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ABSTRACT

Estimates at Infinity For Positive Solutions to Problems
Involving the p-Laplacian

by
Ralph W. Thomas

Dr. David Costa and Dr. Hossein Tehrani, Examination Committee Chairs
Professors of Mathematical Sciences
University of Nevada, Las Vegas

There has been much study of finding positive solutions to various logistic prob-
lems involving the Laplacian and the p-Laplacian; problems which, loosely speaking,
contain a nonlinear term that behaves like AuP~!(1 — u?).

Du and Ma [12] studied a logistic problem for the Laplacian in R¥, looking for

positive solutions (A, u) to
—Au = da(z)u — b(z)u" in RY
where v > 1, 0 < b(z) € C*(RV), 0 < a(z) € CY(RV) and a(z) < P(z) for a radially
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Next, there has been study of logistic problems with harvesting, where we subtract

symmetric P(x) satisfying

a harvesting term of the form ph(z). These arise from problems in fishery or hunting
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a harvesting term of the form ph(z). These arise from problems in fishery or hunting
management, and in those circumstances one is interested in finding positive solutions.
In [22], Oruganti, Shi and Shivaji looked for results in bounded domains, finding
positive solutions to

—Au=au—-bu?-ch(z) ze€
(0.1)

u=20 x € 09,
where a,b,c > 0 are constants, Q is a smooth bounded region with 90 € C? and

h € C*(Q) satisfies

h{z) >0 forz € Q,h(z) =0forz € GQ,ma(%( h(z) = 1.
TEe

They pro{fed that if a > A; then there exists a constant ¢; = ¢;(a, b) such that for 0 <
¢ < ¢y, (0.1) has a positive solution u € C**(Q) satisfying au(z) — bu?(z) — ch(z) > 0
for all z € Q. In addition, there exists c; = cz(a,b) > ¢; such that:

(i) for 0 < ¢ < ¢y, (0.1) has a maximal positive solution u, so that for any other
solution v of (0.1) we have u > v on ©,

(i1) for ¢ > ¢, (0.1) has no positive solution.

In addition, Oruganti, Shi and Shivaji in [23] were able to extend the above problem

to the p—La,p!lacian, finding positive solutions to

—Apu=aurt —ut —ch(z) z€Q

u=0 T € 09,
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where a,c > 0 are constants, v > p, Q is a smooth bounded region with 9Q € C18

and h € C*() is a nontrivial function satisfying
h{z) >0 for z € Q,h(z) =0 for x € OQ,maéc h(z) = 1.
z€

For this problem they showed, for a > A;:
(i) there exists ¢; = ¢;(a) > 0 such that for 0 < ¢ < ¢;, (0.2) has a weak positive
solution v € CY*(Q) satisfying u(z) > (c—h;\(-l@)l/(p—l) for z € Q.
(ii) there exists co = ca(a) > ¢y such that for 0 < ¢ < ¢, (0.2) has a maximal positive
solution, and for ¢ > ¢, (0.2) has no positive solutions.

Costa, Drabek and Tehrani also extended the result of Oruganti, Shi and Shiv-
aji for the Laplacian in bounded domains, however instead of extending to the p-
Laplacian, they instead extended the result from a bounded domain © to all of RV,

finding positive solutions to
—Au = a(z)(Mu — u”) — ph(z) in RY,

where v > 1, A > A, 0 < a(z) € LY?(RN) N L*(RY) and 0 < h(z) is a rapidly
decreasing function in RY. They showed that there exists i = f1(A) > 0 such that for

all 0 < p < [1 there exists a solution u, > 0 in RY satisfying
> ¢ f; 1
Uy 2 WN_Z' or r large.

In this paper we will extend the results above. We will first look for positive



solutions to

~Apu = a(z)M\uff?u — a(z)g(u) =€ RV (0.3)

where g(s) behaves like 77}, v > p, for s large. We will employ many of the same
methods as Costa, Drabek and Tehrani, and in doing so will not only prove the
existence of positive (weak) solutions, but will also have estimates for the behavior

of these solutions at infinity. Namely we will show that a solution ug satisfies
_N-p
ug(z) > Clz|" 71 for |z| large.

In addition, by an appropriate modification of our assumptions on g(u) and a(zx), we
prove that ug is the unique positive solution to (0.3), and that the above estimate at
infinity is sharp.

Second, we will generalize our first scalar result to a system result, finding positive

solutions (ug,vg) to

—Apu = ay () (|l ~*u — g1(u)) + Fu(z, u,v)

=Ap,0 = a(z) (p2|v]? % — g2(v)) + Fu(z, u, v)

satisfying

C
ug(x) > —x—— for |z| large,
ol

and

vo(z) > giz for |z| large,
o] 7
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P  po(m-1)
smi

where the interaction term behaves like F'(z, s,t) = b(x) m with m < p; and

=2 <.

Finally, we will add harvesting terms to our system equations, finding solutions

(ug, vo) to

—Apu = ay(z)(u|ulP 2w — g1(w)) + Fu(z, u,v) — vihi(z)

—Apv = ag(z)(pa|vP~ 2 — g2 (v)) + Fy(z, u,v) — vohy(2)

In this case, we must have p; = p, = 2 to prove that the solution is positive and
satisfies the same behaviors at infinity as above.

We note that the method used by Oruganti, Shi and Shivaji was sub and super
solutions, but that all the other problems above (Du and Ma, Costa, Drabek and
Tehrani, and the problems in this paper) are solved by applying minimization methods

to the underlying functional.
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CHAPTER 1

BACKGROUND

We begin by discussing some of the origins and applications of the problems
contained in this dissertation.

There has been much study of finding positive solutions to various logistic prob-
lems invblving the Laplacian and the p-Laplacian; problems which, loosely speaking,
contain a nonlinear term that behaves like Au(1 — u).

In [22], Oruganti, Shi and Shivaji examined a logistic problem with harvesting in
bounded domains, finding positive solutions to

—Au = au — bu? — ch(z) €

(1.1)
u=20 x € 01,

where a,b,c > 0 are constants, 2 is a smooth bounded region with Q) € C? and

h € C*(Q) satisfies
h(z) > 0 for z € Q,h(z) =0 for z € 9N, max h(z) = 1.
€

As noted in their paper, this problem arises from the population biclogy of one

species, which we describe here.



Let u(t,z) be the concentration of the species or the population density. We
assume that (a) the species disperses randomly in the bounded environment §; (b)
the reprioduction of the species follows the logistic growth; (c) the boundary 99 of
the environn;ent is hostile to the species; and (d) the environment 2 is homogeneous
(i.e., the diffusion does not depend on z). Then it is well known that u(t, z) satisfies

the reaction-diffusion equation

ou u
—a—tzDAu—HLu (I—N), (t,z) € (0,T) x Q,

with the initial and boundary conditions

u(t,z) =0, (t,z)e€ (0,T)x 09,

w0,2) =uo(z) 20, z€,

where D > 0 is the diffusion coefficient, @ > 0 is the linear reproduction rate and
N > 0 is the carrying capacity of the environment. (See Murray [21] for details).
Now, in many ecological systems, harvesting or predation of the species occurs. For
example, fishing or hunting of the species u could happen. Hence it is natural to add

a harvesting term to the right-hand side, and the equation becomes

ou u
E = DAU+GU (1 - 'J—V") "p(tyxau)ﬂ

where p(t,z,u) > 0 for all possible (¢,z,u) values. In (1.1) is considered the case of

constant yield harvesting (not dependent on the density u or on t), and in particular



the case

p(t, z,u) = ch(z),

where ¢ > 0 is a parameter which represents the level of harvesting. So ch{-) can be
understood as the rate of the harvesting distribution, and the harvesting only occurs
in the interior of the environment. Such a harvesting pattern arises naturally from
fishery management problems, where ch(z) is related to the fishing quota imposed by
regulating authorities. Fiﬂally, the problem is reduced to (1.1) by applying a standard
non-dimensionalization process and then looking for steady state solutions.

In addition, Oruganti, Shi and Shivaji in [23] were able to extend the above

problem to the p-Laplacian, finding positive solutions to

—Aju=auPt = —ch(z) z€

u=20 T € 09,

where a,c > 0 are constants, 7 > p,  is a smooth bounded region with 9Q € C!#

and h € C*(Q) is a nontrivial function satisfying

h(z) > 0 for z € Q,h(z) = 0 for z € Q, max h(z) = 1.

el

The extension of their result from the Laplacian to the p-Laplacian is a natural
mathematical one, however the physical relationship between the problem and the
study of population density becomes severed. One may ask if the p-Laplacian has

any physical applications? The answer is affirmative, as the p-Laplacian arises in



the study of non-Newtonian fluids, reaction-diffusion problems, flow through porous
media, petroleum extraction, torsional creep problems, and glaciology. In fact, we
conclude this chapter by presenting a physical model that involves the p-Laplacian,
from Drabek [9].

We present a mathematical model of the behavior of compressible fluid in a ho-
mogeneous isotropic rigid porous medium. Let p = p(xz,t) denote the density, ¢ be

. . s - .

a volumetric moisture content and V = V(z,t) be a seepage velocity. Then the

continuity equation reads as follows:
5] —
¢5§+div(p\/) =0. (1.3)

In the lamizar regime through the porous medium the momentum velocity pl_/’ and

the pressure P = P(z,t) are connected by the Darcy law
- ‘
pV = —AVP. (1.4)

In turbulent regimes, however, the flow rate is different and several authors proposed
a nonlinear relation instead of (1.4). Namely, the nonlinear Darcy law of the following
form is often considered:

pV = —A|VP|*2VP, (1.5)

where o > 1 is a suitable real constant. Taking into account the equation of state for

the polytropic gas



with some constant of proportionality ¢ > 0, we get from (1.3) and (1.5) the equation

Op

qs__

a—11y 1: a-2
a0 = ¢ Adiv(|Vp|*~*Vp).

After the change of variables and notations this equation becomes

% = div(|Vu[f~?Vu),

where p > 1, giving us an application of the p-Laplacian, which is defined by:

Apu = div(|Vu[""2Vu).



o CHAPTER 2

PRELIMINARIES
All integrals will be assumed to be taken over R unless otherwise stated. Define
D'? = DLP(RM) to be the completion of C° = vC’(‘)’°(RN) under the norm |ju|| =
([ |VulP)}/P, and define, for a bounded domain 2 C RY, W1P((2) to be the completion
of C§°(Q) under the norm |jullwiee) = ([ |VulP + [u[P)}/?P. Define the norm on
L™ = L"(RY) by |lull, = (J |u[")/", and define the norm on the weighted L™ space
L

() = Lz(z)(RN) by ||ullra@ = ([ a(@)u|")¥/". We denote p* = —1\17\’:”—1) and note that

— - We let Aju = div(|VulP~>Vu) be the p-Laplacian.

R

L
p
Theorem 2.1. (Sobolev Embedding Theorems)

(i) DYP is continuously embedded into LP". In other words, there exists a constant C

depending only on p and N such that ||u

o < Cllu| for alluw € D>,
(ii) For a bounded domain Q@ C RY and for p < q < p*, WHP(Q) is compactly

embedded into LI(S)), and WLP(Q) is continuously embedded into LP" (Q).
Proof: See, for example, McOwen (20]. O

Lemma 2.2. For a(z) € LN/? we have D'? C LYy In particular there ezists a

constant C > 0 such that

/ a(@)[uP < Clallwspllul?

6



for all uw € D'P,

Proof: Let u € DY. Then we have, by Holder's Inequality and the Sobolev

Embedding Theorem,

Il = [ al@lup

lall wplluP | vy v —p)

IA

IN

Cllallnpllull” < oo,

proving the lemma. [

Lemma 2.3. (Hardy’s Inequality)

s () o

Proof: Let ue C§°, 1 <p< N. Then

far () -

For u € DY we have

which implies that

(N II+I|"2IVUO
|z|P ’

|z|P



and hence, by applying Holder’s Inequality,

N-p [|uf _ ’ lulP~?u z-Vu
p |z[P |zl ]

(/)7 (for)

Therefore

SEH([E) < (frow)
i < (w55 o

The result now follows by approximating any u € D by C$° functions. O

le.

Theorem 2.4. (Vitali’s Convergence Theorem)

Let (X, u) be a positive measure space with {f,} c ! (1) satisfying
(1) n(X) < o0

(ii) {fn} ts uniformly integrable,

(itt) fu(z) — f(z) a.e. as n — o0, and

(iv) | f(z)| < oo a.e. Then f € L*(u) and

lim / = fldu = 0.
n—o0 X

Proof: See, for example, Rudin [24]. O

Lemma 2.5. (i) || - ||P is continuous and convez for p > 1.
(1t) A functional defined on a reflexive Banach space that is continuous and convex

8



is weakly lower semi-continuous (l.s.c.)

(iii) A functional ¢ defined on a reflerive Banach space E that is weakly l.s.c. and
coercive (i.e. ¢(u) — oo as ||ul|g — o0o0) must be bounded from below. In addition,
there exists ug € E such that ¢(ug) = infyuep d(u).

(iv) DY is a reflerive Banach space.
Proof: See, for example, Costa [6]. [J

Lemma 2.6. Define G : D'* — (DY?)* by (G(u),v) = [ a(z)|u|P~?uv, where a(z) €

LNP N\ L™, Then G is compact.

