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ABSTRACT 

ANALOG AND MIXED-SIGNAL CIRCUIT VERIFICATION USING SATISFIABILITY 
SOLVER ON DISCRETIZED MODELS 

By 

Nikita Ramesh Wanjale 

Dr. Henry Selvaraj, Examination Committee Chair  

Professor, Department of Electrical and Computer Engineering 

University of Nevada, Las Vegas  

With increasing demand of performance constraints and the ever reducing size of the IC chips,               

analog and mixed-signal designs have become indispensable and increasingly complex in           

modern CMOS technologies. This has resulted in the rise of stochastic behavior in circuits,              

making it important to detect all the corner cases and verify the correct functionality of the                

design under all circumstances during the earlier stages of the design process. It can be               

achieved by functional or formal verification methods, which are still widely unexplored for             

Analog and Mixed-Signal (AMS) designs. 

Design Verification is a process to validate the performance of the system in accordance with               

desired specifications. Functional verification relies on simulating different combinations of          

inputs for maximum state space coverage. With the exponential increase in the complexity of              

circuits, traditional functional verification techniques are getting more and more inadequate in            

terms of exhaustiveness of the solution. Formal verification attempts to provide a mathematical             

proof for the correctness of the design regardless of the circumstances. Thus, it is possible to                

get 100% coverage using formal verification. However, it requires advanced mathematics           

knowledge and thus is not feasible for all applications. 

In this thesis, we present a technique for analog and mixed-signal verification targeting DC              

verification using Berkeley Short-channel Igfet Models (BSIM) for approximation. The          
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verification problem is first defined using the state space equations for the given circuit and               

applying Satisfiability Modulo Theories (SMT) solver to determine a region that encloses            

complete DC equilibrium of the circuit. The technique is applied to an example circuit and the                

results are analyzed in turns of runtime effectiveness. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

An analog and mixed-signal circuit (AMS) is an integrated circuit which encompasses digital and              

analog circuits on a single chip. Its design is crucial for embedded system designs and               

microprocessors. AMS circuits can be found as fully functional units or sub-functions of a larger               

assembly. Pertaining to the ubiquity of embedded systems and microprocessors, it is extremely             

crucial that the AMS circuits adhere to design specifications. 

Verification is a process to validate the performance of the system in accordance with desired               

design specifications. At present, digital circuits have well-developed and explored verification           

tools and techniques available. Although the Computer Aided Design (CAD) tools for analog             

circuits have developed significantly in recent years, the verification process, for the most part,              

has remained limited to series of simulations to estimate noise and variation metrics. The              

process still relies solely on the experience of the design engineer for the exhaustiveness of               

simulations. Moreover, due to being labour intensive with little automation, circuit simulations            

take a significantly longer time than its digital counterparts [1].  

The topic of this master’s thesis is to implement Satisfiability (SAT) solver, which is a well                

researched digital verification technique, on discretized models of AMS circuits to achieve            

maximum state space coverage. 
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1.2 Motivation 

During my summer internship as a field application engineering intern at Aldec, which is a               

design verification company, I had the opportunity to work on the Zynq FPGA board and study                

various digital verification techniques. I realized how crucial time-to-market can be in a             

commercial setting, making it extremely important to incorporate a faster verification           

methodology. 

In the semester following the internship, I got familiar with an algorithm which uses FSMs and                

Petri-Nets to represent the AMS circuit [2]. This motivated me to see whether such discretized               

models can be used with a suitable verification techniques, thus allowing more automation in              

the AMS verification process. 

In this work I focus on Satisfiability (SAT) solver and different algorithms that can be used for                 

effective and timely verification. SAT is the problem of determining whether there exists an              

interpretation of variable to satisfy a given formula [3]. All the results and experiments were               

done using software simulations while the work largely depends on hardware aspects. 

1.3 Main Goal 

Main goal of this work is to explain how and why SAT solvers combined with suitable discretized                 

models can increase the level of automation and reduce the runtime of AMS circuit verification.               

Multiple simulations have been performed to implement different algorithms and compare the            

results. 

Understanding the advantages and limitations of these algorithms help decide whether it is             
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commercially favourable compared to current pure simulation-based methodologies. 

1.4 Scope of Work 

This thesis contains 7 main chapters. In this chapter, the problem area is introduced and               

motivations and main goals are described. Then the problem background is discussed, where             

different verification methods are briefly discussed. Third chapter discusses different          

discretization methods and discrete state space modeling is introduced. Fourth chapter talks in             

detail about the SAT solver and its algorithms. Fifth and Sixth chapter describe DC and transient                

verification techniques respectively. The last chapter summarizes all results and observations           

and concludes the work. 
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CHAPTER 2 

BACKGROUND 

In recent years, the growth in compact electronic devices has been tremendous. Moore’s law              

states that the number of transistors on integrated circuit chips has doubled every year since its                

invention. With a steady compression of circuits, the complexity has increased, making the             

validation process absolutely vital. Automation tools have benefitted the EDA industry for            

circuit design, validation and testing for years. However, continuous nature of AMS circuits             

make them unsuitable for these tools. Customized methods need to be used for such circuits.               

