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ABSTRACT 

EYE REPAIR IN XENOPUS LAEVIS 

By 

Cindy Xuan-Mai Kha 

Ai-Sun Tseng, PhD, Committee Chair 

Assistant Professor of Biology 

University of Nevada, Las Vegas 

Eye development in vertebrates of complex steps that include specific interactions of the 

neuroectoderm and overlying head ectoderm.  The African clawed frog, Xenopus laevis (X. 

laevis), has a well-characterize eye developmental pathway and is an established model for eye 

regeneration research.  Additionally, Xenopus frogs have high regenerative abilities to regenerate 

individual eye tissues such as the retina, lens, and cornea.  However, it was previously shown 

that the removal of the specified eye field during the neurulation stage or an eye during the 

swimming tadpole stage does not permit an eye to regenerate.  Here we will describe a model for 

investigating eye regeneration.  We discovered that eye regrowth occurs in tailbud embryos after 

the surgical removal of the specified optic vesicle tissues.  Regrown eyes are found to show 

similar morphology and reach similar size to a contralateral, internal control eye by 5 days of 

recovery.  Additionally, the regrown eye has expected eye structures, including all cell types of 

the retina and the lens.  Furthermore, we found that eye regrowth requires an early bioelectrical 

signaling mechanism as seen in appendage regeneration.  Overall, our results indicate that 

Xenopus tailbud embryos can regenerate an eye after tissue lost through a process that requires a 

known mechanism driving regeneration.
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CHAPTER 1 

 

INTRODUCTION 

 

Regeneration is the ability to repair injuries and restore the morphology and functional 

integrity of tissues and organs.  A range of animals display the capacity for tissue regeneration, 

including amphibians and planarians as first described in 1768 from regeneration and 

transplantation experiments by the physiologist, Lazzaro Spallanzani (Spallanzani, 1768).  Even 

as adults, the urodele amphibian, newts can generate their tails, limbs, and ocular tissues 

(Oberpriller and Oberpriller, 1974; Eguchi et al., 2011).  Additionally, the anuran amphibian, X. 

laevis can regenerate tails and limbs (Beck et al., 2003; Lin et al., 2013).  The impressive 

regenerative abilities in these species have contributed significantly to our understanding of the 

complex process of regeneration and have led to important questions in research.  What are the 

mechanisms involved to signal and drive the regeneration process and where the location(s) of 

new source cells is/are from?  Previous research to understand the mechanisms and cellular 

source(s) in amphibians can help understand how some organisms can respond to repair injuries 

for their survival with the goal in regenerative medicine to improve wound healing and 

regeneration in humans.  The ability to do research in amphibians with high capabilities to 

regenerate can provide valuable information for efficient tissue repair and contribute to 

regeneration therapies. 

One vertebrate with high regenerative capability is the African clawed frog, Xenopus 

laevis.  Xenopus frogs have the advantage of being a well-studied laboratory model organism and 

have regenerative abilities seen in tadpole tail regeneration (Beck et al., 2003), gut epithelium 
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regeneration (McAvoy and Dixon, 1977), and eye lens regeneration (Freeman, 1963; Reeve and 

Wild, 1978).   

Xenopus laevis, is one of the most well studied in vertebrate embryology and well used in 

developmental biology.  The female frogs can be induced to produce embryos in any season, 

making it possible to obtain embryos year-round (Parker Jr. et al., 1947).  Embryos are easily 

obtained, the large size makes it easy to perform surgical manipulation at any developmental 

stage, and the ease of injecting a range of materials (e.g. nucleic acids or proteins) into the 

embryos have contributed to the discovery of many genes with key functions in development.  

Furthermore, the genome has been sequenced (Session, 2016).  More recently, X. laevis has been 

established as a model for eye development and regeneration studies (Vergara and Rio-Tsonis, 

2009).  The X. laevis eye model is a useful tool as the frog eye is similar to humans showing 

shared structures and development with only differences in development time (Zuber, 2010) 

(Figure 1). 
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Figure 1. Xenopus eye is similar to humans.  Xenopus eye phenotype has structures similar to 

the human eye such as the transparent cornea in the front of the eye, the lens, and the retinal 

layer leading to the back of the eye.  Orange lines: show similarities between the Xenopus and 

human eyes (image of the human eye adapted from Pearson Education, Inc. 2010). 
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OVERVIEW OF XENOPUS EYE DEVELOPMENT 

 The Xenopus eye has many of the same structures found in a vertebrate eye such as the 

outermost cornea, the transparent lens, and the retina.  Similar to vertebrate eye development, the 

Xenopus eye requires a series of complex steps that include specific inductive signals to the 

anterior neural plate to form structures necessary for future eye development.  The steps for 

Xenopus eye development are compose of a series of retinal cellular differentiation to form the 

retina and the differentiation of lens cells to form the lens (Chow and Lang, 2001). 