Proof: This follows from Lemma 2.2ii of Drabek and Huang [10]. We include the
proof for the reader’s convenience.
Let i + # = 1. We first claim that for any € > 0 there exists K > 0 (depending only

on € and a) such that

sup / alglP o] < elgfP!
|z|>K

ol <1

for all ¢ € DV?. To see this, we have by Holder’s inequality and Sobolev Embedding

1/p 1/p
swp [ algPel < s ( / a|¢|") ( / a|v|")
luli<1J |2|>K lofl<1 \J|z|>K |z|>K

N

(p=1)/N NG
< sup (/ aN/”) (/ [oli )

lvll<1 \Jjz|>K |z)>K

1/N 1/p*
. (/ aN/p> . (/ |U p‘)
|z|>K lz|>K
p/N (p-1)/p"
<csw ([ o) ([ gar) T
lvil<1 ||> K |=|>K

< eglrt,



since a € L™/?. Now suppose that u, — ug in D*®?. Then we have

1G (1) — Guo)l oy = sup |{Glun) — G(uo), v)|

el <1
! = 'sup /a(m)(|un["“2un—luolp“2u0)v
lvli<t
< sup | [ ale)(funP 2 ~ uouo)e
Ioll<1 1V ]z]<K

+ sup
fvli<1

/ (@) (funf?2tn — (w0l 2uo)o
Jlz|>K

Now, given € > 0 we can choose K > 0 such that the integral over {|z| > K} is less
than ¢/2 for all n, while for this fixed K, by strong convergence of u, to ug in L”" on
any bounded region, the integral over {|z| < K} is less than ¢/2 for n large enough.

Therefore G(u,) — G(up) in V*, i.e. G is compact. O

Theorem 2.7. Consider weak solutions to

div A(z,u, Vu) + B(z,u,Vu) =0 (2.1)

where for some domain Q C RY we have

A:QxRxRY SRY B:OxRxRY >R

10



satisfying for all M < oo and all (z,u,v) € A x (=M, M) x RV:

|A(z,u,v)] < aolv|* ™ + |ay (z)u|*T,

v- Alz,u,v)

v

|v]* — laz(z)ul®,

1B(z,u,v)] < ba(@)[]*™" + (ba())ul*™" + (bs(2))*,

where a > 1, ag are constants, ai(z) and bi(z) are non-negative functions in L>=({)
with ||ailloo, [|billoc < 1, and @, ag, by, ai(z), and bi(z) all may possibly depend on
M. Then we have:

(1) Let u(x) be a weak supersolution of (2.1) in a cube K = K(3p) C Q, with0 < u

in K. Then, with xx denoting the usual characteristic function of a set K,

P_NM”U(JU)XK(zp)HW < CII?in u(zx)
(p)

for any

v < iv—j%?(%l if a<N
y<0 if a>N
where C = C(a, N, ag, up)
(1) Let u(z) be a weak subsolution of (2.1) in a cube K = K(3p) C Q, with0 < u in
K. Then

maxu(z) < Cp~M||uxkeplly
K(p)

for any v > o — 1, where C = C(a, N, ag, up).

Proof: This is proved in Trudinger {27], Theorems 1.2 and 1.3, where we apply the

11



case by = 0 (see the note between Theorems 1.1 and 1.2) O

Corollary 2.8. Consider weak solutions to
—Apu = c(z)|ulP~*u + d(x) (2.2)

in a bounded domain Q@ C RY, where u € D', 1 < p < N and c(z),d(z) € L®(Q).
Suppose K = K(3p) C Q is a cube and that u > 0 in K. Then

(1) If u is a weak supersolution of (2.2) in K then
IJ”N/VHUXK(Q,,)II., < Cminu(z)
K(p)

for any v < EE= where C = C(p, N, [Icl|oo, [|dlloo)-

(i1) If u is a weak subsolution of (2.2) in K then

maxu(z) < Co~ " |luxrenlly
K(p)

for any v > p — 1, where C = C(p, N, ||c||, l|d]|)-

Proof: Since Ayu = div(]Vu[P~2Vu), we have the following
A, u,v) = [oP, Bz, u,v) = ofz)lul~u + d(z)

so that A(z,u,v) and B(z,u,v) satisfy the conditions of Theorem 2.7 with o = p,
ag =1, a1(z) = 0, ag(z) =0, by(x) = 0, by(x) = |c(x)|*/? and b3(x) = |d(z)|'/P. The
result now follows. O

12



Theorem 2.9. Suppose @ C RY is open and u € WHP(Q) N L®(Q), 1 < p < oo, is

a weak solution to

-Apu = a(z,u, Vu)

in 2, where |a(z,u, Vu)| < I'(1 + |Vu|)? for some constant T > 0 and all z € Q.

Then there exists 0 < a < 1 such that u € CL*(Q).

loc

Proof: This is proved in Theorem 1 of Tolksdorf [26]. O

Theorem 2.10. Let Q € RN be a bounded domain of class C1*%, 0 < oo < 1 and let

p>1, -+ -=1.

1.1
P q

(i) Let u € CY(Q) satisfy u >0 in Q and —Apu > 0 a.e. in Q. Then either u=0 or
u >0 on Q. Moreover, if u € CY QU {zo}) for any o € OQ that satisfies an interior

sphere condition and u(zg) = 0, then % > 0 where v is an interior normal at xy.

(ii) Let u € WHP(Q) N L*®(NY) be a weak solution to

-Apu= f(z) in

u=fi on 0f2,

where f € L®(Q) and f; € C'**(0Q). Then there ezists 0 < 8 < 1 such that
u € C1HA(Q).

(i) (Mazimum Principle) Assume that u € WP(Q) satisfies

=Apu= f(z) in

u>0 on 0N,

13



with f € W4(Q) N L2(Y), f 2 0. Then eitheru >0 in Q, or u =0 in Q.

(iv) (Weak Comparison Principle) Fori = 1,2, suppose u; € WHP(Q)NL>®(Q) satisfy

Apu; € LP(Q), uilon € C1H*(0Q) together with the inequalities

—A,,ul S —APUQ in

up < ug on Of.

Assume in addition that —Ayus > 0 in Q0 and uy > 0 on Q. Then

ur(z) < us(z) for each z € Q.

Proof: (i) This follows from Theorem 5 of Vazquez [28].

(ii) This follows from Lemma 2 of Garcia-Melian and de Lis [15].

(iii) This follows from Theorems 1 and 5 of Garcia-Melian and de Lis [15]. For the
reader’s convenience, we present a proof here as well.

We have u € W'P(Q) and [, |Vul[f~2Vu - Vv = [, fv for all v € WP(Q). Thus we

can let v(z) = v~ (z) = min(u(z),0) and get

/IVU”I” = / |VulP~2Vu - Vu~ :/ fu~ <0.
Q Q Q

Now, let A\;(Q) be the first eigenvalue of the equation —A,u = AufP~2u. It is well

known that

Jo IVulP

) =
M) wewbe(@) [o ulP

and in fact we prove this result for the case 8 = RY in the next chapter. Therefore
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we have

Al(Q)/ﬂ|u-1Pg/ﬂ|vu—|v=/ﬂfu— <0

proving that u~ = 0, i.e. that u > 0 in Q. Therefore by part (i) we have that u > 0
or u =0 in . This completes the proof of part (iii).

(iv) By part (ii) we have that u; € C1*%(Q2), and by part (i), we have that u; > 0 in
1 and that %%2 < 0 at that part of €2 where uy = 0. Therefore there exists ¢ > 1

such that u; < cu, in £2. Consider the problem

—Apv = —=Apuy in )

U= Uy on 0f}

Then u; and cu, are sub and supersolutions, respectively, of (2.3). Thus, the method
of sub and supersolutions (see, for example, Theorem 4.14 of Diaz [8]) yields the
existence of a solution v € WhP(Q) N L>®°(R) to (2.3), with u; < v < cuy, which must
be nonnegative.

We claim that (2.3) has a uniciue nonnegative solution in W?(Q) N L>(Q)). Suppose
we have two such solutions v; and ve. Then parts (i) and (ii) imply that v; /va, va/u1 €
L>=(Q). Then following a proof similar to Lemma 3.4 proved in the next chapter, we
have that v; = cv, for some constant ¢. Since vy = vy on 9§ we have proved the
claim.

Therefore v = uy and we have u; < uy, completing the proof of the theorem. O

Theorem 2.11. There erists a map J : DY? — (D'P)*. such that J, J=! are contin-
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uous, and

[Jull = llull, {(Ju,u) =|ul|* ¥ ue D™

Proof: This follows from Proposition 8 of Browder [5]. O

Theorem 2.12. Let Q@ C RY be a domain and let X C LYP(Q) be a linear function
space equipped with norm |u||x = ||Vulpa = (fn |Vulp) Y2 such that with this norm
X is a reflexive Banach space. Let X* be the dual space with norm || - | x- on X* and
with (-,-)x the duality pairing between X* and X. Define the operator J : X — X*
by

(J(u),v)x = /Q |Vu|P~2Vu - Vo

for any u,v € X. Then the operator J is a homeomorphism between X and X*.
In particular, given f € X*, the equation J(u) = f has a unique solution us € X

satisfying

1/(p-1)
XU .

lurllx < 1f]

Proof: This follows from Theorem 2.1 of Drabek and Simander [11]. O

Theorem 2.13. (i) Let Q@ C RY be a bounded domain and consider the Dirichlet

problem
—Aju=f inQ,
(2.4)
u=0 ondqQ,
where f € LP"(Q) and p*' = 1_7% = NpI—VII\)/—p' Then (2.4) has a unique weak solution

Uy € Wol’p(ﬂ), i.e.

/|V’U,f|p_2V’U,f'V’U=/f’U
Q Q

16



for any v € WyP(Q) (or equivalently for any v € C(R)), where WEP(Q) is the
closure of C§°(Q) with respect to the norm ||V-||,q. In addition, we have | Vuy|,0 <

Clf

(ii) Let f € LP" (RN). Then there is a unique weak solution u; € DV?(RN) to

1/(P—1)_

ptl

_Azluf = fa

i.e.

/]Vuf|”“2Vuf-Vv=/fv

for allv € DY?(RY).

Proof: (i) This follows from Theorem 3.1 of Drabek and Simander [11]. For the
reader’s convenience, we include the entire proof here.

Let X = Wol’p () and let f € X™. It is well known that the space X equipped with
the norm ||V - [|; o satisfies the condiﬁions of Theorem 2.12. Then we have u € X is

a weak solution to (2.4) if

/ IVuP-2Vu - Vo = (f, v)x
Q

for all v € X. This equation is uniquely solvable for any f € X* by Theorem 2.12. By
the Sobolev Embedding Theorem any f &€ L”"(Q) can be identified with an f € X*

satisfying (f,v)x = fﬂ fv for any v € X, proving the first part of the theorem. For
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the estimates on ||Vus||,q, we again apply Theorem 2.12 and note that

Ifllx- = sup [{f,v)x]

| lvlix=1

< sup ||f

vl x=1

< C sup ||f

vl x =1

= Clf

p.l v p*

p*! || x

ptl

proving the first part of the theorem.

(ii) This follows from Theorem 4.1 of Drabek and Simander [11]. Note that in the
notation of that paper, Hy”(R") is the same space as D"?(R") in the notation of

this paper, both being the completion of C$°(RY) with respect to the norm

ot = (frowr)”

a

Definition 2.14. Let © C RY be an open set.

(i) A function u € HP(Q) N C(Q) is said to be p-harmonic in Q if
/ [VulP~?Vu - V¢ =0
Q

for all ¢ € C3°(2).

(ii) A lower-semicontinuous function u : Q — (—00, o] is called p-superharmonic if

u is not identically infinite in each component of €2, and if for all open D CC ) and
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all h € C(D), p-harmonic in D, h < u on 8D implies h < u in D.

Theorem 2.15. Let p > 1, +é = 1 and let u be a bounded, nonnegative, p-

1
P

superharmonic function in ) such that

/ |VulP~?Vu - V¢ dz = / ¢ du
Q Q
for some nonnegative Radon measure p on Q and all ¢ € C(R). Define
. -1
" _ p(Be())\ " dt
Wl’p(x,’r') = ‘/0 (W— —t'
If Bs.(a) C Q, then there exists constants Ay, Ay and As such that

AWf(a,r) S u(a) < A;_inf (@) + AsWi(a, 2r).

P - z€Br(a)

Proof: This is Theorem 1.6 of Kilpelainen and Maly [17] for the case A(z,h) =

|h|P=2h. (See also Theorem 3.1 of [16]) O
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CHAPTER 3

EIGENVALUE PROBLEM
Existence Results
Before presenting our main theorem, we first need to study the following eigenvalue
problem in RY:

—Ayu = a(z)|ulP~ %,

where a non-trivial solution u € D!? is called an eigenfunction provided
/{Vu\p_QVu-ng = )\/a(a:)lul”“Qud) (3.1)

for all ¢ € C$°, and by completeness for all @ € DVP. In this case ) is called an
eigenvalue.
For the next theorem, we need the concept of genus. Let V be the completion of

Cg° with respect to the norm

= [ 1vur+ [ (Tl;“}—l-)—
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Let G ={u eV | [a{z)ulP =1}, and define

I'y = {A C G| Ais symmetric, compact, and y(A4) > k},

where y(A) is the genus of A, i.e. the smallest integer k such that there exists an odd

continuous map from A to R*\{0}.

Theorem 3.1. The eigenvalue problem above has a sequence of solutions (A, Px)

with [ a(z)| kP =1,0 <Ay <Ay < --+ < A < -+« Furthermore,

= inf sup/|Vu]”

A€l yea

As such, the solutions (A, ®x) are called minimax eigenvalues and eigenvectors.

Note: For all u € D' we have { €Ty, so

([a@)[uP)77> " ([a(a)|u?) 7> }

o SV
" bl Ta@lu

Proof: Define I(u) = lf |VulP and ¥(u) = f z)ul|P. Clearly I is well-defined

on V. Furthermore, I is bounded below on G because

[ sl < Clallpl Tl

by Lemma 2.2. Before proceeding, we need the following lemma:
Lemma 3.2. The functional I satisfies the Palais-Smale condition on G,
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{u,} C G, if I{uy) is bounded and I' (u,) — 0, then {un} has a convergent subsequence

m V.

