we consider the above mentioned four folded family of distributions, 

which are derivations of the original four pdf folded at a general point rather than at 

their mean. Estimation procedures are discussed through real data examples. Note 

that all these folded distributions are positively skewed and have non zero density 

value at the origin and, therefore these models are useful to analyze the data sets 

with zero data values.

5.2 The folded normal distribution

The density function and the distribution function of the folded normal distribu­

tion (Leone et al. 1961) are, respectively, given by

f{x)  = 4 - , (5.1)
V27T(7 L J

and
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= $ ) -1. (5.2)

Where 0 <  x < oo, —oo < fj, < oo, and 0 < cr < oo.

Median (m) and positive mode (mo) of the distribution can, respectively, be cal­

culated from

and

(mo -  /i)e^F /(P  +  mo 4- =  0. (5.4)

We will not discuss any analysis of the folded normal distribution, since one can

find related discussion in Leone et al. (1961), Elandt (1961), Risvi (1971), Sundberg 

(1974), and Nelson (1980).

5.3 The folded logistic distribution

The density function, the distribution and the quantile function of the folded 

logistic distribution (Cooray et al. 2006) are, respectively, given by

e(=^) e(4^) e - ( ^ )
~  7. ! f 7. ! ~  7. !<t(1 4- e(V^))2 a ( l  4- a{l + e-(V^))2 cr(l 4-

 ̂ 1 4- 1 4- 1 4 - 1  4-

=  \  +  \  (5 6)

and
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, {1 +  k ‘̂ )u  +  {Ak"  ̂ +  {1 -
Q[u) = (7ln[---------    7 7 7 ----- ----- -— ]. (5.7)2k{l — u)

Where 0 <  rr <  oo, —oo < / i < o o ,  0 < ( T < o o ,  0 < M < 1 ,  and k =

Figure 5.1 shows some characteristic shapes of folded logistic distribution varying 

with /X and cr.

0 . 02 -

140120100

Figure 5.1 Folded logistic density curves varying with /x and cr.

Further, moments of the folded logistic distribution can be obtained from the 

following equations.

(f)
/2 r  — 2 \  ,cr.

+ I )  0  -  2"-“ )r(2fc -  l)C(2fc -  1)} +  /i"-(5 .8)

k=l
2r n  _  2i-2'=)r(2A:)((2A:) +  (5.9)

A*
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Where r  =  1 ,2 ,3 , and Ik{^) =  (1 +  e^)~^ dt, k — 1,2,3 ,  The integral

Ik{a) can be expressed as a summation of incomplete, F(a, b), and complete, F (a), 

gamma functions as follows.

4 (« ) =  Z  (! +  »)■■), (5,10)
1= 0

Also ^ (.) is a Riemann zeta function (Abramowitz and Stegun 1972; Chaudhry and 

Zubair 2001) such that

n—1

C(2n) -  (n +  l /2 ) - i  J^C (2fc)C (2n-2A :), n =  2 ,3 ,4 ,... (5.11)
fc=i

and

f c = 0  '  '

with C (2) =  Y-

The first two moments, median and positive mode of the distribution can respec­

tively be obtained as

E { X ) = f x  + 2a\n{l + e->̂ /‘̂ ), (5.13)

F; (X^) = +  7 rV /3 , (5.14)

1 ,Median =  -|- <rln{-[l + + \/l6g^ +  (1 — g^)^]}, (5.15)
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and

Mode =  /i +  cr In
| l  -  +  \ / l  -  16g2 +  SOg^ _  iggO +  ç s j

2 ( 1 + 7 )

(5.16) 

where q = .

Maximum likelihood estimates of /i and cr are obtained in the usual maimer by 

differentiating the log-likelihood function

lnL(/i,cr) =  —n In 4 c7 +  ln{sech^( )  +  sech^(^ ^ ^ - )},
1 = 1

(6.17)

with respect to jj. and a.

The maximum likelihood estimators of /i and a  can be found by numerically 

solving the following two equations.

^  s e c h ^ (^ )  t a n h ( ^ )  -  s e c h ^ (^ )  t a n h ( ^ )  ^

^  sech 2 (2 ^ )+ se ch ^ (^ ) ' ^

_ sech2(2ÿ) t a n h ( ^ )  +  se ch ^ (^ ) t a n h ( ^ )
/  X'i ^  ^  TlO’ —  u «

t r  s e c y (^ )+ s e o h 2 ( îg a )
(5.19)

Because of the complexity of calculation we further suggest a moment method 

of estimation for // and cr. We have used method of moment estimation procedure 

similar to the method for folded normal distribution proposed by Leone et al. (1961) 

and Elandt (1961). The estimators of method of moment using first and second, and 

second and fourth would respectively be given by
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\/% — k(T, and a = 

where F is a solution of the following equation

i=l (5.20)

n  .  n

{k  +  21n(l +  e ^)}^— — {k^ + (7î'^/3)}{— =  0,
^  i=i ^  i=i

(5.21)

and

fJ-
i—\ 1=1 t=l

=2 3 ,1  ^  2 =2,

i=l

(5.22)

(5.23)

5.4 The folded Laplace distribution

The density function, the distribution and the quantile function of the folded 

Laplace distribution are, respectively, given by

+  if 0 < z < z i

^ e -(= ^ )  +  ^ e - (4 ^ )  if z i < z <
2(7 00

^  cosh (x/u) if 0 <  X < /r 

( ^ )  if // <  X < oo
(5.24)

F{x) =
ig (= ^ )  _  ig - (4 " ) if 0 < X < fj,

oo

^ sinh (x/cr) if 0 <  x <  p,

1 -  if /X <  X < oo
(5.25)
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and

Q{u) — <
(jsinh ^{ku) if u < (1 — l/A;^)/2 

, ‘̂ M îîf ïS ô }  if « > ( l - l A ^ ) / 2  

Where k = 0 < /U < oo, 0 < <r < oo, and 0 < m < 1.

(5.26)

0.05

0.04

0 .02-

0.01

100

Figure 5.2 Folded Laplace density curves varying with /j, and a.

The moment generating function is

The mean, median, and mode of the distribution are, respectively. 

Mean =  cr (In A; +  1/k)  =  p +

Median =  <rln (A: +  1/fc) =  2/.i +  (rln(l +

(5.27)

(5.28)

(5.29)

and
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Mode =  /i. (5.30)

More Laplace related distributions and their generalizations with applications can 

be found in Kotz et al. (2001).

5.5 The folded Cauchy distribution

The density function of the folded Cauchy distribution (Johnson et al. 1994) is 

given by

TTCr
+

1
(5.31)

L i + ( “ ) i + m  J ’

where 0  <  æ < oo, —oo <  p  <  oo, and 0  < a  < oo.

This density can be reparameterize and rewritten as

where 0 <  æ < oo, 0 <  7  <  oo, 0  <  0 <  oo, +  <r̂ , and 7  =  9 / (2a). Note

that this form is a harmonic transformation of the Cauchy distribution given by its 

distribution function

F(x) =  i  +  i a r c t a . . { 7 ( î - j ) } , (5.33)

w here 0 <  a; <  00, 0 <  7  <  00 , 0 < 0 <  00.

