
UNLV Retrospective Theses & Dissertations 

1-1-1995 

A study of bistable behavior and parameter variation in dark A study of bistable behavior and parameter variation in dark 

molecular clouds molecular clouds 

Robert Lee Vaughn 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds 

Repository Citation Repository Citation 
Vaughn, Robert Lee, "A study of bistable behavior and parameter variation in dark molecular clouds" 
(1995). UNLV Retrospective Theses & Dissertations. 2991. 
http://dx.doi.org/10.25669/ofx5-ue20 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital 
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that 
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to 
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons 
license in the record and/or on the work itself. 
 
This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized 
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2991&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/ofx5-ue20
mailto:digitalscholarship@unlv.edu


INFORM ATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films file text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleed through, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6” x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

A Bell & Howell information Company 
300 North Z ee b  Road. Ann Arbor. Ml 48106-1346 USA 

313/761-4700 800/521-0600





A STUDY OF BISTABLE BEHAVIOR AND PARAM ETER 
VARIATION IN DARK MOLECULAR 

CLOUDS

by

Robert L. Vaughn

A dissertation subm itted in partial fulfillment 
of the requirements for the degree of

Doctor of Philosophy 

in 

Physics

D epartm ent of Physics 
University of Nevada, Las Vegas 

December 1995



UMI Number: 9614369

UMI Microform 9614369 
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103



The Thesis of Robert Vaughn for Degree of Ph.D . in Physics is approved.

/ / / ^ /  I S
Chairperson, Stephen Lepp, Ph.D.'

(a )
am ining Committee M ember, John Farley, Ph.D.

It

Examining Committee M ember, Jim  Selser, Ph.D.

Exa: M ember, Bernard Zygelman, Ph.D .

III5-9S'
G raduate Faculty Representative, Kathleen Robins, Ph.D.

/ /V ^  - ? S
Interim  Dean of the G raduate College Cheryl L. Bowles, Ed.D.

University of Nevada,Las Vegas 
December 1995



ABSTRACT

A study of  Bistable Behavior and Parameter Variation in Dark Molecular Clouds. 

investigates the phenomenon of bistability and its relation to  phase transitions, derives 

an analytical model of fractional ionization and does a param eter study. Specifically, 

this investigation focuses on several different types of phenomena tha t are associated 

with the modeling of giant and dark molecular clouds. The chemical model of a 

molecular cloud consists of a set of stiff coupled differential equations. Each differen­

tial equation represents the the rate  of change of the abundance of a chemical species 

in the molecular cloud. Analytical approximations to the fractional ionization are 

presented.

The models are found to have bistable solutions for a range of tem peratures and 

densities. The range over which the bistable solutions exist are shown to dependent 

on; cosmic-ray ionization rate, elemental abundances, grain population and chemical 

reaction rate  coefficients.

A param eter study over a range of tem peratures and densities which have been in­

ferred for the interstellar medium. The results of this study are compared to  observed 

chemical abundances in the Taurus Molecular Cloud 1, L134, the Orion Ridge and 

Sagittarius B2. We examine the study for trace species which are particularly good



indicators of tem perature and density. For example, H^O is a useful probe for deter­

mining tem perture and O H  is a useful proble for determining density. In addition we 

have mapped out the water, molecular oxygen, atomic carbon and carbon monoxide 

abundances tha t will be compared to observations made by the Submillimeter Wave 

Astronomy Sattellite (SWAS).
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Chapter 1 

Astrochemical M odeling

Astrochemical research entered its modern period in 1963 with the discovery of 

the O H  radical. The combined efforts of radio and optical astronomers, coupled 

with those of theoretical astrophysicists and experimentalist, have lead to  a rich 

understanding of the chemical processes occurring within dark interstellar clouds.

Models of the gas-phase chemistry in astrophysics, are now sufficiently sophisti­

cated to  accommodate 5000 reactions and 500 species. These models are capable of 

giving reasonable estimates for the abundances of a variety of chemical species. Thus 

it is possible to check the predictive power of some of the  models. However, there are 

still problems associated with gas phase models which require further investigation.

This investigation will address the problem of bistable solutions and their associ­

ated phase transitions, an analytical approximation for the fractional ionization and 

a param eter study. This chapter will review the im portant literature which lead to 

the discovery of bistability in dark cloud models.

The final section of this chapter gives a brief outline of the dissertation.

1
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Early R esults 1926-1962

The existence of interstellar molecules was originally suggested by A.S.Eddington in 

the Barkerian Lectures (Eddington 1926). Eddington’s speculations were confirmed 

by the discovery of four unknown spectral lines by Merrill in 1934. These lines were 

identified and are associated with C H +, C H ,  and C N .  An a ttem pt to calculate 

molecular abundance from the intensity of spectral lines was made by Swings and 

Rosenfeld in 1937. The problem with the Swings and Rosenfeld model was th a t their 

assumption was based on the existence of therm odynamic equilibrium. Their model 

used the Boltzmann Distribution to obtain the ratio of population in excited states to 

ground states. This would allow them to predict abundance by using ^  =  exp(—^jr).

However, the interstellar medium is not in equilibrium. Equilibrium conditions 

do not exist is because the diffuse clouds where these molecules are observed is at 

100K, while the ultraviolet photons have energies of 10-20 eV. Since there are 11606 

degrees Kelvin per electron volt, the tem perature of the photons is greater than  the 

tem perature of the cloud.

Despite their unsuccessful attem pt to compute abundances they proposed a con­

tinuing search for diatomics in the interstellar medium (Swings and Rosenfeld 1937). 

The first reported a ttem pt to do gas phase chemistry in a non-equilibrium state  was 

by Kramers and ter H aar (1946). They constructed a gas phase model which used 

specific rate constants to account for the formation and destruction o i C H  and C H + 

(Kramers and ter H aar 1946). Bates and Spitzer (1951) improved the Kramers Model



by computing more reliable rate coefficients.

The generally accepted theory until the mid-1960’s was th a t the interstellar medium 

was too hostile to  allow molecules to exist for an extended period of time. This con­

clusion was reasonable since only three stable species C H , C H + and C N  had been 

detected. Most scientists were convinced th a t it was possible for large molecules 

to be formed on interstellar dust, bu t they also believed these molecules would be 

short-lived because of the intense radiation which was associated with the interstellar 

medium.

Discovery of M olecules and M olecular Clouds

A revolutionary discovery occurred in 1963 with the observation of the two ground 

state transitions of the hydroxyl radical OH. By using techniques of microwave ab­

sorption, W eintrab was able to identify two new transitions in the microwave spectrum 

(W eintrab, B arrett, Meeks and Henry 1963). W eintraub’s discovery was im portant 

for two reasons: it provided incontrovertible evidence tha t supported the existence of 

molecules in dark clouds and it was responsible for the creation of a new observational 

method for detecting microwave spectral lines (W eintrab 1963).

Research into interstellar clouds intensified after 1968, centim eter and millimeter 

observations led to the discovery of more than  30 molecules. In particular, the de­

tection of microwave transitions in the late sixties lead to the discovery of ammonia 

N H 3 , water vapor H 2 0 ,  and formaldehyde H2GO  in the cores of dark clouds. The 

discovery of molecules in dark clouds motivated astrophysicists to reexamine their



assumption th a t molecules are rapidly destroyed in the interstellar medium.

In the early 1970’s, analysis of absorption lines in the ultraviolet region lead 

to the discovery of H2, H D  and CO.  Much of the data  for these discoveries was 

accumulated using rockets and the Copernicus satellite. Concurrent observations 

of atomic hydrogen illustrated th a t atomic hydrogen was converted into molecular 

hydrogen in regions of obscuration. By the end of 1971 over 21 molecular species had 

been detected in the dark interstellar clouds (Litvak 1972).

The m ajor question at the beginning of the 1970’s was how to account for the 

large number of molecules. The observation of an increasing number of molecules led 

Solomon and Klemperer (1972) to suspect tha t the existence of diatomics could be 

explained by standard chemical reactions. Using high quality data provided by Herbig 

(1970) they proceeded to  calculate rate coefficients for various gas phase chemical 

reactions which produce diatomics.

Solomon and Klemperer (1972) also suggested mechanisms to explain the forma­

tion of C H +, C H  and C N .  Their work used radiative association to explain the 

formation of C H + and CH:

C + +  H  -> CH+ +  hu 

C + H  ^ C H  + hu.

They also showed tha t C N  could be formed by the ion-molecule reaction:



Before, Solomon and Klemperer’s research, dense interstellar clouds were thought 

to be too cold to allow chemical reactions to occur. Solomon and Klemperer (1972) 

realized tha t electronic reactions between ions and neutral species can be very rapid at 

low tem peratures. They were able to calculate a set of rate constants which provided 

some explanation as to why molecules form in dark interstellar clouds.

The First Chemical M odel 1973

Herbst and Klemperer (1973) were the first to define a chemical model of a dark 

interstellar cloud. The m ethod used by Herbst and Klemperer was to model chemical 

networks as a system of kinetic equations. Herbst and Klemperer set up 35 differential 

equations, one for each species in the model. Their reaction set consisted of 100 

reactions. The system of equations they used had a form similar to the  following set 

of equations.

~  =  Z k rX qX rn  -  XkmnX nX mn  +  'LikiX i -  T.j kj X j 
at

d X 2
^  — ^prkpfX ^qX r 7t S kmnX.nX .^ U  -j- j k jX -j

d X 35
—^ —  =  Y ip r k p r X q X Tn  — E k m n X n X m n  Y i { k i X {  — Y i j k j X j

Notice these equations are indexed in a generic form (refer to chapter 5 to  obtain 

a detailed explanation of rate equation indexing). The X ’s represent the abundance



and the k ’s are rates coefficients. To solve the system of the equations Herbst and 

Klemperer exploited the fact tha t at steady state equilibrium the derivatives are equal 

to zero. Thus, the set of equations may be expressed as follows.

d X 1

dt

d X 2

dt

— 'Ekpi X qX rn  — £  kni X nX m n  +  £  kn X i  — £  k j iX j  — 0 

=  Yjkp2 X q X Tn  — Ytk2 nX nX mn  +  l jk2iXi  — Ylk2j X j  — 0

^  =  £ kp3 5 X qX r -  X k 3 snX nX mn  +  Sfc35iXi  -  X k ^ X j  = 0. 
at

By removing dependent equations from the above system and replacing them  with 

equations of charge conservation and atomic nuclei conservation a set of 35 indepen­

dent nonlinear equations is constructed. The method th a t Herbst and Klemperer is 

im portant because it is still useful for obtaining steady state  solutions. The solutions 

to these nonlinear algebraic equations will be a vector containing the molecular abun­

dances. Newton’s method is generally used for solving such a system of equation. The 

above equations can be reformulated as a the problem in the m atrix form.

f(x „ ) =  0 (1.1)

were f (x n ) is a m atrix of the nonlinear functions tha t represent the set of equations. 

The solution is computed using Newton’s Method (Press 1991).
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Species Observation Calculation
H 20.72 20.73
h 2 20.62 20.62
G 15.56 15.60

C + 16.80-17.15 17.80
N 16.22-16.70 16.48

H D 14.20 14.25
CO 15.03-15.20 15.02

CH+ 13.53 13.57
C N 12.94 12.75
O H 13.71 13.71

Table 1: Observed and Calculated Molecular Abundances. These abundances are 
given in terms of the logarithm of the column density (Black and Dalgarno 1977).

This process continues until some tolerance has been achieved. The tolerance is 

usually represented by the 1-norm.

|| x n - x n - i  ||<  e (1.3)

Using this method Herbst and Klemperer were the first to obtain a steady state 

solution to the chemical model for a molecular cloud. Using a similar model led 

Black and Dalgarno (1977) calculated the abundances of £ Ophiuchi. These results 

are listed in Table 1.

The evolution o f chemical m odels 1977-1990

These early models have become the foundation of present interstellar gas phase 

chemical networks. During the late 1970’s and early 1980’s several investigations led 

to the development of more sophisticated and larger reaction networks. The main 

th rust of this effort is illustrated in several papers (e.g. Brown 1977; Iglesias,1977;



Suzuki 1979; Prasad and Huntress 1980 a,b; Rice and Brown 1981; Herbst 1983 Millar 

and Freeman 1984a,b; Leung,Hebrst and Huebner 1984; Brown and Rice 1986). These 

reaction networks contained approximately 1300 reactions (Millar 1990).

All of the reaction models mentioned above are based on the construction of 

large reaction libraries. Reaction libraries consist of a set param eters tha t allow the 

computation of rate  constants for all of the molecular species in the network. The 

first large reaction set was assembled by Prasad and Huntress (1980). The Prasad 

and Huntress data  set was modified by Brown and Rice (1986). They revised values 

of reaction cross sections so they could do analysis on the the influences of initial 

conditions on the predicted abundance. The last five years have been fruitful in the 

construction of reaction sets. Herbst and Leung (1989) constructed a library which 

contained 2548 reaction and 273 species.

Synopsis o f D issertation

A model of the chemistry occuring in molecular clouds was constructed. The 

model made use of the University of M anchester Institu te of Science and Technology 

(UMIST) ratefile (Farquhar and Millar 1993). The UMIST chemistry was extended 

to include a population of small grains. This model calcuates the abundance of 

species for a given tem perature, density, cosmic-ray ionization rate  and elemental 

abundances. A param eter study was conducted in which the model was run over a 

range of tem peratures and densities in order to systematically map out variations 

in trace species and determine which may be useful as a probe of tem perature or
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density. The param eter study is also useful for predicting abundance found by future 

observations as instrum ents become more sensitive. It also provides a map of expected 

water, molecular oxygen, atomic carbon and carbon monoxide abundances which may 

be observed by Submillimeter Wave Astronomy Sattelite (SWAS).

Construction of the model required building a program which constructed and 

solved a set of ordinary differential equations. Because of the model was so large it 

was necassary to build a data  structure to represent the system of equations. It was 

also necassacary to build utility programs to check the equations for balance and to 

edit the reaction set. In the course of developing the model it was discovered th a t an 

analytic approximation for the fractional ionization was possible.

The model was also compared against measured abundances in clouds such as 

TMC1 (Friberg 1984), L134 (Swade 1987), Sgr B2 (Ziurys and Turner 1986) and the 

Orion Cloud Complex (Irvine, Goldsmith and Hjalmarson 1987).

During the development of the model it was found th a t for particular densities 

and tem peratures more than  one solution were possible. Such bistable regions have 

been seen before (Le Bourlot 1993). This study verifies the existance of such bistable 

regions in a more complete chemical model of interstellar clouds. The investigation 

was extended to  determine how the bistable regions varied with changes in cosmic 

ray ionization rate, elemental abundances and grain population. The last required 

extending the UMIST ratefile to include reactions with a population of small grains. 

The reactions for this extension were obtained from Lepp (1987) and Greenberg (1994) 

The bistable solutions found in this thesis are exciting because of the relation



10

between bistability and chemical chaos. The existence of chemical chaos was demon­

strated in the laboratory 30 years ago by the Russian chemists Boris Belousov and 

Anatol Zhabotinskii (Scott 1991). This work has inspired investigators who study 

complex chemical systems to inquire w hether chaotic type phenomena exist in these 

systems. Lepp has suggested tha t an example of a bistable solution is interesting 

because it may lead to an example of chemical chaos (Lepp 1994). It will be shown in 

chapter 6 th a t it might be theoretically possible to observe the B-Z process in inter­

stellar clouds by formulating the problem in the context of catastrophe theory (Thom 

1976). A B-Z reaction consist of as set chemical compunds which when combined 

may undergo self-sustained oscillations which can be periodic or chaotic. (Thompson 

1982).

Outline o f D issertation

Chapter 2 provides a summary of the morphology and physical characteristics of 

the molecular cloud. Im portant chemical reactions th a t are occurring inside the cloud 

are reviewed in chapter 3. Chapter 4 provides a discussion of the various types of 

chemical process occurring inside the cloud. Chapter 5 presents a discussion which 

focuses on the construction of the m athem atical model and the software th a t was 

used to determine the solution to the model. The development of a data  structure to 

accommodate large systems of equations is also discussed in chapter 5.

Chapter 6 develops an algorithm which uses changing direction instead of changing 

initial abundance to  detect bistable behavior. Chapter 6 also presents a theoretical
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discussion about bistabilities and suggests th a t catastrophe theory is a m athem atical 

model th a t may explain their qualitative behavior. Phase transitions and the different 

chemistries associated with them  are discussed in Chapter 7. Chapter 8 presents a 

param eter study which investigates the variation of molecular abundances, variation 

of physical param eters, and the effects of large molecules on the bistability.

Chapter 9 derives an analytical expressions for the fractional ionization. In partic­

ular, this chapter is motivated by work done by Oppenheimer and Dalgarno (1975). 

Their work is extended to include cosmic ray induced photoionization.

In C hapter 10, a param eter study is described and a comparision made of model 

abundances to  measurements th a t have been made on existing molecular clouds. We 

focus on the Orion Cloud Complex, Sgr B2, TMC1 and L134.



Chapter 2

G ia n t a n d  D a rk  M o le c u la r  C lo u d s

Giant molecular clouds and dark molecular clouds are the astrophysical objects mod­

eled in this investigation. Giant molecular clouds are much larger than dark molecular 

clouds. Both are large enough so tha t uv and visible cannot penetrate to the center 

of the cloud. The giant molecular clouds are usually associated with active star for­

m ation such as massive OB stars and giant HII regions. Dark molecular clouds on 

the other hand are quiescent. By quiescent we mean the clouds do not appear to be 

forming stars.

Table 2 provides some da ta  on the clouds mass, number density, tem perature 

and line width. As their nam e implies, the giant molecular clouds have more mass 

and are larger than dark clouds. The giant molecular clouds tend to have higher 

tem peratures, because they have heating sources such as embedded 0  and B stars. 

The giant molecular clouds are also more dynamic. The larger line widths implies 

more internal motion than  a dark cloud.

In addition to molecular clouds there are diffuse clouds. D iffuse C louds contain 

a large number of molecules and can be modeled using many of the techniques dis­

cussed in this work. They have a tem perature of 100 K and a number density of 100

12
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Cloud Complex Properties
Cloud Type Giant Molecular Dark Cloud

Size(pc) 20-80 6-20
Number D ensity(cm-3) 100-300 100-1000

Mass(MQ) 8 x 104 -  2 x 106 103 -  104
Line W idth(km /sec) 6-15 1-3

Tem perature(K) 7-15 «  10
Cloud Properties

Cloud Type Giant Molecular Dark Cloud
Size(pc) 3-20 0.2-4

Number D ensity(cm-3) 103 -  104 102 -  104
M ass(M 0) 103 -  105 5-500

Line W idth(km /sec) 4-12 0.5-1.5
Tem perature(K) 15-40 8-15

Properties of Molecular Cloud Cores
Cloud Type Giant Molecular Dark Cloud

Size(pc) 0.5-3 0.1-0.4
Number Density(cm~3) 104 -  106 104 -  105

Mass(M0 ) 101 -  103 io°-3 -  io 10
Line W idth(km /sec) 1-3 0.2-0.4

Tem perature(K) 30-100 «  10

Table 2: Properties of Molecular Regions in the Interstellar Medium Notice th a t Table 
2 categorizes the cloud into 3 regions. In general, it is accepted tha t cloud complex 
means a set of different clouds which are in the general vicinity of one another. The 
term  cloud in this case applies to a specific region of the complex which appears to 
take on some structure. Finally, the term  core deals with a centralized concentration 
of material within the cloud.
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cm -3 . The dominant ions in diffuse clouds is C +. The most im portant feature which 

differentiates these clouds form dark and giant molecular clouds is tha t UV photons 

play a significant role in the chemistry. The models reflect this condition by assuming 

a visual extinction of A v — 1 for diffuse clouds and a visual extinction of A v = 10 for 

dark and giant molecular clouds.

The In te r -c lo u d  M e d iu m  has a tem perature of 10,000 K and a number density 

of 0.1cm-3 . All atoms with an ionization potential less than  13.6 eV are ionized. 

These regions contain no molecules.

T h e  M o rp h o lo g y  o f  M o le c u la r  C louds

A molecular cloud consists of a collection of interstellar dust and gas. The gas 

component of the mixture contains a substantial amount of molecules, while the 

remainder of the molecules exist in the form of ice on the surfaces of the grains. Ob­

servations of the 3.08/xm absorption band suggest the existence of H 20  is condensed 

on the grain surface, while absorption bands of 4.62 and 4.67 f im  suggest the exis­

tence of solid carbon monoxide condensed on the grain surface (Grim, Greenberg and 

Schutte 1988)

Much of what is known about molecular clouds is derived by maps and spectra 

of emission lines. The emission lines are in the millimeter and centim eter wavelength 

region of the electro-magnetic spectrum. For single disk radio telescopes maps of the 

cloud are constructed one pixel at a time. Carbon Monoxide (CO)  and Ammonia 

(N H 3) are useful for determining cloud morphology because their microwave signa­
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tures can be detected, allowing observers to map the clouds structure. Figures 1 and 

2 provide illustration of these contour maps.

The most prominent rotational transition for the CO  emission is from J  =  1 to 

the J  = 0. This transition is responsible for the 2.6 mm  line. The ammonia line 

is produced by an inversion . The prim ary emission line occurs at a wave length 

of 1.3 cm. CO is used most of the tim e to obtain maps of the outer regions of the 

cloud while N H 3  is used as a probe of the cloud cores. Figure 2.1 and 2.2 provide 

illustrations of these contour maps.

The Orion Com plex

The Orion Molecular Cloud Complex is the most extensively studied region containing 

molecules. This is because it is 1500 light years form the sun and is rich in millimeter 

and sub-millimeter emissions. Virtually all of these microwave emission originate 

from molecules. Chemical gradients have been detected with various regions of the 

Orion Complex. Examples of these regions are the hot core which has a tem perature 

ranging form 30-200 K and a number density greater than  106 cm -3 and the ridge 

region which has a tem perature of 30-100 K and a number density 104 cm-3 and 106 

cm ~ 3  (Goldsmith 1986).

The Giant Com plex Sgr B2

The Sgr B2 cloud is located a distance of 8500 parsec from earth . It contains a 

core which has a diameter of 5-10 parsec. A large variety of molecules have been
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discovered in this region. Observations indicate th a t this is a region of extensive star 

formation (Irvine et. al 1987). GO  observation reveals an extended envelope with a 

mean number density of 5000 molecules per cubic centimeter (Scoville, Solomon and 

Penzias 1975).

TMC-1

The Taurus Molecular Cloud 1 or TMC-1 is about 115 parsecs from the earth. It is 

opaque to  visible and ultraviolet radiation. Molecules observed in this cloud are char­

acterized by low excitation tem perature and narrow line widths. Not all interstellar 

molecules are observed in TMC-1; however, some of the largest molecules detected to 

date have been discovered in TMC-1. Figure 3 shows a map of TMC-1.

Observations indicate th a t the tem perature of TMC-1 is 10K and it has a molec­

ular density of 3 x 104cm -3 . The total mass of TMC-1 is one solar mass (Duley and 

Williams 1984).