Let us discuss the contemporary methods for analog verification. 

2.1 Functional Verification 

Typically, an RTL code is written to interpret the functional description of the circuit. Functional               

Verification checks an RTL design from a functional perspective. It checks the correspondence             

between the RTL description and design specification. Verilog-AMS or VHDL-AMS can then be             

used to simulate different input and state variable combinations.  

In [4], S. Steinhorst and L. Hedrich developed a stimuli generation algorithm to simulate              

different conditions on a discretized state space model. A graph structure is generated as a               

discretized state space model where each state is represented by a vertex. All the vertices               

eventually converge to the DC operating points on the graph. The stimuli generation algorithm              

traverses on the graph to reach all the vertices in optimal number of transitions. 

Pertaining to the high number of potential design states in a large AMS design, functional               
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verification is often unable to provide exhaustiveness necessary for such designs. 

2.2 Formal Verification 

Formal verification techniques take into consideration, all the possible input and state variable             

conditions and generate a state space for the system. Since it inherently considers the entire               

range of values for input and state variables, proofs given by the formal verification techniques               

hold true for the complete state space [5]. Formal verification can be broadly classified into two                

types: ​Theorem Proving Method​ and ​State Space Exploration Method ​[6].  

Theorem proving method develops a mathematical model and proves its correctness according            

to required design specifications. Due to its completeness, automated theorem proving (ATP)            

computer programs are being explored. [7] uses ​MetiTarski, an ATP for inequalities on             

real-valued elementary functions to verify properties of AMS circuits by first obtaining a closed              

form solution to the discrete circuit model and checks properties concerning changes in gain              

and oscillations. 

Dang et al. (2004) demonstrated a formal verification methodology to deal with the dynamic              

behavior of AMS circuits is described by a DAE system: 

                                                                   F(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡), 𝑝) = 0                                                            (1) 

where 𝑥 ∈ R​n denotes the state variables (internal voltages, currents, and outputs), 𝑥̇ denotes               

their time derivatives, 𝑝 ∈ 𝑃 ⊂ 𝑅​m is the parameter vector, and 𝑢 ∶ 𝑅+ → 𝑈 is the input signal.                      

Due to the uncertainty of input, external disturbances and noise can be modeled [8]. To verify                

the time domain properties of the circuit, the set of solutions of the above equation is                
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characterized for all possible inputs and all parameter values p. 

State space exploration method relies on the state space representation of the circuit and              

validates it for all the inputs over the entire range on states. This method allows a crucial                 

advantage over other analog verification methods - ability to automate. Since the number of              

states of a system depends on the number of storage element, it is possible, through loop                

equations, to automate the state space generation. However, it faces an issue of state space               

explosion [9]. 

State space exploration method can further be divided in: ​Equivalence ​ and ​model checking​. 

Equivalence checking method analyzes the functional equivalency of two models of the same             

circuit. The purpose is to replace more complex AMS circuit with a simplified model in a system,                 

provided that the two models are validated to be equivalent. Equivalence checking can also be               

done between models with different levels of abstraction. For example, a netlist can be              

checked again a behavioral model. 

In [10], a linear analog circuit is represented by transfer functions in the s-domain and               

demonstrated an equivalence checking algorithm, while taking parameter variation into          

account. Although this work is limited to only linear circuits, it has been extended to               

accommodate nonlinear circuits in [11]. 

Model checking method is well suited for testing dynamic properties of the AMS system. A               

circuit model is used to check if a certain state is reachable in the complete state space of the                   

system. The property to be checked and the state space of the model are both mathematically                
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formulated and state space exploration is achieved by reachability analysis [12][13]. 

In [14], ​reachability analysis is performed on charge pump phase-locked loops (PLLs) for model              

verification. The main problem of bounded uncertain parameters is resolved by           

over-approximating the effects of the switching conditions with uncertain parameters in linear            

continuous models.  

 

Fig. 1. ​ General Block Diagram of AMS Verification using SAT Solver 

2.3 Overview 

In this work, two approaches with a similar flow are studied for AMS circuit verification. In the                 

first approach, stable DC operating points are determined and the transistor-level circuit            

behavior is inspected. To overcome complex nonlinear equations of certain modern transistors,            

this approach has an intermediate stage to apply SAT solver to simple bound models before               

computing final solution, which includes accurate BSIM model information. The approach is            
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then tested on an example circuit to demonstrate the results. 