During early eye development, the interaction of the neuroectoderm and overlying head 

ectoderm induces a series of events to form the complex eye structures.  During neurulation at 

development stage (st.) 15, the eye field or tissues that are specified to form future eye tissues are 

present with expression of numerous transcription factors known as the eye field transcription 

factors (EFTFs; Zuber et al., 2003).  By early tailbud embryo at development st. 22, the 

invagination of the neuroectoderm forms the distinctive optic vesicles (an outgrowth of the 

neural tube) and part of the head ectoderm thickens by cell elongation and forms the lens 

placode.  Lens specification is established as the optic vesicle interacts with the head ectoderm 

(Henry and Grainger, 1990).  Further through development at the late tailbud embryo 

development st. 27, the optic vesicle further invaginates to form the double layered optic cup, 

with the inner cup forming the neural retina tissue and outer layer forming the future retina 

pigmented epithelium (RPE).  The invagination of the lens placode will give rise to the lens 

vesicle.  Both the invagination of the optic vesicle and lens placode is in tandem (Henry and 

Grainger, 1990). 

In the retina, there are seven distinctive cell types (Figure 1).  The layer of the retina 

closest to the lens is the ganglion cell layer (GCL) that houses the retinal ganglion cells (RGC) 
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and some amacrine cells.  The next layer is the inner nuclear layer (INL) which contains bipolar, 

more amacrine, and horizontal cells.  The outer nuclear layer (ONL) contains the rods and cones 

photoreceptors.  In additional, Müller glial cells span the entire retina from the GCL to the 

photoreceptor cell bodies.  Furthermore, the retinal pigment epithelium (RPE) is located at the 

outermost layer of the retina and the choroid (vasculature of the eye). 

The process of retinal development has been extensively studied in Xenopus frogs.  

Retinal cells are generated from multipotent retinal progenitor cells (RPCs) in early eye 

development.  The RPCs are from the double layered optic cup and are located in the inner most 

layer of the retina (Wetts and Fraser, 1988).  In later eye development after the mature retina has 

been formed throughout the life of the tadpole to an adult frog, the Xenopus retina continues to 

grow and increase in size by adding new cells of all retinal type (Hollyfield, 1971; Reh, 1989; 

Wetts et al., 1989).  This area of cell growth and differentiation is located at the peripheral of 

retina called the ciliary marginal zone (CMZ) and is spatially organized by level of 

differentiation.  The youngest and less differentiated stem cells are located close to the periphery 

of the CMZ at the distal tip, the more differentiated retinal progenitor cells are in the central 

portion of the CMZ, and post mitotic cells that have stop dividing and are further along in the 

process of differentiating are located at the opposite edge.  The presence of structures that have 

retinal stem cells in Xenopus could be a major potential cell source for regeneration studies as 

mammals do not generally show evidence of proliferation at the peripheral edge of the normal 

retina (Araki, 2014). 

 

RETINAL REGENERATION 
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The Xenopus frog can regenerate individual eye tissues such as the neural retina at both 

tadpole and adult stages through the transdifferentitation of the RPE.  The process of RPE 

transdifferentitation can be seen with various manipulations including, chemical ablation (Choi 

et al., 2011), genetic ablation (Martinez-De Luna et al., 2011), and surgical removal of tissues 

(Ide et al., 1988; Vergara and Del Rio-Tsonis, 2009).  Also, adult frogs can repair multiple cell 

types in the retina (Yoshii et al., 2007).   

In previous research, it was shown that when the retina was surgical removed from a 

post-metamorphic Xenopus frog, leaving behind the RPE and CMZ, the retina can partially 

regenerate from the proliferating cells in the CMZ (Mitashov and Maliovanova, 1982).  From 

this, the tissues that remain can be potential sources of cells for repair in the retina.  Recently, a 

study in post-metamorphic frogs following retina removal, leaving the RPE and vascular 

membrane behind, demonstrated the ability of the RPE cells to migrate and attached to the 

vascular membrane to transdifferentiate into neural retina (Yoshii et al., 2007).  Additionally, 

another model system for retinal regeneration was described showing X. laevis tadpoles can 

regenerate a retina after complete surgical removal through the transdifferentitation of the RPE 

in the presence of fibroblast growth factor 2 (FGF2) (Vergara and Rio-Tsonis et al., 2009).  

Furthermore, in the zebrafish, Müller glia cells can regenerate all cell types after damage to the 

retina (Wan and Goldman, 2016).  In Xenopus, Müller glia cells re-enter the cell cycle after 

damage to the retina (Hidalgo et al., 2014). 

 

LENS REGENERATION 

Xenopus tadpoles can regenerate the lens can from the cornea epithelium following 

lentectomy surgery (Freeman, 1963).  However, wounding of the outer cornea fails to initiate 
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lens regeneration.  Only after cornea cells are transplanted back into the eye can a lens regenerate 

from the transdifferentitation of the cornea cells through a series of distinctive steps (Freeman, 

1963).  Until now, research to understand the mechanisms driving cornea to lens regeneration 

has been on tadpole stages as the ability of the cornea epithelium to give rise to a new lens was 

reported to be progressively lost after metamorphosis (Freeman, 1963; Filoni et al., 2009).  

However, recent research show post-metamorphosis frogs can regenerate lens after lentectomy 

from the mature cornea even with missing retina tissue (Yoshii et al., 2007). 

