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ABSTRACT

Predicting Evapotranspiration from Sparse and Dense Vegetation Communities 
in a Semiarid Environment using NDVI from Satellite 

and Ground Measurements

by

Malika Baghzouz

Dr. Dale Devitt, Examination Committee Chair 
Professor, School of Life Sciences 
University of Nevada, Las Vegas

One of the most critical issues associated with using satellite data-based products 

to study and estimate surface energy fluxes and other ecosystem processes, has been the 

lack of frequent acquisition at a spatial scale equivalent to or finer than the footprint of 

field measurements. In this study, we incorporated continuous field measurements based 

on using Normalized difference vegetation index (NDVI) time series analysis of 

individual shrub species and transect measurements within 625 m  ̂size plots equivalent 

to the Landsat-5 Thematic Mapper spatial resolution. The NDVI system was a dual 

channel SKR-1800 radiometer that simultaneously measured incident solar radiation and 

upward reflectance in two broadband red and near-infrared channels comparable to 

Landsat-5 TM band 3 and band 4, respectively. The two study sites identified as Spring 

Valley 1 site (SVl) and Snake Valley 1 site (SNKl) were chosen for having different 

species composition, soil texture and percent canopy cover.
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NDVI time-series of greasewood (Sarcobatus vermiculatus) from the SVl site 

allowed for clear distinction between the main phenological stages of the entire growing 

season during the period from January to November, 2007. Comparison of greasewood 

NDVI values between the two sites revealed a significant temporal difference associated 

with early canopy development and early dry down of greasewood at the SNKl site. 

NDVI time series values were also significantly different between sagebrush {Artemisia 

tridentata) and rabbitbrush {Chrysothamnus viscidiflorus) at SVl as well as between the 

two bare soil types at the two sites, indicating the ability of the ground-based NDVI to 

distinguish between different plant species as well as between different desert soils based 

on their moisture level and color. The difference in phenological characteristics of 

greasewood between the two sites and between sagebrush, rabbitbrush and greasewood 

within the same site were not captured by the spatially integrated Landsat NDVI acquired 

during repeated overpasses. Greasewood NDVI from the SNKl site produced significant 

correlations with many of the measured plant parameters, most closely with chlorophyll 

index (r = 0.97), leaf area index (r = 0.98) and leaf xylem water potential (r = 0.93). 

Whereas greasewood NDVI from the SVl site produced lower correlations (r = 0.89, r =

0.73), or non significant correlations (r = 0.32) with the same parameters, respectively. 

Total percent cover was estimated at 17.5% for SVl and at 63% for SNKl.

Transect measurements provided detailed information with regard to the spectral 

properties of shrub species and soil types, differentiating the two sites, which was not 

possible to discern with the spatial resolution of Landsat. Correlation between transect 

NDVI data and Landsat NDVI produced an r of 0.79. While correlation between transect 

NDVI data and ground-based NDVI sensors produced an r of 0.73. The linear regression
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equation between daily ET measured by the eddy covariance method and Landsat NDVI 

yielded a strong relationship {r = 0.88) for data combined across the experimental period 

(May to September) and across the two sites. The ET prediction equation was improved 

(/^ = 0.86) by introducing net solar radiation (R„) which was the meteorological variable 

that had the highest prediction of ET (/^ -  0.82). A high correlation was found between 

weighted ground-based sensor NDVI estimates and Landsat derived NDVI at the pixel 

scale {r = 0.97) for the two study sites combined over time. While results from this study 

in scaling ground-based NDVI measurements and estimating ET were very promising, 

further verification and improvement is needed to determine the performance level of this 

approach over larger heterogeneous areas and over extended time periods.
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CHAPTER 1

GENERAL INTRODUCTION 

The research undertaken in this study was part of a long term study in the Great 

Basin (East-central Nevada) initiated in 2005, where normalized difference vegetation 

index (NDVI) derived from Landsat-5 TM imagery was used to estimate basin wide 

Evapotranspiration (ET). Utilization of remote sensing technology to estimate or scale 

long term environmental processes such as ET should be associated with different spatial, 

temporal and spectral resolution. Repeatable and continuous ground measurements are 

needed in order to gain further insight into the biophysical processes driving the NDVI 

signature.

The research approach implemented in this study was based on the integration of 

various remote sensing sensors with different spectral resolution to generate and compare 

NDVI values from sparse and dense vegetation settings and develop ET estimation 

models from spectral measurements acquired within the footprint of the eddy flux towers. 

The study was conducted in two different basins. One site in each basin was chosen based 

on having contrasting vegetation cover (sparse vs. dense. Figure I). The sparse vegetation 

cover site consisted of a combination of greasewood (Sarcobatus vermiculatus'), 

rabbitbrush (Chrysothamnus viscidiflorus), sagebrush (Artemisia tridentata) and 

shadscale (Atriplex confertifolia). While in the dense cover site, greasewood represented 

the dominant species.
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Various plant, soil and meteorological measurements were taken every two weeks 

to estimate a number of physiological and environmental parameters. Remote sensing 

measurements obtained from various resolution sensors were analyzed and investigated at 

different temporal and spatial scales. The aim of this study was to provide a validation of 

Landsat derived NDVI and to understand the biophysical processes driving the NDVI 

signature during the growing season based on continuous and repeatable ground 

measurements.

The following are the tested hypotheses:

1. NDVI values will be higher at the SNKl site and lower at the SVl site. These 

differences will be consistent with total percent vegetation cover and ET values.

2. NDVI values obtained from ground-based sensors will show no significant difference 

between Greasewood from both sites. However the satellite data will show significant 

differences based on the difference in species composition between the two sites.

3. NDVI will also show an increasing pattern during the active growing period (May to 

June) and a decreasing pattern at the end of the summer (July to September) providing 

information about the growing period of each species and information about water stress 

on all monitored species at the end of the growing season.

4. NDVI values derived from ground-based sensors will be strongly correlated with plant 

measurements associated with green canopy cover and water content.

5. Linking detailed ground measurements to the NDVI-ET relationship integrated over 

the entire growing period will show that NDVI alone is not enough to accurately estimate 

ET. A quantitative relationship that includes ground biophysical and/or meteorological 

parameters and NDVI will enhance ET prediction.



6. NDVI values obtained from ground-based sensors can be scaled from single canopies 

and bare soil surfaces to an integrated satellite pixel NDVI basis within the footprint of 

the eddy flux towers using ground measurements as weighting factors.
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Figure I. False color Landsat-5 TM image (2007) showing the location of the two 
study sites in the Great Basin.
The symbol indicates the approximate location of the study site center plots (25 m 
X 25 m) where the Eddy covariance tower was installed at the Spring Valley I site 
(SVl) and at the Snake Valley I site (SNKl).



CHAPTER 2

MONITORING VEGETATION PHENOLOGICAL CYCLES IN TWO 

DIFFERENT SEMI-ARID ENVIRONMENTAL SETTINGS USING 

A GROUND-BASED NDVI SYSTEM

Introduction

An extended hydrologie drought in the Colorado River has forced many 

eommunities in this region to seek additional water resourees at greater distances. In the 

ease of Southern Nevada, water rights applications have been filed for ground water in 

basins located in East-eentral Nevada; as such, more accurate water balances at the basin 

level are needed to make wise management decisions. In 2005 a long term study was 

initiated in the Great Basin of East-central Nevada (Spring Valley, White River Valley, 

and Snake Valley) to estimate basin-wide évapotranspiration (ET). Total ET during the 

growing season (May to September) was measured using Eddy covarianee method and 

eorrelated with remotely sensed Landsat-5 Thematic Mapper data. A number of locations 

on the valley floors (within basins) were selected as experimental sites based on gradients 

in plant eomposition, percent eover, soil type and ground water depth. Highly signifieant 

linear relationships were found between the Normalized difference vegetation index 

(NDVI) and ET when data were eombined across years (2005-2007) and across valleys 

(Devitt, unpublished data).



Current information shows that satellite-based remote sensing data has provided 

the ability to estimate and study ecosystem processes and surface energy fluxes such as 

ET over regional and global scales (Moran et al., 1989; Nagler et al., 2005b; McCabe & 

Wood, 2006). However, the limited temporal resolution of most satellite-based remote 

sensing platforms (data are acquired at a single point in time) and the relative coarse 

spatial resolution pose a potential problem in the reliability of such systems to provide 

continuous and accurate estimation of spatially distributed surface fluxes, especially in 

semi-arid regions characterized by land surface heterogeneity and incomplete vegetation 

cover. As part of our interest in interpreting the biophysical processes driving the spatial 

variation in ET-NDVI relationships, a field-based approach that allows for repeatable and 

continuous NDVI measurements at a much finer spatial and temporal scale than Landsat 

is needed.

In a semi-arid environment, although vegetation plays a critical role in the energy 

exchange between the land surface and the atmosphere via the transpiration process, it is 

accompanied by a significant amount of water loss via soil evaporation. In these regions, 

growing conditions can vary significantly based on the spatial variation in climate, water 

availability, vegetation composition and soil type. Plants are also highly responsive to 

short term and long term environmental factors and perturbations leading to temporal 

fluctuations in vegetation cover and density. Consequently, these inherent changes in 

vegetation characteristics affect the overall water balance and the spatial variation in ET- 

NDVI relationships.

Based on traditional remote sensing routines, visible and near-infrared (NIR) 

based vegetation indices (Vis) have been widely and successfully used in various ET



estimation models (Seevers & Ottmann, 1994; Szilagyi, 2002; Loukas et al., 2005;

Nagler et al., 2005a). The basis of using Vis to estimate a wide range of ecosystem 

processes is the underlying assumption shared by most of the remote sensing community, 

that the optical properties of terrestrial vegetation in the visible and NIR regions of the 

electromagnetic spectrum are key indicators of many physiological and biophysical 

processes. For instance, NDVI which is the normalized ratio of red and NIR spectral 

reflectance (NDVI = (NIR -  RED) / (NIR + RED)), is one of the most widely and 

frequently used Vis in remote sensing researeh. As sueh, the existing global NDVI data 

derived from the NOAA's Advaneed Very High Resolution Radiometer (AVHRR) and 

the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite systems provide 

routine monitoring of terrestrial ecosystems and vegetation changes (Cihlar et al., 1996; 

Justiee et al., 1998). NDVI has also been shown to be related to a number of plant 

physiologieal and biophysical parameters such as leaf area index (LAI), green vegetation 

density, biomass, ehlorophyll eontent and photosynthetie activity as well as water eontent 

and overall vegetation health (Sellers et al., 1992; Chuvieco et al., 2004; Nagler et al., 

2004).

On the other hand, it is well known that NDVI has limitations when used to 

estimate canopy structural variations and architecture because it is potentially affected by 

soil baekground and it saturates at high biomass (Huete et al., 2002; Jaekson et al., 2004) 

and at intermediate leaf area index values (Carlson & Ripley, 1997). Thus, the assoeiation 

of NDVI to greenness and ehlorophyll content of the canopy, rather than to simple 

variations in LAI or percent canopy cover, has been well doeumented (Goward et a l, 

1994; Glenn et al., 2007). Uncertainties in interpreting NDVI data also oceur in sparsely



vegetated areas like semi-arid environments. These areas are eharaeterized by open 

eanopies with signifieant eanopy baekground (leaf litter, dead branehes, shadows and 

soil), making it diffieult to isolate the green vegetation refleetanee signal from the eanopy 

baekground signal. Under sueh eonditions, it beeomes even more problematie when 

trying to interpret spatial and temporal differenees over a diverse range of vegetation 

(Huete et al., 2002). However, satellite NDVI was found to be reliable in monitoring and 

deteeting seasonal variations in land eover (Ferreira & Huete, 2004; Telesea & 

Lasaponara, 2006). Additionally, Weiss et al (2004) and Hermanee et al (2007) 

demonstrated the usefulness of NDVI time series to extraet and traek seasonal and inter

annual phenologieal behavior and ehanges of semi-arid vegetation.

The diffieulties eneountered in using large and infrequent synoptie remote sensing 

eoverage to estimate and seale surfaee water and energy fluxes has led to the emerging 

realization in the last few years for the need of more reliable ground truthing teehniques 

to provide a validation for satellite based data (Cheng et al., 2006; Claudio et al., 2006). 

An improved knowledge of the faetors eontrolling the spatial and temporal ehanges in 

plant and soil refleetanee properties often requires intensive and eontinuous field 

measurements at the eanopy seale, whieh involves using high speetral resolution sensors. 

Typieally, the use of eonventional ground-based sensors sueh as portable 

speetroradiometers is often considered impraetieal for field studies assoeiated with long

term flux measurements, mainly beeause they eannot eontinuously be applied at the same 

time aeross large spatial seales relevant to the eorresponding satellite pixel or to the flux 

tower footprint without being engineered to operate automatieally under various elimatie 

and sky eonditions.



The possibility of validating satellite data and linking them to flux tower point 

measurements was explored by Gamon et al (2006b), who lead the creation of the 

SpecNet (Spectral Network) initiative, an international network o f automated optical field 

sampling systems aimed to link gas fluxes and other key ecosystem processes to optical 

remote sensing at a comparable scale at which eddy flux towers operate. As part of the 

SpecNet group, Hilker et al (2007) developed a fully automated tower-based spectral data 

collection system designed to measure year round spectral canopy reflectance at a high 

temporal frequency in a near 360° observation area around an eddy flux tower. This 

system was established 10 m above a forest canopy to provide a real time estimation of 

changes in plant pigment concentration. Gamon et al (2006a) developed an innovative 

approach by using an automated mobile field tram system to provide transect sampling 

for whole canopies and stands at a spatial and temporal scale comparable to the flux 

tower footprint.