Second approach iteratively calculates the next reachable space starting from the initial range             

of the state space. For a large AMS circuit, it is required to consider a conservative bounded                 

behavioral model considering parameter variations and modeling errors. An SAT solver is            

applied to the model to check conservative dynamic properties. The functionality is then             

demonstrated using an example circuit.  
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CHAPTER 3 

DISCRETIZED MODEL GENERATION 

In order to achieve successful verification, discretized model generation method can be seen as              

a bottleneck problem. Modeling the correct behavior is extremely necessary for AMS            

verification. A lot of work has been done to ensure accuracy of the models and gotten                

impressive results [15]. 

In [16], various Piecewise Linearization (PWL) approaches, like simplicial, piecewise and           

constant linearization, are compared against each other in the context of DC equilibrium points              

and transient analyses. This work, although effective, does not take into account the noise and               

process variations in a practical setting. [1] uses stochastic differential equations to model these              

disturbances for modeling and verification of AMS design. 

The discrete model generation technique used in this work is largely motivated by [17]. Discrete               

state space graphical representation has been proven to be an accurate way to capture the               

behavior of AMS circuits. Figure 2 shows the sequential process of obtaining the discrete state               

space for the AMS design. 

3.1 Obtaining DAE System 

Equation (1) depicts description of a nonlinear analog system in terms of a differential              

algebraic equation (DAE). Depending on the number of system variables, majority of AMS             

circuits can be represented by DAEs. Nonlinearities in a system can be arbitrary in theory,               

though they are usually bounded in practice. DAEs of a system can be obtained from model                

9 



 

behavior or netlist. 

Fig. 2. ​Discrete State Space Representation of AMS Circuit 

First, node reference, which is usually ground, in assumed to be node 0 and rest of the nodes                  

are numbered consecutively. Then their voltage/current characteristics and Kirchoff’s laws are           

used to develop a system of equal numbers of unknowns and equations. Let us observe these                

steps through an example. 

Fig. 3. (a) shows the schematic of a series RLC circuit. The netlist of the circuit is obtained from                   

Analog Design Environment (ADE) of Cadence Virtuoso and is used to develop a DAE system               

with Modified Nodal Analysis (MNA) as described above.  

Once the DAE system is obtained, it need to be modified prior to further processing. The DAE                 

system index is directly proportional to the numerical complexity of the system. The higher the               

index, the more difficult it is to solve the DAE system. This work uses topological index                

reduction technique to bring down the number of indices to one. The importance of index               
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reduction and details of the technique are described in [16]. 

 

Fig. 3. ​ Obtaining DAEs from Circuit Netlist 

Apart from index minimization, it is also important to remove singularity in MNA equations to               

avoid mathematical errors while solving the DAE system, as matrix inverse calculations are             

often involved. This is done with an additional step to eliminate excess variables and              

systematically obtaining nonsingular DAE system as described in [17]. 

Once the conditioned DAE system is obtained, a state space representation can be achieved by               

solving the equations. 

3.2 Discrete State Space Modeling 

Since DAE system solution usually involves numerical integrations, it is well known hurdle for              

SPICE and similar simulators. Various techniques have been proposed to solve a DAE system              

numerically [18]. Using discrete time steps, the system is solved at t ​n+1 using backward Euler               

formula -  
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                                       ;          where                           (2)(t , y , ) 0F n+1  n+1  hn+1

y − yn+1 n =  thn+1 = tn+1 −  n  

For this work, Differential Algebraic system solver (DASSL) code has been used to solve AMS               

DAE systems. DASSL approximates the derivative using Backward Differential Formula (BDF).           

Step size is chosen at every step according to the local measurement of integration error. If the                 

integration errors exceeds a threshold, the step size is reduced.  

Having variable step size increases overhead, as DASSL uses a stepsize variable to implement              

BDF formulas and advance the solution for each successor step. To simplify this issue, the               

continuous state space can be divided in sub-parts having homogenous tendencies. The step             

size within each subpart is kept constant. This way, any point in a state space can be traced to                   

its successor location through local stepsize control [19]. 
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CHAPTER 4 

SATISFIABILITY SOLVER ALGORITHM 

Satisfiability (SAT) solver checks for an interpretation that satisfies a given property. If there              

exists an interpretation, then it is considered a satisfiable assignment, else an unsatisfiable             

assignment. For example for an SR flip-flop, is an unsatisfiable condition because       S and R)ϕ = (       

both S and R cannot be assigned a HIGH value simultaneously. However, is            S and ¬R)ϕ = (   

satisfiable as {S = 1, R = 0} is a valid interpretation. 

