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A BSTR AC T

E stim ates at Infinity For P ositive Solu tions to  P rob lem s  
Involving th e p-Laplacian

by

Ralph W . Thomas

Dr. David Costa and Dr. Hossein Tehran!, Exam ination Committee Chairs 
Professors of Mathem atical Sciences 

University of Nevada, Las Vegas

There has been much study of finding positive solutions to  various logistic prob­

lems involving the Laplacian and the p-Laplacian; problems which, loosely speaking, 

contain a nonlinear term  that behaves like — u^).

Du and M a [12] studied a logistic problem for the Laplacian in  R ^ , looking for 

positive solutions (A ,u) to

-A u  =  \a { x )u  — b{x)v? in i>iV

where 7  >  1, 0 <  b{x) E C °°(R ^), 0 <  a(x) 6  C^(R-'^) and a(x) <  F (x )  for a radially 

symmetric P {x )  satisfying

f  <  0 0 .
/kn |x | ^ - 2

Next, there has been study of logistic problems w ith  harvesting, where we subtract 

a harvesting term o f the form i ih {x ).  These arise from problems in  fishery or hunting
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a harvesting term  of the form ^h (x ).  These arise from problems in fishery or hunting 

management, and in  those circumstances one is interested in  finding positive solutions. 

In [22], Oruganti, Shi and Shivaji looked for results in  bounded' domains, finding 

positivé solutions to

—A u  =  an — hu^ — chix) x  E 0,
(0.1)

u =  0 X  E dEl,

where a,b,c >  0 are constants, D is a smooth bounded region w ith  dEl E and 

h E C°‘{Ù) satisfies

h{x) >  0  for X € El,h{x) =  0  for x  € dE l,m axh(x) — 1 .
xSf2

They proved tha t i f  a >  Aj then there exists a constant Ci =  Ci(a, b) such tha t for 0 < 

c <  Cl, (0.1) has a positive solution u E satisfying au{x) — bu^{x) — ch{x) >  0

for all X  eEI. In  addition, there exists cg =  C2 (a, b) >  Ci such that;

(i) for 0  <  c <  C2 , (0 .1 ) has a maximal positive solution n, so tha t for any other 

solution V of (0 .1 ) we have u >  u on D,

(ii) for c >  C2 , (0 .1 ) has no positive solution.

In  addition, Oruganti, Shi and Shivaji in  [23] were able to extend the above problem 

to the p-Laplacian, finding positive solutions to

—ApU =  au^  ̂ — n'*'  ̂ — ch{x) x  E El
(0 2)

n =  0 X € dEl,
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where a, c >  0  are constants, 7  >  p, 0  is a smooth bounded region w ith  dEl G 

and h E C “ (D) is a non triv ia l function satisfying

h{x) >  0 for X E D, h{x) =  0 for x E dEl, max h{x) =  1.

For th is problem they showed, for a >  Ai:

(i) there exists c i =  Ci(a) >  0  such tha t for 0  <  c <  c i, (0 .2 ) has a weak positive 

solution u E C^’“ (D) satisfying u{x) >  for x E ÊI.

(ii) there exists Cg =  0 3 (0 ) >  ci such tha t for 0  <  c <  Cg, (0 .2 ) has a maximal positive 

solution, and for c >  c<2 (0 .2 ) has no positive solutions.

Costa, Drabek and Tehrani also extended the result of Oruganti, Shi and Shiv­

a ji for the Laplacian in  bounded domains, however instead of extending to the p- 

Laplacian, they instead extended the result from a bounded domain El to  all of  ̂

finding positive solutions to

—A u =  a(x)(Au — u'*') — i ih {x )  in

where 7  >  1, A >  Ai, 0 <  a(x) E L ^ P (R ^ )  f l  and 0 <  h{x) is a rapidly

decreasing function in  M ^. They showed tha t there exists p  =  p(A) >  0 such tha t for 

all 0  <  p  <  /t there exists a solution u^ >  0  in  satisfying

Q
>  I Vv_9  for X large.

In  this paper we w ill extend the results above. We w ill firs t look for positive



solutions to

—ApU =  a(x)A|u|^“ ^u — a{x)g{u) x e (0.3)

where g{s) behaves like 1 > P, for s large. We w ill employ many of the same 

methods as Costa, Drabek and Tehrani, and in doing so w ill not only prove the 

existence of positive (weak) solutions, but w ill also have estimates for the behavior 

of these solutions at in fin ity. Namely we w ill show tha t a solution Uq satisfies

uq{x ) >  C |x p  p-i for |x| large.

In addition, by an appropriate modification of our assumptions on g{u) and a(x), we 

prove tha t uq is the unique positive solution to (0.3), and tha t the above estimate at 

in fin ity  is sharp.

Second, we w ill generalize our first scalar result to a system result, finding positive 

solutions (uojVo) to

-A p ,u  =  a i(x )(//i|u |P i"^u  -  g i(u )) +  F „(x ,u , u)

-A p ^v  =  0 2 (a:)(p2 |v |'""^u  -  9 2 (v)) +  F y{x ,u ,v )

satisfying

and

Q
uo{x) >  — for |x| large, 

1x 1 p i-i

Q
Vo{x) >  — ^2 ^  for |x| large, 

|x| P2-1
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where the interaction term  behaves like F {x ,  s, t) =  w ith  m <  p\ and

Finally, we w ill add harvesting terms to our system equations, finding solutions 

(lioWo) to

-A p jU  =  a i(x )(p i|u |P i“ 2u -  gi{u))  +  F u {x ,u ,v )  -  U ih i{x)

-A p ^ v  =  a2 {x){iJ,2 \v\P^-'^v -  g2 iy ))  +  Fp(x, u ,v )  -  1/2/12(x)

In  this case, we must have p i =  p2 =  2 to prove tha t the solution is positive and 

satisfies the same behaviors at in fin ity  as above.

We note tha t the method used by Oruganti, Shi and Shivaji was sub and super 

solutions, bu t tha t all the other problems above (Du and Ma, Costa, Drabek and 

Tehrani, and the problems in this paper) are solved by applying m in im ization methods 

to the underlying functional.
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C H A P TE R  1 

BAC KC R O U N D

We begin by discussing some of the origins and applications of the problems 

contained in this dissertation.

There has been much study of finding positive solutions to various logistic prob­

lems involving the Laplacian and the p-Laplacian; problems which, loosely speaking, 

contain a nonlinear term  tha t behaves like A n (l — u).

In  [22], Oruganti, Shi and Shivaji examined a logistic problem w ith  harvesting in 

bounded domains, finding positive solutions to

—A u  =  au — bu^ — ch{x) x E El
( 1.1)

u =  0 x E dEl,

where a, 6 , c >  0 are constants, D is a smooth bounded region w ith  dEl E and 

h E C " ( f i)  satisfies

h{x) >  0 for X E El, h{x) =  0 for x  € dEl, max h{x) =  1.

As noted in  the ir paper, this problem arises from the population biology of one 

species, which we describe here.



Let u { t ,x )  be the concentration of the species or the population density. We 

assume tha t (a) the species disperses randomly in  the bounded environment El] (b) 

the reproduction of the species follows the logistic growth; (c) the boundary dEl of 

the environment is hostile to the species; and (d) the environment El is homogeneous 

(i.e., the diffusion does not depend on x). Then i t  is well known tha t u { t ,x )  satisfies 

the reaction-diffusion equation

ÔXL /  XL \
—  =  D A u  +  au ^1 — — j  , (t, x) € (0, T )  x El,

w ith  the in it ia l and boundary conditions

u(t, x ) = 0 ,  (t, x) G (0, T ) X 

u (0 , x) =  uo(x) >  0 , x EEI,

where D  >  0  is the diffusion coefficient, a >  0  is the linear reproduction rate and 

iV >  0 is the carrying capacity of the environment. (See M urray [21] for details). 

Now, in  many ecological systems, harvesting or predation of the species occurs. For 

example, fishing or hunting of the species u could happen. Hence it  is natura l to add 

a harvesting term  to the right-hand side, and the equation becomes

O x i (  XL \
—  =  D A u  +  a u ( l  -  — j  -  p{t, X , u ) ,

where p(t, x, u) >  0 for a ll possible (t, x, u) values. In  (1.1) is considered the case of 

constant yie ld harvesting (not dependent on the density u or on t), and in particular



the case

p{t, X, u) =  ch{x),

where c >  0 is a parameter which represents the level of harvesting. So ch{-) can be 

understood as the rate of the harvesting d istribution , and the harvesting only occurs 

in the in terior of the environment. Such a harvesting pattern arises natura lly  from 

fishery management problems, where ch{x) is related to the fishing quota imposed by 

regulating authorities. Finally, the problem is reduced to (1.1) by applying a standard 

non-dimensionalization process and then looking for steady state solutions.

In  addition, Oruganti, Shi and Shivaji in [23] were able to extend the above 

problem to  the p-Laplacian, finding positive solutions to

—ApU =  avF  ̂ — u'''  ̂ — ch(x) x E Ü
(1.2)

u =  0 X E dEl,

where a, c >  0 are constants, 7  >  p, D is a smooth bounded region w ith  dEl E 

and h E C°‘ {Èi) is a non triv ia l function satisfying

h{x) > 0  for X E El,h{x) =  0 for x G dE l,m axh{x)  =  1.

The extension of the ir result from the Laplacian to  the p-Laplacian is a natural 

mathematical one, however the physical relationship between the problem and the 

study of population density becomes severed. One may ask i f  the p-Laplacian has 

any physical applications? The answer is affirmative, as the p-Laplacian arises in



the study of non-Newtonian fluids, reaction-diffusion problems, flow through porous 

media, petroleum extraction, torsional creep problems, and glaciology. In  fact, we 

conclude this chapter by presenting a physical model tha t involves the p-Laplacian, 

from Drabek [9].

We present a mathematical model of the behavior of compressible flu id  in a ho­

mogeneous isotropic rig id  porous medium. Let p =  p {x , t )  denote the density, </) be 

a volum etric moisture content and V  — V  {x, t) be a seepage velocity. Then the 

continuity equation reads as follows;

( p ~  +  d iv {p V )  =  0. (1.3)

In  the lamizar regime through the porous medium the momentum velocity p V  and 

the pressure P  =  P {x , t) are connected by the Darcy law

p V  =  —A V f .  (1.4)

In turbu lent regimes, however, the flow rate is different and several authors proposed 

a nonlinear relation instead of (1.4). Namely, the nonlinear Darcy law of the following 

form is often considered:

p V  =  - A | V f r - " V f ,  (1.5)

where a  >  1 is a suitable real constant. Taking in to  account the equation of state for 

the polytropic gas

P  — cp



with some constant of proportionality c > 0, we get from (1.3) and (1.5) the equation

=  c“  ^Adiv(|Vp|“ "^V p ).

A fte r the change of variables and notations this equation becomes

^  =  d iv ( |V r r r - 'V r r ) ,

where p >  1, giving us an application of the p-Laplacian, which is defined by;

ApU =  d iv (|V a |^  ^Va).



C H A P TE R  2 

P R E LIM IN A R IE S

A ll integrals w ill be assumed to be taken over unless otherwise stated. Define 

£)\,p to be the completion of =  C ^ (R ^ )  under the norm ||u|| =

( f  and define, for a bounded domain Q C R ^ , to  be the completion

of C ^ (Q )  under the norm ||u||n.^i,p(n) =  (Jq [V u p  +  Define the norm on

W  =  L '‘(R''^) by ||u||r =  ( /  \uYYF, and define the norm on the weighted M  space 

K{x) =  by ll^llrXT) =  {J  a {x )\u \^yp .  We denote p* =  ^  and note tha t

^  ~  p ~  p -  let ApU =  d iv (|V u |'’~^Vu) be the p-Laplacian.

T heorem  2.1. (Sobolev Embedding Theorems)

(i) D^’P is continuously embedded into L p\  In  other words, there exists a constant C  

depending^ only on p and N  such that ||ii||p* <  C||u|| fo r  all u € D^'P.

( i i)  For a bounded domain El C R ^  and fo r  p <  g <  p*, is compactly

embedded into M{El), and is continuously embedded into L p (D).

Proof: See, for example, McOwen [20]. □

Lem m a 2.2. For a(x) G L^/p we have D^'P C . In  particular there exists a 

constant C  >  0 such that

/ <  C||a||w/p||?r|r



fo r  all u € D^'P.

Proof: Let u G D^'P. Then we have, by Holder’s Inequality and the Sobolev

Embedding Theorem,

\u

<  ||a||jv/p||'ii^lU/(Ar_p)

— ll<ï||N/p||ri||p.

<  Cl|a||Ar/p|ln||P <  oo.

proving the lemma. □

Lem m a 2.3. (Hardy’s Inequality) 

For u G D^'P we have

“ I”  <
J  |x|p \ N  — p 

Proof: Let u € , 1 <  p <  A . Then

d iv  I &  1 =  0
\x\P

which implies tha t

( iV - p ) H P  , _,_,p_2. . a : . V a _7 ( A r - p ) H P _̂
J lx|P

0 , 
x\P



and hence, by applying Holder’s Inequality,

N  — p 

P

f \ u ^ _  f  \ u \ P - H

J  |x|p ~  J  |x |p -i

<

X ■ V u

\u
Ip-i |Vu|P

Therefore

N  — p 

P Ix|p
< |Vü|P

I.e.

X P
< P

N  — p
|Va|'

The result now follows by approximating any u € D^'P by functions. □

T h e o re m  2.4. (V i ta l i ’s Convergence Theorem)

Let {X ,p )  be a positive measure space with  { / „ }  C L^{p) satisfying 

p (X )  <  oo,

(d) { /n }  is uniformly integrable,

( i i i )  f n { x )  —> / ( x )  a.e. as n ^  oo, and

(iv) | / (x ) |  <  oo a.e. Then f  € and

lim  [  | / „  -  f \d p  =  0 .
n-^oo

P ro o f; See, for example, Rudin [24]. □

L e m m a  2.5. (i)  j| • ||p is continuous and convex fo r  p >  1.

( i i )  A functional defined on a reflexive Banach space that is continuous and convex



is weakly lower semi-continuous (l.s.c.)

( i i i )  A functional 4> defined on a reflexive Banach space E  that is weakly l.s.c. and 

coercive (i.e. (j){u) —>■ oo as ||nl|£ —>■ oo) must be bounded from below. In  addition,

there exists Uq E E  such that <t>{uo) — 0(a).

(iv) D^’P is a reflexive Banach space.

P ro o f: See, for example, Costa [6 ]. □

L e m m a  2.6. Define G : D^'P (D^'P)* by {G {u),v )  =  J  a{x)\u\P~^uv, where a{x) E 

L^/p  f l  Then G is compact.

P ro o f: This follows from Lemma 2.2ii of Drabek and Huang [10]. We include the

proof for the reader’s convenience.

