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ABSTRACT

This investigation was conducted to determine the location, nature, and boundaries 

of the most permeable unit within the alluvial aquifer material in Las Vegas Valley. It was 

prompted by declines in specific capacity of about 90% at the Las Vegas Valley Water 

District’s West Central Well Field. It was hypothesized tliat the decline in specific capacity 

resulted from dewatering of the most permeable interval of the alluvium. Lithologie 

descriptions from wells and aquifer test information were analyzed for geologic and 

hydrogeologic variability. New information, in the form of detailed unpublished lithologie 

and hydrologie information, was available from twenty water wells drilled between 1989 and 

1994.

The geology was defined using allostratigraphic units. Allostratigraphic units were 

selected because the alluvium exhibits more lithologie variation within each stratigraphie 

unit than between units. The detailed new information was combined with, and compared 

to, drillers’ logs of older wells. Four (4) allostratigraphic units are introduced in this 

investigation; they have a combined thickness of about 300 meters and cover an area of about 

225 km \ The allostratigraphic units were useful in describing the general shape of 

depositional stratigraphie units within the alluvium.

Ill
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Aquifer test and lithologie information was used to define the boundaries of units of 

differing permeability within the subsurface. These units of differing permeability are the 

six (6) hydrostratigraphic units introduced in this investigation. The most permeable 

hydrostratigraphic unit is a distinct 20 to 90 m thick horizon, lying generally above 230 m 

below land surface. When the production wells were first installed at the West Central Well 

Field in the 1960's, most of the permeable unit was saturated. In 1993 the potentiometrie 

surface was at or below the bottom of this hydrostratigraphic unit.

The results of this investigation are designed to be incorporated into a hydrogeologic 

model of Las Vegas Valley. The model is being developed to predict changes in water levels 

associated with different pumping strategies and thus more accurately predict yields of new 

wells proposed in the area of investigation. This is the first use of either allostratigraphic or 

hydrostratigraphic units in Las Vegas Valley and may be the first investigation to map both 

kinds of units at the same time.

IV
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CHAPTER 1 

INTRODUCTION

This investigation examines the hydrogeologic framework of the alluvium in Las 

Vegas Valley. The investigation is designed to complement related research on the physical, 

hydrogeochemical, and isotopic variation within the alluvial aquifer system and the 

interaction between the aquifers undertaken by the Desert Research Institute (DRI), 

Geoscience Department of the University of Nevada, Las Vegas (UNLV), Las Vegas Valley 

Water District (District), and the U.S. Geologic Survey (USGS).

Purpose

The purpose of this investigation is to identify the spatial occurrence of high and low 

permeability units within the alluvium of the northwest part of Las Vegas Valley (fig. 1) by 

detailed analysis of District and nearby wells. At least one distinct high permeability interval 

of approximately 60 meters thickness can be identified at these wells. The nature and 

boundaries of the permeability intervals (hydrostratigrapMc units) in the alluvium are 

addressed in this investigation.

The recent municipal supply wells drilled by the District between 1989 and 1994 are 

completed (screened/perforated) in predominately coarse-grained alluvial fan sediments on 

the west side of the valley. The distribution of flow rates and reported transmissivity values 

from aquifer tests of some of these new District wells are not adequately explained by

1
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previous descriptions of Las Vegas Valley hydrology. Earlier reports emphasized grain size 

as the primary criterion for dividing the geologic units and the principal feature controlling 

permeability. Within the alluvial fans the lithologie variation is subtle; the primary 

mappable feature is the degree of cementation. This investigation applies two stratigraphie 

methods that are independent of lithology. The hydrogeologic variation is mapped as 

hydrostratigraphic units and the geologic variation is mapped as allostratigraphic units.

Most of the data used in this investigation were collected between 1989 and 1993 by 

District personnel and include detailed lithologie, hydrologie, and geophysical data. The 

District plans to incorporate the results of this research into a new hydrologie model of the 

Las Vegas Valley. The new District model is being developed to predict changes in water 

levels associated with different pumping scenarios in the valley and to more accurately 

predict yields o f new wells proposed for the area of investigation.

Objective

The objective o f this investigation is to develop a hydrogeologic and geologic 

framework to better explain observed variations in permeability found in the northwestern 

part of Las Vegas Valley. To develop this new framework, the four work elements listed 

below were performed.

W ork Elements

1. Document geologic variation within the alluvial-basin fill using allostratigraphic 

units.

2. Determine lateral and vertical variations in permeability by analyzing aquifer test 

data.
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3. Document variability in the potentiometrie surface that may be related to the 

heterogeneity of the alluvial aquifers by collecting static water-level measurements.

4. Describe and analyze the relationship between the allostratigraphic and 

hydrostratigraphic units.

The District is developing a numerical flow model of the Las Vegas Valley based 

upon MODFLOW (McDonald and Harbaugh, 1988). This investigation explains 

hydrogeologic variation within the area of investigation. The greatest range of permeability, 

the least understood controls on permeability, and the largest capacity wells in the valley are 

within the area of investigation. The hydrostratigraphic units described in this investigation 

can be converted to computer modeling units for input into a hydrologie flow model.

Approach

This investigation uses the following approach to accomplish the previously 

described work elements:

1. Review previous work to determine methods used to document hydrogeologic

variation within Las Vegas Valley. In previous reports, drillers' logs were 

interpreted, transmissivity (and/or specific capacity) estimated, and static water- 

levels reported. These traditional hydrogeologic investigation methods are used in 

this investigation.

One of the most important features of Las Vegas Valley hydrology is the 

significant water-level changes reported since the first well was drilled in 1906. 

Most of the in-depth reports on the hydrogeology of the valley quantified the water-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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level changes. Both water-level declines associated with pumping and water-level 

rises associated with injection have been reported.

2. Deteimine the area of investigation through the availability of detailed lithologie and 

hydrologie information. Most of the previous investigations describe hydrogeology 

for the entire Las Vegas Valley. In the eastern part of the area of investigation, these 

earlier reports define the hydrogeologic unit names, intervals of differing 

permeability, and alluvium flow characteristics. This investigation modifies previous 

work and refines previously defined intervals of permeability, within the alluvial fans 

on the west side of the valley.

3. Compile a database of static water-levels, well performance characteristics, aquifer- 

test information, lithologie information from drillers' logs, and detailed well logs. 

Most of these data are unpublished. Obtain historic water-level data from the District 

files, supplemented with limited provisional data of the U.S. Geological Survey 

(USGS). Collect static water-level measurements in October, 1993 specifically for 

this investigation. Obtain well performance characteristics, aquifer test infomiation, 

borehole geophysics, and detailed lithologie information from the files of the District 

and City of North Las Vegas (NLV). Drillers' logs used in this investigation are on 

file at the Nevada Department of Water Resources (State Engineer).

4. Plot the data to determine the spatial variablity and evaluate the geologic and 

hydrogeologic variability within the alluvium. First generate maps, then create cross- 

sections. Calculate and plot contours for numeric data with good spatial control, 

such as water-levels, using the minimum curvature estimation (Briggs, 1974, p. 39)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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package in the SURFER® contouring program. Static water-level measurements are 

important because the effects of water-level declines described in previous reports 

(e.g. Harrill, 1976) have continued. Manually contour quantitative data without good 

spatial control and all lithologie contacts.

This report includes information from previously published reports as well 

as data from wells drilled between 1989 and 1994. These new wells are generally 

deeper than the earlier wells to the east and south. The new wells are typically about 

375 m deep, with the deepest well in this investigation being 495 m deep.

Evaluate both the reported data and data collected between 1989 and 1994 to 

determine the changes attributable to variations in permeability. Transmissivity 

values published in previous reports are of special interest because standard field 

hydrogeologic methods used to determine transmissivity depend on the saturation of 

the units tested. Declining water-levels may cause the variation in reported 

transmissivities between new wells and older wells in the same area. Permeability 

is a fimdamental rock property, but most common aquifer tests stress only saturated 

units.

5. Investigate allostratigraphic and hydrostratigraphic units as a means of reconciling 

anomalous geologic and hydrologie data. Plotted data indicate that geologic units 

are better defined using allostratigraphic units. Similarly, hydrostratigraphic units 

can better describe the observed hydrogeologic variation.

6. Map the geologic variation using allostratigraphic units and the hydrogeologic 

variation using hydrostratigraphic units. Most of the sediments described in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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investigation are alluvial fan deposits. Allostratigraphic units are appropriate 

geologic mapping units because of two features common to most alluvial fans (fig. 

2). First, within the upper (proximal) part of the alluvial fan there is minor lithologie 

variation. Second, within the lower (distal) part of the alluvial fan channelized 

deposits of coarse and fine-grained deposits are intermingled due to reworking of the 

alluvial fan deposits. Allostratigraphic units commonly have more lithologie 

variability within a unit than between units.

Use traditional methods to draw the contacts between both allostratigraphic 

and hydrostratigraphic units. The hydrostratigraphic units are defined using a 

combination of lithologie, physical, and aquifer test data, primarily tfom seventeen 

municipal wells drilled by the District between 1989 and 1994.

Lithologie and hydrologie control is provided by data from 50 other wells. 

These control wells are older District wells. City of North Las Vegas wells, domestic 

wells with water- levels measured by either the District or the USGS, and one City 

of Las Vegas well.

Data documenting general trends, and site-specific, detailed information are 

used to define the continuity, correlation, and boundaries of the units defined in this 

investigation. Static water-levels, geophysical and specific capacity data, and 

lithologie and hydrologie information firom drillers' logs document general trends. 

Detailed lithologie logs, borehole geophysical logs, and aquifer tests are site specific 

types of information. The mapped units are defined by combining both general and 

site specific types o f information.
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7. Compare the newly mapped stratigraphie units to existing defined categories of 

stratigraphie units. This analysis demonstrates both the utility of the types of units 

selected in this investigation and their relationship to the older types of stratigraphie 

units.

Use of Stratigraphie Terms

This investigation uses the ideas and some terminology fi-om several disciplines and 

specialties. These specialties include, but are not limited to, ground-water hydrology, 

surface-water hydrology, mathematical hydrologie fiow modeling, geomorphology, and 

stratigraphy. Words commonly have multiple meanings within a specialty and different 

meanings in different specialties. The word "flow" is a good example of a word with 

multiple meanings. "Flow" may mean a body of sediment as in a "debris fiow" or a volume 

of water such as “the flow rate of the well.”

The use of stratigraphie terms are very important in this investigation. The five most 

important terms are lithostratigraphic units, allostratigraphic units, hydrostratigraphic units, 

aquifer, aquitard, and caliche. This investigation uses new stratigraphie terms to more 

precisely and accurately define the nature of the mapped units. Older stratigraphie, 

hydrologie, and geologic terms are used with specific definitions. The following section 

describes the usage of various terms in this investigation.

The 1983 North American Stratigraphie Code (NACSN, 1983) is the source of most 

of the relatively new stratigraphie terminology used in this investigation, Appendix C is the 

relevant section of the NACSN (1983) describing allostratigraphic units. Appendix D is a 

draft of Seaber's (1992) proposed addition to the 1983 NACSN.
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Lithostratigraphic units and allostratigraphic units are different kinds of geologic 

stratigraphie units used to understand the geologic history of an area. The following 

nomenclature is used within this report:

Lithostratigraphic units (formations) are stratified and tabular bodies that are mapped 

and characterized by lithic character and stratigraphie position (NACSN, 1983, article 22).

An allostratigraphic unit (alloformation) is "... a mappable stratiform body of 

sedimentary rock that is defined and identified on the basis of it's bounding discontinuities." 

The bounding discontinuities are typically depositional hiatuses and erosional 

unconformities. These units are used to distinguish deposits of similar lithology and to 

combine within a single unit deposits characterized by lithic heterogeneity (NACSN, 1983, 

article, 58, in Appendix C). A basin with alluvial fans surrounding a playa is an example of 

an appropriate use of allostratigraphic units identified in the NACSN (1983, p. 866).

In this investigation, the geologic units mapped in both the alluvial fans and playa 

are stratiform bodies of sediment characterized by bounding discontinuities that are marked, 

in part, by caliche horizons. The term allostratigraphic units is used to indicate that the 

mapped stratigraphie units are stratiform but vary internally in lithologie character.

Within the investigated alluvial fans, the botmdaries between the allostratigraphic 

units tend to divide units of similar lithology. Within the playa and at the alluvial fan/playa 

contact, the allostratigraphic unit boundaries tend to divide units of different lithology. The 

important characteristic of an allostratigraphic unit is the bounding discontinuity. Previous 

subsurface investigations (Maxey and Jameson, 1948; Harrill, 1976; Plume, 1989; Morgan 

and Dettinger, 1994) emphasized grain-size as the defining characteristic of both the geologic
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and hydrogeologic units. Allostratigraphic units were not formally defined until 1983 

(NACSN, 1983, article 22).

Hydrostratigraphic and allostratigraphic units are equivalent in the stratigraphie 

hierarchy to lithostratigraphic units. The rank and continuity of the units mapped in this 

investigation are major concerns.

“Hydrostratigraphic unit” is a term for bodies of rock distinguished and characterized 

by porosity and permeability (Seaber, 1988 and 1992, article 98). Aquifer, aquitard, and 

aquifuge are descriptive terms for types of hydrostratigraphic units. Hydrogeologic and 

hydrostratigraphic terminology used in this report are from Seaber's (1992) proposed 

addition to the NACSN (1983). Seaber (1992, article 101(b), in Appendix D) defined an 

aquifer as "... a porous and permeable geologic unit that can transmit significant quantities 

of fluid under ordinary hydraulic gradients." This is one of several definitions of "aquifer(s)" 

existing in the literature and differs from most because saturation is not a defining 

characteristic. Laney and Davidson, (1986, p. 4-6) and Freeze and Cherry, (1979, p. 47) all 

discuss the various uses of the term "aquifer.” Poland and others (1972, p. 2) defined an 

aquifer system as comprised of"... two or more permeable beds (aquifers) separated at least 

locally by aquitards (confining units) that impede ground-water movement but do not greatly 

effect the regional hydraulic conductivity of the system."

In contrast to the term aquifer, the term "aquitard" is applied to units with mappable 

characteristics and low permeability. Seaber (1992, article 101(b)) defined an aquitard as "... 

a permeable and porous geologic unit that is incapable of transmitting significant quantities 

of fluid under ordinary hydraulic gradients.” The major difference between Seaber's (1992,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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article 101(b)) aquifer and aquitard definitions is the ability of the geologic unit to transmit 

water. This ability is related to relative differences in porosity and permeability. Both 

aquifer and aquitard are descriptive terms used in naming formal and informal 

hydrostratigraphic units.

Much of the previous work in Las Vegas Valley was conducted by the USGS. In 

USGS reports, the terms “confining unit”, “semi-confining unit”, and “reservoir” are used 

in preference to the term “aquitard.” Unlike this investigation, the USGS reports in Las 

Vegas Valley were concerned with water supply and therefore emphasized saturated units. 

When the words "aquifers" and "reservoir" are used as the descriptive part of historical 

terms, like "principal aquifers,” the term is bracketed by quotation marks to indicate the 

historic use. Unlike their usage in this report, confinement, saturation, and lithic character 

were all implied in the historic use o f the term. Like the terms used in this report, the 

historical terms distinguish units differing in permeability.

The terms “aquifer” and “aquitard” are used in this report to indicate the ability of 

the unit to transmit fluid and as the descriptive part of hydrostratigraphic units. From large 

to small, the stratigraphie hierarchy of hydrostratigraphic units is: aquigroups, 

aquiformations, aquimembers, and aquibeds (Seaber, 1992, article 101).

Hydrostratigraphic units (aquiformations) is a term for the stratigraphie units that 

control flow though a geologic body and are material units defined by their physical 

properties related to porosity and permeability. Aquifers, aquitards, and aquifuges (Seaber, 

1992, article 101) are descriptive terms used to designate specific hydrogeologic features. 

Saturation and confinement are not fundamental properties of the rock (Seaber, 1992, article
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99(1)) and therefore are not used in Seaber's definition of aquifer, aquitard, and aquifuge.

The term "hydrostratigraphic units" should not be confused with the terms 

"allostratigraphic units" and "lithostratigraphic units.” Allostratigraphic and 

lithostratigraphic units are used to interpret the geologic history of an area (NACSN, 1983, 

articles 22(a) and 24(a), in Appendix C). Hydrostratigraphic units are used to define the 

porosity and permeability (i.e., hydrologie properties) of an area.

The term caliche was coined by Blake (1902, p. 225) for deposits in southern 

Arizona. Caliche has a wide variety of meanings and other terms including: "calcrete,” 

"pedogenic calcrete,” "calcic soils,” "pedocal,” “K horizon,” and "Bk horizon," have all been 

proposed as more suitable terms, especially when inferring genesis (Machette, 1985, p. 3). 

The term "caliche" is used in this investigation to indicate calcium carbonate cementation 

formed at or near the surface by soil processes. Due to the nature of available information, 

the identification of these deposits as pedogenic caliche is not as rigorous as is possible in 

surficial mapping.

The caliche of this investigation may have been caused by either (1) the infiltration 

and evaporation of calcium carbonate-rich waters on the alluvial fans, especially near 

washes, as described by Sowers (1985, p. 75), or (2) évapotranspiration at and near spring 

areas as described by Quade and others (1995, p. 218). Both of these are near-surface soil 

processes.

Maps and well locations use the Universal Transverse Mercator grid in Zone 11, 

North American Datum of 1927 (UTM) projection. This projection, developed by the
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Department of the Army (Pearson, 1990, p. 207), is used on 7.5 Quadrangle maps of the 

USGS. The coordinate system is used to minimize errors in geographic position.

Previous Investigations 

This section describes the previous work on the hydrogeology of Las Vegas Valley, 

and the development history of allostratigraphic units and hydrostratigraphic units.

Las Vegas Valley Hydrogeology 

Ground water in the Las Vegas Valley has been investigated since Carpenter (1915, 

p. 39) reported that there were 125 water wells drilled in the valley. The relationship 

between the hydrogeologic and geologic controls in Las Vegas Valley was first described 

by Maxey and Jameson (1948). The hydrogeology of the valley was subsequently 

investigated by: Domenico and others (1964), Malmberg (1965), Harrill (1976), Plume 

(1989), and Morgan and Dettinger (1994). The valley geology was described by Longwell 

and others (1965). Recent investigations on the hydrogeology of the valley have 

concentrated on geochemistry and stable isotopes of water (Katzer and Brothers, 1988; 

Noack, 1988; and Hines and others, 1993) and subsidence (Bell, 1981; and Bell and Price, 

1991).

Allostratigraphic units 

Although allostratigraphic units were codified relatively recently (NACSN, 1983, 

article 58, in Appendix C), the developmental history of the these units is long (ISSN, 1987). 

The concepts embodied in these units can be traced through sequence stratigraphy (Sloss, 

1963), seismic stratigraphy (Vail and Mitchem, 1977), and geomorphic surface mapping 

(Morrison, 1985).
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Allostratigraphic units are mapped on the basis of bounding discontinuities, typically 

unconformities. Allostratigraphic units are used as mapping units where sediments of 

different age have similar lithology and where sediments of similar age have different 

lithologies. Sequence stratigraphy has been used where similar lithologie assemblages tend 

to repeat (form sequences) over geologic time scales. Both allostratigraphic units and 

sequences are unconformity bound stratigraphie units.

Sequence stratigraphy has been used in marine and terrestrial sediments. Marine 

sequences occur because of changes in sea level. Terrestrial sequences repeat because a 

basin responds to tectonism (Hanneman and Wideman, 1991, p. 1335) or climatic changes 

(Oviatt and others, 1994, p. 133) causing changes in the size of the playa area and alluvial 

fans. Oviatt and others (1994) documented the use of sequence stratigraphy with 

allostratigraphic units in Quaternary sediments in Utah. The primary difference between 

allostratigraphic units and sequences are that sequences are genetic interpretations closely 

tied to age interpretation whereas allostratigraphic units are field mappable units based upon 

bounding discontinuities.

Hanneman and Wideman (1991, p. 1338) used "calcic paleosols" as a boimding 

discontinuity, similar to the use of “caliche” in this investigation. Erosion-resistant caliche 

horizons are good reflectors for seismic stratigraphy which can document continuity. 

Confidence that the caliche represents an unconformity is increased if other pedogenic 

features are present such as other soil horizons or fossils.
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Hydrostratigraphic units

Seaber (1988) proposed hydrostratigraphic units as stratigraphie material units 

defined by the physical properties controlling porosity and permeability, such as the size, 

shape, and orientation of the pores, and the nature of the interstitial material. Several issues 

common to hydrologie investigations were addressed by Seaber's (1992) proposed definition. 

Three o f the most significant issues are: (1) the use of the terms aquifer and aquitard 

(confining unit/semi-confining unit) in a geologic/hydrogeologic context; (2) the relationship 

between the saturated and unsaturated parts of the same hydrogeologic unit; and (3) the 

separation of intrinsic properties of the geologic medium from site specific economic 

considerations.

Seaber's (1988) article on hydrostratigraphic units stressed the need for a stratigraphie 

solution to the issues described above by reviewing the development of the stratigraphie 

codes and the history of hydrogeologic mapping. Maxey (1964), who proposed the term 

hydrostratigraphic units, included both the flow system and the saturation of the geologic 

medium in the definition. Both are transient properties, and are therefore not included in 

Seaber's (1992) proposed addition to the 1983 stratigraphie code (NACSN, 1983).

Aquifers have been named using a variety of criteria (Laney and Davidson, 1986, p. 

17; and Jorgensen and Rosenshein, 1987, p. 210). Some of the criteria include: (1) 

redefining conventional lithostratigraphic units as aquifers and aquitards, (2) naming aquifers 

by geographic area, (3) defining aquifers by purely hydrologie criteria without reference to 

the geologic variations, and (4) defining aquifers by depths below land surface. These 

criteria reflect the focus o f the research and backgrotmd of the researcher, not the variation
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of the geologic medium. Because of this, areas that have been the focus of a wide variety 

of hydrologie investigations have conflicting sets of aquifer names.

For example, in Las Vegas Valley there are at least two sets of aquifer names in use. 

Reports focusing on potential aquifer contamination related to urbanization (Van Denburgh 

and others, 1982; Hines and others, 1993) use aquifer names developed by Kaufinaxm (1978, 

p. 1). Kaufmann's (1978) names are dependent on deptli and independent of geologic 

medium. By contrast, this investigation focuses on the geologic medium and therefore uses 

the aquifer names developed by Maxey and Jameson (1948) and later modified (Malmberg, 

1965; Harrill, 1976; Dettinger, 1987; and Morgan and Dettinger, 1994).

Some problems inherent in the various methods used to define aquifers, were 

described by Jorgensen and Rosenshein (1987) with reference to the "Dakota Aquifer,." 

Many of these problems are related to both Meinzer's (1923) definition of the term aquifer 

and the geologic background of the hydrogeologists naming the aquifers. “Aquifer” is a 

general term that is dependent on the scale of the investigation.

Although Meinzer mentions formations in tlie definition, aquifers are not necessarily 

a lithostratigraphic body and may cross formation boundaries. Meinzer (1923, p. 52) defined 

an aquifer as "A rock formation or stratum that will yield water in sufficient quantity to be 

of consequence as a source of water supply is called an 'aquifer'...” The geologic 

background of many hydrogeologists has led to naming aquifers after the lithostratigraphic 

units containing the aquifers. Inherent in this method is the assumption that the aquifers are 

coextensive with the lithostratigraphic units. This method is flawed for at least two reasons. 

The first is that hydrogeologists are concerned primarily with the openings in the geologic
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medium. These opening are commonly related to alteration and faulting. Conversely, 

lithostratigraphic units are mapped on the basis of lithic character (NACSN, 1983, article, 

22). Aquifers may be composed of several lithostratigraphic units, and the boundaries 

between units may not occur at the lithostratigraphic boundaries. The second reason is that 

aquifers named for the geologic age of the sediments is an incorrect use of stratigraphie 

terminology and may lead to incorrect assumptions about the age of the water in the 

hydrologie unit(s) of interest (Jorgensen and Rosenshein, 1987, p. 210).

Although stratigraphie terms are significant to most geologic and hydrogeologic 

investigations, Owen (1987) described a common confusion of time and place stratigraphie 

terms in geologic investigations. Examples of this confusion are using Early and Late to 

designate sediments and stratigraphie (formation) names to indicate age.

Seaber's (1992, article 101) proposed definition of hydrostratigraphic units recognizes 

aquifers and aquitards as unique stratigraphie bodies mapped and characterized by the 

openings in the rock bodies. The saturation of the rock bodies should not be a criterion in 

the definition of the hydrogeologic framework because: (1) saturation is a transient condition 

of the geologic medium and, (2) hydrologie flow and contaminant modeling efforts are 

commonly concerned with flow in unsaturated parts of an "aquifer.” Seaber's (1992) 

proposal is designed to provide new criteria for naming aquifers in both the hydrogeologic 

and geologic communities. One of the reasons for naming aquifers is to provide a consistent 

framework for hydrogeologic and geologic investigations. When aquifers are named, 

especially if defined as formal stratigraphie units, the differences and relationships between
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the aquifers and other kinds of stratigraphie units such as lithostratigraphic and 

allostratigraphic units must be defined.

Physiographic Setting 

The Las Vegas Hydrographic Basin (fig. 3) o f southern Nevada is bounded by the 

Spring Mountains on the west, the Sheep Range to the north. Frenchman Mountain to the 

east and the River Mountains and McCullough Range to the south. The northern part of the 

hydrographic basin is mountainous. The central and southern parts of the hydrographic basin 

are dominated by a broad alluvial valley surrounded by mountain ranges. The mountain 

ranges in the northern part of the hydrographic basin are generally higher than in the southern 

part. The cities o f Las Vegas, Henderson, and North Las Vegas and Nellis Air Force Base 

are located in the alluvial valley in the central and southern parts of the basin. The eastern 

edge is about 7 km fi-om Lake Mead and encompasses 4,050 km^ in Clark County (Harrill, 

1976, p. 2).