EYE REPAIR 

Xenopus laevis provides numerous advantages for use as an animal model for eye 

research, such as the similarities to a human eye (Figure 1), fast development, and well-known 

eye development pathway.  Additionally, it is a well-established as a model for eye studies of 

single-tissue repair (Beck et al., 2009; Martinez-De Luna et al., 2011). One interesting question 

from these studies that can be asked is if the tadpole lost more eye tissues, would repair still 

occur? However, this question was previously addressed when the eye field was removed during 

the neurulation stage of an embryo and no eye repair was seen (Zuber, 2010).  Furthermore, 

removal of an eye during the swimming tadpole stage shows no regrowth of the eye following 

surgery and recovery (Blackiston and Levin, 2013).   

Preliminary results from the Tseng lab show that an eye can regrow after eye tissue 

removal from the tailbud embryo stage.  To establish this new model, our immediate goal is to 

characterize the regrown eye and compare it to a normally developing eye with three aims:  

Aim 1: Assess if the regrown eye is similar to a normal eye.  

Aim 2:  Define the order of events during eye regrowth. 
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Aim 3: Address the mechanism used in eye regrowth. 

We can further our understanding of the regeneration process in animal models that have 

the capability to regenerate eye structures from this research.  Our long-term goal is to apply 

what is known from our results to other organisms, including humans.  This could have 

significant implications in the development of regenerative therapies for eye related diseases. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

EMBRYO CULTURE 

Xenopus laevis adult frogs were obtained from Nasco (Janesville, WI).  Embryos were 

fertilized in vitro and raised in 0.1X Marc’s Modified Ringer’s (MMR; 10Mm NaCl, 2.0 Mm 

KCl, 1 Mm MgSO4, 2 Mm CaCl2, 5 Mm HEPES, Ph 7.8) solution (Sive et al., 2000).  Embryos 

were grown in petri dishes containing 0.1X MMR at 14-22°C.  All protocols and procedures 

were approved by the University of Nevada, Las Vegas Institutional Animal Care and Use 

Committee. 

 

EYE REGENERATION ASSAY 

Xenopus laevis tailbud embryos at developmental stage (st.) 27 were selected according 

to Nieuwkoop and Faber, 1994, and anesthetized in 0.05% tricaine methanesulfonate (MP 

Biomedicals).  The left optic vesicle tissue was removed using Dumont No.5 forceps under a 

dissecting microscope.  Following surgery, all animals were washed in 0.1X MMR twice and 

transferred to new 0.1X MMR and cultured at 22°C in petri dishes for 5 days and scored for eye 

regrowth.  A scoring method called the regeneration index (RI) was introduced to compare the 

regrowth efficiency of a regrown eye compared to a control eye.  Each regrown eye was assigned 

into one of four phenotype categories for scoring (Figure 2A-D):  

 full, regeneration of an eye comparable to an unoperated control eye (Figure 2A) 
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 partial, misshapen and reduction in eye size (incomplete closure of the choroid 

fissure; Figure 2B) 

 weak, no lens and severely malformed eye with most tissues missing (failure of 

eye development and retinal pigmentation; Figure 2C)  

 none, no regenerated tissues (Figure 2D) 

Based on the calculation of the percentage of the number of individuals grouped to each 

category, each category is then multiplied by 3 (full), 2 (partial), 1 (weak), or 0 (none).  

The resulting number is a value ranging from 0 to 300, constituting the RI.  A value of 0 

denotes no regeneration in any of the individuals, while a value of 300 denotes full 

regeneration in 100% of individuals in a dish. 
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Figure 2. Eye regeneration efficiency based on four phenotype categories. For comparison of 

regeneration efficiency in regenerated eye versus the control eye, a scoring method called the 

regeneration index (RI) was introduced to compare individuals in each dish.  Eye regeneration 

efficiency was scored based on four phenotype categories after 5 days post-surgery (dps).  (A) 

Full, show regeneration of an eye comparable to unoperated control eye.  (B) Partial, reduction 

eye size and misshapen eyes such as the incomplete closure of the choroid fissure.  (C) Weak, no 

lens developed and severe malformed eye with most tissues missing including the failure of eye 

development and retinal pigmentation.  (D) None, no eye tissues regenerated.  Closed 

arrowheads: surgical eye.  Scalebar=500 µm. 

 

 

A     B    C     D 
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EYE TRANSPLANTATION ASSAY 

Tailbud embryos at st. 27 had the left optic vesicle was removed with #5 forceps.  The 

removed tissue was grafted back on to the same animal in a small incision made at the posterior 

end along the body axis as previously described (Blackiston and Levin, 2013).  Following 

surgery, all animals were washed in 0.1X MMR twice and transferred to new 0.1X MMR and 

cultured at 22°C in petri dishes for 5 days and scored for eye regrowth.   

 

INHIBITOR CHEMICAL ASSAY 

Chemical exposure for the loss-of-function experiment was performed with a potent and 

highly-specific V-ATPase inhibitor concanamycin (Woo et al., 1996) at a concentration of 20 

nM.  Stocks were made in Dimethyl sulfoxide (DMSO) at 100 µM/mL.  Immediately after optic 

vesicle surgery, animals were exposed to the inhibitor within 5 minutes for 24 hours.  To stop 

exposure, animals were washed in 0.1X MMR twice and transferred to new 0.1X MMR and 

cultured at 22°C in petri dishes until 5 days after surgery and scored for eye regrowth.   