Proof: For the convenience of the reader, we reproduce the proof of Allegretto and
Huang [3]

We first claim that I'(u,) — 0 and {I{u,)} bounded with {u,} C G implies that

t

Let J be as in Theorem 2.11, so that ||Ju| = ||ul| = ||J || and (Ju,u) = |lu|* for

all w € DY?. By definition, I'(u,) — 0 implies that

(W' (un), J 7" (tn)
([0 (un) |2

THI (un)) — T (un)) = 0,

and since J is continuous that

(¥ (un), J_ljl(un»
([0 (un)?

I'(u,) — U'(uy) — 0.

Now, since {I(u,)} = {% [ |Vu,|?} is bounded, then by Hardy’s inequality

(Lemma 2.3), we can conclude that {u,} is bounded in V. Therefore

(W' (un), T 1" (un))

A £ TR

(U'(un), un) — 0.
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Now, (¥'(un), un) = [ a(Z)|unfP*ustin, = [ a(z)|un|? = 1, so that

T w) (W), T ()

Wlw)u) W@
and hence
) — (Il(un)aun> ") —
I( n) (\P’(un),un)qj( n) 07

proving the claim.
Next, we proved above that {u, } is bounded in V. Therefore, passing to a subsequence
if necessary, there exists uy € V sukch that u, — ug in V.

We claim that ug #Z 0. First note that on any bounded domain 2, we have

| @l = 1im [ af@)funp,

by the Sobolev Embedding Theorem (Theorem 2.1). Suppose ug = 0. Then
Jq a(z)|un|? — 0 for all bounded domains 2. Choose {2 so that for all n sufficiently

large we have

1

CHGXRN\Q”N/p”VUn”z < PE

where X denotes the usual characteristic function and C is the constant in Lemma 2.2.
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Then we can choose n large enough so that

Je@hal = [a@hors [ a@har

o(z)[un[? + Cllaxamallwypl Vil

IA
S~

IN

+

2

W
W =

contradicting the fact that u, € G implies that [a(z)|u./” = p > 1. Therefore

Uoio

Now, by the assumption

, (I'(un), Un) -,
- W
P0e) = gy ) 7 0
we have that, for any ¢ € C§°,
/'Vunl”‘zvunv¢ = C"/a(:v)lunl”“zum +o(1) (3.2)

where

(' (un), un)
(U (un), Un)
f [Vu,|P"2Vu,Vu,

fa(m)iunlp‘zunun

oL
- / Vinl? = It

ll

because u, € G.
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Take ¢ = U, — U in (3.2) (twice). Then, if Q = B,(0) is a ball of radius r, we have

/ (VP 2Vn = |Vtm|P 2 Vum)V (U — )
= /a(a:)(cn|un|”‘2un — cmlum|”_2um)(un — Um) + 0(1)
= [ aledentfunl = P ) = )
[ g @Il = )~ )

+{cn — cm) /a(m)]umlp'zum(un —um) +0(1) = Ay + Bpm + Cpm +0(1).

We have

Bum = / () cn[tn P2t — [ttt (i — )
RN\Q
- / a(x)cn(lun|p + |um|p - (|un|p-2 + |umlp—2)unum)
RN\Q
< Cen / a(&)([tnl? + [um?)
RN\Q

< Clenllaxamvallngp(l Vuallf + 1 Vumli7)

which approaches 0 (because [[axgv\qlln/p — 0 as 7 — oo independent of n and m,

and {I(u,)} is bounded.)

Now, for any fixed 2, we have (passing to a subsequence if necessary)

Anm = / a(z)en (|tnlP 2tn — |tm P 2t ) (Un, — Um) — 0O
Q

as n,m — 00, since u, — ug in LP(§)) (because D'?(Q)) is compactly contained in
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L) for all p < ¢ < p*). Finally, we have

AN
—
2
N
=
3
3
b
&
3
e
2
+
—
2
8
=
2
3

' / () [t [P~ 2t (10, — )

IN
[\
—
2.
&
=

3
)
+
[\
—
BN
&
=3
3
N

so { [ a(z)|un|P} bounded implies that { [ a()|wm [P~ 2tm(u, — um)} is bounded. Since

c.} = {%I(u,)} is bounded, we have, passing to a subsequence if necessary, ¢, — ¢, —
P

0 as n,m — oo. Therefore A, m + Bnm + Crm — 0 as n,m — 0.

On the other hand, note that for any a,b € RY,
la = bfP < c((lalP~%a = [pIP=2b)(a — b)2(|al? + [bP)'~7*,

where s = pif 1l < p < 2and s = 2if p > 2 (which follows from Lemma 4.2 of

Lindqvist [19]). Therefore we have

|[Vu, — Vun,|[P < c((|Vun|P 2 Vuy — | Vtm P72V, ) Viu, — um))s/2

(VU] + [V [P) 72

By applying Holder’s Inequality, using pil + 51; = 1 with p; = ﬁ and p; = 1_1—5/2, we
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obtain

/ \Vu, — Vu,|?

IN

s/2
c </([Vun|p“2Vun — VP2V ) V(1 — um))

1-s/2
([rowp+ [ 9ur)

< (Anm+ Brm + Com + 0(1))%/2

- < / Vaunl? + / lvumyv>l_s/2

Since { f ]Vunlp} is bounded, we can conclude that Vu, — Vu in L?. Combining
this with Hardy’s Inequality (Lemma 2.3) gives u,, — uo in V. This completes the
proof of the lemma. O

Theorem 3.1 now follows from Ljusternik-Schnirelmann theory, see for example
Costa [6]. In particular, for any integer k > 0, Ay = inf ser, sup,c 4 pI(u) is a critical
value of I restricted to G. Thus, there exists Ay € 'y and &, € Ay such that A\, =
pI(®) = sup,ecq, pI(w) and (Mg, $i) is a solution to the eigenvalue problem (3.1).

Moreover, 0 < A; < Ay <--- < A < -+ . This completes the proof of Theorem 3.1. O

Properties of Eigenfunctions and the First Eigenvalue
We next investigate some properties of the first eigenvalue A, and its eigenfunc-

tions.
Theorem 3.3. There exists a first eigenfunction ®; such that ®; > 0 on RV,

Proof: We first show that we can choose ®; such that ®; > 0 on RY. For u € V, write

u=ut—u" where ut > 0,u” > 0. Then Vu = Vut —Vu~™ and V|u| = Vut +Vu~.
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Then we have

Jrowr = [19wr+ [1vwp = 190

Therefore |u| € V, and hence if ®; minimizes I(u) then so does |®;[, so (A1, |®]) is
a solution to (3.1).

So choose ®; such that ®; > 0 on RY. We next show that in fact ®; > 0 on RY.
Suppose ®,(z¢) = 0. For a ball B around z, clearly ®; > 0 on B. Then ®, is a wéak

solution of the problem

—Apu = Aa(z)|®|P72®, in B,

u > 0on dB.

Then an application of Theorem 2.10 part (iii) implies that ®; = 0 in B. Since B can
by any ball, we have that ®; = 0 on RY, a contradiction. This completes the proof

of the theorem. [

Lemma 3.4. Suppose u,v € C' N DY, u,v >0 on RV, & 2 ¢ [ and let

' uP — P uP — P
[(U, U) = (—Apu, —up—_1> — <—‘AP'U, F) .

Then ":,,__Ulp, w=i? € D', I(u,v) > 0 and I(u,v) = 0 if and only if there ezists o > 0

such that u = av.

Proof: We follow logic similar to Anane [4]. First, since u,v € C*'NDW?, 2 L g [*
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and

up~1

v (“p — ”p) =Vu+(p—1) (%)pkvu —p (%)p_l Vo,

uP —y?
up—1

we have that ":,,—_’{p € D¥P, and similarly for

uP — P
(o 2)
P _ P
=/|Vu|”'2Vu-V<u f’ )
upP=
v p—1 U\P
—_ _ _ p—2 . _ _ P
= [(= (&) 1vur v vo+ (1+.6- 1) (2)) 193
’U .

-/ (p () 19up=2(9ul1Vo] - Vu- Vo)
+ (1 +(p—1) (-Z)”) IVul’ —p (%)’H 1Vu|P—1|vv|>

. Now, we have

We obtain a similar result interchanging v and v, thus we have
v v
I = [ F(29090) + [ 6(%19a,1v0)
where F' and G are defined by
F(t,R,S) = p(t" 'R~ + ' P|SP~*)(|RIIS| - R - S)

Gt,r8) =1+ (@—1D")r" + (1 + (p— 1)t7P)s? — ptP~1rP1s — pt' PP~ 'r

forall t >0, R,S5 € RV, and r,s > 0. Clearly F > 0, and F(t, R,S) = 0 if and only

if |[R||S| = R-S. We will show that G > 0 as well. First note that G(¢,0,s) > 0 and
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that G(t,0,s) = 0 implies s = 0. If  # 0, let z = (s/tr)?. Then we have
G(t,r,s) =rP(7f(2) + 9(2)),

where f(z) = 22 —pz+p—1and g(z) = (p — 1)2? ~ p2P~! + 1. A simple calculus
exercise shows that f(z),g(z) > 0 for z > 0, proving that I'(u,v) > 0.

Furthermore, the same calculus exercise shows that (for z > 0) f(2), g(z) = 0 if and
only if z = 1. Therefore, in the case r # 0, we have that G(¢,r,s) = 0 if and only
if s = tr. Consequently, if I(u,v) = 0 then F(v/u, Vu, Vv),G(v/u, |Vul, |Vv|) =0
on all of RY, which is equivalent to |Vu||Vv] = Vu - Vv and u|Vv| = v|Vu|. This is
equivaient to (uVv — vVu)? = 0, which implies that u = av, completing the proof of

the lemma.

Theorer;l 3.5. (i) A\, is simple, i.e. the positive eigenfunction corresponding to Ay is
unique up to a constant multiple.
(ii) Ay is unique, i.e. if v > 0 is an eigenfunction associated with an eigenvalue X
with fa(aé)]v[” =1, then A = \;.

(iii) If u > A, is an eigenvalue with eigenfunction v, then v must change signs in RN,

Proof: Lét u > 0 and v > 0 be the eigenfunctions associated with A; and A

respectively, chosen such that [a(z)lul’ = [a(z)|v|P = 1. Then, as in the last

part of the proof of Theorem 3.3, we must have v > 0. By Theorem 2.9 we have
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u,v € CY(RY). Therefore we can apply Lemma 3.4 to get

uP — P uP — P
—Apu, ——— | = { —Apv, ———
up-1 pp-1

PP P _ P
=/)\1a(a:)up‘1u Y —-/Aa(az)v”'lu————v——

up—l vp—-l

= (A — A)/a(az)(u” -y =0,

which implies that v = owv for some a@ > 0. However, by our assumption that
Ja(z)|ulP = [ a(z)|v|?, we then have that u = v, and hence A; = A. This completes

the proof of all parts of the theorem. []

Lemma 3.6. Let ®; denote a first eigenfunction of (8.1) satisfying ®; > 0. Then

b, € L™ for all p* < r < o00.

Proof: For this proof we apply a method similar to that used in Appendix B of
Struwe [25]. Let u = @1, and let s, M > 0. Let ¢ = ¢, py = wmin(uP®, MP). Keep in
mind that » > 0 and u € DY’ C LP", with p* = —’-’i_v—;.

We first wish to show that if u € LPG+1) then u*t! € DVP. To simplify notation,

we denote the set {z € RV | (u(z))®* < M} by {u®* < M}. We have

/[V(umin(us,M))l” = /]Vumin(us,M)-l*u)@sg\,!szﬁ_qulp

IN

27 [/ |Vul? min(u™, MP) + ./u.’SM spusplvm”]
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Now, use u and ¢ in (3.1). We get

/IVu|P*2vu. (Vumin(u?®, MP) + uxus cupsu?® ™' Vu)

=)\ /a(:v)u”'Qu2 min(uP®, MP)
so that

uP?|[VulP = A /a(m)u” min(u®, MP).

uwI<M

/ |VulP min(uP®, MP) + ps/
Therefore there exists a constant C depending only on s, p, and ||al|« Such that
/|V(umin(u5, M)HP < C/u” min(uP®, M?)

Letting M — oo and using the fact that v € LP(+D | we have that u**! € D'? C
[P, ie. that u € LP"6+D . Now, let sp = N’i—p. Then p(sp + 1) = NN—_”p = p*, so
u € LP" = [Po+1)  Therefore the above demonstrates that u € LP'(0t1). Now we
can iteratively let p(s;+1) = p*(s;-1 +1), i.e. that s;+1 = (s;_; + 1)N—1X; and obtain
u € L™ for all p* < r < 00. Note that here we used the fact that f € LP' N LP? implies

f € LP for all p; < p3 < po, which follows from an application of Holder’s inequality.

This completes the proof of the lemma. [

Theorem 3.7. Let @, denote a first eigenfunction of (3.1) satisfying ®; > 0. Then

d, € DPPN LZ(I) for ally > p.
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Proof: We have by Holder’s Inequality

faom < (Joor)' (o)

”a”N/qu)l“zN/(N_p) < oo

IN

f

by Lemma 3.6, because 1—3% > X/% = p*. This proves the theorem. [
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CHAPTER 4

SCALAR PROBLEM
In this chapter we let A; = A;(a, p) be the first eigenvalue of Theorem 3.1.

Main Theorem 4.1. Consider

i

—Apu = a(z)\u|P?u — a(z)g(u) = € RN (4.1)

where
(Ao) g:R* — R* is continuous,

(Al) lims—»O"' fﬁll' = 0;

p—

O]

oo gv—1

(A2) 0 < liminf,_ 9) < limsup,_,

571

< oo with v > p,

(A3) 95) s nondecreasing,
(B)) 0<a(z) € LY?RY)N L=2(RY),

(By) 1<p< N and XA > A

Then (4.1) has a solution ug > 0 in RN which satisfies,

C

jaf +=F

for |z| large.