In this study, continuous and repeatable ground-based measurements of soil and 

vegetation NDVI were taken across two contrasting sites in the Great Basin characterized 

by having a dense and a sparse vegetation cover. This setting provided as an ideal way to 

continuously monitor and compare NDVI changes between two sites where vegetation 

growth characteristics were highly affected by soil conditions (soil texture and moisture) 

and fluctuations in meteorological parameters and species composition. The approach 

engaged herein focuses on understanding the biophysical and spectral properties of the 

main constituents of each site (bare soil and vegetation). The main objectives were to 

address a number of questions such as: how do continuous and repeatable NDVI 

measurements of bare soil and key plant species, obtained at a much finer spatial and



temporal scale than Landsat, vary between the two sites? What are the possible factors 

associated with the dynamics o f plant growth stages that may influence the spatial 

variation in NDVI during the growing season between the two sites? To what extent does 

ground-based NDVI capture subtle key features and transitions in plant and soil 

biophysical properties during the growing season not captured by the coarse spatial 

resolution of Landsat data or information that is lost in the gap between satellite 

overpasses or not fully evaluated because of cloud cover?

Materials and methods 

Description of study sites 

The study was conducted at individual sites in two Great Basin valleys (East 

central Nevada) located 34 km apart and identified as Spring Valley 1 site (SVl) 

characterized by having a sparse vegetation cover (38° 46' 32.79" N 114 ° 28' 7.65" W, 

elevation: 1761.6 m) and Snake Valley 1 site (SNKl) characterized by having a dense 

vegetation cover (38° 41' 51.98" N 114 ° 5' 19.32" W, elevation: 1684.9 m), (Figure 1). 

The climate was typically semi-arid with cold winters and hot summers. The region 

receives the majority of its precipitation during winter months but also receives summer 

rainfall (between July and September) associated with the Southwest U.S. monsoon 

season. Selection of the two study sites was based on providing a contrast in species 

composition, percent canopy cover and density o f greasewood {Sarcobatus vermiculatus) 

as well as differences in soil textural properties.

Detailed species composition identification and percent cover data were acquired 

at each site during the 2007 active growing season by manually identifying plant species



and calculating the surface area of every individual plant within 25 m x 25 m plots 

corresponding to the Landsat-5 TM pixel size. At the SVl site, the sparse vegetation 

cover consisted of a combination of greasewood {Sarcobatus vermiculatus), rabbitbrush 

{Chrysothamnus viscidiflorus), sagebrush {Artemisia tridentata) and shadscale {Atriplex 

confertifolia), with sagebrush representing the dominant species. At the SNKl site, with 

the exception of a few shrubs of shadscale, greasewood represented the dominant species.

Micrometeorological measurements 

Fully equipped Eddy covariance micrometeorological towers (Campbell 

Scientific, Logan, UT, USA) were installed within the 25 m by 25 m center plot at each 

site. Water fluxes were measured using a 3D sonic anemometer (CSAT3, Campbell 

Scientific, Logan, UT, USA) along with an open path infrared gas analyzer (IRGA- Licor 

Biosciences, Lincoln, NE, USA ) allowing for a surface energy balance approach to be 

used: R„ = G + H  + LE

where, R„, G, H  and LE are the flux densities of net radiation (REBS net radiometer), soil 

heat storage (Flukseflux soil heat-flux plates), sensible heat (CSAT3, 3-D sonic 

anemometer) and latent heat, respectively (W m'^). Post data processing of the 10 Hz data 

was accomplished using EdiRe (Clement & Moncreif, 1999). Standard corrections were 

made following the protocol outlined by AmeriFlux (Lee et al., 2004). Hourly and daily 

averaged air temperature, wind speed, relative humidity, solar radiation and precipitation 

data were acquired from automated weather stations at both monitoring sites. Potential 

évapotranspiration (ETo) was calculated using the Penman-Monteith equation (Monteith 

& Unsworth, 1990) to assess environmental evaporative demand.
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Satellite data

Terrain corrected and georectified Landsat 5 TM images were purchased from the 

U.S. Geological Survey- Earth Resources Observation and Science (USGS-EROS) Data 

Center. Acquisition dates for the 2007 growing season were; April 13, April 29, May 15, 

May 31, June 16, July 2, July 18, Aug. 3, Aug. 19, Sep. 4 and Sep. 20. The image 

processing software: Environment for Visualizing Images (ENVl), (Research Systems, 

Inc., Boulder, CO, USA) was used for image processing including calibration and 

atmospheric correction. The selected atmospheric correction method was based on the 

empirical line method (ELM) where field spectra (light, dark and medium targets) 

acquired on a single date (June 20, 2007) were resampled and used to atmospherically 

correct and normalize Landsat band 3 and band 4 for all dates. The resulting reflectance 

data were then used to calculate NDVI. At each site and for every acquisition date, NDVI 

values were extracted from the pixel representing the plot where the ground-based NDVI 

sensors were located.

Ground-based NDVI system 

Ground- based NDVI measurements were carried out using a dual channel SKR- 

1800 radiometer (Skye instruments LTD, Powys, UK) that simultaneously measures 

incident solar radiation (sensor 1) and upward reflectance (sensor 2), thus correcting for 

solar variations. The two sensors were fitted with a removable cosine-corrected diffuser 

which serves the purpose of measuring downwelling light in accordance with Lambert's 

cosine law. Thus, when taking incident light measurements, the diffuser head is left in 

place. However, for the measurements of reflected light energy, the cosine diffuser head 

can be removed or kept in place depending on the size of the area to be viewed. For

11



instance, when the diffuser cap is removed, the light acceptance of the sensor becomes 

narrow angle cone shaped with a defined 25° field of view (FOV) which is suitable for 

measuring reflectance properties of soil and vegetation surfaces. In both cases, the 

measured reflectance area can also be defined by adjusting sensor height above the 

viewed ground surface.

The SKR-1800 radiometer used in this study was customized by the manufacturer 

upon our request to acquire data in two broadband channels: channel l(red): 630-690 nm 

and channel 2 (NIR): 760-900 nm, both comparable to Landsat- 5 TM band 3 (red) and 

band 4 (NIR) bandwidth, respectively. Sensor calibration was done by the National 

Physical Laboratory, UK in 2007 prior to use. All SKR-1800 sensors were installed 

within a 25 m by 25 m plot adjacent to the center plot within the footprint of the Eddy 

flux towers.

At the SVl site, sensors (upwelling and downwelling) were mounted above the 

canopy of an individual greasewood plant with data collection beginning in January of 

2007 prior to the start of field data collection in May, whereas, at the SNKl site sensors 

were installed in the beginning of May. In all cases, sensors were mounted on horizontal 

beams attached to vertical stainless steel poles, with the downward looking sensor 

positioned above single greasewood, rabbitbrush, sagebrush canopies and a bare soil 

surface at the SVl site and above a greasewood canopy and a bare soil surface at the 

SNKl site, all representing satellite image pixel components at the larger scale. In this 

study, all cosine-corrected diffuser caps were removed from the sensors measuring 

reflected radiance. Consequently, for each plant canopy, the height of the downward 

looking sensor was adjusted based on the size of the monitored plant (Table 1). All
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horizontal beams with sensors were slightly oriented to the southwest to avoid shadow 

effects. Although the sensors were automated and required minimal attendance, periodic 

leveling checks, sensors adjustments and cleaning were made.

Table 1. NDVI sensor height and measured surface area of each ground surface.

Ground surface Sensor height 
(cm)

Ground 
resolution (m^)

Greasewood {Sarcobatus vermiculatus), (SVl) 1.71 0.43
Rabbit Brush {Chrysothamnus viscidiflorus), (SVl) 1.37 0.28
Sagebrush {Artemisia tridentata), (SVl) 0.98 0.14
Bare soil (SVl) L77 0.47
Greasewood {Sarcobatus vermiculatus), (SNKl) 1.48 0.33
Bare soil (SNKl) 0.75 0.09

All sensor serial cables were connected to a CRIOX datalogger (Campbell 

Scientific, Logan, UT, USA) mounted on the weather station at each site. The datalogger 

stored the data on a removable SM4M storage module, allowing for quick and convenient 

retrieval o f the data during routine field visits. For the purpose of data acquisition, we 

prepared a custom software program to automatically allow for real-time and continuous 

(24 hrs a day) collection of incident and reflected radiance at 1 min intervals. The output 

from each channel was in the form of current, proportional to the light falling on the 

sensor in pmol s''m'^ (Skye instruments LTD, 2007). In order to make both channels 

equally sensitive for ratio measurements (Skye instruments LTD, 2007), the output from 

each channel and each individual sensor (with the diffuser head removed) was multiplied 

by a relative sensitivity factor (Z) provided in the manufacturer’s calibration certificate.
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In a final step, all the downloaded data was processed in the lab and NDVI was 

calculated as follows:

NDVI=  -------------------------------------------

where,

X: NIRi incident reading (pmol s''m'^)

Y: Red; incident reading (pmol s''m'^)

Z: Ratio sensitivity of reflected NIR: Red 

NIRn(nA) : Reflected reading in nanoamps 

RedR(nA) : Reflected reading in nanoamps

Soil and plant measurements 

Plant biophysical and soil physical properties were acquired at both sites during 

midday hours every two weeks to coincide with Landsat overpasses. All measurements 

were taken within the 625 m  ̂plot where the NDVI sensors were installed. For all plant 

measurements, three plants per species were monitored at each site. Plant canopy 

temperature (Tc) was measured using a hand-held 39800 infrared thermometer (Cole 

Parmer Instrument Company, Vernon Hills, IL, USA). Air temperature was measured at a 

Im height near each monitored shrub and within canopy interspaces with an infrared 

thermometer (Cole Palmer Model 39800). Canopy-air temperature differentials (Tc -  Ta) 

were then calculated to normalize the data against ambient conditions and assess plant 

water status. Canopy chlorophyll content was assessed using a portable CM 1000 

chlorophyll index meter (Spectrum Technologies, Plainfield, IL, USA). Leaf xylem water
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potential (Tm) was measured with a 760 Model Pressure chamber (PMS instrument 

company, Albany, OR, USA). Leaf tissue samples were harvested from all species within 

the monitored plots and placed into pre-labeled and insulated plastic cups, sealed and 

transported to the lab where they were immediately weighed. Samples were then oven 

dried at 70 °C for 48 h to provide dry weight for tissue moisture estimation. Oven dried 

tissue samples were analyzed for total nitrogen eoneentration using the Total Kjeldahl 

Nitrogen (TKN) proeedure outlined by Isaac & Johnson, 1976.

Leaf area index (LAI), an important biophysieal variable of plant canopies is 

defined as the total one-sided area of leaf tissue per unit ground surface area (Watson, 

1947). LAI was estimated using a Deeagon AccuPAR-LP80 meter (Deeagon Devices, 

Inc., Pullman, WA, USA). LAI values were generated by combining sensor 

measurements taken above and below the eanopies. LAI in this study was monitored to 

assess the variations in eanopy eover of eaeh speeies at various phenologieal stages 

during the growing season to determine how these variations might influence NDVI 

measurements based on the intercepted light energy associated with leaf area.

Surfaee soil water content was estimated using an SM200 soil moisture sensor 

(Delta T-Deviees, Cambridge, UK). Time domain reflectometry (TDR) probes (6050X1, 

Soil moisture equipment CORP., Goleta, CA, USA) were used to assess soil water 

content at depths of 15 em, 45 cm, 75 cm and 105 cm (SVl only).

All statistical analyses were based on deseriptive statistics and on simple linear 

and multiple linear regression teehniques using SigmaStat version 3.1 (SPSS Ine, 

Chieago, IL, USA). In this paper, all correlations were tested for signifieanee at f-values 

< 0.05. Baekward stepwise regression analysis was also performed to determine whieh
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plant and/or soil parameters could account for the greatest amount of variation in 

measured NDVI values. In all cases, prediction equations were accepted only if the 

variance inflation factor (VIF) of individual predictors was <2 and the %]VIFs for all 

predictors was < 1 0 .

Plant/soil parameters and ground-based NDVI data from the same dates of 

Landsat overpasses were detested for possible correlations using linear regressions. 

Results were considered to be statistically significant when the P-value < 0.05. The 

observed difference in ground-based NDVI time series between the monitored plant 

species and the two soil data across the two sites were investigated using the t-test to 

determine whether the calculated means were statistically different.

In order to obtain the best prediction equation of ground-based NDVI between the 

two sites, all soil and plant variables were included in a set of multiple regression 

analyses. Backward regression analysis was performed to eliminate non-significant 

independent variables that did not correlate well with NDVI. Linear regression analysis 

was also conducted to determine which of the soil and/or plant parameters could account 

for the greatest amount of variation in NDVI. Results of each analysis were used to 

further check for autocorrelation and multicollinearity problems.

Coefficient of determinations (/^) were used to explain the variability in a given 

parameter for all predictive regression equations. While correlation coefficients (r) were 

used to report the degree of correlation between two variables.
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Results

Comparing vegetation NDVI trends between the two sites 

To better understand the spatial and temporal patterns of phonological stages, 

average midday ground-based NDVI values (11:30 to 13:30 h) were calculated from 

daily data collected at two experimental sites during various monitoring periods in 2007 

(Figure 2-1, 2-2 and 2-3). The temporal average midday pattern of NDVI for a single 

greasewood plant at the SVl site was monitored for a 316 day period from January 19 to 

November 30, 2007 (Figure 2-1). This pattern reflected ongoing physiological and 

physical canopy changes, leading to five clear phases of growth. Phase (I) depicted a 

dormancy period prior to and after the active growth period associated with complete 

defoliation during the winter months. Phase (II) was associated with a rapid increase in 

NDVI values from 0.18 to 0.49 during the period from April 3 to June 6 , indicating an 

active growth period facilitated by favorable growing conditions causing NDVI to reach 

peak values (0.48 to 0.50) towards the end of this phase. During phase (III), NDVI values 

remained quite stable, although they showed a slight decline towards the end of June and 

beginning of July depicting the first signs of the plant response to the summer dry period. 