Mode =

(
0  if 7  <  I /V 3

e f 2 { l - l / ( 2 7 )^}^/^-ll^^^  if 1 / V 3 < 7
(5.34)
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The parameter 9 is the median of the distribution, also it is the geometric mean 

of the lower and upper o;**' percentiles of the distribution. The parameter 7  is the 

ratio between median and the difference of upper and lower percentiles of the 

distribution. Hence the MacGillivray’s (1992) skewness function (‘jx(u))  and Galton’s 

skewness function (G) are same for this distribution. The MacGillivray’s (1992) 

skewness function is

0.05

0.04

0.02

0.01

100

Figure 5.3 Folded Cauchy density curves varying with 7  and 9.

The coverage probabilities for the maximum likelihood estimation method with 

intended confidence levels o; =  0.1 and a  =  0.05 are given in Table 5.1. These coverage 

probabilities are based on 1 0 , 0 0 0  simulated random samples from the density given 

in equation (5.32). This analysis is very similar to the coverage probabilities given in 

Section 4.4.
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Table 5.1 Approximate coverage probabilities of the folded Cauchy

n = 12 24 48

90% intended 9 = 10 20 50 10 20 50 10 20 50

7 =  0.1 7 : .847 .824 :8i7 .933 .925 .924 .957 .962 .942

9 : .665 .656 .671 .830 .801 .792 .851 .851 .855

7 =  0.5 7 : .922 .913 .922 .942 .939 .939 .960 .963 .961

9 : .758 .754 .761 .822 .830 .822 .871 .859 .859

7 =  1.0 7 : .931 .936 .932 .957 .957 .955 .969 .970 .970

9 : .791 .780 .795 .853 .844 .848 .876 .878 .871

7 =  10.0 7 : .785 .788 .781 .845 .848 .849 .900 .907 .901

9 : .836 .840 .836 .870 .870 .871 .885 .877 .877

95% intended

7 =  0.1 7 : .875 .850 .842 .951 .943 .951 .976 .977 .962

9 : .705 .694 .718 .884 .848 .854 .896 .907 .907

7 =  0.5 7 : .943 .941 .943 .962 .961 .960 .975 .980 .979

9 : .818 .805 .811 .876 .884 .879 .917 .915 .913

7 =  1.0 7 : .953 .956 .956 .975 .975 .973 .985 .986 .987

9: .853 .854 .848 .903 .902 .902 .928 .931 .926

7 =  10.0 7 : .840 .844 .835 .897 .895 .897 .935 .941 .939

9 : .889 .894 .889 .921 .921 .920 .941 .934 .934
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Prom Table 5.1, one can see that when the sample size increases, the approximate 

coverage probabilities for the parameters under the maximum likelihood method is 

getting closer to the intended coverage probabilities.

The Figure 5.4 shows the above four folded families with same mode (30) and 

same median (31). Equal mode is used to identify the peakendess of the four folded 

families, whereas the equal median is used to identify the upper tail variations of the 

four folded families.

Folded Cauchy

Folded Laplace

g Folded Logistic 

.Folded Normal
9  -

1500 50 100

Figure 5.4 Four folded families with same mode (30) and same median (31).

5.6 Illustrative example

Example 1. This complete data set (see appendix B for the data set under the 

C8 column) concerns the urinary excretion rates (mg/24 hr) of the Tetra hydrocor-
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ticosteron steroid metabolite for 86 patients with Cushing’s syndrome (Aitchison et 

al. 2005). The normal range, based on the 37 normal healthy adults, of the urinary 

excretion rates of the Tetra hydrocorticosteron steroid metabolite is 0.02-.22. In this 

example, urinary excretion rates of 86 patients are analyzed using the four folded 

parametric distributions to examine how much they differ from the normal range. 

For this specific data set, the first three data points are 0,0,0. Also, this data set is 

distributed as a unimodal density and unimodal hazard shape. Therefore distribu­

tions like, gamma, loglogistic, lognormal, Weibull, inverse Gaussian, etc., cannot be 

use to model this data. A positively skewed non zero density would be a better choice 

to model these types of data.

Table 5.2 provides the estimated values of the four folded distributions for the 

urinary excretion rates data (cush data). Note that the chi-squared test has been 

performed by grouping the data into 11 classes with upper values of the non-open 

intervals, 0.04, 0.08, 0.12, 0.16, 0.2, 0.28, 0.36, 0.48, 0.68, 1.08.

Table 5.2 Estimated values of four folded distributions for cush data

Distribution Parameter f(0) Xs p-value

Folded normal */ï == 0.0000, a  = 1.5073 -97.71 267.4 0.0000

Folded logistic = 0.0000, a  = 0.4644 -59.21 97.18 0.0000

Folded Laplace */7 == 0.0000, a  = 0.5867 -40.15 53.31 0.0000

Folded Cauchy e == 0.1758, 9  = 0.4980 -12.37 11.53 0.1734

* Due to specific configuration of the data set, folded normal, folded logistic, and 

folded Laplace converge, respectively, to half normal, half logistic, and half Laplace
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(exponential) distributions when estimating their parameters under the likelihood 

method.

The estimated values given in Table 5.2 indicate that the folded Cauchy distribu­

tion provides better fit to the urinary excretion rates data. Furthermore, the adequacy 

of the fit is further strengthened by illustrating the survival function of the folded 

Cauchy distribution (see solid line in Figure 5.5) along with the Kaplan-Meier curve. 

In order to compare, the fitted survival curves of the folded normal (dashed line), 

folded logistic (dotted line), and folded Laplace (dark dashed line) distributions are 

included in Figure 5.5.

0.8

0.6

S(x)
0.4

0.2

Figure 5.5 Fitted survival curves of the four folded family for cush data. Solid line, 

dark solid line, dark dashed line, dark dotted line and dashed line are, respectively, 

fitted Kaplan-Meier, folded Cauchy, folded Laplace, folded logistic, and folded

normal curves.
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CHAPTER VI 

OVERVIEW, SUMMARY, AND FUTURE WORKS

6.1 Overview

This dissertation is about newly formed two- and three-parameter distributions. 

W ith the computational technology increases, these distributions are developed to 

benefit the modest modeling advantage. In this regard, for the most part of this 

dissertation, the model flexibility and applicability are thoroughly concerned with 

the aid of real data to establish the practical advantage of newly developed distri­

butions. In addition, the model simplicities are simultaneously concerned in terms 

of the number of parameters involving in the new distributions. Also, regularity of 

the distributions and closed-form solutions for the density, the distribution, and the 

quantile functions are considered. Furthermore, some parts of this dissertation look 

at constructing the new distributions via plausible physical phenomenon. Moreover, 

a two way parameter estimation method is introduced with the construction of a new 

distribution. To advance further the applicability and flexibility of these distributions; 

complete, grouped, censored, and truncated data found in survival, reliability, and 

actuarial sciences are analyzed, illustrated, and compared with other leading distribu­

tions. Overall these newly developed distributions and their inherent properties can 

properly be distinguished from the other leading distributions. Hence, one can add 

these new distributions to the existing inventory of continuous univariate parametric

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



distributions.