Grains

The term  grain is a general term  which apples to a coagulation of m atter. The relative 

abundance of grains is of the order of 2.2 x 10-12 (Spitzer 1951). Physical dimensions 

of the grain vary form ^  to  of a micron. The size and the theory of the

composition of the grains is currently a subject of scientific debate (Greenberg 1994). 

Current theory maintains th a t grains are created when a star enters the red giant 

phase and ejects its outer shell. Some grains are composed of silicates of aluminum, 

iron and magnesium. Others consist of carbon in the form of graphite or PAH’s. It
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is postulated tha t some of these grains are coated by ices which consist of water, 

ammonia and methane (Greenburg 1994). The Copernicus ultraviolet satellite has 

shown discovered regions of spectral signatures which correspond to silicon, iron and 

aluminum.

The effect of grains on the chemistry of dense interstellar clouds is crucial. Grains 

shield the cloud from ultraviolet radiation and provide sites for the formation of 

molecular hydrogen. Effects of the ultraviolet shielding result in an environment 

which is conducive to the formation of relatively large molecules. The grains also 

provide sites for charge transfer. Accumulation of carbon, oxygen, nitrogen and 

metals on the surface of the grains account for the formation of an accretion mantle.

There are relatively a large abundance of complex molecules in the dark dense 

interstellar clouds. Stief (1972) dem onstrated th a t dust in the outer layer of dark 

interstellar clouds attenuates the ambient Galactic ultraviolet radiation. Ultraviolet 

radiation is an im portant ingredient in the process of molecular destruction. There­

fore, we m ust conclude th a t the  presence of grains provides shielding and enhances the 

possibility of molecular survival. Observations of diffuse clouds tend to  support this 

conclusion. Diffuse clouds, which lack grain shielding, show an absence of spectral 

signatures of large molecules.

Synthesis o f M olecular H ydrogen on Grains

Atomic hydrogen is the m ajor source of hydrogen molecules in dark dense molecular 

clouds. The rate  of formation of molecular hydrogen by collisions with atomic hydro­



21

gen by radiative association is slow. The rate  constant for this process is estim ated 

to be between 10-29 and 10-31 cm3s -1 (Duley and Williams 1984). This low rate 

coefficient is too small to explain the am ount of molecular hydrogen th a t is observed. 

It is assumed th a t H 2  is formed on the surface of grains. The grain acts as a catalyst 

and provides a site for the formation of molecular hydrogen.

The mechanism for H 2  formation can be summarized as follows. The hydrogen 

atom must collide with the grain to form a sufficiently strong H-grain bond, however 

the bond energy cannot be too large or the formation of H-grain bond will not occur. 

This hydrogen atom  must remain on the grain surface until another hydrogen grain 

bond forms. The hydrogen atoms on the surface must have sufficient mobility on the 

surface so they can get sufficiently close to  each other. As the molecules get close 

to each other the probability of tunneling increase enough to favor the formation of 

molecular hydrogen. The following reactions illustrates the synthesis of molecular 

hydrogen:

H  +  H  +  grain —* H 2 grain-\- 4.4 eV.

For this study the hydrogen formation rate  coefficient is taken to be

kg = 9.5 x 10-18 cm3 sec~l

Millar (1991).
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Cosm ic Rays and M olecular Clouds

Cosmic rays (CRP) are a m ixture of high energy protons, alpha particles, 1 percent 

heavy nuclei electrons and positrons. The relatively high abundance of heavy nuclei 

suggest th a t cosmic rays are formed in supernova or pulsars (Cowsik and Price 1971). 

Cosmic rays are im portant because they are sufficiently energetic to penetrate the 

interior of dense interstellar clouds and ionize molecular hydrogen. This process 

provides the mechanism th a t initiate the chemistry by ionization of the molecular 

hydrogen and atomic helium. Electrons produced for this ionization provide a source 

of heating for the cloud. It is estim ated that the cosmic ray ionization rate  is on the 

order of 10-17cm3s-1(Lepp 1992).

Cosmic Ray Induced Ultraviolet Photons

The interior of the dense interstellar cloud is efficiently shielded from ambient galactic 

ultraviolet radiation by dust. However the shielding of the visible and ambient u ltra­

violet radiation does not preclude the existence of ultraviolet radiation. Ultraviolet 

radiation is produced in dense molecular clouds by secondary electrons produced by 

the  cosmic ray ionization (Prasad and Tarafdar 1983).

Cosmic-ray particles with energies between 10 Mev and 100 Mev ionize molecular 

hydrogen in the interior of the clouds and produce secondary electrons with an average 

energy of 30 eV (Cravens and Dalgarno 1978). The electrons lose their energy by 

exciting, dissociating and ionizing H 2. The electrons which excite the molecular 

hydrogen are responsible for the generation of ultraviolet photons. These electrons
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excite the Lyman band (90-170 nm) and Werner bands (90-130 nm ) of H 2. W hen the 

H 2  de-excites, ultraviolet photons are radiated.

The cosmic-ray induced photons have sufficient energy to ionize other species. The 

rate constant for reaction involving cosmic-ray induced photons have been calculated 

by Gredel, Lepp and Dalgarno (1987). Their rate coefficients have been incorporated 

into the UMIST Ratefile. The effect of cosmic ray induced ultraviolet photons on the 

chemistry and abundances of dense interstellar molecular clouds is discussed in this 

investigation.

The H eating and Cooling o f Cold Clouds

The primary agent for the heating of molecules is cosmic ray radiation, while the 

cooling of the clouds occurs through radiation. This section explains some of the 

more im portant processes tha t are responsible for the energy balance of the molecular 

clouds. The last section explains this process for dark clouds.

The H eating Process

Several different types of mechanical and quantum  processes account for the heating 

of interstellar clouds. In general, interstellar m atter may be heated by a variety 

of different processes. Some of the dominant heating processes include cosmic ray 

ionization, diffuse interstellar starlight, the energy released in the grain formation of 

molecular hydrogen and gravitational compression. If the interstellar m atter is near 

a star formation region, it can be heated directly or indirectly by stellar radiation.
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The Cooling Process

The cooling process of dark dense interstellar clouds is a two-stage process. The first 

stage of the process involves the collision of atoms, molecules, electrons and ions. 

These collisions provide enough energy to excite the vibro-rotational levels of several 

molecules. These molecules de-excite through the process of spontaneous emission. 

They spontaneously emit microwaves which have energy of the order of 1.0 x lO -3 

electron volts. It is interesting to note tha t these emissions, when detected by radio 

telescopes, can be used to map the cloud.

The molecular cloud tem peratures are between 5 and 100 degrees Kelvin. This 

corresponds to an energy of approximately 10~3 eV. Hydrogen does not participate in 

the cooling process of cold clouds. This is because the excitation energies of the first 

excited state are too high. For atomic hydrogen the energies are given by ^ f-eV  and 

the threshold rotational excitation of molecular hydrogen is 450 K. It is interesting 

to note tha t the hot core in Orion has a tem perature of 200K, which is well below 

the minimal threshold to excite molecular hydrogen.

In order for the cloud to  cool, there must be some atoms or molecules with energy 

levels tha t are spaced sufficiently close to allow transitions th a t are energetically com­

patible with the kinetic tem peratures. Carbon, oxygen, silicon and some diatomics 

have sufficiently low enough energy levels which will perm it the cooling process. Table 

3 list species tha t are im portant for this process.

An illustrative example of the cooling process is ionic carbon in the excited state.
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element emission transition /tm
C + 2 p 3 —»2 Pl

2 2 158 n m
c 3Pi P0 609 n m
c 3P 2 ^ 3 Pi 370 n m
c 2P* ->2 Pi 2 2 63 n m
0 3Pi ->3 P2 63 /xm
0 3P0 ^ 3 Pi 146 n m

S i+ 2P* -+2 Pi 2 2 35 n m
CO J  = 1 _> J  = 0 2.6 m m

Table 3: Wavelength for transitions im portant in cooling molecular clouds.

Consider the collision of C + with an electron or a hydrogen atom. The 2 P i level lies

64.0 am  below the Ps level.
2

The C + ion is excited by either

electron +  C +(2P i ) —> electron +  (7+(2P f )

or

iT +  C +(2P i)  -+ H  + C+ (2 Ps)
X 2 7 X 2 '

These reactions extract therm al energy from the cloud by converting kinetic energy 

to radiation energy. The excited C +(Ps)  ion can radiate a photon at 156fim  in the 

spontaneous radiative transition.

C +2 ( P i ) ^  C +2 P i +  hu

Because the cross section of absorption is small the 156f im  photon will escape from 

the cloud (Dalgarno 1977).
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H eating of Cold Dark Clouds

The heating mechanism for dark dense quiescent clouds is restricted to  the energy 

expelled from a cosmic ray ionization of H , H 2  or He. The energy em itted from H 2  

formation is not significant in the heating process of dark clouds at low tem peratures. 

Shielding by grains of dust and gas prevents visible and ultraviolet radiation from 

penetrating and heating the interior of the cloud.

The ionization of JT, H 2, or H e  produces energetic electrons. These electrons have 

a  relatively high energy, th a t is dissipated through a series of inelastic collisions with 

molecular and atomic hydrogen. The process continues until the electron’s energy 

is reduced to a point where elastic collisions with ambient electrons account for the 

remaining energy transfer.

The Cooling Process o f Dark Clouds

Carbon monoxide is the prim ary cooling agent in the cold dark interstellar cloud. 

There are two reasons for this. First, carbon monoxide is the second most abundant 

molecule in the cloud (hydrogen being the most abundant). Second, carbon monoxide 

has a rotational de-excitation level for J  =  1 —> J  — 0, with an excitation threshold 

of 5 eV. Excited by collisions with H 2 molecules,

C O {J  = Q) + H 2 ^  C O {J  = 1 )  + H 2

the J  — 1 de-excites by the  spontaneous emission of a photon of wavelength 2.6mm,

C O (J  = 1) -+ C O (J  =  0) +  hu.



These emission lines are used by radio astronomers to map the cloud.



Chapter 3 

Gas Phase Reactions in Molecular Clouds

There are several of different types of chemical reactions in the molecular clouds. 

The UMIST Ratefile (Farquhar and Millar 1993) catalogs 3715 of these reactions. 

In this chapter we explain briefly some of the mechanics and unique features of the 

gas phase reactions. There are several types of gas phase reactions tha t occur in the 

molecular cloud. Only two reactions out of a set of 3717 reactions are not gas phase 

reactions. These two reactions account for the production of molecular hydrogen on 

the surfaces of grains.

A summary of the im portant reaction types and their ra te  coefficients in the 

cloud are given in Table 4. This table is derived from the UMIST Ratefile (1992). 

The chapter reviews the definition of chemical ra te  coefficients then comments are 

made on each of the reaction type.

28
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Reaction Type Example Rate Coefficient
C- Ray Ionization H 2 +  crP —* +  electron io - 17* -1

Dissociative Recomb. H £  +  electron —> H 2 +  H 5.5 x l O - V f W s - 1
Radiative Recombination. S i+ +  electron —> S i  +  hv 4.9 x 10-12( f > r UBcm3s - 1

Charge Transfer He+ + H  —♦ H e + H+ 1.9 X  10_15C7713S_1
Radiative Association C+ + H  -> CH+ + photon 1.7 x 10_17cm3s"'1

Ion-Molecule H+ + CO  -> HCO+  +  H 2 1.7 x 10~9 cm?s~l
Neutral-Neutral C N  +  N O  —y N 2 + CO 5.3 x H T13 -  10~11c77i36_ 1
Mutual Neutral. C+ + C -  ^  2(7 2.3 x 1 0 - V f W s - 1

Radiative A ttachm ent H  +  electron —> H~  +  hv 5.57 x 10~1 7 ^ / ^ c m 3 s - 1

Table 4: Various Reactions th a t Occurring inside Interstellar Clouds 

R e a c tio n  R a te  C oeffic ien ts

Accurate determ ination of the rate coefficient is im portant in the  construction of a 

robust kinetic model of a molecular cloud. It is difficult to recreate the environment of 

molecular clouds for an extended length of time. The rate coefficient can be measured 

in the laboratory or calculated using quantum  mechanics. It is difficult to recreate 

the environment of molecular clouds in the laboratory. However, at the tim e of this 

investigation 900 out of 3715 rates have be measured experimentally. The decreasing 

cost of high speed computational devices will make quantum mechanical calculations 

less expensive.

The reaction rate  coefficient is defined to  be the average of the product of the 

cross section and the velocity:

K  = <  av  >  (3-1)
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or

K  = J  f(v)vcrdv. (3-2)

where f(v) is the probability distribution which defines the velocity distribution where 

v is the velocity, and cr is the to tal cross section. If the gas is thermalized the f(v) is 

the Maxwellian velocity distribution:

_ _ L - 3
<» /  \ . o / 7T2» * 2 / Tfl/U  v f  v

m  = ( 2 r f T ) “ P ( W ) (3'3)

where k is the Boltzmann Constant, m is the mass, T  is the tem perature and v is the 

m agnitude of the velocity.

Cosmic Ray Ionization

The cosmic ray ionization of hydrogen and helium account for virtually all of the 

ionization in the molecular clouds. Most of the species in the cloud are composed of 

atomic and molecular hydrogen and atomic helium. Cosmic ray ionization of other 

species does not significantly effect the chemistry of the cloud because of their lower 

abundance. The rate coefficient for this study is 1.25 X  10-17sec-1 .

Radiative Recom bination

The radiative recombination is described by the reaction:

X + +  electron —> X  +  hv.

The surplus energy which is given off when the system forms a bound state. In dense 

molecular clouds the ionization is affected by the radiative recombination on atomic 

ions such as S +, S i+, or the metallic ions M +.
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D issociative Recom bination

In the gas-phase many polyatomic and diatomic molecules are formed by dissociative 

recombination. The following generic reaction describes dissociative recombination.

A B + +  electron —> AB* —> A  + B

Current theory suggests tha t dissociative recombination can occur in two stages. 

Initially, the system which is composed of a free electron and a positive molecular ion 

combine to form a m etastable state. This state will allow the electron to undergo a 

radiationless transition to form the m etastable state AB*. This results in a neutral 

molecule AB*  on a repulsive potential energy surface . The second stage involves the 

m utual repulsion of A and B. This system de-excites with A  and B  moving rapidly 

under the influence of mutual repulsion. A typical rate coefficient for this reaction is 

10-7 cm 3 s~1.

Ion-m olecule reactions

Ion-Molecular reactions are the most frequently occurring reactions in the UMIST 

Ratefile. Ion-Molecule reactions have been studied extensively in the laboratory for 

tem perature ranges from 300K-1000K. A m ajority of the reactions are exothermic 

and have a rate  coefficient of 10-9 cm3s -1 . Ion-Molecular reactions occur because of 

long range attractive forces. These forces can cause the ion-molecular pair to spiral 

inwards toward each other until they collide. (Bates and Morgan 1987).
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Polar species tend to react faster than  non-polar species. To illustrate this point 

consider the reaction of the polar molecule water with the ion H C O + which has a 

rate  coefficient of 2.5 X 10-9 cm3s -1 ,

H20  + H C O + -> CO  +  H 3 0 + ,

compared with the rate coefficient for the non-polar molecule C 2  which is 8.3 x 10_1° 

cm3i -1 ,

HCO+  +  C 2  -> CO  +  C2 H+.

Notice tha t the rate  coefficient of polar reactants is over 10 times faster than  tha t of 

the non-polar molecules.

Charge Transfer

Charge transfer reaction can generally be expressed as follows.

A + + B  -»• A  + B+

W hen an ion and a molecule approach each other there is a possibility of charge 

transfer occurring. If the energy of the interaction is sufficiently low the collision will 

not be adiabatic and the electron transfer cross section is low. An im portant charge 

transfer reaction for this investigation is:

C + +  S  -> C + S+.

The rate coefficient for this reaction is equal to 1.5 x 10-9cm3s -1 Charge transfer is 

the dominant process when the system is in the high ionization phase.
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N eutral-N eutral

The neutral-neutral chemical process

A  +  B C  —> A B  +  C

is usually negligibly slow at low tem peratures. This can be explained by the Rule 

of Hirschfelder (1941). Hirschfelder says the activation energy is about 5 percent 

of the energy of the broken bond. The chemistry of the dark interstellar clouds 

present many exceptions to this rule because the activation energy of atoms and free 

radicals (species contain a pair of unpaired electrons) may be very small or zero. The 

low tem perature environments of cold interstellar clouds are dominated by reactions 

whose potential energy surfaces are without barriers. This explains why we expect 

to find these reactions occurring in the dark cloud (Graff 1989).

An im portant reaction involving the neutral-neutral process is

O +  OH  —> 0 2  + H

which has a rate coefficient of k = 7.9 x 10-11 cm 3 s~1. This reaction is im portant be­

cause it is the dominant pathway which converts atomic oxygen to molecular oxygen.

Radiative A ssociation

If two species approach each other along an excited potential energy surface there 

exists the possibility of a radiative transition to a lower attractive potential surface. 

The energy radiated by the collision is sufficiently large to  make the to tal energy of 

the two species system less than zero and a bound state  is formed,



The reaction rate  coefficient is of order 10~13 to 10~17 cm 3  a-1 .

There are two reactions th a t are representative of radiative association which are 

im portant to the network of carbon chemistry. The following reaction provides a path 

for forming hydrocarbons.

C + +  H 2  -»• C H t  +  hv

The radiative association process is also crucial for the creation of m ethane, 

m ethanol, m ethyl cyanide, and methylamine. The C H 3  radical will form a com­

plex via radiative association and this complex will be free to react with other species 

(see chapter 4) to produce various molecules.

For example, consider the production of m ethane. The production of the C H t  

molecular ion is im portant for the creation of m ethane C H 4  , H 2CO  and many cy- 

clohydrocarbons. C H t  is produced as follows:

C H t  + H 2 -> C H t  +  hv.

At 30K, Bates (1986) has shown the rate coefficient to be 2.7 X 10_13cm3s _1. The 

C H t  complex reacts with CO  to  produce methane.

C H t  + CO  -> CH a +  HCO+  +  hv.

M utual N eutralization

M utual Neutralization provides a sink for many positive ions. Polycyclic Aromatic 

Hydrocarbons act to neutralize metals from the cloud.
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A+ +  B~  -> A  +  B

M + + P A H ~  —> M  +  P A H .

The rate  coefficient for reactions of this type are on the order of 1 0 cm 3 s ~ 1 

(Omont 1986). For carbon ions M utual Neutralization is given by:

c+ + c~ -+ c + c.

The rate  coefficient for this reaction is 1.29 x l0 ~ 6 cm 3  a-1 for a tem perature of 

10K. Notice th a t these rate coefficient are relatively high. This is to be expected 

because opposite charges create large coulombic forces.

Radiative attachm ent

Radiative attachm ent is the process for the the creation of negative ions.

C  +  electron —► C~ +  hv

The ra te  for radiative attachm ent of this reaction is 3.0 x 10-18cm3s -1 . W hen this 

process is compared to a process which undergoes charge transfer (rate coefficient 

10_1°cm3s -1 ) it is relatively slow.

Summary

This chapter has introduced the m ajor reactions which account for the gas phase 

chemistry of a large molecular cloud. The various processes may be characterized by 

the rate  at which they occur. However, the abundance of the species also contributes 

to the rate. By considering the effects of the rate coefficients and abundances it is 

possible to make intelligent conjectures of the steady state  solution as to the model.



Chapter 4 

General M olecular Cloud Chemistry-

Giant molecular clouds and dark dense clouds are capable of synthesizing compli­

cated molecules. The visual extinction coefficient for giant and dark clouds are about 

A v = 10, thus there are virtually no ultraviolet photons available to  participate in 

chemical reactions. The ambient galactic ultraviolet radiation, which is associated 

with the destruction of chemical bonds, is shielded by grains . The absence of galac­

tic ultraviolet radiation means molecular abundances are determined by ion-molecule 

reactions. This allows large molecules to form.

This chapter reviews some of the im portant chemical reactions occurring in the 

dark and giant molecular clouds. The reactions presented are chosen because they 

represent the creation or the destruction of a species which is im portant to  under­

standing the chemistry of the cloud.

Initiation Chem istry in Dark Clouds

Dark molecular clouds and giant molecular clouds have dust grains which make 

them  opaque to ultraviolet and visible radiation. However, dark and giant molecu­

lar clouds are partially transparent to cosmic-rays. Cosmic-rays provide the source of

36
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energy to  initiate the chemistry of the cloud. Cosmic-rays will ionize primarily hydro­

gen molecules and helium atoms because they are most abundant. The process which 

drives the dark and giant cloud chemistry is the ionization of molecular hydrogen by 

cosmic-rays.

Cosmic-Ray -f H 2 —■► H £  +  e.

The H 2  is quick to react with the molecular hydrogen to produce H 2

H }  +  H 2 -> H+ +  H

The ion is the most im portant ion in the cloud. This is because H £  can re­

act rapidly with any species X ,  which has a proton affinity greater than  molecular 

hydrogen H 2,

H+ + X  -> H X + +  H 2.

The chemistry of a dark interstellar cloud is to  a minor extent dependent on the 

cosmic ray ionization of atomic hydrogen and helium. Atomic hydrogen is ionized by 

the reaction:

CRP +  H  -► H+ +  e

The H + ion recombines with an electron with a rate  of coefficient of ke — 3.5 X 

10-12^/(300/T)3 cm3s 1 (Millar and Farquhar 1993). This is the value from the 

University of Manchester rate  file of rate coefficients. This will be referred to as 

the UMIST Ratefile throughout the remaining part of this investigation (Millar and
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Farquhar 1993). Notice at T=10K ke = 4 .4 8 x l0 “ n  cmzs~l is relatively slow when 

compared with the dissociative recombination of H £  with electrons. These rate con­

stants are of the  order of 10~8 to  10-7 cm3s -1 , depending on the  tem perature.

Helium

The helium chemistry initiated by the reaction

Cosmic-Ray +  H e —> H e+ +  e.

The existence of the helium ion is im portant for cloud chemistry because of its 

high ionization potential it can charge transfer and destroy m any molecules. For 

example it can react with CO  to dissociate it and produce C + and O,

He+ +  CO -* C + + 0  + He.

The ionized helium can also dissociate N 2,

He+ +  N 2  N  +  N+ +  He.

D estruction  o f H£

There are two processes tha t significantly effect the rate at which H 2  is dissipated 

in the molecular cloud: dissociative recombination and proton transfer. Dissociative 

recombination removes electrons from the cloud and creates molecular and atomic 

hydrogen.

H+ + e -► H 2 +  H



Larsson (1995) has performed experiments which suggest the branching ratios are 0.2 

to 0.8 respectively. Another way tha t is removed from the cloud is via the process 

of proton transfer. Two of the predominant reactions are:

t f 3+ +  C O - *  H C O + +  H 2,

+  O OH+ +  H 2.

O xygen Carbon Chem istry

Oxygen and carbon play a central role in the chemistry of dark interstellar clouds. 

This section will describe several im portant reactions associated with CO  and 0 2. 

Carbon monoxide is created by the reaction

H C O + +  electron —► CO  +  H .