However, a sharp increase in NDVI values occurred shortly thereafter, leading to a 

second prominent peak. This response occurred immediately after the first significant 

summer rainfall pulse on July 11 and continued throughout subsequent rain pulses on 

July 16, July 23, August 1 and August 2. In the remaining phases (IV and V), NDVI 

showed a gradual decline from 0.42 to 0.20. The trend in Phase (IV) was attributed to 

water stress response during the dry summer period associated with depletion of surface 

soil water and loss of canopy cover. Finally, phase (V) signified the end of the growing
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season associated with minimal physiological activity and leaf senescence with the 

exposure of background soil surface. The occasional “bumps” in NDVI values during 

these two final phases were associated with summer rainfall between August and 

September (Figure 2-1).
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Figure 2-1. Time series of average midday (1 l:30-13:30h) NDVI values of a single 
greasewood plant at the Spring Valley 1 site.
Data were acquired for the period from January 19 to November 30, 2007.
1: dormancy phase (January 19-April 2); 11; active growth and canopy development 
phase (April 3-June 6 ); III: full canopy development and stable physiological status 
phase (June 7-August 2); IV: water limitation and stress response phase (August 3- 
September 26); V: leaf senescence phase (September 27-October 22); I: dormancy 
phase (October 23-November 30).

A full NDVI time series response for the greasewood plant at the SNKl site was not 

acquired, due to a delay in the sensor installation occurring in May 2007 and because of
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field problems eneountered later in the season (October) associated with damage to serial 

cables by rabbits/rodents. Comparison of greasewood NDVI values at the SVI site and 

the SNKl site are shown in Figure 2-2 for the experimental period from May to 

September. In both cases, NDVI exhibited higher values during late spring and early 

summer (May to July) and lower values in mid-summer which continued to the end of 

September. The greasewood NDVI values from the SNKl site were 1.3 to 1.8 fold higher 

than the greasewood NDVI values from the SV1 site during the period from May 5 to 

June 11. However, NDVI values were significantly higher (between 1.1 and 1.4 fold) at 

the SVl site compared to the SNKl site during the summer dry period between early 

August and late September. At the SNKl site, NDVI values showed a very pronounced 

decline fi-om maximum values of 0.60 and 0.68 during the month of May to 0.38 at the 

beginning of August to 0.14 by the end of September. During the exact same period, 

NDVI values measured at the SVl site, showed little to no apparent decline from 

maximum values of 0.40 and 0.48 during the month of May to 0.42 at the beginning of 

August followed by a gradual decline reaching a minimum value of 0.27 by the end of 

September.

Based on field observations, the differences in NDVI values for the same species 

from the two different sites can be attributed in part to an early green up (phase II) of 

greasewood plants at the SNKl site, followed by an earlier entry into the final stages of 

seneseenee. In general, the two NDVI curves (Figure 2-2) display similar shapes during 

the experimental period (May-September) with different daily NDVI values, reflecting 

site specific forces (soil moisture, nutrient availability, rainfall and environmental 

demand) controlling growth. However, calculating the area under the curve as an
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indication of an integrated total revealed that despite the decline in greasewood NDVI at 

SNKl to lower values over the last two months of August and September, the earlier 

phase led to higher integrated totals (65.5 for SNKl vs. 59.3 for SVl).
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Figure 2-2. Time series of average midday (1 l:30-13:30h) NDVI values of a 
single greasewood plant at Spring Valley 1 site and at Snake Valley 1 site.
Data were acquired during the experimental period from May 5 to September 30, 
2007. The area under the curve represents an integrated greasewood growth total 
of 59.31 for the Spring Valley 1 site and 65.47 for the Snake Valley 1 site.

A comparison of NDVI between sagebrush and rabbitbrush for the period from 

May to November revealed four distinct phonological phases for sagebrush and five 

distinct phases for rabbitbrush (Figure 2-3). Sagebrush NDVI values were between 1.2 

and 1.4 fold higher than rabbitbrush during the spring period (May to early-Jime)
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represented here as phase (I). During phase (II) sagebrush NDVI showed a gradual 

decline from 0.39 to 0.28 from June 5 to July 10 indicating a downward adjustment 

entering the summer period. In the case of rabbitbrush, phase (II) was relatively shorter 

than sagebrush (June 15 to July 2) but indicated the same type of downward adjustment 

prior to the peak summer period. During this shorter time period, rabbitbrush NDVI 

values declined from 0.36 to 0.27. Phase (III) was a period associated with relatively 

unchanging NDVI values for both sagebrush and rabbitbrush, ranging between 0.27 and 

0.29 (July 3/11-October 10) except for the few peaks which occurred mainly in July 

following rainfall events. It is worth noting that rabbitbrush produced bright yellow 

flowers (from August through October) causing reflectance in the red regions of the 

electromagnetic spectrum to increase leading to lower NDVI values. However, in the 

remaining period (early-October and late-November) depicted as phase (IV), sagebrush 

which is an evergreen plant, revealed a very slow decline in NDVI values, maintaining 

significantly higher values (-0.24) during this early winter period. Whereas, in phase 

(IV), rabbitbrush NDVI continued to show a steady and clear decline to reach a value of 

0.13 by mid November indicating a further downward adjustment as the plants entered 

early winter. Contrary to sagebrush, the NDVI time-series for rabbitbrush revealed one 

additional phonological stage (V) starting around mid-November. This stage had low and 

relatively unchanging NDVI values (-0.12) associated with the plants entering a period 

of full senescence (Figure 2-3).

The calculated area under the curve for sagebrush and rabbitbrush for the 

experimental period between May and September (same time period reported for
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greasewood) produced cumulative NDVI values of 44.8 and 41.0, respectively (data not 

shown) which were significantly lower than that reported for greasewood (P<0 .0 0 1 ).
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Figure 2-3. Time series of average midday (11:30-13;30h) NDVI values of a single 
sagebrush plant and a single rabbitbrush plant at Spring Valley 1 site.
Data were acquired from May 5 to November 30, 2007.1: active growth and canopy 
development (May 5-June 4 for sagebrush) and (May 5-June 14 for rabbitbrush);
II: downward adjustment entering summer period (June 5-July 10 for sagebrush) and 
(June 15-July 2 for rabbitbrush); 111: stable physiological status during summer period 
(July 11-October 7 for sagebrush) and (July 3-October 7 for rabbitbrush);
IV: downward adjustment entering winter period (October 8 -November 30 for 
sagebrush) and (October 8 -November 4 for rabbitbrush); V: leaf senescence phase 
(November 5-November 30 for rabbitbrush).
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Comparing soil NDVI trends between the two sites 

Bare soil produced very low NDVI values ranging from less than 0.01 to 0.12 

(Figure 2-4). There was a small but significant (F*<0.001) difference in NDVI values 

between the two undisturbed soil surfaces observed for the entire experimental period. 

The NDVI soil values were significantly lower than those observed with the different 

plant species as previously described (Figure 2-1, 2-2 and 2-3). NDVI values were lower 

for the loamy sand soil (SVl site) than for the loamy soil (SNKl site) indicating that 

spectral reflectance properties of soils vary based on their surface characteristics such as 

texture (85.2% sand at SVl vs. 42.6% sand at SNKl) and color (SVl lOYR 7/2 Light 

Grey, SNKl lOYR 6/3 Pale Brown). NDVI values showed some very pronounced peaks 

with different magnitudes throughout the experimental period associated with rainfall 

events, especially those that occurred on the same date at the two sites; June 5, July 11,

16 and 23; August 1, 2, 16, and 26 and on September 22 (Figure 2-4). Most of the NDVI 

peaks at the SVl site were either smaller or less pronounced than those observed at the 

SNKl site, except during the period of September 22, when higher rainfall amounts 

(24.89 mm day “') were recorded at the SVl site. The soil NDVI peaks from the SNKl 

site, usually lasted for a longer period of time following a rainfall event, while the NDVI 

peaks at the SVl site typically disappeared after only a day or two. These differences in 

NDVI values were also due to the differences in spectral reflectance properties between 

dry and wet soils, with wet soils having lower visible and NIR reflectance than dry soils.
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Figure 2-4. Time series of average midday (11:30-13:30h) NDVI values of a bare 
soil surface at Spring Valley 1 site and at Snake Valley 1 site.
Data were acquired during the experimental period from May 5 to September 30, 
2007. Average daily rainfall data acquired from a weather station at the two sites 
are illustrated for the same experimental period.

Correlations between ground-based NDVI 

and soil-plant measurements 

Possible linear and curvilinear relationships found between the ground-based 

calculated NDVI and the plant physiological and biophysical parameters measured during 

this study are illustrated in Figure 2-5. The correlations between greasewood NDVI at the 

SNKl site with plant parameters were higher than those demonstrated for the SVl site, 

except for tissue nitrogen concentration (TN). At the SNKl site, greasewood NDVI 

showed a very strong correlation with the chlorophyll index {r -  0.97, P < 0.001),
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(Figure 2-5A) and a significant relationship with TN (r = 0.67, P < 0.001), (Figure 2-5B). 

In both cases, the relationship was curvilinear suggesting that NDVI saturated (~ 0.67) at 

canopy chlorophyll index values higher than 178 and TN higher than 3 % (NDVI ~ 0.56). 

Greasewood NDVI from the SV1 site did not show the same saturation effect or the same 

curvilinear relationships, as greasewood canopies were not as green (field observations) 

at the SVl site compared to the SNKl site. Chlorophyll index highly correlated with 

NDVI (r: 0.89, P < 0.001) (Figure 2-5E) while TN showed a moderate correlation with 

the same variable (r: 0.69, P < 0.001), (Figure 2-5F) at the SVl site.

A strong correlation existed between NDVI and leaf xylem water potential (H'o,) at 

the SNKl site (r = 0.93, P < 0.001) with NDVI values declining from 0.67 to 0.25 as Tm 

declined from -3 MPa to -4.9 MPa (Figure 2-5C). However, at the SVl site, a very poor 

correlation was found between NDVI and 'Pg, (r = 0.32) for greasewood (Figure 2-5G). 

When greasewood LAI was correlated with NDVI, the linear regression yielded an 

excellent correlation at the SNKl site (r = 0.98, P < 0.001), (Figure 2-5D) but only a 

moderate correlation at the SVl site (r = 0.73, P < 0.001), (Figure 2-5H). However, it 

should be noted that the LAI data set was small, representing only the later phases of 

growth (July-September).

When the relationships between plant parameters and NDVI were investigated for 

sagebrush and rabbitbrush at the SVl site, sagebrush NDVI correlations were always 

higher than rabbitbrush (Figure 2-5) except for LAI (r of 0.96 for rabbitbrush and r: 0.77 

for sagebrush; Figure 2-5H). However, estimating LAI was problematic in the case of 

rabbitbrush due to its canopy architecture characterized by erect, dense branching that 

made it difficult to obtain accurate leaf area index estimations.
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Figure 2-5. Comparison of plant measurements relationships with SKR-1800 NDVI 
values between the Snake Valley 1 site (left panel) and the Spring Valley 1 site (right 
panel).
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NDVI and tissue moisture content were significantly correlated for sagebrush (r = 

0.93, P<0.001) and rabbitbrush (r = 0.73, P<0.001). Whereas, a non significant 

correlation was observed between TM and greasewood NDVI {r < 0.35) at both sites 

(data not shown). At the SVl site and the SNKl site, greasewood TM values remained 

quite stable for the entire experimental period (May-September), (Figure 2-6). However, 

sagebrush and rabbitbrush TM values showed a consistent decline over time from values 

as high as 0.69% at the beginning of May to values as low as 0.45% and 0.35%, 

respectively by late September. Greasewood, a halophyte has succulent leaves, whereas 

the two other species are glycophytes with non-succulent leaves. Hence, greasewood TM 

values remained high and changed little over time (-0.75%). During the same period, 

greasewood NDVI values showed a steady decline between May and September (Figure 

2-1, 2-2). Whereas, for sagebrush and rabbitbrush, TM and NDVI values followed the 

same temporal trend (Figure 2-3) resulting in significant correlations (P<0.001).

In all cases, no significant correlations were found between NDVI and Canopy-air 

temperature differentials Tc -  Ta as well as between NDVI and surface soil water content. 

TDK measurements did not show any clear or significant change in soil moisture content 

at various depths over time (data not shown). However, at the shallow surface (5 cm), soil 

moisture content responded at both sites to rainfall events.

Relationship between ETg^and ground-based NDVI 

Total cumulative ETa during the experimental period (May 5 to September 30) 

was 34.9 cm for the SNKl site and 11.0 cm for the SVl site (Table 2). This significant 

difference in ET was associated with significant differences in percent vegetation cover.
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Figure 2-6. Leaf moisture content for greasewood, sagebrush and rabbitbrush.

Table 2. Major soil-plant and atmospheric characteristics of Spring Valley 1 site 
(SVl) and Snake Valley 1 site (SNKl).

Site* ETo (cm) Rainfall
(cm) ETa (cm) Ground water 

depth (m)
Surface soil texture 
sand/silt/clay (%)

Canopy percent 
cover (%)'

SVl 79.5 6.0 11.0 4.7 (SD:4.66 + 
0.05)

85.2/9/5.7 19.7

SNKl 84.8 6.2 34.9 5.0 (SD:5.0± 
0.04)

42.6/34.9/23.1 54.9

ETo.- potential évapotranspiration; ETa-' actual évapotranspiration.
ETa,ETa ond rainfall are cumulative totals, whereas, % cover is a one-time estimate taken during the early 
summer period.
*Data acquired during the experimental period from  May 5 to September 30, 2007 
"^Percent cover data are from  the center plot where the eddy flux  towers are located.
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At both sites, the occasional maximum ET values were associated with rainfall 

events. As shown in Figure 2-7, ET values at the SVl site remained stable and low, 

showing only minimal fluctuations over time, inferring limited soil evaporation 

associated with the high sand content in the profile and low transpiration associated with 

the sparse vegetation at the site. However, in the case of the SNKl site, ET values were 

consistently higher than the SVl site showing a distinct separation between late-spring 

and early-summer (higher values) and late-summer (lower values). ET showed a distinct 

decline starting from the beginning of August, corresponding to a similar trend shown by 

greasewood NDVI values (SNKl: r = 0.57, P < 0.001). Although, it is difficult to 

compare or link eddy covariance ET flux measurements to a single and localized optical 

measurement from an individual canopy within the tower footprint, it was possible in this 

particular case to identify some similarities. The relationship between ET and NDVI at 

one site and not the other site was associated with differences in the vegetative surfaces, 

where greasewood represented the majority of the canopy cover at SNKl but only 3% of 

the canopy cover at SV 1.

