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Abstract

Sentiment Analysis is the task of identifying and classifying the sentiment expressed in a piece of

text as of positive or negative sentiment and has wide application in E-Commerce. In present time,

most e-commerce websites have product review sections, which can be used to identify customer

satisfaction/dissatisfaction for their product. In E-COMMERCE websites such as Amazon.com,

E-bay.com etc, consumers can submit their reviews along with a specific polarity rating (e.g. 1 to 5

stars at Amazon.com). There is a possibility of mismatch between review submitted and polarity

of rating. For Amazon.com, a customer can submit a strongly positive review but give it a low

rating. The objective of this thesis is to develop a web-service application which can be used to

tackle this situation.

We will perform Sentiment Analysis using Deep Learning on Amazon.com product review data.

Product reviews will be converted to vectors using “PARAGRAPH VECTOR” which will later be

used to train a Recurrent Neural Network with Gated Recurrent Unit. Our model will incorporate

both semantic relationship of review text as well as product information. We have also devel-

oped an application in Python, that will predict rating score for the submitted review using the

trained model. If there is a mismatch between predicted rating score and submitted rating score,

a warning/info will be provided.
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Chapter 1

Introduction

1.1 Motivation and Objective

“Sentiment is an attitude, thought, or judgment prompted by feelings” [FZ15]. Sentiment analysis

is the task of computationally identifying and categorizing the sentiment expressed by an author

in a piece of text. Sentiment analysis has a wide application in industry and hence has been able

to recently attract a lot of research. From forecasting market movements based on sentiment ex-

pressed in news and blogs, to identifying customer dissatisfaction from their social media post;

sentiment analysis is critical for today’s industry. Sentiment analysis also forms the basis for other

applications like recommender systems. In the present time, most e-commerce websites have a

separate section where their customer can post reviews for the product or service. Important in-

formation like customers’ opinion on their product, reasons for negative reviews, suggestions etc,

can be extracted from the posted reviews by performing sentiment analysis on them.

In the past, a review text was converted to fixed length feature vector using bag-of-words or

bag-of-n-grams and these feature vectors were later used to train a “shallow classifier” such as

Naive Bayes or Support Vector Machine. Although bag-of-words surprisingly performed well and

was popular for many years, it has two major flaws. It looses ordering of words and doesn’t consider

the semantic relationship between words. For example, words such as “bad”, “worst” and “Las

Vegas” are equally distant despite the fact that “bad” should be semantically closer to “worst”

than “Las Vegas”. Although bag-of-n-grams somewhat considers word order in short context, it

suffers from data sparsity and high dimensionality [LM14].
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Recently, deep learning has shown promising results in the field of sentiment analysis. Mikolov

et al.[MSC+13] introduced “Word Vector”, which is an unsupervised algorithm to efficiently cap-

ture semantics of words. Word Vector represents words as vectors and semantically similar words

are closer to each other in vector space. In other words, similar words such as “good” and “great”

are closer to each other in vector space and far apart from unrelated words like “quick”, etc. In-

terestingly, this vector representation of text also captures linguistic patterns. For example, the

result of vector calculation vec(”King”)-vec(”Queen”)+vec(”Woman”) will output vector which is

closer to the vector representation of word “Man” than to any other words. Following on his pre-

vious work, Mikolov et. al [LM14] introduced “Paragraph Vector” which is also an unsupervised

algorithm similar to “Word Vector” that learns fixed length feature vectors for variable length text

such as sentences, paragraphs or an entire document. “Paragraph Vector” has shown to outper-

form bag-of-words models and other form of text representation and has achieved state-of-the-art

results in several classification tasks including sentiment analysis. Since they are faster to train

and have high efficiency in capturing syntactic and semantic relationship of a text, our model will

use “Paragraph Vector” to learn low-dimensional vector of review text.

Along with syntactic and semantic relationship of reviews, our model will also learn product

relation as well as temporal relations of reviews. Most work on sentiment analysis ignores prod-

uct and temporal relations among reviews. We believe that these are important features and can

significantly improve sentiment classification accuracy. Our work is based on the argument that, a

popular product such as “Apple” receives more number of higher rating and less popular product

might receive higher number of lower rating. We will use a recurrent neural network to capture

such information as they are great in capturing sequences.

Chen et.al [CXH+16] experimented with temporal relations of reviews and reported state-of-the

art results on IMDB and YELP datasets. Their work is based on the argument that a product that

receives positive reviews initially is likely to get more positive reviews in the future and vice-versa.