 

TISSUE PROCESSING AND STAINING 

Tailbud embryos and tadpoles were fixed overnight in MEMFA (100 mM MOPS pH 7.4, 

2 mM EGTA, 1 mM MgSO4, 3.7%(v/v) formaldehyde) solution (Sive et al., 2000).  After 

fixation, animals were washed twice in 1X phosphate-buffered saline (PBS), and dehydrated in a 

graded ethanol series and embedded in Paraplast X-TRA to be sectioned with a Tissue-Tek 

Accu-Cut Rotary Microtome.  In addition, fixed animals were cryoprotected in 20% sucrose and 

embedded in optimum cutting temperature (O.C.T.) solution to be sectioned with an UltraPro 

5000 Cryostat.  Alternatively, fixed animals were embedded in 1% low melting point agarose to 
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be sectioned with Leica VT1000 S Vibratome.  For histological stains, 10 µm paraffin sections 

were stained with Hematoxylin and Eosin (H&E).  For immunofluorescence stains, either 

paraffin, O.C.T. or agarose sections were used.   

Paraffin sections were dewaxed in 100% xylene, rehydrated in a graded ethanol series 

and washed in PBS, and heat induced epitope retrieval (HIER) was performed with 0.01 M 

Sodium citrate (pH 6.0) before rinsed with PBS and PBT (1X PBS, 0.1% Triton X-100).  

Sections were blocked with 10% goat serum in PBT, incubated with primary antibody in PBT 

overnight at 4°C, washed six times at 30 min each in PBT, reblocked with 10% goat serum in 

PBT, incubated with Alexa Fluor secondary antibody used at 1:1000 from Life Technologies 

(Carlsbad, CA) for 2 hours at 25°C, and washed six times at 30min each in PBT. 

Agarose and O.C.T. sections were washed in PBT, blocked with 10% goat serum in PBT, 

incubated with primary antibody in PBT overnight at 4°C, washed six times at 30 min each in 

PBT, reblocked with 10% goat serum in PBT, incubated with Alexa Fluor secondary antibody 

used at 1:1000 from Life Technologies (Carlsbad, CA) for 1 hours at 25°C, and washed six times 

at 30min each in PBT. 

Primary antibodies used include: anti-Glutamine Synthetase at 1:500, anti-Laminin at 

1:300, and anti-Calbindin-D-28K at 1:500 from Sigma-Aldrich (St. Louis, MO); anti-Rhodopsin 

at 1:200 from EMD Millipore (Billerica, MA); Xen1 at 1:100 and Islet-1 at 1:200 from the 

Developmental Studies Hybridoma Bank at the University of Iowa (Iowa City, IA).  DAPI (4′,6-

diamidino-2-phenylindole) from Life Technologies (Carlsbad, CA) was used as a DNA stain. 

 

WHOLE-MOUNT IMMUNOHISTOCHEMISTRY 
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Tadpoles were fixed in MEMFA solution and antibody staining was performed as 

described previously (Sive et al., 2000).  Primary antibodies used include: Xen1 at 1:50 from the 

Developmental Studies Hybridoma Bank at the University of Iowa (Iowa City, IA).  Alexa Fluor 

secondary antibodies were used at 1:1000 from Life Technologies (Carlsbad, CA).  TO-PRO®-3 

(DNA stain) were used from ThermoFisher Scientific (Waltham, MA). 

 

IMAGING WHOLE ANIMALS AND SECTIONS 

 Brightfield morphology of whole animals and H&E sections were imaged on a SteREO 

Discovery.V20 stereomicroscope (Zeiss).  Whole-mount and tissue sectioned 

immunohistochemistry were imaged on a Nikon A1R confocal laser scanning microscope 

(Nikon) or on an Axio Imager 2 microscope (Zeiss).  All acquired images were analyzed on 

either the ZEN Image Analysis software (Zeiss) or FIJI, an open-sourced imaging software 

(Schindelin et al., 2012). 

 

STATISTICAL ANALYSIS 

The raw data from scoring was used for the comparison of the eye regrowth experiments. 

Experiments with multiple treatments were compared using a Kruskal-Wallis test, with Dunn's Q 

corrected for tied ranks. All other experiments were analyzed using a Student's t-test. 
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CHAPTER 3 

 

RESULTS 

 

SURGICAL REMOVAL OF THE OPTIC VESICLE LED TO EYE REGENERATION 

The Tseng lab developed an eye regeneration assay and observed that an eye can 

regeneration after eye organ removal from the tailbud embryo stage.  With this result, the 

regenerate Xenopus tailbud embryo can be used as a new eye regeneration model. The eye 

regeneration assay protocol is described (Figure 3).  Tailbud embryos at development st. 27 

were anesthetized and the optic vesicle tissue was surgically removed with Dumont No.5 

forceps.  Healing was observed after surgery and after five days of recovery, the surgical site 

show regeneration of an eye with similar phenotype to an eye of an unoperated control sibling 

with an RI= 286, total N= 86 (Figure 4D, H).  Brightfield images taken at the initial surgical 

day, 0 day post-surgery (dps), show the area with the removed optic vesicle tissue at 30 minutes 

after surgery where the wound has contracted after healing compared to an unoperated control 

(Figure 4A, E).  Eye tissues had regrown by 1 dps, but it was smaller in size compared to the 

control eye (Figure 4B, F).  By 2 dps, more tissue had regrown and the size differences were not 

as drastic (Figure 4C, G).  5 dps showed the fast process of eye regeneration as there were no 

differences in eye size and morphology between most regenerated eye and control eye (Figure 