The ion-molecule reaction is the m ajor method for the destruction of CO. The m ajor 

reactions removing CO are:

CO  +  H+ -* H C O + +  H 2,

CO  +  He+ —* C + + 0  + H e ,

O xygen Chem istry

A nother im portant reaction sequence is the sequence which produces the water molecule 

and the hydroxyl radical. The sequence is initiated with the formation of the O H +



which reacts quickly with H 2 to form H 3 0 +,

H 2  +  0H +  -> H 2 0 + +  H,

H 2 0 + + h 2 ^  h 3 o+.

The dissociative recombination of H 3 0 + produces either a water molecule H 20  

or an O H  radical by dissociative recombination,

H 3 0 + +  electron —> H 20  +  H 2,

H 3 0 + +  electron —* O H  +  ff.

This reaction will be discussed more in Chapter 7. Molecular oxygen is primarily 

formed by the reaction,

O H  + 0  -> H  + 0 2.

and molecular oxygen is primarily destroyed by the reaction,
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N itrogen Chem istry

The chemistry of nitrogen can be initiated by H t  ,

H t  +  N  -> NH+  + H,

or by the nitrogen ion through the reaction sequence:

N+ +  H2 -► NH+ + H ,

NH+ + H 2 -+ N H t  +  H,

N H t  + H 2 ^  N H t  +

which are all fast with rate coefficients greater than 10-10 cm3s _1 (Farquhar 1995). 

The next reaction in this sequence is slow

NH+ +  H2 -> N H t  +  H

with rate  coefficient k — 2.0 x 10-12 cm3s _1.

N H t  and N H t  yia dissociative recombination with electrons produce:

N H t  +  electron —> NH2 +  H ,

N H t  +  electron —> NH  -f- H2,

N H t  +  electron —► NH3 +  H.

The N H t  i°n can also react with other species:

N H t  +  H20  -  N H t  +  OH
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and

N H +  + 0 ^  N H 2 0 + +  H,

to produce more complicated molecules. Molecular nitrogen can be destroyed by 

helium ions

N 2  +  He+ -► N  + N+ +  e +  He.

Production of H ydrocarbons

A large variety of hydrocarbons have been detected in molecular clouds. The size of 

hydrocarbon molecules detected include molecules which have 10 or more atoms. This 

section highlights some of the im portant reactions th a t occur in molecular clouds. 

The hydrocarbon chemistry is initiated by

t f 3+ +  C  -> CH+ +  H 2, 

CH+ + H 2 ^  C H t  +  H,

or by

C + +  H 2  —■> C H t  +  ‘photon.

C H t  quickly reacts with H 2  to form C H t  +  H,

C H t  +  H 2  -> C H t  +  H.



43

C H t  is an im portant step in the formation of methanol (C H 3 O H ), m ethane 

(C H 4 ), methyl cyanide (C H 3 C N ) and m ethyl aldehyde (C H 3 C O H ). This section 

presents the chemical pathways necessary to synthesize these compounds. It is inter­

esting to note tha t radiative association participates in the first step of all of these 

reactions. Reactions involving radiative association tend to  be relatively slow.

Production o f M ethane

CH+ + H2 ^  C H t  +  photon 

C H t  + C O - *  C H a +  H C O +

Production of A cetaldehyde  

C H t  + H 2 -> C H t  + photon 

C H t  + C O - -» C H sC O H t  +  photon 

C H 3C O H t  +  electron -> C H 3C O H  +  H  

M ethanol 

C H t  + H20 -+ C H 3O H t  + photon 

C H 3O H t  +  electron -> C H sO H  + H  

Production of M ethyl Cyanide 

C H t  + H C N  -> C H 4 CN+  +  photon
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C H ACN+ + electron -> C H 3C N  +  H

P ro d u c tio n  o f  M e th y l A m in e

CH+  +  N H 3  -> C H 3 NH +  +  photon 

C H 3 N H £  +  electron -> C H 3 N H 2  + H

P ro d u c tio n  o f  C a rb o n  C h ain s

The formation of larger molecules is initiated by reactions of C + w ith C H 4 . W hen a 

simple hydrocarbon such as methane has been produced, it is possible to utilize this 

molecule to produce more complicated species. Consider the following two reaction 

pathways which lead to the production of C 2 H 2 and C\H.

S y n th es is  o f  C2 H 2  

C H a +  C+ -► C2 H+ +  H  

this reaction will undergo dissociative recombination and will form one of two species

C 2 H 2  +  electron —> C2H  +  H 2  

C2 H£  +  electron —> C 2 H 2  +  H.

Proton transfer to water is can also produce C 2 H 2

C2 H+ + H20  -> C 2 H 2  +  H+O.
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Synthesis o f CAH

Notice th a t C2 H 2 is crucial for the production of CAH.

C2H2 +  C2H2 —► C AH^ +  H2

CaH% 4 - electron —> CAH  +  H

Effect o f Helium  Ions

The most im portant species for the initiation of the chemistry is H £ . However he­

lium ions are also im portant because they can react with stable neutral species. In 

particular they can react with CO to produce a carbon ion

He+ + CO  -> C+ + 0  + He.

Ionized carbon will participate in the carbon chemistry by reacting with atomic and 

molecular hydrogen through radiative association.

C + +  H  —> C H + +  photon 

C + +  H 2  —* C H 2 +  photon 

C2H i  +  e -> G2 H 2

The C H + is rapidly removed by

C H + +  electron —> C  +  H

and by
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C H + +  H 2 -> C H t  +  H

The last reaction is fast at room tem perature and low tem peratures. Large abun­

dances of molecular hydrogen in comparison with the abundance of electrons favors 

the formation of C H 2 .

One reason ionized carbon is im portant is because it will react with m ethane to

make precursor ions of acetylene, C2 B 2  and the ethyl radical, C2 H.

Sulfur Chem istry

Atomic sulphur reacts with H 3

H+ + S ^  H 2 + SH+.

But sequential reactions of S H + and S H 2 with H 2 are endothermic

Sulphur can react with CH to form CS. Once the CS is formed it can act as a site

for charge transfer.

C H  +  S  -> C S  +  H.  

C S  + H+ -+ C S + +  H.

or

C S  + C + -* C S + +  C.
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Chem istry of M etals

The primary function of metals in the dark interstellar clouds is to provide sites for 

the transfer of charge. As the cloud approaches a steady state the metallic ions Na,  

M g  and Fe  will remove charge from large molecules.

m + +  M  —► m  +  M +

where m  represents a charge molecule and M  is Mg,  N a  or Fe.

The net effect of this process is in the behavior of the fractional ionization. This 

process will be examined in detail in Chapter 7.

Effects of Large M olecules

The effects of large molecules on the chemistry of the dark interstellar cloud chem­

istry can be quite dram atic. W ithout large molecules the molecular ions are removed 

by dissociative recombination and charge transfer to metals.

However, the large molecules provide sites for the accumulation of charge particles. 

W hen large molecules are incorporated into the reaction networks molecular ions are 

removed by mutual neutralization with the L M ~  (Lepp and Dalgarno 1986).

X + +  L M ~  -►X  + L M  

X + +  L M  -> X  +  LM+

and

L M + +  electron —> L M
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L M  +  electron —> LM~

Large molecules, when added to  the gas-phase chemistry, have a dram atic effect 

on the fractional ionization. Electrons will transfer to the large molecules and the 

fractional ionization will decrease. The effects of large molecules will be analyzed in 

detail in chapter 8 .

Long Chained M olecules

One of the m ajor discoveries of molecular astrophysics has been in detection of large 

molecules in certain molecular clouds. The existence of these large molecules confirms 

tha t interior regions of the cloud are shielded from destructive processes such as photo­

ionization. This section will illustrate how a long chained molecule of length 9 can 

be formed. (Prasad et. al. 1987)

C H a + C+ - f  C2H t  +  H

C2 H+ +  C 2 H 2 C4 H+ + h 2 + h

CaH+ +  H C 3N  -> H C 3 N C AH 2+ 4-photon

H C 3 N C aH 2 + electron -> H C rN  + H 2

Processes similar to this form reaction pathways tha t explain the formation of molecules 

with up to 13 atoms (Irvine 1987).
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Summary

This chapter has reviewed im portant reactions and species th a t participate in the dark 

and giant molecular cloud chemistry. The simple molecules are ionized to provide a 

starting point for the creation of highly reactive ions such as . These species 

may then react in a variety of ways to create molecular functional groups th a t can 

participate in the synthesis of larger molecules.



Chapter 5 

The Gas Phase Chemical Model

Quantitative models of gas phase chemical networks provide the astrophysicist 

with a powerful m ethod for calculating the abundance of chemical species found in 

molecular and dark clouds. Typically, the models have between 150 and 400 coupled 

stiff nonlinear differential equations. Efficient solutions of these systems require the 

investigator to apply sophisticated computing techniques. These techniques include 

subroutines which can solve stiff differential equations and data structures which are 

capable of isomorphically representing the system of equations. The objective of this 

chapter is to present a comprehensive and rigorous discussion which will focus on the 

construction of these models.

This chapter is divided into 3 parts. The first part will focus on the m athem atics 

th a t are necessary to construct chemical models. The second section will address how 

the UMIST Ratefile (Millar 1990) and cosmic abundances factor into the construction 

of a model. The final section will focus on algorithms and software which produce 

solutions to the chemical model.

50
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M odel Construction

Analysis of the reaction networks associated with the UMIST Ratefile (Farquhar 

and Millar 1993) can be performed by considering and photo, cosmic-ray and binary 

reactions. The contributions of formation and destruction reactions will be discussed 

in the first part of this section. Next the construction of a general ra te  equation will 

be presented for some arbitrary species Y .  Finally, a toy model will be presented to 

illustrate how a simple system may be constructed from a small reaction set. This 

will provide the reader with a clear idea as to how the full model is constructed.

Chem ical R ates

The rate  at which a reaction occurs is the product of the ra te  coefficient and the 

abundances of the species involved. The UMIST Ratefile (Farquhar and Millar 1993) 

provides information about reactions and rate coefficients. The following question 

must be answered in order to construct a kinetic model of the interstellar cloud 

chemistry: given a species Y , which belongs to  some of the reactions in the molecular 

cloud, how is a ra te  equation constructed for Y1  Once this problem is solved in 

general, then, the reaction network can be constructed. The answer requires an 

explanation on how to express the first and second order expressions for the formation 

and destruction of the species Y.
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Cosm ic Ray or Photo reactions

Cosmic ray or photo reactions change one species into another. A cosmic-ray or photo 

reaction which forms Y is:

A + ( C R P  or photon)—> Y  -f products

The contribution to the chemical ra te  can be expressed as:

=  kAUAcm^s - 1  (5.1)

where ua  is the number density of A in units of cm - 3  and Ua is the rate coefficient

in units of s -1 . The rate  of formation is in units of cm~z s~l .

A cosmic ray or photo reaction which removes Y is:

Y +  (G R P  or photon)—> products

The contribution to the rate  of change in ray is:

- —feyraycm3s _1. (5.2)

W here ray is the number density of Y in units of cm~z and fey will be the  rate

coefficient in units of s -1 . The rate  will be given in units of cm 3 s~1.

Binary Reaction

The formation of Y  from two species A  and B  occurs as follows:

A  +  B  —> Y  +  products
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The rate is given by:

=  kABnAnBcmfs-1 . (5.3)
at

W here ua  is the number density of A in units of cm ~ 3  and tib is the number density 

of B in units of cm~3. The rate coefficient Uab will be in units of cm 3  s -1 .The rate 

Y  is formed will be in units of cm ~ 3  s _1. W hen Y  is destroyed in a binary reaction 

it must react with another species A.  This reaction is illustrated as:

A  -f Y  —> products

The rate is given by:

dny  o
- j j -  = —kAYnAnycm s (5.4)

W here tia is the number density of A in units of cm ~ 3  and ny  is the number density 

of Y in units of cm~3. The rate coefficient Uay has units of cm 3 s~1. The rate of 

destruction has units of cm 3 s~1.

A General Expression o f th e R ate for a Species Y

The UMIST Ratefile (Millar 1992) consist of reactions with photons, cosmic rays 

and binary reactions. By selecting a particular species Y and performing summations 

over all other species in the UMIST Ratefile it is possible to obtain an expression for 

the rate of Y in units of cm - 3 s _1. Let

=photo  and cosmic-ray formation rate  for all species



54

- j£-  =  binary formation rate for all species

=  photo and cosmic-ray destruction rate  for all species

-fa - =  binary destruction rate for all species

The rate  for species Y  will be defined as:

dnv dn\r+ d n l f  dnlr  dr&~
i r  =  ^ r + ^ r + - f - + - i L  <5-5>

The expression for all photo and cosmic-ray reactions which contribute to the rate  

of the formation of Y  is given by the :

^ = £ < W m V ' .  (5.6)
at A

where ua  is the number density of A  in cm ~ 3  and £ 4  is the rate  coefficient in units 

of sec - 1  of photo-process and cosmic ray processes which lead to the formation of Y .  

The expression for all binary process term s which contribute to the formation rate  of 

Y  is given by the expression:

dr>2+
- T — =  Y  X )  kABnAnBcmZs~l . (5.7)

d t  A  B

W here Uab is the rate of the binary process leading to the formation of Y  in units of 

cm 3 s~1. And ua  and tib are the number densities of A and B in units of cm~3.

The expression for all binary reactions contribution to the destruction rate for Y  

is given by the expression:

d n 2~
—X -  =  - n Y kAYnAcmzs~l , (5.8)
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where Ua is the rate of the binary process leading to  the formation of Y  in units of 

cm3 s -1 . And ua and ny  are the number densities of A and Y in units of cm-3 , and 

finally, the expression represents the rate in which the photo and cosmic-ray process 

destroys ny

= - n y  Y  kxcm?s~x, (5.9)

where ky  is the rate for the photo and cosmic-ray destruction of Y  in units of sec - 1  

and n y  is the number density of Y  in units of cm-3 .

The sum of these term s is the the time derivative of n y .

^7r  = Y  Y  kABn An B +  Y  k^ n A - n y Y  kAynA - n y Y k y  (5.10)
A  B  A  A  Y

The term s of the rate  equation can be summarized as follows:

nAtn B and n y  are the number densities (cm -3 ) 

kAB is the binary rate  constant for formation of Y (cm - 3  sec-1 ,) 

kAy is the binary rate  constant for destruction of Y  (cm~3 sec-1 ), 

ky  is the rate coefficient for the photo or cosmic-ray Y  (sec-1),and 

kA is the rate coefficient for the photo or cosmic-ray formation of Y sec-1 .

The ra te  equation for Y  can be written in term s of the relative abundance by 

dividing by the number density for hydrogen nuclei n  — 2 njj2 +  n n  •

—  =  Y  Y  k A B ^ A ^ B n  -I- Y  kA^A ~  X y  Y  kAYXati -  X y  Y  ky  (5-11)
d t  A  B  A  A  X
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where

X Y =  ^  (5.12)
n

and

X i  =  —  (5.n

This is done in the actual model to scale the results.

A Toy M odel

The full model for the reaction network used in this investigation contained 3717 

reactions, 389 species and 12 atoms. Exam ination of a how a simple model is con­

structed will provide some insight into the procedure and methodology associated 

with construction of a large and more complicated network. This investigation des­

ignates this simple model as a Toy Model.

We will begin the explanation as to how to construct a reaction set by first con­

sidering a set of 6  reactions. The rate equations for this reaction set will serve to 

illustrate how the large chemical networks are created. We consider the following 

reaction set:

H 2 +  G R P  —» H £  +  electron 

H t  +  H 2 -> H+ + H  

H t  +  electron —» H 2  +  H  

2H  + grain  —> H 2  4 - grain
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i #  +  X  -> # X +  +  F 2

.ffX + +  electron —> +  X

We now construct the rate  equations for the above reaction set.

®  =  -C [F 2] -  fe2 [tf2][tf2+] +  fee[^ 3 +][e] +  2 fcfln[hT] +  kM[H3 +}{X] (5.14)

=  -fc2 [Jff2][fi-2+] +  <[fT2] (5.15)

=  k 2 [H2 ][H2+] -  ke[H3 +)[ne) -  kM [H3 +][X] (5.16)

=  fc2 [ff2][F 2+] -  ke[H3 +}[e} -  2kg[H]n (5.17)

^  =  C[JET2] -  K e[Ha+][e} -  ^ 2 [jyX +][e] (5.18)

=  - J f x l [Hs+][X] +  K X 2 [ H X +][e\ (5.19)

We now rewrite equations 1-6 in term s of the relative abundances. To accomplish 

this we divide both  sides of the equations by n, where n is equal to the num ber of

hydrogen nuclei n  =  to# +  2 to# 2 and the relative abundance of some species m is

defined to  be X m =

=  - C X H 2  -  k 2 X H2 X Ĥ n  +  keX H^ X en  +  2kgX Hn  (5.20)

dt
dxHt

= —k 2 X H2 X H2+n +  C-X'hj (5.21)

dt =  k 2 X H2 X H^ n  +  keX Hi+Xen  — (5.22)
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d X H

dt 

dX,
dt

d X :

— k 2 Xj j 2 Xjj2+n — keX Hi+Xen  — 2 kgXnn  (5.23)

= CXh 2 -  keX H3 +X e -  K X 2 X hx+ X e (5.24)

=  — K x i X H3 +Xxn  +  K x i X Hx + X en  (5.25)
dt

W here X can represent a variety of different molecules i.e O, GO, OH, H 20

The Full M odel

Complexity is the only difference between the full model and the toy model. The 

full model incorporates 3717 reactions into 389 rate equations. The construction of 

the full model is analogous to  the construction of the toy model. The problem is 

th a t construction of the full model must be done by the computer to avoid mistakes. 

M athem atical representation of the model can be expressed as follows.

—p  =  kABnAn B +  ^ 2  kAnA — nYI ^ 2  kA,UA ~  Tly, ^ 2  kYi
dt A B A A Vi

= ^2^2 kABnAn B +  k A n A  -  n Y2 Y2 k A Y 2 n A  -  ny2 J2 k Y i
d t  A  B  A  A  Y2

] T  =  S  k A B n A n B  +  k A n A  ~  n y 3a9 Y 2  k A Y 3sgn A  ~  t t y 389 J 2  
a l  A  B  A  A  r 389

This system of equations can be written in term s of the fractional abundance. This 

representation is im portant because this is what the programs compute.
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~7T~ ~  X  X  kABXAXBn +  X  kAXA — XYl X  kAXAn — XYl X  Ŷi
a t  A  B  A  A  X Yl

^  = X X kABX AX Bn  +  X kAX A -  X Y 2 X kAX An -  X Y 2  X kY2

M  A  B  A  A  X y 2

—-JT1- =  X X kABX AX Bn + X -  -̂ y389 X ka X a u -  Xy389 X kY389
a l  A  B  A  A  X y 3sg

R eaction R ate Coefficients for the U M IST Ratefile

The reaction rate coefficient determines how fast the reaction will occur. There 

are various param eters associated with each rate  coefficient. The param eters are de­

term ined experimentally at high tem perature. Since the dark interstellar clouds have 

tem peratures between 7K and 15K, it is necessary to extrapolate the experimental 

results in order to estimate the rate coefficients. The form of the rate  coefficients 

presented in the following sections is generally accepted to be correct. Many of the 

rate coefficients in the UMIST Ratefile (Farquhar and Millar 1993) are derived form 

extrapolations of experimental data. This m ethod must be used because it is difficult 

to sustain the low tem peratures in the laboratory. Current trends suggest th a t more 

powerful and less expensive computers could be used to compute more reliable rates 

theoretically.
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Table 5: Table of Species in the Umist Ratefile
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Tw o-B ody R eactions R ate Coefficients

A m ajority of the reactions tha t occur in a molecular cloud are two bodied. The 

rates are fit to  the following form:

k = a(T/300) l3exp(—'y /T)cm3sec~1 (5.26)

where a ,  and 7  are param eters, from the UMIST Ratefile (Farquhar and Miller 

1993). /3 is the param eter which indicates whether the rate depends on the tem per­

ature. When /3 vanishes, it implies the reaction is independent of the tem perature. 

And 7  is non-zero if the reaction is endothermic or has a barrier.

Cosmic Ray Ionization Rate

For direct cosmic ray ionization the rate  coefficient is given by

k = (sec~1. (5.27)

The exact value of the cosmic rate ionization £ has not been determined. However, 

several observations and theoretical techniques have been used successfully to estab­

lish bounds for ( .  E arth  bound measurements provided enough information to allow 

Spitzer(1968) to compute a lower limit of £ =  6 . 8  X 10“ 18s _1. Shaver (1976) showed 

tha t analysis of the recombination lines of hydrogen and HI absorption measurements 

allows an estim ate of the cosmic ray ionization rate. Shaver has com puted (  to be 

greater than 2 x 10- 1 7s -1 . The relationship between (  and has been established 

(Lepp et. al. 1986). This method allowed £ to be computed based on estimates
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of OH.  This is because O H  is proportional to H f . A review of several methods 

of how to  calculate the cosmic ray ionization rate led Lepp to  conclude the average 

rate was f e w  x 10- 17s _ 1  (Lepp 1992). The value of (  suggested by Millar(1990) for 

the UMIST Ratefile was 1.2 X  10_1 7s _1. Because this value is consistent with Lepp’s 

(1992) suggested rate (See C hapter2 ) it was used for the £ in this study.

Photoionization

Dark clouds have a visual extinction,A v,of greater than  4 mag. (Spitzer 1978). Some 

investigators use an A v as high as 20.6 mag. (Shalabiea 1994). This investigation 

adopted a value of A v = 10 for these models. This is the value tha t Millar suggest 

for the UMIST Ratefile(1990). For a photon reaction the ra te  coefficient is:

k = aexp(—"f A v)sec~l (5.28)

where a  and 7  are param eters from the UMIST Ratefile.

Induced Cosmic Ray Ionization

Induced emission of ultraviolet photons is a consequence of the Prasad and Taraf- 

dar process (1983). The electrons from the induced cosmic ray ionization excite 

molecular hydrogen to its Lyman and Werner bands. W hen these bands de-excite 

they provide an internal source of radiation. The albedo is im portant for this pro­

cess because it is used to determine the rate  of cosmic ray induced photo-dissociation 

(Lepp, Dalgarno and Sternberg 1987).
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The extinction of radiation cross section is defined to be the sum of the absorption 

and scattering cross section.

Vext — &aba "f~ ^aca (5.29)

The efficiency Q is defined to be

Q = j .  (5.30)

were A is the area of the body scattering or absorbing the radiation. For dark clouds 

A will be the area of a grain. Equation(5.29) can be divided by the area A  to yield 

an expression of the efficiencies.

Q e x t  — Qaba  +  Q aca  (5.31)

^  _  Qacâ  (5>32)
Q e x t

The rate  coefficient for cosmic-ray induced photoionization is proportional to 

(Miller 1991)

k  =  (5.33)
1 — to .

where (  is taken to be 1.2 X 10- 17s _ 1  , the cosmic ray ionization rate and the albedo 

is u> = 0.5.