They used a recurrent neural network (RNN) to learn the temporal information as well as to cap-

ture both product and user information. Motivated by the results of their model, we have trained

Recurrent Neural Network with Gated Recurrent Unit (GRU) with our dataset.

In summary, we will first convert 3.5 million product reviews collected by Fang et. al [FZ15] to
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fixed length feature vector using “Paragraph Vector”. These feature vectors will be then grouped

by product and sorted in a temporal order. Each group is then used to train a RNN (GRU). The

vectors generated in the penultimate layer of the RNN will be called product embeddings. These

embeddings capture important information like product qualities and temporal relations among

reviews. We will further concatenate product embeddings with fixed length vectors generated by

“Paragraph Vector” and train a machine learning classifier (SVM).

Furthermore, we will also present a noble approach in tackling the issue of review-rating mis-

match. There are situations where a user may write a highly positive review but give it a 1 or 2 star

or write a highly negative review but give it a 4 or 5 star. Though such situations are rare, such

reviews create confusions and most e-commerce websites would like to solve this. Since reviews with

rating 4 and 5 and reviews with rating 1 and 2 are very similar to each other, it will be challenging

to classify them into their respective rating class. Hence, our classifier will be trained to classify the

reviews into three classes only, i.e ‘negative’, ‘neutral’ and ‘positive’. All reviews with rating 1 and

2 are marked as ‘negative’ reviews, reviews with rating 3 is marked as ‘neutral’ and reviews with

rating 4 and 5 are marked as ‘positive’. We will then develop a separate web-service application

that will use our classifier to predict a class from the user review. If the predicted class and the

class that the submitted rating belongs to are different an error will be submitted back to the user

so that they can correct their rating.

3



Chapter 2

Literature Review

Our Amazon review dataset was collected by Fang et. al [FZ15]. They performed both sentence

level as well as review level sentiment analysis on this dataset. For review level sentiment analysis, 4

and 5-star reviews were marked as positive, 1 and 2-star reviews were marked as negative and 3-star

reviews were marked as neutral. They identified all negation phrases (for e.g. not worth, not be

happy etc), positive and negative words in the dataset. Each negative/positive words and negation

phrases were given a sentiment score based on their number of occurrence in positive, negative or

neutral reviews. The feature vector of a review was created by two binary strings representing

phrases and sentiment words, an averaged sentiment score of the review, a ground truth label and

one more element that is computed as −1 ∗m+ 1 ∗ n where m is number of positive sentences and

n is number of negative sentences in that review. Using an SVM, they were able to achieve an F1

score of 0.73. On the other hand, using only “Paragraph Vector” we achieved an accuracy of 81%

which shows the remarkable strength of paragraph vector.

2.1 Learning distributed representation of text

Deep learning models have shown to outperform bag-of-words approach when it comes to feature

generation. Convolutional Neural Network is one of these deep learning models that has been

widely successful in capturing distributed representation of text. Kim [Kim14] designed a simple

yet powerful convolutional neural network that achieved a very good performance across different

datasets for the task of sentiment analysis. The input layer of this network comprised of concate-

nated word2vec word embeddings, which is then followed by a convolutional layer with multiple

filters, then a max pooling layer and finally a softmax layer. The paper also experimented with

4



static and dynamic word embeddings. For regularization, they employed dropout except on the

output layer with a constraint on l2 norms of the weight vectors. They experimented with dif-

ferent dataset 1) Movie review dataset (MR) 2)Stanford Sentiment Treebank (SST-1) with five

labels: very positive, positive, neutral, negative and very negative 3) Stanford Sentiment Treebank

(SST-2) with neutral class removed and binary labels. For every dataset, they used rectified linear

units, filter width of 3,4,5 with 100 feature maps each and a dropout probability of 0.5. They

also used l2 constraint of 3 and training batch size of 50. To improve performance, they trained

their CNN on publicly available word2vec vectors that were trained using 100billion words from

Google News. They were able to achieve state-of-the-art results in MR and SST-2 dataset with an

accuracy of 81.5 and 88.1 respectively. Chen et. al [CXH+16] used a similar 1-layer convolutional

neural network to learn review embeddings of IMDB and YELP datasets. Their convolutional

neural network takes reviews of varying length and produces 300-dimensional vectors. To handle

varying lengths of review, they padded shorter reviews with zero vectors. Filters of width 3 and

5 moves on the word embeddings to perform one-dimensional convolution and produces multiple

feature maps. Only useful features were captured by using max-overtime pooling in pooling layer.