The exhaustiveness of underlying search algorithm of SAT solvers has proven to be their              

greatest asset for digital hardware verification. Various SAT solver algorithms used for digital             

verification have been discussed in [20]. This work is largely motivated by [21], in which a linear                 

SAT solver, ​fSPICE ​, is used for analog verification. A nonlinear SAT solver, ​iSAT has been used,                

since it can handle both linear and nonlinear constraints. It conveniently represents            

nonlinearity with the use of nonlinear functions instead of approximated linearization methods. 

4.1 DPLL Algorithm 

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a foundation of majority of          

contemporary SAT solvers. The ultimate aim of the algorithm is to either provide a satisfiable    

interpretation or prove that the assignment is unsatisfiable [22]. If satisfiable, the it returns              

assignment to a given problem , which is specified in conjunctive normal form (CNF). CNF ρ      ϕ            

in boolean domain is similar to product of sums in circuits’ perspective. Figure 4 outlines the                

DPLL algorithm. 
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Fig. 4. ​ DPLL Algorithm for Boolean Domain 

The input to the algorithm is a boolean expression ϕ. The first step is to preprocess the input                  

boolean formula and check if there is a non-existent clause or a variable. After the preprocess                

step, the algorithm checks if there exists any unassigned clause. If no such clause exists, then a                 

satisfiable assignment has been found and the output ρ is returned. Otherwise, the algorithm              
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will select an unassigned variable and assign it with a truth value, either TRUE or FALSE.                

Decision step is followed by deduction step. In the deduction step, the algorithm locates each               

unit clause and makes an assignment to let the unit clause to be true. If there is no unit clause                    

left, then the algorithm will go back to the decision step. After the implied assignment is made                 

for the unit clause, the formula will be evaluated. If the result is UNSAT, a source of conflict ϕ​c is                    

combined with the function ϕ to form a comprehensive function. If the resulting function              

comprises of the entire state space, it is proven that it is unsatisfiable and UNSAT is returned.                 

Otherwise, the DPLL algorithm will backtrack and undo all the decisions stemmed from the              

conflict source and restart the process. 

4.2 iSAT Solver Algorithm 

Interval Constraint Propagation (ICP) locates the region in state space containing all the             

solutions returned from the algorithm, based on interval arithmetic. For example, for problem             

constraint a + b = c where a ∈ [-3, 2], b ∈ [-2, 1] and c ∈ [-10, 10], with interval arithmetic,                       

region of c can be contracted from [-10, 10] to [-5, 3]. 

ICP can be incorporated with the DPLL algorithm to contract the real domain. The skeleton of                

the algorithm for iSAT solver is similar to DPLL as shown in figure 5. 

The input to the iSAT solver algorithm is ϕ, an expression in boolean or real domain and a                  

pre-defined threshold ε, for the interval length control with ICP. If the interval length of a                

clause is greater than ε, it is split into two equal parts. The first interval length is then assumed                   

to be the interval length for that clause before testing satisfiability. If the algorithm returns               

UNSAT for both the interval lengths, a conflict set is determined and added to the existing                
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formula ϕ.  

 

Fig. 5. ​ iSAT Solver Algorithm for Real and Boolean Domain 

If the resulting ϕ contains the entire state space, it implies that no solutions exists for the                 

original ϕ. If not, the backtracking process from the DPLL algorithm is executed. Unlike DPLL               

algorithm, the solution given by iSAT solver is a space range containing the point solution,               
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instead of an exact point solution. If the threshold ​ε ​is small enough, the solution can be                  

approximated to the exact point solution. 

A notable advantage of iSAT solver is that it guarantees unsatisfiability. If the algorithm returns               

UNSAT, it is proven that no solution to the given ϕ exists. This feature is used in this work as                    

explained in later chapters. 
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CHAPTER 5 

APPROACH I: DC VERIFICATION 

For the DC analysis of any circuit, we need to identify all the stable DC operating points in the                   

circuit. A DC operating point of a circuit is a set of states at which the system converges                  

eventually for constant input and remains in that state. Transient verification, which is             

discussed in chapter 6, takes the DC operating point as an initial state of the circuit to linearize                  

the nonlinear circuit behavior. It is possible to have no DC operating points, such as in a ring                  

oscillator, where the state keeps oscillating with time. On the other hand, a circuit can have                

multiple DC operating points, as in a Schmitt trigger. 

As discussed in chapter 3, a circuit can be represented by a DAE system shown in equation (3). 