Elem ental Abundances

The interstellar medium is composed of a m ajority of the elements in the periodic

table. The abundances th a t are used in this investigation are based on the abundances
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element cloud abundance solar abundance
H 1.0 1.0

He 1.4xl0_1 8.5xl0 -z
C 7.3xl0“5 3.7x l0-4
0 1.76xl0“4 6.8xl0 -4
N 2.14xl0-5 l.OxlO-4
S 2.0xl0-6 1.6xl0-5
P 3.0xl0-9 2 .7xl0 -7

Mg 3.0xl0-9 3.5xl0~5
Si S.OxlO-4* 3 .5xl0 -5

Na 2.0xl0-9 1.7xl0-6
Cl 3.0xl0-9 4.4xl0"7
Fe 3.0xl0-9 2 .5xl0“5

Table 6 : Cloud Abundances and Solar Abundances

tha t are used by Leung (1984). These abundances are listed in Table 5 along with 

the solar abundances. The abundances are used as a starting point for the param eter 

study.

Initial Conditions

Numerical solutions of any set of time dependent differential equations require a set 

of initial conditions. Contemporary research involving nonlinear systems of differen­

tial equations has generated several systems of differential equations where the final 

solution is sensitive to the initial conditions. It is im portant to explain how initial con­

ditions are selected. The initial integration uses the cosmic depleted abundances for 

initial conditions as a bench mark in all calculations (Table 5.1). In this investigation 

the tim e dependent chemical model evolves under fixed param etric conditions such 

as constant tem perature and /or constant number density. The chemical abundances
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are allowed to evolve from the initial values until the steady state  is reached.

Let the steady state  solution be denoted by Xdx_0. The steady state solution
dt

will be used as the initial condition for the next iteration in which the step size is 

decremented or incremented . This process continues until the steady state solution 

has been calculated over the desired range of the param eter space.

In general, given a system of differential equations:

die
—  =  f (x ;a ) .  (5.34)

Solve the system and obtain a solution x n . Use this new solution as the initial 

value and integrate the system to obtain x n+i.  This process can be continued as long 

as desired. The advantage of this process is based on the idea th a t the new solution 

Xn+i will be within a neighborhood of x n and will take less tim e to  converge.

S tiff  d if fe re n tia l e q u a tio n s

Stiff differential equations are differential equations tha t are ill-posed in the computa­

tional sense. The notion of stiff is somewhat imprecise, but it communicates the idea 

tha t the solution has some components th a t change much more rapidly than others 

(Yakowitz and Szidarovzky 1986). Two common definitions are given below.

D efin itio n  O ne: A system of differential equations is said to  be stiff on the 

interval [0,T] if there exists a component of a solution of the system th a t has a 

variation on [0,T] tha t is large compared to 1 /T .

D efin itio n  T w o: A system is stiff if there exists more than  one scale, with a 

great difference in size on which the solutions evolves. For instance, the system of
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differential equations y / =  A y  where A  is a constant m atrix  with eigenvalues A,-A is 

stiff if

maxi  AiA >> mini  Ai A

The rate  coefficients associated with the chemistry of the dark interstellar cloud 

differ by several orders of magnitude. For example, the ra te  coefficient of the cosmic 

ray ionization is of the order of 10-17 s -1 whereas the rate  coefficient of dissociative 

recombination of H £  is of the order 10-8 cm3 s -1 . There are also great differences 

in the steady state abundances. For example, the fractional abundance of Ci0 is 

7.4 x 10-16 while the fractional ionization of hydrogen is 1. The large difference in 

the rate  coefficients and the abundances indicates tha t there is the possibility tha t 

stiffness might be a problem. The use of conventional methods such as Runge K u tta  

or Adams Moulton becomes extremely time-consuming for this class of equation and 

can often lead to incorrect results.

This problem was avoided by adopting a differential equation solver called lsoda.f. 

Lsoda.f was developed by Livermore National Laboratories. This routine is necessary 

because the chemical network evolves along different time scales. The lsoda.f routine 

automatically adjusts its step size to account for the stiffness of the region it being 

integrated over. I t achieves a high degree of stability with a larger step size because 

it is a based on a backward difference Gear method.

D ata Structures

The task of accurately representing a system of differential equations is going to
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vary with the complexity of the system. Naturally, for small systems the selection 

of a com putational representation is not as crucial as for large systems. However, as 

the system gets larger representations must be constructed by some com putational 

procedure to  ensure accuracy.

The evolution of the computer code in this study consisted of two stages. Stage 

one involved getting the program to  integrate 50 or fewer of equations. The system of 

equations was represented as a 1-1 onto map of the fortran code. To accomplish this a 

program was w ritten called jack.f which wrote two subroutines fex.f and jex.f. These 

two programs were used as external calls to lsoda.f. This m ethod produced correct 

results. However when the size of the system exceeded 50 equations, the problem 

grew larger the available memory.

The memory problem was solved by introducing a data  structure. The data  struc­

tu re  has relatively smaller memory requirements than  the 1-1 onto representation. 

The idea tha t makes the data  structure representation practical is tha t by using a 

small amount of memory you can store the large system of equations. The drawback 

is th a t every time the system of equations is called, the CPU must decode the data  

structure. Essentially, what is done is to trade off memory space for CPU time.

Description of the D ata Structure

The da ta  structure which is responsible for reconstructing the system of differential 

equations consists of 3 arrays. Array rate(n) is a double precision vector which con­

tains the rate  coefficients. The 2 dimensional array ivec(ic,nterms) is a list of all term s
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in all equations. Ivec(ic,l) constrains the rate  coefficient index, Ivec(ic,2) contains the 

multiplier and Ivec(ic,3) and Ivec(ic,4) contain the numerical indices of the species. 

The vector num term  is a pointer to each equation. I t contains the num ber of term s in 

each equation and its sum will equal the length of ivec. The arrays Ivec,numterms and 

rates are all stored in a common block. This block is accessed by fex.f to  construct 

the function. Every tim e the function is needed it must be computed using fex.f.

Creation of the D ata Structure

The data structure is created by using an array of the strings. Each string contains 

a name of a molecule. This string is compared with each of the chemical reactions 

in the reaction list. The reaction list consists of at least three and a maximum of 

six species. If the string in the molecular list occurs in a position of the reaction 

list a  flag is set which directs the program to  increase the nterm  counter by 1. The 

program then sets ivec(l,n) equal to the reaction number. This is im portant because 

this information will be used in the process to  determine the rate  coefficient. Next, 

the program determines the sign of the term . It does this by determining which side 

of the equations the species is located. Finally, the programs codes the reactions tha t 

are participating in the reaction. The code generated by this operation contains the 

pointer required to  reproduce the  function.

Description o f LSODA.F

The reaction network is generated by the subroutine EQTABLE. EQTABLE reads 

in the rate file from the UMIST data set. EQTABLE then creates a data  structure
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which is isomorphic to the rate equations. The differential equations are recovered 

for calculation purposes by the subroutine fex.f. The UMIST set consisted of 389 

molecular species and 3715 reactions(Farquhar and Miller 1993). Lsoda solves the 

initial value problem for stiff or non-stiff systems of first order ode-s,

^  = f ( t , y ) ,  (5.35)

or, in component form,

=  /(* ) =  /(M ,2 / ( l )52/(2),...,Z/(rceq))(i =  l , . . . , neq) .  (5.36)

This a variant version of the lsoda package. It switches automatically between stiff 

and non-stiff methods. This means tha t the user does not have to determine whether 

the problem is stiff or not, and the solver will automatically choose the appropriate 

method. It always starts with the non-stiff method. Lsoda uses a linear algebra 

package called LINPACK.

Description of LINPACK

This is a collection of Fortran subroutines which analyze and solve various linear equa­

tions and linear least-squares problems. The package solves linear systems where ma­

trices are generally square, banded, symmetric indefinite, symmetric positive-definite, 

triangular or tridiagonal. In addition, the package computes the QR and singular 

value decompositions of rectangular matrices and applies them  to linear least-squares 

problems. Single precision, double precision and complex versions of the code are 

included. The tape distributed contains the Fortran source for LINPACK, the Basic



Linear Algebra Subprograms (BLAS) needed by LINPACK, testing aids and program 

comments.



Chapter 6 

Bistability

This chapter will provide an illustration of the behavior of steady state solutions 

to the chemical model tha t was defined in Chapter 5. Also, this chapter discusses 

the m athem atical structure which is associated with the phenomenon of bistability. 

This discussion provides an explanation of how phase transitions, hysteresis, and cusp 

catastrophes are related to bistable phenomena.

Certain sets of initial conditions result in steady state solutions which, when plot­

ted over a region of the param eter space, will exhibit discontinuous behavior. When 

the same calculation is performed in the param eter space but in a different direction 

we sometimes get a region where the solutions are unique and other times we get two 

different solutions. When we get two solutions we say the solutions are bistable. The 

topological structure which is associated with bistability is the catastrophe. Catastro­

phe theory provides a qualitative m ethod for the interpretation of phase transitions 

and the hysteresis phenomenon. In this investigation the cusp catastrophe plays an 

im portant role in obtaining a qualitative explanation of the bistable phenomenon.
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F ra c tio n a l Io n iza tio n

Steady state  solutions obtained by solving the chemical model are expressed as a 

vector X . The dimension of the vector the number of species in the chemical network 

and each component of X  corresponds to the fractional abundance of each species. 

Typically, chemical models involve modeling molecular clouds which contain between 

100 and 400 species. A graphical representation which displays such a large number 

of species would not be practical. Fortunately, there is a suitable graphical represen­

tation of the solution.

Electrons account for a large percentage of the negative charge in the dark in­

terstellar clouds. While other negative ions such H~  and C~  exist, they are several 

orders of magnitude less in abundance compared with the num ber of electrons. It is 

therefore convenient to characterize the chemistry of the cloud in term s of the electron 

abundance. The relative abundance of electrons is called the fractional ionization.

Mathematically, the f ra c tio n a l io n iz a tio n  is defined to be:

X e =  (6.1)
n

W here n e is the number density of electrons. And n  is the num ber of hydrogen 

nuclei is defined by the following relation:

n  =  2  ng 2  +  ris.

The fractional abundance for all other species is defined to be:

(6.2)
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where nm is the number density of the species and n  the number density of the 

hydrogen nuclei.

P h a se  T ran s itio n s

Plots of the fractional abundance of steady state solutions to the chemical model 

sometimes produce curves which are discontinuous. As an example of this disconti­

nuity consider Figure 4, a plot of the fractional abundance of H 20  which is expressed 

as nH*° versus number density. Figure 4 shows a discontinuity at n  — 1500cm-3 .

The left hand side of the graph is a convex function which is monotonically in­

creasing, while the right side of the discontinuity is an approximately linear curve 

with a small decreasing slope. Analysis of this graph suggests tha t the chemistry 

which is producing the H 20  is different on different sides of the discontinuity.

A plot of the fractional ionization also shows a discontinuity at n — 1500 cm - 3  

(see Figure 5). The discontinuity will be defined as the p h ase  t r a n s i t io n  in the 

chemistry which is expressed in the fractional ionization curve. The phase transition 

divides the regions of ionization into a high and low region. Note the region on the 

left side of the phase transition is the region of high ionization, while the region to 

the  right represents the low ionization.

Physically, the phase transition corresponds to the point were the number of 

free electrons in the cloud increases or decreases substantially. Charge conservation 

implies th a t in the high ionization state there are more positive ions, while in the  low 

ionization state  there are less positive ions. This is one mechanism which influences
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Example of a Phase Transition for H20
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Figure 4: Phase Transition for H 20  Molecule

the chemistry of the molecular cloud. An analysis of the chemistry difference will be 

performed in chapter 7.

P ro c e d u re  to  F in d  a  B is ta b le  R eg io n

Bistable regions are found by a three step process. An example will be given 

for an initial conditions given in Table 6  and a Tem perature= 10 K. Steady state 

solutions will be obtained for the number density which varies from 100 — 3000cm-3 

in increments of 50.

S te p  1 : The procedure will begin by computing a steady state solution for the 

system of equations with A T , w h i c h  will correspond to the abundances given in 

Table 6 . The number density will vary from n =  100 cm - 3  to 3000 cm - 3  . The solution 

for the first iteration X \  will be used as the initial condition for the second steady
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Phase Transition
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Figure 5: This Graph illustrates the phase transition

state solution. This process will be carried out 59 times for this example and a graph 

will be constructed which is represented in Fig 6 . The fractional ionization X j e will 

be plotted against n. Notice th a t at a number density of 1500 cm - 3  illustrates tha t 

a phase transition has occurred.

S te p  2 : The second step will consist of doing the same thing tha t was done in step 

one, except tha t we are starting at a number density of 3000 cm - 3  and decrementing 

by the number density in steps of 50 cm~3. These results are then plotted in Figure 

7. Observe tha t at a number density of 450 c m ~3 a phase transition has occurred.

S te p  3: The final step involves plotting the superimposed results obtained in 

steps 1 and 2 and comparing the results. Given 2 points ( n , X ei) (n , X ej ) where X e,
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Steady State Solutions for Number Density 50-3000
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Figure 6 : The phase transition for 50-3000 cm ~ 3 The diamonds represent the computed 
data points.

Steady State Solutions for Number Density 3000-50
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Figure 7: The phase transition 3000-50 cm~z The diamonds represent the computed 
data points.
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Figure 8 : Superposition Figs. 6  and 7 Note the Bistable Region The lines and dotted 
lines refer to the fits of the computed data points. The computed data points are 
represented by diaomnds and crosses.

and X ej are the fractional ionizations from a steady state  solution, if

X ei + X ej (6.4)

then a B is ta b le  S o lu tio n  exists. If the graphs of steady state solutions have a a 

region where two different solutions exist for the same density, this region is called 

a B is ta b le  R eg ion . Notice th a t for a number density of 450 cm ~ 3  to 1500 cm~3 a 

bistable region exist. The loop in Figure 8  is called a hysteresis loop. The physical 

significance of this will be discussed la ter in this chapter.

T h e  B is ta b ili ty  D iag ram

The bistable region is represented schematically in Figure 9. Understanding Figure 

9 is im portant because all of the bistable steady state solutions computed for the
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Figure 9: Points in th e  Bistable Region. Segm ents  abed hgef are stable solutions. 
The dotted line dxh is an unstable solution.

chemical model are topologically equivalent to Figure 9.

The prominent features of Figure 9 are the segments ab ed  and hgef. These 

curves represent steady state  solutions to the chemical model. The dotted line d x h  

represents a set of solutions which are in unstable equilibrium. If a point falls on any 

of these three curves the  recombination rate is equal to the ionization rate. Notice 

th a t if the system is on curves ab e d  or hgef, then a small perturbation from these 

curves will result in the  system returning to  the curves. This occurs because they 

are sets of solutions in stable equilibrium. However, if the system is on the unstable 

curve d x h , a perturbation will cause the system to diverge from d x h  and approach 

the stable curves.

The remaining points not on these three curves are not in steady state equilib­

rium. Points n , p , q  and m  represent the non-equilibrium condition. Thus, the
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recombination and ionization rates will not be equal. It is instructive to  examine 

these points individually.

If the system is a  point n, then the recombination rate will be higher than the 

ionization rate  because to achieve equilibrium it must move to the lower fractional 

ionization region. If the system is at points p  and q, it will tend to move away from 

the unstable curve d x h . Thus, point p  will have to have an ionization rate  larger 

than the recombination rate and will approach curve a b e d , while point q  will have 

to have a recombination rate higher than  the ionization rate and will approach curve 

hgef. If the system is at point m , then in order for equilibrium to  be achieved the 

ionization rate  must be larger than the recombination rate,because it m ust approach 

curve hgef.

The phase transitions are represented by paths de  and hb . I t is im portant to 

point out th a t these paths my be traversed in only one direction. This behavior 

is the property th a t allows for the bistable phenomenon to occur. If the number 

density is monotonically increased from the initial point (n i,a ), it will continue in the 

high ionization state  until it reaches (u 4 ,d). At (ti4 ,d) a phase transition will occur 

and it will move to the lower ionization state  which is represented by (ra4 ,e). If the 

number density continues to increase the system will remain in the low ionization 

state. However if the the number density is monotonically decreased, it will remain 

in the low ionization state  until it reaches point (n2,h ). By continuously decreasing 

the number density the system will re tu rn  to the high ionization phase. When it 

reaches the high ionization phase, it is possible to increase the number density and



80

the system will continue to move around the curve b cd eg h b .

The Belousov-Zhabotinski (B-Z) type reaction consist of chemical system which 

undergos self-sustained oscillations which can be periodic or chaotic (Thompson 

1982). The loop b c d e g h b  is known as a hysteresis loop. If a cycle happens to 

occur, then a Belousov-Zhabotinski type reaction is possible (Thompson 1982). Note 

tha t the direction tha t the loop can only be transversed in a clockwise direction. From 

a theoretical prospective, this is im portant because it will allow one to determine the 

history of the system once the hysteresis curve has been calculated. The clouds num­

ber density is related to the clouds volume by the expression: n  =  £  where k is the 

to tal number of particles in the cloud.

Thus, if the system is at point g there are only two possible paths tha t would allow 

the system to  reach g, namely feg and ab cd eg . It seems unlikely tha t a mechanism 

exists th a t allows the volume of the cloud to contract then suddenly expand. It would 

require a large change in the kinetic energy of the system i.e (a large amount of work 

would have to  be performed). There are no physical processes th a t could provide the 

energy to do this work in a quiescent cloud. This implies th a t the cloud would not 

traverse path  abcdeg. Thus, if the system is at point g, we m ust conclude the cloud 

is undergoing some type of expansion.

If there were some mechanism which would supply the energy to allow this path  to 

be taken, it would be theoretically possible to observe a B-Z type reaction. If the B-Z 

reaction were observed then observers would in principal be able to detect variations 

in chemical abundances over astronomical time scales.
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A more practical procedure would be to search for signatures of each ionization 

phase. The high C abundance (N c i = 0 . 1  N co )  has been in several sources: the core 

of the Orion Molecular, (Phillips and Higgins 1981) (Jaffe, Harris, Silber, Genzel, and 

Betz 1985) M17,W51,W3 (Zmuidzinas Betz and Goldhaber 1986) and S140 (Keene, 

Blake, Phillips ,Huggins and Beichman 1985). This is particularly tantalizing since 

high C abundances are found in the high ionization phase.

The Cusp Catastrophe

It is interesting to  note tha t bistability can be expressed in terms of a new paradigm,which 

is called catastrophe theory. Paradigms th a t enhance qualitative interpretation of 

steady state solutions are useful because sometimes they provide insight into physical 

process. The Cusp Catastrophe can be used as a new paradigm to understand bistable 

phenomenon. A bistability is generated when a cross section is taken from a cusp 

catastrophe. This section provides a graphical explanation of the cusp catastrophe.

Consider the surface which is represented in Figure 10. Each point on the surface 

of the graph represents a steady state solution in which the system is in equilibrium. 

Note the graph has a pleat. The pleat can be interpreted as the set of inaccessible 

points while point on the surface which are above and below the pleat may be in­

terpreted  as bimodal set stable points. Catastrophe theory denotes param eters as 

control variables. However, for this study the phrase control variable will be synony­

mous with param eter.

The cusp catastrophe occurs when the system in question has 2 different control
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Steady State Solutions

control variable 2

Cusp Catastrophecontrol variable 1

Figure 10: Graph of a Cusp Catastrophe: Notice the pleat represents a region that is 
not accessible.

factors. Its graph is a three dimensional surface with a pleat. A graph of a cusp 

catastrophe is given in Figure 10. Every point on the surface and not on the pleat is 

a point in steady state equilibrium. Further inspection of Figure 10 illustrates tha t 

there are certain combinations of control factors which allow two possible states. The 

behavior of the system under these conditions is referred to as bimodality.

Figure 11 is similar to Figure 10 but it has labels. As the surface is traversed from 

c to a to b to e it is possible to follow this path in any direction. This is denoted 

by the existence of double arrows. However, while it is possible to  traverse the graph 

from c to d to e to f, it is not possible to traverse the surface from c to f to e to d. 

Notice the change from c to a to b to  e is a smooth change and will occur slowly. A
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The Cusp Catastrophe

smooth change

smooth change

smooth chai

catastrophe

0 <— < 
hysteresis

control factor 2

control factor 1

Figure 1 1 : Traversing the Cusp Catastrophe: There are two possible paths to point e. 
Path cabe involves a smooth change while path cde involves a discontinuous change. 
A cross section through cdef is a bistable region.

catastrophe will occur when the surface is traversed from d to e or form f to c.

Summary

The following summary of chapter 6  is presented. The fractional ionization has been 

defined to characterize the steady state solutions associated with the chemical model 

of the molecular cloud. Phase transitions have been identified as a discontinuity of the 

steady state solution set which shows where a phase transition occurs. It has also been 

shown tha t sensitivity to the initial conditions will cause the existence of a bistable 

region. The bistable region is a cross sectional cut of the topological surface known as 

a cusp catastrophe. It was speculated tha t the bistable curve has a hysteresis region



which might support a B-Z type reaction.



Chapter 7 

Phase Transitions in Molecular Clouds

This chapter will explain the general characteristics of chemical phase transitions 

in the molecular cloud and the effect of the phase transition on the chemistry of 

the cloud. The chemistry of the molecular cloud is characterized by the fractional 

ionization. Steady state solutions of the chemical model sometimes exhibit discon­

tinuous behavior. As was explained in chapter 6 , the discontinuity tha t appears in 

the fractional ionization curve separates the two chemical phases. The two phases 

of chemistry associated with the molecular or dark interstellar clouds are designated 

as the h ig h  io n iza tio n  p h a se  (H IP )  o r  th e  low io n iz a tio n  p h ase  (L IP ) . This 

chapter will explain the chemical process tha t allows a phase transition to occur be­

tween HIP and the LIP. We will then explain how various species behave in the HIP 

and LIP. All solutions discussed in this chapter will be considered at steady state.

T h e  slo p e  o f  th e  f ra c tio n a l io n iz a tio n

The steady state behavior of the fractional ionization is crucial for understanding 

phase transitions. An empirical description of this behavior is given by plotting the 

logarithm of the fractional ionization versus number density. W hen the logarithm of

85
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the fractional ionization is plotted as a function of the number density the slope is 

always negative in regions where the function is piecewise continuous. This behavior 

can be modeled as

logXe — log A  — filog(n) (7.1)

or by transposing to an algebraic form:

where /3 is a positive constant, A is a constant and n is the number density. Chapter 

9 presents some methods for estimating j3 for special cases, but in general all tha t 

can be ionization has an inverse relationship to n, the number density.

The General Chem istry o f the LIP and the H IP

The ratio of f f 2 with the second most abundant species in the cloud CO  has been 

measured to be 8000 to  1 (W ootten et. al. 1982). The large abundance of hydrogen 

implies tha t hydrogen in some ionic or molecular form will contribute significantly to 

the molecular cloud chemistry. A large portion of the chemistry of the LIP and the 

HIP can be understood by understanding the ionization and recombinations of H + 

and H% .

Solutions to the chemical model indicate th a t the dominant mechanism for the 

productions of H + is a one step process:

C R P  + H2 ^  H + + e  + H.

While, the production of H% is a two step process.
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C R P  +  H 2  -* H i  +  e 

The H £  is quick to react with the molecular hydrogen to produce H£

H+ + H 2 ^ H £  + H

For both the HIP and LIP the rate  of H +, H£  and electron production is constant. 