Comparing ground-based NDVI and satellite-NDVI 

For both sites, satellite NDVI values were lower than the ground-based NDVI 

values because the satellite synoptic view covered a surface area of 625 m  ̂which 

represented the integrated optical properties of all surface components. Whereas, the 

ground-based NDVI values represented a single point measurement within an individual 

canopy or a bare soil surface. Satellite NDVI values were higher at the SNKl site 

compared to the SVl site (Figure 2-8A). At the SVl site, Landsat-NDVI values more 

closely approximated the ground-based NDVI values for bare soil indicating that the
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percentage of exposed soil surfaces at this site ( >80%) was the main driving force behind 

the low NDVI values (Figure 2-8B). However, at the SNKl site Landsat-NDVI values 

revealed a subtle decline over time associated with a steep decline in greasewood NDVI 

values, indicating a more significant contribution from the high percentage of plant 

canopies at this site (54.9%) compared to the SVl site (19.7%).
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Figure 2-7. Average midday (1 l:30-13;30h) NDVI values and average daily ETa 
values between May 5 and September 30, 2007.
Average midday NDVI values are both for a single greasewood plant from the 
Snake Valley 1 site (closed squares) and from the Spring Valley 1 site (open 
squares). Average daily ETa values are from Snake Valley 1 site (closed circles) 
and from the Spring Valley 1 site (open circles).
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Figure 2-8. Comparison of ground-based NDVI values and Landsat-NDVI 
acquired during satellite overpasses.
Average midday ground-based NDVI values are for (A): greasewood and bare 
soil (closed symbols) from the Snake Valley 1 site and for (B): greasewood, 
sagebrush, rabbitbrush and bare soil (open symbols) from the Spring Valley 1 site. 
Landsat-NDVI values (closed inverted triangle) are from (A): Snake Valley 1 site 
and (open inverted triangle) (B): Spring Valley 1 site.
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Discussion

The ability to assess NDVI at greater frequency and at finer spatial scales than 

satellite imagery is needed to develop stronger more robust data sets for further validation 

of satellite NDVI, vegetation growth and ET relationships. In this study a ground-based 

NDVI system was used to provide long term monitoring of phonological development 

and soil surface characteristics on a daily timescale at two different semi-arid 

environment settings, mainly characterized by having a dense versus sparse vegetation 

cover. NDVI data retrieved at the sparse vegetation site (SVl site) during the period from 

January to November, 2007 provided detailed temporal information on the entire 

phenological cycle of greasewood allowing for clear distinction between different 

phenological stages and for clear identification of the length and the pattern of the active 

growing season (early April to late September). The seasonal pattern of NDVI phenology 

is somewhat similar to the one observed by Huemmrich et al (1999) using radiation 

sensors mounted on flux towers to measure daily NDVI above the canopies of a boreal 

forest.

The temporal differences in greasewood NDVI values between the SV 1 and the 

SNKl sites during the experimental period (May-September) indicated the ability of 

NDVI to distinguish between the response of the same species across space and over time 

based on the difference in the existing growing conditions at each site. The comparison of 

the NDVI time series indicated that SNKl greasewood NDVI values were significantly 

higher (P<0.001) than SVl greasewood NDVI values in the spring and early summer 

period during the active growth and canopy development phase and significantly lower 

(P<0 .0 0 1 ) during the summer dry period associated with water limitations, indicating the
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impact of water availability on the growth and development of the same species. In this 

context, the discrepancy in the timing of greasewood spring green-up (two weeks delay at 

SVl) and early summer NDVI peak values between the two sites may be attributed to a 

favorable response of greasewood plants at the SNKl site to greater soil moisture from 

storage after winter rainfall. Availability of this soil moisture early in the growing period 

associated with lower atmospheric demand would be expected to support faster and 

greater growth.

The edaphic data gathered during this study (Table 2) indicated the possible impact of 

soil texture variation on the growth characteristics of greasewood between the two sites. 

The high percentage of sand (>85%) in the soil profile at SVl would lead to higher 

infiltration rates and to lower moisture holding capacity compared to the loamy soil at the 

SNKl site. However, surface soil moisture measurements and tissue moisture content did 

not provide any clear indication of water stress during the summer dry down period as 

indicated by the steep decline in NDVI values, especially for the greasewood plant from 

the SNKl site, which may partly be explained by the succulent morphology of 

greasewood leaves associated with its halophytic nature. On the other hand, even though 

greasewood is a phreatophyte and is capable of accessing ground water, the fact that leaf 

xylem water potentials declined below -5.0 MPa would suggest that ground water 

extraction was not great enough to offset summer stress. The results would suggest that 

greasewood at both sites relied more on the availability of surface soil moisture from 

winter rain and the occasional summer rainfall pulses (facultative phreatophyte). The 

depth of the water table at both sites was similar and changed little over the growing 

season.
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NDVI time series of sagebrush and rabbitbrush from the SV I site allowed for a clear 

distinction between the two species based on the difference in the peak and magnitude of 

the spring early-summer green-up phase (May- early June) and the rate and slope of the 

downward early winter adjustment phase (October-November). Such a distinction is not 

possible with satellite data or even with full range hyperspectral measurements (visible to 

NIR) especially when taken at one time or at different time intervals that do not coincide 

with key phenological changes during the growing season. The ability of NDVI to 

distinguish between different species is in accordance with the finding of Claudio et al 

(2006) for point measurements taken at a single time within the same area. Comparison 

of NDVI time series between greasewood, sagebrush and rabbitbrush from the same site 

(SVl) also allowed for retrieval of key time periods during the growing season when the 

NDVI time series exhibited very distinct patterns for each vegetation type. These key 

time periods were represented by the early green up period (May-June) with greasewood 

having higher NDVI values (Figure 2-1) followed by a green up period for sagebrush and 

then rabbitbrush (Figure 2-3). Additionally, the late summer dry down period 

(September-November), referred to as phase (IV) and phase (V) in this study, also 

represented key time periods with sagebrush having higher NDVI values and a lower 

slope followed by greasewood and then rabbitbrush both with lower NDVI values and 

steeper slopes.

Native desert shrub species in the Great basin have developed multiple strategies 

to cope with their environment. In this aspect, many species showed a great deal of 

variation in their rooting depths, phenology and response to drought stress (Hacke et al., 

2000). Greasewood, sagebrush and rabbitbrush are found to exhibit interspecific and
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intraspecific variation in water stress (Donovan & Ehleringer, 1994). Hacke et al (2000) 

classified rabbitbrush (C3 photosynthetic pathway) under a “summer green” functional 

group with all shruhs under this category having shallow root system (< 2.5 m) and are 

ahle to sustain summer drought and maintain leaf area. However, rahhithrush exhibits 

considerable leaf diehack in July and August (Sperry & Hacke, 2002). Greasewood 

which is a C3 deciduous shrub, very tolerant to salt and alkali soils, has high root density 

close to the surface and large tap roots capable of reaching ground water up to 5.0 m 

(Donovan et a i, 1996). Greasewood also maintains high photosynthetic rates through the 

summer period, flower in mid-late summer and senesce in late fall (Donovan et a i,

1996). These characteristics related to phenology were also documented in our study.

Snyder et al (2004) found that in arid and semi-arid habitats summer rain pulses 

did not affect canopy growth of many desert species including greasewood and 

rahhithrush. In our study, NDVI values showed an increase following rain event, 

indicating that the plants used summer water to improve plant water status and 

chlorophyll content as a short term physiological response that may not be connected to 

growth as this characteristic was not monitored.

Sagebrush (C3 photosynthetic pathway) is known to he the dominant shrub 

species in the Great Basin capable of coping with its driest summers and coldest winters, 

and remains evergreen (Kolh & Sperry, 1999). In addition to being an evergreen shrub, 

sagebrush is known to have a semi-drought deciduous characteristic. In this case, the 

plant produces large ephemeral leaves on the elongating shoots during the spring period 

and abscises them during the summer dry period (Miller & Shultz, 1987). During the dry 

summer periods, sagebrush plants use hydraulic lift to transport water through their root
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system from deep to shallower soil layers to maintain transpiration (Donovan & 

Ehleringer, 1994). Hydraulic lift in sagebrush is usually coupled with maintaining 

phosphorus and nitrogen uptake, enabling the plant to continue nutrient uptake under low 

soil water potentials (Matzner & Richards, 1996). Sagebrush roots were found to be more 

vulnerable to cavitation than the stems during summer drought (Kolb & Sperry, 1999; 

Sperry & Hacke, 2002). However, sagebrush plants were found to benefit from water 

stored following summer rainfall pulses or over-winter recharge through uniform 

distribution of this water in the soil column by roots (Ryel et al., 2004) resulting in plant 

physiological activities being maintained during drought periods.

NDVI time series analysis captured consistent phenological patterns for the different 

vegetation types, characterized by peak NDVI values during spring and the early summer 

period. This observation is in agreement with satellite observed NDVI peaks reported by 

Weiss et al (2004) for different semi-arid vegetation communities in New Mexico. The 

pronounced decline in NDVI values observed for all species during the late summer 

period associated with high temperatures and high atmospheric demand as well as 

depleted surface soil water indicated a response to water stress and drought conditions. 

Although NDVI is primarily an indicator of health and greenness and is more affected by 

loss of chlorophyll pigment and canopy color changes of drying plants, this does not 

exclude its relationship with plant water status, which has been reported in previous 

remote sensing studies (Penuelas et al., 1997; Claudio et al., 2006). During the summer 

period, all vegetation at both sites showed a dynamic response to rainfall pulses translated 

into increasing NDVI values following these rainfall events. Based on past studies, the 

apparent response to summer precipitation is a common feature for vegetation in arid and
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semi-arid environments (Weiss et al., 2004) indicating that this type of vegetation is 

highly sensitive to the temporal fluctuations in climatic conditions during its growing 

season. Additionally, not only did the time series of NDVI track the response to rainfall 

events during the summer period, but also showed a time lag in the responsiveness of 

each species, which is in agreement with previous work done by Schmidt & Kamieli 

(2000) to assess the seasonal variability of semi-arid vegetation using AVHRR-NDVI.

Soil NDVI time series produced a clear distinction between the loamy soil (SNKl 

site) and the loamy sand soil (SVl site), indicating the ability of NDVI to distinguish 

between various desert soils based on color and wetness (Figure 2-4). NDVI captured the 

difference in surface moisture properties between the two soil types throughout the 

growing season and how they responded to summer rainfall pulses. The consistent lower 

NDVI values for the loamy sand soil especially indicated that soil moisture was virtually 

absent at the surface layers because it quickly infiltrated to deeper horizons following 

rainfall, causing the soil to dry out more rapidly through the process of redistribution and 

evaporation. Conversely, the loamy soil at the SNKl site held moisture at the surface, 

maintaining higher moisture contents in the top layers for a longer period following 

precipitation, as reflected in the soil NDVI values (Figure 2-4). The ability of NDVI to 

distinguish between different vegetation and soil types provides a solid rationale for using 

this vegetative index to help partition semi-arid landscapes into vegetation and bare soil 

to monitor such parameters as growth, stress and surface energy fluxes.

Samson (1993) suggested that the shape and the magnitude of the seasonal NDVI 

curve can be used to identify the type of vegetation cover. This may hold true for dense 

forested areas with specific types of deciduous or evergreen trees, making it easier to
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distinguish between unchanging NDVI values for evergreen trees versus changing NDVI 

values for deciduous trees, especially between distinct phases of green-up and senescence. 

However, applying such an analogy to semi-arid regions characterized by a high degree 

of surface heterogeneity can be problematic. Thus, further validation steps in the form of 

long term monitoring studies are needed to establish an acceptable degree of consistency 

with regard to the temporal pattern of NDVI time series for each species. In this context, 

the calculated area under the curve generated a single value for each NDVI time series 

curve but did not provide any information with regard to differences in phenological 

stages or type of fluctuations that occur throughout the season in response to climatic 

conditions. The value of having the integral of the NDVI time series curve can only be 

appreciated by developing long term monitoring studies and retaining such information 

over time for each species.

Most NDVI time series studies reported in the literature have been mainly based on 

monitoring the seasonal and inter-annual patterns of land cover type using an AVHRR 

sensor to track changes in phenology (Weiss et al., 2004; Hermance et al., 2007). Such 

studies used weekly or biweekly composited AVHRR-NDVI over several years.

Although the reported results indicated the reliability of using AVHRR derived NDVI 

time series to observe seasonal and annual trends in vegetation cover, it is clear that there 

are numerous difficulties associated with using AVHRR-NDVI to provide continuous 

and accurate analysis of plant phenology, especially within environmental settings where 

soil and land characteristics are the major driving forces influencing the NDVI values 

generated at the pixel level. Some of these problems were reported by Huemmrich et al 

(1999) and included cloud cover contamination, coarse temporal resolution (especially
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when the data are not acquired daily) and coarse spatial resolution ( 1  km x 1 km) making 

it difficult to compare AVHRR data with field observations. The ground-based NDVI 

sensor we used in this study overcomes most of the problems associated with the coarse 

temporal and spatial resolution of satellite systems allowing for daily monitoring of 

vegetation and soil characteristics at high resolution.