                                                                   F(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡)) = 0                                                                (3) 

                                                           ||𝑥(0) - 𝑥( )|| < ε      where ε > 0                                          (4)∞  

                                                                                                                                       (5)(t) x(∞)lim
t→+∞

x =   

For constant input, i.e. ​u(t) = u(0)​, ​x( is called the equilibrium point of a circuit. A stable       )∞            

equilibrium point is the DC operating point, which may not be the case always. Equation (5)                

formalizes the condition for stability of an equilibrium point [23]. 

As seen above, DC analysis involves two steps. First step is to identify all the equilibrium points                 

and the second step is to find the DC operating points, i.e. stable equilibrium points. 
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5.1 Device Approximation 

SPICE uses device models like BSIM3/4 and PTM, expressed in C or Fortran, which are often                

complex. Such models cannot be handled by the proposed iSAT Solver, and need to be               

abstracted to a simpler form. This can be achieved by curve fitting on BSIM models from [24]. A                  

bounded device model is formed in the following form.  

                                                                                          (6)  Lowerbound (V  , V  , V  , P )I ds ≥  gs  ds  sb   

                                                                                         (7)  Upperbound (V  , V  , V  , P )I ds ≤  gs  ds  sb   

The device model shown by equations (6) and (7) is simpler compared to the complex BSIM                

models in SPICE, but it is guaranteed to bound the accurate I-V characteristics of the devices.                

The parameter term, P, from the equations can be eliminated for modeling fixed device              

parameters, or can be used to model effects of parameter variation. For example, the effect of                

gate width on the transistor performance can be modeled by plugging it in the bounded model                

formulae above. 

In this work, we only model I-V characteristics of devices, but it can be extended to include the                  

effects of process variations as well. 

5.2 Problem Generation and Solution 

Besides having an accurate model for a circuit or a system, it is important to develop an                 

appropriate problem formula ϕ to express the desired behavior precisely. The bounded models             

from equations (6) and (7), along with the Kirchoff’s laws (KVL and KCL), can be used as                 

constraint to generate the expression for ϕ. iSAT Solver is used to find a solution to ϕ. Since ϕ                   
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represents approximation of the circuit, the solution to ϕ itself is not the solution to the circuit,                 

but it is guaranteed to bound the solution to the circuit. This can be explained using an example                  

shown in figure 6. The shaded region is the solution to ϕ and the point of intersection is the DC                    

operating point or the solution to the circuit.  

 

Fig. 6. ​ DC Problem Formulation with Bounded Models 

Since any point within the solution region of ϕ will eventually converge to the DC operating                

point, i.e. the circuit solution, iSAT outputs a point within the solution region. In figure 6, any                 

point within the shaded region can be given as a solution by iSAT, due to its eventual                 

convergence. 

Once a point is found, the subdivision or a ​box of the continuous state space as discussed in                  

chapter 3, containing the point is eliminated from the state space region and the iSAT algorithm                

is re-run to find additional DC operating points, if any. 
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5.3 DC Verification Algorithm 

 

Fig. 7. ​ DC Verification Algorithm 

The input to the DC verification algorithm shown in figure 7 is a set of boxes obtained from the                   

state space representation in chapter 3. The set of boxes are described as a set of constraints.  

In the first step, problem formula ϕ is constructed and fed to the iSAT solver. As described                 

earlier, iSAT solver will return a point in the state space within the solution for ϕ. With the help                   

of pre-defined constraints of the boxes, the box corresponding to the output of the iSAT solver                

is determined. A constraint is added to the formula ϕ, to curtail the box region. The modified ϕ                  
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is fed again to the iSAT solver to find additional solutions, until the solver returns UNSAT. Since                 

the iSAT output guarantees a lack of solution for UNSAT, it is intuitive that the region occupied                 

by the set of boxes, containing solutions to ϕ, is the superset of the solution interval for the                  

circuit. In this work, this region is referred to as the ​candidate region​. 

The run-time and the resolution of the candidate region for the circuit are primarily dependant               

on the size of the boxes. With larger boxes, the candidate region can be found out with much                  

lesser iterations of the iSAT, compared to smaller boxes. However, the candidate region for              

larger boxes is significantly larger compared to the smaller boxes.  

An optimal size needs to be chosen depending on the type of application and its requirements.                

For instance, for a time-intensive application, larger boxes can be chosen to minimize the              

run-time, while compromising the resolution. 

Another way to reduce the size of candidate region is described in [21]. This work combines                

larger boxes with the size reduction technique from [21] to achieve faster run-time with              

optimal resolution. Since both the methods guarantee the inclusion of all possible solutions,             

output region ​S ​ is guaranteed to bound all DC solutions. 

Next section discusses the results of this algorithm using examples of Schmitt trigger and ring               

oscillator. 