Thus, the difference in the abundances of H + , H £  and electrons can be attribu ted  

to the recombination of H + and the destruction of H £ .

It has been established by Le Bourlot (1993) tha t the HIP is dominated by the 

charge transfer reaction of H +. This is reflected in the fact th a t the charge transfer 

reaction:

H + +  Y  -> Y + +  H.

dominates the proton transfer reaction:

H £  +  Y  -»■ Y H + +  H2.

The H £  will react with electrons in both the HIP and the LIP. H + will not react 

with a significant number of electrons. The reason for this is th a t H + reacts with 

electrons via radiative association:

H + +  electron —> H  +  hu.

The radiative association rate coefficient is 3.5 X  10- 1 2  cm 3  s -1 , while the rate 

coefficient for dissociative recombination of H £  is 5.23 x 10- 7  cm 3 s -1 . Thus, H £  will 

react with electrons at a rate equal to 5 orders of m agnitude faster than H +. The
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charge transfer rate coefficient of H + is between 1.0 x 10- 9  and 9.00 x 10- 9  cm 3  s _1. 

Therefore, the H + ion will react via charge transfer. Since there is a relatively large 

abundance of H +, the charge transfer process is dominant at HIP.

Examination of the UMIST Rateffie (Farquhar and Millar 1993) shows th a t a very 

large proportion of the reactions with the H + ion are charge transfer reactions. This 

is convenient because it allows us to write a model for the steady state abundance of 

the H + ion based on the charge transfer. Note, th a t the radiative recombination is a 

slow process and its effect will be negligible.

The sum of the creation and recombination term s may be expressed as:

=  c m f H *  -  £ [ i f +] M  (7.3)

where /#+  corresponds to the amount of H 2 th a t is converted to H + in the cosmic-ray 

ionization process of H 2  The steady state condition implies:

- V = <7-4>

Substituting (7.2) and rewriting yields:

c m f a *  = £ [ J T +1 M . (7.5)
i

Converting to the fractional ionization produces:

CfB+XHa = n X n + ' E x Yi- (7-6)
i

Solving for the fractional abundance of H + yields:

X h * =  ( X * J y *  ■ (7.7)
» X Yi
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The fact th a t the fractional abundance is a function of -  and the fractional ioniza-n

tion is a function of the ^  provides a clue as to why the phase change occurs. Notice 

when the number density increases the abundance of H + and the electrons decrease. 

Since there are fewer electrons,to react with H £ , there will be more H £  available to 

undergo proton transfer.

The extra H £  ions will begin to react with the C 0  and the O to  form H C 0 + and 

0 H +. The 0 H + will react with molecular hydrogen to produce H £ 0 .  The H £ 0  

will react quickly with H 2  to  produce H £ O.

The creation of H £ 0  has two im portant effects. First, the H £ O  can undergo 

dissociative recombination to produce H 20  and OH. This reaction will compete 

with the H £  for electrons. This has the effect of freeing up H £  to undergo proton 

transfer with other species. The second effect involves the O H. I t can now react 

with atomic oxygen to produce molecular oxygen which can react with the atomic 

ions such as S +, £f+ , and C +. This has a dram atic impact on the ratio of H £  to 

H + as is illustrated in Figure 12. This process is a result of the system moving from 

the HIP to the LIP. In addition to this process, the H C O + will also compete with 

electrons. Thus, as the phase transition point is reached, the H £  will begin to  increase 

in abundance. This is illustrated by the high resolution graph.

Carbon ions are responsible for the ionization of the sulphur, silicon, phosphorous 

and the metals. The C + will charge exchange with these species. The C + is produced

by

H e+ + CO —> H e + O + C+
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Figure 12: The ratio to H + Note different functional form s for  HIP and LIP.

High Resolution View of H3+ near Phase Transition
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Figure 13: H f  Phase Transition from HIP to LIP Note this is a high resolution graph
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Behavior of Atomic Ions when Phase Changes for HIP to LIP T=10K
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Figure 14: M ajor atomic ions C +, H +, S + for HIP and LIP (hpup=.ff+ , sp u p = 5 + 
and cpup=C'+)

W hen the system is in the HIP sulphur, silicon, phosphorous and the metals are all 

ionized. However when the system moves from HIP to LIP, the number of monatomic 

ions such as H +, C + and S + decrease. This is illustrated in Figure 14.

The metals, on the other hand, remain ionized. This effect can be attributed  to 

the fact tha t m etal will recombine though the radiative recombination process:

M + +  electron —> M  +  hv

where M is either Na, M g  or Fe.  The radiative recombination rate  coefficient is of 

the order of 10- 1 2  cm3 s -1 , which is relatively slow. The metallic ions therefore tend 

to remain in ionic form as the system undergoes phase transition. In the LIP more 

metals will be ionized because the molecular ions will charge transfer with the metals. 

One characteristic difference between the HIP and the LIP is the types of ions
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th a t are dominant in each state. Figure 14 illustrate some of the atomic ions in both 

phases. As would be expected, they decrease in abundance as the system moves to 

the LIP. Figure 15 illustrates some of the difference in molecular ions. The molecular 

ions increase in abundance as the system moves form HIP to  LIP. The molecular ions 

recombine via charge transfer to produce molecules,this is illustrated in Figure 16.

We will conclude this discussion by pointing to an interesting fact. W hen we 

enhance the abundance of metals, carbon, sulphur or silicon to an abnormally high 

level, it is possible to m aintain the system in a HIP. This can be attribu ted  to charge 

conservation. Since the initial abundance is enhanced, a large fraction of the species 

become ionized. Charge conservation dictates tha t the negative charge must be in 

the form of electrons. The additional electrons are available to undergo dissociative 

recombination with the H £ . This decreases the number of ions and allows the 

H + to  dominate the chemistry allowing the system to m aintain itself in the HIP.

M athem atical Conditions for the H IP and LIP

Tables 7 and 8  illustrate tha t when the cloud is in a HIP the dominant mechanism for 

the removal of electrons is the dissociative recombination reaction with H £  and the 

electrons. By inspection of Tables 6  and 7, we note th a t when the system is in the 

LIP the dominate mechanism for electron removal is electrons undergoing dissociative 

recombination with H G O + and HzO+ . The dominate mechanism for the removal of 

H £  is its reactions with CO  and O.

These facts motivate the construction of a m athem atical model of the which places
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Molecular Ions when Phase Changes for HIP to LIP T=10K
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Figure 15:Behavior of Molecular Ions in LIP and HIP. This figure illustrates the 
behavior of molecular ions H% H C O + and H 3 0 +. The abundance increases after the 
phase transition to LIP.

Effect of Molecular Abundance for Different Phases
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Figure 16: Behavior of Molecules in HIP and LIP This figure illustrates the behavior 
of molecules C H 4 , H 30  and 0 3- The abundance increases after the phase transition 
to LIP.
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HIP HZ
Reaction Rate

H+ +  H 2  —> H £  +  H 1 .18xl0-17sec-1
H+ +  0  -> OLT+ +  H 2 1.31 xlO - 18sec - 1

H+ + C 0 -► C 0 +  + H 2 1.93 x 10- 18sec - 1

H £  +  e -> 3 H 4.30 x l0 - 18sec - 1 8

HZ  +  e —* H 2 + 4.30 x l0 - 18sec - 1 8

LIP HZ
Reaction Rate

^  H3+ +  H 1 .18x l0“ 17aec_1
fr3+ +  e -> 3 H 9.48 x l0 - 19sec- 1

H t  +  e H 2 + H 9.49 x l0 ~ 19sec_ 1

H Z  +  0  -* 0H +  +  H 2 2.14 x l0 _18sec_ 1

HZ + C 0  HCO+  +  H 2 6 .31x l0_18sec_1

Table 7: Rates for creation and destruction of HZ  in HIP and LIP

HIP Electron
Reactions Rate

H 2  +  C R P  ^  HZ  +  e 1 . 2  x  1 0 _1 7sec_ 1

H 3 0+ + e ^ H 20  + H 5.09 x l0 - 19sec - 1

H 3 0+ + e —* O H  +  H 1 .18x l0 -18sec-1
HCO+ + e ^ H  + CO 2.75 x l0 - 18sec- 1

HZ  +  e ^  3 H 4.3 x l0 - 1 8sec- 1

HZ + e ^ H 2 + H 4.3 x l0 _1 8sec_ 1

LIP Electron
Reactions Rate

HZ  +  H  -> HZ  +  H 1 .18x l0 -17sec-1
HZ  +  e ^  3 H 9.48 x l0 - 19sec- 1

HZ + e ^ H 2  + H 9 .4 8 x l0 _19sec_1
H 3 0 + +  e -+ H20  +  H 1.421 x l0 - 1 8sec- 1

H 3 0 + +  e —+ O H  +  H 2.65 x 10- 18sec- 1

H C O + +  e —> I f  +  CO 6.95 x l0 - 18sec- 1

Table 8 : Rates for recombination and ionization of electrons in HIP and LIP
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bounds on the abundances of CO  ,O , H C O + , and H 3 0 + for the HIP and the LIP. 

We begin by writing expressions for the rates of the electron and HZ  as follows:

= kH i [H,][H*] (7.8)

for the rate  of formation of HZ  and we can also write

<7-9>

to represent the formation of electrons.

The destruction of the HZ  ions and electrons is described by the following rela­

tions.

=  2 ke[H3 +][e] + h[HZ][CO} +  &2 [fT+][0] +  (7.10)

^  =  2ke[H3 +][e] +  k 3 [HCO+] +  h [ H 3 0 +][e] +  ee (7.11)
at

Combining equations 7.8, 7.9, 7.10 and 7.11 we obtain an expression for the which 

approximates the rate  of formation and recombination for HZ  ions and electrons. 

The term s ee and eH+ represent the other recombination processes associated with
3

the following equations:

=  kH} M f l + l  -  2K[H 3 +][e\ -  h \H }}[C O ) -  h [ H i)[0 }  -  (7.12)

and

^  =  kH i [H2 ][HZ) -  2ke[H3 +][e} -  k3 [HCO+][e] -  k 4 [H3 0 +][e] -  ee (7.13)

As previously stated, when the system is in the high ionization state  the models 

indicate th a t dissociative recombination of the HZ  ion is the dominant mechanism
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for the destruction of H £  and electrons. Because the production of H 2  and electrons 

is virtually constant, we consider only those terms which destroy HZ  and electrons. 

W hen the system is in the HIP the following inequalities were observed to hold.

2 ke[Hz+][e] > h[HZ][CO] +  k 2 [HZ][0 ] (7.14)

and

2ke[H3 +][e] > k 3 [HCO+][e] +  k4 [H3 0+][e] (7.15)

for the HIP.

H Z  appears on both sides of the first inequality so it cancels, while electrons

appear on both sides of the second so they cancel. If we divide by the number density

we obtain:

2 keX e >  k iX c o  H" k 2 X o • (7.16)

and

2 keX j j3+ > k3 Xjjco+ +  X jfso+ (7-17)

We can now divide both sides by 2ke to obtain:

X . > k ' XcoJ  h X o  (7.18)

and

v  ^ fa X HCo+ +  h X H30+ I ^
------------ 2 k   ̂ '
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For the LIP, the rate of electron destruction is dominated by the dissociative recom­

bination of electrons with HCO+ and H30 + . M athematically, it means th a t we can 

reverse the signs in the above inequalities to obtain conditions for the LIP:

2ke[H3+][e] < h'*{H+][CO] +  k2[H+}\0) (7.20)

The rate at which H 3  ion are removed is dominated by the protonation of atomic 

oxygen and carbon monoxide:

2ke[Hs+][e] < k3[HCO+][e] +  h [ H 30 +][e] (7.21)

Now we can divide both sides of the inequality by the num ber density and 2ke to 

yield.

X .  < k lX c °  + h tX °  (7.22)

k3X HCo+ + h X H 0+ 
x h3+ < ------------ ^ ------------- (7.23)

Expressions 7.18 and 7.23 are useful because they allow us to predict what initial 

abundances will produce an HIP or a LIP. An example will be presented in the next 

section.

Am ount o f M etals N eeded to M aintain H IP in TMC1

For example if we want to  know how much initial metallic abundance we need to 

remain in the HIP we can use expression 7.18

kiXco + k3Xo A e ^  - (7.24)
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and the Oppenheimer approximation for the fractional ionization (see Chapter 9 for 

a discussion and derivation):

» ; =  ^  (7.25)
a ra

We must rewrite expression 7.25 in term s of the fractional ionization. This requires 

th a t both sides be divided by the number density cubed.

x„. =  ( ^ r f ) ’ (7-26)n a ra

Substitution (7.26) into (7.24) yields:

A (3X m  * ^  k iX g o  +  k2X p
n a ra  2 ke

Several constants in these equations are known £ =  1 .2 5 x l0 _17sec_1, /? =  10- 9 cm 3 sec - 1  

, a  =  10- 6 cm 3 sec-1 , a r =  10- 1 1cm3 sec-1 , k\ =  1.7 x 10- 9 cm 3sec_1, ko — 8.0 x 

10-lo cm 3 sec_1, and 2ke — 2.75 x 10- 7 cm3sec - 1

We may now substitute the constants into expression (7.13.20),noting th a t the 

term  involving the oxygen can be ignored because we cube both sides of the inequality.

X m  _ w 3 , Q 2
n

> X c o  x  1 . 8  x 1 0 2 (7.28)

For the TMC the measured value of the relative abundance of CO is 8.00 X  10 5. If 

this value is substituted into the inequality we can write:

X M > 9.2 x 10 11 x n (7.29)
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For a number density of n  = 104, then fractional abundance of metals m ust be greater 

than 9.2 x 10~ 7 to m aintain the HIP. This value has been confirmed by the chemical 

model.

A ddition o f Electron Rich Sources

Consider the expression below:

X . > k ' X c o  + k X ° . (7.30)
Z k €

Notice tha t if the dissociative recombination constant is increased, then number of 

electrons necessary to m aintain the HIP will decrease. Also, notice th a t by depletion 

of the atomic oxygen and the carbon monoxide, the number of electrons necessary 

to m aintain the HIP is lower. If we have an element such as sulphur, which provides 

electrons to m aintain the HIP it will take less sulphur to m aintain the HIP, in a 

depleted region. This is in agreement with Le Bourlot et. al. (1993) model which 

used ultra-low depletions.

H ydrogen O xygen Chem istry

The chemistry of hydrogen and oxygen undergoes a dram atic change when the system 

goes from HIP to LIP. There are two im portant species tha t are the end products 

of this process: H^O  and O H . An examination of Table 9 illustrates this process. 

The most interesting feature of this table is the dram atic increase in the abundance 

of water by a factor of 30. There is also a 7 fold increase the O H  abundance. The 

reason for this increase is due to the increased rate  of O H + production via dissociative 

recombination in the low ionization phase. The reaction:
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H+ +  O -► O H + +  H 2

is 2.8 times faster in the low ionization phase than  in the high ionization phase. This

is the initial step in the process which creates H 3 0 +.

The O H + ion reacts with H 2  to produce H 2 0 +

OH+ + H 2 ^  H 2 0 + +  H.

The H 2 0 + ion reacts with H 2  to produce H 3 0 +:

H 2 0 + + H ^  H 3 0+  +  H .

The H 3 0 + can now through dissociative recombination form H 20  or OH:

H 3 0 + +  electron  —>■ H 20  +  H.

We note th a t the next reaction is responsible for the production of the O H  radical.

H 3 0 + +  electron  —> O H  +  H 2

In the low ionization state this reaction is 3.63 times faster than  the  high ionization 

state.

The enhanced ra te  of this reaction is the reason th a t more atomic oxygen is 

converted into molecular oxygen:

O H  +  O -> 0 2  +  H.

Figures 17 and 18 illustrate the hydrogen oxygen chemistry for these reactions in 

the LIP and the HIP phase.



Hydrogen Oxygen Chemistry HIP
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Figure 17: HIP Reaction Networks for the Hydrogen Oxygen Chemistry
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Figure 18: LIP Reaction Networks for the Hydrogen Oxygen Chemistry
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Hydrogen Oxygen Abundance n=130
Species High Ionization Low Ionization for

h 2o 1.64xlO "07 4.90 x lO - 06

0 2.40 x lO " 04 1.35xlO - 0 4

h 2 o+ 8 .6 4 x l0 "12 2 .6 3 x l0 _n
h 3 o + 2.51 x lO " 10 9.53x10-°°
O H 1.94xlO " 07 1.54xlO - 0 6

O H + 6 .8 5 x l0 -12 2.05X10"11
h 2 9.95 x lO " 01 9 .9 5 x l0 _ul

Table 9: Hydrogen Oxygen Abundances at HIP and LIP notice the increased, abun­
dance o f molecules in the HIP.

Carbon O xygen Chem istry

The im portance of oxygen and carbon to the chemistry of the dark interstellar cloud 

is based on their abundance and reactivity. Oxygen and carbon are, respectively, the 

th ird  and fourth most abundant species in the cloud. Oxygen is highly reactive and 

will form oxides with most compounds, while carbon tends to  form CO, triatom ics, 

and molecules which have relatively long chains. Therefore, any substantial change 

in either of these species will significantly effect the chemistry of the dark interstellar 

cloud.

Table 9 lists some steady state  solutions for some of the carbon species at the high 

and low ionization phases.

An analysis of Table 10 illustrates four im portant facts about the oxygen carbon 

chemistry as system moves form the HIP to the LIP. F irst, the amount of carbon C 

decreases by a factor of 120. Second, the amount of molecular oxygen O2  increases 

by a factor of 56. Third, the am ount of carbon monoxide CO  increases by a factor of
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Carbon and Oxygen n=130
Species High Ionization Low Ionization

G 2 .5 5 x l0 -OB 2.11 xlO " 07

GO l.lO x lO - 0 4 1 .44x l0 - 0 4

O 2.40 x lO " 04 1.35xlO - 0 4

o 2 5.72 x lO ” 07 3.24 xlO - 0 6

C + 4.77xlO - 0 6 2.29 x lO " 07

CO+ l.OOxlO - 1 2 1 .8 2 x l0 “12
0 + 1 .0 6 x l0 -12 3 .7 1 x l0 “12

Table 10: Oxygen and Carbon Species At High and Low Ionization

0.236. And fourth, the amount of atomic oxygen O decreases by a factor of 0.4375.

An explanation of these results can be found by examining the process which is 

destroying the atomic carbon C. We note in the low ionization phase the dominant 

process for the destruction of carbon involves the reaction with molecular oxygen 0 2:

C  +  0 2  -* CO + O.

Thus the increase in abundance of 0 2  is responsible for the destruction of carbon. 

The next question is how is the molecular 0 2  oxygen created? In the HIP there 

is less 0 2 available to react with the atomic carbon. This is because 0 2 is produced 

by the reaction in both the high and the low ionization phases by reacting with the 

O H  radical.

0  +  O H  -> 0 2  +  H  

Figures 19 and 20 illustrate the reaction networks for this process.



Carbon Oxygen Chemistry HIP

3 .8 e 27 0.5
0 2 3.4
.He

He
3.8

3.13.4

C 2.3 11.0

HOC

CO

HCOCO

CH

CH

OH

Multiply each num ber by 1.0 X 10 '19 sec '1

Figure 19: HIP Reaction Networks for the Carbon Oxygen Chemistry
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Carbon Oxygen Chemistry LIP

H 0.01

0 2 0.47

2 1.2
+

o + 0
. .  + CH 2

, 21
18

+ +
HOC o 2 8.4  H, ^

OH

Multiply each  num ber by 1.0 X 10 *19 sec *1

Figure 20: LIP Reaction Networks for the Carbon Oxygen Chemistry
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Sulphur Chem istry

Sulphur can have a great impact on the chemistry of a dark molecular cloud. This 

is because sulphur can form sulphur ions, 5 + , by undergoing charge transfer with 

several different species while it is in the HIP. When the system is in the HIP a large 

proportion of the sulphur is ionized, by charge transferring with C +

C + + S ^ C  + S +.

Refer to Table 11 to  see the actual abundances in numerical form.

Sulphur is the dominant ion for charge transfer with M g, N a , S i  and it is compet­

itive with the  carbon ion for the ionization of F e. Therefore, if the initial abundances 

of the sulphur are enhanced, the cloud will tend to remain in the HIP. Charge conser­

vation dictates th a t there must exist an equal number of negative charges which will 

be in the form of electrons for the gas phase process. The large abundance of electrons 

will react through dissociative recombination with H% to decrease the number of ■ 

This will allow the charge transfer chemistry induced by the H + to  remain dominant.

By inspecting Figure 21 the reader notices tha t as the system moves toward phase 

transition the abundance of S begins increasing. This effect can be attributed to the 

increasing abundance of molecular oxygen. The increased fractional abundance of 

oxygen will react with the C + ion. W hen S recombines it is less likely to react with 

C +. Some of the sulphur will recombine by radiative recombination.

S + +  electron —> S  -f- photon
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Sulphur Chemistry n=1450
Species High Ionization Low Ionization

S 7.96 xlO " 7 5.40 x lO - 7

SO 2.36 x lO " 7 1.73 XlO- 6

so2 6.69 x lO - 1 0 4 .2 8 x l0 "7
s+ 1.56 xlO - 6 5 .0 2 x l0 - 8

Table 11: Sulphur Chemistry at LIP and HIP Sulphur will provide a large number o f 
ions in the HIP. However, when the system undergoes a transition into the L IP  most 
o f the S  is in the form  o f the oxide SO.

Plot of S at Phase Transition
-6.05

’sup’ -----

- 6.1

-6.15

l°g(n(S)/n)

6.2

-6.25

-6.3
1420 1430 1440 1450 1460 1470 1480 1490

n number density

Figure 21: Behavior of Sulphur near the Phase Transition Note tha t S=(sup) up 
means we increment from  low to high number density
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Behavior of Sulphur near Phase Transition
-5.6
-5.8 spiip

-6

- 6.2

-6.4

log(n(x)/nf'®
- 0 .0

-7
-7.2
-7.4
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Figure 22: Behavior of S + (spup) and SO(soup) near the Phase Transition

Behavior of Sulphur near Phase Transition 
-5.6 -------------1-------------1-------------1-------------1-------------1---------
-5.8 --------------------------------------------------------------- — ------------------------------------------ ’sup* —

-6 - ’soup’ 
’sdud’ —

-6.2 -

-6.4 -

log(n(x)/nf'U
-0.8 _

-7 -
-7.2 -

-7.4 -

-7.6 -
_7_8 -------------1-------------1________ I________ i________ I________ I________

1420 1430 1440 1450 1460 1470 1480 1490
number density

Figure 23: Behavior of S ,5 + , and SO near the Phase Transition
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This reaction accounts for the increase in sulphur tha t is exhibited in Figure 21.

M e ta ls

The metals in the molecular cloud are iron, magnesium and sodium. For the purpose 

of this discussion the metals, N a , M g  and Fe  will be referred to as M . Metals once 

ionized tend to m aintain their positive charge in both  the low and high ionization 

phase. Metals are ionized by the charge transfer process

M  -f X + —> M + +  X

In the HIP, X + will correspond to a monatomic ion such as C + or S +. In the LIP, 

the metals are ionized by a dissociative recombination with H% or a charge transfer 

with a molecular ion such as H C O +:

M  +  H £ —*■ M + + H  + H 2.

and

M  +  HCO+ ~ ^M + + H C O

The reason tha t metallic ions tend not to recombine is tha t metallic ions recombine 

with electrons through the process of radiative recombination.