6.2 Summary

In the first part of Chapter II, we review and suggest the remedy for the problem 

of handling data from two different models, the lognormal and the Pareto, by using 

one composite model, the composite lognormal-Pareto model. This new development, 

which has a promising approach for data modeling in the actuarial and the insurance 

industries, may be very useful for practitioners who have been handling lognormal 

and Pareto data separately for their research work. Actuaries who encounter smaller 

data values with higher frequencies, as well as occasional larger data  values with lower 

frequencies are now exposed to a new avenue of this composite model which has a 

longer right tail than most of the non-monotonic positively skewed two-parameter 

density functions. The newly introduced composite lognormal-Pareto density is sim­

ilar in shape to the lognormal density, and its upper tail is larger than the lognormal 

density. The new model can easily tackle the situation when the lognormal model 

underestimates the tail probability.

A two-parameter family of distribution, which is a natural composition of Weibull 

and Pareto family, is presented in the second part of Chapter II as an alternative to 

several well-known distributions such as lognormal, loglogistic, inverse Gaussian, etc., 

to model the unimodal failure rate data. Even though, a large number of unimodal 

failure rate life distributions are available, the Weibull-Pareto composite family is 

useful to the survival analyst due to its flexible left tail from Weibull model and thick 

and longer upper tail from Pareto model as well as closed-form survival and hazard
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functions. Its flexibility, reliability, and applicability to survival data are demon­

strated and emphasized using well-known examples. Speciflcally, the arm A head 

and neck cancer data given in example two, and nasopharynx cancer survival time 

data given in example three show a better fit to the Weibull-Pareto composite family 

than to the other parametric families. Furthermore, whether the data is complete or 

right censored, maximum likelihood parameter estimation techniques can be easily 

implemented for this model, and the related algorithms are quite simple. Finally, two 

more Pareto composite families are introduced and their flexibility is compared by 

analyzing a grouped data example found in actuarial sciences.

In Chapter III, a generalization of the Weibull distribution, the Odd Weibull fam­

ily, is presented for modeling different types of failure rate data. Its applicability for 

modeling various failure rate data such as increasing, comfortable bathtub, unimodal, 

and etc., is demonstrated and emphasized using well-known examples by illustrating 

the scaled empirical and scaled fitted T T T plots. The upper percentage points of 

a test statistic, which measure the goodness-of-flt based on T T T plot, is tabulated 

for different parameter values of the Odd Weibull family. Furthermore, permissibil­

ity of testing the goodness-of-fit of the Weibull and inverse Weibull as submodels of 

the Odd Weibull family was also demonstrated in the examples. The inverse trans­

formation of the Odd Weibull family is the same as the original distribution and is 

uncommon among the distributions having bathtub-shaped failure rates. Using this 

property and the maximum likelihood procedure, parameters of the Odd Weibull fam­

ily is estimated in two different ways for complete, grouped, censored and truncated 

samples. This is actually useful to avoid some computational difficulties involved in
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the likelihood function, especially when the densities of the Odd Weibull family are 

non-unimodal.

In the first part of Chapter IV, a two-parameter family of distributions, which is 

an alternative to such several well-known distributions as Gompertz, Weibull, expo­

nential power-life-testing, etc., is presented to handle highly negatively skewed data 

with extreme observations. Its flexibihty and applicability for lifetime data is demon­

strated and emphasized using well-known examples. Especially, the parametric fit 

for the glass fiber strength data given in the first example, and the five-motor failure 

data given in the second example are improved by the logistic-sinh distribution. Fur­

thermore, whether the data are complete or censored, maximum likelihood parameter 

estimation techniques can easily be implemented for this model, and the related com­

putation procedures are quite simple. In addition, the logistic-sinh family is closed 

under proportional hazard modeling. It can be used to study the multi-population 

studies and is also amenable to simpler method of analyses and inferences. Because 

of this flexible nature of the logistic-sinh family, it can easily fit the five-motor failure 

data given in the second example with higher probability. Finally, an extension of 

the logistic-sinh family is introduced by reanalyzing the bus motor failure data.

In the second part of Chapter IV, we have presented two- and three-parameter 

families of distributions to model lifetime data. The two-parameter family can be used 

as an alternative to the well-known Gompertz distribution or other negatively skewed 

distribution, to model highly negatively skewed data that usually arise in life testing 

and survival analysis. Its flexibility, reliability, and applicability to lifetime data have 

been demonstrated and emphasized using well-known examples. Especially, when the
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data are highly negatively skewed, the Gompertz-sinh distribution often provides a 

better model than the Gompertz distribution. In addition, the Gompertz-sinh family 

is more highly negatively skewed than the Gompertz family. The three-parameter 

exponentiated Gompertz-sinh family accommodates a wide variety of density shapes 

and non-decreasing hazard shapes, and can especially be useful for modeling human 

or animal survival time data due to its thick lower tail of the density function. This 

three-parameter model gives better-fit for both examples that we analyzed in the 

example section. Specifically, the parametric fit of the burial data given in the first 

example is improved by the exponentiated Gompertz-sinh distribution. Furthermore, 

whether the data are complete or censored, maximum likelihood parameter estimation 

techniques can easily be implemented for this model, and the related computation pro­

cedures are quite simple. Finally, the two models that we present here are worthwhile 

to survival and reliability analyst due to their flexibility and simplicity towards the 

data modeling specifically when the underlying distributions are negatively skewed.

Chapter V presented some folded parametric families: folded normal, folded logis­

tic, folded Laplace, and folded Cauchy. The folded normal distribution has previously 

been studied. Therefore, we discussed some properties of the folded logistic, folded 

Laplace, and folded Cauchy distributions. The folded distributions are positively 

skewed and have non-zero density value at the origin. Therefore, these distributions 

are useful to analyze the data sets with zero data values.

Finally, following pointwise specific features give the importance of the distribu­

tions presented in subsequent chapters.

1. The composite Pareto family is useful for modeling highly positively skewed,
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unimodal density shape, and thick upper tail data.

2. The logistic-sinh distribution is useful for modeling highly negatively skewed, 

unimodal non-zero density shape, and thick tails data.

3. The folded family is useful for modeling positively skewed unimodal non-zero 

density shape data.

4. The Odd Weibull family is useful since:

a. The Weibull and the inverse Weibull are submodels,

b. It has all five major hazard shapes,

c. It has longer useful lifetime when it is exhibiting a bathtub hazard shape,

d. The reciprocal transformation does not change the density function and hence 

the Odd Weibull parameters can be estimated two ways when analyzing exact, grouped, 

censored, and truncated data.

6.3 Future works

One of the major weaknesses of the composite distributions is; when estimating 

the parameters, the associated standard errors are not the required marginal standard 

errors, and they are conditional standard errors. Therefore, calculating the marginal 

standard errors of these composite models is an open problem.

Some disadvantages of the Odd Weibull distribution are difficult to conduct mo­

ment based statistical analysis, for example, calculating the generalized p-values. 