The output of multiple filters was then concatenated to create 300-dimensional vector. Softmax

function was used as an activation function to train the network over K-classes. [OZLL15] used a

seven layer convolutional neural network architecture to perform sentiment analysis on movie re-

views collected from rottentomatoes.com. Their architecture consists of three convolutional layers,

three max-pooling layers and a fully-connected layer with softmax activation. Johnson et. al [JZ14]

used a variation of bag-of-words model to create feature vectors instead of using low dimensional

word vectors as input to the convolutional neural network. They also experimented with parallel

CNN that had two or more convolutional layers in parallel to learn multiple types of embeddings

from one hot input vector. Socher et al. [SPW+13] proposed a recursive neural tensor network

for semantic compositionality over a sentiment tree bank. Their proposed model achieved state-

of-the-art result for binary sentiment classification of Stanford sentiment tree bank. Mikolov et.

al [MCCD13] introduced an efficient way of representing words in vector space by predicting next

work from given context of by predicting context from given word. Their proposed unsupervised

algorithm was able to embed words in a continuous vector space where semantically similar words

are mapped to nearby points. Following on their previous work, Mikolov et. al [LM14] proposed

“Paragraph Vector” that is able to learn fixed-length feature vector for a variable length text.

5



2.2 Learning Product Information

In past, most researchers were interested in only in syntactic and semantic relationship between

review texts. Currently, there is a growing interest in adding user and product information to

strengthen feature vector. Tange et. al [TQLY15] proposed a neural network model that not only

captures the semantics of the review text but also user information that expresses that sentiment.

A user was represented as a continuous matrix and the product of word matrix and user matrix

was used for sentiment classification using a neural network. Tang et. al [TQL15] used a neural

network model to embed both user and product information into a vector representation of a

document. They first converted a document text to continuous vector representation using a CNN.

Each user and product were represented as a continuous matrix and the concatenation of user-text

and product-text was fed to a CNN for sentiment analysis. IMDB, YELP 2014 and YELP 2013

were used for sentiment analysis using their model. They were able to achieve state-of-the-art

result with an accuracy of 0.435 with IMDB dataset, 0.608 with YELP 2014 dataset and 0.596

with YELP 2013 dataset.

6



Chapter 3

Methodology

In this section, we will present our approach to learning a) low-dimensional vector representation

of reviews using unsupervised “Paragraph Vector” framework and b) product embeddings using a

recurrent neural network. Machine learning algorithms cannot directly learn from raw text, it must

be represented numerically or as vectors. In the past, bag-of-words used to be a popular approach

to convert words to vectors, but they fail at capturing word orders. With bag-of-words, two differ-

ent sentences will have the exact same vector representation if they contain the same words in any

order. Mikolov introduced an unsupervised framework “Paragraph Vector” which is inspired from

“Word2Vec” [LM14], an unsupervised algorithm for learning word vectors. Word2Vec is highly

efficient in capturing a word’s meaning from its previous occurrences. Similarly, vectors generated

by “Paragraph Vector” for two reviews that are similar in sentiment will be close to each other in

vector space. Hence we are using “Paragraph Vector” to learn vector representations of reviews.

Section 3.1 describes our dataset and our data-preprocessing steps. Section 3.2 details our

approach of learning vector representations of our reviews using “Paragraph Vector”. Afterwards,

section 3.3, describes our approach of learning product information along with temporal relations

using recurrent neural network with gated recurrent units (GRU). Figure 3.1 illustrates architecture

of our proposed model.

3.1 Data and Data Pre-processing

The data used in this research is a set of product reviews collected from amazon.com by Fang

et. al[FZ15]. They collected about 3.5 million product reviews. These online reviews includes

7



Figure 3.1: Architecture of our proposed model.
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information on 1) reviewer ID, 2) product ID, 3) rating, 4) time of the review, 5) helpfulness and

6) review text. The rating is based on 5-star scale. There are 2.2 million 5-star reviews; 622,308

4-star reviews; 265,684 3-star reviews; 171,153 2-star reviews; and 288,789 1-star reviews as shown

in figure 3.2 .Below is a sample of a product review.

rating: 5.0 out of 5 stars

product_ID: B00DS842HS

helpfulness: 4/4

ID: A28R8UNBXGLFOR

review_by: Melliemel

title: It’s working!

review_time: 20140308

review: So far so good. I bought this because I wanted to start oil pulling. It’s

been working great. Great taste (while swishing it around and NOT

swallowing it). Put some on my arm that was very dry. It helped. Haven’t

cooked with it yet, but I’m sure it will be great!

rating: 2.0 out of 5 stars

product_ID: B000NWGCZ2

helpfulness: 2/3

ID: A1BBW2AZ49E4AR

review_by: T. Haralson "Bella por dentro"

title: Much prefer CeraVe for my son’s eczema

review_time: 20121228

review: I really wanted to like this, but it just wasn’t as effective in clearing

up my son’s eczema as CeraVe. I did purchase 2 orders to give it a fair try.