5.4 Results: DC Verification of Ring Oscillators 

Ring oscillator is a series of inverters, where the output of the last inverter is fed to the input of                    

the first. It is important to check the stability of equilibrium points of the ring oscillator in order                  
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to avoid it being locked in steady state. Figure 8 shows the schematic of an n-stage ring                 

oscillator. Since the carrier mobility of PMOS transistors is 1/3​rd of that of NMOs transistors, if                

the width of the PMOS transistor is thrice the width of the NMOS transistor, there is an                 

equilibrium point at V​dd​/2. Naturally, since the ring oscillator for odd number of stages keeps               

oscillating, it will not have another equilibrium point. 

 

Fig. 8. ​ Ring Oscillator 

On the other hand, for a ring oscillator with even number of stages, there will intuitively be two                  

additional equilibrium points, i.e. at 0 and V​dd​. 

For the implementation of the DC verification algorithm in figure 7, the transistors are modeled               
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using upper/lower bounds and curve fitting of BSIM3 model simulation results. The results for              

3-stage and 4-stage oscillators with V ​dd​ = 5V are shown in equations 8 and 9 respectively. 

                                               (8) {V   ε [2.499, 2.5], V   ε [2.499, 2.5], V   ε [2.499, 2.5]} S =  1   2   3   

 {V   ε [2.499, 2.5], V   ε [2.499, 2.5], V   ε [2.499, 2.5];S =  1   2   3   

                                                                       (9)  ε [0, 0.001], V   ε [0, 0.001], V   ε [0, 0.001];V 1   2   3   

  ε [4.999, 5], V   ε [4.999, 5], V   ε [4.999, 5]}V 1   2   3   

Run-time (In seconds) 

No. of stages Method in [26] The proposed method Method in [21] 

11 36.73 41.56 51.85 

12 110.76 86.45 129.09 

13 64.89 134.04 368.93 

14 86.85 251.56 1226 

15 134.74 456.87 4072 

16 118.58 535.88 17223 

Table 1. ​ Comparison of Run-time for Ring Oscillators 

The run-time performance of the proposed algorithm is also compared against the algorithm in              

[21] and [26] by varying the number of stages of the oscillator. It is clearly evident in table 1                   

that using this method reduces the run-time significantly compared to [21]. The run-time for              

[26] which uses fixed grid boxes, is less than the proposed method due to simpler algorithm.                

However, designating a fixed size to each box gives rise to over-approximation. The proposed              

method minimizes the over-approximation at the cost of runtime and finds an optimal solution. 
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As discussed in chapter 4, DPLL algorithm incorporates ICP to minimize the solution interval. As               

the ICP interval threshold (​ε​) ​is reduced, the number of iterations and calls to the SAT solver                  

increase exponentially as demonstrated in the algorithm in figure 5. The run-time performance             

of the proposed DC verification algorithm is shown in table 2 for different values of ​ε​. 

Run-time (in Seconds) 

No. of stages ε​ ​= 0.1 ε​ ​= 0.01 ε​ ​= 0.001 ε​ ​= 0.0001 

11 17.88 24.34 41.56 84.58 

12 32.11 55.96 86.45 188.31 

13 64.27 85.49 134.04 225.00 

14 122.17 178.54 251.56 386.47 

15 226.86 311.76 456.87 672.18 

16 290.04 381.63 535.88 882.33 

Table 2. ​ Comparison of Run-time for a range of values of ICP interval threshold (​ε) 

It is thus clear that the selection of ​ε largely depends on the type of application and its needs.                   

For instance, smaller value of ​ε ​will result in faster run-time performance for a time-sensitive                

application.  
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CHAPTER 6 

APPROACH II: TRANSIENT VERIFICATION 

Upon finding the DC operating points of the circuit, it is necessary to analyse the transient                

response of time dependent voltage/ current signal to a given input. Starting from the initial               

condition, which can be either the DC operating point discussed earlier or a user-defined              

condition, the DAE solver described by equation (2) in chapter 3 can be used to calculate the                 

next reachable state of the circuit. In the end, the trajectory approximation can be obtained               

from the given initial condition. 

During transient verification, usually a range of initial conditions is taken to observe the              

dynamic response of the circuit. Naturally, an efficient scheme has to be designed to get               

samples of the initial range of interest. The circuit is then simulated for these samples of the                 

initial range. In this work, two methods of transient verification are proposed with the              

combination of simulation and SAT solver. 

6.1 Reachability Analysis 

Implementing state space exploration method described in chapter 2 for transient analysis, the             

extend of state space coverage is an important consideration. In [21], circuit equations (2) are               

combined together and solved at once with a strategy known as ​unroll ​strategy. Due to the long                 

simulation times usually necessary for the observation of dynamic behavior of the circuit,             

scalability becomes a major issue for the unroll strategy. When thousands of points in the state                

space are involved, it is impractical to use the strategy.  
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Another choice, the ​reachability analysis ​, is proposed in [25]. In this approach, the circuit              

equations (2) are solved one by one as we will see later in the chapter. 