Also, the Odd Weibull distribution is computationally inconvenience to extend to 

analyze multivariate data. In addition, small sample analysis such as Bayesian tech­

nique is not performed using the Odd Weibull distribution. Furthermore, the study
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of the log Odd Weibull family is an open question to interested readers.

Again, using the logistic-sinh or the Gompertz-sinh distrbution, small sample 

analysis such as Bayesian technique is not performed in this dissertation.
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APPENDIX A

DERIVATIVES AND FORMULAS

1. Derivation of the Fisher information matrix for the lognormal-Pareto composite 

distribution

Let A i, be a random sample from the composite lognormal-Pareto

model given in equation (2.1). Suppose the unknown parameter Q is in between the 

observation and m  + 1*̂  observation. Therefore, it is reasonable to assume that 

this is an ordered random sample, i.e., x\ < < xz < ....Xm < 0 < Xm+i <  ... <  Xn-

Then one can write the following equation by using the fact that the area under the 

density curve equals to 1,

poo poo \

^  /  f{xi)dxi  =  / I ' Y ^ f i x i )  I dxi =  n. (A.l)
i=i \ i= i  /

For the lognormal-Pareto composite density,

^  \
Y l y j  +  J  f 2 {xi)dxij =  n, (A.2)

where ln/i(a;) oc I n ^  — 0.b{{f3/ki)\ii{x/9) + k iŸ  and l n / 2 (a:) oc /31n0-Fln/3 —/?lna;. 

Then

771 nQ n /»ooI  f i{x i)dxi+  Y] / f 2 {xi)dxi = n. (A.3)
i=l Jo i=m+l
m pQ n poQ

^  /  f i{x i)dxi+  /  f 2 { x i )d x i^ n .  (A.4)
i=l ' 0̂ i=m+l
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Now differentiating w.r.t. 6, we get

dh{xj) dxi — {n — m) f 2 {0 ) —  0 .

(l +  0(&l))g

h(^ i)dx ,  +  =  a® '

(A.7)

Again differentiating w.r.t. 0, we get

+
^ /»00

£ , /
m/5

a^ln/2(z<)
f2{Xi)dXi + t i :i=m +l

(2m -  n) /5

fi{xi)dx, 

d ln f2 { x iy ^
f2{Xi)dXi

(A.8)
^  fOO

/i(a;i)da;i+ ^  /
A ™ _ L 1  ^i=m +l

fOO

ain /2 (x j)
ag

a2ln/2(xi)

f2{xi)dXi

i= l  ;=m+l
{2m — n + {n — m) 0  — m/3} /5

(l +  $(A:i))02

M _ 2 m 4 - M ^fcf
! +  $ ( %)

(A.9)

Similarly,

=  E f a in /i(x i)
dp

f l { X i ) d :Xi

" «Q

E  I rain/2(rCi) ain /2 (x j)
a/5L aa

=  É i

/2(li)&Ci

a^ln/2(æi)
a^aag

f2{Xi)dXi

n  — 2m
(l +  $(& i))0

=  m/6. (A. 10)
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/ M
l

n — m  + m kf  +  m k \ ^  (fci) +  2m $ (fci)
(l +  $(A:i))^2 ■

hi.x.
n

)dxi + Y 2  /  
Jei=m-\-\
/*00

a in /2 (a :0 '
a/5

a^ ln/2(xj)

f i ixi/dxi

a / 5 2
f2{Xi)dXi

(A.11)

Now let p = -  2, q — kj (1 ^  {ki)) +  2$ {ki) -  1, then one can write the

Fisher information matrix as

P] =

(  n+m p  \  (
I i+$(fci)J \e)

m
0

m
0 ( jn±ma_\ ( l Ÿ

(A. 12)

2. The Quantile and related functions

The Quantile (Q(u)), Galton’s skewness (G), and Moor’s kurtosis (K)  functions 

for various continuous univariate distributions are given below.

(a). Symmetrical Unimodal distributions (G =  0)

(i). Uniform (U)

Q(u) = a + (b — a)u; 0 < a < b < 00, 0 < u < V, K  = 1.

(ii). Normal (N)

Q{u) — (J. +  —00 < / / < o o , 0 < c r < o o ,  0 < u < l ; A T  =  1.233095115.

(ill). Logistic (L)

Q{u) = + (Tln(y^); —00 < fj. < 00, 0 < < t < o o ,  0 < w < l ; A  =  1.306270228.

(iv). Laplace (LA)
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)Li +  <T ln(2«) if M < 1/2
Q{u) =  ̂ ; —oo < / x < o o ,  0 < ( T < o o ,  0 <

/i — <rln(2(l — u)) if u >  1/2
u < l ; K ^  1.584962501.

(v). Cauchy (C)

Q{u) = fj. + a  tan[7r(u — 0.5)]; —oo < / i < o o , 0 < c r < o o ,  0 < u < l ; A  =  2.

(b). Symmetrical Bimodal distributions {G = 0)

(i). Sinh-normal (SN)

Q{u) =  0sinh“ ^[i$-Hw)];O < a < o o , O < 0 < o o ,  0 < u < l ;  A e[0,1.233095115].

(ii). Sinh-logistic (SL)

Q{u) = 0sinh“ ^[^ In(y^)]; 0 < a < o o , 0 < ^ < o o ,  0 < u < l ;  Ke[0,1.306270228].

(iii). Sinh-Cauchy (SC)

Q{u) = 0sinh“ ^[^tan{'7r('U — 0.5)}]; 0 < o : < o o , O < 0 < o o ,  0 < n < l ;  Ae[0,2].

(c). Extreme value distributions

(i). Smallest extreme value (SEV)

Q{u) = fj, + (7lnln(” ); —oo < p  <  oo, 0 < c r < o o ,  0 < u < l ; G  =  

-0.118432588, K  =  1.278103155.

(ii). Largest extreme value (Gumbel) (LEV)

Q{u) = fJ- — <rlnln(^); —oo < / r < o o , 0 < c r < o o ,  0 < u < l ; G  =  0.118432588, 

K  =  1.278103155.

(d). Half distributions

(i). Half-normal (HN)

Q{u) =  // 4- cr$“ ^ ( ^ ) ;  —oo < / L i < o o , 0 < c r < o o ,  0 < w < l ; G  =  0.144292171, 

K  = 1.176419296.
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(ii). Half-logistic (HL)

Q(u) = fi + <t1ii(y^); —oo < / i < o o , 0 < a < o o ,  0 < t i < l ; G  =  0.180833387, 

K  =  1.239547938.

(iii). Half Laplace or Exponential (EXP)

Q{u) — /I — <rln(l — «); —oo < / i < o o , 0 < < r < o o ,  0 < u < l ; G  =  0.261859507, 

K  = 1.306270228.

(iv). Half-Cauchy (HC)

Q{u) =  p 4- crtan[7rti/2]; —oo < / i < o o , 0 < c r < o o ,  0 < t t < l ; G  =  0.414213562, 

K  = 2.

(e). Folded distributions

(i). Folded-logistic (FL)

Q{u) =  crln[*'̂ '̂  ̂  ̂  ̂ ];fc =  e^/‘̂ ,-o o  < / i < o o , 0 < c r < o o ,

0 <  u <  1; There is no short form formula for G,  and K.