Let A +  L  =  1 . We firs t claim tha t for any e >  0 there exists K  >  0 (depending only 

on E and a) such tha t

sup [  a|0 |P“ V l  <
\ \ v \ \ < l J \ x \ > K

for a ll 0 E D^'P. To see this, we have by Holder’s inequality and Sobolev Embedding

sup [  a\(p\P^^\v\ <  sup (  [  a|0 |^^ • (  [
I M | < i 7 | x | > k  l b l l < i  /  \ J \ x \ > K  J

/  r  \  ( p - l ) W  /  n \  (p -l) /p *
< sup ( /  ( /  |0 |P* j

l b l l < l  \ J \ x \ > K  J  \ J \ x \ > K  J

. ( /  a ^ x r n
\ J | x | > K  /  \ J \ x \ > K  J

/  r  \  p ! N  /  n \  (p -l) /p *
< C  sup ( /  a^ /p)  • (  /  |0|P* ) ||a||

l h l l < l  \ J \ x \ > K  J  \ J \ x \ > K  J

<  6 ll0 l lp - \



since a E L^^p. Now suppose tha t a „ —̂ uq in D^’P. Then we have

||G ('îin ) — G (î^o ) II (£>!•!

<  sup
I M I < i

sup |(G (a „) -  G (ao),u)|
|r ||<l

a(x)(|n „|P “ ^a„ -  |ao|P"^Oo)a 

a(x)(|a„|P"^'U„ -  |ao|P“ \ o ) u

sup
I F I I < i

sup
I F I I < 1

\x \<K

j  a(x)(|n„|P“ ^a„ -  |ao|P~^ao)u
. l \ x \>K

Now, given e >  0 we can choose iY >  0 such tha t the integral over { jx j  >  K }  is less 

than e/2 for all n, while for this fixed K ,  by strong convergence of a „ to uq in L p' on 

any bounded region, the integral over { jx j  <  K }  is less than e/2 for n  large enough. 

Therefore G{un) —> G (uq) in V*, i.e. G is compact. □

T heorem  2.7. Consider weak solutions to

div A{x, u, V u )  +  B{x , u, V u ) =  0 (2.1)

where fo r  some domain  f l  C R we have

A  ; f l  X R X t)N  ̂ miN, B  : f l  X R X

10



satisfying fo r  all M  <  oo and all (x, u,v ) € El x  (—M , M )  x

\A {x ,u ,v ) \  <  ao|a|"~^ +  |a i(x )a l" “ \  

v - A { x , u , v )  >  |a|“  — |a2 (x )a |“ ,

\B {x ,u ,v ) \  <  6 i( x ) |a |" “  ̂ +  (6 2 (x ) )" |a |“ -^  +  (6 3 (x ) ) “ ,

where a  >  1, ao are constants, a f x )  and bi{x) are non-negative functions in  L°°{El) 

with |laj||ooi \\bi\\oo <  g, and a, Oq, bo, a,(x), and 6*(x) all may possibly depend on 

M . Then we have:

(i) Let u {x) be a weak supersolution of (2.1) in  a cube K  =  K{2>p) C f l ,  with 0 <  u 

in  K . Then, with x k  denoting the usual characteristic function o f a set K ,

P <  C m in a (x )
^\P)

fo r  any

7  <  2/  a  <  AT

7  <  oo i f  a  >  N  

where C — C{a, N, Oq, pp)

( i i )  Let u {x) be a weak subsolution of (2.1) in  a cube K  =  K {3p)  C f l,  with 0 <  u in  

K .  Then

m axa(x) <  Cp~^^'^\\uxK(,2p)\\y
^{P)

fo r  any 7  >  a  — 1, where C — C{a, N, ao, pp).

P ro o f: This is proved in Trudinger [27], Theorems 1.2 and 1.3, where we apply the
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case 60 =  0 (see the note between Theorems 1.1 and 1.2) □

C o ro lla ry  2.8. Consider weak solutions to

—ApU =  c{x)\u\P~'^u +  d{x) (2 .2 )

in  a bounded domain El C  where u 6  D^'P, 1 < p  <  N  and c{x ) ,d {x )  6  L°°{El). 

Suppose K  =  K {3p) C El is a cube and that u >  0 in  K .  Then

(i) I f  u is a weak supersolution of (2.2) in  K  then

P ^^'*\\uxK{2p)\U < C m m u { x )
^{P)

fo r  any 7  <  where C =  C{p, N, ||c||oo, ||d||oo).

( i i )  I f  u is a weak subsolution of (2.2) in  K  then

m ^ a ( x )  <  C/)
^{P)

fo r  any 7  >  p -  1 , where C =  C{p, N, ||c||oo, ||d|loo).

Proof: Since ApU =  d iv(|Va|P “ ^Va), we have the following

A{x, u, v) — \v\P~'^v, B {x , u, v) — c{x)\u\P~'^u +  d{x)

so tha t A {x ,u ,v )  and B {x ,u ,v )  satisfy the conditions of Theorem 2.7 w ith  a =  p, 

ÜQ =  1, a i(x )  =  0, ü2 (x) =  0, b i(x) =  0, b2 (x) =  |c(x)|^/p and 6 3 (2;) =  \d{x)\^iP. The 

result now follows. □
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Theorem  2.9. Suppose El C R is open and u G n  L°°{El), I  <  p <  oo, is

a weak solution to

—ApU — a{x,u , V u )

in El, where |a(x,a,  Va) |  <  T (1  +  |Vu|)p f o r  some constant F >  0 and all x E El. 

Then there exists 0 <  a  <  1 such that u E Cl^^{El).

Proof; This is proved in Theorem 1 of Tolksdorf [26]. □

T heorem  2.10. Let El C R be a bounded domain o f class 0 <  a  <  1 and let

(i)  Let u E satisfy u > 0  in  El and —ApU  >  0 a.e. in  f l .  Then either a =  0 or

u >  0 on El. Moreover, i f  u E C^{El\J {xq}) fo r  any xq E dEl that satisfies an in ter ior  

sphere condition and u { x q ) =  0 ,  then >  0  where u is an in te r io r normal at x q .

( i i )  Let u E n  L°°(fl) be a weak solution to

—ApU =  f { x )  in  El

u =  f l  on dEl,

where f  G L°°{El) and f i  E C^'^°‘ {dEl). Then there exists 0 <  /? <  1 such that 

u E

( i i i )  (Maximum Principle) Assume that u E VF ’̂P(fl) satisfies

—A p U  =  f { x )  in  El

u > 0  on dEl,
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with f  G n  /  >  0. Then either u >  0 in  Et, or u =  0 in  Et.

(iv) (Weak Comparison Principle) F o r i  =  1,2, suppose Ui G W ^’P (fî)n L ° ° ( f l)  satisfy 

ApUi G L°°{Et), Ui\dci G Ĉ ~'~°‘ {dEt) together with the inequalities

-A p U i <  -A p U 2 in  0

u i <  U2 on dEl.

Assum,e in addition that —ApU2 >  0 m D and U 2 > 0  on dEl. Then

Ui(x) <  U2 (x) fo r  each x E El.

Proof: (i) This follows from Theorem 5 of Vazquez [28].

(ii) This follows from  Lemma 2 of Garcia-Melian and de Lis [15].

(iii) This follows from Theorems 1 and 5 of Garcia-Melian and de Lis [15]. For the 

reader’s convenience, we present a proof here as well.

We have u G VF^’P(fl) and |Vn|P“ ^V n  • V a  =  J a fn  for a ll v G VF^’P(fl). Thus we

can let v{x)  =  u~{x)  =  m in (a (x ) ,0 ) and get

[  | V n " | P =  [  \V u \P -^ V u -V u -  =  [  f u ~  < 0 .
Ja Jn Jn

Now, let A i( f l)  be the firs t eigenvalue of the equation —ApU =  A|n|P“ ^n. I t  is well 

known tha t

A i( f l)  =  in f >  0,
u€WCP{fi) jnjp

and in fact we prove th is result for the case f l  =  R in the next chapter. Therefore

14



we have

Al {ü ) [  \u-\P <  [  | V n - r =  [  f u -  <
Jn Ju Ju

proving tha t u~ =  0, i.e. tha t u >  0 in Ü. Therefore by part (i) we have tha t u >  0 

or w =  0 in This completes the proof of part (hi).

(iv) By part (ii) we have that Ui G and by part (i), we have tha t U2 >  0 in

Ç1 and tha t ^  <  0 at tha t part of dÇl where U2 =  0. Therefore there exists c >  1 

such tha t t i l  <  cti2 in  Ç1. Consider the problem

—A „v  — —A„U 2 in  Ç1
(2.3)

u =  t i2 on o n

Then u i  and cu2 are sub and supersolutions, respectively, of (2.3). Thus, the method 

of sub and supersolutions (see, for example. Theorem 4.14 of Diaz [8 ]) yields the 

existence of a solution v G IT ^ ’P(D) Cl L°°(D) to (2.3), w ith  Ui <  v <  cu2 , which must 

be nonnegative.

We claim tha t (2.3) has a unique nonnegative solution in  W ^’'’ (D) Cl Suppose

we have two such solutions Vi  and % .  Then parts (i) and (ii) im p ly  tha t V i f v 2 ,  V2/V1 G 

L°°{ü ).  Then following a proof sim ilar to Lemma 3.4 proved in  the next chapter, we 

have tha t vi =  CV2 for some constant c. Since v\ =  V2 on dÇl we have proved the 

claim.

Therefore v =  U2 and we have u i <  U2 , completing the proof of the theorem. □  

T h e o re m  2.11. There exists a map J  : ■ such that J, J~^ are contin-
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uous, and

||Ju|| =  ||u||, {Ju ,u )  =  ||u||^ V u G 

Proof: This follows from Proposition 8 of Browder [5]. □

T h e o re m  2.12. Let C be a domain and let X  C be a linear function

space equipped with norm  ||u||x =  ||Vu||p,n =  sucA that with this norm

X  is a reflexive Ba,nach space. Let X *  be the dual space with norm  || • ||x- on X *  and 

with {■, -)x the duality pairing between X *  and X . Define the operator J  : X  X *  

by

{ J { u ) , v ) x  — I  \Vu\^~'^Vu ■ V v  
Jn

fo r  any u ,v  G X .  Then the operator J  is a homeomorphism between X  and X * .  

In  particular, given f  G X * ,  the equation J{u)  =  /  has a unique solution u j  E X  

satisfying

I I " , L  <

Proof: This follows from Theorem 2.1 of Drabek and Simander [11]. □

T heorem  2.13. ( i)  Let 0  C be a bounded domain and consider the Dirichlet 

problem

-ApU =  f  in  Ll,
(2.4)

u =  0  on dLl,

where f  G LP*'[Lï] and p*' =  Then (2.4) has a unique weak solution

u / G W (^'''(n), t.e.

f  |Vu / |^ “ ^ V u /  • =  I  f v
Jn Jn
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fo r  any v E VFo’'’ (f2) fo r  equivalently fo r  any v E C ^ { ü ) ) ,  where is the

closure o fC ^ {T t)  with respect to the norm  | |V • |lp,n- In  addition, we have ||Vti/||p,n <

(a) Let f  E IP  (R ^ ). Then there is a unique weak solution u j  E D ^ '^(R ^) to

—ApUf =  f ,

I.e.

J \V u f\P -^V u f ■ V v  ^  J f v

fo r  all V E

P ro o f: (i) This follows from Theorem 3.1 of Drabek and Simander [11]. For the 

reader’s convenience, we include the entire proof here.

Let X  =  VF'o’'’ (f2) and let /  6  X * .  I t  is well known tha t the space X  equipped w ith  

the norm ||V  • ||p,n satisfies the conditions of Theorem 2.12. Then we have u E X  is 

a weak solution to (2.4) i f

/ \ V u f  =  { f , v ) x
Jn

for a ll V E X .  This equation is uniquely solvable for any f  E X *  by Theorem 2.12. By 

the Sobolev Embedding Theorem any /  G ( f l)  can be identified w ith  an /  G X *  

satisfying { f , v ) x  =  Jq J v for any v E X ,  proving the firs t part of the theorem. For
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the estimates on || Vuy||p^n, we again app ly  Theorem  2.12 and note th a t

U - =  sup \ { f , v ) x \
lhlU=i

I <  sup II/Hp- 'It IIp-
l h l l x = i

< C  sup ||/||p .'||u ||x  
l h l l x = i

proving the firs t part of the theorem.

(ii) This follows from Theorem 4.1 of Drabek and Simander [11]. Note tha t in  the 

notation of tha t paper, ^ o ’'’ (R ^ ) is the same space as D^’̂ (R ^ ) in  the notation of 

this paper, both being the completion of C '^ (R ^ ) w ith  respect to the norm

||u[| =  (^ J \Xu\P
i/p

□

D e f in it io n  2 .14. Let Q C R be an open set.

(i) A  function u G f l  C (D) is said to be p-harmonic in Q if

f  \Xu\P-^Xu-X(p =  0 
Jn

for all (p G C ^ (D ).

(ii) A  lower-semicontinuous function u : Q —> (—oo, oo] is called p-superharmonic if  

u is not identica lly in fin ite  in each component of D, and i f  for all open D  CC Ll and
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a ll h  E C { D ) ,  p-harm onic in  D ,  h  <  u  on d D  im plies h <  u  in  D .

T h e o re m  2.15. Let p > l ,  ^ +  ^ =  1 and let u be a bounded, nonnegative, p-

superharmonic function in  Q, such that

I  |Vu|^ • V 0  dx =  j  (j) dpi
Jn Jn

fo r  some nonnegative Radon measure pt on Ü and all (p € C ^{L l) .  Define

I f  Bsr {a) C 12, then there exists constants A i ,  A 2 and A 3 such that

-  ^ 2  in f u{x) +  A 3 Wfp{a, 2 r) .
xG Br (o)

P ro o f: This is Theorem 1.6 of Kilpelainen and M aly [17] for the case A{x, h)

\h\^~^h. (See also Theorem 3.1 of [16]) □
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C H A P TE R  3

E IG E N V A LU E  PRO BLEM  

Existence Results

Before presenting our main theorem, we first need to study the following eigenvalue 

problem in

-A p U  =  Xa{x)\u\^~'^u, 

where a non-triv ia l solution u E is called an eigenfunction provided

J  . V<  ̂=  A j  a { x ) \ u \ ^ - ^ u ( ( )  (3.1)

for all (f) E and by completeness for a ll <p G D^'^. In  th is case A is called an 

eigenvalue.

For the next theorem, we need the concept of genus. Let V  be the completion of 

w ith  respect to the norm

H r y  =  f j v u \ p  +  f
( l  +  lx |)A
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Let G =  [u  e V  \ f  a(x)|ti|P =  1}, and define

Ffc =  {A  C G I A  is symmetric, compact, and j ( A )  >  k },

wfiere 7 (A ) is tire genus of A, i.e. tire smallest integer k such tha t there exists an odd 

continuous map from A  to R ''\ {0 } .

T h e o re m  3.1. The eigenvalue problem above has a sequence of solutions (A^, 

with f  a(x)|$fc|P =  1 , 0 <  Ai <  A2 <  • • • <  Afc <  • • • . Furthermore,

Afc =  in f sup [  IVuF. 
a s T f c J

As such, the solutions (Afc,4>fc) are called m inimax eigenvalues and eigenvectors. 