The second order had leaked out during shipping (about 25% of the product). On

a positive note, I do like the thick consistency and the pump dispenser.

However, for the price and effectiveness, I prefer other products.

Online reviews contain lots of noise like hyperlinks, html tags, informal words, etc. and many

words don’t have any significant impact on the sentiment of the review. Keeping such words in the

review text will increase the dimensionality of the problem. To address this issue we pre-process

9



the review text before converting to its corresponding vector. Our step-by-step approach is listed

below.

• Remove hyperlinks.

• Remove unwanted spaces between words.

• Convert informal words such as ‘I’ll’, ‘I’ve’ to its formal form ‘I will’, ‘I have’ etc

• Add spaces between punctuation. For example ‘This is great!It works.’ will be converted to

‘This is great ! It works .’. Punctuations are treated as separate tokens to try to improve

accuracy of the classifier.

1-star 2-star 3-star 4-star 5-star
0

0.5

1

1.5

2

·106

Figure 3.2: Data Collection

3.2 Modeling of Reviews using Paragraph Vector

Paragraph vector [LM14] is an unsupervised learning algorithm that learns vector representation

of variable-length text. It is inspired from another unsupervised framework for learning vectors for

words (Word Vectors) as illustrated in figure 3.3. We will briefly describe “Word Vector” [MCCD13]

first and afterwards describe “Paragraph Vector”.

The task of “Word Vector” is to predict the occurrence of a word given other words in that

context. As an example, let us consider the dataset

10



Figure 3.3: An unsupervised framework for learning word vectors. Word wt is predicted from words
(wt-2,wt-1,wt+1,wt+2) in that context.

the quick brown fox jumped over the lazy dog

using a window size of 1, datasets in the form of (context,target) such as ([the,brown], quick),([quick,fox],

brown),([brown,jumped], fox), etc. will be used to train the word vector. For every context it sees,

it will predict the target and weights are adjusted via back-propagation. Mathematically, let w1,

w2, w3,....,wT be a sequence of training words, the objective of the “Word Vector” is to maximize

the average log probability

1

T

T−k∑
t=k

logp(wt|wt−k, ....wt+k) (3.1)

This prediction task is typically done by a multi-class classifier such as softmax, however for

faster training, hierarchical softmax is preferred. The neural network based implementation of word

vectors are typically trained using stochastic gradient descent where the gradient value is obtained

via back-propagation. After the training, words with similar meanings are mapped closer in vector

11



Figure 3.4: Distributed Memory Model of Paragraph Vector.

space. There is a popular neural network based implementation of word vector called “Word2Vec”

which was proposed by Google in 2013. This network was trained using Google News Dataset (100

billion words) and the pre-trained vectors are often used as input to a deep neural network.

“Paragraph Vector” is highly inspired from the working of word vectors. Word vector learns

semantic relationship by predicting the next word from words in a given context. Similarly, para-

graph vectors learn vectors by predicting next word given many contexts that are sampled from

a paragraph. There are two flavors of paragraph vector, a) Distributed memory model (PV-DM)

b) Distributed bag of words model (PV-DBOW). The difference between the two models is that

PV-DM captures word order while PV-DBOW ignores it. Figure 3.4 describes distributed memory

model of the paragraph vector. Every paragraph is mapped to a column of matrix D and similarly

every words is mapped to a column of matrix W. Given a context sampled from a paragraph or

document (for example xi, xi+1 and xi+2), the model predicts the next word xi+3 by concatenating

the paragraph vector with vectors of words in that context. The model updates both the paragraph

matrix and the word matrix while training to minimize error.

Figure 3.5 describes distributed bag of words model of paragraph vector. This is different
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Figure 3.5: Distributed Bag of Words Model of Paragraph Vector.

from PV-DM as it doesn’t consider word ordering. PV-DBOW samples a random context from a

paragraph and then a random word from that context, then based on that word it tries to predict

the context. It doesn’t use a word matrix and hence requires less data to store. According to

the experiments carried out in [LM14], PV-DM is shown to be more efficient than PV-DBOW,

therefore we have applied PV-DM to convert the reviews in our dataset to fixed length vectors.