(ii). Folded Laplace (FLA)

{ crsinh“ (̂A:M) if u < { l  — l /k^ ) /2
; k  =  0 < fi < oo, 0 < a  <

if u > { l - l / k ^ ) / 2  
oo, 0 <  u <  1; There is no short form formula for G,  and K.

(iii). Folded-Cauchy (FC)

Q{u) — ^[tan{7r(u — 0.5)} 4- -\/tan2{7r(u — 0.5)} 4- 4o;2]; 0 < O ! < o o ,  O < 0 < o o ,0 <  u <  1; G =  v l4 -4 a 2  — 2a:, K  = 2.

(f). Logarithmic transformed distributions

(i). Lognormal (LN)

Q{u) = —oo < / i < o o , 0 < ( T < o o ,  0 < u < l ;  G =  tanh{0.5(r$“ ^(3/4)},
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K  = [sinh{cT-$“^(7/8)} — sinh{<7 #"'^(5 / 8 )}]/sinh{cr$~^(3/4)}.

(ii). Loglogistic (LL)

Q{u) =  ^(ï^)^ '^";0  < o ; < o o , O < 0 < o o ,  0 < m < 1 ; G  =  tanh{ln(3)/(2o:)}, 

K  =  [sinh{ln(7)/o!} — sinh{ln(5/3)/o:}]/sinh{ln(3)/a}.

(iv). LogCauchy (LC)

Q{u) — 0 e» Q < o ; < o o , O < 0 < o o ,  0 < « < 1 ; G  =  tanh(0.5/o!),

A  =  2 cosh(v^/o;).

(g). Power distribution (PO)

Q{u) = 0 < 6 < o o ,  0 < c < o o , 0 < u < l ,  G =  (3^/‘’-2 i+ ^ /‘’ +  l) / (3 ^ /^ -1),

K  = (7 /̂= -  5^/' +  3^/' -  l ) / ( 6 ^/' -  2^/^).

(h). Pareto distribution (PA)

Q{u) = 6 ( 1  — 0 < 6 < o o ,  0 < c < o o ,  0 < u < l ,  G =  (3“ ^/'’ — 2 "̂̂ /"̂  +

1 ) / ( 1  -  3-^/":), A  =  ( 1  -  3 - l/‘= +  5-1/': _  7-l/c)/(2-l/c  _  6 - 1 /':).

(i). Weibull Distribution (W)

Q{u) — 01ni/“ ( y ^ )  ; 0 < a  < oo, 0 < 0 < oo, 0 < u <  1; There is no short form 

formula for G, and K.

(j). Gamma distribution (GA)

There is no closed-form quantile function.

(k). Gompertz distribution (G)

Q{u) =  01n(l — CK-i ln (l — u)) ; 0 < ti <  1,0 < a  < oo,0 < 0 < oo; There is no 

short form formula for G, and K.

(1). Logistic-sinh distribution (LS)
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Q{u) =  01n ^1 +  arcsinh j  j  ; O < w < l , O < A < o o , O < 0 < o o ;  There is

no short form formula for G, and K.

(m). Gompertz-sinh distribution (GS)

Q{u) — 0 hi (1 — arcsinh (/i“ i ln ( l  — tt))) ; O < u < l , O < / i < o o , O < 0 < o o ;

There is no short form formula for G, and K.

(n). Birnbaum-Saunders distribution (BS)

Q{u) = —(m)+a/4m+((t̂  (u)) ^  < p < o o , 0 < c r < o o ,  0 < u < l ;  There

is no short form formula for G, and K.

(o). Inverse exponential distribution (lEXP)

Q{u) =  01n-i ( i )  ; 0 <  0 <  oo,0 < u <  1; G =  0.476280986, K  = 2.141741023. 

(p). Inverse Weibull distribution (IW)

Q{u) — 01n“ i/“ (^) ; 0 < o ; < o o ,  O < 0 < c o ,  0 < « < 1 ;  There is no short form 

formula for G, and K.

(q). Lognormal-Pareto composite distribution (LPG)

I 0exp{(/ci//3) («I»-! ((1 + $  (A:i))u) -  fci)} if 0 < u < Uo  
Q (w) =  <

I 0 { ( l - 1 i ) ( l  +  $ ( ti))} -^ /^  if U o < U < l .

Where $  (.) is the cumulative distribution function of the standard normal distribu­

tion, « 0  =  ^  (A=i) /  (1 4- 4» (fci)), and ki — 0.372238898. Also 0 (> 0), and /? (> 0) are, 

respectively, scale and shape parameters of this distribution.

There is no short form formula for G, and K.

(r). Weibull-Pareto composite distribution (WPG)

if 0 < u < k / ( 2 k  +  l)
Q(u)

" { ( I i f  k/ { 2k  +  l ) < u < l
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Where k =  2.857334826. Also 6 (> 0), and 7 (> 0) are, respectively, scale and shape

parametèrs of this distribution.

(s). Weibull-inverse Weibull composite distribution (WIW)

0 1 n i / " [ l / { l - 2 ( l - e - i ) u } ]  if 0 < u <  1/2
Q W  =  <

I  0 1 n - i / " [ l / { 2 ( l - e - i ) u  +  2 e -i -  1 }] if 1 / 2  <  u <  1

Where 6 (>  0), and o  (> 0) are, respectively, scale and shape parameters of this 

distribution.
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APPENDIX B

DATA AND CODES

Appendix B provides data sets that are related to the reliability, medical, environ­

mental, and actuarial sciences. We briefly discuss their failure rates and basic shape 

of the data distribution where necessary although some of the data sets have already 

been analyzed in previous chapters. For the most part, the original data source are 

provided for reader interest. Some of these data sets have also been analyzed by other 

researchers and their source of such analyses are provided as well.

The data in the appendix B appear in seven different format:

1. Complete data.

2. Grouped data.

3. Right censored data.

4. Interval censored data.

5. Right truncated data.

6. Left truncated and right censored data.

7. Left truncated and interval censored data.

For each of these format BMDP (1992) codes are provided by using the Odd 

Weibull model. One can replace this Odd Weibull model with different parametric 

models to enable these codes where necessary. The data are given in dat.xls file in 

the CD-ROM. Also some useful R-codes are given at the end.
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1. Complete data

1.1 Juran and Gryna’s electronic ground support equipment failure data

This 105 data points represents the time in hours to failure for a unit of electronic 

ground support equipment, which was taken from Juran and Gryna (1970), and 

also can found in Kolb and Ross (1980). Later Elsayed (1996) used these data to 

determine the nonparametric renewal function to estimate the expected number of 

failures under the discrete time approach. The hazard shape of this data represents 

the bathtub-shaped failure rate.

1.2 Aarset’s device failure data

The data represents the times to failure of 50 devices put on a life test at time 

zero (Aarset 1987). Later, Mudholkar et al. (1996) used this data set to illustrate 

the flexibility of generalized Weibull family. The hazard shape of this data represents 

the bathtub-shaped failure rate. Reanalysis of Aarset’s data  is given in Chapter III 

Section 3.7.