Note; For a ll u e D ' '  we have ( y  . , , , , . , . , , , . , e F ,, so

A, =  inf
usoi.p J a{x)\u\P

P ro o f: Define I {u )  =  ^ f  |V u p  and 'I'(u ) =  ^ /  a{x)\u\P. C learly I  is well-defined

on V. Furthermore, I  is bounded below on G because

by Lemma 2.2. Before proceeding, we need the following lemma:

L e m m a  3.2. The functional I  satisfies the Palais-Smale condition on G, i.e. fo r

21



{ u „ }  c  G, i f  I{un ) is bounded and I '{un)  0, then { u „ }  has a convergent subsequence 

in V.

Proof: Fôr.the convenience of the reader, we reproduce the proof of A llegretto and 

Huang [3].

We firs t claim  tha t / '( u „ )  0 and { / ( u „ ) }  bounded w ith  { u „ }  C G implies tha t

Let J  be as in  Theorem 2.11, so tha t ||Ja|| =  ||u|| =  \\J and {Ju ,u )  =  ||u||^ for 

all u G D ^’P. By definition, / '( u „ )  —̂ 0 implies tha t

and since J  is continuous that

Now, since { / ( u „ ) }  =  {^  /  |V u „|^ } is bounded, then by H ardy’s inequality 

(Lemma 2.3), we can conclude tha t { u „ }  is bounded in  V. Therefore

( 7 X ^ 4 . ) , -  0 .
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Now, (Ÿ'(Un),Un) -  / a(x)|u„|P ^UnUn =  / a(x)|u„|P =  1, SO tha t

0,

and hence

proving the claim.

Next, we proved above tha t {%n} is bounded in V. Therefore, passing to  a subsequence 

i f  necessary, there exists uq e V  such tha t uq in U.

We claim tha t uq ^  0. F irs t note tha t on any bounded domain D, we have

[  a{x)\uo\^ =  \im [  a{x)\un\^,
Jn Jn

by the Sobolev Embedding Theorem (Theorem 2.1). Suppose uq =  0. Then 

/f^a(x)|a „|P  —> 0 for all bounded domains f l .  Choose 12 so tha t for all n sufficiently 

large we have

C||nXR^\n||iv/p||Va„||P <  -,

where % denotes the usual characteristic function and C  is the constant in Lemma 2.2.
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Then we can choose n  large enough so tha t

a{x)\un\^ =  /  a (x )|u „|'’ +  /  a (x )|u „
J Jn XK^\nK^\n

<  /  a (x )|u „ |P +  C||axRfvynlliv/p||V'U„||P
Jn

^ 1 1 1  

-  4 4 ~  2

contradicting the fact tha t Un E G implies tha t / a(x)|u„|P  =  p >  1. Therefore 

Wo ^  0 .

Now, by the assumption

we have tha t, for any (p G G“ ,

^ V u „V 0  =  c„ /  a(x)|wn|" ^ w „ 0 + o ( l)  (3.2)

where

^   (2 (Wn),WTi)
(^ ''(w „),w „)

/  |VWn|P~^VWnVWn
J" u(x) '^UpUpi

J  |Vw»r =  ^ I { U n )

because u „ 6  G.
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Take <p — Un — Um (3.2) (tw ice). Then, i f  12 =  Bp(0) is a ba ll o f radius r ,  we have

J { \ V U n \ ^  ^ V U n - \ V U m \ ^  ^ V t i m ) V ( t i n  “  t im )

— C l(x )  (c^j, ItiTj, U n  ^ m ) ( ^ n  ^ m )  4" o (  1 )

=  I  a(x)c,^(|w,^|^ Up Vjpfjiup Upfj
Jn

T  I  n (x ) c ,^ ( |w y t |^  Up Vpiflup Upfl
jR ^ \n

“b(CrA Cpjj j  a (x )|u^ [^  Ujp{Up Upyjj T  o ( l )  — Ap^^p T  Bn,m T  G p  T  ^ ( 2)*

We have

=  /  a{x) Vji ( 1 Vp
J rn\ q

— 1 a(x) Cn ( 1 Vp
J r^ \ u

< Ccp [ a(x)(|i
VRAf\n

IP- 2  I \ i ,  jP -2 'l

< G'c„||axKN\n||/v/p(||Vw„||P + ||Vwm||p

which approaches 0  (because ||aXE^\nl|w/p —> 0  as r  ^  oo independent of n and m, 

and { / (w „ ) }  is bounded.)

Now, for any fixed 12, we have (passing to a subsequence i f  necessary)

Ap^pi I  a(x)c7i( IUtiI Up [uTTiĵ  Urri)fup Upflj > 0
Jn

as n ,m  —>■ oo, since u „ Uq in  L ^(12) (because D^'^(12) is compactly contained in
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L'^(f2) for a ll p <  g <  p*). Finally, we have

û(x) I I — ü(x) Î TTî TlI "F J *  ^(^X^\Ujji\^

<  2  J  a{x)\un\^ +  2  J  a(a(x ) \m

so I f  a ( x ) |n „ |P }  bounded implies tha t { J  a (x )|n m |P “ ^ n ^ ( n „  — n ^ ) }  is bounded. Since 

[cn ]  =  { ^ / ( n „ ) }  is bounded, we have, passing to a subsequence i f  necessary, Cn-Cm —» 

0 as n, m  —> oo. Therefore +  B„^rn +  Cn,m —> 0 as n, m —> oo.

On the other hand, note tha t for any a,b E M'^,

|a -  b f  <  c((|a|P-"a -  |6 |P-^6 )(a -  6 ))'/^(|a|P +

where s =  p i f l  < p <  2 and s =  2 i f  p >  2 (which follows from Lemma 4.2 of 

L indqvist [19]). Therefore we have

[Vw„-Vw„i|P < c((|Vw„|P~^Vw„ -  |Vwr„|P“^Vw^)V(w„ -  w„i))̂ /̂  

. ( i v i 4 . r + i v i 4 n n ' - ' / '

By applying Holder’s Inequality, using T  +  ^  =  1 w ith  Pi =  772 and pg = we
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obtain

j  \VUn-VUm\^ <  c(^J{\VUn\P '^VUp-\VUmf ‘̂ VUm)^{Un-Um)

■ ( ^ J  \ V U p \ P  +  J  I V U r p f ^

^  c { A n ^ m  +  B n , m  +  C p ^ m  +

/■ r  \  l -«/2
J  iv w » r + J  iv w _ r

Since { /  |V w „|^ } is bounded, we can conclude tha t V w „ Vwo in  L^. Combining 

this w ith  H ardy’s Inequality (Lemma 2.3) gives w„ uq in  V. This completes the 

proof of the lemma. □

Theorem 3.1 now follows from Ljusternik-Schnirelmann theory, see for example 

Costa [6 ]. In  particular, for any integer A; >  0, Afc =  in f^ g n  su p „g^p /(u ) is a critica l 

value of I  restricted to G. Thus, there exists Ak G Tfc and G Ak such tha t A& =  

p l { ^ k )  =  sup„g^^^ p /(w ) and (At, $ t)  is a solution to the eigenvalue problem (3.1). 

Moreover, 0 <  Ai <  Ag <  • • • <  Aj, <  • • • . This completes the proof of Theorem 3.1. □

Properties of Eigenfunctions and the F irs t Eigenvalue 

We next investigate some properties of the firs t eigenvalue Ai and its eigenfunc­

tions.

T h e o re m  3.3. There exists a f irs t eigenfunction such that <î>i >  0 on oN

P ro o f: We firs t show tha t we can choose such tha t >  0 on . For u E V ,  w rite  

u =  — u~ where u'^ >  0,u~  >  0. Then V n  =  Vn'*' —V n “  and V |n | =  Vw*"-}-Vn~.
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Then we have

j  |Vw|P =  j \ V u + \ P  +  y  |Vw-|P =  J  |V |

Therefore |w| G V, and hence i f  $ i  minimizes I {u )  then so does |$ i| ,  so (Ai, |$ i|)  is 

a solution to (3.1).

So choose $ 1  such tha t >  0 on We next show tha t in  fact <3>i >  0 on R ^ . 

Suppose 4>i(xq) =  0. For a ball B  around xq, clearly 4>i >  0 on B. Then 4>i is a weak 

solution of the problem

—ApU — A a (x )|$ i|^ “ ^ $ i in  B, 

w >  0 on dB.

Then an application of Theorem 2.10 part (iii) implies tha t =  0 in  B. Since B  can 

by any ball, we have tha t =  0 on R-'^, a contradiction. This completes the proof 

of the theorem. □

Lem m a 3.4. Suppose u ,v  G C] D^'P, u ,v  >  b on R-'̂ , Tyf.E  L°°, and let

I uP -  vP \ (  uP — yP
I{u ,  v) =  -ApU ,  ^  -  - A p

vP-^ V p - 1

Then - - J i -, 6  /(u , i?) >  0 and /(u , v) =  0 i f  and only i f  there exists a  >  01 uP

such th a t u  =  a v .

Proof: We follow logic sim ilar to Anane [4]. F irst, since u ,v  G HD^'P, 7 , ^ G L°°
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and

' u ^  — v ^ \  , . / V \ P  / t ; \  p - i

uP' -1 +  V i;,

we have tha t € D^'P, and sim ilarly for • Now, we have

—ApU,
uP — yP

u P - ^  j  

=  I  |V n |P -2V îi. V

|V îi|^  V î i ■ Vn +  ( 1 +  (p —

p '  |V îilP -2 (|V n ||V r;| -  V u  ■ Vu)

+  ( i + (p - 1 ) i v u r  -  p 0 " " '  i v u r ' i v u i

We obtain a sim ilar result interchanging u and v, thus we have

7 ( u , u ) = y

where F  and G  are defined by

F (t ,  R, S) =  p(tP-^\R\P-^ +  t^-P |g |P -':)(|E ||g | - R - S )

G{t, r, s) =  ( 1  +  (p — +  (1 +  (p — — pt^“  V

for all t >  0, R, S E and r, 5  >  0. Clearly F  >  0, and F { t ,  R , S ) = 0  i f  and only 

i f  I / i l ls ’! =  R '  S. We w ill show tha t G >  0 as well. F irs t note tha t G(t,  0, s) >  0 and
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tha t G{t, 0 ,5 ) =  0 implies s =  0. I f  r  7  ̂ 0, let 2  =  { s / t r y .  Then we have

G {t , r ,s )  ^ r P { f f { z )  + g {z ) ) ,

!

where / ( z )  — — pz +  p — I  and g{z) =  (p — l)z ^  — pzP~^ +  1. A  simple calculus

exercise shows tha t f { z ) ,g {z )  >  0  for z >  0 , proving tha t I ( u ,v )  >  0 .

Furthermore, the same calculus exercise shows tha t (for z >  0) f { z ) ,g {z )  =  0 if  and 

only i f  z =  1 . Therefore, in  the case r  7  ̂ 0, we have tha t G {t , r ,  s) =  0 i f  and only 

i f  s =  t r .  Consequently, i f  I {u ,  v) =  0  then F {v /u ,  Vu,  V u ), G {v /u ,  |V u |, |Vu|) =  0 

on all of which is equivalent to |V u ||V u | =  V u  ■ V v  and u |V u | =  u |Vu|. This is 

equivalent to (uV v  — uVu)^ =  0, which implies tha t u =  av, completing the proof of 

the lemma. □

T h e o re m  3.5. ( i)  Ai is simple, i.e. the positive eigenfunction corresponding to Aj is 

unique up to a constant multiple.

( i i )  Ai is unique, i.e. i f  v >  0 is an eigenfunction associated with an eigenvalue A

with f  a{x)\v\P =  1, then A =  A%.

( i i i )  I f  pL> \ \  is an eigenvalue with eigenfunction v, then v must change signs in

P ro o f: Let u >  0 and u >  0 be the eigenfunctions associated w ith  Ai and A

respectively,, chosen such tha t J  a{x)\u\P =  f  a{x)\v\P =  1. Then, as in  the last

part of the proof of Theorem 3.3, we must have v >  0. By Theorem 2.9 we have
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u , v  E C  (R  ). Therefore we can apply Lemm a 3.4 to  get

uP — vP \ (  . uP — yP
- r._i I ( Apy,

uP — yP f  , ,uP — yP

=  (Ai — A) y  a{x){uP — yP) =  0,

which implies tha t u =  av  for some a  >  0. However, by our assumption tha t 

J  a(x)|u|P =  J  a(x)|u|P, we then have tha t u =  v, and hence Ai =  A. This completes 

the proof of all parts of the theorem. □

L e m m a  3.6. Let denote a f irs t eigenfunction o f (3.1) satisfying 4>i >  0. Then 

4>i E Z/’’ f o r  all p* <  r  <  oo.

P ro o f: For th is proof we apply a method sim ilar to tha t used in  Appendix B of

Struwe [25]. Let u =  $ i,  and let s, M  >  0. Let 4> — (f)s,M =  um in(nP ’', M p). Keep in 

m ind tha t u >  0 and u E D^'P C L p\  w ith  p* —

We firs t wish to  show tha t i f  n E then E D^'P. To s im plify  notation,

we denote the set { x  E | (u(x))® <  M }  by {u^ <  M } .  We have

J \V { u m m { u ^ ,M ) ) \ ^  =  J \V u m in {u ^ ,M )+ u x u ^ < M S U ^ ~ ^ V u f ’

<  2P [ \V u \P  mm{uP\ MP) +  I  gPu'P|Vu|P
.J Ju^<M
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Now, use u  and </> in  (3.1). We get

j  |Vu|^ ‘̂ V u  ■ M P )  +  u X u ^ ^ M P S u P ^  ^ V u )

=  Xi [  a{x)uP~^X  min(u^^, MP)

so tha t

f  \V u \P m m {u P \M P )+ p s  f  =  Ai /  0 (1 )11" mm(u'",M'').
J J u ‘ < M  J

Therefore there exists a constant C  depending only on s, p, and ||a||oo such tha t

J  |V (u m m (u ',M )) |"  < C  J  u "m in (u " ',M " )

Letting  M  —> 0 0  and using the fact tha t u G we have tha t G D^'P C

LP , i.e. tha t u G / 7 ' N o w ,  let sq =  Then p(so +  1) =  — p*, so

u G LP“ =  LP(*o+b. Therefore the above demonstrates tha t u G Now we

can ite ra tive ly let p(sj +  1 ) — p*(s j_ i +  1 ), i.e. tha t Sj +  1 =  (s j_ i +  l ) jX p  obtain 

u E M  for all p* <  r  <  0 0 . Note tha t here we used the fact tha t /  G n  LP'  ̂ implies 

/  G LP  ̂ for a ll p i <  pa <  P2 , which follows from an application of Holder’s inequality. 

This completes the proof of the lemma. □

T h e o re m  3.7. Let $ 1  denote a f irs t  eigenfunction of (3.1) satisfying $ 1  >  0. Then 

$ 1  E D^'P n  fo r  all 7  >  p.
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P ro o f ;  We have by H o lde r’s Inequa lity

N
N  — pj  a{x)^l  <  (^J a (x )p^

=  ||a||Ar/pll*^ill.y/v/(iv-p) ^

by Lemma 3.6, because =  P*- This proves the theorem. □
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C H A P TE R  4

SCALAR PRO BLEM  

In  th is chapter we let Ai =  A i(o ,p) be the firs t eigenvalue of Theorem 3.1.