M + +  electron  —>• M  +  photon.

The typical radiative recombination process is a slow process, the rate coefficient 

is of the order of 10- 1 2  cm 3 s~1. The charge transfer process has a rate coefficient of



I l l

Na,Fe, and Mg n=1450
Species High Ionization Low Ionization

Fe 4.0 xlO-10 1.9 xlO"10
F e+ 5.5 xlO-9 5.8 xlO-9
N a 2.98 xlO"10 1.9 xlO-10

N a + 3.7 xlO"9 3.8 xlO-9
M g 7.4 xlO"10 4.9 xlO-10

M g+ 5.25 xlO-9 5.5 xlO”9

Figure 12: Metals at High and Low Ionization This table illustrates the behavior 
of metals. Once ionized, metals tend to remain ionized. This is because radiative 
recombination is a slow process. There is not an appreciable change in the ionic 
abundance in the H IP and the LIP. M ost o f the positive charge will be deposited on 
the metallic ions via the charge transfer process.

the order of 1 0 - 9  cm3 s - 1  and the molecule-ion process has a rate  coefficient of the 

order 10“ 7 cm 3 s~1. This results in a large fraction of the positive charge of the cloud 

being in the form of metallic ions for both the LIP and the HIP. . Table 11 list the 

metals and their ions for both the HIP and LIP. Notices tha t as the system changes 

from the HIP to the LIP the fractional abundance of the ions increase.

When in the LIP metals receive their charge by reacting with molecular ions such 

as H C O +, H £  and C +. M g  and N a  will react with H C O +, while F e  will react 

with H f . The C + is about one order of m agnitude less in reactivity. The propensity 

of metals to maintain charge will effect the fractional ionization. Enhancement of 

the initial metallic abundance will result with an increase in positive ions. Charge 

conservation dictates the these excess charges must balance. Because the electrons 

are the major carrier of negative charge, they m ust increase in number. This has the 

effect of destroying H £  ions which allows the H + to remain dominant.
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He+ a n d  C+

H e+ and C + are im portant ions because they control the transfer of positive 

charge among the more abundant species. H e+ is im portant for the decomposition 

of CO. C + is im portant because it can charge transfer with a variety of species. C + 

can charge transfer with sulphur, silicon, phosphorus and metals. It is the dominant 

reactions with molecular oxygen and can react with molecular hydrogen to create 

C H f.

Ionic helium is produced at a constant rate by the cosmic ray ionization of helium:

H e + C R P  —> H e+ + electron.

H e+ reacts primarily with C O , because the rate coefficient with molecular hydrogen 

is very small.

The rate  coefficient for the reaction:

He+ + H 2 ^  H e + H + + H

is given by

&ffe++tf =: 3.7 x 10- 14cm 3s -1 .

Because the  ra te  coefficient is so low, H e+ does not react th a t rapidly with H 2. The 

H e+ provides a pathway for atomic carbon to be ionized. The rates of formation of 

H e+ is virtually the same for the HIP and the LIP. The amount of H e+ available 

to interact with primarily CO  is dependent on the rate H e+ is destroyed. In both 

phases the  reaction with CO  is the primary destruction path:
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He+ + C 0  -> H e + C + + 0 .

As mentioned above, ionic helium will decompose carbon monoxide which will 

produce the C +. The C + will participate in in several different process. For both 

ionization phases the C + ion will be the dominant reactant with molecular oxygen.

C+ + 0 2 -+ C 0  + 0+.

Notice tha t this is the prim ary reaction for the production CO.

The C + is the prim ary ion for the charge transfer with sulphur, silicon, phospho­

rous and the metals. The C + will also react with molecular hydrogen to produce 

C H 2 . Because the helium abundance and the CO  abundance are large and almost 

constant, the production of C + is almost constant. Thus the steady state  C + abun­

dance is dependent on the  amount of 0 2 available. This implies th a t when molecular 

oxygen increases in abundance the C + will decrease in abundance. The converse of 

this statem ent is also true: as the 0 2 decreases, the C + will increase.

N itrogen

The abundance of nitrogen has little effect on the ionization phase of the  molecular 

cloud. This can be attribu ted  to the fact tha t nitrogen is slow to react with most 

species. Atomic nitrogen reacts though the neutral-neutral processes which has rate 

coefficients of the order of 10- 1 1  cm 3  s -1 . Nitrogen molecules will be formed as 

the system moves to  the LIP. However, the proton transfer reaction with H 2  is 

endothermic (Burt et.al. 1970). Figures 24 and 25 illustrate the chemistry of NH in 

the LIP and HIP.
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NH Chemistry LIP

N He+ 0 0 6 N +

NO 0 .6^0H A0.

0.31

hotcrp

e  0.02

e  o.o

+ 0.24

e 0.25
H 3 0.05

■19
multipy each number by 1 .0 X 1 0  sec ■1

Figure: 24 LIP Reaction Networks for the Nitrogen Hydrogen Chemistry
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NH Chemistry HIP

He 0.1

He 0.1 NO 0.17 0.1

0.090.03

e  0.04
0.07 0.1

S+0.0:
crphot 0.003 0.05

N H

NH

N H

N HN H

N H

-19 i
multipy each  number by 1 .0 X 1 0  sec

Figure 25: HIP Reaction Networks for the Nitrogen Hydrogen Chemistry
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Carbon and Oxygen n=1450
Species High Ionization Low Ionization

S i 1.99 xlO " 10 8.60X10"11
SiO 2.68 xlO " 9 5.7 x lO - 9

Si+ 3.09 x lO - 9 6.4 xlO - 1 1

M g 7.4 xlO " 10 4.9 xlO " 10

M g + 5.25 xlO " 9 5.5 x l0 “ 9

Table 13: Silicon and Magnesium at High and Low Ionization

Silicon Chem istry

The behavior of Si is similar to tha t of Sulfur. We note tha t when the system is in the 

HIP the Si will exist in an ionic form and will participate in charge transfer. Silicon 

is ionized by charge transferring with the sulphur ion. However, when in the LIP, 

silicon will be in oxide form.

It is instructive to compare Si with Mg. Table 13 illustrates tha t magnesium and 

silicon behave differently. In the HIP M g  and S i  are both ionized, however in the LIP, 

M g  is ionized, while the S i is in the form of oxides. Once the magnesium positive 

ion is formed it does not recombine at a high rate. Hence most of the m etal becomes 

positively charged. Silicon will produce a large number of of positive atomic ions in 

the HIP state however, in the LIP Silicon will recombine to form S iO  and S i 0 2 .

H ydrocarbon Chem istry

One of the remarkable properties of dark molecular clouds is their ability to  shield 

molecules form ultraviolet photons thus allowing a favorable environment for molecu­

lar growth. The purpose of this section is to examine the behavior of the hydrocarbon
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chemistry under the HIP and LIP ionization regimes. We will examine short chain 

and long chain hydrocarbons. M ethane will be selected to represent the short chained

hydrocarbon, while C \H  will represent the long chain chemistry. Figures 26 and 27

show how the chemical networks as the ionization state changes.

The m ethane molecule participates in a variety of different chemical reactions. 

Hence, it is useful to  examine how it is formed in the LIP and the HIP.

Formation of the m ethane molecule depends on the abundance of C H £ . The 

following two reactions illustrate this dependence:

C -f electron  —► C H 4  +  H.

or

CH+ + CO  -> C H 4  +  HCO+

The abundance of CH$ is dependent on the abundance of CH$ . W hen the system 

is in the HIP, the C H £  destruction is dominated by the dissociative recombination.

C H £ + electron  —> C H  +  H 2

C H 2  +  electron  —> C H 2  + H

CH% +  electron  —> C H  + H  + H

When the system is in LIP the dominate reaction for destruction of C H £  is the 

radiative association with the hydrogen molecule:

CH+  +  H 2  -» CH+  +  hv.
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Because this reaction results in more C H $ in the LIP, there will be more m ethane in 

the LIP.

The formation of the large carbon chain GAH  is initiated by reactions of C + with 

C2H2. This reaction is representative because C4H  is an interm ediate in the formation 

of longer chain molecules. We have alluded to the fact tha t the LIP supports more 

complex molecules. This is also the case for most long chained hydrocarbons . The 

following sequence show how GAH  can be formed.

C + +  C2H2 -► C3H + +  H  

C3H+ + H2 ^  C3H £  +  photon  

G3 Hs +  electron  —> C3 H 2 +  H  

C3H 2 + C + ^  C tH + + H  

CaH  +  H 2  -> CAH t  +  H  

CaH% + H 2 ^  C4H  + H

Table 14 illustrates the abundances for the HIP and LIP. Figures Figure 26 and 27 

show the chemistry of hydrocarbons in the HIP and LIP.

Summary

W hen the system is in the HIP the chemistry is dominated by the charge transfer 

process, with H +. For the LIP, the chemistry is dominated by the proton transfer
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Figure 26: LIP Reaction Networks for the Hydrocarbon Chemistry
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Hydrogen Carbon Chemistry HIP
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Figure 27: HIP Reaction Networks for the Hydrocarbon Chemistry
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Species High Ionization Low Ionization
CaH 1.22 x lO"10 3.4 xlO-10

CzHZ 9.94 xlO"13 3.88 xlO"12
c 2 h 2 1.5 xlO-9 6 .8 x l0 -9
C + 1.8 xlO”7 1.37x10-®

Figure 14: Abundances of Selected Hydrocarbons n=1450

process. The proton transfer process has H £  as the dominant ion. The HIP tends to 

have a large abundance of atomic ions while, the LIP tends to have a large abundance 

of molecules. We note tha t there is an increase in the number of oxides as we move 

form HIP to LIP. Species such as sulphur will provide a source of electrons which 

will cause the system to  remain in the HIP. The sensitivity of the system to electron 

rich species such as sulphur is crucial for obtaining a bistable solution as the number 

density increases.

The metals will provide a site for the positive charges to form. Once formed, these 

species will remain in ionic form. Species such as S i  and P  can also be a source of 

electrons which can drive the system into the HIP. However, these species tend to 

form oxides in the LIP.



Chapter 8 

Bistability and Parameter Variation

Charge transfer reactions are dominated by the H +, ion while proton transfer 

reactions are dominated by the ion. The competition between these two processes 

determines whether the system is in the LIP or the HIP. This chapter to  explains how 

initial abundances, cosmic ionization rate , dissociative recombination ra te  coefficients, 

tem perature, num ber density and large molecules in the form of polycyclic aromatic 

hydrocarbons (PAH) affect the bistable region.

The B istable Region

Bistability means there are two steady state  solutions at particular number density 

(n), tem perature (T) and cosmic ray ionization rate  (£) to  a system of differential 

equations. The solutions to the differential equations are dependent on the initial 

conditions. If a point in param eter space is defined as (n ,T , £) and there exists a 

bistable solution vector in the HIP called X i for point (n — e ,T ,( )  and a bistable 

solution vector in the LIP called X i the point (n+ e, T , ( )  for some e greater than  zero. 

The solutions for initial conditions defined by a steady state conditions computed at 

(n — e, T, £) and steady state conditions computed at (» +  e, T, ( )  will be different 

(See Chapter 7).

122
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Elem ental Abundances

The purpose of this section is to briefly review the effects of elemental depletions and 

enhancements in the bistable region. Variation of oxygen or carbon have a significant 

effect on the bistability. Nitrogen will have very little effects on the bistable region. 

Metals accumulate charge and and increase the fractional ionization. Sulfur and 

silicon will provide a source of electrons which will tend to  drive the system into the 

HIP for high values of n . In the LIP sulfur and silicon exist as oxides. Changing the 

abundances of chlorine and phosphorous by factors of |  and 2  do not have any effect 

on the bistable region.

Effects o f O xygen on the B istable Region

Molecular oxygen has the effect of reducing the number of atomic ions. Molecular 

oxygen is formed by the process:

O H  +  0  -> 0 2 +  H.

This reaction implies tha t the abundance of molecular oxygen is positively correlated 

to the abundance of atomic oxygen. Molecular oxygen has the effect of destroying 

ions hence, if we increase the abundance of atomic oxygen there will be a decrease in 

the abundance of atomic ions and the fractional ionization will decrease. Notice tha t 

Figure 28 illustrates a shrinking the bistable region as the abundance of O increases .

The effect of the depletion of oxygen is illustrated in Figure 29. These calculations 

indicate th a t when the abundance of oxygen is depleted the system will tend to  stay 

in the HIP for large values of n.
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Effect of O Enhancement on Bistabilities 1,1.1,1.2
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Figure 28: As the Oxygen abundance is enhanced the Bistable Region Disappears. 
Up means that we increment initial conditions starting from  a low number density 
to a high number density. Down means that we decrement initial conditions starting 
from  a high number density to a low number density. The number following the word 
up or down is a multiple o f the original cosmic abundance as was defined in Table 5 
chapter 5.
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Effect Depletion of O on Bistability 1,0.9,0.8
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Figure 29: As the Oxygen abundance is depleted the Bistable Region Increases (see 
Figure 28 fo r  an explanation o f the symbols).

Effects o f Carbon on a B istable Region

This section considers the effects of carbon abundance on the bistable region. W hen 

there is an enhancement of the initial carbon abundance the steady state solutions 

will have a large number of C + ions present in the HIP. Charge conservation dictates 

there m ust be more available electrons to react with the H f . Hence the number of 

H f  will be reduced and the ion chemistry will tended to be dominated by the H + 

(see Figure 30).

At ultra-high enhancement, the excess carbon will react with the remaining oxygen 

to create CO. Because the carbon has been enhanced there will be excess carbon 

atoms hence, the excess carbon will remain ionized as C + and the system will remain 

in the HIP for large values of n.
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Effect of C Enhancement on Bistabilities 1,1.25,1-50
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Figure 30: C is Enhanced the Bistable Region Disappears (see Figure 28 fo r  an 
explanation o f the symbols)

Depletion of carbon has the opposite efFect of enhancement. As the system moves 

toward the steady state  solution a large proportion of the carbon will react with the 

oxygen to form CO. This leads to fewer C + ions. Hence, the system will only be in 

the HIP for low values of n (see Figure 31).

Nitrogen

Inspection of Figure 32 indicates tha t enhancement or depletion of the nitrogen has 

little efFect on the bistable region. By increasing the abundance of the nitrogen two 

fold there is a marginal shift of the bistable region to the higher density region. When 

the system is depleted by a factor of 0.5 there is no distinct shift in the bistable region.
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Effect Depletion of C on Bistability 1,0.5,0.75
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Figure 31: C is Depleted the Bistable Region Disappears (see Figure 28 fo r  an expla­
nation o f the symbols)

Effect of Nitrogen Bistability for Abundance 2,1,1/2 T=10K
1 1 1 1 1
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Figure 32: Affect of Nitrogen on Bistability for abundances 1.0 0.5 and 2 (see Figure 
28 fo r  an explanation o f the symbols)
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Effect of Variation of Sulphur abundance on Bistable Region
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Figure 33: EfFect of Sulphur on the Bistable Region This figure shows that as the 
amount o f sulfur is doubled, the bistable region shifts to the higher number density 
region and increases in width. I f  the abundance o f sulphur is decreased the bistable 
region shifts to the lower number density region and shrinks (see Figure 28 fo r  an 
explanation o f the symbols)

Effects o f Sulfur

Sulphur will charge transfer with C +. As the num ber of sulphur ions increase the 

fractional ionization will increase because of charge conservation. Thus the enhance­

ment of sulphur will allow the system to remain in the HIP for higher values of n. If 

the sulphur abundance is depleted the system will only be in the HIP for low values 

of n (see Figure 33).

There is an extreme cases where sulphur is not required to maintain the HIP. W hen 

the system is solved using only hydrogen, helium, carbon, oxygen and nitrogen, the 

bistable region exist for a number density between 80 cm - 3  and 150 cm -3 . Thus, it 

is possible to have a bistable region without sulphur (See Figure 34).
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A bistable region only H,He,0,C,N
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Figure 34: The Bistable Region with only H He C N O present

EfFect o f M etals

Enhancement of the m etal abundance will increase the number of metallic ions. As 

stated in chapter 7, once these ions are formed, they will tend to remain in ionic form 

because they recombine via radiative recombination. As the enhancement increases, 

the to tal fractional ionization will increase and the system will maintain itself in the 

HIP for large values of n. Depletion of metals does not imply th a t the system will 

not exhibit bistable behavior. If a source of electrons is such as sulphur given in the 

initial conditions, then bistable behavior will be exhibited in th e  ultra-high depletion 

regions (Bourlot 1993). Inspection of Figure 35 shows tha t as magnesium is enhanced 

by a factor of 100 the bistable region exist for large values of n. For other metals Fe 

and Na, this phenomenon is also observed (see Figure 36, Figure 37 and Figure 38).
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Effect Magnesium Enhancement of Bistability
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Figure 35: As Mg Abundance is increased the hysteresis shifts to high number density 
(see Figure 28 fo r  an explanation o f the symbols)

Effect of an Enhancement of 1000 for Mg
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Figure 36: An Example of Extrem e Mg Enhancement (see Figure 28 for an explana­
tion o f the symbols)
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The effect of Sodium enhancement on the Bistability
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Figure 37: Hysteresis Loop Shrinks Metallic Abundance Increases (see Figure 28 fo r  
an explanation o f the symbols)

Effect Iron on the Bistabilities
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Figure 38: In this example the loop is small indicating the HIP will dominate, (see 
Figure 28 fo r  an explanation o f the symbols)
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Effect of Silicon on Bistabity
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Figure 39: Silicon will behave like a m etal for large enhancements when the system 
is in the HIP. (see Figure 28 for an explanation o f the symbols)

Silicon

The behavior of silicon in the HIP is similar to metals because Si charge transfer with 

C + and S +. The enhancement of the initial abundance of Si will tend to maintain 

the HIP for large values of n. W hen the abundance of silicon increased to 1000 times 

the initial abundance the system will move into the HIP phase for large values of n 

(see Figure 39).

Effects o f Cosm ic Ray Ionization

Molecular synthesis in interstellar clouds is driven by ion-neutral reactions. The prin­

ciple initiating step is the ionization of molecular hydrogen. The cosmic ray ionization 

rate  determines the rate of H f  production. These proton transfer reactions with H f
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Effect of doubling Cosmic-ray ionization
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Figure 40: EfFect of doubling the ionization rate, (see Figure 28 for an explanation 
of the symbols)

are the initial reactions in the ion-molecule networks (Lepp 1992). Ion-neutral reac­

tions a t cloud tem peratures tend to  be exothermic. Dark clouds models which utilize 

the cosmic ray ionization process to drive the chemistry adopt an ionization rate  of 

the order of 10~ 17 ionization per second per hydrogen nucleon. This rate is consistent 

with observation of species (Farquhar, Millar and Herbst 1994). Thus as the ioniza­

tion rate  is increased by factor of 2, 5 and 10 the bistable regions exist for larger 

values of number density (see Figure 40 and 41).

There is some evidence which suggests tha t the cosmic ray ionization ra te  may 

be variable (Skibo and R am aty 1993). Thus bistability might be used as a probe for 

detecting cosmic ray ionization.
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Effect of increasing Cosmic-ray ionization by 5 and 10
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Figure 41: EfFect of increasing the Cosmic Ray Ionization Rate by factors of 5 and 
10.(see Figure 28 fo r  an explanation o f the symbols)

Effects o f D issociative Recom bination

In the HIP the fractional ionization is observed to occur when the condition

k iX c o  +  k^XoX e >
2  ke

(8 .1)

is satisfied. As the dissociative recombination coefficient increases, the left hand side 

of the equation will get smaller. Thus, as ke increases, the system will remain in the 

HIP for large values of n.

The dissociative recombination reaction rate  is im portant because it determines 

the dissociative recombination rate of H £ . During the last ten years the value for 

this rate  constant has been subject to much debate. It is generally agreed th a t the 

rate  is given by the general form.
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Dissociative Recombination Rate Coefficient Investigator
1.5 x 10- 7cm 3 s - 1 Canosa(1992)
2 .9 x l0 - 9 cm 3 s _ 1 Herbst and Leung(1989)
l . l x l 0 - 1 1cm 3 s _ 1 Adams and Smith(1988)
l- 2 x 1 0 - 8 cm 3 s - 1 Smith and Spanel(1993)

1.15x 10- 7 cm3 s - 1 Sundstrom( 1994)

Table 15: Dissociative Recombination Rates and Investigators

Effect of dissociative recombination coefliecnt on Bistability
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Figure 42 Increasing the Dissociative Recombination R ate by factor of 2 and 4. (see 
Figure 28 fo r  an explanation o f the symbols)

«. (H})  = (8.2)

However, there is still much debate as to what is the correct value for a. Table 

15 lists some of the dissociative recombination for H f  rates and the principal investi­

gators. Notice the wide variation of the various rates.

For this study a  = 5.5 x 10- 8 cra3 s _1. As a  is increased the dissociative recom­
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bination rate increases and the fractional abundance of H £  decreases. Thus as a  is 

increased the system will stay in the HIP for larger values of n. This investigation 

looked at the effects by increasing a  by a factor of 2 and a factor of 4 exist of large 

values of n. Notice in Figure 42 tha t as the rate  coefficient ke is increased by a factor 

of 2 and 4 the bistable region increases.

Variation of Tem perature and D ensity

The rate coefficient for the dissociative recombination is a function of the tem per­

ature:

W hen the tem perature is increased, Ke will get smaller. This implies th a t fewer 

ions will be destroyed per unit time. This will lead to an excess of H% ions and the 

proton transfer process will be dominant. Thus, as the tem perature is increased the 

system will be in the LIP.

W hen the number density is increased this will decrease the num ber of electrons. 

As the number of electrons decrease, there will be more available to  participate in 

proton transfer. Consequently, the system will move to the LIP. This can be observed 

in Fig. 43. Observe tha t as the number density and the tem perature increase the 

system will be in the LIP for large values of n and tem perature.

Effects of Large M olecules

Observational da ta  from infrared emission bands at 3.3, 6.2, 7.7, 8 . 6  and 11.3 fim  

have been observed in a large number of astrophysical objects such as galactic forma-
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tion, planetary nebulae and reflection nebulae (Dwek et.al. 1980). These IR  bands 

have been associated with functional groups tha t are attached to aromatic hydro­

carbons (Duley and Williams 1981). These observations prom pted Leger and Puget 

(1984) to suggest the hypothesis tha t large molecules called polycyclic aromatic hy­

drocarbons (PAH) th a t are causing infrared emissions. If there are large molecules, it 

is reasonable to expect them  to participate in the molecular cloud chemistry. Omont 

(1986) calculated the rates for a variety of reactions which involved large molecules 

in the form of 50 atom  PAH’s . Lepp and Dalgarno (1988) used O m ont’s rate  coef­

ficients to construct a chemical model of a dark molecular cloud which included the 

PAH’s. This section will examine the effects of the PAH’s on the bistability. The 

rate coefficients th a t were calculated by Omont (1986) will be incorporated into the 

chemical model.