In this work, the homogenous boxes obtained in chapter 3 are used to represent the reachable                

space in the reachability analysis. Figure 9 depicts the algorithm for box-merging. 

 

Fig. 9. ​ Box Merging for Reachability Analysis 
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Fig. 10.​ Box-grid Representation 

Let us take an example to explain the algorithm and its purpose. Figure 10 shows an example of                  

a box-grid obtained from the state space subdivision process discussed in chapter 3. The              

colored enclosed space S is the current reachable space. To represent S in terms of S, the union                  

on 5 boxes - 1, 2, 3, 5, 6 can be used as shown in equation (8) below. 

                                                              ​(10)x, y) ε B     (  1 ⋁ B 2 ⋁ B3 ⋁ B4 ⋁ B5   

As we can see from the example, using a geometrical representation method introduces             

over-approximation. There are spaces in the representation of S which do not belong in S.               

While the variable sized box representation has lesser over-approximation compared to fixed            

size boxes in [26], the number of times the SAT solver is called in the algorithm is higher since it                    

has more number of boxes. Therefore, reducing the number of boxes by merging provides a               

solution for better efficiency.   
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Let us now discuss how the box-merging algorithm works with the help of the example in figure                 

10. The order in which L ​unmerged​ is loaded with boxes can affect the result of the merge. 

Suppose the list is generated by traversing through the state space horizontally, from top to               

bottom, B​1 will be the head and B​6 will be the tail and the L ​unmerged would be {B​1​, B​2​, B​3​, B ​5​, B ​6​}.                      

Initially, L ​merged is NULL. The algorithm checks if the first box in L ​unmerged can be merged with any                  

boxed from L ​merged​. Since, L​merged ​is empty, B​1 is added to L ​merged​. The next box checked in the                  

algorithm is B​2​. Since it can be merged with B​1​, L​merged ​will be modified with a larger box B​12 in                    

place of B​1​. After going through all the boxes in L ​unmerged once, L​merged is loaded as {B​123​, B​56​}. The                   

algorithm will then load the L​merged as L ​unmerged and will empty L​merged for another cycle of                

execution. Every time the algorithm has gone through all the elements of L ​unmerged​, it will check if                 

the unmerged list is same as the merged list, as that would indicate the saturation of solution.                 

The execution will then be stopped and L​merged​ will be return for further operations. 

On the other hand, if the list is generated by traversing through the state space vertically, from                 

top to bottom, The head and tail would still be B​1 and B​6 respectively. However, L​unmerged in this                  

case would be {B​1​, B​2​, B​5​, B​3​, B​6​} and at the end of the execution, L ​merged will be {B​1​, B​2356​}. Figure                     

11 shows the contrast between the result of these two box-merging variations for the given               

example. 

Once the merged boxes are obtained, reachability analysis, introduced earlier in this chapter, is              

used by iteratively calculating the next reachable space from the current reachable space by the               

equation (2). Equation (2) can be seen as a function of the current state, ​x ​k and the next state                   

x ​k+1​, i.e. ​F(x ​k​, x​k+1​) = 0​. 
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Fig. 11.​ Box-merging Variations 

 

Fig. 12.​ Reachability Analysis using iSAT Solver 
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Figure 12 shows the algorithm for reachability analysis using iSAT solver. The input to the               

algorithm is the current reachable set, which is a set of boxes, ​S ​k​. S​k+1​, the next reachable space                  

is set to be NULL. The boxes in S ​k are merged using the algorithm in figure 9. For each element                    

in S​k​, formula F is constructed with the constraints on current and next reachable space and                

iSAT solver is called iteratively until the entire reachable space from that element is retrieved.               

Set S ​k+1 accumulates the solutions after each iteration and returns the next reachable space at               

the end of execution. 

While the solution of transient verification using iSAT solver algorithm is complete, which is a               

strong advantage over simulation-based techniques, it can be combined with transient           

simulation to improve the performance in terms of efficiency. Figure 13 demonstrates this             

algorithm. 

In contrast to the algorithm in figure 12, this algorithm generates a uniform set of sample                

points from the state space at the beginning. Using simulations, the next projected point is               

calculated for each sample point. The union of boxes containing these projected points is              

considered to be the next reachable state space. The remaining unidentifiable space is then              

determined using the iterative execution of iSAT solver. This way, the number of iteration for               

iSAT execution is minimized.  