If we change conditions (As) and (B;) to be

(AL) 2L is increasing,
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(B)) 0<a(z) e LYRN)N L2(RN) and for all z € RN we have
N
12|20 [|a|| Lr@v\Bp (o) < C

for some constant C and some P > —1;—', with % + % = 1.

Then we can conclude in addition that ug is the unique positive solution and that

vuo(sc) = |d|(§:)£ for |z| large, (4.2)
z|71

where ¢ < d(z) < C for all z € RN and some constants ¢,C > 0.

Existence of Solution
Lemma 4.2. For any € > 0 there exists constants C; = Ci(e) and Cy = Cy(€) such

that
—e(sT)PH+ Ci(s*)7 < g(s) S e(sh)PH 4 Co(sT) 7,

—€e(s*)? + Ci(sT)? < G(s) < e(sT)P + Ca(s™)7,

where G(s) = [ g(t)dt.

Proof: This follows from our conditions on g. (J

We say that u € D? is a (weak) solution to (4.1) if
/ |VulP"?Vu - Vu — )\/a(x)|u|”'2uv + /a(w)g(u)v =0 (4.3)
holds for all v € D" N L7 ,,. Note that the condition v € L, arises from the fact
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that

[atere-ivs (faw) ™ (fanr)

and in our construction of a weak solution below via minimization we determine
that u € LZ(E)' In addition, we do not require v € L'Z(m), because D' C LZ(E) by

Lemma 2.2.

Theorem 4.3. If u € D' is a positive weak solution to (4.1) then X > A,.
[IVul?

Proof: By Theorem 3.1 we have that A\; < @)l for all u € D'?. Therefore, for

our positive solution u we have

A / a(z)u®

IA

[ vur
= /\/a(a:)u”——/a(a:)g(u)u

so that

(A — /\)/a(az)u” < —/a(a:)g(u)u <0

because a(z) > 0 and g(u),u > 0. Therefore A > \;, completing the proof. O

We consider the functionals

J: D' - RU{o0}, J(u) = /a(x)G(u)
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and

I: DY - RU {0}
L[ |Vulr = 2 f a(@)(w?)? + J(u) J(u) < oo

00 J(u) =00

Our goal is to find a solution to (4.1) by minimizing /.

Lemma 4.4. (a) I is coercive, i.e. I(u) — oo as |[ul] — oo.

(b) I is a weakly lower semi-continuous functional.

Proof: (a) We genefalize the methods of Du and Ma [12].

Assume not. Then there exists {u,} C D"? such that {I(u,)} is bounded above and
uall = co. Let dn = (f a(a:)(u;t)”)l/p. Then ||u,|| — oo implies that d, — oo.
(I{un) > i[lunH” - %dﬁ and ||u,|]| — oo, so if {d,} is bounded then I(u,) — oo,
contradicting the assumption that {/(u,)} is bounded above.)

Set &, = %>. Then [ a(z)(@})” = 1 and

Iw) = 3 [V =2 [a@)@y + [ o@)Gw)

= 2 [1var -2 [y + [ a@id)

so that

p[(un) = lVﬁnVJ - A+ ﬁ a(-’E)G(dn'an) 2 |Vﬂ'nllJ —A
dz dn

I(un)

Therefore, since =7 — 0, we have that {||@,||} is bounded. This implies, passing to
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a subsequence if necessary, that @, — @ in D%, 4, — @ a.e. in R, and @, — @ in

Ly 5 (by Lemma 2.6). In addition, we have

i

I(un,
>p(§g) = /lv'l—ln|p /\+—/ G(d,i,)
Cip

[vap-2-2 oy + S [a@)ay

v

v

-\ —ep+ Cipd]™? / a(:c)(ﬁ:)"’

t

by Lemma 4.2. Therefore, v > p and d,, — oo imply that [a(z)(@;})” — 0. Hence,

by Fatou’s lemma we have

Therefore, since a(z) > 0 on RY, we have that @ < 0 on RY. However this contradicts
the fact that 4, — @ in La(z and [a(z)(@})? =1 for all n. This proves part (a) of
the lemma.

(b) Assume u, — u in D'P. Then Lemma 2.6 implies

/ a(z)u? — / a(z)u?

Furthermore, since un(z) — u(z) for a.e. z € RV, we have by Lebesgue Dominated

Convergence Theorem that

/a(z)|u:|” — /a(x)lu+|”,
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and by Fatou’s Lemma that

/a(z)G(u) < liminf/a(a;)G(un).

n—o00

Finally, by Lemma 2.5, || - || is weakly l.s.c., so that u, — u in D"? implies %Hu”” <
liminf, %Hun””. Therefore I(u) < liminf, . I(u,), hence is weakly l.s.c. This

proves the lemma. [

Theorem 4.5. (Solution to the Minimization Problem) The minimization problem
inf I(u), u € D¥?
(i.e. find u € DY for which inf I(u) is achieved) has a solution ug € D' with

inf I(u) = I(uop) (4.4)

ueDLp

Proof: This follows directly from Lemma 4.4 and Lemma 2.5. O

Theorem 4.6. Suppose @ is a minimum point of I, i.e. a solution to (4.4). Assume

that {t,} € R*, lim, o0 t, = 0. Then, ifv e DN LZ(I), we have

_ Iq
0 = lim I(a+tyv) (w)

n—oo tn

= [vapva vo-a [a@@ o+ [ oo
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Proof: It is enough to show that for v € D*P N LZ(I), we have

lim J(@+ tnv) = J(@) = /»a(z)g(ﬂ)v.

n—o0 tn

(This then proves the second equality above, and both then equal 0 due to the fact
that ¢ is a minimum for I and that v can be replaced by —v above.)

To prove the above equation we need to prove that

/ o(z) ({1; / e g(s)ds) dz — / a(z)g(@)v dz.

Define F,(z) = L [7"" g(s)ds. Since g is continuous, F(z) — g(a@(z))v(z) for a.e.

tn Ju

z € RY. In addition, by Lemma 4.2, we have (for some 0 < t, < ¢, and assuming

without loss of generality that ¢, < 1)

F@] < ~(aloo(a+ &)
< t—l—(tn|v|)(e(ﬂ+ + )P 4 Co(at + v
< eC(@)P ol 4 (vh)P) + C((TET) ol + (v)7)

Therefore, for any domain Q C RY,

p—l

< € (/Qa(a:) aﬂp) ’ -(/Qa(a:)lvlp)% +6C'/Qa(a:)lv|p
+C'(/Qa(a:)|ﬂ+l7)j$ . (/S;a(ac)[v|7>%+0/ga(a:)|v|7

[ e@ra
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Now, we have v € D'? N Ly C Ly N Ly, B C DY C L% and Ja(z)|a]” < oo
(because @ minimizing I implies [ a(z)G() < 00.) The theorem now follows from

an application of Vitali’s Convergence Theorem, Theorem 2.4. O

From this point on we will always assume that A > A;.

Corollary 4.7. A solution uy to the minimization problem (4.4) is a weak solution
to the problem

~Ayu = da(z)(wt)?! — a(z)g(u), z € RY, (4.5)

/|Vu0]”‘2Vuo -Vu = /(/\a(x)(ug)”"1 —a(z)g(uw))v Vv € L], N D7, (4.6)

In addition, I(ug) < 0, so that ug is non-trivial.

Proof: The first part follows immediately from Theorem 4.6. For the second part,
let ®; > 0 be a first eigenfunction (as in Theorem 3.3), normalized so that ||, = 1.

Then we have

[(t®) = %t” / IV, [P — 5}-? / a(z)®? + / a(2)G(t®,)

(1 - %) & + /a(m) (etPDY + Cot7dY)

1
P
1 A PN 'v/ y
p (1 /\1 + /\1> t +Czt a(x)@l.

The result now follows from having A > A; by choosing ¢ and ¢ sufficiently small and

using the facts that v > p and ®; € LZ(I), as proved in Theorem 3.7. O
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Properties of Solution
Lemma 4.8.

up(z) >0 V z e RV,

|
Proof: Since G is a function of u* and [ |Vug| > [|Vug| we have that I(ug) >

I{uf). Since uy minimizes I(u) we in fact have I(ug) = I(ul), and thus we can
assume that ug(z) > 0. O

For the remainder of this Chapter, we let ug be any nontrivial solution to (4.6)
satisfying uy > 0, rather than assuming it is the solution that we arrived at via

minimization.
Theorem 4.9.
u € L*NL )N Cr® and lim wug(x) = 0.

a(z loc J2| 00

Proof: wug is a weak solution to the variational inequality
—Apu > Aa(Z) X (s | uwo@)>0pulf U, z € RY.

Therefore, since up € LP", an application of Corollary 2.8 part (ii) (with v = p* and
moving the center of the cube K (3p) to any z € RY) yields that supug < C'|juil, <

Cl[ué“” and lim,—e0 ugd (z) = 0 for some constant C = C (A, ||a||s). Therefore

t

supug < C, (4.7)

where € = C(), ||allo, lud]l). Therefore, since uo(z) > 0 by Lemma 4.8, we have
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ug € L* and limge0 ugp(z) = 0.
Next, since ug € L® N LZ(:E) and v > p, we have ug € LZ(;,,-)-

Finally, we have ug € Co%(R") by Theorem 2.9. [

loc

Lemma 4.10. Set f(z) = Aa(z)(ug (z))P~! — a(z)g(uo(z)). Then f(z) > 0 for all

z e RN,

Proof: We apply similar methods to Costa, Drabek and Tehrani [7].

Let S = max{s | £ = A}. Then, by assumption (A;) in our conditions on g, we
sP

have that a(z)(M(ug (z))?~! — g(ue(z))) < 0 if and only if ug(z) > S. Now define

v = (up—S)*. Then since 0 < v < uf < |ug| and ug € L )ﬂDl”’, v is an admissible

a(x

test function in (4.6). Therefore, if {uy > S} is nonempty then

0 S / |VU0lp
{uo>5}

= /|Vu0|p'2Vug -V
N /a(?ﬁ)(k(ub*)”—1 ~ 9{uo))v

_ / a(@ (Mg - gluo)) (wo — S)* <0,
{uo>S5}

a contradiction, so that ug < S in R¥, proving the lemma. O
At this point we can prove that uy > 0 by applying the Maximum Principle of
Theorem 2.10. However we employ a different method, which in addition provides

estimates for the behavior of ug at infinity.
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Lemma 4.11. Given ¢ > 0, set
V.= {z | u(z) > ca(z) 7, f(z) > eala)(ud (z))P1}.

Then there ezists positive constants €y, Ly and Ry > 1 such that, for all 0 < € < ¢

we have

llaxalln/p > Lo,

where Q@ = V. N Bg,(0) = V. N {z | |z| < R:}. Here our constants ¢y and Ly may

depend on A, p, |lal|n/p and ||uol].

Proof: Again we apply similar methods to Costa, Drabek and Tehrani [7].
Let € > 0. To simplify notation, we write V = V.. Then, letting v = ug in (4.6), we

have

ol = [ Aate) i uo ~ [ ata)g(uo)uo
= [ ey~ [ awtuoa+ [ o J e

174
< Rl uo + / f (@)
v RN\V

IN

sCllaxvlwslialP + [ - fa)uo
RN\V
Consider the decomposition RV\V = A; U Ay, A; N Ay = 0, where

Ay = {z | up(2) < ea(z) "},

N —

Az ={z | f(2) < ca(z)(uf (2))"", uo(z) > cafz) »* }.
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Then we obtain

/Al f@)uo = A / @)y - /A alz)g(u)uo
< e /A a(z) (o) ™)’
_ e / o)

= Aellally2.

Furthermore,

J(@)uo < ¢ / a(@)luol? < eCllallnplluolP.
Az AZ

Therefore, combining the above estimates, we obtain
N,
loll? < AClaxy lIyplluoll” + AcPllall/h + €Clino|Pllallnzp-

Therefore we can find € > 0 (depending only on A, |uoll and |la||n/p) such that, for
€ < €o,

N, 1
Aellallyfp + <Clluol?lallze < Flluol”

and hence

1
> —,
HG‘XVHN/P = 9\C

Next, we let Lg = &. Since a € LN/P(RY) there exists R; > 1 such that

llaxr~\Bg, (o) lln/p < Lo-
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Therefore, considering that Vi, C V, for 0 < € < ¢, it follows that

”a‘XVJ\BRl (0) “N/p > LOa

completing the proof of the lemma. O

The reader should note that the above proof works without the pointwise estimate
of Lemma 4.8, because we have g(s)s > 0 for all s € R.

We‘ are finally ready to study the behavior of ug at infinity, proving in the process

that ug > 0.

Theorem 4.12. There exists C > 0 such that a solution ug > 0 of (4.6) is a positive

weak solution to problem (4.1) and satisfies

C

N-p
2] >

up(z) > for |z| large.

Proof: We have that ug is a weak solution to (4.5) in RY. Therefore, using the

notation of Lemma 4.11 and letting V' = V,,, we have by the definition of V' that
Np—N+
—Apuy = /\a(av)(u(*)')”_1 —a(z)g(ug) = f(z) > e(a(z))” »  on V N Bg,(0).

For R > R;, consider z = zg, the solution to the Dirichlet problem
» Np-N+ .
—Apz = eg(alz)) **  Xvneg,(0) in Br(0),

z2=0 on 0Bg(0).
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The solution z exists by Theorem 2.13, is continuous (and hence bounded) by The-

orem 2.9, and is p-superharmonic by part (iv) of Theorem 2.10. Since f(x) >

Np-N+

b (a(z)) » inVnN Bg,(0) and f(z) >0 in R (by Lemma 4.10), we have

—Apup > ~Apz in Br(0).