The UMIST Ratefile was modified to include the PAH data. The inclusion of the 

large molecules in the form of PAH’s in the gas phase chemistry requires a set of 

rate coefficients which account for the reactions of the other species with the PAH’s. 

There are two categories of reaction: those involving electrons with large molecules 

and those involving positive ions with large molecules.

Electrons interact with the positive large molecular ions through the process

L M + +  electron —* L M .

The rate coefficient for this reaction is 5.7 X  10~ 6 cm 3 s~1. Electrons can also react 

with the LM to create a negative large molecular ion.
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L M  +  electron  —> L M ~ .

The rate  coefficient for this reaction is 7.7 x 10- 7  cm3 s -1 . The symbol X + will be 

used to represent a generic positive ion. There are two process for which a positive 

ion will react:

X+  + L M -  - > X  + L M

The rate  coefficient for this reaction given by

1 X  1 0 _6 T “ 2 cm 3 s~1.

The charge transfer reaction is given by

X + +  L M  -> X  +  L M +.

The ra te  coefficient for this reaction is 4.0 X 10~ 9 cm 3 s ~ 1 and

Calculation of the effect of large molecules required the modification of the UMIST 

Ratefile and the species list. The modification of the species list is a accomplished by 

adding the species identifiers. The modification of the reaction set is more involved 

because four types of reactions which involve the large molecules must be added.

Two of the four reactions are easy to append because they involve the electrons. 

The addition of reactions containing electrons is simple because there are only two 

reactions. These reactions may be typed, in or a small piece of fortran code can 

w ritten to  add them  to a supplem entary reaction set.

Addition of the positive ions is more involved because the list of species names 

must be searched twice. The first search determines if a species is a positive ion. If
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it is, the com puter must then determine whether it transfers a charge to a neutral 

PAH. If the reaction is in the reaction list, then the reaction of the positive ion and 

the neutral PAH is w ritten to  a supplem entary reaction file. Next the  positive ion 

is allowed to  react with a negative PAH. If the product is in the reaction set then 

this reaction is added to the supplem entary reaction set. After these operations the 

supplementary reaction set is appended to the UMIST Ratefile. The modified UMIST 

Ratefile contains 3969 reactions and 392 species.

Addition of the large molecules to the UMIST Ratefile leads to the disappearance 

of the bistable region when the fractional abundance increase above 10-8 . Physically, 

this is meaningful because the values of tilm greater than 1 0 - 8  correspond to measured 

values. Inspection of Figure 45 illustrates the existence of the bistable region for ultra- 

low values of i%lm  bistability. Thus, for the UMIST Ratefile (Farquhar and Millar 

1993) the addition of PAH damps out the bistable region for PAH abundances greater 

than  1 0 - r

Figure 44 illustrates the disappearance of the Bistability as the  fractional abun­

dance of the large molecules approach 1 0 -7 .

Sum m ary

The bistable regions are affected by the certain elemental abundances. Enhancements 

of oxygen will decrease the bistable region while an increase in carbon allows the 

bistable region to exist for large number densities. Enhancement of sulfur will allow 

the system exist in the HIP as num ber density increases. Enhancem ent of metals



141

Effect of Large Molecules on Bistablity
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Figure 44: Disappearance of Bistability as u lm  increases Note eup means that we 
increment from  low to high number density and edown means that we decrement from  
high to low number density . The 7, 8  and 9 refer to initial abundance o f L M  i.e 7 
means L M  initial abundance 10- 7  , 8  means L M  initial abundance 10- 8  and 9 means 
L M  initial abundance 10-9 .
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allow the bistable region to exist for large number densities. By increasing the cosmic 

ray ionization rate  or the dissociative recombination coefficient The bistable region 

will exist for large number density. The addition of large molecules will inhibit the 

bistable region.



Chapter 9 

Approximation of the Fractional Ionization

Charge transfer reactions of atomic and molecular ions with neutral m etal atoms 

can significantly increase the am ount of fractional ionization in a cold dense molec­

ular cloud. This chapter will develop three analytical models which are useful when 

studying the ionization of the cloud. The first model will consider the effects of no 

metals on the cloud. The second model will be similar to the Oppenheimer (1974) 

model of fractional ionization. The third model of fractional ionization will be include 

a correction when cosmic ray induced photons are included in the model.

N o m etals

The model with no metals is interesting because it is simple and in some cases pre­

dictive. Most models of dark clouds assume tha t the elements of the cloud have been 

depleted by a certain am ount. It is not uncommon for a model to assume th a t metals 

have been depleted by a factor of 100 to 1000. W hen this assumption is made the 

results from this section give a very accurate estimation of the fractional ionization.

This model assumes tha t the system consists of only H 2. The H 2 bombarded by 

cosmic rays has an ionization rate  ( . When a cosmic ray interacts with the H 2 an

143
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electron and a H f  are formed. (This assumption is not tha t unrealistic when one 

considers tha t H 2 accounts for most of the clouds mass.)

H 2 +  crp —> H f  +  electron

As mentioned above, the rate of this process is given by ( . Since the only molecule 

in the dark cloud is H 2, the number of ions m ust be equal to the number of H }  ions 

created. The rate at which ions are created is given by the expression Cn H2 • The 

process tha t controls recombination is given by the reaction

H 2  +  electron  —> H 2.

The rate of recombination is knH+ne. The sum of the recombination ra te  and the 

ionization rate is equal to the rate  of change of H 2. This can be w ritten as

dnjj j

—j j -  =  ~Cn H2 +  kn H+ne. (9.1)

W hen the rate of ionization is equal to the rate  of recombination a steady state  is 

obtained. This can be expressed as

dnHi

dt

Substituting this result into 9.1 yields:

0. (9.2)

0 =  - ( t i h 2 +  k n H+ne. (9.3)

This may be solved to  yield:

CnH2 = knH+ne. (9.4)
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Charge conservation implies that

7te. (9.5)

is true. Substituting equation 9.5 into equation 9.4 yields

n 2e =  (n H 2  (9-6)

Divide by n 2  where

to obtain the abundance:

n  =  2uh 2 + n g  (9.7)

^  _  (nH 2 

n 2 k n 2
(9.8)

and

X 2e =  (9.9)
kn

Taking the square roots of both sides and letting the fractional abundance of molecular 

hydrogen be 1 yields:

<9-10)

O ppenheim er’s Fractional Ionization Equation

The previous section derived an approximation formula for the fractional ionization 

for a cloud containing no metals. This section examines the behavior of the fractional 

ionization when there are metals in the cloud.

Electrons are removed from the cloud via two processes dissociative recombination 

and radiative recombination. Let define a molecule, let a j be the dissociative
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recombination rate coefficients, air be the radiative recombination ra te  coefficients 

and let be the number of m etal ions.

The general expression for the dissociative recombination is

77ij~ +  electron —> r j  +  p j .

where rj+ p j are products. Electrons can also be removed from the clouds via radiative 

recombination with a m etal M. For radiative recombination we have the reaction

Mj~ +  electron  —> M j +  photon.

The rate  which the m etal ions M f  are neutralized is given by the term  a rinM+ne. 

Let DR=dissociative recombination and let R R =radiative recombination.

D jR = Y ^ a j n mf n e (9-11)
i

for the sum of all terms which contribute to dissociative recombination and

R R  =  y ]  QLirM jne. (9.12)
i

for the sum of all term s which contribute to  radiative recombination.

The rate at which electrons are created is given by ( n  hence,

^  = ( n - D R - R R  (9.13)
at

or
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^ -  = Cn ~ Y l  a i nm fne -  E  otrin M+ne. (9.14)
3

The steady state condition is given when:

di t  = 0 <9-15>

( n - J 2  a j nm+n e ~  arin M?n e = 0  (9.16)
3 i

Rearranging (9.16) produces

= a jn mf n e +  ^  a rin M+ne. (9.17)
j  i

Now,rae may be factored from (9.3.9) to  yield:

Cn = n e(X ) atjnm+ +  £  a rin M_+)• (9.18)
j  i

Solving for ne and rearranging yields

n e " ^  (9.19)
/  y a j n m f  +  2 ^  a " n M ?

Molecular ions are formed at a rate

7 j ( n  (9.20)

where 7 j is a fractionalization factor th a t indicates how large molecular ions are 

formed from the ionization of H f-

The molecular ion m.+ is neutralized by the process of dissociative recombination



m+ +  electron  —> rj +  pj.

The rate of dissociative recombination for this process is given by the expression:

a j n mf ne' (9.21)

The molecular ions are also neutralized by the process of charge transfer:

Mi +  m+ —» M f  +  rrij 

hence, the rate of destruction per molecular ion is:

Pijn Minm+ (9.22)

where fy j is the rate  coefficient for charge transfer. If the sum is taken over expression

(9.3.14) for the entire network the following expression

Y ,0 iS n Minmf  (9.23)
i

gives the to tal ra te  of neutralization by charge transfer.

Adding (9.20) and subtracting expressions (9.21) and (9.23) allows the rate  equa­

tion for the ionic molecules to be constructed.

Thus the rate  of change for all charged ions is given by:

=  7jC » -  a M m j  K  -  £  P a n M f  n m +  ■ (9-24)
t

W hen the ionization rates are equal to  the recombination rates the steady state 

is reached. M athematically, this is expressed as:
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Substituting (9.25) into (9.24) yields:

7 j ( n  -  a jn ( m j )ne -  Pjin M+nm-+ -  0 (9.26)
i

1j(n = ajn^Tie +  PjinM+nmf (9-27)
i

The manipulations and solution of the equation is made tractable by making the 

following definitions and approximations. Define

^ m + = 5 3 nmt (9-28)i

and

fiM =  X) nMi (9.29)
t

The central idea in the Oppenheimer approximation is to assume all of the rate  coef­

ficients are equal for a particular process. One can approximate th a t the dissociative

recombination rate coefficients are all equal

aj — a. (9.30)

The Radiative Association can be approximated as:

air — a r- (9.31)

And the charge transfer rate  coefficient represented as:

fiii =  P-  (9-32)



Substituting (9.29), (9.30), (9.31) and (9.32) into (9.27) yields

7 j ( n = a n mf  ne +  (3nMn mf

Factoring out nm+ yields:
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(9.33)

7j ( n  -  (a n e +  /3nM)nm+. (9.34)

Summing over all species will force the fractionalization factor 7  to one

Y  =  {a-ne +  f3nM) Y  n mf (9.35)
3 3

( n  = (a n e +  PnM) Y  nm+ • (9-36)

(9.37)
mi a n e +  f3nMi

The sum of the negative charge is approximately equal to the number of electrons, 

while the  positive charges reside on the metals and the positive ions. This allows the 

conservation of charge to be used to create the following equation.

By conservation of charge

=  Y  nM? +  Y  nmf (9-38)
* 3

rearranging(9.38) yields

Y  n Mt+ = ne -  Y  nmt (9-39)
* 3

If the following definition is introduced:

Y'j nM+ — nM+ (9.40)
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and (9.28) is substituted into (9.39) the charge conservation may be w ritten as:

cn
n , -

"f"

Cn
n . -

^^■m+ "h ^*r(ue Um+) 

a n enm+ +  a r n ^  — a r 7ie 7 im + - ( n

Grouping common terms

(a  — a r )raea r7Zg =  (n . 

Substituting equation (9.37) into (9.45) yields

+  a rtil =  (n .
ne(a  -  a r )£«. ( _ 2

(cme +  /3nM)

Multiplying both  sides of equation (9.41) by (a n e +  (3tim) yields

(a  — a r)ne(n  +  a a rnzea rPnM n\ — a n e(,n +  /3riMn(. 

Now cancel out common terms

—a rne(n  +  a.a.rn*arflnM n\ — /3riMn(.

(9.41)

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

Rearranging this equation, then divide by a a r . This yields a cubic equation for 

the fractional ionization:



152

^  +  ^ n 1 _ ( n n 1  _ K u u m  = Q 
e a. a  a ra

Since

0  <  ara  «  1

the second and the th ird  term s are small for conditions close to interstellar . 

Hence, we can write

n 3 _  C P n n M  ^  Q ^  ^

o:r a

and solve for n e

J /3 (n n M
ne ph \ ----------  (9.51)

V a ra

The Effect o f Cosmic Ray Induced Photons

Cosmic ray particles with energies between 10 Mev and 100 Mev ionize molecular 

hydrogen in the interior of the clouds and produce secondary electrons with an av­

erage energy of 30 eV (Cravens and Dalgarno 1978). The electrons lose their energy 

by exciting, dissociating and ionizing Hz. The electrons which excite the molecular 

hydrogen are responsible for the generation of ultraviolet photons. These electrons 

excite the Lyman band (90-170 nm) and W erner bands (90-130 nm ) of Hz- When 

the Hz de-excites ultraviolet photons are radiated. The model derived in this section 

includes the a correction term  tha t arise due to the Prasad Tarafdar Process. In­

creasing the number of ultraviolet photons causes there to  be an additional amount
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of charge. Thus, it is necessary to add another term  to the rate equation of fractional 

ionization.

dTCe =  £  P ]^ k _  (9>52)
dt P r a s a d —T a r a f d a r  k  (1 — i d )

This term  m ust be added to  the rate  equation described by (9.3.6) to account for 

the number of electrons added to the cloud by the cosmic ray induced photons.

%  =  <>* +  £  (9.53)
k v-*- j i

W hen the system reaches steady state equilibrium, then the rate is set equal to

zero.

£  = "• (9-54) 

The equation can now be rearranged into the following form:

t n  +  a i nm ine + a irnM+ne (9.55)
fc (! “ UJ) j 3 i

It is possible to simplify these equations by assuming the rate constant dissocia­

tive recombination of electrons with molecule,associative recombination and charge 

transfer are equal. This assumption is valid give the order of these coefficients are of 

equal magnitude. Hence, assume as was done in the previous section that:

(9.56)
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ari = ar, (9.57)

and

fr  = P. (9.58)

It is convenient to let

^  = ^ 7 7 ^ 7  (9-59)
k ( 1 - w )

Notice in this case the as  and the /3s are independent of the the subscripts i and j.

Thus it is possible to substitute (9.56), (9.57) and (9.58) into (9.55) to obtain.

(n  +CC = a ^ 2 n m+ne + ar J 2 n M^n e- (9.60)
j  i

Substituting (9.28) and (9.29) into (9.60) yields

(n  + C (  =  ctnm+ n e +  a rn M+ne (9.61)

n e =   . (9.62)
c*Snm+ +  a rS n M+

The rate  for all positive charged molecular ions is similar to  equation (9.3.16). W hen 

the term  for the cosmic ray induced ionization added formulated as follows we obtain 

the following expression

' J  ̂ =  7 j ( n -  OLjn(mJ)ne -I- Y  ^ * -  Y  . (9.63)
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The steady state condition occur when the ionization rates are equal to  the recombi­

nation rates. dn_+
- j j - . o .  (9.64)

Substitute (9.64) into (9.63) to yield:

7 jCn -  an(m + )ne + Y  P. f 7j * ~ P Y  n Minm+ =  °- (9-65)
ft (1 - ^ )

Rearranging (9.65) gives

and

l i t11 +  Y  T  =  “ rat71* +  Pn Mnmi  (9.66)
ft ( l - “0

PkCljnk
+  PnMnmi  = 7,-Cn +  £   ------ - .  (9.67)

ft ( l - « )

Now factor out ra + and solve for ra +:i i
J2kPk̂ i nkliCn  H 7i s-----

V  = • <9-68>

Now sum over j
r  c | ZkPwt"*

=  - ^ . + » r  •  < 9 - 6 9 )

Note tha t the we sum over the gammas and use the fact the £ » 7 * =  1. This gives a

solution for the to tal number of molecular ions.

I2kPk<^nk
Cn +

!+ —

Now substitute (9.59) into (9.76)

n™+ = I  r i ~ a,) • (9-70)ane +  pnM

n m,  =  <nl Ca (  . (9.71)ane -)- PnM
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This is the expression for the steady state  abundance of n m+. This will be used to 

obtain a value for the fractional ionization,but is is necessary to rewrite (9.62)

n M+ =  ne — nm+. (9.72)

Substitute (9.28) and (9.38) into (9.62) to obtain another expression for the frac­

tional ionization.

n C  +  <?Cne —■
-|- a rnjif+

(9.73)

Multiply both  sides by cmm+ +  a r 7i^+

raecmm+ +  n ea rn M = nC, +CC  (9.74)

Now substitu te the charge conservation equation (9.4.20) for tim+

nea n m+ +  n ea r(ne — nm+) =  +  C (.  (9.75)

Now rearrange (9.75) to  obtain

(a  -  a r )nen m+ +  a n \  =  n (  +  C (. (9.76)

Next substitu te (9.71) for nm+.

(a  -  a r)-~-n ^  -ne +  a n 2e = n (  +  C (.  (9.77)
a n e +  (3nM

Multiply both sides of (9.4.25) by cme +  firiM to produce the following equation.

(a  -  a r)((n  + C ()  +  (ane +  P nM+)arn l -  (£n  +  C ()(a n e -|- fin M) (9.78)

We may rearrange this equation to obtain:

a a rn l  +  a rPnMn \  =  ( (n  +  C ()(a n e -f n MP +  ocr -  a). (9.79)
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Now divide both sides of (9.79) by a a r.

^  +  ^  =  (<> +  C 'C ) ( -  +  ^  +  i - - )
ap a r a a r a  a r

(9.80)

and rearrange to yield:

» : + ^ - « » + c o ( - + — + ! - - ) = < > .
ap  a r a a r a  a r

(9.81)

Expand (9.81) and this will give the equation

n\  +  ^  -  ((n  +  C C X ^ ,  -  ( O  +  OCX— ) -  ( C »  +  C C ) ( i )  +  ( C »  +  e < T ) ( — )  =  o .a p  ar) a a r a  a T

(9.82)

Note th a t the second, fourth and fifth term s are small. This is due to the fact tha t 

a  ~  10- 9  a r ~  10- 1 1  are small. The quotient is therefore of the order 10~2°

+  ^ - ( < >  +  <*;)(— ) =  o.ap  a a r

rearrange this and take the cube root of both sides

(9.83)

ne *
1 +  C)

a Ta
(9.84)

Substitute (9.59) into (9.84) to yield an expression for the fractional ionization due 

to cosmic ray induced photoionization.

ne \
/3Cnn(M)( 1 +  g ^ j )

a Ta
(9.85)

This is the correction to the Oppenheimer model which includes the cosmic ray in­

duced ionization. We may now convert equation (9.85) into the fractional ionizations
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and fractional abundances.

Xe
PCXm(i + S t  %%)

( —  (9.86)
a rcm

The species with the largest value of pknXk  is carbon monoxide. The efficiency is 

equal to 5 (Farquhar and Miller 1993) while the relative abundance of CO is 10-4 . 

The UMIST Ratefile incorporates 60 reactions which contain the cosmic-ray induced 

photons so the summation is over 60 term s . For a number density of 103, a metal 

relative abundance of 10- 6  (3 — 10-9 , a  — 10~ 7 and a r =  10- 1 1  Equation (9.4.34) 

yields a result of 5.5 X 10-6 . The model calculates the result to be 9.0 X 10“ 7.

Sum m ary

This chapter has presented 3 approximations for the fractional ionization. The no­

m etal model will yield reasonable results when the metallic depletion is low. Also, 

this model would be applicable for regions of space tha t where populated by Type 

II stars. The Oppenheimer model would be useful in regions where there might be 

metallic enhancements. In regions where the cosmic ray induced ionization was large 

the model derived in this chapter would be expected to be useful.



Chapter 10 

A Parameter Study

The m athem atical structure of the chemical model described in Chapter 5 suggests 

tha t the chemical composition of a molecular cloud should vary as the tem perature 

and density vary. Observations of molecular clouds verify this assumption. This 

chapter investigates how the variation of tem perature and number density system­

atically affect the solutions of the gas phase model. We will also compare observed 

abundances in the L134, TMC1 (Taurus Molecular Cloud), The Orion Ridge and Sgr 

B2 (Sagittarius B2) with abundances computed from the chemical model.

Selection o f a Param eter Set

The selection of a realistic param etric grid is based on observations of giant molecular 

and dark molecular clouds (see Table 2). Values of tem perature and density were 

selected to bound the values listed in Table 2. The grid was constructed by taking 

the Cartesian product of the tem peratures 10 K, 25 K, 50 K, 100 K, 200 K and 1000 

K and the densities 102 cm - 3 ,10 4 cm~3, 106 cm - 3  and 108 cm-3 . The chemical model 

was integrated over this param etric domain to obtain solutions.

159
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T(K) vs. n(cm  3) 1 0 2 1 0 4 1 0 6 1 0 8

1 0 H CO CO CO
25 H CO CO CO
50 H CO CO CO

1 0 0 H CO CO CO
2 0 0 H CO CO CO

1 0 0 0 H H 20 h 2o h 2o

Table 16: Third Most Abundant Species 

R e su lts  on  G rid  B o u n d a ry

Molecular hydrogen and helium are the most abundant species in the cloud. Generally, 

when calculations are done for most dark cloud models we find th a t (70 is the third 

most abundant species. However, for certain tem peratures and number densities this 

is not true. Inspection of Table 15 indicates tha t when the num ber density is 100 

cm ~ 3 the th ird  most dominant species is H . Also notice th a t when T=1000K and n 

is greater than  100 the third most abundant species is H 2 0 .

E ffec ts  o f low n u m b e r  d e n s itie s  on  th e  a b u n d a n c e

The large abundance of atomic hydrogen, for small values of n, can be explained 

by approximating the rate equation of molecular hydrogen. Molecular hydrogen is 

ionized by cosmic-rays, the abundance of H 2  decreases as:

dnH 2

dt = ~CnH2, ( 1 0 .1 )

where, £ =  1.2 x 10 17sec *.



Molecular hydrogen is created by the surface reaction on grains. The rate for this 

process is:

d U H 2 =  2 kgn Bn  (1 0 .2 )
dt

where kg is the rate coefficient (kg = 9.5 x 10- 18cm3 sec-1 ).

Combining both the ionization ra te  and production rate  gives the rate equation 

for molecular hydrogen.

=  2kgnB n -  ( n B 2  (10.3)

The num ber density is defined to  be:

n  =  2 nB +  2 nB l' (10.4)

W hen the abundance of molecular hydrogen is much greater than  atomic hydrogen 

we can assume 2njj2 =  n. This implies we can rewrite the differential equation as

dnH 2  

dt

At equilibrium

=  4kgn Bn B 2  -  ( n B2. (10.5)

T T  =  #- ( 1 0 -6 )

Now substitu te 10.6 into 10.5 and rearrange:

Akgn Hn H 2  =  (tih 2, (10.7)

note n n 2 cancelis and division by the number of hydrogen nuclei yields:
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Thus, the fractional abundance of n B is inversely proportional to the number density. 

We can determine the upper bound for n by letting

X B > X o • (10.9)

We may substitute (10.8) into the inequality. X B . We can now write:

4  >  x<”  ( 1 0 M )

and and solve for n.

c > n. ( 1 0 .1 1 )
X q fig

Thus when n is less than  400.0 cm ~ 3  the atomic hydrogen will be the th ird  most abun­

dant species. This result is obtained by substituting 7.3 X 10~ 4 cm ~ 3  (the elemental 

abundance of oxygen) into the inequality for the relative abundance of hydrogen and 

solving for n.