3.3 Learning Product Embeddings using Recurrent Neural Network with Gated

Recurrent Unit

In this section we will describe our approach of learning Product embeddings. By using “Paragraph

Vector” we converted 3.5 million product reviews to 300 dimensional fixed-length vectors. To

compute product embeddings, we group our reviews by ‘Product Id’ and then order them by

their ‘Posted Time’. Table 3.1 describes how a particular review is ordered for computing product

embedding for that review. Review text is substituted by their respective “Paragraph Vector”. This

temporally sorted vectors are the input sequence and their corresponding ratings are the targeted

output and used to train a GRU to learn embeddings for that particular product.
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Table 3.1: Review sequence for a product

product id review posted time

0060245867 This is the first of several of this type and clearly
the best of the group........

2002-08-21

0060245867 I loved the movies, however, I wasn’t interested
in merely ”reading the movies” again. There
was no need.....

2006-07-01

0060245867 ”If You Give a Mouse a Cookie” really has been
the ”It” book for some time. Parents love this
story,...........

2006-09-05

3.3.1 Recurrent Neural Networks

Most traditional neural networks consider inputs to be independent of each other. But this ap-

proach is flawed for tasks such as predicting the next word in a sentence. Here, the next word

depends upon the previous word or sequence of previous words. In such cases, RNNs are useful as

they are great at capturing sequential information. RNNs have loops in their architecture that al-

low them to pass information they have collected from previous inputs while processing new input.

Figure 3.6 shows a recurrent neural network unrolled through all time steps. In most architecture

Xt is input at time step t and Yt is output at the same time step. U, V and W are weight matrices

that needs to be learned and st is hidden state that is computed at every time step t. st is also

known as the memory of the network as it stores features about the input sequences based on

its observation of previous inputs. For a given input sequence x1, x2, x3........xT , RNN computes

sequence of hidden states and outputs using the Algorithm 1.

Algorithm 1: Computing hidden states and outputs of RNN

for t=1 to T do
ut ← Uxt +Wst−1 + bh
st ← f(ut)
ot ← V st + bo
yt ← g(ot)

end for

bh and bo are bias vectors applied at hidden and output layers respectively. f and g are non-

linear functions.

Loss of the RNN is sum of losses across all time steps. Let ŷt be the predicted output and yt

14



be the actual output, then the loss of the network is given as:

L(y, yt) =
T∑
t=1

L(ŷ, yt) (3.2)

Recurrent neural networks are trained by gradient descent of error using an extension of back-

propagation called “Back Propagation Through Time” (BPTT). Algorithm 2 is used for computing

gradients using BPTT.

Algorithm 2: Computing gradients using BPTT

for t=T to 1 do
dot ← g′(ot) · dLdyt
dbo ← dbo + dot
dV ← dV + dots

T
t

dst ← dst + V Tdot
dyt ← f ′(tt) · dst
dU ← dU + dytx

T
t

dbh ← dbh + dyt
dW ← dW + dyt · dsTt−1
dst−1 ←W T · dyt
return dV, dU, dW, dbo, dbh

end for

3.3.2 Difficulties in training Recurrent Neural Network

When recurrent neural networks (RNN) are trained, the weight matrices U, V, and W are updated

using Backpropagation Through Time (BPTT). Update to each weight matrix is proportional to

the gradient of the error with respect to that matrix and BPTT computes the gradients using the

chain rule. When RNN is learning long-term context, depending on the activation functions, the

gradient tends to get smaller (vanishing gradient problem) or bigger (exploding gradient problem)

towards the earlier layers, which makes it difficult to train the network.

3.3.3 Recurrent Neural Network with Gated Feedback Unit

In section 3.3.2, we learned how recurrent neural networks have problems learning long term depen-

dencies because of “Vanishing Gradients”. Long Short Term Memory (LSTM) and Gated Recurrent

Units (GRU) were proposed to combat vanishing gradients problem through gating mechanism. As
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shown in Figure 3.7, GRU has two gates, a reset gate ‘r’ and an update gate ‘z’. Reset gate ‘r’

decides whether to ignore or combine previous hidden state with newly computed hidden state and

is computed as:

r = σ(Urxt +Wrht−1) (3.3)

Update gate ‘z’ decides how much of previous memory needs to be added to compute new

memory and is computed as:

z = σ(Uzxt +Wzht−1) (3.4)

In this architecture Uz, Ur,Wz,Wr are weight matrices that need to be learned and t is a time

step sequence in sequence x = (x1.x2.x3, ....., xT ). The actual activation of proposed unit ht is

computed as follows:

ht = (1− zt) } h̃+ zt } ht−1 (3.5)

h̃ = tanh(U
h̃
xt +W

h̃
(ht−1 } r)) (3.6)