Furthermore, since up > 0 in RY, we have that

ug > z on 0Bg(0).

Therefore, by the Weak Comparison Principle of Theorem 2.10, we conclude that

ug > z in Bg(0).

Now, choose R > 24R,. Then we have, for £ € Bpr/4(0),

BRl(O) C BR/12(.T) C BR/s(.T), and BR/Q(.T) C BR(O)

Np—-N+p

So, since —A,z = eb(a(z))” Fr XVnBg, (0) 1D Brsa(z) C Bg(0), we can apply Theo-
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Np-N+

rem 2.15 to u(Q) = [y eb(a(z)) 7 Xvnsg, 04z and get

1 M- =Tt
+(a) s [ B F e i) 2

v
Cs
N
2
(=]

1
1 Np~N-+p =1 dt
tN-p / colaly)) » XVNBg, (O)dy> 7

AV
=
5
=2
N o>

1

R/6 ) - o
1/}2/12 <tN—p/B eg(a(y))“";z—exvnBRl(o)dy> -
Ry(0)

v
S

L

1 o Be=hee TR gt
tN—p/ eg(a(y)) r dy) -
VNBg, (0)

Np-N+ T\ e gt
/ ﬂamlvlw) (5) %
VNBg, (0)

N-p

= C’fgf—l (i)pcl / aN;"’M "~
R VABg, (0)

for |z| < £. Now, by Theorem 4.11, we have

N Np—-N+
P B B
VﬂBRl (0) VﬂBRl (0)

where @ = ¥ — Ne=Nip A; 2. Therefore, taking |z| =

P P and using the fact that

24’

R > 24R, is arbitrary, we have that there exists C; = Ci(€o, ||al|oo, Lo) such that

Ch

N—Ea

UO(.’E) >

for |z| > R;.
lz|

Furthermore, choosing R = 24R,, we have that there exists Cy = Cs(¢o, ||@]lc0, Lo)
such that

R
( ) > Cz, for ’JII 24 Rl.
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Therefore ug > 0 and there exists C > 0 such that

C

N=p

up(z) > —x=
o]+

for |z| sufficiently large. This completes the proof. O

Uniqueness and Sharp Estimate at Infinity
We finish this chapter by addressing the uniqueness and the sharp estimate at
infinity for ug.
In order to prove the sharp estimate at infinity for ug, we need the following

lemma.

Lemma 4.13. Suppose 0 < h € L' N L™ and for all x € RY we have
N
|z|9@-D|[h|| L @r\B,,,0)) < C (4.8)

for some constant C .and some P > 1—:—, with % + le’: 1. Then there exists a unique
weak solution w to

—A,w=nh

with w € DY N C' N L*, limzj—.0o w(z) = 0, and there exists a constant d > 0 such

that

VzeRY.

w(z) < —5
ol

Proof: We use techniques developed in Lemma 4 of Allegretto and Odiobala [2].
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The solution w € D exists and is unique by Theorem 2.13 and is p-superharmonic
on bounded domains by part (iv) of Theorem 2.10. In addition, w € C* N L*™ and
limjg)—eo w(m) = 0 by an application of Theorem 2.9 and Corollary 2.8.

Now, let r > 0. Then by Theorem 2.15 we have A,, A3 > 0 such that

2r 1 'pl— d
< A, inf A : h{y)d —
w(z) < 2aEg}z’r)w(a)+ 3/0 (tN“P ~/B¢(z) (y) y) ;

Letting r — oo and using the fact that limp;)— w(z) = 0 we get

1

o1 =¥
0+A3/0 <_tN_p/B(z) h(y)dy) 7
4y /0 ||h|1L1(Bt($))( ) at

N-~1

o0 1 -1
As/O HhHLl(B,(z))( ) dt
|z|/2 1 %_:il' ) 1 %—_—ll
= A, : “h\lmwt(z» dt + Az e llhllLl(Bt(z)) dt.

For the second term on the right we have

1

w(z)

A

f

N-1 N-1

/ “h” <1> " dt < ”h“ / (1) ! dt
1(By(x S (RN -
ol/2 L1(Bu(=) TRy l|/2 :

= CIIhHLl(RN)IxI Sas

N-p

1\ 7
ORIy (ﬁ)
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Now, we also have, with h,(y) = h(y + z) and % + % =1,

”h”Ll(Be(:c)) = / h(y)dy
Bt(.’l:)

= / ha:(y)dy
B:(0)

= c1/ hz(ty)tNdy
B1(0)

et ( / 1(0)<nx<ty>>”dy) .

= gtV (Lt(o)(hx(y))”t””d@ .

= st | 1P By(2))-

IA

Therefore,

|x|/2 "‘i"f 1 % _1_1 |z}/2 'i_l LN, N
/0 ”hHEI(Bt(a:)) (E‘) dt = Cg /O “h“zP(Bt(a:))tp_l Qr-D dt

p=N_, _N _

1 lx' p=~1 " Q(p-1)

el =
ANRLP By 2(2) \ 9

IN

IN

N-p
- LV
eIl Ze (o8, 2000 |z| [ 2%

where we used the fact that P > % implies that ’;,:—1;’ + W;IFV-T) > 0. The lemma now
follows from our condition (4.8) on h. O

Now, by our conditions on g we have that there exists an S > 0 such that

S = sup AsP7! — g(s).

seR+t

Therefore a(z)(Ad ™ (z) — g(ug(z))) < Sa(z), and so the sharp estimate (4.2) now

ol



follows from Theorem 4.12 and Lemma 4.13, where we apply condition (Bj) of The-
orem 4.1.

Finally, suppose we have two positive solutions u = ug and v to (4.1). Then, since
our results following Lemma 4.8 hold for any nonnegative solution to (4.6), we get
sharp estimates for both u and v at infinity, proving that *, 2 € L*. In addition, we

have u,v € C! by Theorem 4.9. Therefore, by Lemma 3.4, we can apply (4.3) to our

admissible test functions ¥=% and ¥=% to get
uP P
0 < I(u,v)
_ _quf =P uf — P
- /\/a(m)ul’ — —/a(m)g(U) e

_ _quP =P u? — P
)\/a(x)u” i +/a(m)g(v) e

= fa (8- 2 00 -

Therefore, by condition (A}) on g (that 9) is increasing) we have that 0 < I{u,v) < 0

sP~1

if v and v are not identical, a contradiction. Therefore © = v, and hence we have

uniqueness for positive solutions to (4.1).
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CHAPTER 5

SYSTEM PROBLEM

In this chapter we let A;(p) = A1(a, p) be the first eigenvalues of Theorem 3.1.

Main Theorem 5.1. Consider

—=Ap,u = ay(z) (1 |ul ~?u — g1(u) + Fu(z, u,v)
(5.1)

~Apv = az(z) (p2[v[P* 20 — g2 (v)) + Fo(z, u, v)
where fori=1,2,
(Ag) gi:RY = RT is continuous,

(A1) lim,_o+ 2 =0,

(A2) 0 < liminf, sgjf(f)r < limsup,_, sng(f)r < oo with v; > p;,

(Asz) %iﬁf—)r is nondecreasing,

Py pa(m-1)
mt for

m

(By) F(z,s,t) : RN x R* x R* — R* is given by F(z,s,t) = b(z)s
some 1 < m < oQ,

(B)) 0 < b(z) = I(z)(ai(z))= (az(z)) " for all z € RY and some I' € L=(RY),
(C1) 0 < a;(z) € LNP(RYN) N L*(RY),

(C2) 1<p; <N, m<py, 725 <p2and i > Mi(pi)-
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Then (5.1) has a solution (ug, Vo) with ug,vg > 0 in RY. In addition,

C
UO(-T) 2 T for |.’E| large,
| ol

and

vo(2) 2 —5=5 for |z large.

o] 7

Existence of Solution

Since we are varying p in this chapter, we define

fulhy = [ 1vu) v

Lemma 5.2. (i) For any € > 0 there exists constants C; = C1(€) and Cy = Cy(e)

such that

—e(s) 7+ GulsH) < i(9) < el 4 CalsT

_E(S+)Pi + C’l(s+)"ﬁ < Gi(s) < 6(3+)pi + C2(S+)'Yi,

where Gi(s) = [y g:(t)dt.

(i1) There ezists Cy > 0 such that

/|F($,u,v)l,/|Fu($,u,v)u|,/1Fv(z,u,v)v|

<o [a@er)” ([a@er) "
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Proof: This follows from our conditions on g; and F' (and Holder’s Inequality). O

We consider the functionals

J: D' x Db = RU {00}, J(u,v) = [ a1(z)G1(u) + [ a2(2)Ga(v)

K : DVt x D72 — RY, K(u,v) = [ F(z,u,v)

and I : DVPt x D72 — R U {oo} where I(u,v) = oo if J(u,v) = oo and

= — [1vur _m 2 [a@y+ o [ 19 - 2 [a@eor

+ J(u,v) — K(u,v)

if J(u,v) < oo. Our goal is to find a solution to (5.1) by minimizing /.

Lemma 5.3. (a) I is coercive, i.e. I{u,v) = 0o as ||ull1p, + l|v]1p, — 00.

(b) I is a weakly lower semi-continuous functional.

Proof: (a) Assume not. Then there exists {(u,,v,)} C DV x D%P* such that
{I(tn,vn)} is bounded above and |[us||1,p, + [|Vnll1p, — 00.

Let d, = ([ ai(z ”l)l/pl and e, = ([ ax(z pz)l/pz. Now, without loss of
generality and passing to a subsequence if necessary, we can assume that |us|1,, —
0.

First we show that ||us|1p, — oo implies that d, — oo or e, — oco. We have,
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applying Lemma 5.2, that

1 My 1 M2
Hug,vn) > —|un||Ps, — —dP* + —||va||B2 — ==eP? — | |F(x, un, Un
(instn) 2y, = a2+ S unlty, = 22tz = [ (3, 0)
1 py pa(m-1)
> fuallt, - B — B2 _ coare,
p ' D1 D2

and ||unll1p — o0, so if {d,} and {e,} are bounded then I(un,v,) — o0, contra-
dicting the assumption that {I(u,,v,)} is bounded above. Therefore, passing to a
subsequence if necessary, d, — oo or e, — 00, as desired. If we have that ||v,]|1p, is

bounded, then because e2? < Cllas||n/p, l|lvallt?,, we also have that {e,} is bounded.

2
P2
Therefore either d, — oo and |u,|1, — o0, or we have e, — oo and (passing
to a subsequence if necessary) ||vnll1,,, — 00, or both cases occur simultaneously.
Hence, without loss of generality, we can assume that |u,|l1, — o0, d, — oo and
. eP?
lim sup,,_, oo Fr <oo.

u

Next, set 4, = 7> and 0, = 2. Then

Jo@ @y = [ =1

o6



and

Hnvn) = o [190. =2 [a@@? + [a@6w)

+ % / VP2 — % / ag(z) (v )7 + / a2(z)Ga(vn)
—/F(x, Un,y Un)

P1

_ d_ Vi - L / (@)@ + / 01(2)G1 (dnin)

— | F(z,un,v,)

so that

I n 1
(“;T’f’) = i/wanl“ ——‘fl+——/a1(x)G1(dnan)

2 H2€y P2 1
d”l /|an]1’ o +d”1 /az( )Ga(enn)

1

- E’Zl— F(Z, Un, )
1 _ p1 poeh? 1
T S L
> 1 /|V— |P1 H1 ,u,zeff C d?e: (:l_l)
— u —
T on " p1 padn O
oL 1 el? err\ ™
= "‘”Unnlpl_a—"’@" 0 P!
Therefore, since —I—(i“i’?—’rf’l‘—) — 0 and limsup,,_,., 3%; < 00, we have that {||@s|l1p,} is

bounded. This implies, passing to a subsequence if necessary, that @, — % in DVP!,

i, — % a.e. in RY, and 4, — 4 in LZi(z) (by Lemma 2.6). In addition, applying
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Lemma 5.2 we have

I(Un, vn u
(_d”;i_) = —/|V n|™ ‘—+;{ﬁ 01(2)G1(dnTin)
em er: D2 1 _
dm / VP~ mdm i / a2(2) Gz(€ntn)

o /F(w Up,y Un)

1 e’
Z ‘“El‘ + Eﬁ al(m)Gl(dnﬂn) - ;Ljdpl Ty / lF 'T un,vn)|
N‘l € _ Ch - /"'26512
> D [y g fa@es - 2

m~1

P
| - C f_ni "
0 d?rj,_l
m—1

P2 P2\ “m
= By Crd /al(a:)(ﬂf{)"1 _ B2 <&—> :

b1 pzdﬁ1 dn

Therefore, v1 > p; and d, — oo imply that [ a;(z)(@})™ — 0. Hence, by Fatou’s

lemma we have

/al(a:)(ﬁ+)"“ =0.

Therefore, since a;(z) > 0on RY, we have that & < 0 on RY. However this contradicts

the fact that @, — @ in L

ar(z

y and [ a)(z)(@y)" =1 for all n. This proves part (a)

of the lemma.

(b) Assume U, — u in D" and v, — v in D'?2. Then Lemma 2.6 implies

‘/al(a:)ufll — /al(ar:)u“’1 and /aQ(z)vff — /GQ(:E)'UPZ.