Las Vegas Valley is drained by Las Vegas Wash which is tributary to the Colorado 

River. The valley is arid and most o f the flow in Las Vegas Wash is the result of 

urbanization (Plume, 1989, p. A2). The central part of the valley normally receives 10.5 cm 

per year of precipitation (NOAA, 1994, p. 5, Las Vegas WSO Airport site). The higher parts 

o f the Spring Mountains normally receive greater than 50 cm per year (Emett and others, 

1994, p. 589, Kyle Canyon site).
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Ground-water use

Since the founding of the City of Las Vegas in 1905, the number and areal 

distribution of wells has increased; prior to 1942, ground water was the only water supply 

source in the valley (Maxey and Jameson, 1948, p. 9). The importance of ground water to 

the water supply of Las Vegas Valley has decreased since 1971 because of increased 

importation of Colorado River water and the revocation of ground-water permits by the 

Nevada Division of Water Resources (State Engineer). The largest yearly withdrawal of 

ground water occurred in 1968 (fig. 4).

In 1993, approximately 8.27 x 10’ m  ̂ of water were extracted from the alluvial 

aquifers, about 15 percent of total water used in the valley (Coache, 1995, p. 19). The 

remaining 85 percent of the water supply was imported from the Colorado River at Lake 

Mead. The valley water purveyors, most notably the District, use ground water to meet peak 

water demand in the period from May to October. The production wells, along with 

dedicated recharge wells, are also used to artificially recharge the alluvial-aquifer system 

with Colorado River water from October to May. Between 1988 and May 1994, about 9.90 

X  10 ’ m  ̂ were recharged (E. Cole personal communication, 1994).

The District's and City of North Las Vegas' high capacity wells (100 to 250 d/s) are 

located in the northwestern part of the valley. This area not only has good flow to wells, but 

also the best water quality (Hines and others, 1993) in Las Vegas Valley.
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Area of Investigation 

The area of investigation is located on the piedmont of the Spring Mountains on the 

west side of Las Vegas Valley (fig. 3). The largest surface feature is the Red Rock Alluvial 

Fan. Parts of the Kyle Canyon Alluvial Fan, the zone of coalescence between the two fans, 

and the central playa are also within the area of investigation. The municipal water wells 

with the greatest flow rates in the valley are located within the area of investigation.

Five subareas that differ in both geologic and hydrogeologic characteristics are 

defined 'within the area of investigation (fig. 5). These subareas are:

Subarea 1 — The southernmost lobe of the Kyle Canyon Alluvial Fan and the zone 

of coalescence between the Kyle Canyon and Red Rock Alluvial Fans 

Subarea 2 — The northern lobe of the upper Red Rock Alluvial Fan 

Subarea 3 — The central lobe of the upper Red Rock Alluvial Fan 

Subarea 4 — Lower Red Rock Alluvial fan

Subarea 5 — The central playa, including Tule Flats and the playa beneath the City 

of North Las Vegas and downtown Las Vegas (The main part of the central playa is 

east and southeast of the area of investigation.)

Figure 6 is a map of the public land survey in the area of investigation. This map is 

at the same scale as most of the of the maps of the area of investigation and is provided as 

a separate illustration to simplify the various maps made in this investigation.
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CHAPTER 2 

GEOLOGY

General Geology of Northwest Las Vegas Valley

The most prominent features in northwestern Las Vegas Valley are the Spring 

Mountains, Sheep and Las Vegas Ranges, and the alluvial fans and bajadas at the bases of 

these ranges. Figure 7 is a generalized bedrock map modified from Plume (1989, pi. 1). 

Plume (1989, A4) divided the bedrock into four categories:

1. “Precambrian metamorphic rocks” that include “Gneiss at the base of Frenchman 

Mountain” (Plume 1989, pi. 1). The exposure is small and is excluded from figure 

7.

2. “Precambrian and Paleozoic carbonate rocks” include: Wood Canyon Formation, 

Tapeates Sandstone, Pioche Shale, Lyndon Limestone, Chisholm Shale, Goodsprings 

Dolomite, Pogonip Group, Eureka Quartzite, Ely Springs Dolomite, Lone Mountain 

Dolomite, Sultan Limestone, Monte Cristo Limestone, Rodgers Springs Limestone, 

Bird Spring Formation, and Call ville Limestone. The “Precambrian and Paleozoic 

carbonate rocks” is a partial misnomer because it includes non-carbonate formations.

3. “Permian, Triassic, and Jurassic clastic rocks” include: Coconino Sandstone, 

Toroweap Formation, Kaibab Limestone, Moenkopi Formation, Chinle Formation, 

and Aztec Sandstone.
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4. “Miocene igneous rocks” include: volcanic flows, flow breccias, and shallow 

intrusive rocks of dacite, andésite, and basalt in the River Mountains and 

McCullough Range and also includes quartz monzonite in the McCullough Range. 

Plume (1989, pi. 1) subdivided the Miocene and Pliocene (Tertiary) sediments into 

two categories, “Miocene clastic deposits” and the Miocene(?) Muddy Creek 

Formation. The “Miocene clastic deposits” include the Horse Spring Formation as 

well as a variety of sediments inferred to be older than the Muddy Creek Formation. 

On figure 7, the "Miocene clastic deposits" and Muddy Creek Formation are 

combined into one unit.

The bedrock of the northern Spring Mountains is composed predominantly of 

Paleozoic carbonate rocks. Bedrock lithologie units in the Sheep and Las Vegas Ranges, 

located on the eastern side of the valley, are similar to the northern Spring Mountains and 

Paleozoic carbonate rocks units are assumed to underlie most of the alluvium in the northern 

part o f Las Vegas Valley (Plume, 1989, p. A4).

The southern Spring Mountains are composed primarily of late Paleozoic carbonate 

and siliciclastic rocks and Mesozoic siliciclastic rocks. The northern and southern parts of 

the range are divided by La Madre Mountain. Bedrock adjacent to and, presumably, 

underlying the area o f investigation south of La Madre Mountain is Mesozoic siliciclastic 

rocks. At least four water wells, 2 to 3 km east of the bedrock-alluvium contact, penetrate 

Jurassic age Aztec Sandstone southwest of La Madre Mountain.
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Alluvium

The alluvium in Las Vegas Valley ranges in age from Miocene to Quaternary (Plume, 

1989, A4). The central part of Las Vegas Valley (playa) is dominated by fine-grained 

sediment (silts and fine sands) and the basin margins are dominated by coarse-grained 

alluvial fan sediments (gravel and sands). Most of the available lithologie data are from the 

upper 305 m of alluvium. Table 1 is part of Harrill’s (1976, p. 6) description of the 

sediments o f this interval.

Most of the exposed alluvium in the area of investigation is mapped as Quaternary 

in age. Some of the sediments, high on the alluvial fans west and north of the area of 

investigation and within the central playa may be Pliocene or older (Sowers, 1985; Matti and 

others, 1987; McDoimell-Canan, 1989).

Coarse-grained alluvial fan and fine-grained spring (paludal) and playa deposits are 

the most common Quaternary sediments in the valley. The alluvial fan deposits are not part 

of a formal unit, although the spring and wet playa deposits are either the Quaternary Las 

Vegas Formation of Longwell and others (1965, p. 50) or possibly Tertiary Muddy Creek 

Formation. Throughout much of the valley, the total alluvium thickness is over 1,225 m and 

is at least 1,525 m thick in the central part of the valley (Plume, 1989, p. Al).

Previous investigations of the geology and hydrogeology in Las Vegas Valley have 

used lithostratigraphic units to describe the alluvium. The lithostratigraphic units most 

commonly used are the Miocene Horse Spring Formation, Miocene(?) Muddy Creek 

Formation, and the Late Quaternary Las Vegas Formation.
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Table 1. — Alluvial lithologie units described by Harrill (1976, p. 6, part of table 1)

A g e L ith o lo g ie  u n it T h ic k 

n e ss
[m e te rs ]

L ith o lo g y O c c u rre n c e

Q u a te rn a ry
(P le is to c e n e
a n d
H o lo c e n e )

S u rf ic ia l
D e p o s its

15± U n c o n so lid a te d  g ra v e l, s a n d , s i l t ,  a n d  c la y O c c u rs  th ro u g h o u t a re a  o f  v a lle y  fill. E x p o su re s  n o t  
c o n tin u o u s  b u t  a re  l im ite d  to  a re a s  o f  H o lo c e n e  a n d  L a te  
P le is to c e n e  d e p o s itio n . O n  a llu v ia l fa n s  u n i t  c o n s is ts  o f  
s tre a m -c h a n n e l a n d  s lo p e  w a s h  d e p o s its . In  lo w e r  p a r ts  o f  
th e  v a lle y , u n it  o c c u rs  a s  fa ir ly  e x te n s iv e  d e p o s its  o f  sa n d , 
s i l t  a n d  g ra v e l

Q u a te rn a ry
(P le is to 
c e n e )

L a k e  a n d  p la y a  
d e p o s its  
( in c lu d e s  L a s  
V e g a s  
F o rm a tio n )

9 0 ± P re d o m in a te ly  c la y , s il t ,  a n d  f in e  sa n d . 
C o n ta in s  so m e  re g u la r , th in  b e d d e d  la y e rs  o f  
sa n d  a n d  g ra v e l.

E x p o se d  a t  b a se  o f  a llu v ia l fa n s  a lo n g  th e  w e s t  s id e  o f  
v a lle y ; a s  p ro m in e n t la k e -b e d  d e p o s its  a t  n o r th w e s t  e n d  o f  
s tu d y  a re a ; a n d  a s  ir re g u la r ly  e x p o se d  d e p o s its  in  c en tra l 
p a r t o f  v a lle y . W e ll lo g s  in d ic a te  u p p e r  v a lle y - f i l l  d e p o s its  
in  c e n tra l p a r t  o f  th e  v a lle y  c o m m o n ly  c o n s is t  o f  a  
s e q u e n c e  o f  s ilt, c la y  a n d  c a lic h e .

Q u a te rn a ry
(P lie s to -
c e n e )

F a n g lo rn e ra te  
a n d  v a lle y  f lo o r  
d e p o s its

3 0 5 ± O n  a llu v ia l fan , p re d o m in a te ly  g ra v e l a n d  sa n d  
w ith  so m e  s i l t  a n d  c la y . D e p o s its  m a y  b e  w e ll 
c e m e n te d  w ith  c a lic h e .
O n  v a lle y  f lo o r, g e n e ra l ly  s i l t  a n d  c la y  w ith  
in te rb e d d e d  sa n d  a n d  g ra v e l. L ith o lo g y  s im ila r  
to  o v e r ly in g  la k e -b e d  a n d  p la y a  d e p o s its . U p p e r  
c o n ta c t  a rb itra r ily  p la c e d  a t  to p  o f  f irs t 
s ig n if ic a n t  w a te r  p ro d u c in g  s a n d  o r  g ra v e l.

O c c u rs  th ro u g h o u t a re  o f  v a lle y  fill.
E x p o se d  a s  a llu v ia l fa n s  b u t  g e n e ra lly  c o n c e a le d  b y  
su rf ic ia l d e p o s its  o r  la k e  a n d  p la y a  d e p o s its  o n  v a lle y  
flo o r.

T e rtia ry M u d d y  C re e k  
F o rm a tio n

1 2 2 0 ± S ilt , a n d  c la y  w ith  s a n d s to n e  w ith  so m e  le n se s  
o f  p e b b le  c o n g lo m e ra te . L o c a lly  c o n ta in s  sa l t  
a n d  g y p su m  b e d s .
In te rs tra tif ie d  b a s a lt  f lo w s  in  s o m e  a re a s .

F o rm s  p ro m in e n t b lu ffs  in  so u th e a s t  p a r t  o f  th e  v a lle y . 
A lso  e x p o se d  n o r th  o f  a n d  so u th  o f  F re n c h m a n  M tn . 
P ro b a b ly  u n d e r lie s  Q u a te rn a ry  v a lle y - f il l  d e p o s its  
th ro u g h o u t m u c h  o f  v a lle y .

U>O
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The type sections of the Tertiary units are located near Lake Mead east of Las Vegas 

Valley. In both the Lake Mead area, where there is good exposure, and in Las Vegas Valley, 

where the Tertiary units are buried, the boundary between these lithostratigraphic units is 

difficult to identify. The different criteria used to distinguish these units in the Lake Mead 

area can be found in Bohannon (1984) and Duebendorfer and Wallin (1991), and in Las 

Vegas Valley in Bell (1981) and Plume (1989).

The type section of Las Vegas Formation of Longwell and others, (1965, p. 52) is 

located north of the area of investigation in fine-grained sediments near Tule Springs. This 

name is restricted to the fine grained-deposits near Tule and Com Creek Springs, and other 

parts of Las Vegas and adjacent valleys. The surficial deposits were mapped in detail by 

Haynes (1967). Prior to the 1970's, the fine-grained deposits near Tule Springs were thought 

to be result of a lacustrine depositional environment (Carpenter, 1915, p. 16; Maxey and 

Jameson, 1948, p. 66; Longwell and others, 1965, p. 51; Haynes, 1967, p. 21). Mifflin and 

Wheat (1979, p. 27) rejected the hypothesized Pleistocene Lake Las Vegas by documenting 

that the fossil and stratigraphie evidence for this lake could have originated in a paludal 

depositional environment.

Subsequent research, primarily by Quade (1986; Quade and others, 1995), at Com 

Creek Springs and other spring areas in southem Nevada support a paludal environment of 

deposition for the fine-grained deposits. The contemporaneous alluvial fan sediments are 

not included in the Las Vegas Formation because it is a lithostratigraphic unit.

The area of this investigation is within the pediment of the Spring Mountains. Most 

sediment is alluvial fan deposits composed of at least 60 percent gravel-sized clasts derived
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from Paleozoic carbonate rocks in the Spring Mountains at least 470 m deep. The alluvial 

fan sediments are not part of any formal stratigraphie unit. The surficial sediments were 

mapped by Longwell and others (1965) on the Clark County geologic map simply as 

Quatemaiy alluvium. Harrill (1976, p. 6) informally assigned the upper 305 m of subsurface 

alluvial fan deposits to a Pleistocene "Fanglomerate and valley-floor deposits" lithologie 

unit. Harrill (1976, p. 6) also assigned the sediments below this to the Tertiary "Muddy 

Creek Formation" which was described as a fine-grained unit.

Coarse-grained alluvial fan deposits as deep as 470 m below land surface (bis) are 

described in this present investigation. This implies that either the bottom of the 

"Fanglomerate and valley-floor deposits" is deeper than previously described, or that the 

"Muddy Creek Formation" is coarse-grained in at least some parts of the area of 

investigation.

The sediment described in this present investigation are assumed to be both Tertiary 

and Quaternary in age, and only the uppermost unit outcrops in the area o f investigation. 

The maximum thickness o f units similar in lithology to the surficial deposits where fossils 

and/or isotopic ages were obtained is less than 100 meters. Sowers (1985, p. 20) collected 

isotopic age samples from the surface o f the Kyle Canyon Alluvial Fan. All of the valid 

samples were less than 120,000 years ± 25,000 years before present (bp). Carbon 14 ages 

collected by Spaulding (personal communication, 1992), near Tule Springs were less than 

30,000 years bp.
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Applicability of Allostratigraphic Analysis

Many of the features used to identify surficial units, such as angular unconformities, 

could not be identified with the presently available subsurface information. The unit bottoms 

cannot be observed in surficial expression and the thickness and areal extent of the units are 

impossible to determine. In the subsurface, all of the units in the central part of the valley 

tend to be dominated by fine-grained sediments. Coarse-grain sediments dominate the 

alluvial fans at the base of the ranges surrounding the valley. Figure 8 is a detail of Plume's 

(1989, pi. 1) map of the surficial expression of fine- and coarse-grained alluvial sediments.

Allostratigraphic units rather than lithostratigraphic units are used for the alluvium 

in the area of investigation due to the previously described difficulties in working with 

named lithostratigraphic units. These units require more evidence for formal designation 

than is given here; however, as informal units they are useful in this investigation.

Allostratigraphic units are recognized in the Code of Stratigraphie Nomenclature 

(1983, article 58, in Appendix C) as appropriate for basin-fill deposits. These units are 

defined by bounding discontinuities which are commonly unconformities. The lithologie 

character of each unit is commonly diverse and boimdaries between units may divide 

sediments of similar lithology (fig.2, p. 10). The bounding discontinuities used in this 

investigation are buried caliche horizons in the alluvial fan and playa sediments.

Although this investigation is designed to improve the hydrogeologic understanding 

of the alluvial aquifers, the approach is influenced by stratigraphie principles. The nature, 

boundaries, continuity, and stratigraphie rank of each unit are important in this investigation. 

For these reasons, several stratigraphie units are informally named.
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The sediments most closely researched in this investigation are within the upper 250 

m of alluvium, informally named the Lone Mountain Allogroup. This unit is an 

allostratigraphic unit because it is defined by its bounding discontinuities. It is an allogroup 

because it is composed of two to three units of alloformation rank. The upper 30 to 75 m of 

the Lone Mountain Allogroup constitutes a distinct alloformation, informally named in this 

investigation the Tule Springs Alloformation.

Structure

Major structures in the northern Las Vegas Valley shown on figure 7 are the 

Mesozoic thrusts, folds, and normal faults in the Spring Mountains; the Miocene Las Vegas 

Valley Shear Zone; and Quaternary fault scarps in the central part of the valley.

Mesozoic thrusting and normal faulting were the first major structural disturbances 

within Las Vegas Valley (Plume, 1989, p. A7). This tectonism produced a complex series 

of thrust blocks exposed in the Spring Mountains. The oldest and best exposed of these 

thrusts is the Sevier age or older Red Springs-Contact-Wilson Cliffs Thrusts which Burchfiel 

and Davis (1988, p. 91) describe as a single thrust.

Cambrian Bonanza King Formation structurally overlies Jurassic Aztec Sandstone 

in typical exposures of this thrust. The easternmost surficial expression of this thrust is about 

3.5 km east of the area o f investigation, at the intersection of Sections 15,16,21 and 22 of 

T20S, R59E, Mount Diablo Baseline and Meridian (MDBM) (Axen, 1985, fig. 2).

Evidence from water wells penetrating bedrock in the western part of the area of 

investigation suggests that this thrust is buried beneath the alluvial sediment of Section 12, 

T20S, R59E, MDBM. The exposed bedrock in this area at the eastern end of La Madre
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Mountain (Sections 2, 11 and 12 T20S, R59E, MDBM) and Lone Mountain (Section 6, 

T20S, R60E, MDBM) are Paleozoic carbonate rocks comprising the upper plate of this 

thrust. A water well in Section 12 and three water wells in the adjacent sections (Sections 

5,7, and 8, T20S, R60E, MDBM) penetrate Aztec Sandstone, the lower plate of this thrust. 

The thrust must therefore be located west of these four water wells and east of the exposed 

bedrock.

Burchfiel and Davis (1988, p. 91) report that the thrust exposed higher on La Madre 

Mountain is the younger Keystone Thrust. The thrusts exposed on La Madre Mountain 

separate lower plate, upper Paleozoic carbonate rocks and Mesozoic siliciclastic rocks in the 

southern Spring Mountains from the upper plate, lower Paleozoic carbonate rocks in the 

northern Spring Mountains.

Emplacement of the right-lateral Miocene Las Vegas Valley Shear Zone with 

approximately 65 km of strike-slip displacement (Plume, 1989, p. A7) was the next major 

structural disturbance in Las Vegas Valley. The shear zone cuts across the northern part of 

the valley with a west-northwestern orientation (Plume, 1989, p. A7). The “bending” of 

topographic features in the northern part of the valley was noted by Longwell and others 

(1965, p. 62) in their report on Clark County. Recent work by, Bohannon (1984), Wernicke 

and others (1984), Guth and others (1988), and Duebendorfer and Wallin (1991) both east 

and west of Las Vegas Valley have placed limits on the age of deformation as Miocene and 

placed the shear zone in a larger structural context.

Normal faults cut the alluvial sediments in the central, eastern, and southern parts of 

Las Vegas Valley (figs. 7 and 8). The time of initiation and origin (tectonic or compaction)
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of most of these structures has not been determined. Haynes (1967, p. 55) documented a 

tectonic origin for the Eglington Scarp. These structures cut Quaternary sediments and 

therefore are assumed to be Quaternary in age. The importance of the structures on the 

hydrogeology of the valley has not been quantified, although the structures may be conduits 

for ground-water movement between aquifers.

Geologic Features of Area of Investigation 

The deposits in the area of investigation were mainly derived from two watersheds 

in the central Spring Mountains (fig. 3). The larger and southernmost alluvial fan is the Red 

Rock Alluvial Fan investigated by McDonnell-Canan (1989). North of the Red Rock 

Alluvial Fan is the Kyle Canyon Alluvial Fan investigated by Sowers (1985), and a zone of 

coalescence between the two alluvial fans (fig. 5). The alluvial fans are separated by La 

Madre Mountain with the zone of coalescence located east and north of Lone Mountain. No 

perennial streams flow fi'om these watersheds and parts of the associated alluvial fans are 

derived fi'om intermittent flows. The northeastern part of the area of investigation is located 

in the Tule Flats part of the central playa and the sediments are composed of fine-grained 

deposits derived fiom the Kyle Canyon Alluvial Fan and the Sheep Range Bajada. The 

Sheep Range is lithologically similar to the northern Spring Mountains and the sediment 

derived fiom both ranges is lithologically similar.

General Geology of Subareas 

Five subareas (fig. 5) with differing geologic and hydrogeologic character are defined 

in this investigation (p. 23). Each subarea is dominated by different aspects of the alluvial 

fan depositional system. Some areas are dominated by proximal coarse-grain alluvial fan
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sediments while other areas are dominated by fine-grained distal alluvial fan, spring, and 

playa deposits.

The subareas are roughly triangular or arcuate shaped because the areas are segments 

o f alluvial fans or are bound on the edges by alluvial fans. The boundaries of areas 

designated as lobes are determined by changes in slope transverse to the topographic contour 

lines.

The alluvial fans are elongated along the central axis o f the fans. The elongation of 

the fan at the axis is not unique to the Kyle Canyon and Red Rock Alluvial Fans. Bull (1964, 

p. 114) reported a similar elongation in 75 alluvial fans in California. French (1992, p. 1006) 

evaluated an additional 19 alluvial fans in California and Nevada and documented that this 

elongation trend has statistical significance and may be normal for most alluvial fans.

The surficial sediments in the central lobes of the Kyle Canyon and Red Rock 

Alluvial Fans are strongly cemented by calcium carbonate. The areas designated as the 

northern and southern lobes are distinctly part of the alluvial fans but are generally not as 

strongly cemented as the central lobes.

Subarea 1 (Kyle Canyon Alluvial Fan, southern lobe)

The southern lobe of the Kyle Canyon Alluvial Fan, as described by Sowers (1985), 

is covered by sand- and gravel-sized sediment derived mostly fi'om Lower Paleozoic 

carbonate rocks in the northern Spring Mountains. The coarse-grained alluvial fan sediments 

partially cover the fine-grained sediments of the Las Vegas Formation of Longwell and 

others (1965, p. 50) where these units are in contact at Tule Springs (Haynes, 1967, p. 27; 

Sowers, 1985, p. 22).
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Caliche is abundant in this area, as it is on all of the alluvial fans on the west side of 

Las Vegas Valley (Sowers, 1985; McDonnell-Canan, 1989). The amount of caliche varies 

(Stage III to VI+ using the criteria o f Bachman and Machette, 1977, p. 40) across the fan 

surfaces and is best developed in the central lobe of individual alluvial fans. The caliche on 

the southern lobe of the Kyle Canyon Alluvial Fan (Sowers, 1985, fig. 4) is not as abvmdant 

as on the central part of the alluvial fan.

Based on drillers' logs. Plume (1989, pi. 2) described the subsurface deposits as 

heterogeneous mixtures of coarse-grained sediments with silt. Most of the drillers' logs fi'om 

this area describe the dominant lithology as gravel with silt. By contrast, gravel with sand 

is the most common lithology in the other parts o f the alluvial fans on the west side o f the 

valley. The relative abundance of silt has a distinct effect on the hydrogeologic properties 

of this area, especially when combined with the caliche and/or calcite cementation.

The southern lobe of the Kyle Canyon Alluvial Fan has no mapped faults, similar to 

most of the areas domhiated by coarse-grained sedimentation. The Quatematy faults mapped 

by Bell and Price (1991, pi. 2) are located to the east, in the Tule Flats area.

The southern lobe of the Kyle Canyon Alluvial Fan and the zone of coalescence 

between the Kyle Canyon and Red Rock Alluvial Fans are characterized by (1) coarse

grained deposits dominated by gravel-sized clasts of carbonate rocks, (2) abundant caliche 

or calcite cementation, (3) a relatively high percentage of silt compared to similar areas in 

the Red Rock Alluvial Fan and other parts o f the Kyle Canyon Alluvial Fan, and (4) a lack 

o f fault scarps.
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Subarea 2 (upper Red Rock Alluvial Fan, northern lobe)

The second subarea is the northern lobe of the upper (proximal) Red Rock Alluvial 

Fan. Similar to the Kyle Canyon Alluvial Fan, the boundary between the lobes is placed at 

a break in slope perpendicular to the topographic contour lines. Also similar to the Kyle 

Canyon Alluvial Fan, the surficial sediments of the central lobe are more strongly cemented 

than the northern lobe (McDonnell-Canan, 1989, pi. 1). Most of the channels are rills. This 

subarea is characterized by (1) sand- and gravel-sized clasts of carbonate detritus, (2) 

moderate calcite cementation, (3) the rarity of distinct washes, and (4) the absence of 

Quaternary faults scarps.