M a in  T h e o re m  4.1. Consider

—ApU =  a{x)X\u\P~'^u — a{x)g{u) x E R ^  (4.1)

where

(Ao) p : R'*' —> R'*' is continuous,

(A i)  lims_o+ jX r  ~  0 ,

(Ag) 0  <  lim in f^^oo ^  <  Hrasup^^,^ <  oo with 7  >  p,

(A 3 )  is nondecreasing,

(H i)  , 0 <  o(x) E L ^ /" (R ^ )  n  L °°(R ^),

( 8 2 ) 1 <  p <  Af and A >  Ai.

Then (4-1) has a solution ug >  0 m R ^  which satisfies,

(J
uo{x) >  — f or  |x| large. 

1x 1

I f  we change conditions (A 3 ) and (B i)  to be 

(A 3 ) is increasing,
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0 <  a{x) G n  L °°(R ^) and fo r  all x  G R ^  we have

fo r  some constant C  and some P  >  R, with p  +  ^  =  1.

Then we can conclude in addition that ug is the unique positive solution and that

(i(x)
Ug(x) =  — ^  fo r  |x| large, (4.2)

|x|

where c <  d{x) <  C  fo r  all x  G R and some constants c ,C  >  0.

Existence of Solution

L e m m a  4.2. For any e >  0 there exists constants C i =  C i(e) and Cg =  C2 (e) such 

that

-e (s + ) " - i +  G i(s + ) t'- i <  g{s) <  e{s+y~^ +  C 2 { s + y - \

-e (s + )"  +  C i(s+ )^ <  G(s) <  e(5+)P +  C2 ( s + ) \  

where G(s) =  g{t)dt.

P ro o f: This follows from our conditions on g. □

We say tha t u G D^’P is a (weak) solution to (4.1) if

J  |V n |"“ ^V n  • V u  — A J  a{x)\u\P~'^uv +  J  a{x)g{u)v  =  0  (4.3)

holds for all u G D^'P f l  L?, v Note tha t the condition u G L L   ̂ arises from the facta\x)  a \x)
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th a t

J a(x)u '^  a {x )u '^ ^  a{x)v '^ '^
1

and in  our construction of a weak solution below via m in im ization we determine 

tha t u E In  addition, we do not require v E because D^’P C by

Lemma 2.2.

T h e o re m  4.3. I f  u E D ^’P is a positive weak solution to ( f . l )  then A >  A%.

P ro o f: By Theorem 3.1 we have tha t Ai <  for a ll u E D^'P. Therefore, for
■'  ̂ —  J a ( i ) | u |P  '

our positive solution u we have

X ,J a { x )u P  <  J \Vu\P

=  A J  a{x)uP —  J  a{x)g{u)u

(A i -  A) y  a{x)uP <  -  y  a{x)g{u)u <  0

because a{x) >  0 and g(u ),u  >  0. Therefore A >  Ai, completing the proof. □

We consider the functionals

J  : ^  R U {oo }, J (u ) =  /  o (x)G (u )

so tha t
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and

I  : D^'P -4  M U  { 00}

-  ; /a ( x ) (u + )P  + J ( u )  J { u ) < o o  

0 0  J{u) =  0 0

Our goal is to find a solution to (4.1) by m in im izing / .

Le m m a  4.4. (a) I  is coercive, i.e. I {u )  —> 00 as ||u|| —> 0 0 .

(b) I  is a weakly lower semi-continuous functional.

P ro o f: (a) We generalize the methods of Du and Ma [12].

Assume not. Then there exists { u „ }  C D^'P such tha t { / (u » ) }  is bounded above and 

||u„|| —> 00. Let dn =  ( f  a(x)(u+)P)^'^^. Then ||u„]| —> 00 implies tha t dn —> 00. 

( / (u „ )  >  ^||u„||P -  d̂f, and ||u„|| —> 00, so i f  {d „ }  is bounded then / ( u „ )  —> 00, 

contradicting the assumption tha t { / ( u „ ) }  is bounded above.)

Set ü „ =  ^ .  Then /  a (x )(ü+ )" =  1 and

z ( u j  =  l y  i v u « r - ^ y  o ( x ) ( u + ) " + y  o ( x ) G ( u « )  

^  y  y  o ( x ) ( ü + ) " + y  o (x )G (d » û ^ )

so tha t

pZ(u„
dn

— y  |V u „|"  — A +  ^  y  a{x)G{dnUn) >  y  |V u „ |"  — A

Therefore, since —> 0, we have tha t {||un ||} is bounded. This implies, passing to
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a subsequence i f  necessary, tha t u „ u in  u  a.e. in  R ^ , and u „ ^  u in

^a{x) (^y Lemma 2.6). In  addition, we have

= y|Vü„|" — A + ^  j  a{x)G{dnUn)

> j  |V%|" -  A -  1 1  a{x){d..üir + ^  /

> - A  -  ep +  C i t s d l ' "  j o {i)(S + )''

by Lemma 4.2. Therefore, 7  >  p and ^  0 0  im p ly tha t /  a (x )(ü+ )^  0. Hence,

by Fatou’s lemma we have

f  a{x){ü^y = 0.

Therefore, since a{x) >  0  on R , we have tha t ü <  0 on R . However this contradicts 

the fact tha t ü „ ^  ü in  and f  a ( x ) ( ü f y  =  I  for a ll n. This proves part (a) of 

the lemma.

(b) Assume u „ ^  u in D^'P. Then Lemma 2.6 implies

y  a{x)u^ — >■ J  a{x)uP.

Furthermore, since u „(x )  u{x) for a.e. x  € R ^ , we have by Lebesgue Dominated 

Convergence Theorem tha t

J  a{x)\u);\P ^  j  a{x)\u+\P,
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and by Fa tou ’s Lem m a th a t

/  a{x)G(u) <  l im in f  [  a (x )G (n „).
J J

Finally, by Lemma 2.5, || • ||" is weakly l.s.c., so tha t u „ ^  u in  D^'P implies p u | | "  < 

lim in f„_oo  ^||u „||". Therefore I {u )  <  lim in f„_oo  Z(u„), hence is weakly l.s.c. This 

proves the lemma. □

T h e o re m  4.5. (Solution to the M in im ization Problem) The minim ization problem

in f I {u ) ,  u G D^’P

(i.e. f ind u G D^'P fo r  which i n f / ( n )  is achieved) has a solution ug G D^'P with

in f I {u )  =  I{ug) (4.4)

P ro o f: This follows d irectly from Lemma 4.4 and Lemma 2.5. □

T h e o re m  4.6. Suppose ü is a m inimum point of I , i.e. a solution to (4-4)- Assume 

that { t „ }  G M"*", l i m „ ^ o o ^ n  =  0- Then, i f  v E D^’P f l  we have

0 =  lim
n—OO tn

=  J  |V n |"“ ^V n  ■ V u -  A J  a{x){û'P)P~^v +  j  a{x)g{u)v.
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P ro o f: I t  is enough to  show tha t for v € f l , we have

=  J  n ( i)5 (u ) i

(This then proves the second equality above, and both then equal 0 due to the fact 

tha t Ü is a m in im um  for I  and tha t v can be replaced by —v above.)

To prove the above equation we need to prove tha t

J  a{x) J  g{s)ds^ d x J  a{x)g{u)v dx.

Define T’„ (x )  =  T  g(s)ds. Since g is continuous, T’„ (x )  g{ü{x ))v {x )  for a.e.

X € In  addition, by Lemma 4.2, we have (for some 0 <  and assuming

w ithout loss of generality tha t <  1 )

l& (3 :)| <  ^ { tn \v \ )g {u  +  t^v)

< -î-(t„|u |)(e (û+  +  +  C2 (ü+ +
t-n

<  e C ((û + )P "> | +  {v+Y) +  C ( ( n + ) ^ " > |  +  (v-^Y)

Therefore, for any domain D C dTV

j  a { x ) F n { x )  <  ( ^ J  a(z)|u"'"|^^ ■ a { x ) \ v \ ^ ^  +  eCy  a { x ) \ v \ ^

J  a { x ) \ u ' ^ Y ^  ' ( y  +  ( ^ y  a(x)|u|'
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Now, we have i; e n C n ir C D '̂P C and < °o

(because ü m in im izing I  implies J  a{x)G{ü) <  oo.) The theorem now follows from 

an application of V ita l i ’s Convergence Theorem, Theorem 2.4. □

From this point on we w ill always assume tha t A >  Ai.

C orollary 4.7. A solution uq to the minimization problem (4-4) *■5 ® weak solution 

to the problem

—ApU =  Xa{x)(u'^Y~^ — a{x)g{u), x E (4.5)

i.e.

J  |Vuo|P"^Vuo - V v  =  j { \ a { x ) { u l Y ~ ^  ~  o(z)g(uo))u V u € n  D^-p. (4.6)

In  addition, I { uq) <  0, so that uq is non-trivial.

Proof: The firs t part follows immediately from Theorem 4.6. For the second part,

let $ 1  >  0 be a firs t eigenfunction (as in Theorem 3.3), normalized so tha t ||$ i|| =  1. 

Then we have

Z((0 i )  =  | v $ i | P - : y  y a ( z ) $ ?  +  y  a (z )G (($ i)

K ‘ " x .

y  a(x)$7-

The result now follows from having A >  A% by choosing e and t  sufficiently small and 

using the facts tha t 7  >  p and $ i  6  as proved in Theorem 3.7. □
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Properties o f S o lution

Lem m a 4.8.

Uo(a:) >  0 V æ 6 R^.

I

Proof: Since G is a function of and f  jVno| >  f  iVug [ we have tha t I(uo) >

I ( u q ). Since uq minimizes I (u )  we in fact have I ( uq) =  I ( u q ), and thus we can 

assume tha t U o(i) >  0 . □

For the remainder of this Chapter, we let Uq be any non triv ia l solution to (4.6) 

satisfying uq >  0 , rather than assuming i t  is the solution tha t we arrived at via 

m inim ization.

T heorem  4.9.

Uq G L°° n  n  and  ̂ lim  uq{x) =  0.
| x |

Proof: Uq is a weak solution to the variational inequality

-A p U  >  Xa(x)x{:r I x G R ^ .

Therefore, since U q G L A ' , an application of Corollary 2.8 part (ii) (w ith  7  — p* and 

moving the center of the cube K{3p)  to any x G  M ^) yields tha t sup Ug <  C'||uo lip* <  

C ||n^|| and lim|,q-.oo'î̂ o (^) =  0 for some constant C =  C(A, jjajjoo). Therefore

sup UQ <  C, (4.7)

where C — C(A, ||a||oo, ||u^||). Therefore, since uq(x) >  0 by Lemma 4.8, we have
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Uq € L°° and lim|j;|_oo =  0-

Next, since uq € L°° n  and 7  >  p, we have uq €

Finally, we have uq € C[q“ (R ^ ) by Theorem 2.9. □

Lem m a 4.10. Set f { x )  =  Xa{x){uQ {x)y   ̂ — a{x)g {uo{x)). Then f { x )  >  0 fo r  all

X e

Proof: We apply sim ilar methods to Costa, Drabek and Tehrani [7].

Let S =  m ax{s | =  A}. Then, by assumption (As) in  our conditions on g, we

have tha t a(a;)(A(u^(x))P~^ — g{uo{x))) <  0  if  and only i f  u q ( x ) >  S. Now define 

V =  { uq — S Y -  Then since 0 <  u <  <  |uo| and uq  € v  is an admissible

test function in  (4.6). Therefore, i f  { uq >  5 }  is nonempty then

<  f  |Vuo|P
J {uo>S}

=  J  |Vuo|^~^Vuo • Vu

=  J  a { x ) { X { u ^ Y ~ ^  -  g { u o ) ) v

=  [  . a{x){X{u+Y~^ -  g{uo)){uo -  S y  <  0 , 
J {«o>‘5}

a contradiction, so tha t uq <  S in  proving the lemma. □

A t th is point we can prove tha t Uq >  0 by applying the M axim um  Principle of 

Theorem 2.10. However we employ a different method, which in  addition provides 

estimates for the behavior of uq at infin ity.
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Lem m a 4.11. Given  e >  0, set

V^ =  [ x  \ Uo(x) >  e a ( x ) ~ ^ ,  f { x )  >  e a { x ) { u Q { x ) Y ~ ^ } .

Then there exists positive constants cq, L q and >  1 such that, f o r  all 0 <  e <  Cq 

we have

||ûXn||w/p >  L q,

where D =  K  n  B r^{0) =  % n  {z  | |x| <  R i } .  Here our constants Eq and L q may 

depend on X,p, ||a|lAr/p and ||uo||-

Proof: Again we apply sim ilar methods to Costa, Drabek and Tehrani [7].

Let e >  0. To sim plify  notation, we w rite  V  — %. Then, le tting  u =  uq in  (4.6), we 

have

J  Xa{x){u^Y ^^0 -  y  a{x)g{uo)uo

/  Aa(z)(u^)P"^Uo -  /  a(x)p('Uo)uo +  /  f {x )uo  
J v  J v  J R ^ \ V

f  Xa{x){u^Y~^'^o+ [  f {x)uo  
J v / r^ \ v

<  A C | | a % y | | j v / p | | u o | | P +  [  f { x ) u o .
Ju^\v

Consider the decomposition M ^\P  — A i U A2, A i C A2 =  0 , where

/V —p
A i  =  { x  \ u q { x ) <  e a ( x ) T ^ } ,

A 2 =  { x  \ f { x )  <  e a { x ) { u ^ { x ) Y  \  U q { x )  >  e a { x ) T ^ } .
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Then we ob ta in

/  f {x )uo  =  A /  a{x ) {uoY  -  /  a(x)g(uo)uo 
J  Ai J  Ai J Ai

<
lAi

Ae" /
J ai

Furthermore,

[  f { x ) u o < e  [  a(a:)|no|'’ <  eC||a||w/p||no||'’ .
A2 "/ A2

Therefore, combining the above estimates, we obtain

| |u o f  <  AC||axv||iv/p||îXoir +  Ac^||a||%  +  eG||uo||^t|a||v/p.

Therefore we can find cq >  0 (depending only on A, ||no|| and ||a||w/p) such that, for 

e <  eo,

and hence

||aXvlU/p >

Next, we le t Lq =  Since a G there exists >  1 such tha t
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Therefore, considering tha t C Y  for 0 <  e <  Cq, i t  follows tha t

||aXVEnBR,(o)lliv/p >  Z/Q,

!

completing the proof of the lemma. □

The reader should note tha t the above proof works w ithou t the pointwise estimate 

of Lemma 4.8, because we have g(s)s >  0  for all s G M.

We are fina lly  ready to study the behavior of uq at in fin ity , proving in  the process 

tha t îxo >  0 .

T heorem  4.12. There exists C  >  0 such that a solution uq >  0 of (4-6) is a positive 

weak solution to problem (4 -1 )  o,nd satisfies

(J
u o ( x )  >  — ^  f o r  |x| large. 