Furthermore, since u,(z) — u(z), v,(z) — v(z) for a.e. T € R, we have by Lebesgue
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Dominated Convergence Theorem that

/ (@i - Ja@r, [a@hir - [o@he,

and

/F(:z:,un,vn) — /F(x,u,v).b

It follows by Fatou’s Lemma that

/ a1(z)G(u) < liminf | a;(z)G1(u,) and /az(z)G’z(v) < lim inf .az(il?)Gz(’Un).

n—oo n—oo

Finally, || - ||P is weakly L.s.c. by Lemma 2.5, so that (u,,v,) — (u,v) in DVPt x Dbp2

implies p—11||u||’1’ylp1 + ﬁ;HvH’l’fm < liminf, pi1Hun||’l’,1p1 + ﬁ;“vnﬂ’l’fpf Therefore I{u,v) <

liminf,_,. I(un,v,), hence is weakly l.s.c. This proves the lemma. 0O

Theorem 5.4. (Solution to the Minimization Problem) The minimization problem
inf I(u,v), (u,v) € D"Pt x D2

(i.e. find (u,v) € DVPr x DYP2 for which inf I(u,v) is achicved) has a solution

(ug, vo) € DV x DLP2 yith

inf I(u,v) = I(ug,vyp). (5.2)

(u,v)eDVP1 x D1:P2

Proof: This follows directly from Lemma 5.3 and Lemma 2.5. UJ
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Theorem 5.5. Suppose (4,7) is a minimum point of I, i.e. a solution to (5.2).

Assume that {t,} € R*, limp_ ooty = 0. Then, if w € DV N LZ’l(z) and z €

DYz LZ;(Z), we have
0 = lim I{(@+ t,w,?) — I(d, D)
n—oo . i,
= /lVﬁ[”l"zVﬁ~Vw-—;tl/al(w)(qfr)m'lw
+ [a@a@w - [ Fuz o0
and

0 = lim (T, T+ t,z) — I(@, D)

n—00 tn

- /IVz‘;lml—ZVﬁ.vz—ﬂz/az(x)(w)pz_lz
+/a2($)92(5)2—/Fv($,ﬂ, )z

Proof: In view of Lemma 5.2, the proof follows exactly as in the scalar case,

Theorem 4.6. [

Corollary 5.6. A solution (ug,vp) to the minimization problem (5.2) is a weak so-

lution to the problem

-4y (uo) = ulal(w)(ué)”“‘ - al(fv)gl(uo) + Fu(z, ug, vo)

~Ap,(vo) = paag(z){vg P2~ — ag(z)ga(vo) + Fu(w, ug, vo),
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in RY, i.e

[ V62V g - Voo = [ (i () (1P~ = a1 ()2 (o)) + [ Fu(, oy vp)w
[ V|22V - Vz = [(pga2(z)(v§)P2! = aa(z)g2(vo))z + [ Fy(z, ug, vo)2,
Vwel

@ NDIP ¥ 2 e L2 N DL

az(z)
(5.4)

In addition, I(u,v) < 0 so that (ug,vy) is non-triwvial. Finally, we have that both ug

and vy are each non-trivial.

Proof: The first part follows immediately from Theorem 5.5. For the second part,
we provide a proof that works even without the condition that F* > 0. Let ®,,¥; >0
be first eigenfunctions associated to the first eigenvalues A;(p1), A1(p2), respectively,
normalized so that || @11, = ||¥1]l1,p, = 1. Assume without loss of generality that

p1 < po. Then we have, applying Lemma 5.2,

' 1 tP 1
I(t®,,?0;) = —tpl—“l / z)DE + /a1 )G1(t®,) + —tP?

b2

- “2;:')2/ 2(z) TP + /ag(m)G’z(t 0,) /F 2,10y, 140

1
(1 . ) "+ /al(m) (etPr @ + Cot™ PT)
D A1(p1)

1
+ — (1 ac ) t?2 4 /02(1‘) (et?2 %2 4+ Cyt* 1 ]?)
P2 Ai(p2)

1

L m=1
+ CO m +.2!ﬂ£1_17711‘£_ (/ al(m)®’1’1> (/ ag(CL‘)\Iﬂf2>
1 1 p1 m v /
= — —_ 1 @'Yl

o <1 SWEN) )\1(])1)) P+ Cut a1 (z)®]

1 H2 D2 2 2 /

— (1= 202 1 O 42% g2
o (i i) e+ 0 [

m—1

2pg(m-—1}) 1 # 1 Tm
w5 ()" ()
of A1(p1) AM(p2)
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Now, we have 7; > p;. In addition, since 1 < p; < py we have

m—1 2p2(m — 1
p=D nim=l) o, Zpm-1)
m m m m

The result now follows in this case from having p; > Aj(p;), by choosing ¢ and ¢
sufficiently small, and using the fact that ®, ¢ L™ p e L» y as proved in Theo-

a;(z as(z

rem 3.7. Finally, if uo = 0, a similar proof as above shows that I(t®;,v,) < I(ug,vo)

for ¢ sufficiently small, contradicting the fact that (up, vo) minimizes I. Therefore ug

is non-trivial. The proof that vy is non-trivial is the same. O

Properties of Solution
Lemma 5.7.

up(z) 20, vo(z) >0 VxR,

Proof: Since F is a function of u* and v*, the proof is identical to that of the
scalar case, Lemma 4.8. [J
For the remainder of this chapter, we let (ug, v9) be any nontrivial solution to (5.4)

satisfying ug,vg > 0, rather than assuming it is the solution that we arrived at via

minimization.

Theorem 5.8.

u € L*NLY N Ch® and lim wp(z) =0,

! |z|—c0
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vp € L°NLZ  NCL* and lim wvy(z) = 0.

az(z) loc |z 00

Proof: First note that

Fu(z,u,v) = ?‘l‘b(w)(u““)%‘l(vﬂ’—’@
m
and

Fy(z,u,v) = &%ilb(:r)(u*')%(v'*)-pz(:“l)—1.

Our proof mimics that of Appendix 7 in [14].
Let y € RY and R > 0. For z € B,(0) and any function h defined on B,p(y) we

define A(z) = h(Rz +y), Le.

Let u = 1y and v = ¥. Then we have (with 2 = Rz + y)

/ |Vu(z) [P 2Vu(z) - Vi (z)ds
— p» / Vuo( Rz + 9)[P* -2 Vuo( Rz + ) - V(R + y)dz
_ R™ / Vo (2)[P Vg (2) - Vew(z) RN dz
<R [ (i@ @)+ Bo) e () F 08 ()5 w2 Rz

= & [ (@) @) + L) @) F i (@) ) (),
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so that (u,v) are weak solutions to the variational inequalities

Oyt € Ry (@) |l + B R ful Bt o) 2 (5.5)

and (similar to above)

(m

—1). m—
B < p R ol + P Dy oy By 2R 2 (56)
m

Hereafter we let Ky, K1, K, K', K" denote any constants depending only on py, p2, N,

M1, B2, T, “al”ooa Ha2HOO and “bHOO
Without loss of generality we can assume that p; > p,. Let ¢ = —N—_A%E > 1. Then

for any ball B C B;(0) we have

for any w € Wy (B), ||lw

tn(g) < Kollwl 1t 5y < K1l VwllLrs)

for any w € Wy (B), |[wl|zer(z) = [wll o3 5y < K1l VWllzea(s).

We construct the following sequences:

pik =pict fori=1,2 and k > 0,
my = pr(c® — 1), tx = pa(cF — 1),

k;é c-;fvl'

oo =2, pp = —%Zj , for any k > 1,

-k
I ST S — J°® Py
where -+ - =1 and o 2 jepC L.

Denote Dy = B, (0). Consider n € C°(RY) defined such that 0 <np <1,np=1
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on D1, 1 is supported in Dy, and
k
|Vn(t)| < Kc*t, for all t € Dy. (5.7)

Let |u|™wunP! be a test function in (5.5), obtaining I + I < I3 + I where

L= (1+my) [p, nPul™(VulP,
L =py fp, 771V VUl Vul |,
Iy =y R” ka &l(x)np1|u+IP1+mk’

Iy = BRm ka B($)|U+l%+m’°|v+]p2(7‘n_l)nm'

Next define

c* c*
B = max{|[u |75, p,, 1 172y -

Then we have

l[3| < NIRm”al”oo/ nm|ulp1c’° < RmKEk_

Dy

Similarly, applying Holder’s inequality and noting that

pl/m+mk+pg(m—1)/m_l 1 m-1 +p1(ck——1)
m m N

prck pack ck pick

we have

P]‘/m:'m[; pz(m—cl)/m
|[4| < ERm”me </ lulplck> n (/ lv]pzck) P2 < R KE,.
m Dk Dk
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On the other hand, since (1 + my) = (p; — 1)(c* — 1) + c*, we have for any s > 0,

L < / PP T Vgl
| Dy

¢ k
! I / G P ] O DD T o]
Dy,

IA

2 ,
oo L (scfg> 1/n(m—l)p’l|Vul(p1~l)p’1|u|p’1(p1—1)(6"~1)
1

. T
/ T

kp

Py ck P
o L nm|w|m|u|mk+C A
| / P1
Dy 57 Jp,

where we used Young’s Inequality AB < (sA)pl ;1; (-’f)pl. Since

m
ckz—-—lz—i—lgl—l—mk,

21
' l/p'l . , .
applying (5.7) for s = <2—’;1;> (i.e. 2p1s™ < p}), we obtain
1
|I| < §|[1l + KE}.
Therefore |I;| < || + |Is] + 14| < 3|1| + KEi + 2RP* K Ey, so that
\L| < (1 + RMKE,.

Now, by Sobolev Embedding, we have

I By < Kl V (0w 73y < K (s + I)
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where

L= [ 1Pl < K0,
Dy
and
I = Ckm/ nmlvulp1|ulp1(c’°——1)
Dy

— ck(m—l)ck/ P V[Pt u|™
Dy

< : ck(Pl—l)(l+mk)/ nP1|VulP1|ulmk

Dy
— ck(Pl—l)Il_
Combining the above results, we get
Ck _
17 sy < (L RPYK OB (5.8)

Similarly, letting |v|**vnP? be a test function in (5.6), we obtain (because p; < py)
Ck —
70 1P,y S (1+ RPK PV E,, (5.9)

1

Setting Oy = E',fl_’;, then we obtain by (5.8) and (5.9) and the fact that n = 1 on
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Dy,

1

k41 k+1
Okt1 = (max{”uc ”Tpl(DkH)’“Uc HZZ‘;’?(DHI) )”l-k“
1 1
k ke PLk ©
= (ma{ T oy 1 [} ) P
. k ) Lo
m,
- (max{”uc |21°Pl(Dk+1),”’Uc lpﬁ”(DHl)}) "
1
k k PLk
< (max e 2 oy 10 [ }) ™

1 k(py-1)

< [(14 RP)K]Prec 1k ©y
for all & > 0. Therefore,
L oo Jlp1-1)

1 o 1 >
lull o1k (D) = (Huckﬂﬁul(m)) Pk < @ < (14 RPYK]>=0 75 == ms @,

where

and (because ¢ > 1)

We therefore obtain

IN

lim sup ||ul| prre(p,)
k—+o00

< K'(1+ RP)7me,

[[ullLe=(By)

) N oy
= K'(1+ RP)7ez max {|[ull i (5y), (1911 a5,y }-
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1

Similarly, define ¥y = E**, and we get from (5.8) and (5.9),

1 kp-1)

Uei1 < [(1+ RPYK]P2kc P2k Ty, for all k>0,
which implies
’ % W
“U||L°°(Bl) <K'(1+ RPH) P max{”””[,Pl(Bz)v |IU|IL”2(32)}'

By the embeddings

LP(By) C LP(By), i = 1,2,

we obtain that

lull ooz < K"(1+ R7)7i5 max {|[ul] s g, 10 lm(a b

and

4
”v”LOO(Bl) < K”(l + RPI)PZ max {“u”Lpl (B H,U”LPE(BZ)}'

Finally, changing variables back to (ug, vg), we get

ol Loo(Baey < K(1+ RP)7m max{R™% ||u0||Lp1(BzR(y) ) o|
and

N p2—N
loollzoaay < K(1+R™)% max{R™" uo| 7 R
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Therefore we have ug, vp € L and limg|o0 up(z) = 0, lim|g_00 vo{z) = 0.

Next, since ug € LN L} () @0d 71 > p1, we have ug € L (z)- Similarly, vo € L”

az(z)’

loc

Finally, we have ug, vy € C| L(RN) by Theorem 2.9. O
|
Lemma 5.9. Set

fi(z) = par(z)(ug ()P = a1(z)g1 (uo(x)) + Ful, uo, vo),

fa(z) = paaa(z)(vg (2))™ 7" — az(x)g2(vo(z)) + Fo(z, uo, vo).

Then there exists Ry > 0 such that fi(x), fo(z) > 0 for all x € RV\Bg,(0), and such
that
" Q={zeRY | u(z) > Si}U{z e RY | vo(z) > So} € Q C Bg,(0)

where S; = max{s | gi(s) = pis™ '}, i = 1.2.

Proof: Fix z € R" and consider

K)oy (ja - S0, Bt n(s)

Since s Fy(x, 5, v0(x)) = finl-b(x)s”l(ﬁ'l)(vg’(:v))u(ﬁ__l‘) is a decreasing function of
s and ‘—S%’lif—)r is non-increasing by our conditions on g; and F', we have that there
exists Ty(z) > 0 such that fi(z) < 0 if and only if ug(z) > Ti(z). Furthermore,
since s 1E,(z, 5, vo(z)) > 0, if we let Sy = max{s | g1(s) = w1571} then we have

Ti(z) > S; > 0 for all z € RV. Since lim|g| 00 Uo(z) = O the result now follows for

fi(z) by a sufficiently large choice of Ry. The proof for fy(z) is the same. [

Lemma 5.10. ug(z) > 0 and vo(z) > 0 for all z € RV,
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Proof: We know from Lemma 5.6 that ug is not identically zero, so let @ = {z €
RY | up(z) = 0} # R"™ and assume that © is nonempty. Note that by Lemma 5.7 we
have uy > 0, and since ug is continuous by Lemma 5.8 we have that € is closed. Let

zo € 09, so that ug(zg) = 0. Then by continuity of ug, we can find a 6 > 0 such that

where S) is as in the proof of Lemma 5.9. Therefore ug is a weak solution to the

system

~Dpu = fi(z) >0 in Bs(xo),

u > 0 on 0Bs(xzo).