1.3 Single exposure gamma irradiated mice mortality data

The 208 data points represent the ages at death in weeks for male mice exposed 

to 240r of gamma radiation (Fiirth et al. 1959; Kimball 1960). This data is also 

available in Elandt-Johnson and Johnson (1980), and Lawless (2003). The hazard 

shape of this data represents the increasing failure rate. R eanalysis o f th is data set 

is given in Chapter III Section 3.7.
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1.4 Multiple exposure gamma irradiated mice mortality data

This 47 survival times, in units of 2 months, of continuous whole-body gamma- 

radiation a t an intensity of 2.2 standard units of radiation daily. The data are ab­

stracted from Sampford (1952) and initially studied by Lorentz et al. (1947). The 

hazard shape of these data represent the increasing failure rate.

1.5 Glass fiber strength data

The glass fiber data are experimental strength values of two lengths, 1.5cm (63 

data points), and 15cm (46 data points), from the National Physical Laboratory 

in England (Smith and Naylor 1987). The authors used three-parameter Weibull 

distribution to model the two data sets. The hazard shape of this data represents 

the increasing failure rate. Our analysis of these data sets are given in Chapter IV 

Section 4.7.

1.6 Guinea pigs survival time data

This data set (study M, regimen 5.5), which is abstracted from Bjerkedal (1960) 

represents the survival times of guinea pigs after infected with virulent tubercle bacilli. 

The hazard shape of this data represents the unimodal-shaped failure rate. Our 

analysis for this data set is given in Chapter II Section 2.11.7.

1.7 Stimulus-response time data

This data represents the reaction time of one subject in 180 trials of a psychological 

experiment (Whitmore 1986). In each trial the subject was asked to decide whether 

the distance between two dots displayed on a monitor placed 10ft away was long or 

short. The dots remained visible until the subject made a response. The reaction
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time for each trial is the length of time from stimulus to response in milliseconds. The 

hazard shape of this data represents the unimodal-shaped failure rate. Our analysis 

for this data set is given in Chapter II Section 2.11.7.

1.8 Diamond data

This twin data set consists of alluvial diamonds from the Bougban and Damaya 

deposits in Guinea of West Africa (Beirlant et al. 1996). The deposits have been 

well explored by a systematic 100 x 50 meter sampling grid of unit samples of 8.85 

square meters. The sampling program on Bougban recovered 683 stones, whereas 

the Damaya sampling yielded 444 stones. The data represent the unimodal-shaped 

failure rates. The analysis of these data using the odd Weibull family are given in 

Chapter III Section 3.7.

1.9 Urinary excretion rates data

This complete data set concerns the urinary excretion rates of the tetra hydro- 

corticosteron steroid metabolite for 86 patients with Cushing’s syndrome (Aitchison 

et al. 2005). The hazard shape of this data represents the unimodal-shaped failure 

rate. The urinary excretion rates data are analyzed by using the folded distributions 

given in Chapter V Section 5.6.

1.10 Danish fire insurance data

This complete Danish data set (McNeil 1997, Resnick 1997) consist of 2492 fire 

insurance losses in Danish Krone (DKK) from the years 1980 to 1990 inclusive. The 

loss figure is a total loss figure for the events concerned and includes damage to 

buildings, furniture and personal property as well as loss of profits. The recorded data
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have been suitably adjusted to reflect 1985 values. The adjusted loss values in Danish 

Krone range from (in millions) 0.3134041 to 263.2503660. McNeil (1997) analyzed the 

upper portion of this data, which consist of 2156 losses over one million Danish Krone, 

as an example to the use of extreme value theory by estimating the tails of loss severity 

distributions. For the upper portion of the data, he used two-parameter shifted Pareto 

model as a parametric model and concluded that the two-parameter shifted Pareto 

model is a useful model for estimating the tails of loss severity distributions. Resnick 

(1997) analyzed the full Danish data set to demonstrate several alternative statistical 

techniques and plotting devices that can be used for assessing the appropriateness of 

heavy tailed models, and justified McNeil’s decision to drop losses below one million 

DKK to use the Pareto model. Embrechts et al. (1999) used the data set (upper 

portion) in their book to discuss the Pareto model as a useful loss severity distribution. 

Our analysis for this data set is given in Chapter II Section 2.10 and Section 2.14.1.

1.11 Badenscallie burial data

The following data set is the age of death of male members of Scottish McAlpha 

clan in the burial ground at Badenscallie in the Coigach district of Wester Ross, 

Scotland (Sprent and Smeeton 2000). Ages are given for complete years, e.g. 0 

means before first birthday and 79 means on or after 79th but before 80th birthday, 

according to the information on the tombstone. The data were collected in June 

1987. The authors pointed out that the McAlpha clan data set possesses reasonably 

approximate pattern of death ages for the all four clan. The hazard shape of this data 

represents the bathtub-shaped failure rate. Furthermore, the analysis of the McAlpha
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clan data set is given in Chapter IV Section 4.8.6.

1.12 Wave and surge height data

This example is a concurrent measurements of two oceanographic variables - wave 

and surge height at a single location off south-west England (Coles 2001). This is 

a large data set with 2894 data points for each variables - wave and surge heights 

measured in meters. As noted by Coles (2001), the scatter plot of wave and surge 

data suggests a tendency for extremes of one variable to coincide with extremes of 

the other. Our analysis for this twin data set is given in Chapter III Section 3.10.1.

1.13 BMDP code using the Odd Weibull model for Juran and Gryna’s electronic 

ground support equipment failure data

/IN PU T VARIABLES=1.

FORMAT=FREE.

/VARIABLE NAMES=time.

/ESTIMATE PARAMETERS=3.

/PARAM ETER NAMES=a,b,c.

INITIAL=5,.l, 80.

/DENSITY F=(a*b/time)*((time/c)**a)*EXP((time/c)**a)

*((EXP((time/c)**a)-l)**(b-l))

/((l-h(EXP((time/c)**a)-l)**b)**2).

/END

/END
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Note: The point data column should be insert between the last two /END com­

mand.

2. Grouped data

2.1 Bus motor failure data

The classical five bus motor failure data are firstly considered and analyzed by 

Davis (1952). The results take into account the time to the first and succeeding major 

motor failures for 191 buses operated by a large city bus company, with time being 

the number of thousand miles driven. Failure was either abrupt, in which some part 

broke or the motor would not run. Failures of motor accessories, which could be easily 

replaced, were not included in these data.