1x 1 p-i

Proof: We have tha t uq is a weak solution to (4.5) in  Therefore, using the

notation of Lemma 4.11 and le tting  V  =  Ko> we have by the defin ition of V  tha t

N p —N + p

-ApUo = \a{x){u^Y' -  a{x)g{uo) = f{x) >  e^(a(x)) F  on P  H BufiO).

For R >  Z?i, consider z =  z^, the solution to the D irich let problem

N p - N + p

- A p Z  =  eg(a(x)) p' XvnBR^(o) in  B r {Q), 

z =  0  on dBnYf).
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The solution z exists by Theorem 2.13, is continuous (and hence bounded) by The­

orem 2.9, and is p-superharmonic by part (iv) of Theorem 2.10. Since f { x )  >

N p - N + p

CQ(a(x)) in  y  n  B r^{0) and f { x )  >  0 in  (by Lemma 4.10), we have

-ApUo >  - A p Z  in S / j( 0 ).

Furthermore, since uo >  0  in R " ,  we have tha t

uo >  z on dBniQ).

Therefore, by the Weak Comparison Principle of Theorem 2.10, we conclude tha t

uo >  z in S r ( 0 ).

Now, choose R  >  24i?i. Then we have, for x G 5/j/24(0),

B r ,(0 )  C B r / i 2 (x) C B r / 6 (x), and B r / 2 (x) C B r(0 ).

N p — N + p

So, since -A p Z  =  £^(a(x)) XvnSji^(o) in  B r / 2 {x) C B r {0 ) ,  we can apply Theo-
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N p - N + p

rem 2.15 to p {ü )  =  j^e g (a (x )) F xvnBR^{o)dx and get

/  1 f  Np-N+p \  P”i
z{x)  >  + 1  y  y  ^o(aW ) XvnBR^(o]dyj - j

p R / 6  '  -  —
1 f  N p - N + p  \  p-1 r l i

I r /12 \ £  ^  Z B ( ( x )  /  t

f  I  f  Np-N+p \  dt

Zfi/12 \  t  ^ J vhBr, (0) /  tR/12 y  " VvnBRjO)

/" Z r . /  /  ; V p - N + p  _ ^  P-i / 1  \  dt

t )  T
r n / b  /  r  N p - N + p

^ 1  /  /  eg(a(y)) p" dy
JR/ 1 2  \JvnBR,{Q)

\7vnBfl,(0) /

for |x| <  Now, by Theorem 4.11, we have

<  llo ll:, /
JvnBRj^(o) VynBAi(o)

where a  =  j  — ^P-A+p — Therefore, taking |x| =  and using the fact tha t 

R >  24i?i is arb itrary, we have tha t there exists C\ — Ci(eo, ||o||oo,To) such that

Q
Uo(x) >  — for |x| >  Ri.  

|x| p-i

Furthermore, choosing R =  24/?i, we have tha t there exists Cg — C'2 (eo, Halloo, Tq) 

such tha t

Uo(x) >  C 2 , for lx| <  ^  =  i? i.
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Therefore uq >  0 and there exists C  >  0 such th a t

(J
-no(x) >  — jr-

for |x| sufficiently large. This completes the proof. □

Uniqueness and Sharp Estimate at In fin ity  

We finish th is chapter by addressing the uniqueness and the sharp estimate at 

in fin ity  for uq.

In order to prove the sharp estimate at in fin ity  for uq, we need the following 

lemma.

Le m m a  4.13. Suppose 0 <  h E n  L°° and fo r  all x E we have

|x|Q(p-n ||h||ue(R^\B|^|(o)) (4.8)

f o r  some constant C  and some P  >  ^ ,  with p  +  ^  =  1. Then there exists a unique 

weak solution w to

—ApW =  h

with w E n  n  L°°, lim |3;|_.oo w(x)  =  0, and there exists a constant d >  0 such 

that

d
I 7 ^  |x| p-1

w{x)  <  — V X e M ^.

P ro o f: We use techniques developed in Lemma 4 of A llegretto  and Odiobala [2].
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The solution w  E  exists and is unique by Theorem 2 .1 3  and is p-superharmonic 

on bounded domains by part (iv) of Theorem 2 .1 0 .  In  addition, w  E D L°° and

lim |j; |_ ,o o  u;(x) =  0  by an application of Theorem 2 .9  and Corollary 2 .8 .

Now, lét r  >  0. Then by Theorem 2.15 we have + 3  >  0 such tha t

/‘2’- /  1 f  \ p ^ d t

Letting  r  —> 0 0  and using the fact th a t lim|j,|_oo w{x)  =  0 we get

p-i dt
» (x )  <  ,

r \ x \ / 2  _ j _  / i \ ^  r ° °  _ J _  /

For the second term  on the righ t we have

+ 3 /  I l f i l I r L  I -  I dt

*1/2 / 1  \  r°° / 1 \ ^N-1  ,  ̂ N-1

i

N-1 N-1
00 _1_ / l \ J ^  / l \ ~ P ^

1

N -

1 \  p-i
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Now, we also have, w ith  hx{y)  =  h {y  +  x )  and ^  ^  =  1,

||/i||li(s.(x)) =  /  h{y)dy

K {y )d y
'Si(O)

Cl [  h Y t y ) t ^ d y  
Jbi{0 )

i /p
<  C2 t ^  ( /  {hY ty ) ) ^d y

' B l ( O )

KJBtiO)

Therefore,

rl̂ l/2 1 / l  \  p-̂   .t- rl*l/2 1 i-jv , JV
y  ll^llL'(Bt(x)) =  3̂  ̂ y  ll^ lllp ^B t(x ))^ '" ' ^ ^ ^ d t

p - N  , N
—  /  | x |  \  P - i  Q ( p - i )

-  5̂||/î|i7p(RN\B| |̂/2(0)) f o  j  |x|Ô(ï^

where we used the fact tha t P  >  ^  implies tha t >  0. The lemma now

follows from our condition (4.8) on h. □

Now, by our conditions on g we have tha t there exists an 5  >  0 such tha t

S =  sup As^  ̂ — g{s).
s 6 K +

Therefore a{x){XuQ \ x )  — g{uo{x))) <  Sa{x),  and so the sharp estimate (4.2) now
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follows from Theorem 4.12 and Lemma 4.13, where we apply condition {B[)  of The­

orem 4.1.

Finally, suppose we have two positive solutions u =  uq and v to (4.1). Then, since 

our results following Lemma 4.8 hold for any nonnegative solution to (4.6), we get 

sharp estimates for both u and v at in fin ity, proving tha t ^ E L°°. In  addition, we 

have u ,v  E by Theorem 4.9. Therefore, by Lemma 3.4, we can apply (4.3) to our 

admissible test functions vLxyf and to  get

0  <  I { u , v )

- A y  +  y  o ( x ) g ( u ) ^ ^ ^ ^

Therefore, by condition (Ag) on g (tha t is increasing) we have tha t 0 <  /(n , u) <  0 

if  u and v are not identical, a contradiction. Therefore u =  v, and hence we have 

uniqueness for positive solutions to (4.1).
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C H A P TE R  5

SYSTEM PRO BLEM  

In  th is chapter we let A i(p) =  A i(a ,p) be the firs t eigenvalues of Theorem 3.1.

M ain T heorem  5.1. Consider

-A p ^ u  =  a i(x)(/x i|u |P i -  5 i(n ))  +  F „(x , u, v) 

-A p ,u  =  a2 (x)(M2 |u |P "~ \ -  g2 (,v)) +  u, v)

(5.1)

where f o r  z =  1 , 2 ,

(Ao) 9 i : > R"^ is continuous,

(A i)  lim,_^o+ # [4  =  0,sPi-

(A2) 0 < liminf^_^oo 4̂̂  <  lim  sup^_^^ 4) ^  < 00 with 7, > pi,

{A 3 ) is nondecreasing,

(Bo) F ( x , s , t )  : R ^  x  R+ x R+ —> R+ is given by F { x , s , t )  — b { x ) s ^ t ”^^rF  ̂ fo r  

some 1 < m < 00,

(R i) 0 <  b{x) =  P (x )(a i(x ))m  (a2 (x ) ) ”7 T f o r  all x  E R ^  and some F E L°

(G i) 0  <  o^(x) E L ^ /P '(R ^ ) n  L °°(R ^),

(G2) 1 < Pi < Y , m < p i, <  p2 and > Ai(pi).
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Then (5.1) has a solution {uo,vo) with uq, vo >  0 in In  addition,

(J
Uo{x) >  — f or  |x| large,

X PI-

and

(J
V o { x )  >  — f or  |x| large. 

1x 1 P2-1

Existence of Solution 

Since we are varying p in this chapter, we define

\  i/p 
l“ lli,p

L e m m a  5.2. ( i )  For any e >  0 there exists constants Ci  =  Ci{e) and C'a =  C 2 (e) 

such that

-e(s+)P ‘ - i  +  C i( s + p -^  <  gfis) <  e{s+y ' -^  +  C2 { s + Y ' - \

-e(g+)P ' +  Gi(g+)T'' <  G i(g) <  e(g+)'" +  0 2 (5 +) '̂%

where Gi{s) =  gi{t)dt.

( i i )  There exists Gq >  0  such that

J  |F ( x ,u ,u ) l,y  |F „ (x ,u ,u )u |,y  lF „(x ,u ,u )u |

< C o ( [  a i(x ) (u + )p y  (  [  a2 (x)(u+)P"
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Proof: This follows from our conditions on g, and F  (and Holder’s Inequality). □  

We consider the functionals

J  : X ^  K u {oo}, J(u, v) =  J ai{x)Gi{u) +  f  a2(x)G2(v)

K  : X R + ,  K{u,  v) =  f  F{x, u, v)

and I  : x R U  { 0 0 } where I{u,  u) =  0 0  i f  J (u , u) =  0 0  and

I(u,v)  =  — / | V u | ^ ^ - —  /  ai(x)(u+)^^ +  — [  i V v y  — — [  a2{x){v'^Y^
P i  J  P i  J  P 2 J  P 2 J

+  J{u,v)  -  K{u,v)

i f  J{u,v)  <  0 0 . Our goal is to  find a solution to (5.1) by m in im izing / .

L e m m a  5.3. (a) I  is coercive, i.e. I { u , v )  0 0  as ||u||i,p, +  ||u||i,p2 0 0 .

(b) I  is a weakly lower semi-continuous functional.

Proof; (a) Assume not. Then there exists { ( u „ ,u „ ) }  C x such that

{ I {un ,Vn) }  is bounded above and ||u„||i,p, +  ||un||i,p2 0 0 .

Let d„ =  ( f  ai(x)(ufiY^)^^^^ and e„ =  ( f  a2 (x)(vf iY^)^^^^. Now, w ithou t loss of 

generality and passing to a subsequence i f  necessary, we can assume tha t ||un||i,p,

0 0 .

F irst we show tha t ||u„||i,pi 0 0  implies tha t d„ —> 0 0  or e„ —> 0 0 . We have.

55



app ly ing  Lem m a 5.2, th a t

I{Un,Vn) >  — \ \ U n \ \ l ] p , - y d ’f i  +  — \\Vn\\Yp2 - — e ^ ^ - f \ F { x , U n , V n )
P i  P i  P 2  P 2  J

P i  P i  P2

and ||n„||i_p, —> oo, so i f  { d „ }  and {e „ }  are bounded then J (n „ ,u „ )  —> oo, contra­

d icting the assumption tha t { / ( u „ ,u „ ) }  is bounded above. Therefore, passing to a 

subsequence if  necessary,  ̂ oo or e„ —̂ oo, as desired. I f  we have tha t ||un||i,p2 is 

bounded, then because <  G||a2 ||iv/p2 ll'Cnlli72  we also have tha t {e „ }  is bounded. 

Therefore either  ̂ oo and ||u„||i,pi —̂ oo, or we have e„ —̂ oo and (passing 

to a subsequence i f  necessary) ||u„||i,p2 —̂ oo, or both  cases occur simultaneously. 

Hence, w ithou t loss of generality, we can assume tha t ||u„||i,p, —̂ oo,  ̂ oo and 

h m s u p „^ ^  ^ < 0 0 .

Next, set ^  and Then

f  a i { x ) { K Y '  =  [  a2 {x){v f iy^  =  1
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and

I {un,Vn) =  — [  |Vu„|P^ -  —  /a i(x ) (u + )P i +  f  a i(x )G i(u „ )

+  — [  |Vu„|P2 -  —  /  a2 (x)(u+)P= +  f  a2 (x )G 2 (Vn)
P 2  J  P 2  J  J

J *  ^n)

^ "  /  /  “ l ( ^ ) ( “ n ) ^ ' +  J  a i { x ) G i { d n Ü n )

J  I V v n ^  -  J  a 2 { x ) { v ( f y ^  +  J  a 2 (x )G 2 (e „ ü „ )

y  F { x ,  Uji, Vji)

Vi
p P 2  

+  - 
P2

so tha t

=  L  [ \ V ü „ r  ~  -  +  A  [ M x ) G , { d „ u „ )
d n  P i  J  P i  Ujx 7

~  J

Pi P9(m-1)

>  -  /  i v ü „ r  -  —  -  -  G o ^  ”
P i  J P i  P 2 < ^ '  d^

P i Pi P2^ '

Therefore, since _> Q and lim su p „_ ^o o ^  <  oo, we have tha t {||u „||i,p i} is

bounded. This implies, passing to a subsequence i f  necessary, tha t û „ ü in 

û „ —> Ü a.e. in  M ^, and Un ü in (by Lemma 2.6). In  addition, applying
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Lem m a 5.2 we have

I{Ufi, Vfi)
— — [  |Vu„|^^ — —  +  f  ai{x)G i { d n U n )

P i  J  P i  %  J

+  +  d ?  /

^pi J  B^X^Un^Vn)

Pi ' d F /« iW G i(d .« . )  -  ^  | f ( x ,« .,« .)!

-  ~ 7 i  -  S ' ^
,  . m ~ l-(f)

Therefore, 71 > p i and d„ ^  00 imply that f  ai(x)(ü+)^^ —> 0 . Hence, by Fatou’s 

lemma we have

j  a i(x)(û+)^ ' =  0.

Therefore, since a i(x) >  0 on M''^, we have that ü < 0 on M''^. However this contradicts 

the fact that ü „ ü in L ^ q x ) I  ai(x)(ü+)^^ =  1 for all n. This proves part (a) 

of the lemma.

(b) Assume u „ ^  l i  in and u„ ^  u in Then Lemma 2.6 implies

ai (x)u^  ̂ J  ai{x)u^^ and J  a2{x)v^  ̂ J  a2{x)v^ .̂

Furthermore, since u „(x ) u{x), u„(x) u(x) for a.e. x E R , we have by Lebesgue
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u + r ,

D om inated Convergence Theorem  th a t

J  a i { x ) \ u ) ^ y  j  Oi(z)|u+|P\ j  a2(x)|u+|P" J  02M I

and

J  F { x , U n , V n )  J  F { x , U , v ) .