Then an application of the maximum principle (Theorem 2.10 part (iii)) implies that
ug = 0 in Bs(zp), contradicting the fact that zo € 9. Therefore ug > 0 on RY. The
proof for vy is the same. [

We now provide estimates for the behavior of uy and vy at infinity.

Lemma 5.11. (i) Given € > 0, set

_;%ﬂv fl(m)

Ve = {z | uo(z) > ear(2) > ear(z)(ug (2))™ '}

Then there exists positive constants €y, Lo and Ry > Ry (where Ry is as in Lemma 5.9)

71



such that, for all 0 < e < g we have

HGIXQl IIN/p1 Z LO)

where Q; =V, N By, (0).

(i1) Given € > 0, set

N -

W, = {z | w(@) > car(®) & , folt) > ear(@)(wi (@)}

Then there exists positive constants €p, Ly and Ry > Ry such that, for all 0 < e < ¢
we have

||a2XQzl|N/p2 > LOv

where Qy = W, N Bg, (0).

In both parts our constants €y and Ly may depend on m, pi, p2, p1, p2, ||Uoll1,p,

HUOI 1,p27 ”a].“N/Pl and ”aZHN/Pz'

Proof: Again we apply similar methods to Costa, Drabek and Tehrani [7].

Let ¢ > 0. To simplify notation, we write V = V,. Then, letting w = up in (5.4) and
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applying Lemma 5.2, we have

fualfy, = [ mosle)w) 0~ [ an@am(uohuo+ [ Fule, o,
= [ ma@ e - [ a@ontee+ / Fu(, uo, v0)to

\%4
+/ fl(.’L')UO
RN\V
< /Mlal(x)(uo*)’”‘luo+/ fi(z)ug
v RN\V
1 1 1
+ Collarxv [y ol " laaxy IR ™ lug |72

IN

Crllarxy ool + / fi(@)uo
RN\V

1 -1 -1
+ Cillarxv [y, l1uolF ™ lazxv IRefm /™ uo 7202/

Consider the decomposition RM\V = A; U Ay, A1 N Ay = {), where
N-p
A= {z | w(z) < carfa) 7 ),

N-p

Ap = {z | fi(2) < car(a)(ud (@)Y, uo(z) > ear(z) 7 ).
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Then we obtain, again applying Lemma 5.2,

fl(i)UO = ﬂl/ ax (z)(ug )™ "/ a1(z) g1 (uo)uo + B Fu(z, uo, vo)uo
: Ay A !
. . N-p pP1
I < 'u,lepl/ al(x) (al(x)_?%_l)
J Ay

I_V__ZE‘L Pt 1/m m— m m— m
+ CYeprim ( /A a,(z) (al(x) i > llazll ™ o725
1
= Nlepl/ CL1($)N/p1
Ay

Ay

1/m
L Clenim ( / a1<x)N/m) lagll 0/ g 2=
1

N m N -1)/m -1
= e arl}2 + CLe ™ arlI NP aal| G Y ol 25

Furthermore,

fi(e)uo < € / ar(@)uol™ < Cellarlnsps uolP.
As A2

Therefore, combining the above estimates, we obtain

luollTy, < Crallarxvinge l[wollTy,

1 m m-1)/m m-1)/m
+ Cillarxy [ ol B lazxy 172 ™ | ug |25/

N N - -1
+ e [lar |32 + Cye ™ ||/ [lag |77 D™ o 728D

o+ Cellanllngp lluolliy,

Now, we can find ¢, > 0 (depending on Uy, HUOHl,pla ”U0”1,p27 ”alllN/m and ”a‘2“N/p2)
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such that

N, m N/( 1)/m m—1)/
—||uo| L > me a4+ CLe ™ ag [N flaall G ol B2
+C€HCL1”N/P1||u0Hlp1
for all € < ¢y. Therefore
||U0| LS Cuallaaxvllvg uolB,
1 1
+ Chllanxv iy ol L™ lazxv Refm /™ |Jug| F20m =D/,

so that there exists constants C5,(Cs > 0 such that X™ + CsX — Cg > 0, where
X = HalXVH}\{}Zl. Hence, there exists a constant Ly depending on the constants listed

in the statement of the lemma such that, for 0 < ¢ < ¢,
HMXV”N/m > 2Ly.
Since a; € LN/P1(RN) there exists R; > Ry such that

llarxrn\Bg, @) IN/p < Lo

Therefore, considering that V., C V, for 0 < € < ¢, it follows that

la1xvinse, @ lln/m 2 Lo
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completing the proof of part (i) the lemma. The proof of part (ii) is identical. [

We are finally ready to study the behaviors of ug and vy at infinity.

Theorem 5.12. There erists C > 0 such that a solution (ug,vg) of the minimization

problem (5.2) is a positive solution to problem (5.1) and satisfies

N-p
ug(z) > C’|z|_1_’1——ll for |z| large.

N-p
vo(z) > C’|z|—P2——12 for |z| large.

Proof: We recall that (ug,vg) is a solution to (5.3) in RY. Therefore, using the
notation of Lemma 5.11 and letting V = V,, and W = W, we have by the definition
of V and W that

—Dpug = par(z)(ud) ! — ar(z)g1(uo) + Fulz, uo, vo)

Npy—N+p

f@) z ' (aa(z)) 7 onV N Bgy

and

—Dpv0 = 202(z)(v5 )7 = az(2)g2(vo) + Fu(, uo, vo)

Npa~N4p

= fo(x) > g’ (az(z)) *  on W N Bpy.

For R > 24R; > 24Ry, consider z = zp, the solution to the Dirichlet problem

Npy~-N+p
—Apz=¢'(a1(z)) " XvnBgp in Br(0),

z=10 on 0Bg(0).
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The solution z exists by Theorem 2.13, is continuous (and hence bounded) by The-
orem 2.9, and is p-superharmonic by part (iv) of Theorem 2.10. Let Qy = {z €
RN | ug(z) > S1}, where S = max{s | i(s) = u1sP7'} as in Lemma 5.9. Then
Qo C Q¢ C Bg,(0) € Bg(0) is bounded and fi(z) > 0 for all z € RNV\Q,. Let
Q) = Bgr(0)\Qg. Then by Theorem 5.8 we have that 2, is a bounded domain of class
C'e 0 < a <1, and that 9Q; = dBg(0)UT with ug =S, on I,

Now, let K(p) be the cube centered at 0 with sides of length p. Then I' C K(Ry) C
K(2Ry) < Bg(0), so we can apply Corollary 2.8 (where in the notation bf that result
we use v = p}) and Sobolev Embedding to get

max z(z) < max z(z)
zel €K (Ro)

IN

CR, ™ HZ“LPI(K(ZRO))

N

S CIRO il HVZHLPL(K(ZRO))
-4
< C'Ry " V2|l (Br(0))-

We can then apply Corollary 2.13 to get

1/(p2—1)

=

Npy—~N+p
& (a1(x)) " XvaBg,©

=

< " “p
Iilglgcz(x) < C"R,

p]

Therefore there exists a constant C; = C)(¢g, a1, p1, N, Ro, R1) independent of R such

that C; = maxr 2. Let ¢; = min(1, g’;), so that S; > maxr €;z. Note that S; depends
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only on gy, 1, and p,. We have that z; = €,z is the solution to the Dirichlet problem

Npj—N+p
—Apw =7 e (ay(z) XvnBg,(0) in Bgr(0),

w=0 on 9Bgr(0).

Npj-N+p
Since fi(z) > ef*(ai1(z)) *  in VN Bg(0), &g <1and fi(z) > 0in Oy, we have

| —APIUO 2 —Aplzl m Ql.

1

Furthermore, since ug > 0 in RY by Lemma 5.7 and ug > S; > z; on I', we have that
ug > z; on 0€).

Therefore; by the Weak Comparison Principle of Theorem 2.10, we conclude that
up > 21 in £;.

The remainder of the proof for uy then follows exactly as in the scalar case, Theo-

rem 4.12. The proof for vy is the same. [

Remark 5.13. We could generalize our condition that F(z,s,t) = b(x)s%tgz%ﬂ,

instead requiring:
(1) |Fy(z, 5,1)| < Ci(ar(z))% (ax(z)) 5 s B 125
(2) ’Ft(% Svt)' S CZ(al(m))ﬁ(GQ(fE))z‘m;ls%lltEZ(—::‘—l)_l

(3) s7P*1F (z,s,t) is a decreasing function of s,
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(4) t™P2*1Fy(z,s,t) is a decreasing function of ¢,
(5) Fy(z,s,t) and Fy(z, s,t) are continuous.
For the sake of simplicity, we focused in this chapter on the main example of such a

function, that of expressing F(z, s,t) as powers of s and t.
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CHAPTER 6

SYSTEM PROBLEM WITH HARVESTING

In this chapter we let A\;(p) = A1(a,p) be the first eigenvalues of Theorem 3.1.

Main Theorem 6.1. Consider

—Apu = ay () (u [ulP~2u — gi(u)) + Fu(z,u,v) — vihy(z)
(6.1)

—Ap,0 = ag(x)(p2]v[P* %0 — g2(v)) + Fo(z,u,v) — vpha(z)
where fori=1,2,
(Ag) ¢:: RY — R* is continuous,
(A1) lim,_o+ 2k =0,
(A2) 0 < liminf,_,q f%f%— < limsup,_,, fv—(f‘)r < oo with v; > p;,
(As) z,—ff—)r is nondecreasing,
(By) F(z,s,t) : RV x R x Rt — R™* is given by F(z,s,t) = b(m)s%t&%ﬁ for
some 1l < m < 00,

(042(.7,')):”_":—1 for all z € RN and some ' € L®(RV),

3=

(B1) 0<b(z)=T(z)(a1(z))
(C1) 0 < hi(z) € LERN)N L®(RYN), where oi(z) = (1 + |z|)% and p%_ + % =1,
(C2) 0 < ai(z) € LNP(RN) N L®(RYN),

(C3) 1<pi<N,m<p, 2= <py, 0<; <8 and p; > A(ps).

m-—1 —

Then for 6, sufficiently small, (6.1) has a nontrivial solution (u;,v,) in RN. In
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addition, suppose we also have

(Cy) hi € LYRY) and for all z € RN we have

valN/QllhllLPmN\B.,.(m) <C

for some constant C and some P > £, with £ + s=1L

Then, for py = pa = 2 = m there is a solution with uy,v; > 0 in RY and satisfying

u(z) > Ta:—lj—v?z for |z| large,

and

C
n(z) > W for |z| large.

Existence of Solution

Since we are varying p in this chapter, we define

1/p
lullo = ( [ 190P)

Lemma 6.2. (i) For any ¢ > 0 there exists constants C; = Cy(€) and Cy = Ca(e)

such that

_E(S+)Pi—1 + Cl(s-l-)%'—l S gi(s) < €(S+)pi—l + 02(84_)71._1,

—€(sT)Pi + C1(sT)" < Gi(s) < e(st)Pi 4+ Co(sh)™,
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where G;(s) = [ gi(t)dt.

(ii) There exists Cy > 0 such that

o /lF(z,u,v)],/]Fu(m,u,v)u|,/|Fv(z,u,v)v1

< G < / al(a:)(u*”)”l)% ( / a2(x)(v+)pz>

Proof: This follows from our conditions on g; and F' (and Holder’s Inequality). O

m-—1

We consider the functionals

J: Dbprx DLp2 — R U {oo}, J(u,v) = fal(a:)Gl(@) + [ ax(z)G2(v)

K : DYt x DY — RY K(u,v) = [ F(z,u,v)

and I = I, ,, : D¥?* x D**2 — R U {oo} where I(u,v) = oo if J(u,v) = oo and

I(w,v) = pil / |vu|mv~ﬂ / ar(z) (W™ + 1y / h(z)u

m
+ 51;/ |VulP? — % / as(z)(vh)P? + Vg/h2($)v + J(u,v) - K(u,v)

if J(u,v) < 0o. Our goal is to find a solution to (6.1) by minimizing /.

We note that h; € L% (£ + L = 1) implies by Holder’s and Hardy’s Inequalities
Ti \pi qi

(Lemma 2.3) that

| e

u(z)

= ‘/h1($)(1+|x|)1+|x|

: </[hl(90)(1+!:E!)]‘“)l/ql </’(%%E>l/m

< CN,m th “qhal HU’H 1,p1»
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and similarly that

< CN,PZHh2HQZ,02”UH1,P2

RS

Lemma 6.3. (a) There exists § > 0 such that I is uniformly coercive for 0 < vy, vy <

d, i.e. for all M > 0 there exists Ry > 0 such that for 0 < vy, <4,

I(u,0) 2 MV fjull1p, + [[vll1p, 2 Ro-

(b) I is a weakly lower semi-continuous functional.

Proof: (a) Assume not. Then there exists
{(tn,v,)} C DYt x DY*2 and {vy, o} C (0, ]

such that {I(u,,vn)} is bounded above and ||uyll1p, + ||Unll1p, — 0. Let dn =
(f a1 (z)(ui)P) Y71 and en = ([ az(z) (v} pz)l/pz. Now, without loss of generality
and passing to a subsequence if necessary, we can assume that ||u,|1,,, — co. First
we show that ||up|j1,,, — oo implies that d, — oo or e, — co. We have, applying

Lemma. 6.2, that

1 ! 2 /
Iup,v,) > —||ulIP d7"1 v, —eP? — F(z, up, vn
( ) ” llunllT e - H 135 — p |F'( )|

+V1,n/hl(m)un+u2,n/h2(x)vn

H1 H2
2 _” unl¥y, — —di + o “Un”lpz Eeﬁz
pp pa(m-1)

—Coditen ™ = Co([[mllgiorllunllip + [1h2llgrozllvnllie.):
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Now, ||un|l1p — 0o and py,py > 1, so if {d,} and {e,} are bounded then I(un,v,) —
00, contradicting the assumption that {/(un,v,)} is bounded above. Therefore, pass-
ing to a subsequence if necessary, d, — oo or e, — oo, as desired. If we have that
lunll1,p, is bounded, then because eb? < C'llag||nyp,llvnllls, We also have that {e,} is
bounded. Therefore either d, — oo and ||ug||1p, — o0, or we have e, — oo and
(passing to a subsequence if necessary) ||vy|/1,, — 00, or both cases occur simultane-
ously. Hence, without loss of generality, we can assume that ||u,||,, — o0, dn — 00
and lim sup,,_, 5?; < o0.