Landsat images provided NDVI values on a per pixel basis (25 m x 25 m). Our data 

showed that NDVI values were higher at the SNKl site than at the SVI site (Figure 2-8) 

due to the difference in percent vegetation cover between the two sites thus indicating the 

influence of the reflectance fi-om bare soil surfaces on the integrated NDVI value. 

However, satellite data did not provide any potential discrimination between soil and 

vegetation types or characteristics that differentiate the two sites. Furthermore, the subtle 

changes in the optical properties of surface soil and vegetation (as they responded to 

rainfall events) observed with the ground-based NDVI system throughout the growing 

season were not apparent in the coarse spatial and temporal resolution of the satellite 

data. This was especially true for the different phases of vegetative growth observed 

between the two sites and within the SVl site. Ground-based NDVI systems are a more 

robust tool that can be used to monitor and track the spatial and temporal variability of 

species composition, phenology and growing characteristics with greater detail, not 

possible with satellite-based NDVI systems. However, challenges do exist with scaling 

such data.

The significant correlations between NDVI and plant parameters measured in this 

study indicate the utility of Vis to predict and relate to many physiological processes over 

time (Figure 2-5) especially to chlorophyll index indicating the tight relationship between
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NDVI and chlorophyll content as reported by Baghzouz et al (2007). The difference in 

the correlation of greasewood NDVI and plant parameters between the SV 1 site and the 

SNKl site shows that these types of relationship can be site specific and may be good 

indicators o f the existing growing conditions that differentiate sites on a spatial scale.

At the SNKl site, the difference between the green-up and the dry down period of 

greasewood as demonstrated with NDVI, was shown to be somewhat sensitive to changes 

in évapotranspiration on a daily basis (Figure 2-7) despite the difference in scale between 

the two measurements (single canopy vs. flux tower footprint). This finding can be 

explained in part by the uniformity of the SNKl site in terms of species composition (one 

single dominant species) and the high percentage of vegetation cover (>54%). However, 

at the SV 1 site such a trend did not exist, suggesting that in areas with sparse vegetation 

and multiple species, changes in daily NDVI of one species will not adequately reflect 

ET on a mixed stand level basis.

The difference in growth characteristics of the same species between sites and 

between different species within the same site may explain some of the spatial 

distribution of surface fluxes associated with semi-arid environments. The magnitude of 

green-up and duration of active growth and senescence phases for the different species 

can be different fi-om one year to another based on variations in prevailing weather and 

resultant soil moisture availability. Thus, further monitoring and long term inter-annual 

observations are needed for other sites in the Great Basin that have different soil and /or 

vegetation types. As more ground-based NDVI data becomes available, it can be used to 

provide a more meaningful linkage between surface energy fluxes and remotely sensed 

observations at multiple scales, especially when data are combined across different sites
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and across multiple years. Such an approach based on long term monitoring could prove 

to be extremely valuable in predicting possible impacts of changing climatic conditions 

and ground water fluctuations on the dynamics of vegetation growth in this region.

In summary, based on the performance of the NDVI sensors in this study, this 

instrument was shown to be a powerful tool in providing unattended daily monitoring of 

soil and vegetation optical properties in two different semi-arid environmental settings. 

NDVI collected on a daily basis provided discrimination of phonological characteristics 

between different vegetation types throughout an entire growing season and was able to 

track small and subtle changes in vegetation development not possible with satellite 

imagery. The NDVI data set also allowed for detailed comparison between the two 

contrasting classes of soil texture that differentiate the sites, which we believe is an 

essential factor controlling the growing patterns between the two sites. Based on the 

findings of this study, an approach to scale NDVI from single canopies and bare soil 

surfaces to an integrated satellite pixel NDVI basis within the footprint of the eddy flux 

towers is being undertaken employing the percent cover data for each species as a 

weighting factor (Chapter 3).
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CHAPTER 3

ASSESSMENT OF GROUND NDVI METHODS AND EVAPOTRANSPIRATION 

ESTIMATION FROM SATELLITE DATA IN TWO SEMI-ARID 

GREAT BASIN SETTINGS

Introduction

The Southwestern region of the United States has limited renewable water 

resources and is experiencing an unprecedented and extended period of drought. Southern 

Nevada’s population growth has forced local water agencies to look for other alternative 

sources to move toward a more sustainable state. In 2004, the Southern Nevada Water 

Authority (SNWA) applied for water rights in East-central Nevada basins with the intent 

of building pipelines to remove and transport 222,026,760 m  ̂of groundwater per year to 

urban areas in Southern Nevada to be used for commercial, household, recreational and 

entertainment purposes (Nevada water use issues, 2006). Transferring thousands of acre 

feet of water per year from distant remote basins can come with environmental and socio

economic costs. Consequently, developing a scientifically sound approach to accurately 

estimate the hydrologie budget of these basins is needed to assess future cumulative 

impacts on the region’s environment.

Terrestrial évapotranspiration (ET) defined as the evaporation of water from soil 

surfaces and transpiration from plants (Monteith & Unsworth, 1990), is the major
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component associated with the hydrological cycle after precipitation in arid and semi-arid 

regions. Depending on the geographical location and the season, ET varies with 

prevailing meteorological conditions; especially net solar radiation, wind speed, 

precipitation and temperature. Furthermore, in agricultural lands and naturally vegetated 

areas, ET rates are also affected by topography and by land surface characteristics such as 

soil texture, soil moisture, depth of ground water, vegetation type and density. In this 

context, when water supplies are limited, accurate estimations of ET over large scales of 

agricultural and natural ecosystems are crucial for addressing water related management 

issues such as water rights and allocations, irrigation planning, management and 

distribution (Chehbouni et ah, 2008; Singh et al., 2008).

Harrold, 1969 (in Van Hylckama, 1975) estimated that 75% of annual 

precipitation in the conterminous United States is lost as évapotranspiration and this 

percentage can reach up to a 100% in arid zones. In semi arid regions where 

phreatophytes are abundant, ET is closely linked to ground water level and discharge 

(Steinwand et ah, 2006). In this regard, Goodrich et al (2000) also indicated that ground 

water recharge is highly impacted by ET in semi-arid regions, especially during periods 

o f extended drought when surface snowmelt is absent. Thus, ET is considered as the main 

component of the discharge process in hydrologically closed basins, like many found in 

the Great Basin region of East-central Nevada, where recharge is mainly from 

precipitation. On the other hand, the spatial dynamics and heterogeneity of semi-arid 

environments in terms of the variability in plant density, species composition, distribution 

and growing conditions, represent a very challenging task in studying surface energy 

fluxes like ET. This task becomes even more difficult, especially when trying to partition
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ET into soil and plant components over areas of sparse canopy cover as the relative 

contribution of these two components to ET can vary daily and seasonally (Massman & 

Ham, 1994). According to Portoghese et al (2008), part of this problem is related to the 

strong interconnections between the spatial heterogeneous nature of climate, soil 

properties and vegetation dynamics associated with semi-arid landscapes.

Until recently, ET measurements were confined to relatively small foot prints 

around meteorological stations, providing limited spatial coverage. Application of remote 

sensing technology has been shown to be the only feasible and most efficient way to 

monitor and estimate ET over regional and global scales. Over the last few decades, a 

number of studies have focused on combining remote sensing and ground-based 

meteorological measurements and weighing lysimeters to estimate ET over limited small 

areas in semi-arid regions (Jackson et al., 1983; Reginato et al., 1985; Moran et al.,

1989). In more recent years, a growing body of research has focused on using satellite- 

based remote sensing data to estimate ET over larger areas (Laymon et al., 1998; Loukas 

et al., 2005; Nagler et al., 2005a, 2005b; Batra et al., 2006; McCabe & Wood, 2006; 

Wang et al., 2007; Singh et al., 2008).

Remote sensing-based approaches used to estimate ET vary in their input criteria 

and complexity from simple statistical or semi-empirical methods to more complex 

physically-based analytical and numerical simulation models. Most of these methods 

were reviewed and evaluated by Moran & Jackson (1991), Kustas & Norman (1996), 

Courault et al. (2005) and Gowda et al. (2007), while Glenn et al. (2007) reviewed the 

progress and the current state of ET estimation research using remote sensing and ground 

measurement methods.
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Essentially, most remotely-sensed ET estimation models rely on using vegetation 

indices, with the Normalized Difference Vegetation Index (NDVI) as the most frequently 

used vegetation index. Vegetation indices have been shown to be near-linearly related to 

photosynthetically active radiation (PAR) absorbed by a plant canopy, and therefore to 

light dependent processes such as photosynthesis, which is based on light absorption by 

chlorophyll (Glenn et al., 2008). ET rates are also linked to plant photosynthetic activity 

and transpiration because carbon and moisture fluxes are largely controlled by water and 

carbon exchange at the scale of the leaf stomata (Sellers et al., 1997). In this context, 

NDVI was used to estimate ET based on the strong correlations between ET and NDVI 

that have been reported by numerous studies (Loukas et al., 2005; Nagler et al., 2005a, 

2005b, 2007; Glenn et al., 2008)

Despite the promising results obtained from using remote sensing technology in 

évapotranspiration research, often there is an apparent discrepancy between the spatial 

and/or the temporal resolution at which most of the existing satellite platforms operate 

and the practical scale at which ecosystem processes are represented (McCabe & Wood, 

2006). Such problems increase the level of uncertainty in relating remote sensing data to 

the footprint of ET towers without a certain degree of validation. In fact, flux tower 

measurements were considered as ground-truth data that can be used to validate remote 

sensing data and simplify the scaling process of plant related processes over wide areas 

(Glenn et al., 2007, 2008). However, simple and direct extrapolation o f ET measurements 

from a finer scale within the eddy flux towers footprint to the satellite coarser resolution 

scale represents a drawback for obtaining accurate ET estimations without further ground 

truth or validation data. Thus, scaling ET over broad areas and over time remains a
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challenging task mainly because of the complexity and uncertainty of obtaining a 

working model that combines related biophysical processes operating at various spatial 

and temporal scales. Some studies have used high resolution IKONOS imagery to scale 

CO2 flux measurements to 1 km^ around the flux tower (Kim et al., 2006) or a 

combination of multiple satellite sensors (McCabe & Wood, 2006) to bridge the gap 

between the ET tower flux footprint and the (Moderate Resolution Imaging 

Spectrometer) MODIS kilometer-scale. However, comparison of surface flux and 

ecosystem processes estimates from different satellite sensors showed that cross-scaling 

can become an issue due to the inconsistency in the final product of the high resolution 

and coarse resolution sensors influenced by surface heterogeneity (Cheng et al., 2006; 

McCabe & Wood, 2006).

In more recent years, the scientific community has realized the need to improve 

the accuracy and simplicity of ET-remote sensing based models to enhance our 

understanding and interpretation of satellite-data-based products. Efforts have been 

geared toward repeatable field sampling methods using automated tower-based spectral 

data collection systems like the one developed by Gamon et al (2006a) as part of the 

SpecNet (spectral network) group (Cheng et al., 2006; Claudio et al., 2006 ; Gamon et 

al., 2006b; Hilker et al., 2007). The aim of this new effort has been to accurately depict 

key ecosystem processes at a scale not usually captured by current remotely sensed 

observations.

In this study, a more intensive and long term field analysis was undertaken to 

acquire spectral information compared to previous research. The primary objective was to 

present a simplified approach for improving ET estimation and scaling NDVI based on
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the integration of various remote sensing sensors with different spectral, spatial and 

temporal resolutions to generate and compare NDVI values from sparse and dense 

vegetation settings in the Great Basin. The trend of NDVI values generated from 

hyperspectral transect measurements acquired within footprint of the eddy flux towers 

and continuous daily NDVI values generated from a ground-based NDVI system 

mounted on site-specific soil and vegetation components were examined, to provide a 

meaningful interpretation of the mixed Landsat 5 TM derived NDVI signature. The 

presence of two different sites with different species composition and density provided an 

excellent opportunity to investigate the main factors influencing ET and NDVI variations 

at various scales during the active growing season in a semi-arid environment.

Materials and methods

Studv site description 

The Great Basin is a cold desert with a total area of over 650,000 km^ located in 

the intermountain U.S. It contains over 500 N-S trending mountain ranges with elevations 

reaching to over 4,000 m (Chambers & Miller, 2004). Inputs of rivers and streams from 

the surrounding mountains supply water to over 70 basins of diverse topography 

(Chambers & Miller, 2004). The climate is characterized by warm, dry summers and cold 

winters, with most precipitation falling as snow in the winter months. The vegetation type 

and density varies with precipitation patterns, soil type and water movement, with 

vegetative growth most abundant where ground water is close to the surface (Laymon et 

uA, 1998).

51



The study was conducted during the growing season of 2007 from May to 

September in two contrasting sites in the Great Basin. The sites were selected based on 

the difference in vegetation cover, species composition and soil type (Figure 1). Spring 

Valley 1 site (SVl) was located at 38° 46' 32.79" N and 114° 28' 7.65" W, with an 

elevation of 1761.6 m above sea level. The site has a sparse vegetation cover with a 

mixture of species that include greasewood (Sarcobatus vermiculatus), rabbitbrush 

(Chrysothamnus viscidiflorus) and shadscale (Atriplex confertifolia), with the dominant 

species being big sagebrush (Artemisia tridentata). Snake Valley 1 site (SNKl) was 

located at 38° 4T 51.98" N and 114 ° 5' 19.32" W, with elevation of 1684.9 m above sea 

level. The SNKl site has a dense and uniform phreatophytic cover dominated by 

Sarcobatus vermiculatus. Soil texture analyzed prior to the beginning of the study 

indicated that the SVl site at the surface was a loamy sand (85.2% sand), while the SNKl 

site at the surface was classified as a loamy soil with smaller amounts of sand (42.6%) 

and higher amounts of silt (34.9% vs. 9%) and clay (23.1% vs. 5.7%) compared to the 

SVl site. In order to monitor ground water levels, a monitoring well was installed at a 

depth of 22.86 m at the SVl site and at a depth of 11.58 m at the SNKl site. Ground 

water depth measurements were recorded and monitored using a submersible HOBO 

hydrostatic transducer (Onset Computer Corp, Bourne, MA, USA) paired with a 

miniature data logger system (HOBOware Pro 2.3.1). Measurements obtained before the 

start of the study revealed a ground water depth of 4.7 m at the SVl site and 5.0 m at the 

SNKl site.
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Percent vegetation cover 

Detailed field measurements of species composition and total percent cover were 

obtained at each site during the growing season. At the SV1 site, percent cover 

measurements were acquired for the center plot and for four additional plots surrounding 

the center plot (North-South and East-West directions). Whereas, at the SNKl site, 

measurements were only obtained for two plots (center plot and an adjacent plot to the 

south) because of the uniformity of the site. Each 25 m by 25 m plot was divided into 25 

strips (25 m long and 1 m wide) and species were identified and counted along each strip 

and then totaled for the plot. At the same time, the height and diameter of every green 

and dead plant was measured and the green portion of each canopy was estimated 

visually. Canopy area was then calculated for each species based on the formula of an 

ellipsoid and total percent vegetation cover was estimated for each plot.