I t  follows by Fatou’s Lemma tha t

/  a i(x )G i(u )  <  lim  in f /  a i(x )G i(u „ )  and [  a2 {x )G 2 [v) <  lim  in f /  a2 (x )G 2 (u„).
J n-»oo J  J  n-,00 J

Finally, || • ||  ̂ is weakly l.s.c. by Lemma 2.5, so tha t (u,v)  in D^pi y

implies +  <  lim  in f , ,^ ^  ^ ll^« llg p i +  Therefore I { u , v )  <

lim inf„_,oo I{un,Vn),  hence is weakly l.s.c. This proves the lemma. □

T h e o re m  5.4. (Solution to the Minimization Problem) The minimization problem

m fZ(ri,u), (u,u) E X

(i.e. f ind (u,v)  € x f o r  which in f / ( u ,u )  is achieved) has a solution

( U O j Vq )  E  X

in f I (u ,v )  ^  I(uo,vo). (5.2)
(u,u)eDi’Pi xD1’P2

P ro o f: This follows d irectly from Lemma 5.3 and Lemma 2.5. □
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T h e o re m  5.5. Suppose (ü,v) is a minimum point of  I ,  i.e. a solution to (5.2). 

Assume that { t „ }  e R"*", lim„_>oo/n — 0. Then, i f  w E f l  and z E

n  we have

0  =  lim  ^("d +  tnW,v) -  I { ü , v )
«-►oo tn

=  I  IV ü jP i- 'V û  • Vu; -  / i l  J  a Y x ) { ü + y - ^ w  

J  a i {x )g i {u )w  -  J  Fu {x ,u ,v )w+

and

0  =  lim  7
« -► O O  t n

=  y |V ü |M - 2 v û V z - / i 2 y o 2 N ( i ; + r - ^ ;

+  /  a 2{ x ) g 2{ v ) z  -  /  F y { x , u , v ) z

P ro o f: In  view of Lemma 5.2, the proof follows exactly as in the scalar case.

Theorem 4.6. □

C o ro lla ry  5.6. A solution (uo,Vq) to the minimization problem (5.2) is a weak so­

lution to the problem

-A p i(u o ) = / i ia i ( x ) ( i i^ ) P i   ̂ -  a i( x ) g i( i io )  +  F „ ( x , i io ,u o )
(5.3)

- A p f i v o )  =  / i2ü2(x)(u^)P^-^ -  a2(x)5f2(uo) +  F y { x , U o , V o ) ,
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i n  R''^, i .e.

/|V u o [P i ^ V u q  • Vu; =  / ( / i ia i(x ) (u ^ )P i  ̂ -  a i(x)g i(uo ))u ; +  f  R „(x, U q , u q ) u ; ,  

f  |Vuq|P2-2Vuo • V z  =  f ( / j ,2 a2 ( x ) ( v ^ y - ^  -  a2 (x)g2 (vo))z +  f  Fy(x,uo,vo)z,

(5.4)

In  addition, I { u , v )  <  0 so that (uq,Uo) is non-t r iv ia i  Final ly, we have that both Uq 

and vq are each non-trivial.

P ro o f: The firs t part follows immediately from Theorem 5.5. For the second part,

we provide a proof tha t works even w ithout the condition tha t R >  0. Let O i, '&i >  0 

be first eigenfunctions associated to the firs t eigenvalues A i(p i), A i(p 2 ), respectively, 

normalized so tha t ||0i||i_p, =  ||4 'i||i,p2 =  1. Assume w ithou t loss of generality tha t 

Pi <  P2 - Then we have, applying Lemma 5.2,

Z ( # i , / '» i )  -  I f  1 _  ^  f  a i(x )$ î‘ +  [  o i(x )G i(f0 i)  +  l f " M
P i  P i  . /  J P 2

-  y  0 2 (a : )^ r  +  y  0 2 (a:)G2 ( f " » i)  -  y

<  -  f  1 -  v t H I  G' +  [  a i(x ) (e f^4>r +  0 2 ^ '$ ? )
P i  \  A i ( p i ) /  J

+  -  f l  -  +  G2 t^T ^» r)
P2 V ^1\P2) J J

+  ^ y  a i(x)4»?y ^ y  a2 (a ;)^ r '^

 ̂ 4  -  +  C g f: y  O i(z )0 r
P i  V  A i ( p i )  A i ( p i ) ,

P2 k A i(p2 ) A i(p2 )

A i(p i) / \Ai(p2) 
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Now, we have 7 , >  Pi. In  addition, since 1 <  Pi <  pa we have

Pi , P i(m  -  1) Pi 2p2{m -  I)
P i = -------1------------------------< --------- 1--------------------------- .

m m m m

The result now follows in  this case from having /Xj >  A i(p i), by choosing e and t 

sufficiently small, and using the fact tha t # 1  E ^ 1  G as proved in  Theo­

rem 3.7. F inally, i f  Uq =  0, a sim ilar proof as above shows tha t / ( t$ i,u o )  <  I { uq, vo) 

for t  sufficiently small, contradicting the fact tha t (uo,Uo) minimizes I .  Therefore Uq 

is non-triv ia l. The proof tha t Vq is non-triv ia l is the same. □

Properties of Solution

Lem m a 5.7.

Uo(x) >  0, Vo(x)  >  0 V X G R ^.

Proof: Since F  is a function of and u+, the proof is identical to tha t of the

scalar case. Lemma 4.8. □

For the remainder of this chapter, we let ( u q , v q )  be any non triv ia l solution to (5.4) 

satisfying Uo,vq >  0 , rather than assuming it  is the solution tha t we arrived at via 

m inim ization.

T heorem  5:8.

Uo  e  L ° °  n  L%L . n  and lim  u q { x )  =  0,
' '  | i |—>oo
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U o  G L °° n  n  and lim  U q ( x )  =  0.
'' ’  |x|—+00

P ro o f :  F irs t note th a t

and

Our proof mimics tha t of Appendix 7 in [14].

Let y G and R >  0. For x G 5 2 (0 ) and any function h defined on R2fi(y) we 

define h{x) =  h{Rx  +  y), i.e.

Let u =  Uq and v =  u q . Then we have (w ith  z =  Rx  +  y)

y  |V u (x )|P '-^V u (x ) . Vu)(x)dx

=  RP'  ̂ I  \Vuo{Rx  +  y)\P'-~'^'Vuo{Rx +  y) ■ V w { R x  +  y)dx  

=  RP' y  |Vuo(z)|:''Vuo(z) - V u ,(z )R -^d z

< Z f '  y  ^/XiOi(z)(u^(z))P^-^ +  ^ 6 (z)(u [}(z))™ “ ^(Uf]'(z))’’^''" y  w{z)R~^dz  

=  RP̂  j  ^yUiâi(x)(uo+(x))P‘ “  ̂ +  ^è (x )(u o + (x ))™ “ ^(uo+(x))'''^’n  ̂j  w{x)dx,
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so th a t (u, v)  are weak solutions to  the va ria tiona l inequa lities

-Ap^u <  y, iRP^di{x) \uy '^u'^+ ^ b {x )R P ^ \u \^  (5.5)

and (sim ilar to above)

—Ap.^v <  p 2 BF^d2 { x ) \ v y  2y+_|_ P2 (m -& (x )R ^ ^ |u | '^ |u | '^  ' (5.6)

Hereafter we let Kq, K i ,  K ,  K \  K ”  denote any constants depending only on p 2 , N ,  

P i, P2 , m, ||ai||oo, llazlloo and ||6 |loo-

W ith o u t loss of generality we can assume tha t pi >  P2 - Let c =  >  1. Then

for any ball B  C  ^ 2 ( 0 )  we have

for any w G Wo’̂ '(R ), ||iuliL-pi(B) <  K q\\w \\^pi ^̂ .̂  <  RiHVu;||bpi(b)

for any w G W ^ ^ ^ B ) ,  ||u;||bcp2(b) =  <  R'i||Vu;||lp2(b).

We construct the following sequences:

Pi , k  =  Pi<Y  for f — 1, 2 and k >  0, 

m k  =  P i { c ^  -  I ) ,  t k  =  P2 (c^ -  I ) ,  

p a  =  2 , p k  =  2 -  X c for any k >  I,

where T  +  T  =  1 and a -  c •

Denote =  BpfiOi). Consider p G C g°(R^) defined such tha t 0 < p < l ,  p =  l
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on Dk+i i  T] is supported in  Dk, and

|V?7(t)| <  K c ^ , for all t  € Dk- (5.7)

Let be a test function in (5.5), obtaining h  +  I 2 <  h  +  h  where

h  =  ( l  +  m t)

h  ~  Pi

/3 =  Jc* & i(a :)7 y "|u + |'"+ "\

^4 =

Next define

Then we have

JOk

Similarly, applying Holder’s inequality and noting tha t

P i / m  +  nik P 2 { m  -  l ) / m  _  }_ f }_ ^  m -  l \  ^  p i(c^ -  1) _  ^
P\c^ P2C* c* \ m  m J pxc^

we have

P] /m + T n fc  p „ ( T n - U / T n
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On the o ther hand, since (1 +  rrik) — (pi  — l) (c * ’ -  1) +  c*’ , we have for any s >  0,

I /2 I <  [
JDk

'Dk

PI
1

+  P l • —
Pi

I  i v p r i t ^ r

where we used Young’s Inequality A B  <  ^  ( 7 )^^- Since

cfc =  ü?i +  l < l _ l _  xrik,
Pi

applying (5.7) for s —  ̂ (i.e. 2pis^i <  p i) , we obtain

\ l 2 \ < \ \ h \  +  KEk.

Therefore | / i |  <  I/2 I +  I /3 I +  I/4 I ^  i |7 i|  +  KEj^ +  ‘IBP^KEj^^ so tha t

| / i |  <  { l  +  B F ^ ) K E k .

Now, by Sobolev Embedding, we have

IHcpqD,) <  ^ il|V (p u '=  ) | |^ , ( ^ , )  <  Af(/5 +  /e) 
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where

4 -  /  iv 7 / r iu r '*  <
JDk

and

JDk

=  c*’(P '- l)c * :  I  p P i | V u | P i | u p ' '
JDk

<  c'=(Pi-b(i +  mfc) [  p P i|V u lP > r '=  
Jok

Combining the above results, we get

^  (1 +  (5.8)

Similarly, le tting  be a test function in (5.6), we obta in (because p2 ^  Pi)

<  (1 +  (5.9)

Setting 0fe =  E ^^'’’ , then we obtain by (5.8) and (5.9) and the fact tha t p =  1 on
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Dk+i-,

0 fc+i

=  ^m ax{||u '’ III'p2 (Dk+i)})

<  (m ax{||p i/||P i,p^(o^), \ \vv"'¥l%2 ( d J )

1 fc(pi - 1)
<  [ { 1  + RF^)K]” '̂'^c "1." 0 fc

_ i_ .i 
Pl.fc c

for ail k >  0. Therefore,

where

’ °° 1 l e  N

,= 0  PlJ ^  Pi C -  1 pxP2

and (because c >  1 )

^  p i.j Pi

We therefore obtain

|^||lp=(Bi) <  lim sup ||u||^pi,)=(Dj
fc—>+oo

< K ' ( i +  ü ;î’^ ) 5 ^ 0 o

Ei
=  K \ l  +Rp^)pip2 m ax{||n||LP i(n,),||u||^;,,(^^)}. 

68



S im ilarly , define , and we get from  (5.8) and (5.9),

'^k+i <  [(1 +  c 'Z'* for a ll A; >  0,

which implies

1 M I l ~ ( S i )  <  K ' { 1  +  R p i ) p2 m a x { | | u | | ^ i ( g ^ ) , | | u | | ^ 3 ( g , ) } .

By the embeddings

L":(g2) cZ7'(g2), f = l , 2 ,

we obtain tha t

N  2 2

and

Finally, changing variables back to (uo,Vq), we get

N  P l ~ N  P2 - N  22.

||^oL -(B «W ) <  7tr(l +  E^:)P1P2 m ax{;7 PI

and

PI  — N  21.  p n —N

69



Therefore we have uq, vq € T°° and lim |3;|_»oo =  0, lim |3;|_>oo'i’o(a;) — 0.

Next, since uq e L°° n  and 71  >  p i, we have uq € Sim ilarly, % €

Finally, we have Uo, vq e by Theorem 2.9. □

I

L e m m a  5.9. Set

f i ( x )  =  p iO i(æ )(u ^ (æ ))P :  ̂ -  a i( a ; ) p i( u o (x ) )  +  F u (x , uo , vq), 

f2(x) =  f i2a2ix)(vo{x)y^- '^ -  a2ix)g2{vo{x)) +  F^{x,uo,vq).

Then there exists Rq >  0 such that / i ( x ) ,  f 2 {x) >  0 f o r  all x  e R ^ \B % (0 ) , and such 

that

f i  =  {x  e R ^  I uo(x) >  U {x  e R ^  I vo(x) >  S'2 }  C Ù C Bjig(O)

where Si =  m ax{s | pj(s) =  i  — 1 .2 .

P ro o f: F ix  x  G R ^  and consider

f i ( x )  _  . , f  _  gi(uo(x)) \  F u ( x , U o { x ) , V q { x ) )

Since s, no(x)) =  ^ b (x ) s ^ ' ( ^ ~ ^ ) {vq{x )Ÿ^'''^~ ' is a decreasing function of

s and is non-increasing by our conditions on p i and F,  we have tha t there

exists Ti (x )  >  0 such tha t / i ( x )  <  0 if  and only i f  u q ( x ) >  T i{x ) .  Furthermore, 

since s, %(%)) >  0 , i f  we let S'l =  m ax{s | p i(s) =  then we have

Ti(x )  >  Si >  0 for a ll x  G R ^ . Since lim|a;|_>oouo(x) =  0 the result now follows for 

/ i ( x )  by a sufficiently large choice of R q . The proof for f 2 (x) is the same. □

L e m m a  5.10. uo(x) >  0 and v q ( x )  >  0 f o r  all x  G R ^ .
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P ro o f; We know from Lemma 5.6 tha t Uq is not identically zero, so le t f l  =  (x  E 

I uo(x) =  0} 7  ̂R ^  and assume tha t f l  is nonempty. Note tha t by Lemma 5.7 we 

have uq >  0, and since uq is continuous by Lemma 5.8 we have tha t f l  is closed. Let 

Xq E d f l ,  so tha t uo(xq) =  0. Then by continuity of uq, we can find a <5 >  0 such that

'S'l
max Uo(x) <  —  <  Si, 

xeBs(xo) 2

where Si is as in the proof of Lemma 5.9. Therefore u q  is a weak solution to the 

system

-A p U  , =  f i { x )  > 0  in  B s{x q ), 

u >  0 on  dBs{xo).

Then an application of the maximum principle (Theorem 2.10 part (in )) implies tha t 

Uq =  0 in  B s{xq), contradicting the fact tha t xq E d fl .  Therefore uq >  0 on R-^. The 

proof for Vq is the same. □

We now provide estimates for the behavior of uq and vq at in fin ity.

L e m m a  5.11. ( i)  Given e >  0, set

N - p - [

% =  {z  I U o ( x )  >  eai{x) , f i { x )  >  e a i(x ) (u j(x ) )^ '" ^ } .