Effects o f tem peratures above 300 K

Inspection of Table 16 shows th a t for tem perature of 1000 K and a number den­

sity greater than 100 cm ~ 3  the th ird  most abundant species is H 2 0 .  Increasing the 

tem perature leads to an increase in the rate coefficient for the reactions.

H 2  + 0  ^  H  + O H

H 2 + O H - * H  + h 2 o .

This makes H 20  a good probe cloud tem perature.
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Analysis o f Variance o f the Grid

This section considers the case where carbon monoxide is the th ird  most abundant 

species at steady state. An additive analysis of variance model is used on each species 

to determine which species are sensitive to  number density, tem perature and \or both. 

The logarithms of various species were computed and an analysis of variance was 

used to detect differences in magnitude. Two null hypothesis were tested, H 0l : (the 

tem perature had no effect on abundance) and, H Q2 : (number density had no effect 

on abundance). Rejection levels were set so the probably of making a type one error 

(the probably of rejecting the null hypothesis when it is true) was 0 .0 0 1 .

The results from the analysis of variance suggest tha t the abundance of electrons 

is dependent on the number density and the tem perature. The fact th a t electrons are 

dependent on the number density was established analytically in chapter 9. Electron 

abundance is positively correlated with tem perature because virtually all electrons 

recombine via dissociative recombination. The dissociative recombination rate  co­

efficient is inversely proportional to the square root of the tem perature. Thus, an 

increase in tem perature will decrease the recombination rate.

The analysis of variance points out th a t m ethane was only dependent on the 

variation of the tem perature. The data suggests tha t as tem perature increases the 

abundance of m ethane decreases. This is because the major pathway of methane 

production is dissociative recombination.

CHz +  electron  —> C H 4  +  H .
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Because electrons recombine at a slower rate as tem perature is increased, the produc­

tion of m ethane will decrease with increasing tem perature.

The analysis of variance model shows a significance inverse dependence of the 

ion H 2  with the number density. This can be explained by approximating the rate 

equation for the abundance of H 2 . H 2  is created by the reaction:

H 2 +  C R P  —► H i  4 - electron,

and destroyed by the reaction:

H+ +  H 2  -> H+ +  H.

Therefore, the rate  equation for H i  is:

dnH+

dt

The steady state condition is expressed as:

dnn 2

—(nH2 + k n H 2n H+.  ( 10.12)

=  0. (10.13)
dt

Subsituting (10.13) into ( 1 0 .1 2 ) and rearranging the result yields:

C,n H2 = k n H2 n H+, (10.14)

now divide by njj2 to obtain:

knH+ =  ( .  (10.15)

We may now divide by the number density n and solve for the relative abundance of

H i  :
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Since virtually all of the H £  reacts with H 2 to produce H £ , we would expect the 

fractional abundance of H 2  to decrease as the number density increases.

The amount of molecular carbon dioxide C 0 2  increases as a function of tem pera­

ture. W hen the tem perature reaches 100 K the carbon dioxide has abundance on the 

order of carbon monoxide. This is because the dominant reaction responsible for the 

creation of C 0 2 is:

CO  +  O H  —> C 0 2  +  H .

This is in contrast to the dominant reaction at 10K which is given below:

H N O  + C O -y  C 0 2  +  N H .

W hen the tem perature has increased to  100K the reaction with OH is 100 times faster 

than  the reaction involving HNO. These reactions imply tha t the effect of increasing 

the abundance of C 0 2  will decrease the abundance of CO. Because CO  reacts with 

H e+ via the reaction:

H e+ + CO C + +  0  +  He.

OH as a Probe of D ensity

Analysis of variance indicates th a t OH is negatively correlated with density. This 

indicates th a t OH would be an acceptable probe for the density. Table 17 illustrates 

how OH varies over the grid.
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T(K ) vs. n(cm 3) 1 0 2 1 0 4 1 0 6 1 0 8

1 0 1.4(-7) 4.4(-8) 4.9(-10) 5.3(-12)
25 1.6(-7) 4.6(-8) 5.2(-10) 5.6(-12)
50 2 .2 (-6 ) 4.6(-8) 5.1(-10) 5.3(-12)Oo

1 .8 (-6 ) 3.1(-8) 3.8(-10) 3.5(-12)
2 0 0 1.3(-6) 1.9(-8) 2 .1 (-1 0 ) 5.7(-12)

1 0 0 0 1.8(-7) 1.3(-9) 1.3(-11) 1.1(-13)

Table 17: This table represents the OH abundances for the grid. OH decreases as the 
density increases. The analysis o f variance model indicates this trend is significant. 
a(-b)= a x 1 0 - 6

Comparison of M odel w ith Observations

The observations have been taken from the L134, Taurus Molecular Cloud (TMC1), 

The Orion Complex and Sagittarius B2 (Sgr B2). It is im portant to distinguish be­

tween the structure of these 4 clouds. The TMC1 and L134 are a quiescent clouds 

while the The Orion Complex and Sagittarius B 2  are active in the sense th a t they 

are heated by external sources.

One im portant measure of the activity of these clouds is the ratio of hydrogen 

cyanide to th a t of hydrogen iso-cyanide. This ratio was calculated for the grid and is 

presented in Table 18.

Observations of TMC1 indicate th a t this ratio should be approximately unity. 

However, when regions of the Orion Complex are measured we find a variation in this 

ratio (Goldsmith et. al. 1981). The variations in the isomer abundance ratio 

is correlated with tem perature (Irvine 1990). Our gas phase model does not account 

for high ratios observed in the Orion Hot Core ( j f ^ r  =  200) or the Orion Extended 

Ridge 10). This is is because we model a quiescent cloud. To improve our
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T vs. n 1 0 2

J

OT—
1 1 0 6 1 0 8

1 0 2.31 0.552 1.44 2 . 0 1

25 1.50 0.402 1.08 2.70
50 0.338 0.355 0.908 2.87

1 0 0 0.347 0.362 0.760 2.62
2 0 0 0.634 0 . 8 6 8 1.05 2.35

1 0 0 0 2.90 1.16 1.03 1 . 0 0

Table 18: The HCN to  HNC Ratio These results are in agreement with obser­
vation fo r  T M C l and L I 34 (Goldsmith et. al. 1981)

results it would be necessary to to  include tim e dependent effects such as molecules 

coming off grains.

Taurus M olecular Cloud T M C l

This section will compare the gas phase chemical model with observations of the 

Taurus Molecular Cloud TMC. TMC is a cloud tha t does not have any measurable 

internal sources of energy. Thus we would expect it to be similar to the model of the 

chemical network th a t we have constructed. Table 19 list the calculated values verses 

the observations.

The ratio of carbon to carbon monoxide is 10- 5  for the chemical model used 

in this investigation. The observed values yield a ^  ratio of 0.1. Inspection Table 

19 indicates th a t most of the carbon is in the form of CO. This fact would account 

for many of the other species which contain carbon atoms to be in disagreement with 

observation. The model closely agrees with observations of C O , C S , SO , H C O +, 

S 0 2, N H 3, C2H  and C H 3 GHO.
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Species Calculated Observed
CO 1.4 x 10“ 4 8 . 0  x 1 0 " 5

C2H 3.53 x 10~ 8 5 -  10 x 10~ 8

O H 4.4 x 10~ 8 3 x lO" 7

C N 9.1 x lO" 10 3 x 10“ 8

H C N 3.3 x 10" 9 2  x 1 0 " 8

H N C 6 . 0  x 1 0 " 9 3 x 10" 8

C30 9.9 x l0 ~ 12 2 x lO- 10

C3N 2 .1 x lO -n 2 x lO" 10

n h 3 6.95 x 10“ 8 1 x 1 0 ~ 8

C H 3O H 1.59 x 10“ 10 2  x 1 0 “ 9

H 2CO 6 .4 x l0 - 9 2  x 1 0 “ 8

cs 7.4 x 10“ 9 1  x 1 0 “ 8

ocs 1.5 x 10~n 2  x 1 0 ~ 9

so 1.9 x lO” 8 5 x 10" 9

so2 1 . 6  x 1 0 “ 8 1 x 1 0 “ 8

HCO+ 7.7 x HT9 2  x 1 0 " 9

CH 3C H O 1.3 x lO" 10 6  x lO” 10

H C ZN 2 .8 xlO - 1 0 6 . 0  x 1 0 " 9

H C 5N 1 .8 x l 0 - 1 2 3.0 x 10" 9

h c 7n 1 .4 x l0 ~ 14 1 . 0  x lO” 9

h c 9n l.O xlO - 1 6 3.0 x lO” 10

SiO 5 .9 x l0 " 9 5 x 10- 12

c ah 8 .9 x l0 _1° < 2  x 1 0 " 8

Table 19: Comparison of calculated to  observed values for T M C l. The calculations 
were done for number density =  104 and tem perature =10 K. (Observations are 
adopted from Irvine et. al. 1987)
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Species Calculated Observed
CO 1.4 X 10" 4 8 . 0  x  1 0 ~ 5

C 1.29 x 10~ 9 1 . 0  x 1 0 " 6

C H 1 .3x10-” 1 . 0  x  1 0 " 8

O H 4.4 x lO" 8 8  x lO" 8

C N 9.1 x lO" 10 3 x 10" 9

C S 7.4 x lO" 9 1 x lO” 9

c 2h 8.9xlO - 1 0 < 1 x  1 0 ~ 7

C iH 8 .9 x l0 _1° <  1 x  1 0 " 9

C3 H 2 2.3xlO - 1 0 4 x 10" 9

H C N 3.3 x 10" 9 2  x 1 0 ~ 9

H N C 6 . 0  x 1 0 “ 9 6  x 1 0 " 9

N H Z 6.95 x 10- 8 2  x 1 0 ~ 7

C H 3 O H 1.59 x lO" 10 4 x 10" 9

H 2CO 6 .4 x l0 - 9 2  x lO” 8

H C O + 7.7 x 10“ 9 2  x 1 0 “ 9

H C ZN 2 .8 xlO - 1 0 2.0 x lO" 10

H C SN 1 .8 x l 0 - 1 2 9.0 x lO- 1 1

h c 7n 1 .4 x l0 - 1 4 <  2 . 0  x  1 0 " 11

C H 3 C H O 1.3 x lO- 1 0 6  x  1 0 “ 10

SO 1.9 x 10" 8 2  x 1 0 “ 8

S 0 2 1 .6  x 1 0 “ 8 4 x lO" 9

Table 20: Comparison of calculated to observed values for L134. The calculations 
were done for number density =  104 and tem perature =10 K. (Observations are 
adopted from Irvine et. al. 1987)

L134

The gas phase model is in excellent agreement with observations. Diatomic molecules 

such as CO , OH, C N , SO  and C S . The model also is in close agreement with for 

large molecules such as H C N , H N C , H C 3 N , H C O + and C H 3 OH.

Orion Ridge and Sgr B2

the Orion Ridge and Sgr B2 are example of giant molecular clouds. The Orion Ridge 

consist of gas and dust with newly formed massive stars which are detectable in the
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Species T=50 n=10 4 Observed
CO 1.4 x lO" 4 8 . 0  x 1 0 “ 5

C H t 3.2x10-® 8 x l 0 ~ 7

C 1 . 0  x 1 0 “ 9 1 x 1 0 " 5

c 2h 4 .6 x l0 -1° 1  x 1 0 “®
C N 1.5xlO - 1 0 5 x 10" 9

H C N l . l x l O - 9 2  x 1 0 -®
H N C 3.2 x 10“ 9 4 x lO" 10

C30 9 x l 0 " 14 3 x 10" 11

N H 3 9x10"® 2 x lO" 7

C H 3O H 4.7xlO _ n 4 x 10“®
C2HaOH 1.1X10- 1 6 4 x 10-®

H 2CO 1 .6 x l 0 - 9 3 -  30 x 10-®
C S 4.6 x 10" 9 4 x 10" 9

H C S+ 1 .8 x l 0 - 1 1 2 x lO" 10

SO 2 . 6  x 1 0 -® 2 . 0  x 1 0 " 9

HCO+ 7.7 x 10- 9 2 x lO" 9

CH aCH O 1 .8 x l 0 - 1 2 2 x lO- 1 0

H C l 2 . 0  x  1 0 - 9

001or—1X

SiO l .OxlO- 9 5 x 10“ 9

S iS 6 .0 x l 0 - 9 xlO " 12

Table 21: Comparison of calculated to observed values for the Orion Ridge. The cal­
culations were done for number density =  104 and tem perature =50 K. (Observations 
are adopted from Irvine et. al. 1987)

infrared (Friberg and Hjalmarson 1990). The Orion ridge and Sgr B2 are rare in the 

sense tha t they have been the surveyed. Most GMC have not been measured. Tables 

17 and 18 compare computed abundances to the observational values. It should be 

noted tha t the calculations have been based on a quiescent dark cloud model.

Values from the grid study which approxim ated the Orion ridge and Sgr B2 where 

selected as the com puted values. It should be noted th a t the giant clouds consist of 

several regions which possess different physical properties.
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Species Calculated T  — 100 n — 5.0 x 105 Observed
C2H 3.0 x lO - 1 5 > 5 x 10- 9

C N 4 . 2x l 0 - 1 3 2  x 1 0 "®
H C N 1.4xlO - 1 0 2  x 1 0 "®
H N C 1.9xlO - 1 0 3 x 10" 9

CzO 1.6xlO - 1 0 2 x lO- 1 0

c 3n 9 .3 x l0 - 1 7 < 2 x lO" 10

n h 3 2.4xl0~® 1 -  1 0  x 1 0 -®
c h 3o h 4 .6 x l0 - 1 2 2  x  1 0 - 7

h 2c o 1.4 x 10- 10 2  -  1 0  x 1 0 "®
cs 7.7 x lO” 12 1 x  1 0 “®

H CS+ 3 .3 x l0 “ 14 2  x 1 0 ~ 10

O C S 1.0 x lO” 12 2  x 1 0 “®
SO 1.7x10-® 1 x lO" 9

so2 2 .2 1 x 1 0 “® 2  x  1 0 -®
S iS l . l x l O - 1 9 0.3 -  2 x lO" 10

C2 H 5OH 8 .0 x l 0 _1® 3 x lO" 9

HCO+ 7.7 x 10" 9 2  x  1 0 “ 9

C H 3C H O 5 . 0x l 0 " 14 1 x lO" 10

Table 22: Comparison of calculated to observed values for the Sgr-B Complex. The 
calculations were done for number density =  106 and tem perature =100 K. (Obser­
vations are adopted from Irvine et. al. 1987).



Species T=10 T=50 II to o o

CO 8.6(5) 1.4(4) 1.3(4)0 2.6(4) 1.2(4) 1.3(4)
C 4.5(5) 2.6(7) 2.3(7)

CH 1.4(7) 7.5(9) 7.0(9)
C H a 7.3(9) 1 .2 (8 ) 4.6(9)
OH 1.4(7) 2.3(6) 1.3(6)

NHZ 7.5(11) 2.2(7) 2.3(7)
h 2o 9.1(8) 4.8(6) 4.4(6)
NO 7.1(9) 8.0(7) 9.3(7)

H2CO 7.7(9) 3.9(9) 1.5(9)
o 2 2.8(7) 3.7(5) 2.7(5)
SO 1.4(12) 8.6(9) 7.0(9)
CN 6 .0 (8 ) 4.2(8) 2.9(8)cs 2.5(8) 7.2(9) 8.3(10)

HCO+ 2 .6 ( 1 0 ) 1.3(11) 3.6(7)
S 0 2 1.7(15) 1.0(9) 5.3(10)
e~ 8.4(6) 7.2(7) 9.8(7)
HZ 2 .2 (8 ) 2.0(7) 2.2(7)
H+ 4.2(7) 1 .2 (8 ) 3.2(8)
H 1 .2 (2 ) 1 .2 (2 ) 1 .2 (2 )

C 0 2 2.7(12) 4.8(7) 1.3(5)

Table 23: Param eter Study: T=10 K, T=50 K and T=200 K n=10 2 a(b) =  a x 

R e p re s e n ta t iv e  re su lts  o f  th e  P a r a m e te r  S tu d y

Tables 23, 24 and 25 are representative of the param eter study over the grid.
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Species T=10 II Crt O

OocsIIEh

CO 1.4(4) 1.4(4) 1.3(4)
0 8.6(5) 8.3(5) 1.0(4)
C 1.2(9) 1.0(9) 1.3(9)

CH 1.3(11) 1.7(11) 1 .6 ( 1 1 )
C H a 7.4(8) 3.2(8) 9.1(9)
OH 4.4(8) 4.6(8) 1.9(8)

n h 3 6.7(8) 9.0(8) 5.3(8)
h 2o 3.3(6) 1 .8 (6 ) 1 .1 (6 )
NO 1 .6 (8 ) 5.3(8) 4.5(8)

H 2CO 6.5(9) 1.6(9) 3.0(10)
0 2 5.8(5) 6.0(5) 4.2(5)
so 1.9(8) 2 .6 (8 ) 3.3(8)
CN 9.2(10) 1.5(10) 6 .6 ( 1 1 )
cs 7.4(9) 4.5(9) 1.1(9)

HCO+ 7.7(9) 2.4(8) 5.5(8)
S 0 2 1 .2 (8 ) 8.0(9) 4.2(9)
e~ 3.2(8) 5.1(8) 8.5(8)
m 3.1(9) 3.2(9) 3.0(9)
H + 1 .6 ( 1 0 ) 2.3(10) 2 .2 (1 0 )
H 1.2(4) 1.1(4) 1.2(4)

C 0 2 6.4(8) 8.0(7) 1.6(5)

Table 24: Param eter Study: T=10 K, T=50 K and T=200 K n=10 4 a (6 ) =  a x 10 6

Sum m ary

The param eter study indicated tha t at low densities the abundance of atomic hy­

drogen would be the 3rd most dominant species. An analysis of variance suggested 

tha t there were trends tha t depended on the tem perature and number density. An 

interesting trend  was th a t of an increase in carbon dioxide as tem perature increased. 

The model calculated abundances th a t closely agree with observed abundances in 

TM Cl and the L134. Tables 25, 24, and 25 are representive of the results computed 

in param eter study.
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Species T=10 T=50
OOIIH

CO 1.4(4) 1.4(4) 1.4(4)
0 8.0(5) 7.8(5) 9.0(5)
C 1 .2 ( 1 1 ) 9.3(12) 1 .0 (1 1 )

CH 6.0(14) 8.1(14) 5.5(14)
c h 4 7.7(8) 4.5(8) 2.7(8)
OH 4.9(10) 5.1(10) 3.3(10)

n h 3 3.4(8) 3.2(8) 2 .0 (8 )
h 2o 1.7(6) 7.3(7) 4.5(7)
NO 1.9(10) 6.4(10) 6 .0 (1 0 )

H 2CO 1.8(9) 3.9(10) 1.4(10)
o 2 6.2(5) 6.2(5) 5.5(5)
SO 1.2(9) 1 .0 (8 ) 1.7(8)
CN 1.7(11) 8.4(13) 4.2(13)
c s 3.6(10) 3.0(10) 7.7(12)

HCO+ 2.4(10) 1 .0 ( 1 0 ) 1.4(9)
s o 2 3.8(8) 2.9(8) 2 .2 (8 )
e~ 1 .0 (8 ) 1 .6 (8 ) 1.7(8)
H+ 3.3(11) 3.3(11) 3.3(11)
H+ 1.7(12) 2.3(12) 2.4(12)
H 1 .2 (6 ) 1 .2 (6 ) 1 .2 (6 )

C 0 2 7.0(8) 8.2(7) 9.2(6)

Table 25: Param eter Study: T=10 K, T=50 K and T=200 K n=106 a(b) — a x  10-b



Chapter 11 

Conclusions

The UMIST Rate file was used to construct a model of the gas phase chemistry 

of giant and dark molecular clouds. Steady state solutions were calculated for given 

tem perature, number density, elemental abundance, cosmic-ray ionization ra te  and 

dissociative recombination rate for H% . Tem perature and number density were al­

lowed to vary systematically in order to map abundances of trace species. We have 

made predictions of water, molecular oxygen, carbon monoxide and atomic carbon 

computed by our gas phase which may be compared with observations by the Sub­

millimeter Wave Astronomy Satellite (SWAS) which is scheduled to be launched by 

NASA in 1996.

Bistability

Over certain regions of param eter space, it was discovered tha t bistable solutions 

existed. Bistable solutions are im portant because when they are understood they 

may help us to comment on the history of a molecular cloud. The stable phase a 

cloud is in is determined by its initial conditions. The bistable solutions are also of 

interest because of their relation to chaotic phenomena. This study is the first to
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discuss bistable phenomenon for a gas phase model for realistic depleted elemental 

abundances.

Bistability was examined for variations in: chemical abundance, cosmic ray ion­

ization rate, tem perature, number density, dissociative recombination rate  of , 

and large molecules. Enhancement of the abundances of carbon, sulphur, silicon, and 

metals allowed the bistable region to exist in for higher values of number density. En­

hancement of the oxygen abundance has the opposite effect. Changing the abundance 

of nitrogen, phosphorous and chlorine has no substantial affect on the bistability. The 

inclusion of large molecules in the gas phase model damps out bistable behavior. The 

bistable region will exist at higher number densities when the cosmic ray ionization 

is increased.

C hem istry as a Probe of Physical Conditions

The param eter study showed tha t the chemistry varied greatly over the density and 

the tem perature. Hydrogen was the third most abundant species for number densities 

less than  400 cm~3. H20  is the th ird  most abundant species for tem peratures above 

300 K. For interm ediate tem peratures, carbon monoxide was the third most abundant 

species.

The water molecule could potentially be used as a probe of the tem perature of the 

gas. At high tem peratures much of the oxygen is in water. The atomic to molecular 

hydrogen ratio is a possible diagnostic of density. As was shown in chapter 10 the 

ratio varies with density with atomic hydrogen more abundant at lower densities.
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The param eter study showed the abundance of OH decreases as the density in­

creases. This may provide a probe for determining the number density of the cloud.

Molecular oxygen may provide a probe for determing the ionization phase of a 

region. A measurement of the relative abundance of 0 2 tha t is small would be con­

sistent with region being in the HIP. The SWAS satellite will measure the abundance 

of molecular oxygen.

The M odel o f Interstellar Clouds

The gas phase model abundances compared well with those observed in the L134 

and The Taurus Molecular Cloud. The ratio of hydrogen cyanide and hydrogen iso­

cyanide for both the The Taurus Molecular Cloud and the L134 was near unity which 

corresponds to observations.

The chemical model predicts the abundance of several im portant diatomic molecules 

within a factor of 2 for L134. The model also is in reasonable agreement with obser­

vations taken form TM C l.

Overall we conclude th a t the model is a useful tool for understanding interstellar 

clouds. It makes predictions of abundances which may be observed. It also helps us 

to infer the physical conditions in these clouds. The discovery of bistable solutions 

in interstellar cloud models is an exciting time in astrophysics. We do not yet have a 

full understanding of the implications of this discovery, but th a t understanding will 

likely also lead to  a greater understanding of molecular clouds.
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