4D, H).  Fully regenerated eyes were seen in 90.7% (N=78) of the total population (N=86), 

partial eye regeneration was seen in 4.7% (N=4), weak regeneration was seen in 3.5% (N=3), 

and no eye regenerated individuals were categorized as none in 1.2% (N=1) of the total 

population.  Moreover, there was no developmental delay in the growth of the tadpoles. 
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Figure 3. Eye regeneration assay.  Surgical removal of one optic vesicle tissue at stage 27 

tailbud embryo.  Recovery and eye regrowth at surgical site observed for 5 days post-surgery 

until stage 47 tadpole.  Closed arrowheads: surgical eye, red dotted line: surgical site. 
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Figure 4. Regrowth of eye tissues after surgery compared to unoperated sibling eye. 

(A-H) Brightfield images show initial optic vesicle removal. (A, E) 30 minutes after surgery at 0 

dps compared to a control eye. (B, F) 1 dps eye compared to control, (C, G) 2 dps eye compared 

to control, and (D, H) 5 dps eye compared to control.  RI with full regeneration: 90.7% (N=78) 

of total population (N=86), partial regeneration: 4.7% (N=4), weak regeneration: 3.5% (N=3), 

none: 1.2% (N=1). Open arrowheads: unoperated control eye, closed arrowheads: surgical eye, 

red dotted line: surgical site. RI= 286. Scalebar= 200 µm. 
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BRAIN STRUCTURE IS UNAFFECTED DURING SURGERY 

 Having established that the eye regeneration assay can induce regeneration of an eye that 

is similar to the control eye, we wanted to show that the brain structure is unaffected during 

surgery. We took cross-sections of tailbud embryos at 0 dps after surgery (Figure 5A) and 

stained with hematoxylin and eosin (H&E) to show the undisturbed brain tissue present after 

optic vesicle tissue removal, N=11 (Figure 5B, 5C).  The brain structures appeared 

histologically normal and were present, compared to the cross-section schematic of a tailbud 

embryo, in contrast to the tissues removed at the surgical site.  In addition, to establish the 

presence of the brain tissue, we performed a transverse section of the animal (Figure 6A).  Most 

optic vesicle tissue was removed at 0 dps and the neural tissues remained as identified with 

immunostainings, N=37 (Figure 6B). Xen1 antibody was used to show the remaining neural 

tissues and control optic vesicle and anti-Laminin show the basal lamina to outline the brain 

tissue and optic vesicle.  Minimal disruption was seen in the surrounding tissues compared to the 

tissues removed during surgery.  We further quantified the amount of optic vesicle tissue 

removed during surgery.  For each animal, the section containing the largest amount of eye 

tissues remaining after surgery was measured and compared to the area of the contralateral eye 

(internal control) to determine the percentage of tissue removed following surgery.  The 

comparison between the measurements of the tissue remaining after surgery and the area of the 

contralateral eye were determined with a student’s t-test.  The eye regeneration assay show that 

during surgery, >95% of the area of the eye tissue was removed in 43.2% of tailbud embryos 

used in the eye regeneration assay, N=37 (Figure 7).   
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Figure 5.  Hematoxylin and eosin staining (H&E) show eye tissue removed after surgery. 

(A, B) A cross-section of a stage 27 tailbud embryo show the location of the neural tissues 

flanked by the two optic vesicle showing the lens placode. Red dotted line: sections through the 

optic vesicle. (C) H&E section at 0 dps shows the removal of the optic vesicle after surgery 

leaving the neural tissues undisturbed. Red dotted line: surgical site. N= 11, scalebar= 100 µm. 
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Figure 6.  Immunostaining shows brain structure is unaffected during surgery. (A) 

Schematic of a transverse section through a st. 27 tailbud embryo.  (B) Immunostained sections 

through the optic vesicle after surgery. Yellow arrowheads: surgical site.  Blue: cell nuclei, 

green: basal lamina, red: pan-neural. N= 37, scalebar= 25 µm.  
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Figure 7.  Quantification of optic vesicle tissue removed during surgery. In 43.2% of tailbud 

embryos used for the eye regeneration assay, >95% of the optic vesicle tissue was removed 

following surgery. N=37.  
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SUFFICIENT EYE TISSUE IS REMOVED 

 We found that the eye regeneration assay can induce regeneration of the eye by five days 

of recovery, but we wanted to demonstrate sufficient tissue was surgically removed.  To test this, 

we used a well-established eye transplantation assay (Blackiston and Levin, 2013) with 

modifications to remove eye tissues at the tailbud embryo stage (Figure 8).  Late tailbud 

embryos at developmental st. 27 were anesthetized and the optic vesicle tissue surgically 

removed with forceps.  A small slit was placed in the same animal 1/3 from the posterior end of 

the body axis, in which the removed optic vesicle tissue was grafted.  Following surgery at 0 dps, 

animals show wound healing by 30 minutes post-surgery (Figure 9A).  Wounds are healed by 1 

dps and a regrown eye is present in the anterior head region (Figure 9B).  Additionally, a 

developing eye is seen in a raised pocket of epidermis along the trunk of the individual.  By 5 

dps, transplantation surgery induced an ectopic eye, N=6 (Figure 9C).  Generated ectopic 