Subarea 3 (upper Red rock Alluvial Fan, central lobe)

The third subarea is the central lobe of the upper (proximal) Red Rock Alluvial Fan. 

Subarea 3 is lithologically similar to Subarea 2 (Plume, 1989, pi. 2) and contains no mapped 

faults. Subarea 3 is distinguished from Subarea 2 primarily because of the observed 

variation in the hydrologie characteristics, but geologic differences were observed as well. 

It was observed in this investigation that the subsurface deposits were more strongly 

cemented in the central lobe of the Red Rock Alluvial Fan and the boundaries of the mapped 

stratigraphie units are shallower within the alluvium when compared to the northern lobe. 

The surficial expression of Subarea 3 also differs from Subarea 2. The central lobe of the 

Red Rock Alluvial Fan (McDonnell-Canan, 1989, pi. 1), the surficial expression of Subarea 

3, shows strong cementation and large distinct washes incised into the caliche surface. 

Subarea 3 is characterized by (1) sand- and gravel-sized clasts of carbonate detritus, (2)
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strong calcite cementation, (3) abundant large distinct washes, and (4) absence of Quaternary 

fault scarps.

Subarea 4 (lower Red Rock Alluvial Fan)

The fourth subarea of this investigation is the lower part of the Red Rock Alluvial 

Fan. The surficial deposits are predominately sand- and silt-sized fine-grained material 

(Matti and others, 1987) with minor amounts o f clay and gravel sized clasts. This subarea 

is topographically part of the Red Rock Alluvial Fan, although the fan shape is more subdued 

and has been modified by Quaternary faults. The geomorphic and lithologie characteristics 

of this subarea is quite similar to a "phreatophyte flat" as described by Quade and others 

(1995, p. 218) at Tule Flats, Com Creek Springs and other spring areas in southern Nevada. 

The water table is close to the surface (5 to 7 m bis) in a “phreatophyte flat,” encouraging 

an increase in plant growth. The plants act as filters, trapping fine-grained sediments.

This subarea is located between Quaternary fault Scarp I and Scarp II (Bell and Price, 

1991, C-3). The fault scarps are conduits for groimd-water flow to the surface, and most of 

the springs and phreatophyte areas existed near the fault scarps prior to the development of 

the valley. Las Vegas Springs, which dried up in the 1960's because of ground-water 

development, were located on Scarp II in what is now the Las Vegas Valley Water District 

Main Field.

Subsurface units in this subarea have not been subdivided into formal stratigraphie 

units although the lithologie variation has been evaluated by many hydrologie investigations 

(Maxey and Jameson, 1948; Domenico and others, 1964; Malmberg, 1965; Harrill, 1976; and 

Plume, 1989, Morgan and Dettinger, 1994) in Las Vegas Valley. The sediments are
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interfingering, fine- and coarse-grained deposits, of which the fine-grained deposits are 

aquitards and the coarse-grained deposits are aquifers.

Subarea 4 is the only location where the boundaries between the lithologie units 

described by previous workers coincide with the boundaries of the allostratigraphic units of 

this investigation. The coincidence occurs because Subarea 4 is the transition area between 

the fine- and coarse-grained sediments. The fine-grained sediments thicken to the east. By 

contrast, the coarse-grained sediments thin to the east and thicken to the west. The observed 

sedimentological variation in this subarea can either be described as interfingering fine- 

coarse grained sediments (lithologie units) or, alternatively, as overlapping parts of 

allostratigraphic units of contrasting texture.

Subarea 4 is the transitional area between the fine- and coarse-grained sediments. 

It therefore is very important in understanding the distribution of sediment within both the 

area of investigation and the entire valley. Previous subsurface investigations based their 

informal sediment subdivisions on information from wells in Subarea 4 and areas further 

east. Subarea 4 is characterized by (1) fine-grained material at the surface, (2) interbedded 

fine- and coarse-grained material, and (3) Quaternary fault scarps.

Figure 9 is an east to west cross-section of the subsurface distribution of the alluvial 

fine- and coarse-grained deposits modified fi'om Maxey and Jameson (1948, pi. 6b). Maxey 

and Jameson's original (1948, pi. 6b) cross-section is generally accurate; subsequent 

researchers have not significantly changed this interpretation. Similar cross-sections appear 

in Bell (1981, p. 18) and Morgan and Dettinger (1994, p. 25).
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The top 250 meters, approximately, of basin-fill alluvium is composed of nearly

equivalent amounts of fine- and coarse-grained sediment. This 250 meter section has been

described in most of the hydrologie reports and there is general agreement about the

distribution of the sediments.

Maxey and Jameson (1948, p. 82) were the first to describe the subsurface deposits

within Las Vegas Valley, and reported the occurrence of "... several sand and gravel lenses

which occur at approximate depths of 250,300,350 to 400, and 450 feet [75,90,105 to 120

and 135 m].” A lower interval was described (Maxey and Jameson, 1948, p. 68) as:

"Several relatively thick sand and gravel lenses are present beneath the blue clay in 
the vicinity of Las Vegas. They occur at depths ranging from 450 to 700 feet [135 
to 215 m] and west of the city are as much as 100 feet [30 m] thick."

The "blue clay" mentioned above was a 6 m thick stratigraphie marker described by Maxey

and Jameson (1948, p. 68) in the central part of the valley. This marker is observed only on

the eastern margin of the area of this present investigation.

Subarea 5 (Tule Flats)

The fifth subarea in this investigation is the Tule Flats part of the central playa in Las 

Vegas Valley (fig. 3). Tule Flats is roughly diamond shaped. It is bound on the west by the 

Kyle Canyon Alluvial Fan, on the east by the Sheep Range Bajada and Las Vegas Wash, and 

on the south by the ENE-WSW part of Quaternary fault Scarp II (figs. 7 and 8) as designated 

by Bell and Price (1991 pg. C-3) and the northeastern margin of the Red Rock Alluvial Fan. 

The fine-grained material of the surficial deposits extends to at least 300 m below surface 

(Plume, 1989, pi. 2). This area is similar to Subarea 4 in that the Quaternary faults and 

springs play an important role in controlling the grain size of the deposits. It differs from
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Subarea 4 in that the subsurface deposits are almost exclusively fine-grained instead of 

interbedded fine- and coarse-grained.

Quaternary fault scarps were mapped primarily by Bell (Haynes, 1967; Harrill, 1976; 

Bell, 1981; Matti and others, 1987; and Bell and Price, 1991) near the western edge of the 

Tule Flats area (fig. 7 and 8) and within two bands oriented about N. 70° E. The faults 

located near the western edge of the playa are near the boundaries of the fine-grained 

sediments and coarse-grained alluvial fan sediments. The northern band of scarps is the 

Eglington Scarp named by Haynes (1967, p. 51). The southern band of fault scarps is an 

ENE extension of Scarp II (Bell and Price, 1991, C-3), which trends generally north to south. 

The Tule Flats area is characterized by (1) fine-grained sediment, (2) generally weak 

cementation, and (3) Quaternary fault scarps.
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CHAPTER 3 

HYDROGEOLOGY 

Precipitation on the surrounding mountain ranges, primarily the Spring Mountains 

and, to a lesser extent, the Sheep Range recharges the alluvial-aquifer system. The alluvial 

aquifers are recharged by ground water moving through the carbonate bedrock into the 

alluvium. Natural discharge is through a series of springs in the central axis of the valley, 

including Com Creek Springs, Tule Springs, and Las Vegas Springs (Malmberg, 1965, p. 

59). The springs are located along Quaternary fault scarps which, near the area of 

investigation, are located in the lower part of the Red Rock Alluvial Fan.

General Hydrogeology of Las Vegas Valley 

The alluvial aquifer system of the Las Vegas Valley is composed of all the alluvial 

sediment in the valley. It is 1525 meters thick (Plume, 1989, p. A l) or thicker (G. Dixon, 

1993, USGS, pers. comm.) in the central part of the valley. The names and numbers of 

hydrogeologic units vary in the literature but there is general agreement about the 

hydrogeologic properties of the units.

Three major intervals and the overlying discontinuous Holocene surficial deposits 

are mapped in most of the hydrogeological investigations of Las Vegas Valley. The 

following two tables display the lithologie and hydrogeologic properties of the major 

intervals.

46
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Table 2 is from Harrill’s (1976) investigation of Las Vegas Valley. Tables 1 and 2 

are parts of a table from Harrill’s (1976, table 1) report. Table 3 compares Harrill’s units with 

hydrogeologic units defined by other investigators in Las Vegas Valley. All of the units on 

table 3 are derived from Maxey and Jameson's (1948, p. 82) original hydrogeological units. 

Figure 10 displays the location and names of Maxey and Jameson's (1948, pi. 6b) original 

hydrogeologic units.

The deepest interval is a low permeability aquifer named by Maxey and Jameson 

(1948, p. 82) as the "Deep Zone of aquifers" and Morgan and Dettinger (1994, p. 8) as the 

"deep-zone aquifers.” The two reports differ in placement of the boundary between this and 

the overlying more permeable aquifers. Maxey and Jameson (1948, p. 82) placed the 

boimdary at about 215 m below land surface whereas Morgan and Dettinger (1994, p. 26) 

put the boimdary at 305 m below land surface.

The location of this boundary is very important in the western part of the valley. If 

the boundary is located at 215 meters below land surface or higher, the high permeability 

interval in several municipal wells may become or have become unsaturated, reducing the 

flow rates of these wells. This observation led to the hypothosis mentioned in the Abstract 

that the reduction of specific capacity (flow rate divided by drawdown) at the District’s West 

Central Well Field was related to the dewatering that has occurred in the last thirty years.
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Table 2. — Alluvial hydrogeological units defined by Harrill (1976, p. 6, part of Table 1).

A g e L ith o lo g ie  u n it T h ic k 
n e s s
[m ete rs]

G e n e ra l
H y d ro lo g ie
P ro p e r tie s

H y d ro g e o lo g ic
u n i t

Q u a te rn a ry
(P le is to c e n e
a n d
H o lo c e n e )

S u rf ic ia l
D e p o s its

15± G e n e ra lly  a b o v e  th e  z o n e  o f  sa tu ra t io n  o n  a llu v ia l fa n . In  th e  so u th w e s t p a r t  o f  
th e  v a lle y , sa tu ra te d  d e p o s its  m a y  fo rm  a  th in  w a te r  ta b le  a q u ife r . W e s tp h a l an d  
N o rk  (1 9 7 2 , p . 1) e s tim a te d  th e  a v e ra g e  h o r iz o n ta l c o n d u c tiv ity  o f  th e s e  
d e p o s its  in  th e  H e n d e rso n -E a s t  L a s  V e g a s  a re a  to  b e  a b o u t 4 0 0  gpd/ft*  [5 m V d].

n e a r -su r fa c e
re se rv o ir '

Q u a te rn a ry
(P le is to c e n e )

L a k e  a n d  p la y a  
d e p o s its  ( in c lu d e s  
L a s  V e g a s  
F o rm a tio n )

9 1 ± W h e n  sa tu ra te d , f in e -g ra in e d  d e p o s its  m a y  s to re  a p p re c ia b le  q u a n titie s  o f  w a te r  
b u t  h a v e  lo w  p e rm e a b ility  a n d  t r a n s m it  w a te r  p o o r ly . U n i t  a c ts  a s  a  co n f in in g  
la y e r . W h e n  w a te r  is  r e m o v e d  fi'om  s to ra g e , c o m p a c tio n  a n d  la n d  su b s id e n c e  
w ill  re su lt . U n it  y ie ld s  so m e  w a te r  to  d o m e s tic  w e lls .

n e a r-su rfa c e
reservo ir^

Q u a te rn a ry
(P le is to c e n e )

F a n g lo m e ra te  a n d  
v a lle y  f lo o r  d e p o s its

3 0 5 ± G ra v e l d e p o s its  a lo n g  lo w e r  p a r ts  o f  fa n s  tra n sm it  w a te r  re a d ily  a n d  f io m  m o st 
p ro d u c tiv e  a q u ife rs  in  v a lle y . F in e r  g ra v e l d e p o s its  in  c e n tra l p a r t o f  v a lle y  
p ro d u c e  w a te r  le s s  re a d ily  b u t  p ro v id e  a d e q u a te  su p p lie s  fo r  d o m e s tic  a n d  
m o d e ra te -c a p a c ity  in d u s tr ia l a n d  p u b lic  su p p ly  w e lls . H e a v y  p u m p in g  in  a re a  
o f  f in e  g ra in e d  d e p o s its  m a y  re su lt  in  la n d  su b s id e n c e .

p r in c ip a l
aqu ifers^

T e rtia ry M u d d y  C re e k  
F o rm a tio n

1 2 2 0 ± L o w  p e rm e a b ility  d e p o s its  w h ic h  d o  n o t  re a d ily  y ie ld  w a te r  to  w e lls . G y p su m  
a n d  su lfa te  c o n te n t  m a y  e f fe c t g ro u n d -w a te r  q u a lity .

p r in c ip a l
aq u ifers^

F o o tn o te s :
'  C o m m o n ly  re fe rre d  to  a s  th e  " s h a llo w  a q u ife r(s )"  s in c e  1 9 7 8  (a f te r  K a u fm a n n , 1 9 7 8 , p . 1) e a c h  re p o r t  d e f in e s  th is  u n i t  d if fe re n tly , b u t  th e  d e f in in g  
c h a ra c te r is t ic  is th e  so u rc e  o f  th e  w a te r  ( tu r f  ir r ig a tio n )  a n d  is  th e re fo re  n o t  a n  a q u ife r  a s  u se d  in  th is  re p o rt.
^ D e f in e d  o n ly  w h e re  sa tu ra te d  a n d  a  re la tiv e ly  f in e -g ra in e d  u n it .
’ D e f in e d  o n ly  w h e re  sa tu ra te d  a n d  a  r e la tiv e ly  c o a rse -g ra in e d  u n it.

* D e f in e d  b y  D e tt in g e r  a s  " th e  u n ta p p e d  d e e p  z o n e  o f  b a s in -f ill  se d im e n ts "  (D e ttin g e r , 1 9 8 7 , p . 8 )  a n d  th e  "d e e p -z o n e  a q u ife rs "  (M o rg a n  a n d  D e tt in g e r , 1 994  p . 
2 6 )  w ith  a  b o u n d a ry  a t  3 0 5  m  b e lo w  la n d  s u r fa c e  a n d  c re d ite d  H a rril l  (1 9 7 6  p . 9 -1 1 ) , h o w e v e r , H a rrill  (1 9 7 6 , p . 11) o n ly  re p o r te d  th a t  "T h e  lo w e r  b o u n d a ry  ( o f  
th e  p r in c ip a l  a q u ife rs )  is  p o o r ly  d e f in e d ; h o w e v e r  m o s t  la rg e -c a p a c ity  w e lls  a re  le s s  th a n  1 ,1 0 0  fe e t d e e p ."
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Table 3. -  Hydrogeologic units used in previous reports, and proposed aquiformations.
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In terval M ax ey  and 
Jam eso n  (1 9 4 8 )

T h ic k 
ness
(m eters)

H arrill
(1 9 7 6 )

T h ick 
ness
(m eters)

M organ  and
D ettinger
(1994)

T h ick -
ness
(m eters)

P roposed  
A qu ifo rm ations 
(T h is  report)

H ydrogeo
log ic  type

u p p er 
60 -135  m  
o f  alluv ium

n ear
su rface
w ate r

90± n ear
su rface
rese rv o ir

90 ± near
surface
aqu ifer

7 5 1 L as V egas 
W ash  A quitard

aqu itard

60-135  m  b is ' S hallow  
Z o n e  o f  
aq u ife rs

30 5 ± p rincipal
a q u ife rs '

3 0 5 1 d ev eloped -zone
a q u ife rs '

3 0 1 L as V egas
S prings
A quifer*

aqu ifer

5-15  m  th ick "b lu e  clay" 6 0 1 aqu itard

150-215 m  
b is '

M id d le  Z o n e  o f  
aq u ife rs

6 0 1 aq u ife r

all aqu ifers 
be low  21 5  m  
bis

D eep  Z o n e  o f  
aqu ifers

> 6 0 + ’ D u ck  C reek 
A q u ife r

low -
perm eab ility
aquifer*

12201 u n d e fin e d ' undefined* deep -zone
aquifers*

low -
p erm eab ility
aq u ife r

F ootno tes;
'  G ravel lenses in  these  in tervals.
'H a r r i l l  (1976) defin ed  o n ly  sa tu ra ted  un its, an d  th e  u p p e r  135 m  o f  coarse -g ra ined  unsa tu ra ted  sed im en ts  in th e  a llu v ia l fan s w ere n o t defined  a s  a  
h yd rogeo log ica l un it. H arrill (1 9 7 6 , p . 9 )  specifica lly  in c lu d ed  M ax ey  an d  Jam eso n 's  (1 9 4 8 ) D eep  Z o n e  o f  aq u ife rs  b u t ex c lu d es all sed im en ts b e lo w  305  m  
b is.
'  A ll sed im en t b e lo w  30 5  m  b is  w ere  d escrib ed  a s  lo w  p erm eab ility . H arrill (1 9 7 6 ) refe rred  to  th e  1220 m  in terval as th e  M u d d y  C reek  F orm ation .
* Inc ludes all sed im en t a n d  bed ro ck  b e lo w  30 5  m  bis. M o rg an  a n d  D ettinger (1 9 9 4 ) n am ed  th is  u n it b u t d id  n o t sp ec ify  a  th ickness.
’ P rio r  to  1987, w ells  in L as V eg as V alley  w e re  g en era lly  n o t d rilled  d eep e r than  30 5  m eters. A  6 0  m eter+  in terval o f  coarse -g ra ined  sed im en t be lo w  21 5  m  
b is  is  in terp reted  in  th is  rep o rt as th e  u p p erm o st p a rt o f  an  u n d e rly in g  low er perm eab ility  aqu ifer. ' 
* T he aq u ifo rm ation  rank . L as V egas S p rin g s A q u ife r  is  com posed  o f  th ree  aqu im em bers. TTie low er aqu ifer. L a  M a d re  M oun ta in  aqu ifer, is  th e  m o st p erm eab le  
u n it in  th e  L as V egas S p rin g s A q u ifer. T h e  u p p e r aq u ife r. L as  V eg as C reek  aqu ifer, is  locally  im portan t. T h e  T w in  L ak es aqu itard  separa tes th e  tw o  aquifers.
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The boundary between the deepest aquifer and the overlying aquifers can be best 

delineated by examining well performance in wells screened or perforated in both intervals. 

Two methods of comparison can be used. First, the performance of two wells that are 

adjacent but have different screened or perforated intervals can be compared. Second, past 

and present flow rates and specific capacity in the same or adjacent wells can be compared 

in areas where the overlying aquifers are dewatered.

Overlying this deep interval are Maxey and Jameson's (1948, p. 82) "Middle" and 

"Shallow Zone(s) of aquifers" , Morgan and Dettinger's (1994, p. 26) "developed-zone 

aquifer," and the most permeable part of Harrill's (1976, p. 9) "principal aquifers.” The 

"principal aquifers" combine Maxey and Jameson's (1948, p. 81) "Shallow, Middle and Deep 

Zones of aquifers" into a single hydrogeological unit and are similar to Malmberg's (1965, 

p. 23) "artesian aquifers.” The descriptions of the Las Vegas Valley as an artesian basin are 

related to the high permeability of these "middle" sediments and the lower permeability of 

both the lower and overlying sediments discussed later. The wells with the highest flow rates 

are completed in the "principal aquifers" located approximately 70 m to 200 m below land 

surface. The boundary between this and the overlying hydrogeological unit is the

"... top of the first significant water-producing sand or gravel.” (Harrill, 1976, p. 6),

or

"... the first indication of water-bearing material (Harrill, 1976, p. 9).”

Overlying the "principal aquifers" of Harrill (1976, p. 9) is the "near-surface 

reservoir" of Malmberg (1965, p. 24), called by Maxey and Jameson (1948, p. 81) "near

surface water" and by Morgan and Dettinger (1994, p. 8) the "near-surface aquifers.” This
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unit generally has much lower permeability than the underlying aquifers and acts as an 

aquitard. Bemholtz (1994, p. 50) reported transmissivity values at least one order of 

magnitude lower in this unit than in the underlying aquifers. In the central part of the valley, 

this unit is usually fine-grained.

In the urbanized part of the valley, the water in the upper 15 meters of alluvium is 

usually more saline than the underlying ground water. The source of much of this water is 

excessive irrigation of turf grass with water imported into the valley from the Colorado River 

(Brothers and Katzer, 1988, p. 10). Colorado River water is more saline than the native 

ground water in the northwest part of the valley. The water generally does not infiltrate 

deeply into the alluvium because of the low permeability of the "near-surface reservoir" and 

artesian nature of the underlying aquifers. Evapotranspiration concentrates the salts, thus 

increasing the salinity. This 15 meter interval of the "near-surface reservoir" is referred to 

as the "shallow aquifer(s)" (Kaufmann, 1978, p. 1). This "shallow aquifer" is defined by 

source and geochemistry. It is not an aquifer as used in this investigation and is part of the 

"near-surface reservoir.” The "near-surface reservoir" as a whole is an aquitard.

General Hydrogeology of Area of Investigation 

The area of investigation has long been recognized as an area that yields large 

quantities of water (Carpenter, 1915; Maxey and Jameson, 1948). Maxey and Jameson 

(1948, p. 82) identified the southeastern comer of the area of investigation, near the District's 

Main Well Field, as the area with the highest specific capacity in the valley. Artesian flow 

rates of 125 to 315 H/s (2000 to 5000 gpm) are reported from wells drilled in the late 1940's 

near the District's Main Well Field (Maxey and Jameson, 1948; State Engineer's drill log
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records, District records). Water levels did not decline below land surface until about 1960 

(District records). During the early 1960's, the lower part of the Red Rock Alluvial Fan 

(Subarea 4) was recognized as a productive area for wells (Domenico and others, 1964, p. 

18; Malmberg, 1965, p. 24). About twenty District and City of North Las Vegas wells were 

drilled in Subarea 4 in the early 1960's. The wells in the District's West Central and Gowan 

Well Fields were established, along with both District and North Las Vegas wells near 

Rancho Drive. During the 1970's and early 1980's the District expanded the distribution of 

their wells to include the eastern margin of the upper Red Rock Alluvial Fan (Subareas 2 and 

3) at Buffalo Road.

Harrill's (1976, fig. 6) map of the distribution of transmissivity (fig. 11) was based 

upon the specific capacities calculated by Harrill (1976) and transmissivity values calculated 

by Malmberg (1965) from aquifer test data at wells drilled in the 1950's and early 1960's. 

The variance between Harrill's (1976, p. 16) predicted transmissivity and the transmissivity 

values calculated from aquifer tests at wells drilled in the late 1980's and early 1990's is one 

of the primary problems analyzed in this present investigation.

The alluvial aquifers are recharged fi'om the deeper bedrock aquifers. Although the 

conduits for recharge are unknown, the most likely pathways are thrusts or normal faults. 

There are three reasons for this assumption. First, both the lower section of alluvium and the 

underlying bedrock below the alluvial aquifers have low permeability. Second, wells drilled 

near Quaternary fault scarps tend to have higher specific capacity and transmissivity values 

than wells farther from the scarps. The higher specific capacities may be caused by increased 

permeability near the scarps. Third stable isotope and geochemical investigations by Noack
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(1988, p. 99) on the sources of ground-water recharge document "regional" water upwelling 

from depth near the Quaternary fault scarps.

General Hydrogeology of Subareas 

As discussed previously, the area of investigation was divided into five subareas that 

vary in their geologic and hydrogeologic properties.

Subarea 1 (Kyle Canyon Alluvial Fan, southern lobe)

This subarea includes the southern lobe of the Kyle Canyon Alluvial Fan and the

zone of coalescence between the Kyle Canyon and Red Rock Alluvial Fans. Most of the

water wells in this area are domestic wells. Aquifer test data was not available in this area

until the late 1980's. Previous hydrogeologic investigations (Maxey and Jameson, 1948;

Domenico and others, 1965; Malmberg, 1965; Harrill, 1976; Plume, 1989; and Morgan and

Dettinger, 1994) assumed this area was relatively permeable because o f the coarse-grained

nature of the sediments. Plume (1989, pi. 2) mapped "heterogeneous deposits" in this area

but characterized the water bearing properties as;

"May have water-bearing properties of either coarse- or fine-grained deposits, 
depending on location. Horizontal permeability may be greater than vertical 
permeability in places."

Subarea 2 (upper Red Rock Alluvial Fan, northern lobe)

As discussed in the Geology section, coarse-grained sediments are the most common 

lithology in this subarea. The factors controlling permeability and flow to wells are poorly 

defined in previous hydrogeologic reports. Deep wells were not drilled in most of this 

subarea until the late 1980's and 1990's. Harrill (1976, p. 16, see also figure 11 of this
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investigation) predicted moderate to low transmissivity for this subarea which is generally 

west of the data available to previous reports.

Transmissivity values calculated from aquifer tests of municipal water wells drilled 

in the late 1980's and early 1990's in Subarea 2 are higher than predicted by previous 

hydrologie reports (Maxey and Jameson, 1948; Malmberg, 1965; Harrill, 1976; and Morgan 

and Dettinger, 1994) of Las Vegas Valley.

Subarea 3 (upper Red Rock Alluvial Fan)

This subarea contains the District’s West Central Well Field (WCWF). This 

subarea, like Subarea 2, is dominated by coarse-grained sediments. When investigated 

by Malmberg (1965) and Harrill (1976) in the 1960's and early 1970's, the WCWF 

contained wells with high reported transmissivity values. The three wells investigated by 

Harrill (1976) have an average reported transmissivity of about 1100 metersVday. 