Davis used the truncated normal distribution to analyze the first two motor failure 

data and the exponential distribution for the second and succeeding failures. In the 

analysis, in terms of chi-squared goodness-of-fit, he found that both models are poorly 

fit to the second bus motor failure data. Bain (1974) adapted a three-parameter 

quadratic hazard model for the purpose of obtaining a good fit to  the second bus 

motor failure data. Later, Mudholkar et al. (1995) used three-parameter exponen­

tiated Weibull model to analyze the five motor failure data. Lindsey (1997) gave 

an alternative analysis to the bus motor failure data using parametric multiplicative 

intensity models. However, he considers data that are grouped more coarsely than 

the data given by Davis (1952). Our analysis for this data set is given in Chapter IV 

Section 4.7 and 4.8.
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2.2 Hospital stay length data

This example represents hospital-stay frequency distribution for 2311 schizophrenic 

patients taken from the Maryland Psychiatric Case Register. This data set was earUer 

analyzed by Eaton & Whitmore (1977) to discuss the appropriateness of the inverse 

Gaussian distribution as a model for the hospital stay pattern. Later, Whitmore 

(1986) noted that any simple model is inappropriate to explain the hospital stay pat­

tern. Therefore, he formulated the normal-gamma mixture model to provide a clear 

improvement in fit relative to the unmixed inverse Gaussian model. The hazard shape 

of this data represents the unimodal-shaped failure rate. Our analysis for this data 

set is given in Chapter III Section 3.7.

2.3 BMDP code using the Odd Weibull model for the second bus motor failure 

data

/IN PU T VARIABLES=1.

FORMAT=FREE.

/VARIABLE NAME^count.

/ESTIMATE PARAMETER=3.

/PARAM ETER NAME=a,b,c.

INITIAL=4,0.25,75.

/DENSITY U l=(l+(EX P((20/c)**a)-l)**b)**(-l).

U2=(l+(EXP((40/c)**a)-l)**b)**(-l).

U3=(l+(EXP((60/c)**a)-l)**b)**(-l). 

U4=(l4-(EXP((80/c)*+a)-l)**b)**(-l).

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U5=(l+(EXP((100/c)**a)-l)**b)**(-l).

U6=(l+(EXP((120/c)**a)-l)**b)**(-l).

IF (KASE EQ 1) THEN LNF=count*LN(l-Ul).

IF (KASE EQ 2) THEN LNF=count*LN(Ul-U2).

IF (KASE EQ 3) THEN LNF=count*LN(U2-U3).

IF (KASE EQ 4) THEN LNF=count*LN(U3-U4).

IF (KASE EQ 5) THEN LNF=count*LN(U4-U5).

IF (KASE EQ 6) THEN LNF=count*LN(U5-U6).

IF (KASE EQ 7) THEN LNF=count*LN(U6).

/END

/END

Note: The point data column should be inserted between the last two /END 

command.

3. Right censored data

3.1 Head and neck cancer data

The following data represents the survival times in days of head and neck cancer 

patients after two different treatments considered earlier by Efron (1988) from a two- 

arm clinical trial. This clinical trial data consists of 51 patients with radiation therapy 

alone denoted by arm A and 45 patients with radiation plus chemotherapy denoted 

by arm B. Nine and fourteen patients were lost to follow-up respectively in arm A 

and arm B and were regarded as right censored. Mudholkar et al. (1995) used arm A 

clinical trial data to demonstrate the flexibility of exponentiated Weibull distribution
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to unimodal-shaped failure rate data. Meanwhile, the generalized Weibull model 

(Mudholkar et al. 1996) gives considerably improved fit for the two-arm clinical trial 

data. Our analysis for the arm A data set is given in Chapter II Section 2.11.7.

3.2 Nasopharynx cancer survival data

The data set of this example is taken from McKeague (2000) and given by West 

(1987, 1992) who studied the data on 181 nasopharynx cancer patients. Their cancer 

careers, culminating in either death (127 cases) or censoring (54 cases), are recorded 

to the nearest month, ranging from 1 to 177 months. Our analysis for this data set 

is given in Chapter II Section 2.11.7.

3.3 Oklahoma diabetic data

The survival t imes (in years) represent the first 40 male patients enrolled in a 

mortality study of Oklahoma diabetic Indians (Lee and Wang 2003). This example is 

a part of larger sample of 1012 Oklahoma Indians with non-insulin-dependent diabetes 

mellitus (NIDDM)), and the data were examined in 1972-1980. The hazard shape of 

this data represents the increasing failure rate. Analysis of this data set is given in 

Chapter IV Section 4.7.

3.4 Diabetic data

This example represents the survival times (in years) of 149 diabetic patients who 

were followed for 17 years (Lee and Wang 2003). The hazard shape of this data 

represents the increasing failure rate. Analysis of this data set is given in Chapter IV 

Section 4.8.6.
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3.5 BMDP code using the Odd Weibull model for the arm A head and neck cancer 

data

/IN PU T VARIABLES=2.

FORMAT=FREE.

/VARIABLE NAMES=time,cen.

/ESTIMATE PARAMETERS=3.

/PARAM ETER NAMES=a,b,c.

INITIAL=-0.25,-4.0,50.

/DENSITY E X l= (a*b/time) * ( (time/c) **a) *EXP ( (time/c) **a) 

*((EXP((time/c)**a)-l)**(b-l))/((l+(EXP((time/c)**a)-l)**b)**2).

EX 2=(l+(EXP((tim e/c)**a)-l)**b)**(-l).

IF (cen= = l) THEN F=EX1.

IF(cen==0) THEN F=EX2.

/END

/END

Note: The point data values in the first column and the censoring indicator in 

the second column (1 =  dead, 0 — censored) should be inserted between the last two 

/END command.

4. Interval censored data

4.1 Breast cancer data

Beadle et al. (1984a and b) report a retrospective study carried out to compare the 

cosmetic effects of radiotherapy alone versus radiotherapy and adjuvant chemotherapy
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on women with early breast cancer. This twin data set is discussed by Klein and 

Moeschberger (1997), Finkelstein and Wolfe (1985), and Ryan and Lindsey (1998).

4.2 Drug resistance of AIDS patients data

This interval censored data set is taken from Ryan and Lindsey (1998) and is 

originally analyzed by Richman et al. (1990) regarding the drug resistance (time in 

months to resistance to Zidovudine) of 31 AIDS patients. Our analysis for this data 

set is given in Chapter III Section 3.7.

4.3 BMDP code using the Odd Weibull model for the radiotherapy and adjuvant 

chemotherapy data

/IN PU T VARIABLES-2.

FORMAT=FREE.

/VARIABLE NAMES=left,right.

/ESTIMATE PARAMETERS=3.

/PARAMETER NAMES=a,b,c.

INITIAL=1,1,50.

/DENSITY U =l/(l+(EX P((left/c)**a)-l)**b). 

V =l/(l+(EXP((right/c)**a)-l)**b).

IF (right NE 61) THEN LNF=LN(U-V).

IF  (right EQ 61) TH EN  L N F = L N (U ).

/END

/END

Note: The right and left limit point data values are in the two columns which
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should be inserted between the last two /END command. 61 mean right open interval.

5. Right truncated data

5.1 AIDS blood-transfusion data 1

This example is taken from Wang (1989) and is initially analyzed by Kalbfleisch 

and Lawless (1989). In acquired immune deficiency syndrome (AIDS) studies survival 

time is usually defined as the time from the human immunodeficiency virus (HIV) 

infection to the diagnosis of AIDS. Only individuals who have developed AIDS prior 

to the end of the study period are included in the study. Infected individuals who 

have yet to develop AIDS are not included and hence the data set is right truncated. 