6.2 Results: Transient Analysis of Tunnel Diode Oscillator Using Reachability Analysis 

Tunnel diode oscillator uses tunnel diode operation for obtaining oscillation. We use the             

reachability analysis algorithm in figure 13 to verify the startup condition of the oscillator. 
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Fig. 13.​ Reachability Analysis using iSAT solver and Transient Simulation 

Figure 14 (a) shows the schematic diagram of the tunnel diode oscillator. The input voltage is                

set to be 2.6V. The time step chosen for the reachability analysis is ​Δt = 0.2 ns. ​The state                       

space is represented by inductor current (I ​L​) and capacitor voltage (C ​V​). The initial range of               

interest in the experiment is I​L [1.6mA, 2.2mA]. The sub-divided state space and the     ε         
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reachability analysis is shown in figure 14(b). The result verifies that the oscillator can generate               

oscillation for any initial state in the given initial range. 

 

Fig. 14.​ Reachability Analysis of Tunnel Diode Oscillator 

Sample 
interval 

No of 
simulations 

Simulation 
time (s) 

No. of calls to 
iSAT solver 

iSAT solver 
time (s) 

Total time (s) 

1/2 0.7M 14.7 29477 7224.6 7239.3 

1/3 1.2M 27.4 26061 6254.0 6281.4 

1/4 1.9M 41.9 23782 4806.6 4848.5 

1/5 2.7M 59.3 21764 4174.1 4233.4 

1/6 3.6M 80.0 19943 3712.4 3792.4 

1/7 4.7M 105.1 21367 4055.2 4160.3 

1/8 5.9M 137.5 22856 4669.4 4806.9 

1/9 7.2M 175.6 23224 4782.1 4957.7 

1/10 8.5M 227.4 24049 5666.0 5893.4 

Table 3. ​ Run-time Performance for a range of sampling interval 
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In table 3, we observe the effect of sampling rate on the number of calls to the iSAT solver and                    

the run-time performance. As can be seen, the increase in the sampling rate leads to increase in                 

the number of simulations and the simulation time. The best suitable sampling rate can be               

found out by observing the trend in the number of calls to the iSAT solver. In this example,                  

sampling rate ⅙ is the most suitable since the number of calls reaches its minimum value at this                  

sampling rate, thus minimizing the total solution time. 

6.3 Possible alternative 

While iSAT guarantees complete coverage, it is also possible to achieve complete coverage by              

using the DC analysis from chapter 5 and generating a stimuli for transient analysis. 

In [4], input stimuli signal is generated using the DC operating points determined and traversing               

through the state space. This method can be combined with the solution of iSAT solver to                

provide a conservative solution and complete coverage. This method can be seen as an              

extension to the DC verification method. First the sub-divided state space is converted to a               

transition system which can be represented by graphical representation, where each box is             

represented by a vertex and a set of arrows representing transitions of states. Figure 15 shows                

an example of the graphical structure for a simple circuit with two state variables. The dark                

coloured vertices represent the DC operating points of the circuit. Since the circuit will be in                

steady state at operating point, they have a loop transitioning to themselves. The unidirectional              

arrows display the dynamic behavior of the circuit. 
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Fig. 15.​ Representation of Transition System by Graphical Structure  

Once the transition system is obtained, input stimuli is generated in such a way that each                

reachable state and transition, i.e. each vertex and edge is traveled at least once. The number                

of transitions need to be minimized to increase the efficiency and run-time of the process.               

Moreover, it is also necessary to periodically visit the DC operating point to recover from the                

extreme vertices in the transition system. The transient analysis is performed using the             

algorithm shown in figure 16. 
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Fig. 16.​ Stimuli Generation Algorithm 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

In this work, we proposed two primary approaches for analog and mixed-signal circuit             

verification using satisfiability solver, i.e. DC verification and transient verification. 

In DC verification, operating points of the circuit are determined using iSAT solver, a nonlinear               

satisfiability solver. BSIM model data is used with bounding conditions to simplify the system              

equations. The algorithm is implemented on a ring oscillator with odd and even number of               

inverters. It is shown that this algorithm reduces the speed-up by approximately 20% compared              

to [21] and the speedup keeps getting higher with increasing number of stages. 

In transient verification, iSAT solver and tradition simulation technique are combined together            

for transient analysis of a circuit. The simulation technique finds out the next reachable space               

before the implementation of iSAT solver to find the remaining reachable space. This reduces              

the number of calls to the solver, thereby making it efficient. The approach is applied on a                 

tunnel diode oscillator and the reachability analysis is demonstrated using the state space             

graphical representation. 

In addition, an alternative technique for transient analysis is suggested. It combines this work              

with [4] to generate a stimuli to apply on the circuit to force the space to traverse through the                   

entire state space region for complete coverage. 
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