Therefore, the WCWF was included within Harrill’s (1976, p. 16) zone of highest 

transmissivity in Las Vegas Valley. Harrill (1976, p. 16) predicted high to moderate 

transmissivity in this subarea.

Harrill (1976, p. 16) estimated the reported transmissivity values from specific 

capacity. An examination of the District specific capacity values for the three wells 

investigated by Harrill (1976) and new wells drilled within the same well field show a 

reduction of 80 to 90 percent in specific capacity. This information led to an initial 

hypothesis of this investigation that the decline in specific capacity was due to dewatering 

of the most permeable unit within the alluvium. The location of the most permeable unit
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and the factors controlling permeability in this subarea and Subarea 2 were therefore 

analyzed in this investigation.

Subarea 4 (lower Red Rock Alluvial Fan)

This subarea has been a known area of high transmissivity since Maxey and 

Jameson's (1948) report on the hydrogeology of Las Vegas Valley. The "Shallow, 

Middle, and Deep zones of aquifers" of Maxey and Jameson (1948, p. 82) were defined 

in this subarea. The aquifers defined by Maxey and Jameson (1948) are the coarse-grained 

facies of the alluvial fans and the aquitards are the fine grained playa deposits.

Subarea 5 (Tule Flats)

Maxey and Jameson (1948) also defined the hydrogeology of this subarea. 

Transmissivity values of wells in this subarea are low unless located near the Quaternary 

fault scarps. The low transmissivity values are caused by the abundance of fine-grained 

sediments.
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CHAPTER 4 

ANALYSIS OF DATA 

Topographic Data

The area of investigation is located in parts of the Las Vegas NW, Blue Diamond NE, 

Tule Springs Park, and Gass Peak SW 7.5 minute quadrangles (fig. 12). The low point of 

the valley is about 10 km east of the area of investigation. Surface-water flow is generally 

west to east, however, there is a significant northwest to southeast slope in some parts of the 

area of investigation (fig. 13). This area is one of the steeper of the alluvial parts of the 

valley. USGS digital elevation models (DEMs) are available for each of the four 

quadrangles. The DEMs were combined together to generate a topographic basemap of the 

area of investigation. Figure 3 displays the physiographic features of the area of 

investigation in the context of the whole valley.

Geologic Data

The following sections describe the available surficial and subsurficial geologic 

information. Most of the surficial geologic mapping in Las Vegas Valley was conducted 

independently of hydrogeologic investigations. By contrast, most of the subsurficial 

geologic mapping in the valley was conducted for and concurrently with hydrogeologic 

investigations.

58
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Sarficial Geologic Data 

The Las Vegas NW (Matti and others, 1987) 7.5 minute geologic map was mapped 

in support of the State of Nevada's geologic hazards assessment in the Las Vegas Valley. 

Quaternary geomorphic units on the Blue Diamond NE 7.5 minute quadrangle map were 

mapped by McDonnell-Canan (1989). Geomorphic units on the Tule Springs Park 7.5 

minute quadrangle map were mapped by Sowers (1985). Haynes (1967) mapped part of 

the Gass Peak SW 7.5 minute quadrangle near Tule Springs. Bell and others (Bell, 1981; 

Matti and others, 1987; Bell and Price, 1991) mapped Quaternary fault scarps on all four 

Las Vegas 7.5 minute quadrangles in support of the geologic hazards assessment.

The primary source of regional geologic information was Plume's (1989) map of 

Las Vegas Valley derived from Longwell and others' (1965) geologic map of Clark 

County. Most of the published geologic mapping is a combination of field mapping and 

photo reconnaissance. The boundaries between the alluvial fan sediments and the adjacent 

playa deposits can be observed on LANDS AT images and aerial photos. The 

physiographic features shown on figure 2 and the Subarea boundaries on figure 5 were 

partially defined by the available surface mapping and partially by LANDSAT image 

analysis. The surficial mapping provided an analog to understand the distribution of the 

subsurface alluvial fan deposits.

Subsurface Geologic Data 

Detailed lithologie logs that include information about grain-size percentages, 

roundness, and degree of cementation exist for seventeen wells drilled by the District 

between 1989 and 1994. In addition, two wells drilled by the City of North Las Vegas
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in and one well drilled near the area of investigation have information about grain-size 

percentages and degree of cementation. Drill logs from about fifty other water wells were 

used for control between the wells with detailed information and areas without detailed 

information. The additional wells are municipal supply wells owned by the District, City 

of North Las Vegas, City of Las Vegas, and domestic wells currently or historically 

monitored by the USGS or the District for water level information. The well logs in 

Appendix B were selected for their areal distribution.

Domenico and others (1964, p. 23), Harrill (1976, p. 14), and Plume (1989, pi. 3) all 

contoured the fine- and coarse-grained sediment at land surface, 0 to 61, and 61 to 213 

meters below land surface from well logs. The western and southern parts o f the area of 

investigation are west o f the 60 percent coarse-grain contour. The northeastern part o f the 

area of investigation is east of the 30 percent coarse-grain contour.

Geophysical Data

Data are available from both surficial geophysical investigations and geophysical 

logging of water wells within the area of investigation.

Surficial Geophysical Data

Plume (1989, pi. 5) estimated the depth to bedrock in Las Vegas Valley using gravity. 

This technique may have under-estimated the depth, because one well (W72) drilled in 1988 

to 485 meters bis, did not encounter bedrock. Plume's (1989, pi. 5) estimate of depth to 

bedrock in this area was less than 300 meters bis. Zohdy and others (1992) measured the 

electrical resistivity from surface down to about 700 meters bis on the western part of the 

area of investigation.
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Subsurface Geophysical Data

The resistivity of the sediments was measured in the seventeen wells drilled by the 

District and three wells drilled by NLV between 1989 and 1994. The absolute value of the 

resistivity is not indicative of either rock type or porosity because the logs are uncalibrated. 

The resistivity logs show similar variations (highs and lows) which appear to correspond to 

unconformities, lithology changes, and changes in degree of cementation. In two of the 

wells (W78 and W87) acoustic geophysical logs have been used to estimate porosity. These 

techniques have yielded inconclusive results. The one well (W78) where the data have been 

the most carefully evaluated actually has an inverse relationship between porosity and 

permeability. The porosity of the gravel with sand in this well ranged between 25 and 15 

percent, which is typical for this type of alluvial deposit (Heath 1983, p. 26).

Hydrologie Data

Static water-levels, aquifer tests, and geophysics were analyzed to locate permeability 

intervals and are described in the following sections.

Static-Water Levels

In October, 1993, water levels were measured in sixty one (61) wells completed in 

the "principal aquifers" in the area of investigation. These wells were active District 

municipal wells, inactive municipal wells owned by the District, NLV or CLV, and domestic 

wells used by the District for water-level monitoring. This data set provided good areal 

coverage but was supplemented with four domestic wells measured by the USGS in 1990 

and 1991 in the northern part o f the area of investigation. A potentiometric map of the area
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of investigation was generated using the technique of minimum curvature (Briggs, 1974) in 

SURFER®.

The difference in water levels in the area of investigation is about 150 m from south 

to north and about 25 m from west to east. The shape of a potentiometric surface and 

observed changes with time can be used to identify the different areas of hydraulic 

conductivity in an aquifer (Domenico and Schwartz, 1990). The potentiometric map is only 

indicative of trends in permeability, because the water in the aquifer(s) is not in equilibrium. 

The water-level data are more areally extensive than more direct measures of permeability 

such as specific capacity or transmissivity.

Water-Level Changes

Water-levels and water-level declines were used for three purposes in this 

investigation. The first use of the water-levels is to determine saturation. The second use 

is to evaluate previously reported hydrologie measurements, such as hydraulic conductivity, 

that are affected by saturation. The third use of water-levels is to infer aquifer characteristics 

from the shape and change in shape through time of the potentiometric surface. Water-levels 

were therefore both a methodology as well as a result.

Four different years (1912,1947,1965, and 1993) were compared to determine the 

magnitude, location, and shape of water-level declines. The fact of water-level declines is 

well established by most of the reports written about the hydrogeology of Las Vegas Valley. 

The magnitude, location, and shape of these water-level declines are not as well defined.

The first available water-level information from Las Vegas Valley is Carpenter’s 

1912 data (Carpenter, 1915, pi 1). These data were collected six years after the first well was
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drilled and is as close to pre-development conditions as is possible. Only five (5) 

measurements were collected in the area of investigation. These are located near the Las 

Vegas Springs in the southeast comer of the area of investigation, which are today 

surrounded by District’s Main Well Field (MWF). Figure 14 displays the potentiometric 

surface, contoured from the 1912 data. Figure 15 shows the declines calculated between the 

1912 and 1947 data.

Beginning in the middle to late 1940's, the USGS started systematic collection of 

water-levels. Most of the long term records are from wells drilled in this period. This 

activity was conducted in conjunction with the State Engineer and included not only water- 

level measurements but also the drilling of new wells and systematic evaluation of the 

hydrology in Las Vegas Valley, described in Maxey and Jameson’s 1948 report. The 1947 

data set includes the wells drilled at that time and is much more extensive than previously 

collected data. This time period is also significant because this is when the basin began to 

be overdrafted. Maxey and Jameson (1948 p. xii) reported that “The total annual discharge 

from the ground-water reservoirs in Las Vegas Valley probably never exceeded 35,000 acre- 

feet tmtil 1946.” Maxey and Jameson (1948 p.xii) estimated 35,000 acre-feet (43 million 

cubic meters per year) was the natural recharge for the valley.

Most of the water levels in the 1947 data set are generally located east of or along the 

eastern edge of the area of investigation. Figure 16 displays the potentiometric surface 

contoured from the 1947 data. Figure 17 is the declines calculated between the 1947 and 

1965 data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

% ' ' '  y  /  /  ,
.y  ./

b  . ^  V

  — 710------------36 °1 5 ’00

- ^ 7  #  '

Syoareo boundary 

36®11’1 ^

?
Los Vegas 
Springs

IIS '1 8 '4 5

Area of invest igat ion
I Alluvium

10 m eter  contour Interval
co n to u r line d ash ed  w here Inferred

1,0 4
’  I ! I I
KILOMETERS

w W P  Exposed bedrock 

S B N w e l l  field
Suboreo  boundory  *  to  co n to u r

V  -■ ,, ,  . . .  p o ten tio m e tric  su rface
y  Direction o f g ro u n d -w a te r  flow

Area o f  Investigation boundary  
^ 9 q  C ontour line with elevation In m e te rs  above m ean  s e a  level

Figure 14. — P o te n tio m e tr ic  su rface  1912 , In a rea  o f Investigation .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

115P1845

36° 15*00"

Subgrea boundary 

36° 11 *15"

Las V ^ a s
Springs

I I S ’ 18*45 115P 1 5 *0 0 ^ :

Area of invest igat ion
1 Alluvium

10 m eter  contour interval
co n to u r  line d a sh ed  where Inferred

j o 4

#  Well u se d  to  con to u r 
p o ten tio m e tric  su rface

KILOMETERS
Exposed bedrock 

^ 3 9  Wen field

Suboreo boundary  
* ^ ® A r e a  o f  Investigation boundory  

—j g  C ontour line with decline In m e te rs

Data source: Carpenter (1915, pi. 1)
Figure 15. — Water level declines 1912 to 1947, in area of investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

7

■'3B°TS’Ô0

N

668668 /  ^Subarea boundary

36° 11’15”

l l iyiS 'OQ\  1115’ 18’45

Arec of  invest igat ion
J Alluvium

Exposed bedrock 

I w e l l  field
' t . . .

2 5  m eter  contour interval
c o n to u r line doshed  w here Inferred

Water elevation in meters 
g g g —  above mean sea level

•  Well u se d  to  c o n to u r

4
J L

KILOMETERS
f -  S uboreo boundary  . . .  . . ,
V  - . ,  . . _ p o ten tio m etric  su rface

■ '  ' y  D irection o f g ro u n d -w o te r  flow

H H H  A rea o f  Investigation  boundory
S S q  C ontour line with elevation  In m e te r s  obove m ean  se o  level

Data so u r c es  District records and USGS provisional data  
Figure 16. — P otentiom etric  surface, 1 9 4 / ,  i n ------area o f investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

111^18*45

36°15  00

Subarea boundary

36° 11 "15"

rt1^18’45" \
I
I |11EP15'GQ:------i

Area of invest igation
J Alluvium 

Exposed bedrock  

I Well field

10 m eter contour interval
c o n to u r line dash ed  w here Inferred

| o 4

n....X S u b area  boundary  
40— W ater level decline co n to u r

•  Well u se d  to  co n to u r 1947 
p o ten tio m e tric  su rface

J L

KILOMETERS

A rea of Investigation  boundary

D ata sources District records and USGS provisional data
Figure 17. —  Water level declines, 1947 to 1965, in area o f investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

Many of the District and NLV wells were drilled in the early 1960's. Prior to 1962, 

over half of the ground water extracted through wells in the valley was from an ar ea of about 

1600 m  ̂within the District's current Main Well Field (Domenico and others, 1964, p. 26). 

The data sets from 1965 and 1947 were selected as a compromise between areal coverage 

and a minimum of pumping effects.

Figures 18 displays the potentiometric surface contoured from the 1965 data. Figure 

19 shows the water-level declines calculated between the 1965 and 1993 data. Figures 20 

displays the potentiometric surface contoured from the 1993 data. Figure 21 shows the 

declines calculated between the 1912 and 1993 data. All of the water level data were 

contoured using the method of minimum curvature estimation (Briggs, 1974, p. 39) in 

SURFER®.

Figure 22 is a hydrograph of two wells drilled in the middle 1940's showing water 

level changes in the period 1945 to 1995. The well designated as W8 is located in the 

District’s MWF. The well designated U l l lO is about 3.5 km north of the area of 

investigation.

Aquifer Tests

Estimates of transmissivity were calculated from three sources: specific capacity 

measurements, single well step-drawdown tests, and single well 24-hour constant rate tests. 

Single well step-drawdown aquifer tests were conducted for seventeen District wells drilled 

between 1989 and 1994. The majority of these wells also have 24-hour constant flow rate
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aquifer tests. In addition, three NLV wells were drilled and 24-hour constant flow rate tests 

conducted between 1991 and 1993. Figure 23 displays distribution of transmissivity. See 

Appendix A for data.

The tests were generally conducted in mid summer and may be suspect in areas of 

existing well fields. Despite this problem, these wells represent the best measure of 

transmissivity of the various aquifers at individual wells. A goal of this investigation was 

the delineation of the areal distribution of permeability in discrete hydrostratigraphic units. 

The municipal wells are perforated in multiple aquifers, therefore assumptions must be made 

about the relative contribution of each aquifer.

To be valid, significant differences in permeability must be observed between 

aquifers and aquitards and between aquifers. In the Las Vegas Valley where adjacent wells 

tap different moderate to high permeability hydrostratigraphic units (aquifers), hydraulic 

conductivity varies by at least an order of magnitude. The difference in permeability 

between aquifers and aquitards is several orders of magnitude. For all o f the above reasons, 

the use of even crude techniques such as the estimation of transmissivities from specific 

capacities by the technique o f Driscoll (1986, p. 1021) will give meaningful results.

Development of Stratigraphie Units in Cross-section 

Four cross-sections were developed to display the vertical spatial variations of the 

allostratigraphic and hydrostratigraphic units (fig. 24). Four figures displaying the location 

o f the wells, lithologie variation, boundaries of the allostratigraphic units, and the location 

o f the hydrostratigraphic units were created for each cross-section making a total o f sixteen 

figures. The mapped units o f this investigation are displayed and described in the Results
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section of this investigation. The locations of the cross-sections were determined by the 

availability of data and the dispersal pattern of the sediments. Figures 25, 26, 27, and 28 

display the location of wells, land surface, and potentiometric surface on each cross-section.

Three of these cross-sections are oriented from west to east and one cross-section is 

oriented from south to north. The axis of the Red Rock Alluvial Fan is nearly west-east and 

the southernmost (C to C ) cross-section is sub-parallel with this axis. Because the cross- 

sections are orientated from west to east and south to north, the cross-sections are roughly 

parallel with major streets in the Las Vegas Road network. The northernmost west to east 

cross-section (A to A'), is roughly parallel with Tropical Parkway. The central (B to B') is 

roughly parallel with Gowan Road and the southernmost (C to C) parallels Alta Boulevard. 

The south to north cross-section is roughly parallel with Buffalo Drive. Each of the west to 

east cross-sections are about 5 km apart and the south to north cross-section is near the center 

of the area of investigation. Each cross-section is between 10 and 15 km long.

The western margin of the A to A' and B to B' cross-sections are within the upper 

(proximal) part of the Red Rock Alluvial Fan. The eastern margin is within the central playa. 

The C to C  cross-section crosses the southern lobe of the Kyle Canyon Alluvial Fan. The 

eastern edge of this cross-section is within the Tule Flats part of the central playa. The 

southern part of the D to D' cross-section is within the medial part of the Red Rock Alluvial 

Fan and the northern part is within the Tule Flats part of the central playa. The B to B' and 

D to D' cross-sections have the best geologic and hydrogeologic control. Together they 

comprise the fence diagram which will be displayed and discussed in the Results section of 

this investigation.
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The wells were plotted onto the cross-sections as strip-logs. Each strip-log contains 

information about lithology, degree of cementation, and perforated or screened intervals. 

Most of the detailed logs report the percentages of gravel, fine fraction (sand, silt and clay 

combined), and the roundness of the grains.

Descriptions of the sediments from the detailed lithologie and drillers' logs were 

classified into sixteen textural categories (Appendix B). The textural categories were 

developed using the grain size of the major and minor components of the sediment and 

allowed the sediment types to be classified systematically. Systematic classification was 

important because the seventy wells used in this investigation were drilled over a fifty year 

time period and the lithologie descriptions varied widely in style and completeness.

For the purposes of plotting graphical representations of the variation in the wells 

(strip-logs), the textural categories were abbreviated using the Unified Soil Classification 

System (USGS) (Pipkin, 1982, Sheet 26.1) with the addition of eight abbreviations for 

sediment that contains a significant amount of calcium carbonate cementation. The original 

detailed lithologie and drillers' logs described these intervals as "caliche" or "gravel and 

caliche."

The six textural classes portrayed on the eight "geologic cross-sections" are 

simplified categories similar to those used by Plume (1989, pi. 2). The cross-section figures 

are about 1:100,000 scale representations of the correlations developed at the 1:24,000 scale 

and were therefore simplified to document general trends.

A typical well 300 m in depth contains about 25 different lithologie units between 

1 and 60 m thick. The twenty logs vrith detailed geologic information contain units as small
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as 0.15 m, with several hundred lithologie changes in a single well. In these wells, the 

original summary made by the person who logged the borehole was the basis for the strip- 

log. These summaries typically contain about 25 units. Some summaries were modified to 

better reflect the detailed logs, generally with the addition of one or two units.

Cementation and roundness were assigned values ranging from one to five. A one 

in cementation indicates no cementation and a five indicates very strong cementation. This 

is similar to, but a modification of, Hodgens (1974) technique to estimate rock hardness in 

field mapping. The numeric designation was used only to give a visual representation of the 

original descriptions of "well cemented", "poorly cemented", etc. Numerical values of 

roundness were assigned by the method of Powers (1982, sheet 18.1). A roundness number 

of 0.5 indicates very angular sediments and 5.5 indicates well rounded sediments. Intervals 

without significant sand or gravel were assigned a 0 value. When plotted, the cementation 

and roundness values were multiplied by twenty so that these values would have a scale 

similar to the gravel, fine firaction, and silt percentages.

The strip-logs were plotted onto cross-sections at 1:24,000 with a vertical 

exaggeration of ten. This scale facilitated the use o f 7.5 minute geologic and topographic 

maps. The area described in this investigation covers an area about 1.5 times as large as a 

7.5 minute map.

Once the strip-logs were plotted onto the cross-sections, large and small scale 

variations in the gravel, fine-firaction, and silt percentages, cementation, roundness, and 

borehole resistivity were correlated between individual wells.
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The large and small scale variations, along with the borehole resistivity logs and the 

areal resistivity measurements made by Zohdy and others (1992, figs. 3-7), suggest that 

sediments within the alluvial fans are stratiform. These stratiform bodies are not mappable 

as distinct lithostratigraphic units because the boundaries of the stratifi'om bodies do not 

correspond to major and distinct changes in lithic character.

Development of Allostratigraphic Units

Four allostratigraphic units of formation rank were identified in the area of 

investigation. The primary criterion of the allostratigraphic units is the boundary, not 

internal character. The features that represent an unconformity were used to identity the 

boundary o f an allostratigraphic units. These features are intervals interpreted as caliche.

Allostratigraphic units were preferred over lithostratigraphic units because the 

observed grain-size changes are primarily the result of distance fi:om the source area. 

Predominately coarse-grained sediments are located near the valley margin and fine-grained 

sediments in the central part of the valley. The lithologie descriptions of the deeper wells, 

(W72, W74 and W83) document coarse-grained sediments (sands and gravel) as deep as 500 

m below surface and gravel-dominated coarse-grained units 40 m thick as deep as 450 m 

below surface. Wells W72 and W74 are in the medial parts of the Red Rock and Kyle 

Canyon Alluvial Fans respectively. Well W83 is located in the District's Main Well Field, 

which is east of the surface expression of the Red Rock Alluvial Fan. The lithologie 

descriptions of wells drilled in the playa (NOIA, U1079) document 300 m o f silt-dominated 

fine-grained sediments.
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Stratigraphie units should be correlatable regionally (or at least basin-wide), 

therefore, allostratigraphic units were used in this investigation to classify the geologic units. 

The lithologie and calcium carbonate cementation variations described in this investigation 

are localized and discontinuous. The correlatable feature observed in both the fine- and 

coarse-grained units is caliche horizons. These caliche horizons are the bounding 

discontinuities which are the basis of the allostratigraphic units. Hanneman and Wideman 

(1991, p. 1338) used a similar approach in identifying unconformities between sequences of 

subsurface units in southwestern Montana.

The top surface of a soil represents an unconformity because it requires a stable 

environment and time to develop. In this investigation, the units identified as caliche are 

discrete intervals of calcium carbonate cementation overlain by a clay horizon. If the units 

are soils, the clay horizon is a pedogenic accumulation formed as part of the caliche forming 

process. Both of these features should be present because neither feature in isolation indicate 

a soil and each can be formed by depositional or post burial processes.

Hanneman and Wideman (1991, p. 1338) also reported pedogenic accumulations of 

clay (B horizon) above the caliche (K horizon) horizons. This B horizon above the caliche 

horizon was also reported by Sowers (1985, p. 31) and McDonnell-Canan (1989, pi. 1) in the 

surface mapping of the Kyle Canyon and Red Rock Alluvial Fans. The presence of this soil 

horizon gives support to the interpretation that the caliche is pedogenic.

In this investigation, distinct deposits of clay up to 5 m thick were observed above 

the caliche horizons in most of the wells with detailed logs. These deposits may be B soil
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horizons. The varying reported deposit thickness may be related to thinning by erosion or 

thickening by the deposition of sediments previously located higher on the alluvial fans.

Within the alluvial fans, the caliche horizons overlie an interval about 15 to 25 m 

thick of moderate to strong cementation. The caliche surface itself, however, is generally 

less than 5 m. The 15 to 25 m thick interval aided the identification of the caliche horizon 

within the alluvial fans. The caliche horizon itself was identifiable in both the fine- and 

coarse-grained sediments.

Development of Hydrostratigraphic Units 

Six hydrostratigraphic mapping units composed of one high permeability, two 

moderate, and three low permeability units were identified in this investigation. Table 4 

displays allostratigraphic and hydrostratigraphic units mapped in this investigation. The 

differences in permeability produced noticeable differences in the hydraulic behavior at the 

individual wells. Three phenomena related to fluid behavior can be seen at the individual 

wells. These phenomena were used as methods to determine the location and magnitude of 

differences in permeability between wells and vertically within the well. Different 

information is available at individual wells, therefore the method used at an individual well 

was determined by the available data.

The first method is to compare the differences in transmissivity firom adjacent wells 

with different screened or perforated intervals. This method gives both the location and 

magnitude of the differences in permeability (see fig. 24). The second method used the 

intervals of water loss or gain, or changes in water-level (head) that occurred during drilling.
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and were identified by the driller. The third method used temperature changes observed on 

water temperature logs. The second and third methods only identify the location o f intervals 

of high to moderate permeability. The three methods directly measure flow away from or 

to the well. The best method is the differences in transmissivity because this is a nearly 

direct measure of the permeability. The intervals identified by these methods correlate with 

intervals defined using other indirect measures of flow or permeability such as change in 

grain size, degree of cementation, and electrical resistivity.

The differences in transmissivity between adjacent wells with different screened or 

perforated interval can best be observed in two wells near the intersection of Cheyenne 

Avenue and Buffalo Drive (W69 and W72) and in several wells (W21, W70, W71) located 

in the Districts's West Central Well Field (WCWF) at the intersection of Charleston 

Boulevard and Buffalo Drive (see fig. 13). The differences in transmissivity in these wells 

can be attributed to the difference in permeability between a high and a moderate 

permeability interval with similar lithologie character.

Two other areas, the District's Gowan Well Field (GWF) and Main Well Field 

(MWF), were evaluated for permeability differences attributable to different completion 

intervals. Differences related to completion interval can be observed in these areas, however, 

the differences are difficult to quantify due to specific problems with the data collection or 

local geologic variation observed between wells.