developed at the same rate as the regenerating eye in the anterior head region.  Additionally, the 

ectopic eye display similar morphology and mediolateral orientation to the regrown eye with a 

slightly smaller size.  We noted no developmental differences in tissue grafted tadpoles 

compared to an unoperated control tadpole and no abnormal swimming behavior. 
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Figure 8. Eye transplant assay.  Surgical removal of one optic vesicle at stage 27 tailbud 

embryo is transplanted to an incision in the flank, 1/3 from posterior end of body axis. Recovery 

and eye regrowth at surgical site and transplant site were observed for 5 dps until stage 47 

tadpole.  Closed arrowheads: surgical eye, dashed circle: surgical site; dashed line: transplant 

sites, arrow: ectopic eye at the transplant site. 
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Figure 9. Regrowth of eye tissues and ectopic eye after transplant assay. (A) Brightfield 

image showing surgical removal of one optic vesicle at stage 27 tailbud embryo and transplanted 

to an incision in the posterior flank, 30 minutes after surgery at 0 dps. Closed arrowhead: 

surgical eye, dashed circle: surgical site, arrow: transplant site. Scalebar= 500 µm (B) 1 dps 

show tissue regrowth in both surgical and transplant sites. Closed arrowhead: surgical eye, 

arrow: ectopic eye. (C) 5 dps show no differences in eye morphology between regenerated eye in 

the anterior head region and ectopic eye in the flank. Closed arrowhead: surgical eye, arrow: 

ectopic eye. N= 6, scalebar= 500 µm. 
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REGENERATED EYE REGROWS ALL TISSUE STRUCTURES 

 Now that we knew sufficient optic vesicle tissue was removed, we investigated if the 

tissue removed can generate an eye with tissues layers similar to those in a human eye.  We took 

cross-sections of tailbud embryos at 1 dps (Figure 10A) and stained with H&E to observe eye 

regeneration over a five day period (Figure 10B-I).  At 1 dps, there is a difference in size of the 

regrowing eye compared to the unoperated control sibling, N=7 (Figure 10B, F).  From 2 dps, 

the lens have developed and the retina further differentiates to form the distinctive retinal cell 

layers, but the regrown eye has not caught up to the size of the control eye, N= 5 (Figure 10C, 

G).  At 3 dps, the eye has caught up in size comparable to the control eye, N=6 (Figure 10D, H).  

By 5 dps, the regenerated eye is undisguisable in size and morphology to the control eye (Figure 

10E, I) displaying the seven distinctive cell types and lens, N=5 (Figure 10J).   
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Figure 10. Regenerated eye regrows all tissue structures. (A) A schematic cross-section of a 

stage 27 tailbud embryo. Red dotted line: sections through the optic vesicle. (B, F) H&E section 

at 1 dps shows eye tissue growth at surgery site compare to the 1 day control eye.  (C-D, G-H) 2 

dps and 3 dps show differentiated eye tissues of the regrown eyes compared to the control eyes. 

(E, I) By 5 dps, a regenerated eye similar in tissue organization and size is apparent compared to 

the 5 day control eye. 1dps N= 7, 2 dps N= 5, 3 dps N= 6, 5 dps N=5, scalebar= 50 µm. (J) All 

seven layers of the retinal cells and the lens are present in the regenerated eye (schematic of 

regenerated eye adapted from Tseng, 2017). 
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To assess the presence and location of individual eye tissues, we performed 

immunostaining using different retinal cell markers on the regenerated eye as compared to the 

control eye at 5 dps.  We used anti-Islet-1 antibody to label the ganglion cells and populations of 

amacrine, horizontal, and bipolar cells in the inner nuclear layer (Figure 11).  Anti-Rhodopsin 

and Anti-Calbindin-D-28K antibodies were used to label the rods and cones photoreceptors, 

respectively (Figure 12).  Anti-Glutamine Synthetase antibody was used to detect Müller glia 

cells (Figure 13).  Each of the retinal cells types tested were found in the regenerated eye in a 

similar pattern to that of the unoperated control eye.  Brightfield images show the presence of the 

RPE. The presence of RGCs in the regenerated eye show that the GCL was re-established in the 

retina.  Additionally, populations of the INL cells were distinguished by its location within the 

INL.  The amacrine cells are located nearest to the GCL, bipolar cells in the middle, and bipolar 

cells located at the outermost edge of the GCL (Figure 11).  Also, the photoreceptor layer was 

re-established with the rods and cones located in a pattern similar to that of the control eye 

(Figure 12).  Furthermore, Müller glia cells were found extending vertically throughout the 

retina, with the nucleus residing in the middle of the INL (Figure 13).  
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Figure 11. Regenerated eye at 5dps contains the ganglion cell layer and the inner nuclear 

layer. Different retinal cell types identified in eye regenerates comparable to the unoperated 

control eye. Closed arrowheads: INL display amacrine, bipolar, and horizontal cells.  Arrows: 

GCL display retinal ganglion cells.  Red: INL and GCL, Blue: cell nuclei. Scalebar= 50 µm. 
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Figure 12.  Regenerated eye has the photoreceptor layer present. Different retinal cell types 

identified in eye regenerates comparable to the unoperated control eye.  Closed arrowheads: rod 

photoreceptors.  Arrows: cone photoreceptors. Blue: cell nuclei, green: rods, red: cones. 