The data are presented through two variables: time in months from the transfusion 

to the diagnosis of AIDS, truncation in months from transfusion to the end of the 

study period (July 1989). Also data are categorized into three age groups: “children” 

aged 1-4, “adults” aged 5-59, and “elderly patients” aged 60 and older.

5.2 AIDS blood-transfusion data 2

This example is initially analyzed by Lagakos et al. (1988) and is also available in 

Klein and Moeschberger (1997). As in the previous example, important measurement 

is the induction period between infection with the AIDS virus and the onset of clinical 

AIDS. This time is sometimes referred to as the latency period or incubation period. 

The data are presented through two variables: tim e in m onths from the transfusion  

to the diagnosis of AIDS, truncation in months from transfusion to  the end of the 

study period (June 30, 1986). Also data are categorized into two age groups: children 

and adults. There are 37 children and 258 adults included in this study.
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5.3 BMDP code using the Odd Weibull model for AIDS transfusion data 1 for 

children aged 1-4

/IN PU T VARIABLES=2.

FORMAT=FREE.

/VARIABLE NAMES—time, trunc.

/ESTIMATE PARAMETERS=3.

/PARAMETER NAMES=a,b,c.

INITIAL=3.5,0.5,25.

/DENSITY U=(l4-(EXP((trunc/c)**a)_l)**(-b)).

F =U* (a*b/time) * ( (time/c) **a) *EXP((time/c) **a)

*((EXP((tim e/c)**a)-l)**(b-l))/((l+(EXP((tim e/c)**a)-l)**b)**2).

/END

/END

Note; The time data values in the first column and the right truncated values in 

the second column should be inserted between the last two /END command.

6. Left truncated and right censored data

6.1 Channing House data

Charming House is a retirement center located in Palo Alto, California. Data 

consist of ages at death of 462 individuals (97 males and 365 females), who were 

in residence during the period of January 1964 to July 1975. This data has been 

reported by Hyde (1980) and also available in Klein and Moeschberger (1997). Data 

reports the age in months when members of the community died or left the center
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and the ages when individuals entered the community. Also individuals must survive 

to a sufficient age to enter the retirement community. Therefore, the lifetimes of this 

data set are left truncated and right censored.

6.2 BMDP code using the Odd Weibull model for Channing House data for 97 

males

/IN PU T VARIABLES=3.

FORMAT=FREE.

/VARIABLE NAMES=trunc,time,cen.

/ESTIMATE PARAMETERS=3.

/PARAM ETER NAMES=a,b,c.

INITIAL=6,1,1000.

/DENSITY U =(l+(EX P((trunc/c)**a)-l)**b).

EXl=(a*b/time)*((time/c)**a)*EXP((time/c)**a) 

*((EXP((time/c)**a)-l)**(b-l))/((l+(EXP((time/c)**a)-l)**b)**2). 

EX2=(l+(EXP((time/c)**a)-l)**b)**(-l).

IF (cen= = l) THEN F=U*EX1.

IF(cen==0) THEN F=U*EX2.

/END

/END

Note: The truncated data values in the first column, the death time in the second 

column, and the right censoring indicator in the third column (1 =  dead, 0 =  censored) 

should be inserted between the last two /END command.
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7. Left truncated and interval censored data

7.1 Functional independence data

This example is a left truncated and interval censored increasing failure rate twin 

data set (Pan and Chappell 1998, 2002), regarding the loss of functional independence 

of people of age 65 years or older. This twin data set consists of 421 non-poor male 

group and 609 non-poor female group. Our analysis for this data set is given in 

Chapter III Section 3.7.

7.2 BMDP code using the Odd Weibnll model for functional independence data 

for non-poor female

/IN PU T VARIABLES=3.

FORMAT=FREE.

/VARIABLE NAMES=truc,left,right.

/ESTIMATE PARAMETERS=3.

/PARAM ETER NAMES=a,b,c.

INITIAL-8,1,100.

/DENSITY U =(l+(EX P((truc/c)**a)-l)**b)/(l+(EX P((left/c)**a)-l)**b). 

V=(l4-(EXP((truc/c)**a)-l)**b)/(l-F(EXP((right/c)**a)-l)**b).

IF (right NE 9999) THEN LNF-LN(U-V).

IF (right EQ 9999) THEN LNF=LN(U).

/END

/END

Note; The truncated data values in the first column, the left limit in the second
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column, and the right limit in the third column should be inserted between the last 

two /END command.

R-codes

1. for Turnbull curve given in Section 3.7.5

require (survival)

cria.tau <  function (data) {

1 <- dataSleft 

r <- dataSright

tan  <- sort(unique(c(l,r[is.finite(r)]))) 

return (tan)

}

S.ini <- function(tan){ 

m<-length(tau)

ekm<-survfit (Surv(tau[l :m-l] ,rep ( 1 ,m-l ) ) )

So<-c( 1 ,ekm$surv) 

p <  -diff(So) 

return(p)

}

cria.A <- fimction(data,tau){

tau l2  <- cbind(tau[-length(tau)],tau[-l])

interv < function(x,inf,sup) ifelse(x[l]>=inf & x[2]<=sup,l,0)

A < apply(taul2,l,interv,inf=data$left,sup=data$right)
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id.lin.zero <- which(apply(A==0, 1, all)) 

if(length(id.lin.zero)>0) A <- A[-id.lin.zero, ] 

return(A)

}

Turnbull <- function(p, A, data, eps—le-3, iter.max=200, verbose—FALSE){

n<-nrow(A)

m<-ncol(A)

Q <-m atrix(l,m ) 

iter <  0 

repeat { 

iter <- iter +  1

diff<- (Q-p)

maxdiff<-max(abs(as. vector (diff) ) )

if (verbose)

print(maxdiff)

if (maxdiff<eps | ite r> —iter.max)

break

Q<-p

C<-A%*%p

p<-p*((t(A)%*%(l/C))/n)

}

cat (’’Iterations — ”, iter,” \n ” )

cat (’’Max difference — ” , maxdiff,” \n ” )
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cat (’’Convergence criteria: Max difference < le-3” ,”\n ”)

dimnames(p)<-list(NULL,c(”P  Estimate” ))

surv<-roimd(c( 1, l-cnmsnm(p) ) ,digits=5)

right <- dataSright

if (any ( ! (is.finite(right) ))){

t <- max(right[is.finite(right)])

return (hst ( tim e=tau [tan < t] ,surv—surv [tau< t] ) )

}

else

return (list (time=tau,surv=surv) )

}

dat <- read.table(” C:/Documents and Settings/Desktop/aids.txt” ,header=T) 

dat$right[is.na(dat$right)] <- Inf 

tan <- cria.tau(dat) 

p <- S.ini(tau=tau)

A <- cria.A (data=dat,tau=tau) 

tb  <- Turnbull(p,A,dat) 

tb

plot(tb$tim e,tb$surv,lty=l, col =  l,type= ”s” ,ylim=c(0,l),xlim=range(c(0,26)), 

xlab—” x” ,ylab=” S (x) ” )

text(8,0.87,”Fitted \n  Turnbull’s \n  curve” ,col=l)
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