High to moderate permeability units were found at similar depth intervals in the 

subsurface, as reported by Maxey and Jameson (1948, p. 82). Grain size does not directly
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correlate with the permeability and finer-grained material is more permeable than coarser- 

grained material in specific areas. The more permeable intervals are composed of sand-size 

or coarser material.

Spatial Correlation of Hydrostratigraphic Units

A series of maps was created describing the thickness of the informal 

hydrostratigraphic mapping units fi’om the cross-sections described earlier. The 

hydrostratigraphic mapping units are based upon the lithic variation combined with observed 

differences in fluid behavior measures of permeability as described earlier in the Hydrology 

section. Isopach and depth-to-top maps of the hydrostratigraphic mapping units and named 

hydrostratigraphic units were created. The surficial geologic map of Plume (1989) and the 

thickness and depth to top maps all show a strong relationship with the fan morphology 

similar to the potentiometric contour maps. The isopach maps combined with measures of 

transmissivity were used to estimate hydraulic conductivity in the Las Vegas Springs 

Aquifer.

The Red Rock Alluvial Fan has three distinct lobes, each varying in degree of 

cementation, slope of the potentiometric surface, and the thickness of individual units within 

the subsurface. Facies changes tend to occur at the subarea boundaries and variations in 

permeability appear to be controlled by the sedimentation pattern.

Two of the cross-sections (B to B' and D to D') described earlier were combined to 

form the fence diagram in the Results section. The fence diagram provides a three 

dimensional view of the hydrostratigraphic mapping units. The primary tool used to map
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and characterize the geology and hydrogeology of the area of investigation are the cross- 

sections described earlier.

Hydrologie Analysis

Static wate-levels, aquifer tests, and permeability were analyzed and are described 

in the following sections.

Static Water-Levels

In late September and early October, 1993, water levels were measured in 38 active 

District production wells, recharge wells, monitor wells, and three NLV wells. The timing 

of the measurements was critical because many of the municipal water wells are both 

pumped (April-October) and injected (October-April) and the seasonal variation is quite 

large within the wellbores (> 50 m). Static water-level measurements are only valid in April 

and October when there is a minimum of pressure response caused by pumping and 

injection. Water levels were remeasured if a well within 1.5 km was pumping on October 

5,1993, the day nearly all the water levels were measured. Seasonal variation of water levels 

in wells on the far west side o f the area of investigation is < 3 m and the year to year 

variation is < 1 m. Therefore, water levels from four wells collected by the USGS in 

September 1990 and 1991 on the far western side of the area of investigation were used to 

augment the water-level data set.

The potentiometric maps generated from the data set described earlier were compared 

to potentiometric maps generated from water-level information collected in 1912,1947, and 

1965 by the USGS. The 1947 data represent water levels in the period of early development 

of the groimd-water resource. The 1947 data set has limited utility within the area of
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investigation because of the scarcity of control points. Domenico and others (1964, p. 26) 

estimated that as late as 1962 over half the ground water extracted from the alluvial aquifers 

was from wells in a 1600 m  ̂area at what is now the Las Vegas Valley Water District's Main 

Well Field.

The 1965 data set includes water-level information from the wells drilled in the early 

1960's. This data set has better control in the area of investigation, so the amount and 

location of water-level decline was estimated from this data set.

Potentiometric maps generated from the 1947,1965 and 1993 data sets display the 

same general trends. The change in slope is greater north to south than west to east. The 

area of greatest water-level decline is offset from the area of heaviest pumpage, therefore the 

declines may be an indication of the anisotropy of the aquifer as well as an indication of 

stress caused by pumpage.

Aquifer tests

Seventeen wells were drilled by the District and three wells were drilled by NLV 

between 1989 and 1994. The estimated transmissivities calculated from aquifer tests of these 

wells are composite values because multiple intervals were screened. In only two cases were 

adjacent wells with significantly different screened interval tested (W74 and W75, and W69 

and W72) (see fig. 23 and Appendix A).

Transmissivity values are: (1) affected by multiple screened/perforated intervals; (2) 

influenced by regional pressure effects from other wells; (3) valid only where the aquifers 

are saturated; (4) point values, with the areal boundaries of the transmissivity zones 

determined by geostatistics, quantitative, or semi-qualiative techniques; (5) spatially
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restricted and do not cover the area of investigation as fully as do specific capacity, lithologie 

information, or water-level measurements; (6) only representative of the screened intervals; 

(7) influenced by mechanical problems such as casing storage and variable flow rates caused 

by the pump; and (8) affected by loss of enough confinement on the west side of the area of 

investigation to invalidate the use of the Theis (1935) equation.

Despite the factors influencing the transmissivity values, these data are the best 

available quantitative measure of permeability. Specific capacity values exist and are 

recalculated semi-annually for 38 District wells. The three NLV wells drilled in 1991 have 

both specific capacity and transmissivity values. The specific capacity for two other NLV 

wells were recalculated in 1990. A specific capacity of < 0.2 g/s/m was measured in one 

CLV well (MAP) in 1981. The specific capacity at this well has likely decreased due to 

declining water-levels and was included only because no other well exists within 2 km.

The specific capacity measurements are affected by the: (1) method of well 

construction, (2) condition of the well, (3) flow rate, (4) size of the well, and (5) position of 

the pump within the well. For these reasons, specific capacity is used in this investigation 

only as a semi-quantitative value with an error probably as large as the reported values. 

Specific capacities were used in this investigation because some of the older wells have only 

specific capacity values. The aquifer test data firom some of these wells is as much as fifty 

years old. Additionally, no other technique is available to estimate permeability in 

unsaturated aquifers. Some of the older wells are perforated or screened in intervals different 

from the wells drilled between 1989 and 1994.
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Permeability from aquifer tests 

The permeability of the aquifers was calculated from the transmissivity using two 

equations:

T/b = K and k  = Kp/pg

where T = transmissivity,

K = hydraulic conductivity, 

b = aquifer thickness, 

p = dynamic viscosity of the fluid (water), 

p = density of the fluid, 

g = acceleration due to gravity, and 

K = permeability of the medium in L̂ .

The thickness of the aquifers were estimated from the cross-sections.

Permeability from geophysics and grain-size 

In two of the wells (W78 and W87) drilled by the District between 1989 and 1994, 

acoustic geophysical logging was performed. These acoustic logs can be used to estimate 

porosity and do not directly measure permeability. Techniques to estimate permeability 

directly from porosity have existed since Hazen's formula of 1892 (cf. Vukovic and Son), 

1992). They have generally been unsuccessful primarily because the angularity of the pores, 

and relatively small changes in the interstices, such as cementation and small changes in the 

grain size sorting, have a large impact upon permeability. In many of the techniques 

described by Vukovic and Soro (1992), the effective grain diameter is in the 10 to 20th 

percentile. This means that a gravel with 25 percent silt will have a calculated permeability
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similar to a pure silt and gravel with 25 percent sand will have a calculated permeability 

similar to pure sand.

The alluvial sediments in Las Vegas Valley are usually variable mixtures of clay, silt, 

sand, and gravel. Changes in the sand and silt percentages are difficult to document. Neither 

the small grain-size changes described earlier nor slight changes in cementation would 

change the lithologie descriptions which are usually based upon the dominant grain size.

Estimates of permeability o f a hydrogeological unit calculated from aquifer tests 

reflect the surrounding area because a pumping well draws water from a large to very large 

area around the well. Porosity and permeability' calculated directly from grain size is 

suspect because it is a point value and may reflect only local variations at the well bore. 

Aquifer tests therefore, reflect the permeability of an area surrounding the well. Local 

variations in porosity or permeability may have little or no impact on the flow paths and the 

overall permeability of the hydrogeological units.
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CHAPTER 5 

RESULTS AND DISCUSSION 

Origin of Geologic Units

Most, if  not all, of the basin-fill in the area of investigation is derived from erosion 

of the Spring Mountains. The Spring Mountains are a complex structural block of Paleozoic 

carbonate and siliciclastic rocks and Mesozoic siliciclastic rocks. The area of investigation 

is located within the piedmont of the Spring Mountains (figs. 2 and 5). The primary features 

of the area of investigation are the Red Rock and Kyle Canyon Alluvial Fans and La Madre 

Mountain. La Madre Mountain is transverse to the axis of the Spring Mountains and 

separates the watersheds of the two alluvial fans.

Both of the fans are of similar size but have a different depositional history related 

to the rock type of the source area, the location of the depositional area, and the complexity 

o f the depositional environment. The southern alluvial fan, the Red Rock Alluvial Fan, is 

described in detail below. The northern alluvial fan, the Kyle Canyon Alluvial Fan is a 

single alluvial fan whose source area is almost entirely Paleozoic carbonate rocks.

Deposition

Where the Red Rock Wash emerges from the mountain block Vi kilometer west of 

the area of investigation, it is confined by the unnamed alluvial fan in Section 21 of T20S, 

R59E, MDBM and the unnamed bedrock hill centered at Section 10, T21S, R59E, MDBM.

97
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Below this hill the wash bends to the southeast. Within 14 kilometer o f this point are two 

other apexes for the two other lobes of the Red Rock Alluvial Fan. The surface of the 

unnamed fan in Section 21, T21S, R59E, MDBM is older than 730,000 years (McDonnell- 

Canan, 1989, p. 85). The modem wash has flowed in its present course for the last 10,000 

years because older alluvial fan deposits, 120,000 to 10,000 year old, (McDonnell-Canan, 

1989, p. 90) cover the northern and central lobes of the Red Rock Alluvial Fan. The Red 

Rock Wash is actively headcutting these older deposits, as are washes within the central and 

northern lobes of the Red Rock Fan. The head cutting of the other lobes may be primarily 

driven by on-fan precipitation and a minimal sediment supply.

Three distinct lobes can be seen on the Red Rock Alluvial Fan. Each of these lobes 

exhibit different depositional features. The modem wash is contained within the southem 

lobe.

Geomorphic Controls on Red Rock Alluvial Fan Sediment Sources 

The source and depositional areas of the alluvial fans studied in this report vary by 

type and location. Within the Red Rock Alluvial Fan watershed, the primary source rocks 

are the late Permian Kaibab and Toroweap Formations. These predominantly limestone 

units contain abundant chert, gypsum, and anhydride. As a consequence, both o f these 

formations are more susceptible to erosion than older carbonate rocks thrusted above these 

formations, in this area, but less susceptible than the underlying Mesozoic siliciclastic rocks 

in normal stratigraphie position. The resulting topography in this area is a series of low 

hills, usually composed of Kaibab or Toroweap Formations, generally steeply dipping to 

the east and shallow dipping to the west. These hills control the location of the Red Rock
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Wash until it exits the mountain block north of an unnamed hill centered in Section 10 

T21S, R59E, MDBM.

The western edge of the Red Rock watershed is the axis of the Spring Mountains 

and the northern edge of the watershed is the axis of La Madre Mountain. The exposed 

lithology of both these areas are Paleozoic carbonate rocks thrust over Mesozoic 

siliciclastic rocks.

The thrust surface(s) may be the preferential zones of erosion where the overlying 

carbonate rocks are undercut and transported downfan forming a pediment on the 

underlying siliciclastic rocks near the thrust contact. This style of erosion would result 

in deposition of sediment dominated by carbonate basin-fill detritus overlying the 

siliciclastic rocks.

The southem slope of La Madre Mountain contains two small alluvial fans. The 

western fan is located in Red Rock Canyon proper and the eastern fan is an unnamed fan 

centered in Section 21, T20S, R59E, MDBM (Section 21 fan). The fans are separated by 

Turtlehead Mountain. These two alluvial fans have different effects on the overall Red 

Rock Alluvial Fan. The western fan is a significant source of water and sediment for the 

Red Rock Alluvial Fan whereas the eastern fan has low stream power and controls the 

locus of deposition of the fan.

Geologic description of the cross-sections

The geology of the cross-sections are described in the following sections.
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Cross-section A to A'

This cross-section is oriented west to east and has the least amount of detailed 

information. The most prominent feature is a gravel channel sub-parallel with the cross- 

section along the edge of the Kyle Canyon Alluvial Fan. North of this cross-section both 

the subsurface (geophysics and drill logs) and surficial geologic data indicate the 

abundance of fine-grained sediments. East of Rancho Drive, silt with only minor gravel 

intervals is the most common sediment type.

Table 4 correlates the allostratigraphic and hydrostratigraphic units mapped in this 

investigation. Figure 29 displays the distribution of sediment as interpreted from well logs 

on the A to A’ cross-section. Figure 30 displays the distribution of sediment and the 

allostratigraphic units mapped in this investigation on the A to A’ cross-section.

Cross-section B to B'

This cross-section is oriented from west to east and is parallel with Gowan Road. 

This is the primary west to east cross-section and documents many of the features within 

the subsurface. The most distinctive features of this cross-section are; (1) a fine-grained 

cap approximately 100 m thick with an intercalated gravel lens 10 to 30 m thick, (2) a 

predominance of gravel below the fine-grained interval, and (3) bifurcation of the lower 

gravel interval into an upper and lower unit separated by a finer-grained interval east of 

Buffalo Drive (between W72 and W33). Although this cross-section crosses the zone of 

the Quaternary fault scarps, no mapped fault scarps cross the line of section. At depth, 

however, the offset of beds between W33 and W29 and the increase in cementation in 

W29 are indicative of faulting. A line of vegetation can be seen on 1950 aerial
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photographs of this area where the proposed fault would be exposed at the surface. Figure 

31 displays the distribution of sediment as interpreted from well logs on the B to B’ cross- 

section. Figure 32 displays the distribution of sediment and the allostratigraphic units 

mapped in this investigation on the B to B’ cross-section.

Cross-section C to C’

This cross-section is oriented west to east roughly parallel with Charleston Boulevard 

and subparallel with the Red Rock Alluvial Fan axis. The dominant lithology is gravel and 

sand with a relatively rapid decrease in grain size near the District MWF on the eastern side 

of the section. The correlations are strongly influenced by downhole resistivity 

measurements which are primarily the result of variations in cementation and minor 

lithologie variation.

This western side of this cross-section is similar to the western side o f the cross- 

section B to B' where the deposits are gravel and sand primarily distinguished by variations 

in cementation. The various deposits are usually bounded by horizons of strong cementation. 

The boundaries are assumed to be pedogenic caliche (calcrete) partially because they appear 

to be continuous with the lithostratigraphic units defined from variations in grain size.

The geologic variation is not as well defined in this cross-section as it is in cross- 

section B to B'. Figure 33 displays the distribution of sediment as interpreted from well logs 

on the C to C’ cross-section. Figure 34 displays the distribution of sediment and the 

allostratigraphic units mapped in this investigation on the C to C’ cross-section.
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Cross-section D to D'

This cross-section is oriented south to north along Buffalo Drive and transverse to 

the axis of the Red Rock Alluvial Fan. The purpose of this cross-section is to document 

the continuity of units between lobes of the Red Rock Alluvial Fan. The cross section is 

at the boundary between major grain-size changes (west to east).

In addition, detailed information from wells drilled by the District between 1989 

and 1994 is available along this cross-section. In most of the alluvial fan literature (Bull, 

1964; Denny 1967; French, 1992) the emphasis is placed on the continuity of the 

individual lobes. In an arid alluvial fan such as the Red Rock and Kyle Canyon Alluvial 

Fans, continuity is most likely only within lobes. This continuity arises from similar 

depositional conditions such as: (1) size and lithology of the source area, (2) intensity of 

storms, (3) position of the apex and intersection point, and (4) amount of vegetative cover. 

Lobe to lobe correlation is likely to occur only if the lithostratigraphic or allostratigraphic 

units are thick, if similar depositional conditions persist over a significant percentage of 

the total age of the fan, or if the depositional conditions are cyclic.

The allostratigraphic units persist across the northern part of the cross-section 

within the northern lobe of the Red Rock Alluvial Fan; however, these units are thin or 

are eroded across the axis of the fan in the southem part of the cross section. Figure 35 

displays the distribution of sediment as interpreted from well logs on the D to D’ cross- 

section. Figure 36 displays the distribution of sediment and the allostratigraphic units 

mapped in this investigation on the D to D’ cross-section.
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Hydrostratigraphic Units

This investigation identified and described six units within the basin-fill of the Las 

Vegas Valley. The hydrostratigraphic units are mapped and characterized by porosity and 

permeability but traditional geologic methods are used to map the units in cross-section.

Lithologie Controls on Permeability

Throughout the area of investigation the facies transitions in the subsurface are 

consistent with the alluvial fan depositional environment. In the western part o f the area of 

investigation, in the proximal portions of the Kyle Canyon and Red Rock Alluvial Fans near 

the Spring Mountains and La Madre Mountain, gravel with sand is the dominant type of 

lithology. This transitions into a zone (medial and distal part of the fans) where the gravel 

lenses interfinger with finer-grained sediment (minor clay, silt, fine sands and spring- 

deposited caliche).

The coarse-grained deposits in the proximal part of the alluvial fans are several 

hundred meters thick. The interbedded coarse- and fine-grained deposits are also several 

hundred meters thick in the medial and distal parts of the alluvial fans. Although the units 

interfinger, the changes in grain size down slope appear to be abrupt. East of Rancho Drive 

in the Tule Flats and central playa of Las Vegas Valley, fine-grained sediments are the 

dominant lithology. Figures 37,38,39 and 40 display the hydrostratigraphic units mapped 

in this investigation.

The fine-grained sediment are usually less permeable than the coarse-grained units, 

however, the permeability of the coarse-grain units is variable. The permeability of the 

coarse-grained units appear to be strongly controlled by degree of cementation and continuity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CD
■ D
O
Q.
C

g
Q.

■D
CD

C/)
C/)

8■D

CD

7X
3"
CD

CD■D
O
Q.
C

aO3
"O
o

CD
Q.

■D
CD

C/)
C/)

METERS 
ABOVE MEAN 
SEA LEVEL 
(MAMSL)

West

SA

1000

EXPLANATION
Original m ap p in g  u n it d es ig in a tio n  
(an 'A* suffix Indicated perm eability  Is reduced  by 
cem en ta tion , a "B" suffix ind icates perm eability is reduced 
by  fine-g ro in  m aterial -  usually silt, on ”X” suffix 
ind icates perm eability  relationship is uncerta in )

M oderate perm eability 
(aquifer)

No inform ation available
2.5

Vertical Exaggeration =  10X 
Location of D TO D’ cross—section

7 5 0

COce

LU

5 0 0

LOWER
PALEOZOIC
CARBONATE
ROCKS

2 5 0

Boundaries ore bold wtiere distinct, 
and dostied wtiere inferred.
Ail bedrock littiologies are probably 
less permeable than overlying alluvium 

-  except where faulted.

0
Figure 37. -

Low perm eability 
(aqu ito rd)

Land 
Surface

 ̂(n <
oB o r 68?

h fe rred

ALLUVIUM

KILOMETERS

East

BEDROCK Bedrock location and type 
inferred from Plume, 
(1989, pi. 5 and pg. A4)

Note: The perm eability 
of oil hydrogeoiogic un its  
on this c ro s s -s e c t io n  Is 
lower than  o th e r  c r o s s -  
sections, by  a lm ost on 
order of m agnitude, 
however th e  relative 
relationships a re  similar.

Location of hydrostratigraphic units on A to A' cross-section.

N)



CD
■ D
O
Q.
C

8
Q.

■D
CD

C/)(/)

West
1000

METERS ABOVE 
MEAN SEA LEVEL

EXPLANATION
O rig in a l m a p p in g  u n i t  d e s ig in a t io n  
(an  "A" suffix Indicated perm eability  Is reduced  by 
cem en ta tion , a  'B* suffix Ind icates perm eability  is reduced 
by fine-g ro in  m ateria l -  usually silt, on "X“ suffix 
Indicates perm eability  re lationship Is uncerta in )

M oderate perm eability 
(aquifer)

No in fo rm o tlo n  ava ilab le

Very high perm eability  
(aquifer) KILOMETERS

EARLY
PALEOZOIC
CARBONATE
ROCKS

7 5 0
A pproxim ate
T hrust
Location

5 0 0

Location of D TO D’ cross-section

Vertical Exaggeration =  10X 0

East I

Low perm eability 
(aquitord)

Land 
Surface

h i
m

Inferred 
Fault ALLUVIUM

Boundaries are bold wtiere distinct, 
and dastied wtiere inferred.

2.5

MESOZOIC 
CLASTIC ROCKS 
(JURASSIC AZTEC 
SANDSTONE)

2 5 0
The Jurassic Aztec Sandstone, where 
tested, has a much lower permeability 
than the overlying alluvium and Early 
Paleozoic carbonate rocks. Bedrock location 

\ inferred from Plume,
^ (1989, pi. 5)

Figure 38. —  Location of hydrostratigraphic units on B to B" cross-section.



CD
■ D
O
Q.
C

8
Q.

■D
CD

C/)(/)

8■D
2.5

3.
3"
CD

CD■D
O
Q.C
aO
3

■D
O

CD
Q.

■D
CD

(/)(/)

West
METERS ABOVE 

MEAN SEA LEVEL
EXPLANATION

Original m app ing  un it desig ination  
3X  (on A" iu ffix  IndîcQtea premeobWty 

Is rsducsd by csmsntotlon, a B 
Indkotfts perm aoblity Is reduced by 

______ fkis-gra lnsd motsrkW -  usudly s it . )

7 5 0  S

Low PsrmaabllHy 
(aq u lia rd )
M oderate Perm eability  
(aq u ife r)

^  Very HIgti Perm eability  
(aq u ife r)

5 0 0

Boundaries are bold where distinct, 
and dashed where inferred. 2 5 0
The Jurassic Aztec Sandstone, where 
tested, has a much lower permeability 
than the overlying alluvium.

0

Land Location of D TO D’ cross-section  

Surface /

Vertical Exaggeration =  10X

±
KILOMETERS

East

® <S’<

Inferred 
Faults

(Bedrock is 
Jurassic Aztec 
Sandstone -  
where encountered) Bedrock location v 

inferred from \  
Plume, 1989 pi. 5

Figure 39. —  Location of hydrostratigraphic units on C to O' cross-section.



7J
CD■D
O
Q.
C

8
Q.

■D
CD

(/)
o '3

8"O
( O '

i

3.
3"
CD

CD■D
O
Q.C
aO
3

■D
O

CD
Q.

■D
CD

(/)
(/)

South

EXPLANATION
Original m ap p in g  u n it d es ig in a tio n  
(a n  "A" suffix indicated perm eability  Is reduced  by 
cem en ta tion , a  "B" suffix ind ica tes perm eability  is reduced 
by  fin e -g ra in  m oteriol — usually silt, an  ’ X’ suffix 
ind ica tes  perm eability  relationship is uncerta in )

No inform ation available 0 2 . 5

D
1 Low perm eability 

 I (aqu ito rd)
M oderate perm eability 
(aquifer)

Very high perm eability  
(aquifer)

METERS ABOVE Location of A TO A' c ro s s -s e c t io n

MEAN SEA LEVEL 
7 5 0

Location o f B TO B* c ro ss—section
Land 
Surface

Location o f C TO C’ c ro s s -s e c tio n

KILOMETERS

D North

Vertical Exaggeration =

CO
a:

LU

2B ^ H-Æ
° (n<

ALLUVIUM

2 5 0

The Jurassic Aztec Sandstone, 
tested, has a much lower perm 
than the overlying alluvium and 
Paleozoic carbonate rocks.

0

MESOZOIC 
vhere CLASTIC ROCKS (?)
.ability (Jurassic Aztec
Early Sandstone?)

BEDROCK

Bedrock location on 
inferred from Plume, 
(1989, pi. 5 and pg

s  Boundaries 
\,ond dashed

V

(ire bold where distinct, 
where inferred

Figure 40. —  Location of hydrostratigraphic units on D to O' cross-section.



116

between sediment lenses. These are sediment dispersal pattern features and are controlled 

by fan morphology. This may be tlie reason for the spatial correlation between the 

hydrologie properties and the geometry of the fans.

M apping criteria for Hydrostratigraphic units 

Grain size and cementation are the primary mappable characteristics within the 

subsurface and were used as the basis for the physical description of the hydrostratigraphic 

units. Other stratigraphie characteristics that aid in the description of hydrostratigraphic 

units are: (1) the relative percentages of gravel, sand, silt and clay in each interval, (2) 

degree of sorting, (3) roundness of the grains, and (4) apparent thickness of beds. These 

types of data are available only for the seventeen wells drilled between 1989 and 1994 and 

there is variation in the quality of the data. Not only are the data of variable quality but 

the detailed stratigraphy may also represent individual depositional flows.

Exact correlation between individual depositional flows is neither possible nor 

desired in this investigation. The minimum thickness of a mappable unit is 10 m. This 

is many individual depositional flows and probably represents hundreds to thousands of 

years of deposition.

Lateral Variation of the Hydrostratigraphic Units 

The hydrostratigraphic units exhibit both lateral and vertical variation. The lateral 

variation is related to the location of the lobes of die fan, specifically the areas of 

preferential cementation and the grain-size distributions. The two areas with the highest 

reported transmissivities in the area of investigation are within the District's MWF and at 

wells W69 and W88. (see fig. 23). These two areas are contained with a larger zone
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where the reported transmissivity of wells is usually greater than 1000 mVday and where 

specific capacity of wells is generally greater than 5 (/s/m. This zone is about 6 km wide 

along Charleston Boulevard and about 7.5 km wide along Gowan Road. The zone extends 

from south of the area of investigation north to about Craig Road. Wells W69 and W88 

are located near the center of the northern lobe of the Red Rock Alluvial Fan which is 

characterized by coarse-grained sediment, unchannelized depositional flows, and relatively 

weak cementation.

Within the southeastern part of the area of investigation (Subarea 4), the location 

and nature of the hydrostratigraphic units described in this investigation are similar to 

previously named alluvial aquifers characterized by grain-size variations. Grain-size of 

the sediment also appears to strongly control the permeability in Subarea 5; however, the 

differences in permeability between aquitards and aquifers are not as pronounced.