Next, set @, = 4* and ¥, = 2*. Then

[a@@y = [a@er =

and

I(tn, V)

= [ =5 fa@yr + [a@6i)

oo 19 =2 [aa)wy + [ ax(@)Gaton)

—_ /F(z, Up,Un) + Vi n / hl(:c)un+1/2,n/h2(:c)vn

= & [var - La [a@@r + [aeeid)

en’ ~ 1p2 _ M2 p =+\P2 =
+ 2 [ |[V5,|P2 — —ZeP? [ ap(z)(T7)P? + | az(z)G2(entn)
P2 P2

—/F(-’L‘aumvn)_*'yl,n/hl(z)un+V2,n/h2(z)Un
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so that

I(un, vn _
%_l _ /IV nlm_——+dm /al(x)Gl(dnun)

oeb? 1 _
d”‘ /|an|1>2 Zdi’l + aﬁ/az(m)Gg(envn)

1 Va,n€n _
"5 F(z,Un,vp) + e l/hl T )y + 2(2”1 /hz(a:)v

+

1 _ H1
> I—);/W nlp_p_l_p.—2dﬁ1—dpl/'F.’L‘un,Un
Ui _ Van€n
+dp§’_ - / o (2)n + 2,,1 / ha(z)Tn
Py po(m-—1)
> —/IV A+ /Iv NI K.
—_ D1 pzdpl 0 dfll

- Bt e it~ (&)

ye <——-dgl_1 Isllawn 1l + 25 ||h2|\qm||un||lm> ,

. P2 . .
Now, d, — oo and limsup,,_,., %7 < oo imply that limsup,,_,, % < oo. Therefore,

. . P2 : ~
since I(—Z’;‘,’f’—") — 0, 1 < p1,p; and limsup,,_,, By < oo, we have that {||@n/15} and

{lZnll1p,} are bounded. This implies, passing to a subsequence if necessary, that

i, — @ in D' @, — @ a.e. in RV, and %, — @ in LZi(z) (by Lemma 2.6). In
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addition, applying Lemma 6.2 we have

!_(_'lt;ﬁ,—lunl _ _/lv [Pl__+—— al(.T)Gl(dnan)

* P2 P2 1
4 €n /|v le IU’2(eip1 + — / ( )Gz(enﬁn)

v ¥ 13 nen -
dpl F(z, tn, vn) L / 2dp1 /hz(x)vn
d”‘ a1(z)G1(dntin) — Hach /|F (T, Up, Uy

2 nl dpl

- oo (Fnhlnmnanllm il

S| :
i
5 -

¢ C
> f% —d—ﬁl/al(x)(d )P +d—,}1/a1(x)(dnﬁ:)‘“
poeh? e\
- pzdle h CO (E’;l—l)
1
- Cd <dpl 1 thlllh Ulnuﬂnlpl dPl ||h2”q2 52||Un“1pz)
m=—1
epg 622 “m
= —% —e+C d’y1 P /(11("1;)("7';—)71 - 'uzdgl = Co (F)
1
- (dpl——l ”thth,al “unHl,pl dm ”hZ”tn,Uz”v"“l’PZ) )

Therefore, v; > p; > 1 and d, — oo imply that [ a;(z)(@;)" — 0. Hence, by Fatou’s

lemma we have

/ o (@) @) = 0.

Therefore, since a;(z) > 0 on RY, we have that % < 0 on RY. However this contradicts
the fact that 4, — @ in Lg‘(z) and [a;(z)(@})P* =1 for all n. This proves part (a)
of the lemma.

(b) Assume u, — u in D' and v, — v in D¥*?. Then Lemma 2.6 and our estimates
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on | [ hi(z)ul and | [ ho(z)v| imply

Jai(@)ur — [ai(z)uP* and [ az(z)vP? — [ ax(z)vP?,

[ hi(@)un — [ hi(z)u and [ ho(z)v, — [ ho(z)v.

Furthermore, since u,(z) — u(z), va(z) — v(z) for a.e. € RV, we have by Lebesgue

Dominated Convergence Theorem that

/al(w)lu,fl’” - /al(w)llﬁl’”, /az(x)lvil”z — /az(x)lvﬂ”,

and

/F(x,un,vn) — /F(x,u,v).

It follows by Fatou’s Lemma that

/al(w)Gl(u) < liminf/al(x)Gl(un) and /a2($)G2(U) < lim inf/ag(x)Gz(vn).

n—00 n—00

Finally, || - || is weakly l.s.c. by Lemma 2.5, so that (u,,v,) — (u,v) in DVt x Dhp2

implies El-l-llu][’l’,lpl + piz||v|]’1’,2p2 < liminf, 51I||u”|

Tp T ,,%anll’f?m. Therefore I(u,v) <

lim inf,, o0 I (un, vn), hence is weakly l.s.c. This proves the lemma. O

Theorem 6.4. (Solution to the Minimization Problem) The minimization problem

inf I(u,v), (u,v) € D' x D'P2

(i.e. find (u,v) € DY x DP2 for which inf I(u,v) is achieved) has a solution
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(’U.l,’Ul) € DVPr x DVP2 qith

inf I(u,v) = I{ug, vy). (6.2)

(u,v)eDYPL x D1:P2

Proof: This follows directly from Lemma 6.3 and Lemma 2.5. (0

Theorem 6.5. Suppose (u,¥) is a minimum point of I, i.e. a solution to (6.2).

Assume that {t,} € R, limpoot, = 0. Then, if w € D N LZi(x) and z €
DY L | we have
az(x)
0 — lim Iz + t,w,v) — I(,v)
n—00 tn
= /'VﬂlmdeVw—#1/al($)(ﬁ+)pl—lw+/al(x)gl(ﬁ)w
—/Fu(a:,ﬂ,ﬁ)w—l-ul/hl(m)w
and
I T
0 — lim (@, U+ tyz) — I(a@, D)

= /|V5|p2—2V5‘VZ"#z/02(33)(17+)p2_12+/02(33)92(77)3
—/Fv(m,ﬂ,ﬁ)z—l-l/g/hg(z)z

Proof: In view of Lemma 6.2, the proof follows exactly as in the scalar case,

Theorem 4.6. O

Corollary 6.6. A solution (u),v)) to the minimization problem (6.2) is a weak so-
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lution to the problem

—Ap, (uy) = prar(x) ()P — ar(z)g1(ur) + Fu(z, wr,v1) — viha(x)

(6.3)
—Ap,(v1) = M2a2(ﬂ?)(vf)p2_1 — az(2)g2(v1) + Fo(T, w1, v1) — v2ha(z),
inRY, i.e.
SV P72V - Vw = [(ma(e)(uf )P~ — ar(2)gi(u))w
+ [ Fu(z,u1,v1)w — vy [ hi(z)w,
[ IV0lP=290, - Vz = [(ax(2) 0} — ax(z)ga(o1)) (64)

+fFv($,U1,U1)Z— VthZ(x)z7

VwelL? NDWYW., VzelL?  NDW2
1(z)

az(z)

In addition, there exists 0 < dg < 6 and By > 0, By independent of v; and h;, such
that

inf Hu,v) < =Fy V0 <,y < dy,
(u,w)eD1P1x DLP2

so that (uy,v1) is non-trivial. Finally, there exists by, By > 0 independent of vy, 1,
such that

bo < “Ul”l,pl + ”lel,pz < By V0 <u,vp <do.

Proof: The first part follows immediately from Theorem 6.5. For the second part,
let ®,, ¥; > 0 be first eigenfunctions associated to the first eigenvalues A1(p1), A1(p2),

respectively, normalized so that [[®1l1,, = ||¥11p, = 1. Assume without loss of
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generality that p; < p;. Then we have, applying Lemma 6.2,

D2 1 P1 path! D1 1 2p3
I(tq)l,t \Ijl) = —t — al(x)q)1 + al(x)Gl(tq)l) + —t
| Y4 4! D2

2p2
- “2t /(L2([IJ)\I}I;2+/G2($)G2(t2\D1) —/F((E,tq)l,t2‘lll)
+V1t/h.1(.’13)q)1+1/2t2/h.(1')\111
1 (1 — L) P+ /al(a:) (etPr Y 4 Cot @)
n A1(p1) . !

1
‘ + — <1 S ) 7P 4 /ag(x) (P2 D2 4 Cpt*™I]?)
P2 M (p2)

m—1

‘ TR </a1(:r)<1>’1“)m (/az(z)\lf’fz) )

+ I/ltCN,m”hl“(h,Ul”(1)1”1,171 + V2t20N,P2”h'2”<I2,02||\Ij1l|1,172

1 231 p1€ > /
= — {1~ + P+ Cot™ | a1(z)®]
Pl( /\1(171) /\1(P1) 2 1( ) !

1 H2 D2¢ ) 2 2 /
+—{1- + tP2 + Cot™ [ ag(z)T7?
P2 ( A(p2)  Ai(p2) ? 2(z) ¥

+ VltCNym ||h1”<l1,01 + VthCN,PZHh2”fI2,02

t

IN

1

T 1 \=/ 1 \™=
4 Oyl <—> (__> |
0 A(p1) A(p2)

Now, we have ; > p; > 1. In addition, since 1 < p; < p, we have

m—1 2pa(m — 1
p1:@+P1( )<ﬁ+ pa( )

m m m m
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Then there exists Gy > 0 such that

1 i D1€ > /
—20By = -—<1~— + tPL 4+ Cot™ | a;(z)®)

0 D )\1(131) )\1(131) 2 1( ) !
1

H2 Da€ 2 2
+— 1= + t”"’—i—C’t"""/a z) 7
D2 ( )\1(102) )\1(102)> 2 2( ) !

1 m—1
m

2pg(m— 1 m 1 Tm
e ()
° M(p1) A1(p2)

which follows from having u; > A (p;), by choosing € and t sufficiently small, and

using the fact that ®; € LZi (@) U, € Lzz(m) as proved in Theorem 3.7. Then choose

do small so that

VltCN,mth”ql,trl + V2t2CN,p2“h2qu,trz < ﬁo

for 11, 19 < 8p. This proves the estimate on I.

Finally, for the last part we have

I(u,v)

Y

= v -2 [a@uey + [ m
Jlril'/ Vot =22 [ @)ty + va [ aayo— [ Fau,o)

o (= Cralleallvp el = Cvmrliballanoslldive,

v

1
o (1= Challaallwiea) 0135, = Cvatallhallas.oa vll1ms

= Co(Cllarlnzp [ull 7)™ (Cllazlipal v, ) D™

1Pl »P2

From this we get that

lim inf I{u,v) > 0.

llull1,pq +Holl1,pp—0
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Since I(u1,v1) < —fy < 0, we have that there exists by > 0 such that

bo < ”U'l“l,m + HUIHLM VO <,y <.

Since, in addition, I is uniformly coercive, there exists By > 0 such that

bo < [[wallip, + [lvallrp, < Bo,

completing the proof of the corollary. [J

Properties of Solution

Theorem 6.7.

up € LN LZi(I) NCL* and lim wy(z) =0,

loc
fz}—o0

v € L®NLYE N Cp% and lim v (z) = 0.

|z|—o0

Proof: This follows exactly as in Theorem 5.8. [J

At this point, we need linearity of the operator A,, so we must assume that
p1 = p2 = 2 =m. Let (up,v,) satisfy —Aup = v1hi(z) and —Avy = vphy(z), whose
existence follows from Lemma 4.13 and by our conditions on h; and h;. In addition,

by that same lemma, we have a constant d > 0 such that

Uld
lxIN—2

up(z) < for all z € RV
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and

d
ug(z) < é% for all z € RY.

Lemma 6.8. Let ug = u; + uz and vy = vy + vy. Then (ug,vo) is a solution to (5.1)

and Ug, Vo Z 0.

Proof: We have that

—Aug) = —Auy + ug)
= —A(u) — Aus)

= pa(z)w!) ™ — ai(z)gi(w) + Fu(z, u1, v1) — i (z) + v1ha(z)

+)p1—1

= mai(z)(y] — ay(z)g1(u1) + Fulz, uy, v1).

Now let w = uy. Then since uz > 0 (by the maximum principle) we have 0 < w <

1

uy < |ug|, and so u; € LZI

@ N DY implies that w is an admissible test function in

the above equation, which gives

-/IVUEI2 = —~/Vuo'Vw=/(ulal(w)(UT)"“1 — ay(2)g1(w1) + Fu(w, uy, v1))uyg -

So, since ug < 0 implies that u; < 0, and since u]", g1, and F, are nonzero only when
u; > 0, we have that [|Vug|? = 0, i.e. that up > 0. Similarly, vy > 0, proving the
lemma. [l

Therefore, our Main Theorem 6.1 follows from choosing 0 < v,y < §; with

d; < &g sufficiently small, and using our estimates at infinity from the System Problem,
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Main Theorem 5.1 (recalling that for any nonnegative solution (ug, vg) to (5.1) we have

that ug > 0, vo > 0 and these estimates hold):

Q

. C .
| up(z) 2 —x=r and vo(z) 2 —5=; for |z| large.
o] o] 2

:
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