Scalebar= 50 µm. 
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Figure 13. Regenerated eye Müller glial cells present. Different retinal cell types identified in 

eye regenerates comparable to the unoperated control eye.  Closed arrowheads: Müller glial 

cells. Blue: cell nuclei, green: Müller glial cells. Scalebar= 50 µm. 
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V-ATPASE IS MECHANISM FOR REGULATING EYE REGENERATION 

 To address if the mechanism used in appendage regeneration is an organ-specific 

mechanism or is also found in eye regeneration, we performed a loss-of-function assay (Figure 

14).  The left optic vesicle tissue was removed from late tailbud embryos at development st. 27.  

Immediately after surgery, the individuals were placed in a petri dish with a V-ATPase chemical 

inhibitor, concanamycin at 20 nM for one day and then washed with 0.1X MMR.  The potent and 

highly specific chemical, concanamycin, was used to inhibit the function V-ATPase H+ proton 

pump (Woo et al., 1996).  We observed normal wound healing phenotype and block of eye 

regeneration by 1 dps (N= 6) when compared to an unoperated control sibling (N= 3) and a 

surgical sibling that was treated with only DMSO (N= 3) (Figure 15A).  Furthermore, H&E 

histological cross-sections showed no regrowth of eye tissues by 1dps (N=6) compared the 

DMSO control group (N=4) (Figure 15B).  The exposure to 20 nM concanamycin showed 

strong inhibition of eye regeneration by 5 dps, as the most severe phenotype, N= 5 (Figure 16A).  

Also observed was the absence of toxicity or developmental delays or abnormalities in the 

treated tadpoles compared to the untreated siblings (N=40).  An immunostaining with Xen1 for 

neural tissue further show no eye tissue and optic nerve formation five days after recovery, N=3 

(Figure 16B).  We further quantified the extent of inhibition on eye regeneration based on our 

eye regeneration efficiency score and saw a significant block of eye regeneration as our most 

severe phenotype (Figure 17).  The 20 nM concanamycin treated group had eye regeneration 

seen in 50.3% of individuals and an RI of 151 (N=23), compared to the DMSO control group 

with eye regeneration seen in 94.8% of individuals and an RI of 287.5 (N= 27); Kruskal-Wallis 

test followed with Dunn’s Q show a value of significance at *P<0.01.  Other dosages of the 

chemical were tested and a dose-dependent effect was seen (data not shown). 
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Figure 14. Functional assay to test inhibitors on eye regeneration. Surgical removal of one 

optic vesicle at stage 27 tailbud embryo.  Immediately after surgery, animals are exposed to 20 

nM concanamycin in a petri dish for one day.  5 days after recovery, eye regeneration efficiency 

was scored. Closed arrowheads: surgical eye, dashed circle: surgical site. 
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Figure 15. Inhibition of V-ATPase activity blocks eye regeneration by 1 day. (A) Brightfield 

image show inhibition of eye regeneration in the treatment group compared to a surgical sibling 

with no inhibitor exposure and an unoperated control sibling. Open arrowhead: unoperated eye, 

arrow: surgical eye with no inhibitor exposure, closed arrowhead: surgical eye with 20 nM 

concanamycin treatment. No surgery controls N=3, DMSO treated controls N=3, 20 nM 

concanamycin treated N= 6, scalebar= 500 µm. (B) H&E section at 1 dps shows no eye tissue 

regrowth after 20 nM concanamycin exposure in comparison to a regenerating eye in an 

untreated sibling exposed to DMSO. Arrow: surgical eye control exposed to DMSO.  Closed 

arrowhead: surgical site with 20 nM concanamycin exposure. N=4, scalebar= 100 µm. 
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Figure 16. Inhibition of V-ATPase activity blocks eye regeneration 5 days after recovery. 

(A) Brightfield image at 5 dps show inhibition of eye regeneration in a tadpole exposed to 20 nM 

concanamycin compared to a regenerating eye in a control, untreated tadpole exposure to 

DMSO.  Arrow: surgical eye, closed arrowhead: surgical site. DMSO treated controls N=27, 20 

nM concanamycin treated N=5, scalebar= 500 µm. (B) Immunostained sections through the eye 

of a tadpole after exposure to 20 nM concanamycin show no presence of eye tissue and an optic 

nerve. Closed arrowheads: surgical site. Blue: cell nuclei, green: pan-neural. N= 3, scalebar= 200 

µm. 
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Figure 17. Quantification of inhibition of V-ATPase activity on eye regeneration. Percentage 

of eye regeneration in a DMSO control group compared to eye regeneration in a group after 

exposure to 20 nM concanamycin.  Inhibitor treated group had eye regeneration seen in 50.3% of 

individuals (RI of 151) compared to the DMSO control group with eye regeneration seen in 

94.8% of individuals (RI of 287.5). DMSO control: N=27, 20 nM concanamycin treated: N=23. 