The simple relationship between grain size and permeability does not appear to be 

consistent in areas with significant amounts of coarse-grained sediment (Subareas 1, 2 and 

3). The coarse-grained sediment should be viewed as potentially highly permeable, but 

locally have moderate to low permeability due to the presence of silt and/or cementation. 

The hydrostratigraphic units appear to be similar to the allostratigraphic units, indicating 

that cementation reduces permeability and is an aquitard within the alluvium.

The hydrostratigraphic units were refined with detailed lithologie and hydrologie 

data collected between 1989 and 1994 north of Craig Road and west of Rainbow 

Boulevard (Subareas 1 , 2 , 3 ,  and 5). Municipal wells were emphasized as indicators of
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hydrologie characteristics because they are operated near maximum capacity and are 

routinely monitored. Thus they provide good data for evaluation of aquifer properties.

Within the area of investigation, three major factors control transmissivity and 

permeability: major grain size changes, amount of silt as the fine fraction, and degree of 

cementation. In all previous reports (Maxey and Jameson, 1948; Domenico and others, 

1964; Malmberg, 1965; Harrill, 1976; Dettinger, 1984; Plume, 1989; Morgan and 

Dettinger, 1994), transmissivity and permeability north of Craig Road and west of 

Rainbow Boulevard (Subarea 1) were estimated using descriptions of grain size in 

domestic well logs because of the minimal amount of aquifer test data in this area.

This technique is suspect in Subareas 1 , 2 , 3 ,  and 5. Fine-grained material and 

cementation in the interstices of the coarse-grained units appear to control transmissivity 

and permeability, rather than major grain-size variations such as that seen in Subarea 4. 

North of Craig Road, despite gravel percentages similar to Subareas 2 and 3, the 

transmissivity of any existing well, no matter how constructed, is less than 95 m^/day 

(7,500 g/d/f). This is probably due to the presence of silt rather than sand as the fine 

fraction within the gravel deposits.

The sediments west of Rainbow Boulevard and south of Craig Road (Subareas 2 

and 3) are almost exclusively gravel with sand. The variation in transmissivity and 

permeability is related to the degree of cementation in the interstices and possibly the size 

and shape of the channels containing the individual depositional units. It is very important 

to have measures of permeability independent of lithology because the changes in 

cementation and grain size can be very subtle.
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Vertical Variation of the Hydrostratigraphic units 

In this report, six hydrostratigraphic mapping units composed of three aquifers and 

three aquitards were delineated and defined. Subarea 4 is the only location where all six 

hydrostratigraphic mapping units can be distinguished solely by grain-size variation. The 

interpreted thickness of the hydrostratigraphic mapping units (HMUs) at individual wells is 

reported in table 5.

Figure 41 is a thickness map of the uppermost HMU one (1) designated in this 

investigation as the Las Vegas Wash Aquitard, an aquiformation. Figure 42 is a map of the 

surface between HMU one (1) and the underlying more permeable sediments designated in 

this reports as the Las Vegas Springs Aquifer, an aquiformation. Figure 43 displays the 

thickness of the “upper” aquifer with the Las Vegas Springs Aquifer, HMU two (2) or the 

Las Vegas Creek aquifer, an aquimember. Figure 44 displays the thickness of the “middle” 

aquitard within the Las Vegas Springs Aquifer, HMU three (3) or the Twin Lakes aquitard, 

an aquimember. Figure 45 is a map of the thickness of the “lower” aquifer within the Las 

Vegas Springs Aquifer, HMU four (4), the La Madre Mountain aquifer, an aquimember. 

Figure 46 display the total thickness of the Las Vegas Springs Aquifer (HMUs 2,3,  and 4 

combined). Figure 47 displays the surface between the Las Vegas Springs Aquifer and the 

underlying less permeable sediments, designated in this investigation as the Duck Creek 

Aquifer, an aquiformation (HMUs 5 and 6 combined). The thickness maps are displayed 

from top to bottom because the amount of information decreases with depth.
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Table 5. - Thickness of hydrostratigraphic mapping units (HMUs) in meters

W e ll
N a m e

E a s tin g
(U T M )

N o r th in g
(U T M )

T h ic k 
n e s s  o f  
H M U  1

T h ic k 
n e s s  o f  
H M U 2

T h ic k 
n e s s  o f  
H M U 3

T h ic k 
n e s s  o f  
H M U 4

T h ic k 
n e s s  o f  
H M U s  

5 & 6

M A P 6 5 4 2 8 7 .2 4 0 0 4 2 3 8 .8 6 0 .8 19 .7 3 5 .6 59 .1 1 5 8 .2

M E C 6 5 4 4 2 3 .7 4 0 1 4 6 1 9 .7 8 9 .0

M G W 6 5 0 8 7 6 .1 4 0 0 9 9 5 8 .7 1 1 2 .8 3 3 .2 5 9 .7

M L M T 6 5 6 3 1 3 .5 4 0 1 2 7 5 0 .0 1 0 3 .6 4 4 .2

N O IA 6 6 1 1 9 3 .1 4 0 1 6 7 8 2 .0 76 .1 2 1 .2 6 8 .2 9 5 .2

N E E 6 6 0 4 6 8 .3 4 0 1 0 0 7 3 .8 7 5 .3 3 2 .2 7 4 .9 4 6 .4

N R O 6 6 2 3 1 2 .7 4 0 0 8 1 4 0 .2 4 4 .8 4 8 .8 6 1 .5 7 4 .4

N W C 6 6 2 2 9 3 .2 4 0 0 9 1 5 6 .2 6 9 .0 2 2 .8 4 6 .4 9 3 .9

U 1 0 0 2 6 5 5 4 3 6 .8 4 0 1 1 5 3 8 .9 9 1 .7 6 0 .6

U 1 0 7 9 6 5 6 8 7 1 .3 4 0 1 5 0 7 8 .6 8 6 .0 6 2 .8 2 8 .5 7 1 .1

U 1 0 8 0 6 5 3 8 5 0 .7 4 0 1 5 0 8 6 .3 6 5 .2 3 3 .0

U 1 0 8 7 6 5 2 4 1 9 .7 4 0 1 5 5 5 4 .3 8 6 .3 6 6 .7

U 1 0 9 0 6 5 0 7 4 4 .2 4 0 1 5 7 4 0 .9 1 5 3 .2 2 5 .7

U 1 0 9 7 6 5 7 0 1 7 .0 4 0 1 6 6 8 4 .1 9 1 .5

W O IA 6 5 9 7 9 4 .5 4 0 0 3 1 5 4 .7 82 .1 2 8 .9 6 2 .5 3 7 .9

W 0 3 A 6 6 3 5 2 7 .0 4 0 0 6 2 3 0 .0 8 6 .3 4 9 .9 3 3 .0 6 8 .5

W 2 2 A 6 5 6 4 2 3 .3 4 0 0 7 4 5 3 .4 7 6 .2 4 2 .6 30.1 4 6 .3

W 2 3 A 6 5 6 2 7 6 .1 4 0 0 7 6 8 8 .4 7 7 .8 4 1 .3 16.3 5 6 .3

W 2 8 6 5 8 7 7 4 .0 4 0 1 0 1 1 9 .9 7 7 .1 2 6 .6 6 5 .4 5 2 .2

W 2 9 6 5 8 4 2 3 .6 4 0 0 9 9 9 0 .3 8 0 .6 2 6 .6 5 3 .5 5 8 .4

W 3 3 6 5 8 0 9 6 .4 4 0 1 0 1 6 1 .7 80 .1 2 6 .5 5 0 .3 5 5 .9

W 3 8 6 5 8 2 3 2 .1 4 0 0 3 4 5 6 .0 6 9 .8 2 4 .2 4 6 .0 7 0 .2

W 4 5 6 6 1 4 7 1 .0 4 0 0 7 0 3 7 .0 6 8 .6 3 9 .6 6 1 .0 5 4 .2

W 5 0 6 6 0 8 3 1 .1 4 0 0 3 5 1 8 .7 7 8 .4 2 4 .6 6 6 .8 6 6 .9

W 6 0 6 6 2 6 7 5 .2 4 0 0 4 1 1 6 .4 8 1 .8 2 8 .9 4 6 .9 7 2 .4

W 6 9 6 5 6 4 1 2 .1 4 0 0 9 4 3 5 .3 8 6 .5 5 5 .0 17.6 6 1 .3

W 7 0 6 5 6 6 8 0 .4 4 0 0 3 0 3 2 .9 5 2 .0 2 4 .5 30.1 5 9 .0 2 7 8 .7
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Table 5. - Thickness of hydrostratigraphic mapping units (HMUs) in meters(Cont’d.)

W ell

N a m e

E a s tin g

(U T M )
N o r th in g

(U T M )

T h ic k 
n e s s  o f  
H M U l

T h ic k 

n e s s  o f  
H M U 2

T h ic k 

n e s s  o f  
H M U 3

T h ic k 

n e s s  o f  
H M U 4

T h ic k 

n e s s  o f  
H M U s 
5 & 6

W 7 2 6 5 6 3 8 8 .8 4 0 0 9 8 8 8 .1 8 5 .6 4 0 .8 13.3 6 0 .6

W 7 5 6 5 5 4 6 4 .1 4 0 1 5 0 6 9 .0 1 0 4 .2 6 1 .2 1 7 .4 62.1

W 7 6 6 5 6 4 2 9 .6 4 0 0 5 2 3 1 .5 5 3 .8 2 3 .8 1 1 .7 59 .3

W 7 8 6 5 2 7 4 7 .1 4 0 0 9 4 8 8 .7 6 3 .6 3 7 .0 7 7 .7 9 9 .8

W 7 9 6 6 3 6 7 8 .2 4 0 0 4 6 4 2 .4 8 7 .0 16.8 8 3 .6 5 5 .7

W 8 3 6 6 3 0 1 0 .7 4 0 0 3 5 2 9 .1 8 9 .2 2 0 .0 4 9 .8 6 8 .3

W 8 7 6 5 6 1 6 4 .0 4 0 0 6 1 7 6 .7 9 4 .5 4 1 .4 1 6 .2 4 8 .9

W 9 0 6 5 3 9 3 9 .5 4 0 0 9 7 1 8 .4 5 5 .9 4 0 .7 4 6 .5 122 .8 1 6 6 .8

W 9 4 6 5 6 5 6 4 .6 4 0 1 0 7 8 7 .2 7 2 .7 6 2 .6 2 1 .2 5 7 .6

W 9 5 6 5 3 2 8 6 .7 4 0 0 9 6 3 5 .1 6 0 .7 3 6 .0 5 6 .9 135.5 8 7 .4
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The lowermost unit, informally called HMU six, is the gravel below about 250 m 

below land surface. The total thickness is unknown but exceeds 300 m in the District's 

Main Well and 200 m at the intersection of Cheyenne Avenue and Buffalo Drive. This 

unit is similar to Maxey and Jameson's (1948, p. 82) "Deep Zone of aquifers" or the 

lower part of Harrill's (1976, p. 9) “principal aquifers.” HMU six is lithologically similar 

to the overlying sediments, especially in the alluvial fans, but has a very different 

permeability. Significant permeability differences were observed at wells W69 and W72 

and also at the District's West Central Well Field (WCWF). At both of these locations 

there are wells that are completed exclusively in HMU six. These wells have a much 

lower transmissivity than adjacent wells that are completed in both HMUs six and four.

Within the District's MWF, the boundary between HMU six and four is a fme- 

grained unit (silts, fine sand, and minor gravel) about 15 m thick. This fine-grained unit 

is located at approximately the same depth as an interval of strong cementation interpreted 

as pedogenic caliche, also about 10 to 25 m thick at the District's WCWF. Together, 

these units comprise HMU five (figs. 38, 39, and 40). The 10 to 25 m thick cementation 

interval may not have been deposited at the same time as the fine-grained sediments but 

probably represents an erosional surface. If the unit is caliche, it and the and finer-grained 

material would have been more difficult to erode than sand and uncemented gravel, 

therefore the mapped boundary may be an erosional unconformity rather than a 

depositional hiatus. The correlation surface mapped ft’om well to well looks like an 

erosional surface cut into the underlying finer-grained sediments. The coarse-grained
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sediments above the contact are poorly cemented, indicating a relatively high energy 

depositional environment.

HMU four (figs. 37, 38, 39, and 40) is the poorly cemented gravel with sand above 

the caliche/fine-grained marker bed. This unit is equivalent to Maxey and Jameson's 

(1948, p. 82) "Middle Zone of aquifers" and is the most productive interval of the 

"principal aquifers" of Harrill (1976, p. 9). This interval is the source of most of the 

water in most of the District's and NLV's wells. The thickness of this unit ranges from 

30 to 75 m with an average thickness of 63 m.

Subunits labeled 4A and 4B are moderate permeability parts of HMU four. 

Permeability is reduced in subunit 4A by cementation and in 4B by the presence of silt.

Above HMU four, east of Rainbow Boulevard (Subarea 4), there is an interval of 

fine-grained material, generally about 75 m thick, designated in this report as HMU 3B 

(figs. 37, 38, 39, and 40). West of Rainbow Boulevard and south of Craig Road (in 

Subareas 2 and 3) is an interval of sand with gravel or gravel with sand. The lithologie 

variation is slight and the primary mappable characteristic is cementation. This interval 

was mapped as HMU 3A. Although the reasons for the reduction in permeability is 

different in the two HMU’S, the two units appear to be continuous and form one aquitard 

unit designated HMU three. Additionally, this and the overlying units are not now 

saturated and no historic aquifer test data is available to estimate permeability in this 

interval. HMU’S four, three and two are sometimes difficult to map into distinct units but 

are locally important and were assigned member status. West of Rainbow Boulevard and 

south of Craig Road (Subareas 2 and 3) HMU two may sit directly above unit four.
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East of Rainbow Boulevard (Subarea 4) the upper aquifer HMU (HMU two) is 

composed of gravel-sized sediment. The HMU is about 15 to 30 m thick in a interval of 

finer-grained material (figs. 38 and 39). This "gravel" interval is commonly reported in 

lithologie logs over most of the eastern part of the area of investigation (Subarea 4). This 

is the "Shallow Zone of aquifers" of Maxey and Jameson (1948, p. 81) or the uppermost 

interval of the "principal aquifers" of Harrill (1976, p. 9). Everywhere in the area of 

investigation, this unit is thinner than HMU four and has a lower transmissivity value.

At the District's MWF the permeability is similar to hydrostratigraphic unit four, 

with the difference in transmissivity related to thickness. At the District's Gowan Well 

Field (GWF), the dewatering of this interval has had minimal impact on the specific 

capacity of wells. This suggests that the transmissivity of this HMU is not only lower due 

to thickness, but also has a lower permeability. This interval remains an important aquifer 

for domestic wells north of Craig Road and east of Jones Boulevard. It is at least 30 m 

below the water table and it is the first gravel interval encountered. Above HMU two is 

HMU one (figs. 37, 38, 39, and 40).

HMU one is approximately 60 m thick and is similar to the "near-surface 

reservoir" of Malmberg (1965, p. 59) and the "shallow aquifer" of Bemholtz (1994, p. 

22). East of Rainbow Boulevard this unit is composed of silt, sand and minor gravel and 

is commonly described as the Las Vegas Formation (Longwell and others, 1965, p. 50). 

West of Rainbow Boulevard this unit transitions into a caliche cap, especially south of 

Vegas Drive near the central axis of the Red Rock Alluvial Fan. The Las Vegas
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Formation and the "near-surface reservoir" designation only applies to the fine-grained 

uppermost deposits, seen east of Rainbow Boulevard.

Within the area of investigation north of Craig Road the stratigraphy is similar, 

however, the hydrology is significantly different. The two production wells in this area 

have low specific capacity values compared to wells in Subareas 2, 3, and 4. The 

relatively low specific capacity values indicate that the permeability of the screened 

intervals is relatively low for an aquifer. The low permeability combined with the 

lithologie variability makes identification of distinct permeability intervals difficult.

With the available data, three lithologie intervals can be distinguished within the 

subsurface of Subareas 1 and 5. The deepest is a gravel-dominated interval, below 180 

m below land surface. Above this is a silt dominated interval between 180 m and 30 m 

below land surface. The upper 30 m is dominated by gravel and is thickest (up to 45 m) 

in a channel, at least 750 m wide and at least 150 m deep, located on the edge of the Kyle 

Canyon Alluvial fan, south of Ann Road.

The lowest "gravel-dominated" interval was subdivided into HMUs four and six 

based on subtle variations in the amount of silt and on depth to relatively coarse-grained 

deposits farther to the east in Subarea 1 (fig. 38). The upper part of the "gravel- 

dominated" interval is continuous with the coarser-grained intervals in the fine-grained 

sediments of Subarea 1. Both the fine-grained interval between 180 and 30 m below land 

surface and the coarse-grained deposits were assigned to HMU one.

The coarse-grained deposits in the upper 30 m were interpreted as a relatively thick 

section of laterally discontinuous surficial deposits. If subsequent investigations can
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document continuity in these deposits it may be appropriate to designate this as an aquifer 

hydrostratigraphic unit above the hydrostratigraphic units identified in this investigation.

Flow Parameters

Porosity, permeability, hydraulic conductivity, and transmissivity are described in 

the following sections.

Porosity

As previously discussed, porosity of the basin-fill gravel deposits has been estimated 

from acoustic geophysical logs. The interpretation is non-rigorous but results fall within the 

range of alluvial fan deposits at 15 to 25 percent porosity. The estimation is non-rigorous 

primarily due to mechanical problems such as loss of fluid in the borehole during logging. 

The porosity of the coarse-grained deposits are approximately 15 to 25 percent and the fine

grained deposits are approximately 40 percent. Both of these estimates are on the low range 

o f the table listed in Freeze and Cherry (1979, p. 37). Although the total porosity in the 

coarse-grained deposits is lower than in the fine-grained deposits the effective porosity is 

generally higher. The storativity is in all cases at least an order of magnitude less than the 

porosity, and less than 0.0002 in the more confined parts of the aquifer east o f Rainbow 

Boulevard

Permeability

The value of permeability varies from well to well but ranges from 3.2 x 10 cmF 

in hydrostratigraphic unit four to 2.9 x 10°® cm^ (Bemholtz, 1994, p. 50) in 

hydrostratigraphic unit one at the District's MWF. The first value falls within the range of 

"Clean sand" and the second fall within the range of "Silt, loess" (Freeze and Cherry, 1979,
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table. 2.2, p. 29). These categories are consistent with the lithic character of the sites where 

these measurements were collected. The sediment at the low permeable site can be 

characterized as a sandy silt with minor clay and gravel and the second location as sandy 

gravel.

HMU four or the La Madre Mountain aquifer of the Las Vegas Springs Aquifer is the 

best defined of all the HMU’s mapped in this investigation. The lithologie character is 

usually well defined and the locations of the screens in the individual wells allow estimates 

to be made about amount of water contributed by this aquifer. Figure 48 is a map of the 

permeability estimated for HMU four, contoured using traditional geologic methods.

The contributions from the other HMU’s are not as well defined. The permeabilit>' 

in HMU SK is difficult to calculate because all of the District wells only partially penetrate 

the unit and the total thickness is unknown. The permeability of HMU six seems to be 

similar to or slightly higher than HMU one. The permeability of HMU five cannot be 

estimated. Many of the District and NLV wells fully penetrate this unit but any water 

contribution and therefore any effect on calculated transmissivity by this interval is much 

smaller than the errors in estimating transmissivity. No well is exclusively completed within 

HMU’s five and three. These units are lithologically similar to HMU one and are likely to 

have a similar permeability. Hydrostratigraphic unit two appears has a similar permeability 

to hydrostratigraphic unit four at the District's MWF. Wells that are completed in HMU’s 

two, four, and six have specific capacities roughly 25 percent higher than wells completed 

only within HMU four and six. HMU two is about one-half as thick as HMU four.
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Hydraulic Conductivity 

Hydraulic conductivity was estimated from transmissivity by the equation T/b = K. 

The main difficulties in estimating hydraulic conductivity are the transmissivity estimates, 

defining the thickness of the units, and assigning percentages o f the total transmissivity to 

the individual horizons. Figure 49 is a map of the hydraulic conductivity in HMU four.

Transmissivity

The reported transmissivity of an aquifer test at a well is a composite of all of the 

hydrostratigraphic units the well fully or partially penetrates. The relative significance of 

each hydrostratigraphic unit within each well must be determined by either nearby wells with 

different perforated (screened) intervals, or comparisons of historic to modem transmissivity 

estimates. As with all quantitative approaches to natural phenomenon, there are always 

deviations from the underlying assumptions. Within the District's MWF, aquifer data best 

fits with Papadopulous and Cooper (1967) modification to the Theis (1935) confined aquifer 

solution, and Moench's (1985) modification to Hantush's 1960 solution for leaky semi

confined aquifers. Both of these modifications are designed to minimize the effects of casing 

storage in large diameter wells. Casing storage can be seen in every well analyzed in this 

investigation. The municipal wells analyzed in this investigation range from 410 to 860 

centimeters in diameter.

Correlation Between Geology and Hydrogeology 

The mappable characteristics in the basin-fill of the Las Vegas Valley are grain size 

and degree of calcium-carbonate cementation. Calcium carbonate-cementation is a post- 

depositional characteristic and is not usually a mappable characteristic of lithostratigraphic
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units. Consequently, grain size is the primary mapping characteristic of lithostratigraphic 

units mapped in this and previous investigations.

One of the conclusions of this investigation is that the boundaries between the 

allostratigraphic and hydrostratigraphic units are similar. This is a very unusual conclusion 

because the allostratigraphic units are defined by bounding character whereas 

hydrostratigraphic units are defined by the internal character of the unit. The similarity arises 

from small scale variations in grain size and cementation that occur between the 

allostratigraphic units.

Each of the allostratigraphic units have slightly different grain-size distributions and 

cementation. These slight variations, in turn, control the distribution of permeability. 

Pedogenic caliche is formed by soil forming processes and is therefore a bounding 

discontinuity. The allostratigraphic units mapped and informally named in this investigation 

are bound by horizons within the subsurface that were interpreted to be pedogenic caliche, 

not simple calcium carbonate cementation.

The allostratigraphic units and the hydrostratigraphic units described in this 

investigation tend to mimic the alluvial fan shape. By contrast the boundaries of the 

lithostratigraphic units appear to be primarily controlled by distance from the source areas 

in the Spring Mountains.

Neither formal nor informal allostratigraphic units have been previously defined in 

Las Vegas Valley and no formal lithostratigraphic units exist in most o f the basin-fill in the 

area o f investigation. One informal and one formal lithostratigraphic unit exist but these 

units are not in contact. The Miocene (?) Muddy Creek Formation has been assumed to be
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equivalent to the "Deep Zone of aquifers" of Maxey and Jameson (1948) by most (Maxey 

and Jameson, 1948; Domenico and others, 1964; Harrill, 1976; Bell, 1981; Brothers and 

Katzer, 1988; Plume, 1989; and Bell and Price, 1991) of the hydrologie investigations of Las 

Vegas Valley.

Although the Miocene (?) Muddy Creek Formation of Stock (1921) is a formal 

lithostratigraphic unit, its existence and location in Las Vegas Valley is unproven (Bell, 

1981, p. 20). The Muddy Creek Formation is generally used to describe fine-grained pre- 

Pleistocene units in the valley and is only an informal designation within Las Vegas Valley. 

The two primary criteria used to identify this unit in Las Vegas Valley are low transmissivity 

and the fine-grained nature of the sediments. In most of the area of investigation, in the 

lower parts of the wells, the sediments are coarse grained but have a low transmissivity (< 

20 percent o f the transmissivity of the HMU four). Although the Muddy Creek Formation 

is generally assumed to be fine-grained, Longwell and others (1965, p. 50), Bohannon (1984, 

p. 58) and Rice (1986, p. v) document a variety of facies in this unit with coarse-grained 

material near the basin margin, in depositional settings similar to the area of this present 

investigation.

Between the Muddy Creek Formation and the other named lithostratigraphic unit the 

Pleistocene age Las Vegas Formation lies an informal unit named by Harrill (1976, p. 6) as 

“Fanglomerate and valley floor deposits.” Within the area of investigation this unit is 

predominately composed of gravel. Harrill’s informal unit was carefully examined because 

it contains the most productive aquifers in Las Vegas Valley. The gravel facies of this unit 

is the most aerially extensive of all the gravel units in Las Vegas Valley and appears to be
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deposited during a period of significant progradation of the Red Rock Alluvial and Kyle 

Canyon Alluvial Fans.

The Pleistocene Las Vegas Formation is a lithostratigraphic unit, therefore the proper 

usage of the name is restricted to Quaternary fine-grained deposits located in the central axis 

of the valley. Coeval gravel deposits were not included within this formation even though 

they are products of the same depositional process.

The descriptions below are from top to bottom because of the importance of the units 

to the hydrogeology and the amount of available information decreases with depth. With the 

exception of the uppermost unit, all of these units are not exposed at the surface in the area 

of investigation.

A buried caliche surface near the base of the surficial fine-grained deposits was 

mapped at about 75 m below land surface. The surface was also mapped into the coarse

grained sediments of the alluvial fans to the west and therefore independent of lithology. 