Micrometeorological and ET measurements 

At each site, an eddy flux tower (Campbell Scientific, Logan, UT, USA) was 

installed at a central location within measurement plots of 625 m  ̂each. Fetch in all 

directions was estimated in kilometers, easily exceeding the minimal standard of 100 

times sensor height at both locations (Rosenberg et al., 1983). 3D sonic anemometer 

(CSAT3, Campbell Scientific, Logan, UT, USA) along with an open path infrared gas 

analyzer (IRGA- Licor Biosciences, Lincoln, NE, USA) were mounted at 1 m height 

above the canopy to measure water and CO2 fluxes at each site. ET towers rely on 

measuring the vertical components of wind speed at a single point over a canopy (Glenn 

et al., 2008). The predominant wind direction changed from the north during the winter 

to the south during the summer. The 3D sonic anemometer and the IRGA were
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repositioned during early spring to point into the direction of prevailing wind to adjust for 

the seasonal change in wind direction.

All flux measurements were recorded at a sampling frequency o f lOHz and stored 

in a CR5000 data logger (Campbell Scientific). The final stage of flux analysis and 

calculations was accomplished using the EdiRe software (University o f Edinburgh, 

Scotland, UK) developed by Clement & Moncreif (1999). Standard corrections were 

made following the protocol outlined by AmeriFlux (Lee et al., 2004). Surface energy 

balance was calculated using the following equation:

R„ = G + H  + LE (1)

Where, R„ is net radiation, G is soil heat flux, LA is sensible heat flux and LE is latent heat 

flux (all units are W m'^). Net radiation was measured with a NR-LITE-L net radiometer 

(Campbell Scientific) placed 3 m above the canopy, while soil heat flux was measured 

with an HFPOISC-L soil heat plates (Campbell Scientific) placed 8 cm beneath the soil 

surface. To obtain ET, latent heat flux values were divided by the latent heat of 

vaporization of water.

In addition to eddy covariance towers, a fully automated weather station 

(Campbell Scientific) was installed at each site to measure wind speed, wind direction, 

air temperature, relative humidity, solar radiation, and precipitation data, on an hourly 

and daily basis. In order to assess the relative environmental demand during the growing 

season, potential évapotranspiration estimated from a hypothetical grass reference o f 0.12 

m height was calculated from a set of meteorological variables using the Penman- 

Monteith equation (Monteith & Unsworth, 1990).
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Remotely sensed measurements 

Landsat data

During the 2007 growing season, 11 georectified Landsat 5 TM scenes of the two 

study sites acquired at approximately 16 days interval were purchased from the U.S. 

Geological Survey-Earth Resources Observation and Science (USGS-EROS) data center. 

Acquisition dates included April 13, April 29, May 15, May 31, June 16, July 2, July 18, 

August 3, August 19, September 4 and September 20. Calibration and empirical line 

atmospheric correction method (ELM) were conducted using ENVI image processing 

software (Research Systems, Inc., Boulder, CO, USA). Reflectance data from pre- 

processed cloud free Landsat images were then used to compute NDVI using band 3 (red: 

630-690 nm) and band 4 (NIR: 760-900 nm):

NDVI = (PnIR  ~  PReii) /  (P n IR  +  P R ed) (2)

where Pmr and PRed are the spectra reflectance within the near-infrared and red band, 

respectively. Landsat-NDVI values were extracted for the center plot where the eddy flux 

towers were located (e.g., a single pixel) and from 25 pixels (25 m x 25 m each) 

surrounding the center pixel, and from 25 pixels south of the center pixel.

Ground-based NDVI measurements 

Ground- based NDVI measurements were carried out using a dual channel SKR- 

1800 radiometer (Skye instruments LTD, Powys, UK) that simultaneously measures 

incident solar radiation and upward reflectance. The SKR-1800 radiometer was 

customized by the manufacturer to acquire data in two broadband channels comparable 

with Landsat 5 TM band 3 (red) and band 4 (NIR). NDVI sensors (upwelling and 

downwelling) were mounted at the SVl site above individual plant canopies of
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greasewood, rabbitbrush, sagebrush, and above an undisturbed bare soil surface. At the 

SNKl site, the sensors were mounted above a greasewood canopy and an undisturbed 

bare soil surface. In all cases the field of view (FOV) was 25° and the height of the 

downward looking sensor was adjusted based on the size of the monitored plant so that 

the whole FOV represents only the shrub canopy. The ground-based NDVI sensors were 

installed within an adjacent 625 m^ plot east of the center plot at the SVl site and within 

an adjacent 625 m^ plot north of center plot at the SNKl site. NDVI data were acquired 

every minute on a daily basis for the entire experimental period from May to September, 

2007 and stored in a removable SM4M storage module (Campbell Scientific). All 

downloaded data were processed and NDVI was calculated based on the following 

equation (only average midday NDVI values (11:30 to 13:30 h) were used):

(3)

NDVI=  ---------------------------------------------

(Z*NIRr(,^) *Y) + (RedR(nA) *X)

where,

X: NIRi incident reading (pmol s''m'^)

F: Redi incident reading (pmol s‘'m'^)

Z: Ratio sensitivity of reflected NIR: Red 

NIRR(nA) : Reflected reading in nanoamps 

RedRfnA) : Reflected reading in nanoamps
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Transect measurements

In order to create an integrated NDVI response from ground measurements, that is 

representative of a single Landsat pixel, the feasibility of using spectral reflectance 

measurements within flux tower transects as ground truth data was tested. During the 

experimental period from May to September of 2007, hyperspectral reflectance data were 

taken within the flux tower footprint at both sites. Transects were established using a i m  

interval marked rope and set upwind to correspond with the eddy flux footprint. Spectral 

reflectance data were collected using a PP Systems Unispec hand-held spectroradiometer 

(PP Systems, Amesbury, MA, USA) which operates in the range of 310 to 1130 nm with 

a sampling interval of 1 nm and 25° FOV. Measurements were taken manually by 

walking along the transect line and recording the spectral signature of each encountered 

target on a 1 meter interval. All measurements were taken at a relatively consistent height 

by maintaining the Unispec fiber tip at shoulder height. Reflectance readings were taken 

under elear skies around solar noon (11:00-14:00 h) to coincide with the Landsat 5 TM 

acquisition time and to avoid cloud effects. Prior to every transect run, the 

spectroradiometer was calibrated and standardized using a spectralon reference panel.

Transeet measurements were taken twice during the experimental period. The first 

measurements were taken on July 2 (SVl) and on July 3 (SNKl) to coineide with peak 

vegetation growth and development. The seeond measurements were taken on September 

19 (SNKl) and on September 20 (SVl) at the end of field data eollection to coineide with 

the dry down period. On July 2 and July 3, transect sampling was conducted along a 50 m 

length in the East-West direetion and along a 50 m length in the North-South direction. 

While on September 19 and September 20, transeets were set at 25 m in a West-East
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direction and at 25 m in a North-South direction. Reflectance data measured every Im 

along each transect was resampled to Landsat-5 TM red and NIR bandwidths using an 

ENVI (Research Systems, Inc., Boulder, CO, USA) subroutine. The resulting resampled 

data was then used to calculate NDVI as in equation (2).

Weighting ground-based NDVI 

Ground-based NDVI time series measurements from individual shrubs taken with 

the SKR-1800 radiometer within a 25 m by 25 m plot were weighted over the periods of 

satellite overpasses between May and September using percent cover data of each plant 

and bare soil. Percent cover values for each species and for bare soil surfaces were 

adjusted based on the percent change in NDVI values recorded over time. In this case 

percent soil cover increased proportionally to the decrease in plant cover and NDVI. 

These adjusted percent cover areas of each species were then multiplied by the species 

NDVI values and then summed along with the bare soil fraction. The new weighted 

NDVI values were then compared with the integrated Landsat NDVI values. A predicted 

Landsat NDVI value was computed for each site using the following expressions:

NDVIsvi -  [N D V Ig w  * ( to ta l G W %  g re e n  c o v e r )  +  N D V Isb  * ( to ta l SB %  g re e n  c o v e r )  -f- 

N D V Irb  * ( to ta l RB %  g re e n  co v e r)  -f- NDVI bare soil * ( to ta l s o i l  %  c o v e r ) ]  (4)

N D V Isn ki  =  [N D V Ig w  * ( to ta l GW %  g re e n  c o v e r )  +  NDVIbaresoU * (to ta l s o i l  %  c o v e r ) ] (5)

Where N D V Ig w ,N D V Isb  , and N D V Irb  are the ground-based NDVI values of 

greasewood, sagebrush and rabbitbrush, respectively.
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Photosynthetically active radiation measurements 

A Licor LI-190SA quantum sensor (Licor Biosciences, Lincoln, NE, USA) that 

measures incident photosynthetic active radiation (PAR) in the 400 nm and 700 nm 

waveband was mounted at each site to collect data every minute to a removable SM4M 

storage module (Campbell Scientific).

Data processing and statistical analysis 

Soil-plant-atmospheric parameters were monitored during the course of the study 

to assess the relationship between ET and a satellite derived vegetation index. In 

particular, to determine to what extent these variables could be used to enhance ET- 

NDVI relationships within heterogeneous semi-arid environmental settings. Net radiation 

(Rn), air temperature (Ta) and PAR data measured during the process of this study were 

plotted against ET and NDVI over time to test for significant correlations and similar 

patterns. Multiple linear and stepwise regression analyses were used to account for the 

greatest amount of variation in the prediction of ET using SigmaStat version 3.1 (SPSS 

Inc, Chicago, IL, USA). Simple linear regressions were also established for each 

independent variable between and across the two experimental sites. All possible 

correlations were tested for significance at P-values <0.05 and for multicollinearity and 

autocorrelation problems. In all cases, prediction equations were accepted only if the 

variance inflation factor (VIF) of individual predictors was <2, the ^ I F s  for all 

predictors was <10 and the Durban-Watson test values were ^ .5 .
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Results 

Vegetation cover estimates 

Vegetation cover at the SVl site was sparse (total average ~ 17.5%) with 

sagebrush representing the dominant species (~ 68% of the total average vegetation 

cover) and greasewood the least dominant (~ 14% of the total average vegetation cover; 

Table 3). At the SNKl site, vegetation cover was relatively dense (total average ~ 63%) 

with greasewood representing the dominant species (~ 97% of the total average 

vegetation cover). Other species represented a very small percentage (between 0.02% and 

0.34%) of the overall species composition. In particular, annuals were encountered in 

some of the plots and not in others, as percent cover estimates were obtained over an 

extended period and the presence of annuals often coincided with the period during 

which the measurements were taken.

Transect NDVI

The SNKl site showed a higher number of vegetation spectra than soil spectra 

compared to the SV1 site, reflecting the difference in vegetation cover between the two 

sites. At the SNKl site, most of the vegetation spectra exhibited a similar shape, 

reflecting the uniform stand of greasewood (Figure 3-1 A). However, at the SVl site 

vegetation spectra exhibited different shapes, indicating a heterogeneous species 

composition (Figure 3-lB). Soil spectral curves were also clearly distinct in shape and 

magnitude between the two sites. The loamy sand soil from the SVl site showed a lower 

reflectance response in both visible and near-infrared regions of the electromagnetic 

spectrum than the loamy soil from the SNKl site.
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Table 3. Summary of percent cover data for the two study sites.

Plants ” number of plants %  cover %  of bare soil
Total %  of 
vegetation 
cover

plot 1 (SVl) Green Dead Green Dead 86.15 13.85
G W 14 3 1.6 0.2
SB 323 97 8.9 1.6
RB 55 12 0.6 0.08
plot 2 (SVl) 84.79 15.21
G W 41 6 5.3 0.4
SB 172 78 4.5 1.4
RB 113 46 1.9 0.6
plot 3 (SVl) 79.46 20.54
G W 17 4 0.8 0.05
SB 311 112 13.6 2.2
RB 330 31 3.5 0.3
plot 4 (SVl) 81.88 18.12
G W 16 1 1.02 0.02
SB 312 48 12.9 0.9
RB 361 6 3.0 0.1
center plot (SVl) 80.31 19.69
G W 25 6 2.2 0.2
SB 286 25 12.7 0.7
RB 205 4 2.9 0.06
plot 1 (SNKl) 28.89 71.11
G W 436 115 55.4 14.0
center plot (SNKl) 45.07 54.93
G W 608 84 46.7 5.9
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This difference can be attributed to various soil surface characteristics that differentiate 

the two sites such as texture (85.2% sand (SVl) vs. 42.6% sand (SNKl)), color (SVl 

lOYR 7/2 Light Grey, SNKl lOYR 6/3 Pale Brown) as well as the availability of 

moisture at the surface. Additionally, within each plot various combinations of ground 

surface constituents and backgrounds such as dead branches, shrub shadows and litter 

were also encountered along these transects. The shape of their spectral reflectance curve 

can be easily distinguished from those of traditional bare soil and individual stands of 

vegetation.