3.3.4 Learning Product Review Embedding Sequence Using GRU

As described in earlier section, we first compute 300-dimensional feature vectors for all reviews

using “Paragraph Vector”. Each review text is then replaced with its corresponding feature vector

in entire dataset. For every unique product, we sort their review vectors based on the review’s

posted time. These sorted review vectors along with their corresponding ratings will be the train-

ing sequence for that particular product. These sequences are then fed to a GRU to learn 128

dimensional feature vector representation of product information. Training of GRU is performed

using Algorithm 3.
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Figure 3.6: Unrolled RNN

Figure 3.7: GRU with reset and update gate, r and z respectively. h and h̃ are current hidden state
and new hidden state.
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Algorithm 3: Training GRU

for i=1 to Number of Epoch do
for Sequence S in training sequences do

Train GRU with S
if New product or user sequence starts then

Reset hidden states
end if

end for
Validate GRU with validation set

end for

As described in algorithm above, we reset the hidden states after the start of a new product

sequence since our objective is to capture information that exist between reviews belonging to a

unique product sequence. Output layer of our GRU is a softmax layer and output at every time

step t is computed as described in equation 3.7

yt = softmax(V ht) (3.7)

Output vector yT at the last time step of every product sequence is consider to be the embedding

sequence for that particular product. We train our GRU using 0.25 as dropout rate, Adam as

stochastic optimization method, categorical cross entropy as loss function, time distributed dense

layer and 128 hidden units. During the training phase, product embedding sequence for each unique

product is retrieved and stored in a file for efficient retrieval later on. This product embedding is

expected to capture product information.

3.3.5 Sentiment Classification using SVM

Support Vector Machine(SVM) is a traditional machine learning algorithm to classify both linear

and non linear data. Given a training data with binary outputs, support vector machine tries to

find a hyper-plane as the decision surface such that the separation between positive and negative

samples is maximized. The equation of the hyper-plane can be written as ~W · ~U + b = 0 where ~W

is an adjustable weight vector, ~U is an input vector and b is a bias. Hence, ~W · ~U + b >= 0 for

positive samples and ~W · ~U+b < 0 for negative samples. To maximize the width of the hyper-plane,

we need to minimize || ~W || and ~W is computed as
∑
αiyi ~X where αi is a numeric parameter and

yi = 1 for positive samples and yi = −1 for negative samples.
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If the data is non-linear, SVM transforms the data into a higher dimension and then solves the

problem by finding a linear hyper-plane. The kernel used for such nonlinear data is called Gaussian

Radial Basis function(RBF). Our implementation of SVM uses “Linear” kernel and default value of

other parameters provided by scikit tool. We concatenate all review embeddings with their specific

product embeddings to create a 428 dimensional feature vector and train our SVM using this final

embedding vector.

3.3.6 Web Service To Detect User Rating Mismatch

We have also developed a web service that will prevent inconsistent review and rating. As shown in

Figure 3.8, review 3 has an inconsistent review and rating. The sentiment of the review is negative

while the rating given is positive. Our web service tries to prevent such inconsistency by using the

SVM model trained with 3.5 million reviews and their product embeddings to predict the sentiment

class for the given review. If the predicted class and the rating class doesn’t match, a feedback will

be submitted to user so that they can correct their rating if they wish.
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Figure 3.8: Example of Review Rating Mismatch. Retrieved from [SL13].

As shown in Figure 3.9 our webservice takes three inputs a) review text b) given rating c)

product id as shown below.

{

"rating": "5",

"review": "I didn’t like this product. Not worth the price.",

"product_id":"BCX00F5"

}

The 300 dimensional embedding for the review text is predicted by previously trained para-
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Figure 3.9: Architecture of our webservice
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graph vector model. As described earlier, we save product embeddings for all products in a file.

Embedding for the given product id is retrieved by the web service from the file and concatenated

with review embedding to form the final 428 dimensional vector. This vector is then used by our

trained SVM model to predict a sentiment class, if there is mismatch between the predicted class

and the sentiment class the given rating falls under, a feedback is given.

For example, user review as shown below

"rating": "2",

"review": "Bought this for my son to read along with the book (first audio

purchase). To him, reading is a chore and he doesn’t take a lot of enjoyment

from it...but after buying this audio book, and having him read along with

the cd, it made a HUGE difference! The woman reading on the cd read at the

perfect pace and changed up her voice a bit when in different character. It

was just enough to intrigue him to follow along and get lost in the story.