Then there exists positive constants eo, L q and R i >  R q (where Ro is as in  Lemma 5.9)
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such that,  f o r  a l l  0 <  e <  cq we have

|û iX n ilU /p i >  Lo,

where H 5 ^ 1  (0 ).

( i i )  Given e >  0, set

H4 =  {x  I V o { x )  >  ea2 {x) ^ , / 2 (x) >  ea2 {x ) {v^ {x )Y ^  ^}.

Then there exists positive constants eo, L q  and R i >  Rq such that, fo r  all 0 <  e <  cq

we have

11̂ 2X02 IU/P2 >  ^0,

where ^ 2  — F

In  both parts our constants cq and Lq may depend on m, p i,  p2 , p \,  P2 , H^oHi.pi, 

11% IIi,P2 ; ll^ illw /p i and ||<2 2 IIjv/p2 •

Proof: Again we apply sim ilar methods to Costa, Drabek and Tehrani [7].

Let e >  0. To s im p lify  notation, we write  V  =  14- Then, le tting  w =  Uq in  (5.4) and
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app ly ing  Lem m a 5.2, we have

ll^ollppi =  y  ^Uq - J  a i{x)gi{uo)uo +  j  Fu{x , uo, vo)uq

=  /  / iia i(x ) (u J )P i“ ^uo -  /  a i(x)p i(uo)uo +  /  Fu{x , uq, vq)uq
J V  Jv Jv

+  /  f l { x ) U Q

Jr^ \ v

Piai{x){u^y^~'^UQ +  f  f i {x )uo
Jr^ w

<
J v  J r n \ y

+ c ; i i a a v i | i l 7 i« o i i î ; / r i i “ i !X v iiî ; l ,7 ‘ >'” i i» o iiî !< rW "

<  C'A''i||aiXvlliv/pilko||i,Vi +  /  f i i ^ h o
JM.n\v

1/m |L, l |P i /m |U_ ,„  l |P2(m-l) /m| |  | |P2(m-l ) /m
1,P2

Consider the decomposition =  A i U A j,  A i n  A j =  0, where

A i  =  { x  I U o(x ) <  e a i ( x )  } ,

^ 2  =  {z  I / i ( x )  <  e a i{x ) {u ^ {x )y i  \  uo(x) >  e a i ( x ) ~ ^ }.
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Then we ob ta in , again app ly ing Lem m a 5.2,

/  / i(z )u o  =  Ml /  -  /  a i(x)p i(uo)ito  +  /  Fu{x ,Uq, vq)uq
JA.\ I JA.\ 'J A.\ JA.\

r  (  ^-pi \  Pi
I <  Ml 6̂ 1 y  a i ( z )  ^ O i ( z )  "1 j

/■ /  N - p ,  \  P l \  1 /m

=  Mie^' /  a i(x )^ /P ‘ 
J a ^

Ml el"'

Furthermore,

f  / i(z )u o  <  e /  a i(x )|uo |i'' <  Ce||ai||Af/pil|no||?)pj.
J  A2 J  A2

Therefore, combining the above estimates, we obtain 

l|no||i,% <  CMi||aiXv||N/pJ|no||ï)p,

+  P .e 'M I» l l !% :+ C ;V . / ” | |a . | |% 7 'q |a 2 | |% 7 " | | „ o l l7 ‘r ' ’ ' "

+  Ce||ai||iv/pi ||iiolli)pi- 

Now, we can find eo >  0 (depending on Mi, l|no||i,pi, ||%l|i,P2 , l|Gi||N/pi and ||a2 ||v/p2 )
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such th a t

511. 0 1 1 7 . >  +  c 7 " / ' - | | . , i i% 7 ' " ) | | . 2 i% ; " / " ' | | . . i i 7 7 - w

Ce|lai||w/pi||uo||?Pi
-Pi

for a ll e <  ÉQ. Therefore

,P2 >

SO  tha t there exists constants C^,Cq >  0 such tha t X™ +  C5 X  — Ce >  0, where 

X  =  ||a iX v lliv ^ i' Hence, there exists a constant Lq depending on the constants listed 

in the statement of the lemma such that, for 0  <  e <  €q,

||a iXvlU /p i >  2 Lq.

Since a i G L^^P'-ÇR^) there exists R i  >  R q  such tha t

I|û iX r^\Bh (0)l|w/pi <  ^ 0 -

Therefore, considering tha t 14g C I4  for 0 <  e <  cq, i t  follows tha t

||aiXVenBp%o)||w/pi >  L q,

75



completing the proof of part (i) the lemma. The proof of part (ii) is identical. □

We are fina lly  ready to study the behaviors of uq and vq at in fin ity.

T h e o re m  5.12. There exists C  >  0 such that a solution (uo, vq) of the minimization  

problem (5.2) is a positive solution to problem (5.1) and satisfies

u q { x ) >  C |x| fo r  |x| large.

N -P7 .

v q ( x ) >  C |x| P2 - 1  fo r  |x| large.

P ro o f: We recall tha t {uq, vq) is a solution to (5.3) in E ^ . Therefore, using the

notation of Lemma 5.11 and le tting  V  =  14o and W  =  we have by the definition 

of V  and W  tha t

-A p jU o  =  pia i{x){u^Y^~'^ -  a i{x)g i{uo) +  Fu{x,uo,vo)

Npi-N+pi
=  / i ( z )  >  egXoi(x)) Pi o n P n B f i, (o )

and

Ap^vo =  M2a2 (z)(fQ )P' -  a2{x)g2{vo) +  Fy{x,uo,vo)

Np2 — N+p'2

=  / 2 (z) >  eg'(o2 (x)) P2 o n W n B fii(o ) -

For R  >  24i?i >  24% , consider z  =  z r , the solution to  the D irich le t problem

N p i ~ N + p i

- A p ,z  =  e lY a i{x ))  ^i XvnBa,{o) in  B r ( 0 ) ,  

z =  0  on 9B fi(0).
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The solution z exists by Theorem 2.13, is continuous (and hence bounded) by The­

orem 2.9, and is p-superharmonic by part (iv) of Theorem 2.10. Let flo =  {z  6  

I u q ( x ) >  5 i} ,  where 5 i =  m ax{s | gi(s) — as in Lemma 5.9. Then

%  C  flo C  (0) C  B r(0 )  is bounded and f i ( x )  >  0 for a ll x e R ^ \ f lo -  Let 

f l i  =  B jî(0 )\ f lo .  Then by Theorem 5.8 we have tha t f l i  is a bounded domain of class 

0 <  a <  1, and tha t =  9 % (0 )  U F w ith  uq = %  on P.

Now, let K (p )  be the cube centered at 0 w ith  sides of length p. Then F C  K{Ro)  C 

K{2Rq) C B r{0 ) ,  so we can apply Corollary 2.8 (where in the notation of tha t result 

we use 7  =  PÎ) and Sobolev Embedding to get

m axz(x ) <  max z(x) 
xer  ̂ ~  xeK{Ro)

<  C R q '

<  C"i?o’’MI'^^lUpi(/T(2fio))

- 4
<  C ' R o ’’Y \ \ / z \\l p i ( B r {0))-

We can then apply Corollary 2.13 to get

m axz(x ) <  C” R̂
rer 0

fVpi -iV+pi
(oX a i(z )) "1 XynB«jo)

Pi

Therefore there exists a constant Q  =  Ci(eo, a i,P i, N,  % , % )  independent of R  such 

tha t C l =  m axr z. Let ei =  m in ( l, ^ ) ,  so tha t 5 i >  maxp eiz. Note tha t 5 i depends

77



on ly  on g i, Mi and p i.  We have th a t Zi =  6iZ is the so lu tion  to  the D ir ich le t problem

Np̂  -N-t-pi
-Ap^-u; =  ^eg'(a i(x)) "i XvnB^Mo) in  B k (0 ),

i  IX =  0 on dBa{0).

N p i  - N + p i

Since / i ( x )  >  eg^(ai(x)) '’i in  V  f l  (0), ei <  1 and / i ( x )  >  0 in  H i, we have

Apiixo ^  Ap^zj in  H i .

Furthermore, since Uo >  0 in  by Lemma 5.7 and Uo >  S'l >  Zi on F, we have that

Uq >  z i on 5H i.

Therefore! by the Weak Comparison Principle o f Theorem 2.10, we conclude that

Uq >  z i in H i.

The remainder of the proof for uq then follows exactly as in the scalar case, Theo­

rem 4.12. The proof for vq is the same. □

R e m a rk  5.13. We could generalize our condition tha t F ( x , s , t )  =  b ( x ) s ^ t ’’^̂ rn̂  ', 

instead requiring;

(1) |% (x ,a ,f)| <  C i(a i(x ))m (a 2 (x ))'V ‘

(3) s“ Pi"*;^%(x, s, t) is a decreasing function of s,
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(4) s, t) is a decreasing function of t,

(5) Fs(x, s, t) and Ft{x, s, t) are continuous.

For the sake of sim plicity, we focused in this chapter on the main example of such a 

function, tha t of expressing F (x , s, t) as powers of s and t.
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C H A P TE R  6

SYSTEM PR O BLEM  W IT H  HARVESTING  

In  this chapter we let A i(p) =  A i(a ,p) be the firs t eigenvalues of Theorem 3.1.

M a in  T h e o re m  6.1. Consider

-Ap^u =  a i(x)(M i|a|P i -  g i(a )) +  & ( x ,  u, v) -  V ih i{x )  

-Ap^v =  a2 {x){p.2 \v\'P‘̂ ~'^v -  gz(x)) +  F y{x ,u ,v )  -  r'2 / i2 (z)

(6.1)

where fo r  i  =  1 , 2 ,

(Ao) gi : M"*" —> M"*" is continuous,

(A i)  lim ,_o+ =  0 ,

(A 2 ) 0  <  lim  infg^oo <  lim  s u p ,_ ^  4 ^  <  0 0  with % >  pi,

(A 3 )  is nondecreasing,

(% ) F { x ,s , t )  : X R+ x R+ —> R+ is given by F { x ,s , t )  =  b { x ) s ^ ^  fo r

some 1 <  m  <  0 0 ,

(S i)  0 <  b{x) =  F (x )(a i(x ))™ (a 2 ( x ) ) ' ^  fo r  all x  G R ^  and some F G L °°(R ^), 

(Cl) 0 <  h i{x )  G (R ^ ) n  L °°(R ^ ), where a i(x )  =  (1 +  |x|)''' and —

(Cg) 0 <  o^(x) € S^/P^(R^) n  S °°(R ^),

(Ca) 1 <  Pi <  V , m  <  p i, <  P2 , 0 <  <  5i and p i >  A i(p i).

Then fo r  5i sufficiently small, (6.1) has a nontriv ia l solution (u i , v i )  in  R ^ . In
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addition , suppose we also have

(C i) hi e L ^ (R ^ ) and fo r  all x E R ^  we have

fo r  some constant C  and some P  >  y ,  with P +  P =  1 .

Then, fo r  p i =  p 2 =  2 =  m  there is a solution with U i,v i  >  0 in  R ^  and satisfying

(J
u i{x )  >  fo r  |x| large,

\x\

and
(J

% (z) >  T-pÿZg f o r \x \  large.

Existence of Solution 

Since we are varying p in  this chapter, we define

. Vp
l'ail!,p — ( I  |Vu|P

L e m m a  6 .2 . (i)  For any e >  0 there exists constants C i =  C'i(e) and C2 — C'2 (e) 

such that

+  C i(a + r '- ^  <  A (s) <  6 (5 +)^^-^ +  C2 (g + )^ '- \

-e(s+)P ' +  C i(s+ )^ ' <  Q (a ) <  +  0 2 (5 +)^',
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where Gi{s) =  gi{t)dt.

( i i )  There exists Co >  0 such that

J  \F {x ,u ,v ) \ ,  J  \Fu{x,u,v)u \, J \F Y x ,u ,v )v \

<  Co ( /  a i(x)(n+)P i ) ( I  a2 (x)(x+)P"

P ro o f: This follows from our conditions on g, and F  (and Holder’s Inequality). □  

We consider the functionals

J  : X R  U  { o o } ,  J{u, v) =  f  a i(x )G i(u )  +  f  a2 (x )G 2 (v)

K  : X L )^ ’P2 R + ,  K {u ,  v) =  J F {x ,  u, v)

and I  =  '■ X C^’P̂ R U { 0 0 } where I (u ,  x) — 0 0  i f  J (u , x) =  0 0  and

I { u ,v )  =  — f  \ V u f ^ - —  [  a i{x ){u '^y^ +  [  h i{x )u
Pi J  Pi J  J

+  — /  |Vx|P^ -  —  I  a2 {x){v '^y^ +  1/2 [  h 2 {x)v +  J {u ,v )  -  K {u ,v )
P2 J  P2 J  J

i f  J {u ,v )  <  0 0 . Our goal is to find a solution to (6.1) by m in im izing / .

We note tha t hi G (~  +  ~  — 1) implies by Holder’s and H ardy ’s Inequalities 

(Lemma 2.3) tha t

J  h i{x )u {x )  =  J  h i { x ) { l  +  \x\)
u{x)

I  +  \x 
_ 1/91

<  [A ii(x )( l + |x | ) P

^  C*v,pi II llqi.CTi lla|| i,p i,

xP^(x)
(1 +  |x|)Pi

1/pl
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and s im ila r ly  th a t

/ h 2 { x ) v { x ) <  CN,p2 \\h2 \\q2 , a M h P2 •

L e m m a  6.3. (a) There exists 5 >  0 such that I  is uniformly coercive fo rO  <  Ui,U2 <  

5, i.e. fo r  all M  >  0 there exists %  >  0 such that fo r  0 <  U i, i '2  < à ,

I {u ,v )  >  M  V ||n||i,pj +  ||xl|i,p2  >  R q .

(h) I  is a weakly lower semi-continuous functional.

Proof: (a) Assume not. Then there exists

{ ( a „ , x „ ) }  C  X D^'P" a n d  !Z2, „ }  C  ( 0 , 5 ]

such tha t { I {un ,V n )}  is bounded above and ||tt„||i,pj +  ||x„||i,p2 oo. Let =  

( /  ai(x)(ti+)P i)^^^^ and e„ =  ( /  a2 (x)(x+)P2 )^ ^ ^ 4  Now, w ithou t loss of generality 

and passing to a subsequence i f  necessary, we can assume tha t ||tt„||i_pj oo. F irst 

we show tha t ||un||i,p^ oo implies tha t ^  oo or e„ ^  oo. We have, applying 

Lemma 6.2, tha t

I{Un,Un) >   -i----- \Yn\\yp2 ~  ~  [  \E{x,Un,Vn)
P i  P i  P 2  P 2  J

+  J  h i ( x ) U n  +  V2 , n  j  Al2(z)x„

>  — IknUqpi -  ^ d n  +  — I|an||qp2 -  ^
P i  P i  P 2  "  P 2

P i  p ^ ( m - l )

Codn Cn C'5 ( ||/li llqj,0-1 1 1 ^^ 1 1 1 ,Pi T  || ̂ 2̂ || 92iO' 2  1 1 || l,p2) •
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Now, ||xn||l,pi —» OO and p i,P 2 >  1, so i f  { d „ }  and {e „ }  are bounded then 7 (u „,x „)  —> 

oo, contradicting the assumption tha t { / ( u „ , x „ ) }  is bounded above. Therefore, pass­

ing to a subsequence i f  necessary, dn oo or e„ ^  oo, as desired. I f  we have tha t 

||%||i,P2 is bounded, then because <  C||(3 2 |U/p2 ll%lli^p2 also have tha t {e „ }  is 

bounded. Therefore either oo and ||u„||i,pi oo, or we have e„ ^  oo and

(passing to  a subsequence if  necessary) l|x„||i_pj —> oo, or both cases occur simultane­

ously. Hence, w ithout loss of generality, we can assume tha t ||u„||i,pi oo, %  ^  oo 

and limsup„_,oo ^ < 0 0 .