During this period of the growing season (July 2 and July 3) associated with peak 

growth, the dynamics in vegetation greenness were clearly depicted by many key regions 

of the greasewood spectral reflectance curves. In particular, very low red reflectance 

(around 680 nm), and steep red edge slopes (around 700 nm) were observed, both 

influenced by high chlorophyll absorption, and very pronounced water troughs (around 

970 nm) influenced by leaf moisture content (Figure 3-1). It is worth noting that during 

the dry-down period toward the end of the growing season (September), some of these 

spectral features either changed (red edge slope) or disappeared (water trough) in 

response to high temperatures and drought conditions (not shown).

The spatial patterns in NDVI were associated with different vegetation covers 

(sparse vs. dense) with different dominant vegetation types (Figure 3-2). While, the 

temporal patterns within sites are attributed to the variations in phenological stages 

between early July and late September driven by species type and environmental 

variables.
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Figure 3-1. Reflectance spectra taken along a 50 m transect in the east-west 
direction at Snake Valley 1 site (A) and at Spring Valley 1 site (B).
Spectra are representative of various ground surface constituents and were taken 
on July 2, 2007 (SVl) and on July 3, 2007 (SNKl).
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A larger number o f high NDVI values occurred at the SNKl site compared to 

the SVl site during early July, illustrating the effect of dense vegetation cover (~ 63%), 

(Figure 3-2A) versus sparse vegetation cover (~ 17.5%), (Figure 3-2B) on the NDVI 

values. At the SV1 site, most of the NDVI values were extremely low (<0.08), associated 

with >80% bare soil surfaces and low and heterogeneous vegetation coverage. The few 

NDVI peaks (between 0.4 and 0.64; Figure 3-2B) were mainly associated with single 

dense greasewood canopies with no bare soil or dead branches, whereas intermediate 

NDVI values (between 0.14 and 0.24) were associated with open canopies of various 

shrubs. Transects taken across both directions (north-south and east-west) at the SNKl 

site showed a great deal of homogeneity, especially in early July when green canopy 

cover was high (visual observation), confirming the uniformity of species composition 

and density at this site.

During the end of the growing season and by the end of September, NDVI values 

declined strongly (between 1.4 and 2.8 fold) at the SNKl site, depicting the dry down 

period for greasewood and indicating its response to water stress associated with the 

depletion of surface soil water, leading to an observed loss of canopy cover (Figure 3- 

2C). During the same period, NDVI from the SVl site also declined in association with 

various combinations of bare soil, shrubs (green or dead), shadows and litter encountered 

along these transects (Figure 3-2D). NDVI values associated with bare soil remained 

unchanged. However, NDVI soil values varied significantly between the two sites, with 

SNKl having ~ 1.6 times higher values than SVl. These variations in soil red and near- 

infrared reflectance characteristics were also shown by the raw spectral reflectance 

curves (Figure 3-1) and with the ground-based NDVI time series data (not shown).
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Figure 3-2. Comparison of transect NDVI between the Snake Valley 1 site (A-C) and the 
Spring Valley 1 site (B-D).
Transects were taken along a 50 m distance in the north-south and east-west direction on 
July 2, 2007 (SVl) and on July 3, 2007 (SNKl). Transects were also taken along a 25 m 
distance in the north-south and west-east direction on September 19, 2007 (SNKl) and on 
September 20, 2007 (SVl). All transect spectra were resampled to Landsat-5 TM red and 
near-infrared spectral bands prior to NDVI calculation.

65



Comparison of ground-based NDVI. transect NDVI 

and Landsat NDVI 

Transect and satellite NDVI values deviated from the 1:1 line. However, a 

significant degree of correlation did exist (r = 0.79, P < 0.001), (Figure 3-3A). In all 

cases, transect NDVI values were between 1.4 to 2.7 fold higher than satellite NDVI 

values. This may partially be explained by the difference between the overall reflectance 

properties of the integrated plot components within a single pixel and localized ground 

measurements in which the nature of the measured target was relatively random and 

dependent on the transect interval.

NDVI values from the SKR-1800 NDVI sensors were 2 fold higher than the 

NDVI values obtained from transect measurements. In general, there was a good 

agreement between the NDVI values obtained with these two techniques (r = 0.73, P < 

0.001), (Figure 3-3B). However, greater variation occurred with sagebrush NDVI 

measurements. Based on field observations, sagebrush canopies varied widely in canopy 

density, resulting in larger error bars. Greater variability in NDVI transect data at SVl 

also existed for rabbitbrush and greasewood. This variation in NDVI values was 

supported by field observations, as not all plants within the same species and within the 

same location showed the exact same canopy cover, greenness, size or age. It should be 

noted, that during the September transect run (25 m), only two greasewood shrubs were 

encountered along the west-east direction and only one along the north-south direction at 

the SVl site (Figure 3-3B).
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Figure 3-3. Average satellite NDVI (cloud free days) versus average transect NDVI (A) 
and average transect NDVI versus average ground-based NDVI (B).
Satellite NDVI data represent the plots from which the transect data were measured. 
Ground-based NDVI data represent time series of average midday (ll:30-13:30h) NDVI 
values from individual shrubs: greasewood (GW), sagebrush (SB), rabbitbrush (RB) all 
measured with the SKR-1800 radiometer at the Spring Valley 1 site (SVl) and the Snake 
Valley 1 site (SNKl) in July and September. Error bars represent standard errors of the 
means. Dashed line represents 100% agreement.
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Correlation between ET, Rn. NDVI and ET estimation

ET values were consistently higher at the SNKl site than at the SVl site due to 

the distinct contrast in vegetation cover (dense versus sparse) between the two sites 

(Figure 3-4). The cumulative total ET estimates for the period between May 5 and 

September 30, 2007 was 11.0 cm for the SV1 site and 34.9 cm for the SNKl site. Thus, a 

3.6 fold increase in vegetative cover was associated with a 3.2 fold increase in ET. The 

ET curve from the SNKl site also revealed a distinct contrast between high ET values 

associated with green full canopy cover during the late-spring and early-summer periods 

and lower ET values associated with the dry-down period during late-summer. This 

dynamic trend in ET was similar to the trend observed in the greasewood NDVI time 

series measured with the SKR-1800 radiometer (see previous chapter). However, ET 

values remained stable over time, indicating limited soil evaporation and plant 

transpiration activity associated with the sandy soil and the sparse and heterogeneous 

vegetative cover. For the same period, R„ values were approximately 23% higher at the 

SNKl site (higher vegetative cover, darker soil) compared to the SVl site. At both sites, 

Rn was higher during the early spring and summer periods, but gradually decreased 

following the shift in season (September-early fall).

Cloud free Landsat derived NDVI values were correlated with daily actual ET 

values for the growing season (May to September) for both experimental sites. NDVI 

values included all Landsat overpasses between May and September, except for August 3 

data and September 4 data, which were discarded because of cloud cover. When 

correlations were established for each individual site, the correlation coefficients were 

low (r = 0.55 for SNKl vs. r = 0.45 for SVl) due to the small dataset of each site.

68



However, when data were combined across the two sites, the linear correlation became 

stronger (r = 0.88, P < 0.001), (Figure 3-5).
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Figure 3-4. Average daily net solar radiation and average daily ETg.
Data were acquired over the experimental period between May 5 and September 
30, 2007. Average net solar radiation values are from Snake Valley 1 site (closed 
circles) and from the Spring Valley 1 site (open circles). Average daily ET® values 
are from Snake Valley 1 site (closed squares) and from the Spring Valley 1 site 
(open squares).

This correlation was obtained based on data from the center pixel where the eddy flux 

tower was installed. When correlations were developed based on the averaged values 

from 25 pixels (25 m x 25 m each) surrounding the tower (r -  0.89, P < 0.001), or 25 

pixels south of the tower (r = 0.88, P < 0.001), the r values were relatively similar to the 

center pixel. This lack o f improved correlations with increased pixel numbers was most
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likely related to the non significant difference in percent vegetation cover between the 

various plots at each site, as indicated by the percent cover data estimates (Table 3).

5

□  SV1
  Y= - 0.057+ 15.874 NDVI

R: 0.88, p<0.001 
■  SN K l

4

3

2
>»

1

0
0.20 0.250 .05 0.10 0.150.00

Landsat NDVI

Figure 3-5. Actual évapotranspiration (ETa) as a function of Landsat NDVI. 
Data represent measurements acquired during the experimental period between 
May and September, 2007 over Snake Valley 1 site (closed squares) and Spring 
Valley 1 site (open squares). Linear regression equation and r are shown.

Correlations were tested between ET, satellite NDVI, PAR, Ta and R„ to 

determine if the ET-NDVI relationship could be enhanced. R„ produced the highest 

prediction with ET ( /  = 0.82, P < 0.001) and with NDVI ( /  = 0.78, P < 0.001), while 

PAR produced the poorest prediction (r^ -  0.35, P < 0.001). All possible multiple linear 

correlations were tested with every variable to determine if autocorrelation and 

multicollinearity problems existed. Rn was also correlated with PAR, but because of
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problems of multicollinearity, PAR was eliminated from the NDVI prediction equation. 

The final and improved ET predictive equation = 0.86, P < 0.001) was based on 

introducing Rn and including NDVI in the exponential term of the regression equation:

ET = -3.670+0.00137 R, (6)

Weighting ground-based NDVI 

Weighted ground-based NDVI values calculated from the application of equation 

(4) for the SVl site and equation (5) for the SNKl site were highly correlated with all 

cloud free Landsat NDVI values from May through September across the two sites {r =

0.97, P < 0.001), (Figure 3-6). Correlated NDVI values from the SVl site were 3 to 5 

times lower than NDVI values from the SNKl site. This difference was due to the 

difference in vegetation cover between the two sites. High deviations from the 1:1 line 

were associated with weighted NDVI values > 0.20 from the SNKl site. These values 

were associated with peak ground-hased greasewood NDVI values > 0.50 recorded on 

May 15, May 31, June 16 and July 18 of 2007, explaining the curvilinear shape of the 

regression curve which originated from the actual weighting of these high ground-hased 

NDVI values. In this context, a value of approximately 0.20 may represent a threshold 

level for weighted ground-hased NDVI values, as satellite NDVI values no longer 

exhibited a good correlation with the weighted NDVI values.

Comparing the two NDVI values per overpass indicated that weighted NDVI 

values were as much as twofold higher than Landsat NDVI values at the beginning of the 

growing season. A high degree of overestimation occurred at the beginning of the 

growing season associated with ground-based greasewood NDVI values > 0.5 at the
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SNKl site and greasewood, sagebrush and rabbitbrush values >0.37 at the SVl site. 

Underestimation occurred toward the end of the growing season associated with ground- 

based NDVI values for all shrubs which had <0.30 at both sites. The best coefficients of 

determination were obtained in the middle o f the growing season with almost a 100% 

agreement on July 2 at the SNKl site and on July 18 at the SVl site. One of the possible 

reasons for this bias that occurred in the early and late periods of the growing season, 

especially at the SNKl site, was the fact that the single monitored greasewood plant 

differed slightly in its response during overall green-up and dry-down periods compared 

to the other greasewood plants at this site. This explanation was supported by field 

observations throughout the experimental period.
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Figure 3-6. Correlation equation for weighted sensor NDVI vs. satellite NDVI for 
Spring Valley 1 site and Snake Valley 1 site.
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Discussion

Improved évapotranspiration estimation using remotely sensed techniques and 

ground measurements is essential for future groundwater management and planning in 

semi-arid environments. Recently, much effort has been directed towards the 

development of remotely-based multi-scale measurements, such as repetitive spectral 

reflectance sampling in the field for validation or comparative purposes (Cheng et al., 

2006; Claudio et al., 2006; Gamon et al., 2006a; McCabe & Wood, 2006). In this study, a 

combination of continuous NDVI and transect field sampling; percent cover estimates 

and meteorological and satellite measurements in sparse and dense vegetation settings 

were introduced. A simplified approach to scale continuous ground-based NDVI 

measurements acquired within the footprint of eddy flux towers, for the purpose of 

improving satellite data interpretation and ET estimation was also presented.

The two sites were compared by identifying individual shrubs and quantifying the 

variation in plant density, species composition and the portion of bare soil coverage at 

each site. Obtaining this type of detailed field information about ground surface 

constituents was critical in the interpretation of ground-based field spectra and satellite 

based-NDVI images, as the spectral reflectance response in the red and near-injfrared is 

complicated by the woody and leafy components of most shrubs and their open canopies 

(Frank & Tweddale, 2006) which often leads to misinterpretation of the final composite 

reflectance indices within a satellite pixel. Thus, it is essential to conduct field studies to 

obtain accurate information on vegetation cover and species distribution for further 

assessment o f their contribution to the overall NDVI estimates obtained at the scale of the 

satellite pixel.
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Transect measurements conducted during the early and late phases of the growing 

season provided valuable information with regard to the spectral properties of shrub 

species and soil types differentiating the two sites. Spectral reflectance sampling along a 

50 m (July) and 25 m (September) transect provided clear spatial differentiation between 

the SVl site and the SNKl site in terms of vegetation cover. These spatial differences 

were featured in the spectral reflectance and NDVI responses indicating the frequent 

presence of bare soil surfaces and backgrounds at the sparse vegetation SVl site and the 

presence of dense vegetation cover at the SNKl site. Furthermore, comparison between 

transect NDVI measurements across time within the same site and between sites revealed 

very distinct patterns of green vegetation with regard to their seasonal development and 

their response to the availability of water. This dynamic nature of NDVI over time and 

across space was previously noted by Gamon et al (2006a) in a chaparral ecosystem 

using a mobile tram sampling system. Additional information on other land surface 

constituents such as shrub shadows, dead branches, stems, underlying litter and soil 

backgrounds was also captured in various combinations with vegetation along the 

transects, providing more ground information to relate to the 25 m by 25 m Landsat pixel 

scale.