:)",

"product_id":"0545586178"

is of positive sentiment but the rating provided falls under the negative sentiment class. There is

a rating review mismatch therefore our system will provide a feedback message as shown in Figure

3.11. The user can then choose to either change the rating or stick with the same one.
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Figure 3.10: Sample web interface to submit review and rating.
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Figure 3.11: Warning on review rating mismatch.
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Chapter 4

Experiment and Results

4.1 Sentiment Classification using Review Embedding

We first design a “Paragraph Vector” model using Genism framework. 3.5 million Amazon.com

product reviews were converted to 300 dimensional fixed length vector. We train this model for 15

epochs with learning rate 0.025, a window size of 10 and 35 worker threads. The learning rate is

decreased by 0.002 after each epoch. This vector with its corresponding rating was used to train

a SVM. 10-fold cross-validation method was used to evaluate the performance of this SVM. In

10-fold cross-validation, we divide the dataset into 10 different subsets. In each validation, one

of the subsets is used to test the model and remaining 9 subsets are merged to form a training

set. To evaluate the performance of our model, we compute precision, recall, and classification

accuracy. We use “macro” parameter provided by Scikit for computing precision and recall that

calculates the metrics for individual label and computes the unweighted average. Table 4.1 list out

the unweighted average of the parameters at each iteration. The final value of the parameters is the

average of values computed at each iteration. With only review embedding, our model’s precision

score is 0.586, recall score is 0.408, and classification accuracy is 81.29%
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Iteration Precision Recall Accuracy

1 0.5890 0.4051 0.8125

2 0.5693 0.4072 0.8115

3 0.5817 0.4092 0.8128

4 0.6004 0.4091 0.8127

5 0.6028 0.4086 0.8135

6 0.5819 0.4088 0.8138

7 0.5731 0.4077 0.8139

8 0.5859 0.4097 0.8120

9 0.5841 0.4081 0.8123

10 0.5926 0.4115 0.8144

Average 0.58608 0.4085 0.81294

Table 4.1: Precision, Recall, and Classification accuracy of our model in 10-fold cross validation

with only review embedding.

Confusion matrix describing the prediction performance of this SVM in each iteration of 10-fold

cross validation is given in Figure 4.1, 4.2, 4.3, 4.4, 4.5 , 4.6 , 4.7, 4.8, 4.9, 4.10.
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negative neutral positive

positive 4895 115 279681

neutral 2466 95 24037

negative 10554 59 35400

Figure 4.1: Confusion matrix for Paragraph Vector: Trial 1.

negative neutral positive

positive 5373 143 278883

neutral 2563 91 23940

negative 10997 67 35245

Figure 4.2: Confusion matrix for Paragraph Vector: Trial 2.

negative neutral positive

positive 5321 134 279133

neutral 2702 89 23854

negative 11213 42 34813

Figure 4.3: Confusion matrix for Paragraph Vector: Trial 3.
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negative neutral positive

positive 5421 94 279040

neutral 2620 81 23784

negative 11280 32 34949

Figure 4.4: Confusion matrix for Paragraph Vector: Trial 4.

negative neutral positive

positive 5297 75 279474

neutral 2513 67 23815

negative 11148 28 34884

Figure 4.5: Confusion matrix for Paragraph Vector: Trial 5.

negative neutral positive

positive 5414 129 279666

neutral 2614 93 23835

negative 11043 52 34455

Figure 4.6: Confusion matrix for Paragraph Vector: Trial 6.
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negative neutral positive

positive 5235 90 279737

neutral 2680 54 23584

negative 11018 30 34873

Figure 4.7: Confusion matrix for Paragraph Vector: Trial 7.

negative neutral positive

positive 5582 101 278758

neutral 2776 76 24108

negative 11305 36 34559

Figure 4.8: Confusion matrix for Paragraph Vector: Trial 8.

negative neutral positive

positive 5329 88 279008

neutral 2732 73 23714

negative 11158 50 35149

Figure 4.9: Confusion matrix for Paragraph Vector: Trial 9.
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negative neutral positive

positive 5579 100 279491

neutral 2805 83 23740

negative 11436 40 34027

Figure 4.10: Confusion matrix for Paragraph Vector: Trial 10.