The surficial geologic mapping (Longwell and others, 1965; Haynes, 1967; Sowers, 1985; 

Matti and others, 1987; McDonnell-Canan, 1989; Quade and others, 1991) documents that 

all the alluvial fan gravel deposits and the fine-grained sediments of the Las Vegas 

Formation, in the area of investigation, are Quaternary in age. The deposits interfinger at the 

contacts and are caused by changes in the local depositional environment that are time 

independent. Specific mechanisms may have been more important at specific times in the 

past, because of climatic change, but the same mechanisms are still active in Las Vegas 

Valley. For the above reasons the sediments in the upper 50 to 75 m of alluvial-basin fill are 

included in a single unifying Quaternary (Pleistocene?) allostratigraphic unit informally
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named the Tule Springs Alloformation. The overlying Holocene deposits are thin and 

discontinuous and were not specifically mapped in the subsurface deposits. The Tule 

Springs Alloformation is the upper part of the Lone Mountain Allogroup of this present 

investigation. Figure 50 is the fence diagram developed fi'om cross-section B to B’ (fig. 38) 

and D to D’ (fig. 40).

The following descriptions of the lithic character of the allostratigraphic units are for 

the purposes of illustrating the reasons for the similarity in boundaries between the 

allostratigraphic and hydrostratigraphic units. The boundaries between the Tule Springs 

Alloformation and the underlying parts o f the Lone Mountain Allogroup and the boundary 

between the Lone Mountain Allogroup and the underlying Paradise Valley Alloformation 

are distinct bounding discontinuities interpreted to be a buried pedogenic caliche surfaces.

In general, the lower boundary of the Tule Springs Alloformation occurs at a similar 

depth as that of HMU one. HMU one was informally designated as an aquiformation rank 

hydrostratigraphic unit, named the Las Vegas Wash Aquitard in this present investigation. 

In the eastern part of the area of investigation, where the surficial sediments are fine-grained, 

the grain-size increases near but usually below the alloformation boundary. The District 

plans to use the Las Vegas Wash Aquitard as the topmost unit in their four layer hydrologie 

model of Las Vegas Valley. The three subunits originally mapped in the upper 

hydrostratigraphic unit (lA , IB, IX) are continuous with each other and have low 

permeability. Together these units form one continuous unified aquitard. lA  is 

characterized by coarse-grained sediment with strong cementation. IB is characterized by 

fine-grained sediment and, in most places, is silt dominated. This unit is, in most places.
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similar to the "near-surface reservoir" (Malmberg, 1965, p. 24; Harrill, 1976, p . 11). IX is 

characterized by coarse-grained sediment with only moderate to weak cementation but is 

generally surrounded by strongly cemented sediments o f subunit lA.

The next two geologic units below the Tule Springs Alloformation are the middle and 

lower parts of the Lone Mountain Allogroup. The bottom of Lone Mountain Allogroup is 

located 150 to 260 m below land surface with boundary between the middle and lower parts 

at about 105 to 180 meters below land surface. The boundary is distinct in the central and 

eastern parts of the area of investigation but discontinuous and difficult to map in the western 

part. The grain-size tend to increase in diameter up section in all of the individual 

allostratigraphic units mapped in this investigation. The upper part o f the unit informally 

named the “middle part of the Lone Mountain Allogroup” tends to be coarse-grained and 

locally, less cemented. The lower part of the informal “middle part of the Lone Mountain 

Allogroup” tends to be finer-grained and moderately to well cemented. The coarser-grained 

facies of this unit tends to be more strongly cemented than the units above and below. The 

allostratigraphic unit informally named the “lower part of the Lone Mountain Allogroup” is 

dominated by coarse grain sediments generally less cemented than units above or below.

Tlie aquiformation rank hydrostratigraphic unit below the Las Vegas Wash Aquitard 

is the informally named Las Vegas Springs Aquifer composed of three aquimembers. From 

shallowest to deepest these aquimembers are the Las Vegas Creek aquifer. Twin Lakes 

aquitard, and La Madre Mountain aquifer. The Las Vegas Creek aquifer member of the Las 

Vegas Springs Aquifer aquiformation is contained within the upper part of the 

allostratigraphic unit designated the “middle part” of the Lone Mountain Allogroup. The
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contact between the Twin Lakes aquitard and La Madre Mountain aquimembers of the Las 

Vegas Springs Aquifer (aquiformation) is generally located at or below the boundary 

between the “middle” and “lower” parts of the Lone Mountain Allogroup.

The boundary between the Las Vegas Springs Aquifer and the Duck Creek Aquifer 

aquiformation is usually at the boundary between the Lone Mountain Allogroup and the 

underlying Paradise Valley Alloformation. West of Buffalo Drive at Cheyenne Avenue the 

bottom of the Las Vegas Springs Aquifer is about 100 meters deeper than the bottom of the 

Lone Mountain Allogroup. The boundary between the Las Vegas Springs Aquifer and Duck 

Creek Aquifer is an interval of strong calcite cementation about 15 to 25 m thick.

The most distinctive part of the Paradise Valley Alloformation is the upper 60 m of 

gravel-sized coarse-grained sediment. This unit is generally much more indurated than the 

units above it and contains a slightly higher percentage of silt in the fine fraction. In this 

investigation, this upper 60 m of coarse grained sediment is interpreted to be above the 

Muddy Creek Formation.

The sediments in the lower part of the Paradise Valley Alloformation tend to be 

sandier than the upper part. This lower part may have a similar stratigraphie position as the 

Muddy Creek Formation but has very difference lithologie character. The Muddy Creek 

Formation is usually described as a fine-grained unit with interbedded gypsum (Harrill, 1976, 

p. 6). The lower part of the Paradise Valley Alloformation is, most commonly, a coarse

grained unit with interbedded finer-grained intervals, and no evidence of gypsum.

Most of the aquifers contained within the Paradise Valley Alloformation are low to 

moderate permeability and are informally designated in this investigation the Duck Creek
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Aquifer. The Duck Creek Aquifer is the lower, less permeable, parts of the "principal 

aquifers" (Harrill, 1976, p. 11) and Maxey and Jameson's (1948, p. 82) "Deep zone of 

aquifers" (see table 3).

Often, there are small and large scale reduction in grain-size or increases in the 

degree of calcium-carbonate cementation in the sediments near the allostratigraphic unit 

boundaries. It is also observed that individual allostratigraphic units tend to finer-grained 

and or more cemented than the allostratigraphic units above or below. It is assumed that 

these changes in grain size and cementation were related to changes in the depositional 

environment of the alluvial fans. An analysis of the cause of these changes is well beyond 

the scope this investigation and is not a criteria of allostratigraphic units (see NACSN, 1983, 

Article 58(f), in Appendix C). The differences in grain size and cementation are often subtle 

and, by themselves, are not appropriate criteria for any of the stratigraphie units mapped in 

this present investigation, however, intervals of differing permeability are often localized 

by these changes in grain size and cementation.

Aquifer test data at the individual wells document differences in fluid behavior. The 

differences in fluid behavior were attributed to differences in permeability in the alluvium. 

The intervals in individual wells where changes in fluid behavior were observed were located 

in intervals where the grain size or degree of cementation changes. Hydrostratigraphic units 

are defined by the observable characteristics of the rock or sediment (see Seaber, 1992 

Article 98(b), in Appendix D). The changes in grain size or cementation are mappable 

features in the sediment and are therefore used as the basis of the hydrostratigraphic units. 

The observed changes in fluid behavior are independent supporting evidence and not the
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primary criteria of the hydrostratigraphic units (see Seaber, 1992, Article 98(1) in Appendix 

D).

Effect of water level changes with time 

This investigation identified criteria used to map the aquifers, documented the 

location and spatial distribution of the aquifers within the alluvium. Where the highly 

permeable units are saturated, relatively high specific capacities are reported in wells 

(Specific capacities < 5 f/s/m, 25 gpm/ft) (fig. 51). The western margin of most productive 

area for wells is controlled by both permeability and the saturation level. In Subarea 2 the 

western margin bends to the west because the bottom of HMU four is about 150 m deeper 

than in other areas and is saturated. By contrast, the boundary bends to the east in Subarea 

3 because HMU four is closer to land surface and has been dewatered since the 1960's.

The bottom of hydrostratigraphic unit four is at or near the potentiometric surface in 

the District's West Central Well Field. The potentiometric surface here, between 1965 and 

1989, declined about 40 meters and the specific capacity declined by about 90 percent. 

Harrill (1976, fig. 6) included the District's West Central Field within the most permeable 

part of the "principal aquifers." By contrast, the potentiometric surface at the District's 

Gowan Well Field declined by about 45 m between 1965 and 1993 and there has been 

minimal effect on specific capacities. Declines in the potentiometric surface of 40 to 20 m 

(fig. 19, p. 76) between 1965 and 1993 in Subareas 1,4 and 5 appear to have minimal effects 

on specific capacities.

The position of the boundary in Subarea 3 is therefore dependent on the elevation of 

the potentiometric surface. This implies that the size of the most productive area for
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pumping wells will increase or decrease in size depending on whether water levels are rising 

or falling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6 

SUMMARY AND CONCLUSION 

Stratigraphie units

Both the hydrogeologic and geologic stratigraphie units used in this investigation 

are relatively new kinds of units, therefore the defining criteria are described below. The 

available data were probably insufficient for formally designating these stratigraphie units 

at this time. The informal units of this investigation were mapped and named as closely 

as possible to formal naming criteria. Mapping and naming the units was designed to 

illustrate the hydrogeologic and geologic relationships of the alluvium.

The fundamental hydrostratigraphic unit is the aquiformation equivalent in 

stratigraphie rank to the formation in lithostratigraphic mapping, and the alloformation, 

in allostratigraphic mapping. Table 4 correlates the allostratigraphic and 

hydrostratigraphic units used in this investigation. The informal designation is designed 

to indicate the geographic area of the most typical section, stratigraphie rank, and nature.

Lithologie analysis was used to define the nature and boundaries of the alluvial 

aquifers, because of the kind and location of data available. The subsurface alluvium in 

Las Vegas Valley is not and cannot be divided into formal lithostratigraphic units.

Lithostratigraphy was of limited utility in this investigation because this 

investigation focused on the coarse-grained alluvial fan-dominated deposits. The aquifers

149
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and aquitards previously defined by lithostratigraphy were found to conform to parts of 

the hydrostratigraphic units mapped in this investigation.

Allostratigraphic Units 

Four allostratigraphic units were mapped in this investigation (Table 3). 

Allostratigraphic units are unconformity bounded units that are used to map genetically 

similar or coeval deposits that are lithologically dissimilar. Four discontinuities were 

identified and these form the boundaries between the allostratigraphic units.

The upper three allostratigraphic units form the Lone Mountain Allogroup 

informally named in this investigation. These sediments are designated an allogroup 

because the topmost unit is of alloformation rank, which is informally designated the Tule 

Springs Alloformation. This alloformation includes all of the fine- and coarse-grained 

deposits exposed at the surface in the area of investigation. The fine-grained deposits 

mapped in previous geologic reports as Las Vegas Formation (Longwell and others, 1965, 

p. 50) is a fine-grained facies of the alloformation. The bottom bounding discontinuity of 

this unit is a buried caliche horizon at about 50 to 70 meters below land surface that is 

traceable in both the fine- and coarse-grained units. The bounding discontinuity between 

second and third mapped allostratigraphic units is not as distinct as the upper boimding 

discontinuity, however both of the units may be alloformations. These two units were 

simply designated as the "middle part of the Lone Mountain Allogroup" and the "lower 

part of the Lone Mountain Allogroup."

The lowermost of the four allostratigraphic units is informally named the Paradise 

Valley Alloformation. A major division was placed between third and fourth
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allostratigraphic mapping imits for two reasons. First, the buried caliche horizon used as 

the bounding discontinuity is imderlain by a 15 to 25 m interval of strong cementation in 

the alluvial fans and is Üius relatively easy to map. Second, the lower part of the Lone 

Mountain Allogroup contains the thickest and most broadly distributed of the coarser- 

grained intervals.

The fourth allostratigraphic unit is composed of interbedded fine- and coarse

grained sediment, however, each fine grained unit is generally thinner than the one above. 

At least three potential allostratigraphic units may be contained within the fourth mapped 

allostratigraphic imit. These potential units were not designated as allostratigraphic units 

because the boimdaries between these units are gradational, the primary mappable features 

are differences in grain size, and the amount of available data decreases with depth below 

ground surface, making continuity difficult to document.

Hydrostratigraphic Units

Six hydrostratigraphic units were mapped in this investigation. Each of these six 

hydrostratigraphic unit varies spatially in character. Although the units vary spatially, the 

relative importance of each of the hydrostratigraphic units in any one location is similar. 

The morphology of the hydrostratigraphic units are stratiform and are strongly related to 

the morphology of the alluvial fans. The presence of fine-grained material as a major or 

minor component, especially when combined with cementation, was found to have a 

significant impact on ground-water flow to the wells investigated.

Six hydrostratigraphic mapping units are used in this investigation. These are 

composed of three (3) aquifers and three (3) aquitards. The two lowest mapping units
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were combined into a single hydrostratigraphic unit of aquiformation rank. The uppermost 

hydrostratigraphic unit is an aquiformation informally named the Las Vegas Wash 

Aquitard. This corresponds to hydrostratigraphic mapping unit (HMU) one.

Below this are two aquifers and one aquitard that comprise the three aquimembers 

of the Las Vegas Springs Aquifer. The uppermost unit is the Las Vegas Creek aquifer. This 

corresponds to HMU two. Below this is an aquitard informally named as the Twin Lakes 

aquitard that corresponds to HMU three. Below this is the most permeable unit mapped in 

this investigation which was informally named the La Madre Mountain aquifer. This 

corresponds to HMU four.

HMU four, or the lowermost unit in the Las Vegas Springs Aquifer, is the most 

permeable interval in all wells investigated. In wells that are screened in the saturated part 

of hydrostratigraphic unit four, a majority o f the transmissivity reported for the well can be 

attributed to this unit. Hydrostratigraphic mapping unit four is about 50 to 75 m thick in 

most of the area of investigation. HMU two is generally about half the thickness and not as 

permeable as HMU four.

HMUs five, an aquitard, and six, an aquifer, together comprise the Duck Creek 

Aquifer. This hydrostratigraphic unit does not outcrop in the area of investigation. 

Preliminary work on the District's ground-water flow model by the author suggests that this 

unit may crop out in the south part of the valley.

HMU six is also considered an aquifer because the transmissivity is high enough to 

be important interval for domestic wells. The transmissivity of this unit appears to be a 

result o f thickness rather than permeability. This unit is at least 300 m thick and may be in
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excess of 1000 m thick in the eastern part of the area of investigation. HhfUs one, three, and 

five are aquitards separating the aquifers.

Spatial variation

The two most common factors that reduce permeability in the aquifers are 

cementation and the presence of fine-grained material. The western part of any one 

hydrostratigraphic mapping unit is generally cemented and the eastern parts generally contain 

fine-grained material. The boundary between these two facies generally occurs near the 

subarea boundaries (fig. 5).

The geologic mapping in conjunction with morphological examination of the alluvial 

fans, slope variations of the potentiometric surface maps, intervals of flow into or away from 

the wells described during drilling, and aquifer test data, when combined, were good tools 

to map the nature and boundaries o f the hydrostratigraphic units. All of the methods were 

used because of the inherent limitations of each of the methods.

Hydrologie Characteristics

The absolute value of permeability at any one location was not as important as the 

relative percentage of the reported transmissivity that could be attributed to individual 

hydrostratigraphic units, because of inherent and site specific problems associated with 

calculating values of transmissivity and permeability within the hydrostratigraphic units. If 

all six HMUs are saturated, and a well is screened in HMUs two, four, and six, about 10 to 

20 percent of the reported transmissivity can be attributed to hydrostratigraphic mapping unit 

two, 50 to 80 percent to HMU four, and 10 to 20 percent to HMU six.
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Implications of this investigation

This investigation is a significant revision of the location and nature of the aquifers 

in the Las Vegas Valley. This revision has important implications for future hydrologie 

models and a direct economic implication for the operation of wells on the west side of the 

valley. The west side of the valley contains most of the municipal water supply wells in Las 

Vegas Valley.

Implications for future models

The area of relatively high permeability was found to be much wider than previously 

reported (Harrill, 1976, fig. 6, p. 16; Morgan and Dettinger, 1994, fig. 3.3.1-2, p. 69) and 

elongated to the east and west rather than north and south in the area of investigation. The 

southern lobe of the Kyle Canyon Alluvial Fan and the zone of coalescence between Kyle 

Canyon and Red Rock Alluvial Fans (Subarea 1) is a low to moderate permeability area that 

separates the area of major District and City of North Las Vegas pumpage from areas that 

may be highly permeable farther to the north. At least one highly permeable area is probably 

north of Tule Springs in central lobe of the Kyle Canyon Alluvial Fan (K. Brothers, personal 

communication, 1993). Future hydrologie models should reflect both the orientation and 

large size of the highly permeable area in the Las Vegas Springs Aquifer.

In Subarea 3, the boundary between the Las Vegas Springs Aquifer and the 

underlying Duck Creek Aquifers (moderate to low permeability) is at about 135 m above the 

boundary used in previous hydrologie flow models. Future hydrologie flow models should 

reflect this relatively high elevation of the boundary between high and moderate permeability 

units.
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The aquimembers of the Las Vegas Springs Aquifer are relatively thin compared to 

the amount of decline in the potentiometric surface that has occurred since development. 

Dewatering of highly permeable units can produce significant changes in the hydrologie 

properties of the alluvium. The magnitude and location of dewatering should be carefully 

considered when both modeling the hydrologie properties of the alluvium and comparing 

historic hydrologie data to more recent data.

Economic implications of the hydrostratigraphic units

Wells that produce water only from the Duck Creek Aquifer have specific capacity 

values that are only 10 to 20 percent of wells completed in both the Las Vegas Springs and 

Duck Creek Aquifers. The boundary between high and low specific capacity values is sharp 

because the most permeable aquimember within the Las Vegas Springs Aquifer (La Madre 

Mountain aquifer) is located at the base of the aquiformation. If the water level declines, the 

Las Vegas Springs Aquifer may become dewatered decreasing the specific capacities. 

Conversely rising water levels may rehydrate parts of the Las Vegas Springs Aquifer 

increasing specific capacities. The potential decrease in the specific capacities that may 

occur due to declining water levels may result in both a reduction in flow rates and increase 

drawdown at the well. This would reduce capacity of the well to produce water or increase 

the pumping cost to lift water from the well.

Unresolved Issues

This investigation covered a relatively large area and was concerned with relatively 

large scale patterns of sediment distribution. The allostratigraphic units mapped in this
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investigation were appropriate because they provided a technique to combine lithologically 

diverse units into one single unit.

Biostratigraphic or radiometric age dating of the subsurface units could test the 

continuity of the allostratigraphic units. Geophysical techniques have been used to document 

continuity of caliche horizons similar to the one described in this investigation. The Las 

Vegas Valley Water District and City of North Las Vegas are expanding the area of wells 

into the northern and western parts of the area of investigation. As new well data become 

available the predicted locations of the units in this investigation can be tested.

The units informally named in this investigation are of major stratigraphie rank. The 

existence of these units throughout the Las Vegas Valley should be investigated.

The subsurface stratigraphie units of this investigation may be exposed at the surface 

south and east o f the area of investigation. The surficial expression of these units would 

provide insight into the nature and boundaries of the units.
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APPENDIX A

TRANSMISSIVITY DATA FROM WELLS
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APPENDIX A
Specific Capacity, and Transmissivity Values Used in This Investigation

Well
Name

Specific
Capacity

f/s/m

Transmissivity
(T)

mVday
Effective
Aquifers'

Method 
(T values)

WOIA 7.5 894 4,6 1

W02A 11.8 1416 4,6 1

W03A 11.2 1350 4,6 1

W05A 12.2 1466 4,6 1

W13 8.3 994 4,6 1

W22A 20.1 1801 4,6 1

W23A 18.4 1658 4,6 1

W24 28.6 2571 4,6 1

W28 15.7 1888 4,6" 1

W29 24.8 2981 4,6" 1

W33 6.8 1739 4,6" 1

W34 10.3 1242 4,6 1

W38 13.2 1590 4,6 1

W45 8.1 969 2,4,6 1

W51 18.6 2236 2,4,6 1

W52 14.3 1714 2,4,6 1

W68 12.2 1464 2,4,6 1

W69 25.3 2038 4,6 2

W70 0.6 41 6' 2

W71 0.7 60 6' 2

W72 2.3 189 6 2

W73 14.6 1313 4,6 1

W74 N/A 77 2,4,6 2

W75 0.6 79 4,6 1

W76 1.0 93 6 1
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Specific Capacity, and Transmissivity Values Used in This Investigation (Cont'd.)

Well
Name

Specific
Capacity

f/s/m

Transmissivity
(T)

mVday
Effective
Aquifers'

Method 
(T values)

W77 9.3 936 4,6 3

W78 N/A 949 4,6 2

W79 N/A 548 2,4,6 3

W80 N/A 570 2,4,6 3

W81 N/A 1527 4,6 3

W82 N/A 3609 2,4,6 3

W83 12.6 1508 4,6 3

W84 12.6 2452 4,6 3

W85 12.2 1492 4,6 3

W88 N/A 1947 4,6 2

W89 N/A 1018 4,6 3

NOIA 0.2 40 4,6 3

N02B 0.2 21 4,6 3

N03 4.3 857 4,6 3

MAP 0.2 19 6 1

Methods used to generate transmissivity values
1 Estimated from specific capacity (Cs) by the technique of Driscoll (1986)
2 Calculated by the technique of Moench (1985)
3 Calculated by the technique of Papadopulous and Cooper (1967)

Note:
* Effective aquifers are; moderately to highly permeable hydrostratigraphic mapping 

units that are both, saturated at the well, and, directly accessed through perforations 
or screened intervals in the well case.

" Wells are also perforated in the upper aquifer (2) which has been dewatered. Harrill 
(1976) reported transmissivities of; 1060, 870, and 1740 m^/day at these wells. 
Harrill’s (1976) data was collected in the 1960's when the upper aquifer was 
saturated.

'  These wells are within 100 meters of three wells perforated in the two upper
dewatered aquifers (2 and 4). Harrill's (1976) transmissivity estimate of the older, 
adjacent, wells were; 2110, 1060, and 600 mVday when the upper aquifers were 
saturated.
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APPENDIX A PART 2 
Location of wells used to estimate transmissivity, and date of test

160

Well
name

X(UTM)
meters

Y(UTM)
meters

Latitude Longitude Date of 
analysis

WOIA 659795 4003155 36°9'42" 115°13'25" OCT. 1991

W02A 658713 4006141 36°11’20" 115°14'6" OCT. 1993

W03A 663541 4006225 36°H'20" 115°10'52" OCT. 1991

W05A 658307 4006198 36°11"22" 115°14'22" OCT. 1993

W13 663009 4004564 36°10'26" 115°11'15" OCT. 1991

W22A 656423 4007453 36°12'4" 115°15'36" OCT. 1990

W23A 656276 4007688 36°12'12" 115°15'42" OCT. 1991

W24 659022 4004524 36°10'27" 115°13'55" OCT. 1993

W28 658774 4010120 36°13'29" 115°14'0" OCT. 1993

W29 658424 4009990 36°13'25" 115°14'15" OCT. 1993

W33 658096 4010162 36°13'31" 115°14'28" OCT. 1993

W34 663180 4004543 36°10'25" 115°11'8" OCT. 1993

W38 658232 4003456 36°9'53" 115°14'27" OCT. 1990

W45 661409 4006986 36°11'46" 115°12'17" OCT. 1992

W51 659583 4007713 36°12'10" 115°13'30" OCT. 1992

W52 659842 4007697 36°12'10" 115°13'19" OCT. 1992

W68 662675 4004116 36°10'12" 115°11'29" OCT. 1992

W69 656412 4009435 36°13'8" 115°15'35" OCT. 1989

W70 656680 4003033 36°9'40" 115°15'29" OCT. 1989

W71 656748 4002860 36°9'35" 115°15'27" NOV. 1989

W72 656400 4009888 36°13'23" 115°15'36" OCT. 1989

W73 658310 4007624 36°12'8" 115°14'21" OCT. 1993

W74 655156 4014736 36°16’1" 115°16'22" JUN. 1990

W75 655464 4015069 36°16'12" 115°16'9" OCT. 1993
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APPENDIX A PART 2 
Location of wells used to estimate transmissivity and date of test (Cont’d)

161

Well
name

X(UTM)
meters

Y(UTM)
meters

Latitude Longitude Date of 
analysis

W76 656512 4005194 36°10'51" 115“15'35" OCT. 1992

W77 658914 4006871 36°11’44" 115“13'57" JUN. 1990

W78 652747 4009489 36°13'12" 115“18'2" SEP. 1992

W79 663678 4004642 36°10'28" 115°10'48" FEB. 1992

W80 663536 4004548 36°10’25" 115°10'54" MAR. 1992

W81 663018 4004023 36°10'9" 115°11'15" DEC. 1991

W82 662811 4003740 36“9'60" 115“11’24" SEP. 1991

W83 663011 4003529 36°9'53" 115“11'16" NOV. 1991

W84 663029 4003052 36°9'37" 115“11'15" FEB. 1992

W85 658913 4006584 36°1L34" 115“13'57" NOV. 1991

W88 656929 4008557 36°12'39" 115“15'15" JUN. 1993

W89 658954 4002681 36°9'28" 115“13'59" JUN. 1994

NOIA 661193 4016782 36°17'4" 115“12'19" AUG. 1992

N02B 662991 4012870 36°14'56" 115“11'10" SEP. 1992

N03 661590 4010809 36°13'50" 115“12'7" JAN. 1993

MAP 654313 4004077 36“10’16" 115“17'3" AUG. 1981
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APPENDIX B

SELECTED WELL LOGS
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Key to abbreviations used on strip-logs and cross-sections.

Lithology abbreviations are the United Soil Classification System (USCS) (Pipkin, 
1982) witii an addition of K, KG, KS, and KM for units described as caliche.