NDVI time series generated from the daily ground-based NDVI measurements 

using the SKR-1800 sensors allowed for a more detailed distinction between the two 

classes of soil types and between the different plant species based on tracking their 

phenological behavior (NDVI assessment supported with visual observations) throughout 

the entire growing season. Detailed information regarding NDVI time series data was
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provided in the companion study (chapter 2). In this study only NDVI data that coincided 

with Landsat overpasses was utilized in the analysis.

Using repeated field spectral reflectance measurements at a finer scale allowed for 

the retrieval of key information on various field components and processes that are 

impossible to capture or discern by the coarse resolution of most satellite platforms, 

including Landsat. Therefore, this ground-truth data can be used to validate remotely 

sensed information extracted from coarser spatial and temporal resolution platforms. This 

view on the importance of repetitive field spectral reflectance sampling was also shared 

by Cheng et al (2006) and Claudio et al (2006) in recent Spectral Network (SpecNet) 

group studies.

Comparison between transect NDVI data and Landsat NDVI corresponding to the 

same plots where transect measurements were taken in July and in September, 2007 

resulted in an r  of 0.79. In virtually all cases, transect NDVI values were higher than the 

pixel NDVI. There are many possible reasons for this discrepancy, such as the 

randomness of the measured surfaces in the field dictated by the transect interval and 

distance. The number of shrubs encountered within each transect line may not have been 

proportional to the relative distribution of the various shrubs (SVl) or the dominant 

species (SVl, SNKl) within each plot. Here, we used a simplified transect measurement 

approach that did not account for factors controlling species distribution within each site. 

Plus, the spatial resolution of the satellite plays an important role in determining the 

overall spectral contribution of soil versus shrubs when comparing the integrated plot 

components within a single pixel to localized ground measurements. In this case, for the 

entire Landsat 25 m by 25 m pixel size, the fraction of bare soil dominated the fraction of
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shrubs at the SVl site. This domination, supported by percent cover measurements, 

intensified even further towards the end of the growing season. Additionally, minor 

inconsistencies associated with the inherent nature of field measurements may have also 

played a role in degrading the correlation between ground and satellite measurements. 

For example, the ability to obtain field transect measurements consistent with Landsat 

overpass days was not possible for both sites at the same time, as transect measurements 

in July and September were off by one day for the SNKl site. Despite these problems, 

using transect data provided valuable information with regard to interpreting Landsat 

imagery from the aggregation of field measurements and observations, particularly over 

the two different sites and time periods.

Further improvement o f field spectral reflectance sampling approach used in this 

study is recommended for future research in order to improve the degree of correlation 

with satellite data. One might opt for developing a more refined transect sampling 

approach that accounts for the variability in bare soil firaction, species composition, size, 

and distribution to be more representative of the satellite spatial resolution. This can be 

done by collecting geographic coordinate data in the field for various constituents to 

accurately locate them in the satellite image. A similar approach was adopted by Frank & 

Tweddale (2006) to determine the appropriate spatial resolution o f airborne imagery to 

increase the accuracy of vegetation cover measurements. Incorporating percent cover 

measurements coincident with satellite overpass will further enhance the validity and the 

accuracy o f the information obtained firom field measurements.

Correlations between NDVI data generated firom the transect measurements and 

the SKR-1800 data on the main shrub species representing the SVl and SNKl sites.
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revealed variations in plant response. In fact, plants from the same species and Avithin the 

same location varied in their NDVI values based on their chlorophyll content (as inferred 

from tissue N concentrations and chlorophyll index values, reported in chapter 2) and the 

contribution of soil background relative to their canopy density. It should be noted that 

the NDVI wavebands from the transect measurements and the ground-based NDVI 

sensors were similar and equivalent to Landsat red and near-infrared bands. Therefore, 

error related to dissimilarities in wavebands between these different remote sensing 

sensors was not a factor. The difference in ground-based NDVI values between observed 

in our study was indicative of the capability of high spatial resolution field sensors (25° 

FOV) to detect smaller spectral variations within the same species and between different 

species. Thus, data from these ground-based measurements provided important 

information about variations in plant bio-physiological characteristics (as reported in 

chapter 2) supporting the findings of Go ward et al (1994). This type of information is 

impossible to obtain at the Landsat scale, revealing a significant gap between satellite 

measurements and field measurements and stressing the importance of field spectral 

measurements to refine the interpretation o f satellite data.

The remote sensing data collected in this study were used to not only assess the 

impact of soil and plant spectral response on the integrated NDVI values at the pixel level 

but also to develop empirical relationships with ETa. The linear regression equation 

between daily ETa measured by the eddy covariance method and Landsat NDVI yielded a 

strong relationship (r = 0.88, P < 0.001) when data were combined across the five month 

experimental period (May to September) and across the two sites (SVl and SNKl). This 

correlation was higher than the one obtained by Nagler et al (2005a) for ET data
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correlated with MODIS-NDVI combined across four sites of riparian species over a four 

year period (r = 0.68, P < 0.05). Studies conducted by Nagler et al (2005a, 2005b) found 

that ET was more tightly correlated with the Enhanced Vegetation Index (EVI) than with 

NDVI for the apparent reason of saturation problems usually encountered when using 

NDVI. EVI has been recommended under such conditions as research suggests that it 

lessens the effects of soil background, atmospheric scattering and biomass saturation 

(Huete et ah, 2002). Errors associated with atmospheric correction algorithms are 

inherent in most remote sensing studies and they vary with each satellite platform. 

However, NDVI saturation effects are unlikely to occur in sparse and heterogeneous 

semi-arid landscapes such as in the present study. Furthermore, Huete et al (2002) found 

that NDVI had a higher range in values than EVI in semi-arid areas, which was also the 

case in this study (not shown). Uncertainties related to EVI and NDVI performance 

across various ecosystems and landscapes using multiple remote sensing platforms still 

need to be verified. Similar thoughts were also shared by Cheng et al (2006).

Incorporating meteorological variables along with remotely sensed vegetation 

indices was undertaken to improve ET estimations in this study. Net solar radiation (R„) 

produced the highest prediction of ET (r^ = 0.82, P < 0.001) and was used in the final 

predictive regression equation (eq. 6) that yielded an value of 0.86.

This coefficient of determination was higher than that reported by Nagler et al (2005a,

-  0.82; 2005b, = 0.74) who used daily air temperature and EVI combined across tower

sites, riparian species and years. The ability to estimate ET from remotely sensed data by 

incorporating meteorological parameters such as air temperature or solar radiation is 

supported in part by Nemani et al (2003), who indicated that meteorological variables
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like solar radiation and temperature along with water are the most important factors 

influencing plant growth and therefore surface energy fluxes such as ET. Incorporating 

ground-based meteorological measurements that have been identified as being key factors 

influencing ET estimations firom satellite measurements has become a common practice 

in ET-remote sensing studies (Nagler et al 2005a, 2005b, 2007; Wang et al., 2007).

Given the dynamic nature of energy fluxes, ET estimates are closely related to 

meteorological variables, ecophysiological features of plant communities, water 

availability, soil type and geography. As such, the resulting ET prediction equations may 

be site specific and not transferable to other regions or conditions without extensive 

validation work and testing. Therefore, the simple regression equation proposed here may 

be used for estimating ET over larger heterogeneous vegetated areas in the Great Basin. 

However, further validation and testing is needed to quantify estimation errors and 

determine what type of adjustments are needed when extrapolating this approach over 

different valleys and community types.

The strong regression relationship (r = 0.97, P < 0.001) between satellite derived 

NDVI and weighted ground-based sensor NDVI for the two study sites over time, 

suggests that ground-based NDVI measurements on individual shrubs and bare soil 

surfaces can be successfully scaled across landscapes to represent satellite pixel size 

NDVI estimates. However, we believe that these results have to be interpreted with some 

caution, as the ground-based measurements were based on a single shrub per species 

within an area of 625 m^. Still, the results presented here revealed some very interesting 

spatial and temporal features associated with NDVI measurements acquired at different 

scales. In this regard, direct comparison of NDVI values from individual shrubs showed a
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gradual decline in NDVI values from May to September, relatively consistent with the 

decline showed with satellite-based NDVI. However, ground-based NDVI values showed 

a slight increase on the July 18 overpass in response to summer rainfall pulses that 

occurred on July 11 and on July 16, which was not captured by Landsat NDVI. Subtle 

changes in phenological development following a response to climatic fluctuations 

throughout the season are usually common in sparsely vegetated semi-arid regions, but 

they are apparently not captured at the coarser spatial scale. An obvious explanation for 

that is the overall high contribution of bare soil and backgrounds to the integrated pixel 

NDVI value, which seems to cause some of the features observed at the ground level to 

disappear at the pixel scale. Although ground-based NDVI red and near-infrared bands 

were compatible with Landsat red and near-infrared bands, errors associated with 

georeferencing and atmospheric correction methods may have also affected the 

correlations between weighted and satellite NDVI.

The problems of overestimation and underestimation o f satellite NDVI which 

occurred during the early and late phases of the growing season might be related in part 

to the adjustment made to the percent vegetation cover data over time based on the 

assumption that percent cover measurements follow the same linear trajectory as NDVI. 

If percent cover assessments had been obtained prior to May 15 and throughout the 

growing season, instead of the one time measurements, it may have been possible to 

show that this was not the case as NDVI variations are often tightly related to greenness 

rather than to simple variations in canopy cover (Goward et al, 1994; Glenn et al., 2007).

Discrepancies between weighted ground-based NDVI and measured Landsat 

NDVI values were more pronounced at the SNKl site, than at the SVl site especially
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during the early phases of the growing season. In the companion study (chapter 2), 

greasewood NDVI time series data from the SNKl site showed that the timing of spring 

green-up occurred two weeks earlier than that of the same species at the SVl site. The 

exact reason for this shift is not fully understood. Nevertheless, this phenomenon was not 

consistent for all greasewood plants at the SNKl site, and not all plants had peak NDVI 

values reaching an average value of 0.67 on May 15. If this was the case, the satellite 

NDVI pixel value should have been higher early in May, as the SNKl site had a uniform, 

dense and homogeneous stand of greasewood. Consequently, in future studies a more 

refined field approach is needed to account for within-species variability and reduce 

estimation errors by increasing the number of NDVI monitored plants based on their 

spatial distribution. Furthermore, instead of just using individual plants and bare soil 

surfaces to weight NDVI, other field background components should also be monitored 

and integrated into the overall signal to provide a more complete representation of what is 

captured by the satellite.

Overall, and despite the limitations and the possible errors that may be associated 

with this approach, it seems that better agreement between measured and predicted 

satellite NDVI values is more likely to occur during lull and stable canopy development 

when conditions are more homogeneous over the sites. To our knowledge, this is the first 

documented attempt at using intensive daily timescale ground-based NDVI monitoring to 

scale directly to pixel level NDVI values.

Results from this study demonstrated the value of using continuous ground-based 

reflectance measurements as a validation and field verification tool for satellite-based 

products. The unique combination of meteorological measurements, satellite-derived
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NDVI, ground-based NDVI measurements and intensive field observations enabled us to 

generate a good estimation equation for ET and a successful simplified scaling approach 

of ground-based NDVI. However, the preliminary approach taken in this study still needs 

to be verified and improved by incorporating and testing other input variables and 

accounting for estimation errors to overcome some of the uncertainties encountered. 

These results were based on one growing period and two experimental sites. Therefore, it 

is important to test the level of performance of this approach over larger areas and over 

longer time periods. Ground validation studies of this type should be pursued and 

improved as satellite-derived vegetation indices remains the only means currently 

available to estimate and study ecosystem fluxes at a regional and global scale. Thus, 

proper and accurate validation of satellite data from ground measurements is required to 

improve ET estimations especially over heterogeneous landscapes at a basin level.
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CHAPTER 4

GENERAL CONCLUSIONS 

The results from this study can be summarized as follows:

1. NDVI values were higher at the Snake Valley 1 site and lower at the Spring Valley 1 

site. These differences were consistent with total percent vegetation cover 17.5% for SVl 

and 63% for SNKl) and ET values (11 cm for SVl and 34.9 cm for SNKl).

2. Continuous NDVI values obtained from ground-based SKR-1800 radiometer showed a 

difference between greasewood from both sites. However the satellite data showed 

differences based on the difference in species composition and percent cover between the 

two sites.

3. Ground-based NDVI showed an increasing pattern during the active growing period 

(May to June) and a decreasing pattern at the end of the summer (July to September) 

providing information about the growing period of each species and information about 

water stress on all monitored species at the end of the growing season.

4. NDVI collected on a daily basis provided discrimination of phenological 

characteristics o f  different vegetation  types throughout an entire grow ing season  and w as  

able to track small and subtle changes in vegetation development not possible with 

Landsat imagery.
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5. NDVI values derived from ground-based sensors were sfrongly correlated with plant 

measurements associated with green canopy cover and water content (r between 0.32 and

0.98)

6. The NDVI data set allowed for detailed comparison of the two contrasting soil types 

that differentiated the sites, which was an important factor influencing the growing 

patterns of vegetation at the sites.

7. Although a good correlation existed between NDVI and ET over the entire growing 

period (r = 0.88), incorporating R„ enhanced ET prediction (r^ = 0.86).

8. NDVI values obtained from ground-based sensors can be scaled from single canopies 

and bare soil surfaces to an integrated satellite pixel NDVI basis within the footprint of 

the eddy flux towers using ground measurements as weighting factors (r = 0.97).

Results from this study demonstrated the value of using continuous ground-based 

reflectance measurements as a validation and fleld veriflcation tool for satellite-based 

products. However, the preliminary approach we took in this study still needs to be 

verifled and improved by incorporating and testing other input variables and accounting 

for estimation errors to overcome some of the uncertainties we encountered. It is 

important to test the level o f performance of this approach over larger areas and over 

longer time periods.
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