Next, set ün ~  ^  and x „ =  —. Then
’ dn 6n

Ol(z) ( "» ) " ' =  /  0 2 (z)(u+)+ 1P2 _

and

I { U n , V n )  =  —  [  |V u „|P '-  — /'a i(x )(ii+ )P i +  /  Ui (x)G i ( li„)
p \  J  p i J  J

  [  — —  /  a2 (x)(x]J')P^ +  f  a2 {x )G 2 {Vn)
P 2  J  P 2 J  J

F{x,Un,Vn) +l'l,n I  All(z)u„ + %n j  /l2 (z)%

 ̂|V%r^ -  y  Ol(z)(i2+)P  ̂+  y  Oi(x)Gi(d»%) 

+  —  /  IVûnr -  -e :»  /  02(z)(ü:)'^ +  /  a2(z)G2(e»%)
P 2  J  P 2  J  J

-  j  F{x,Un,Vn) +  Vyn I  hi{x)Un + 1̂2,71 J  /l2(x)%

+
P2

Pi
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so th a t

+  ^ y  +  g / . 2 M G 2k ü . )

J  F { x ,  U n ,  V n )  +  J  h i { x ) U n + ' ^ ^ ^  J  / l2 ( z ) x „

> ) ;  I  -  y ; -  -  i i  I \ f (7,u„ . v„)\

+  ^ % -  y  / l i ( z ) i Z n +  y  A l 2 ( z ) x „

Pi P 2 (T n -l)

>  -  /  |V i4 , r  +  -  /  | V ü . r  -  -  -  ^  -  C o - $ r -
P l  7  P 2  J  P i  P 2 %  %

I 1̂ 1,n f  u 7 \ -  I D2,n̂ n f  u / \ -j  hl{x)Un + J h2(x)Vn

_   f
- I ln J IT L  +  - l l% l l? L  -  -  -  ^  -  Cr '

C5 ( •^^7rYl|Aii||9i,<Tilia„||i,pi +  ^ | | A i 2 ||g2,T2 ll% lli,:P2

Now, dn oo and lim sup„^oo ^  <  oo im p ly tha t lim sup„_oo p r  <  do. Therefore, 

since % <  P i , P 2 and lim sup„^go ^  <  oo, we have tha t {||i2n||i,pi} and

{llxn ili.p j} are bounded. This implies, passing to a subsequence i f  necessary, tha t 

ü „ ^  Ü in  D^'P', ün Ü a.e. in  M ^, and ü „ —> ü in  (by Lemma 2.6). In
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addition, applying Lemma 6.2 we have 

Vn)
dn

— — /  |VXn|P^ — —  + f  ai{x)Gl{dnUn)
P i  J P i  dn J

j  /ll(z)Un +  J  h 2 { x ) V n

-  C5 ll^ lllç i.a illün lll.p i +  ^ I l ^ 2 ||q2,<̂2 l|iin||l,p2

^  ~  J  ^  j  0 - l { F ) { d n Ü ' ! f  y

Go
P2dn V,dn4

-  C5 ||dlllqi,a-i||%lll,pi +  ^ | | h 2 ||q2,a-J|x„||l,p2^

- ^  -  e +  Cid%-P: /  o i(x )(ü + )^ ' _  ^  _  Co I " #
Pi y

-  C 5  f^^7rrl|dl||qi,ai||lin ||l,p i +  ^11^211,2,<^2 ll%l|l,P2^ ■

Therefore, 7 i >  Pi >  1 and d» —» oo im p ly tha t f  ai(x)(ü+)'>'i —̂ 0. Hence, by Fatou’s 

lemma we have

J  a i { x ) { ü ' ^ y i  —  0.

Therefore, since a j(x )  >  0 on R ^ , we have tha t ü <  0 on R ^ . However this contradicts 

the fact th a t,%  —̂ ü in and / a i{x ) {U n y i  — 1 for all n. This proves part (a)

of the lemma.

(b) Assume u „ —̂ u in  D ^’P̂ and x „ —̂ x in  D^’P̂ . Then Lemma 2.6 and our estimates
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on f  h i {x )u \  and | J  h2{x)v\ im p ly

J a i(x )u P i J  ai{x)uF'  and J  a2{x)vff  J'a2(x)xP%

f  h i(x )un  f  h i (x )u  and f  /i2 (z )x „ f  h 2 (x)v.

Furthermore, since u „ ( x )  —  ̂ u ( x ) ,  x „ ( x )  v(x) for a.e. x  e  we have by Lebesgue

Dominated Convergence Theorem that

x + r ,J  n i ( z ) | i i« r  j  a i(z )|x + |P \ y  a2 (z)|x+|P" J  a2 (x)|

and

y  F’( x , x „ , x „ ) ^  y  F {x ,u ,v ) .

I t  follows by Fatou’s Lemma that

/  a i(x )G i(x )  <  lim  in f /  a i(x )G i(x „ )  and /  a2 (x )G 2 (x) <  lim  in f /  a2 (x )G 2 (x„).
J  n -^ o o  J  J  n -^ o o  _/

Finally, || • ||p is weakly l.s.c. by Lemma 2.5, so tha t (x „ ,x „ )  (x, x) in  x D^’P̂

implies T||x|l?]p^ + 4 ||î;||P2p̂  < lim in f„^oo ^ llxn llq p i +  Therefore/(w , x) <

lim in f„_ o o /(x „ ,  x „), hence is weakly l.s.c. This proves the lemma. □

T h e o re m  6.4. (Solution to the M in im ization Problem) The m inim ization problem

in f / ( x , x ) ,  ( x ,x )e D ^ 'P 'x D ^ 'P '

(i.e. f ind  (x ,x )  G D ^’P̂ x D^’P̂  fo r  which in f / ( x , x )  is achieved) has a solution
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(u i,V i)  E X D^'P^ wi th

in f I { u ,v )  =  I ( u i , v i ) .  (6 .2 )
( u ,'u ) 6 D 1 ’î ’ i x D1-P2

P ro o f: This follows d irectly from Lemma 6.3 and Lemma 2.5. □

T h e o re m  6.5. Suppose (ü,v) is a m inimum point o f I ,  i.e. a solution to (6.2). 

Assume that { f „ }  G lim „_oo in  =  0. Then, i f  w E f l  and z G

D ^’P2 n  we havea2 (x)’

Q  ^  / ( X  +  t n W , v )  -  I { Û , V )

n - . o o  t n

=  j  | V x | ' ’^ " ^ V x  • V x ;  — Ml I  ai {x){ü'^Y'~^w +  j  a i {x)g\{ü)w

-  J  F u {x ,u ,v )w  +  ui J  h i{x )w

and

0  =  lim I f e c  + M - J f e i i )
n — oo t n

=  y  |Vx|'”^~^Vx • Vz -  M2 y  a2(x)(x' )̂P’̂“ ẑ +  J  a 2 { x ) g 2 { v ) z  

-  J  F n { x , Ü , v ) z  +  V 2 j  h 2{ x ) z

P ro o f: In  view of Lemma 6.2, the proof follows exactly as in the scalar case,

Theorem 4.6. □

C o ro lla ry  6 .6 . A solution (u i , v i )  to the minimization problem (6.2) is a weak so-



l u t io n  to the prob lem

- A p i( x i )  =  p ia i { x ) { u fy i~ ^  -  a i{x )g i{u i)  +  F n {x ,u i ,v i )  -
(6.3)

-A p ,(x i)  =  M2a2(z)(xj^)P""^ -  (l2(z)g2(xi) +  Fn{x ,U i,V i)  -  2/2/12(1),

in  i.e.

f  lV x i|P i“ ^ V x i • Vu; =  / (M ia i(x )(x |)P i"^  -  X i(z )g i(x i))u ;

+  J  F u {x ,u i ,v i )w  -  ui f  h i{x )w ,

f  |Vxi|P2~^Vxi • Vz =  / (M2a2(z)(xJ^)P"“  ̂ -  U2(z)g2(xi))z (6-4)

+  /  Fn{x, U i,V i)z  -  2/2 /  h2(x)z,

In  addition, there exists 0 < 5o <  5 and (3q >  0, /?o independent of Ui and hi, such 

that

in f I {u ,  v) <  -Po  V 0  <  2/ 1 , 2/2 <  5o,(u,v)eDi’PixDi.P2

50 that ( x i,u i)  is non-trivial. Finally, there exists 6 0 , Bo >  0 independent 0/ 2/1 , 2/3 

such that

bo < ||xi||i,pi +  ||xi|li,p2 < B q V 0 < 2 /1 , 2 /2 < Jo-

P ro o f: Ttie firs t part follows immediately from Tlieorem 6.5. For tlie  second part,

let 4>i, 42i >  0 be firs t eigenfunctions associated to the firs t eigenvalues A i(p i), A i(p2), 

respectively, normalized so tha t ||4>i||ip^ =  l|4 'i||i,p 2 =  1. Assume w ithout loss of
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genera lity th a t p i <  P2 - Then we have, app ly ing Lem m a 6.2,

I Pi Pi J J P2

— J  a2(x)^'f +  j  a 2 { x ) G 2 { t ' ^ ' ^ i )  -  J  F(x, i^>i, 

+  r'li J  h i { x ) ^ i 1^2^^ J  h ( x ) ' ^ i

f:"  +  y  o iW<
Pi

+  I^liCiV,pi||^l||9i.t7i||*5l||l,pi +  ^̂2^^C'iV,p2 ||h2 ||ç2 ,CT2 l|^ l|| l,p 2

+  -  -  T - ^  +  +  C2t^^ J  a 2 { x ) ^ T
P2 V ^ l(P 2 ) Ai(P2),

iP2 ih ^ 2  Wq2,^2

. ^ i ( p i ) /  V ^ i f e ) .

Now, we have 7 i >  Pi >  1. In addition, since 1 <  p i <  p2 we have

 P i  , P i ( m - l )  ^ P i  , 2 p 2 ( m - l )
P i  —  I " r  •

m m m m
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Then there exists Pq >  0 such th a t

Pi

P2 V A l(p 2) A

which follows from having p, >  A j(p i), by choosing e and t  sufficiently small, and 

using the fact tha t $ i  € 'I 'l G as proved in Theorem 3.7. Then choose

5o small so tha t

||/ll IlgijiTi T  f/2  ̂ ^V,P2 11 ̂ 2  1192 ,o'2 — Po

for 1/1 , 1/2 <  1̂ 0 - This proves the estimate on I .

Finally, for the last part we have

I { u , v )  >  ~ j \ V u \ ^ ^ - ^ J  a i { x ) { u ' ^ y ^  +  U i  J  h i { x ) u

+  y y  ~  ~  J  a 2 { x ) { v '^ ) ^  +  U2 y  h 2 { x ) v ~  l  F { x , u , v )

> “ (1 “  C'pi||ai||;v/pi)||'a||i^pi -  C'v,pii^i||/ii||9i,ffill'ii|li,pi

+  ~ ( 1  “  C ' P 2 | ! a 2 | U / p 2 ) l l ' y | l p p 2  “  C ' ; v , p 2 * ^ 2 | | / l 2 | l 9 2 . o - 2 l | î ^ l l l , P 2

From this we get tha t

lira in f I (u ,  u) >  0 . 
ll“ lli.Pi+lblli,P2-"0
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Since I { u i , V i )  <  ~ P q <  0, we have th a t there exists 6q >  0 such th a t

bo <  Hill 111,Pi +  ||iii||i,p2 V 0 <  i/i,i/2  <  <̂o-

Since, in  addition, I  is uniform ly coercive, there exists B q >  0 such tha t

bo <  ||ni||i,pi +  l|i^i||i,P2 ^  -®o, 

completing the proof of the corollary. □

Properties of Solution

T h e o re m  6.7.

u i G L°° n  , n  (7/’“  and lim  u i{x )  =  0 ,IOC PI-.0 0

V iE  L ° ° n  n  and  ̂U ^ u i ( x )  =  0.

P ro o f: This follows exactly as in  Theorem 5.8. □

A t this point, we need linearity of the operator Ap, so we must assume tha t 

P i  =  P 2 =  2 =  m. Let ( i t g , Ug) satisfy - A u 2 =  V ih i{x )  and —A u 2 — 1/2 /12(3:), whose 

existence follows from Lemma 4.13 and by our conditions on h i  and h^- In  addition, 

by tha t same lemma, we have a constant d >  0  such tha t

112(3:) <  T̂ '- 2  ^  G
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and

V2{x) <  for a ll X e
X

L e m m a  6 .8 . Let wq =  n i +  112 o,nd vq — v i +  V2 - Then {uo,vq) is a solution to (5.1) 

and uq, Vo >  0 .

P ro o f: We have tha t

—A(ao) =  — A (u i +  U2 )

=  —A (u i)  — A (u 2 )

=  P ia i(x )(u ) ;y^^^  -  a i(x )g i(u i)  +  F ^(x ,U i,V i)  -  i^ ih i(x)  +  Uihi(x)

=  /J,iai(x)(u'(y^~^ -  a i(x )g i(u i)  +  F „(x , Ui, Ui).

Now let w =  Uq. Then since U2 >  0 (by the maximum princip le) we have 0 <  ic < 

n r  ^  |n i|, and so u i G  P I implies tha t w  is an admissible test function in

the above equation, which gives

-  J  |V u q  1̂  =  -  y  V u o  • V t c  =  y  { i J , i a i { x ) { u f Y ^ ~ ' ^  -  a i { x ) g i { u i )  +  F u { x , u i , v i ) ) u q  .

So, since uq <  0 implies tha t Ui <  0, and since tij*", gi, and F „ are nonzero only when 

u i >  0, we have tha t f  |V uôP  =  0, i.e. tha t uq >  0. Sim ilarly, vq >  0, proving the 

lemma. □

Therefore, our M ain Theorem 6.1 follows from choosing 0 <  1/1 , 1/2 <  w ith  

di <  do sufficiently small, and using our estimates at in fin ity  from the System Problem,
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M ain Theorem 5.1 (recalling tha t for any nonnegative solution (uq, uq) to  (5.1) we have 

tha t uo >  0 , Uo >  0  and these estimates hold):

c  c
uo{x) >  ly.p, and Vo{x) >  — for |x| large. 

|x| Pi-i |x| P2-1
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