4.2 Sentiment Classification using Review Embedding and Product Embedding

In this section, we evaluate the performance of concatenated review and product embedding. As

described in section 4.1, we first generate 300-dimensional embeddings for entire 3.5 million Ama-

zon.com product reviews. We group these reviews by their product and sort them by their posted

time. These grouped and sorted reviews along with their corresponding ratings are the sequence

for a product and are fed to a GRU. The embedding generated at the last time step of the sequence

is treated as the embedding for that product. This product embedding is concatenated with the

review embedding and is used to train an SVM. 10-fold cross-validation was used to evaluate

this model. We compute precision, recall and classification accuracy as computed with paragraph

vector only approach. Table 4.2 lists out the unweighted average of the parameters at each iteration.
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Iteration Precision Recall Accuracy

1 0.5987 0.4183 0.8168

2 0.5940 0.4314 0.8189

3 0.5915 0.4265 0.8185

4 0.5962 0.4252 0.8186

5 0.5844 0.4310 0.8179

6 0.5853 0.4231 0.8186

7 0.5951 0.4249 0.8180

8 0.6016 0.4301 0.8182

9 0.5925 0.4206 0.8179

10 0.6064 0.4211 0.8182

Average 0.5945 0.4252 0.8182

Table 4.2: Precision, Recall, and Classification accuracy of our model in 10-fold cross validation

with both review and product embedding.

Classification using both review embedding and product embedding gave us an increase in

classification accuracy from 81.29 % to 81.82 %, increase in precision from 0.5860 to 0.5945 and

increase in recall from 0.408 to 0.4252. The performance of both the approach is compared in

Figure 4.11.
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Figure 4.11: Comparision of metrics computed by review embedding only approach and both review
embedding and product embedding approach
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Confusion matrix for each iteration of 10-fold validation for this model is given in Figure 4.12,

4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.21.

negative neutral positive

positive 5340 90 279302

neutral 2728 74 23818

negative 12465 42 33443

Figure 4.12: Confusion matrix for review embedding and product embedding approach: Trial 1.

negative neutral positive

positive 6437 126 278078

neutral 3214 99 23264

negative 14442 60 31582

Figure 4.13: Confusion matrix for review embedding and product embedding approach: Trial 2.
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negative neutral positive

positive 5841 121 278749

neutral 3102 88 23481

negative 13642 52 32225

Figure 4.14: Confusion matrix for review embedding and product embedding approach: Trial 3.

negative neutral positive

positive 5723 193 278658

neutral 2979 148 23346

negative 13455 83 32716

Figure 4.15: Confusion matrix for review embedding and product embedding approach: Trial 4.
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negative neutral positive

positive 6469 106 277951

neutral 3330 76 23192

negative 14464 54 31659

Figure 4.16: Confusion matrix for review embedding and product embedding approach: Trial 5.

negative neutral positive

positive 5540 146 279072

neutral 2900 94 23666

negative 13116 58 32709

Figure 4.17: Confusion matrix for review embedding and product embedding approach: Trial 6.
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negative neutral positive

positive 5685 210 278859

neutral 2946 170 23311

negative 13327 112 32681

Figure 4.18: Confusion matrix for review embedding and product embedding approach: Trial 7.

negative neutral positive

positive 6417 216 277914

neutral 3209 175 23214

negative 14165 76 31915

Figure 4.19: Confusion matrix for review embedding and product embedding approach: Trial 8.
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negative neutral positive

positive 5321 68 279574

neutral 2799 49 23857

negative 12722 29 32882

Figure 4.20: Confusion matrix for review embedding and product embedding approach: Trial 9.

negative neutral positive

positive 5233 159 279788

neutral 2838 127 23390

negative 12691 52 33023

Figure 4.21: Confusion matrix for review embedding and product embedding approach: Trial 10.
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Chapter 5

Conclusion and Future Works

From this research, we showed how a powerful deep learning model can be built using “Paragraph

Vector” and “GRU”, which can later be employed to prevent review and rating inconsistencies. We

first employ “Paragraph Vector” to learn the syntactic and semantic relationship of a review text.

We further group and sort review embeddings to form a product sequence which is fed to a GRU

to learn product embeddings. The concatenation of review embedding generated from “Paragraph

Vector” and product embedding generated from “GRU” is used to train an SVM for sentiment

classification. Our classifier gives superior prediction accuracy of 81.82%. We also propose using

this approach to prevent review and rating inconsistencies. We developed a webservice that takes

user review text and given rating and warns if there are any inconsistencies with the given rating

and review.

From our research, we showed how product information can be a powerful feature to be employed

in the task of sentiment analysis. We believe that similar technique can be employed to learn user

information. Tang et al. reported that “sentiment ratings from the same user are more consistent

than those from a different user”. Some users are more lenient and can give much higher ratings

for the same review text compared to critical users. We are motivated to exploit this information

in future.

We would also like to experiment with other deep learning methods of learning distributed

representation of text such as “CNN” and “RNN”. We would also like to experiment with “LSTM”,

“Bidirectional LSTM” and other sequence learning model.
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