Eye regeneration efficiency evaluated with a Kruskal-Wallis followed by Dunn’s Q, *P<0.01. 
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WINDOW ALLOWING EYE REGENERATION 

Our results show that following one optic vesicle tissue removal of a tailbud embryo, eye 

regeneration occurred.  However, it was previously found that removal of an eye field during 

neurulation or removal of an eye during the tadpole stage does not allow this ability (Zuber, 

2010; Blackiston et al., 2013).  Given these results, we knew that a tailbud embryo can 

regenerate an eye so a competency window for eye regeneration must exist.  To find the window 

that allows for regeneration, we performed the eye regeneration assay from the tailbud embryo 

stages to the early tadpole stages (Figure 18).  The stages are as follows: st. 26 (RI= 272, N= 

25); st. 27 (RI= 277.9, N= 882); st. 28 (RI= 242.1, N= 57); st. 29-30 (RI= 173.1, N=83); st. 31 

(RI= 171.4, N=72); st. 32 (RI= 112.3, N= 77); st. 33-34 (RI= 41.6, N= 82); st. 35-36 (RI= 19.8, 

N=74); st. 37-38 (RI= 0, N= 30); st. 39 (RI= 0, N=33); st. 40 (RI= 0, N=35). We found that a 

window for eye regeneration exists, but there was a decreased in regenerative potential with 

further eye specification. 
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Figure 18. Developmental window allowing eye regeneration.  Percentage of eye regeneration 

in tailbud embryos through early tadpoles with further retina cell differentiation. Stages of 

developmental subjected to the eye regeneration assay are as follows: st. 26 (RI= 272, N= 25); st. 

27 (RI= 277.9, N= 882); st. 28 (RI= 242.1, N= 57); st. 29-30 (RI= 173.1, N=83); st. 31 (RI= 

171.4, N=72); st. 32 (RI= 112.3, N= 77); st. 33-34 (RI= 41.6, N= 82); st. 35-36 (RI= 19.8, 

N=74); st. 37-38 (RI= 0, N= 30); st. 39 (RI= 0, N=33); st. 40 (RI= 0, N=35). 
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CHAPTER 4 

 

CONCLUSIONS 

 

 The Xenopus frog has been widely used in developmental biology and provides many 

advantages as a model for research.  Many molecular and genetic tools are available for use in 

the Xenopus model.  This includes the abilities for targeted gene knock-out, knockdown, and 

overexpression studies.  However, the potential for the multi-tissue eye organ regeneration 

research has not been fully evaluated, with much research dealing with eye tissue regeneration 

focused on individual eye tissue components, such as the retina in later stage tadpoles (Vergara 

and Rio-Tsonis, 2009). 

In this study, a model for eye regeneration following surgical removal of the optic vesicle 

tissue, using X. laevis tailbud embryos is established.  We observed high capacity for eye 

regeneration, generating a complete retina and lens, in vivo during a specific development 

window where the eye tissues are already specified and have started to differentiate.   We 

showed that missing optic vesicles could regenerate an eye undisguisable from a normal 

development eye in phenotype, orientation, and size.  We used histological and molecular 

markers to characterize the regenerated tissues and found all the differentiated cell types 

presence in normal pattern that constitutes a retina.  This suggests that removal of most optic 

vesicle tissue does not change the proper differentiation and patterning of the retina during the 

regeneration process.  Our regeneration assay demonstrated that most of the optic vesicle tissue 

was removed during surgery, but this does not discard the possibility that the remaining RPE is 

still able participate to regenerate the retina (Vergara and Rio-Tsonis, 2009; Yoshii et al., 2007).  
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In a developing visual system of X. laevis, RGCs project axons out from the eye to the 

brain to convey visual information (Rigel and Lom, 2004).  The presence of RGCs in the 

regenerated eye shows that the GCL was re-established in the retina and may suggest the 

possibility of a developed optic nerve.  Our previous lab technician, Julia Lauper, observed that 

the regenerated eye can innervate to the brain through the presence of the optic nerve.  To 

determine if the regenerated eye confers vision to the tadpole, a previously described visual 

preference assay was performed by our undergraduate student, Hyunbae Son (Viczian et al., 

2014).  The initial data demonstrated tadpoles with regenerated eye behaved similar to an 

unoperated control sibling suggesting normal visual function was established. 

In previous research, the modulation of a bioelectrical event, such as the initiation of 

intracellular sodium through voltage-gated sodium channels, is important for tail regeneration 

(Tseng et al., 2010).  The flux of H+ ion flow driven by the V-ATPase pump caused changes to 

membrane voltage potential that are necessary to initiation tail regeneration.  Given the 

importance of the V-ATPase pump to initiate tail regeneration, we wanted to address if this 

mechanism is organ specific during a tail regeneration event or if it has a role in eye organ 

regeneration.  My work suggests that V-ATPase activity contributes to the regeneration specific 

H+ ion flux allowing the eye regeneration program initiate.  This finding is significant as it might 

provide a generate mechanism for regeneration across all organ systems.  Moreover, the ability 

to manipulate this mechanism can potentially initiate a regeneration event to occur even in cases 

where regeneration is limited. 

Overall, our work provides a model for multi-tissue eye regeneration.  The inherent 

ability of the Xenopus eye to regenerate may lead to the possibility of manipulating the Xenopus 

eye at older development stages into entering a regenerative state.   In additional, it may be 
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possible to identify the signaling pathways that are involved during regeneration.  Furthermore, 

if these signaling pathways are found to be evolutionarily conserved, it may lead to future 

regeneration work on other organ systems or animals.  
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