Abbreviation Lithologie type (lithologie descriptions assigned to one of the 
seventeen categories for correlation and consistency)

ML Silt or clay

ML Sandy silt or sandy clay

CL Gravelly silt or gravelly clay

KM Silt with caliche or strongly cemented clay

SM Silty sand

SW Sand

SP Gravelly sand

KS Sand with caliche

GC Silty gravel

GP Sandy gravel

GW Gravel

KG Gravel with caliche

KM Silty caliche

KS Sandy caliche

KG Gravelly caliche

K Caliche

N/A Not available. Not applicable

Gravel, and fines (sand, silt and clay) reported as a percentage.

Degree of cementation reported on a 1 to 5 scale (Hodgson, 1974). 
1 =  Weak, 5 =  Very Strong.

Roundness (where available) reported on a 0.5 to 5.5 scale (Powers, 1982). 
0.5 =  Very angular, 5.5 =  Well rounded.
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AGI DATASHEET 26.1

Unified Soil Ctesslflcatloti System
CewnpUed by B. W. Pipkin, Univtrtity of Southern California

MAJOR DIVISIONS GROUP
SYMBOLS TYPICAL NAMES

I
(?g § - |

I si§ 
§ i h

</>

I 9 «
# g | \É

•."Si:

GW Wan-graded gravels, gravel-sand mixtures, 
little or no fines.

GP Poorly graded gravels, gravel-sand mix
tures, little or no fines.

I J
GM Silty gravels, g avel^and-dlt mixtures.
GC Clayey gravels, gravel-sand-clay mixtures.

SW WeSgraded sands, gravelly sands, Kttle or 
no fines.

SP Poorly graded sands, gravelly sands, little 
or no fines.

SM SHty sands, sand-sllt mixtures.
SC Clayey sands, sand-day mixtures.

S3

I #
Î i i

Inorganic slits and very fine sands, rock 
ML flour, silly or clayey fine sands, or rdayey 

 slits, with slight plasticity.____________

CL ty, gravelly cn 
lean days.

I of low to medium plastlci- 
ys, sandy days, s%  clays.

n , Organic sfits and organic silty clays of low 
plasticity._____________

MH Inorganic dits, micaceous or diatoms- 
ceous fine sandy or silty sr^s, elasllc silts.

CH Inorganic clays of high plasticity, fat days.
n u  Organic clays of medium to high plastlci- 

hr, organic silts._____________
Highly organic soils Pt Peat arxf other highly organic slits.

NOTES:
1. Boundary Classification: Soils possessing characteristics of two groups are designated by com

binations of group symbols. For example, GW-GC, well-graded gravel-sand mixture v^th clay binder.
2. All sieve sizes on this chart are U.8. Standard.
3. The terms "dit" and "day' are used respectively to distinguish materials exhibiting lower plastidty 

from those with higher plastidty. The minus no. 200 d eve material Is silt if the liquid limit and plastidw 
index plot below the "A*' line on the plasticity chart (next page), and Is day If the liquid limit and plasticity 
index plot above the "A* line on the chart.

4. For a complete description of the Unified Soil Classification System, se e  "Technical Memorandum 
No. 3-357," prepared for Office, Chief of Engineers, by Waterways Equipment Station, Vicksburg, Mis- 
dsslppi, March 1953. (See also Data Sheet 17.)

Pipkin, 1982
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H y d ro g e o lo g ic  variation in well W28
UTHOLOGY THICKNESS DEGREE OF 

CEMENTATION
BOTTOM OF 

INTERVAL
Silt 3 .05 1.00 3.05
Caliche 1.22 5 .00 4.27
Silt 6 .09 2 .50 10.37
Caliche 1.83 5 .00 12.20
Silt 7 .32 2 .50 19.51
Caliche 1.52 5 .00 21.04
Silt 38.10 2 .50 59.15
Gravelly Silt 4 .88 3 .00 64 .02
Sandy Silt 0.91 2 .00 6 4 .9 4
Gravelly Silt 13.71 2 .50 7 7 .7 4
Silty Gravel 12.20 3 .00 8 9 .9 4
Gravel 3 .65 2 .00 93 .60
Gravel 9 .45 3 .50 103.05
Gravelly Silt 12.80 3 .00 115.85
Gravel 2 .44 3 .50 118.29
Gravelly Silt 6.71 2 .50 125.00
Gravel 2 .44 3 .50 127.44
Gravelly Silt 3 .04 2 .50 130.49
Gravel 8 .23 3 .50 138.72
Gravelly Silt 6.71 3 .00 145.43
Silty Gravel 1.22 2 .50 146.65
Gravelly Silt 10.36 3 .50 157.01
Silt 9 .75 2 .50 166.77
Gravel 11.59 4 .00 178.35
Gravelly Silt 21.03 2 .50 199.39
Gravel 21.64 3 .50 221.04
Caliche 10.67 4 .50 231.71
Gravel 1.22 3 .50 2 32 .9 3
Gravelly Caliche 9 .45 4 .50 242 .3 8
Gravel 17.37 3 .50 259 .76
Caliche 6.09 4 .50 2 65 .8 5
Gravelly Caliche 23 .78 4 .00 289 .6 3
Caliche 16.15 4 .50 305 .79

SCREENED
INTERVAL

THICKNESS TOP OF 
INTERVAL

BOTTOM OF 
INTERVAL

Closed 93 .57 0 .00 93 .57
Open
Closed

9.45 93 .5 7 103.02
12.80 103.02 115.82

Open
closed

2 .44 115.82 118.26
6.71 118.26 124.97

Open
Closed

21.64 124.97 146.61
20.11 146.61 166.72

Open
closed

11.59 166.72 178.31
21.03 178.31 199 .34

Open
closed

94 .79 199.34 294.13
11.58 294.13 305.71

WATER LEVEL 
October 1993

THICKNESS TOP OF 
INTERVAL

BOTTOM OF 
INTERVAL

Unsaturated 108.81 0 .00 108.81
Saturated 196.90 108.81 

Hatchered intervals are gravel (GW) and

305.71

( p a r t  1)
Oownhole Depth

ML

ML

CL

GW

CL

GW

CIT-
ML

0 Elevation 

25-

SD" 6 5 0  

75"

1Ü0 6 0 0

125 Ë  

150 6 5 0

175

ZOO 6 0 0  

225

250 4 5 0

275

300 4 0 0

Solid fill intervals are dominated by cem entation and 
called caliche on drillers' log and here.
All units reported in meters, except degree o f cementation. 
Degree of cem entation is a 1 to 5 scale 
1 is weak cem entation and 5 is strong cem entation.
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Hydrogeologic  variation in well W28 (port  2 )

I
I t  II II I

I
S'u

I s
S " O

£  g. £  I
g I

25

50

75

100

125

150

175

200

225

250

275

300

-V

w

ML

ML

CL

GW

CL

A
GW

CL

ML

JD
_D

’5
>
o

o
c
cn
CD
cn
D

-j-*
c
CD
O
L_
(Ü
CL

13
>
o

CD

ItÛ. V»

ë
I

s % f 1 Ik
I f 1o 1 ;
I I i i 1 } 1 1 mi

a
I f

' I

I :

Ii

y

,8-<>

y

II

;
s

h

—  7 0 0

1 —

-  6 0 0

2 -

6 5 0

5 5 0

5 0 0

4 5 0

4 0 0

Cementation, and percentages (where available) increase to  the right. 
Abbreviations W and S above cementation column ore weak and strong. 
0, 50  and 100 above columns ore percentages.
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H y d ro g eo lo g ic  variation in well W29 (p a r t  1)
UTHOLOGY THICKNESS DEGREE OF BOTTOM OF

CEMENTATION INTERVAL
Gravelly Silt 3 .9 6 2 .0 0 3 .9 6
Silt 13.11 2 .5 0 1 7 .0 7
Caliche w silt 2 .13 4 .5 0 19.21
Silt 3 1 .70 2 .5 0 50.91
Gravel 32.61 2 .5 0 8 3 .5 4
Sandy Gravel 1 2 .2 0 2 .5 0 9 5 .7 3
Silt 6 .0 9 2 .5 0 101.83
Gravelly Silt 4 .8 8 2 .5 0 106.71
Sand 2 .4 4 4 .0 0 109 .15
Gravelly Sand 3 .6 6 4 .0 0 112 .80
Gravel 7.31 2 .0 0 120.12
Gravelly Sand 4 .8 8 2 .5 0 1 2 5 .0 0
Gravel 0.91 2 .5 0 125.91
Sand 2 .7 5 4 .0 0 1 28 .66
Gravel 1.21 4 .0 0 1 2 9 .8 8
Gravel 7 .3 2 2 .0 0 1 3 7 .2 0
Gravel 3 .6 6 4 .0 0 1 4 0 .8 5
Gravel 1 .22 2 .0 0 1 4 2 .0 7
Gravelly Sand 6 .0 9 2 .5 0 148.17
Silt 8 .5 4 2 .0 0 156.71
Gravel 4 .8 7 2 .5 0 161.59
Gravel 1 2 .20 4 .0 0 1 7 3 .7 8
Gravelly Sand 1.52 2 .5 0 1 7 5 .3 0
Gravel 4 .5 7 4 .5 0 1 7 9 .8 8
Gravel 3 .0 5 2 .0 0 1 8 2 .9 3
Gravel 4 .8 8 3 .5 0 1 8 7 .8 0
Gravel 4 .2 6 2 .5 0 1 9 2 .0 7
Sandy Gravel 6 .10 3 .0 0 198 .17
Gravel 6 .10 4 .0 0 2 0 4 .2 7
Gravel 2 1 .33 2 .0 0 225.61
Gravel 1 2 .80 4 .0 0 238.41
Gravelly Silt 2 .4 4 4 .5 0 2 4 0 .8 5
Gravel 9 .7 6 4 .0 0 250.61
Gravel 6 .0 9 2 .0 0 256.71
Gravel 7 .3 2 3 .5 0 2 6 4 .0 2
Sandy Gravel 1 .22 4 .0 0 2 6 5 .2 4
Gravel 3 .6 5 3 .5 0 2 6 8 .9 0
Gravelly Silt 2 .4 4 4 .5 0 2 7 1 .3 4
Gravel 2 0 .7 3 4 .5 0 2 9 2 .0 7
Silt 0.61 2 .5 0 2 9 2 .6 8
Sand 1.22 2 .5 0 2 9 3 .9 0
Sandy Gravel 1 .22 4 .5 0 2 9 5 .1 2
Gravel 9 .7 5 4 .5 0 3 0 4 .8 8

SCREENED THICKNESS TOP OF BOTTOM OF
INTERVALS INTERVAL INTERVAL
Closed 5 3 .9 5 0 .0 0 5 3 .9 5
Open
Closed

4 0 .5 4 5 3 .9 5 9 4 .4 9
1 5 .2 4 9 4 .4 9 1 0 9 .7 3

Open
Closed

32.31 1 0 9 .7 3 1 4 2 .0 4
17 .67 1 4 2 .0 4 159.71

Open
Closed

114.61 159.71 2 7 4 .3 2
3 0 .4 8 2 7 4 .3 2 3 0 4 .8 0

WATER LEVEL THICKNESS TOP OF BOTTOM OF
O ctober 1993 INTERVAL INTERVAL
U nsaturated 9 9 .9 6 0 .0 0 9 9 .9 6
S a tu ra ted 2 0 4 .8 4 9 9 .9 6 3 0 4 .8 0
H atchered  intervals are gravel 
sandy gravel (G P).

(GW) and

Downhole
depth Elevation  

-  7 0 0

so- 6 5 0

lo e  6 0 0

ISO 5 5 0

200 5 0 0

< GW <

< GW <

Î  C W -i

200 4 5 0

300 4 0 0

Solid fill intervals are  dom inated  by cem entation  and 
called caliche on drillers’ log and here.
All units reported  in m eters , except degree o f cem entation . 
Degree o f cem entation  Is a 1 to  5  scale,
1 is weak cem entation  and 5  is strong cem entation . 
C om pare with wells W69 and W72
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H ydrogeologic  variation in well W29 (part  2)
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Cementation, end percentages (where available) increase to the right. 
Abbreviations W and S  above cementation column ore weak and strong. 
0, 50 and 100 above columns are percentages.
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Hydrogeologic variation in well W69

UTHOLOGY THICKNESS DEGREE OF BOTTOM OF
CEMENTATION INTERVAL

Sandy Gravel 12.19 3 .5 0 12.20
Gravelly Sand 3 .3 5 2.00 15.55
Sandy Gravel 4 .2 7 3 .0 0 19.82
Sandy Silt 4 .57 2.00 2 4 .3 9
Gravelly Sand 2 2 .25 2 .5 0 4 6 .6 5
Sandy Gravel 4 0 .2 4 2 .5 0 86 .89
Sandy Gravel 7.31 4 .0 0 94.21
Sandy Gravel 19.51 2.00 113.72
Sandy Gravel 29 .56 3 .0 0 143.29
Gravelly Sand 17.07 2.00 160.37
Sandy Gravel 45.11 2 .5 0 2 0 5 .4 9
Gravelly Sand 15.24 2.00 2 2 0 .7 3
Sandy Gravel 15.85 2 .5 0 2 36 .59
Sandy Gravel 9.15 2.00 2 4 5 .7 3
Sandy Gravel 2 7 .73 2 .5 0 2 7 3 .4 8
Sandy Gravel 2 .75 2.00 2 7 6 .2 2
Sandy Gravel 13.41 2 .5 0 2 8 9 .6 3
Gravelly Sand 26 .82 2 .5 0 316.46
Gravelly Sand 3 5 .05 2 .5 0 351.52
Sandy Gravel 3 0 .48 2 .5 0 382.01
Sandy Gravel 11.28 2.00 3 9 3 .2 9
Gravelly Sand 5.79 2.00 3 99 .09
SCREENED THICKNESS TOP OF BOTTOM OF
INTERVALS INTERVAL INTERVAL
Closed 152.40 0.00 152.40
Open 60 .96 152 .40 213.36
Closed 13.71 213.36 2 2 7 .0 7
Open 114.91 2 2 7 .0 7 341.98
c losed 5 7 .00 341 .98 3 9 8 .9 8
WATER LEVEL THICKNESS TOP OF BOTTOM OF
October 1993 INTERVAL INTERVAL
Unsaturated 110.95 0 110.95
Saturated 288 .03 110.95 3 9 8 .9 8

(part 1)
Downhole
depth

Elevation

I
2T  7 0 0

Hatchered intervals are gravel (GW) and 
sandy gravel (GP).
Solid fill intervals are dominated by cem entation and 
called caliche on drillers’ log and here.
Ail units reported in m eters, excep t degree o f cem entation. 
Degree o f  cem entation is a 1 to  5  scale  
1 is weak cem entation and 5 is strong cem entation.
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Hydrogeologic  variation in well W69 (part 2 )
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Cementation, and percentages (where available) increase to the right. 
Abbreviations W and S above cementation column ore weak and strong. 
0. 50 and 100 above columns ore percentages, 
note: plotted at same scale as well W72 for comparison
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Hydrogeologic  variation in well W70 (part  1)

UTHOLOGY THICKNESS DEGREE OF BOTTOM OF
CEMENTATION INTERVAL

Sandy Gravel 14.03 2.50 14.02
Sandy Gravel 24.99 4.00 39.02
Sandy Gravel 10.06 3.00 49.09
Sandy Gravel 9.75 2.00 58.84
Sandy Gravel 20.42 3.50 79.27
Sandy Gravel 16.77 2.50 96.04
Sandy Gravel 3 .04 2.50 99.09
Gravelly Sand 29.26 2.50 108.54
Sandy Gravel 35.97 3.50 144.51
Sandy Gravel 10.97 3.00 155.49
Sandy Gravel 41.46 3.75 196.95
Sandy Gravel 30.48 3.50 227.44
Sandy Gravel 18.59 2.50 246.04
Sandy Gravel 25.60 3.50 271.65
Sandy Gravel 16.46 2.25 288.11
Gravelly Sand 18.29 3.50 306.40
Gravelly Sand 24.38 2.50 330.79
Sandy Gravel 10.37 3.50 341.16
Silty Gravel 6.09 2.00 347.26
Sandy Gravel 18.59 3.50 365.85

SCREENED THICKNESS TOP OF BOTTOM OF
INTERVALS INTERVAL INTERVAL

Closed 201.17 0.00 201.17
Open 152.40 201.17 353.57
Closed 12.19 353.57 365.76

WATER LEVEL THICKNESS TOP OF BOTTOM OF
October 1993 INTERVAL INTERVAL

Unsaturated 161.85 0.00 161.85
Saturated 203.91 161.85 365.76

Hatchered intervals ere gravel (GW) and 
sandy gravel (GP).
Solid fill intervals are dominated by cementation and 
called caliche on drillers’ log and here.
All units reported in meters, except degree of cementation. 
Degree of cementation is a 1 to 5 scale 
1 is weak cementation and 5  is strong cementation.

Downhole 
Depth □gygtion

-  7 5 0
25

SP
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V // / / /A
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H ydrogeo log ic  variation in well W70 (part  2 ) o
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Cementation, and percentages (where available) increase to the right. 
Abbreviations W and S above cementation column are weak and strong. 
0, 50  and 100 above columns ore percentages.
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H ydrogeologic variation in well W72 (port 1)

Downhole Depth
□evotion

7 0 0

UTHOLOGY THICKNESS DEGREE OF BOTTOM OF
CEMENTATION INTERVAL

Sandy Gravel 17.07 2 .00 17.07
Gravelly Sand 4 .26 4.00 21.34
Sandy Gravel 19.51 2 .00 40 .85
Gravelly Sand 4 .2 7 2 .50 45.12
Sandy Gravel 12.80 3 .00 57 .93
Sandy Grovel 29 .26 3 .50 8 7 .20
Sandy Gravel 2 6 .8 2 3 .00 114.02
Sandy Gravel 17.07 2 .50 131.10
Sand 10.37 2 .50 141.46
Gravel 56 .3 8 2 .00 197.87
Gravelly Sand 6 .4 0 1.50 2 04 .27
Sandy Gravel 31.09 4 .00 2 3 5 .3 7
Sandy Gravel 3 5 .9 7 2 .50 271.34
Sandy Gravel 30.18 2 .50 301.52
Gravelly Sand 53 .0 3 3 .00 3 5 4 .5 7
Sandy Gravel 14.02 2 .50 3 68 .60
Gravelly Sand 25.91 2 .00 394.51
Sandy Gravel 20.12 2 .50 414.63
Sandy Gravel 18.28 4 .00 4 3 2 .9 3
Sandy Gravel 24 .3 9 3 .50 4 5 7 .3 2
Sandy Gravel 14.02 3 .50 471.34
Gravelly Sand 24 .3 8 4 .00 4 9 5 .7 3

SCREENED THICKNESS TOP OF BOTTOM OF
INTERVALS INTERVAL INTERVAL
Closed 2 6 0 .6 0 0 .0 0 2 6 0 .6 0
Open 9 7 .5 4 260 .60 358.14
Closed 3 6 .5 7 358 .14 394.71
Open
Closed

8 5 .3 5 394.71 4 80 .06
15.54 480 .06 4 9 5 .6 0

WATER LEVEL THICKNESS TOP OF BOTTOM OF
October 1993 INTERVAL INTERVAL
Unsaturated 110.95 0 .0 0 110.95
Saturated 3 8 4 .6 5 110,95 495 .60

75

100

6 5 0

6 0 0

5 5 0

5 0 0
225

250
4 5 0

275

300
4 0 0

S P ~ 325

Hatchered intervals ore gravel (GW) and 
sandy gravel (GP).
Solid fill intervals are dominated by cem entation and 
called caliche on drillers’ log and here.
All units reported in m eters, except degree o f cem entation. 
Degree of cementation is a 1 to  5  scale 
1 is weak cem entation and 5 is strong cementation.

SP

350
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3 0 0
425
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—  475
SP
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Hydrogeologic  variation in well W72 (part  2 )
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H yd ro g eo lo g ic  variation in well W78 (p a r t  1)

UTHOLOGY THICKNESS DEGREE OF BOTTOM OF
CEMENTATION INTERVAL

2.75 2.00 2 .74
12.49 3.00 15.24
13.11 2.00 28.35

36 .58 4.00 64 .94
35.66 2.00 100.61
12.80 3 .00 113.41

5.18 2 .00 118.60
8.53 2 .00 127.13

53.95 2 .50 181.10
32.31 2 .00 213.41

36 .88 2.00 250 .30
4.58 2.00 254 .88
4.87 2 .00 259 .76

17.07 2 .50 276 .83
Î 42 .67 N /A 319.51

THICKNESS TOP OF BOTTOM OF
INTERVAL INTERVAL

213.36 0 .00 213.36
85 .35 213.36 298.71
20 .72 298.71 319.43

THICKNESS TOP OF BOTTOM OF
INTERVAL INTERVAL

172.00 0 .00 172.00
147.43 172.00 319.43

Downhole
depth

Gravelly Sand 2 .75  2 .00  2 .74  SP~F
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel 
Sandy Gravel

SCREENED
INTERVAL
Closed
Open
Closed

WATER LEVEL 
October 1993  
Unsaturated 
Saturated

Hatchered intervals are grovel (GW) and 
sandy gravel (GP).
Solid fill intervals are dominated by cem entation and 
called caliche on drillers’ log and here.
All units reported in m eters, except degree o f cem entation. 
Degree of cem entation is a 1 to  5  scale  
1 is weak cem entation and 5 is strong cem entation.

°  Elevation 

25

— 7 5 0
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-  7 0 0  
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175
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Hydrogeologic variation in well W78 (port 2)
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Most permeable zone in this well is the alluvium—bedrock contact.
An aquifer test in the bedrock part of this well, produced no 
significant quantity of water. Lone Mountain Allogroup/Paradise Valley 
Alloformation boundary infered from well W90.
Cementation, and percentages (where available) increase to the right. 
Abbreviations W and S above cementation column are weak and strong. 
0, 50 and 100 above columns are percentages.
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H yd ro g e o lo g ic  variation in well W90 (p o r t  1)
UTHOLOGY THICKNESS DEGREE OF BOTTOM OF

No D ata  
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Silty  Sand  
Gravelly Sand  
Gravelly Sand  
Sandy Gravel 
Gravelly Sand 
Sandy Gravel 
Silty  Sand  
Sand
Gravelly Sand 
Sandy Gravel 
Sand
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Gravelly Sand 
Gravelly Sand 
Sandy Gravel 
Sand
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Silt
Sandy Gravel 
Gravelly Sand 
Sandy Gravel 
Gravelly Sand  
Silty  Sand 
Sandy Gravel 
Gravelly Sand  
Sandy Gravel 
Gravelly Sand 
Sandy Gravel 
Gravelly Sand  
Sandy Gravel

SCREENED
INTERVAL
Closed
Open
Closed
Open
Closed
Open
dosed
Open
dosed

CEMENTATION 
3 9 .6 2  0 .0 0

6 .10  3 .5 0
6 .0 9  3 .0 0

1 5 .2 4  2 .5 0
9 .15  3 .0 0
6 .0 9  2 .5 0

1 2 .2 0  2 .5 0
9 .1 4  3 .5 0
9 .14  2 .5 0

1 8 .2 9  3 .0 0
18 .2 9  1 .00

3 .0 5  1 .00
3 .0 5  3 .0 0
9 .1 4  2 .0 0
3 .0 5  2 .0 0
3 .0 5  1 .00
3 .0 4  1 .OO
9 .15  1 .00
6 .0 9  1 .00
6 .10  4 .5 0
3 .0 5  1 .00
3 .0 5  1 .00

1 5 .2 4  1 .00
3 .0 4  1 .0 0

1 5 .2 4  1 .00
1 8 .2 9  3 .0 0

6 .1 0  2 .5 0
6 .0 9  2 .0 0
9 .15  3 .0 0
6 .0 9  1 .50
3 .0 5  2 .5 0

1 5 .2 4  1 .00
2 7 .4 3  1 .00

3 .0 5  2 .5 0
3 .0 5  2 .5 0
3 .0 5  3 .5 0
3 .0 5  3 .0 0
9 .1 4  2 .5 0

12.19 3 .5 0
3 .0 5  3 .0 0
6 .10  3 .0 0
3 .0 4  2 .5 0
9 .15  3 .5 0
6 .0 9  3 .0 0
9 .15  4 .0 0
3 .0 5  3 .5 0
3 .0 4  3 .0 0

WATER LEVEL 
O ctober 1 9 9 3  
U nsaturated  
S atu rated

THICKNESS

18 2 .8 8
2 4 .3 8
12.19

4 2 .6 8
16 .2 8
4 5 .7 2

6.10
4 8 .7 7
2 1 .3 3

THICKNESS

TOP OF 
INTERVAL 

0.00 
1 8 2 .8 8  
2 0 7 .2 6  
2 1 9 .4 5
2 6 2 .1 3  
280.41
3 2 6 .1 3  
3 3 2 .2 3  
381 .OO

INTERVAL
3 9 .6 3
4 5 .7 3
51 .83
6 7 .0 7
7 6 .2 2
8 2 .3 2
94.51

103 .66
112 .80
131.10

1 4 9 .3 9
1 5 2 .4 4
1 55 .49  
1 6 4 .6 3  
1 6 7 .6 8  
1 7 0 .7 3
1 7 3 .7 8  
1 8 2 .9 3  
18 9 .0 2
195.12  
198 .17  
201.22 
216 .46  
219.51

2 3 4 .7 6  
2 5 3 .0 5  
2 5 9 .1 5  
2 6 5 .2 4
2 7 4 .3 9
2 8 0 .4 9  
2 8 3 .5 4
2 9 8 .7 8
3 2 6 .2 2  
3 2 9 .2 7
3 3 2 .3 2  
3 3 5 .3 7
338.41  

3 4 7 .5 6
3 5 9 .7 6  
3 6 2 .8 0  
3 6 8 .9 0  
3 7 1 .9 5
381 .10  

3 8 7 .2 0  
3 9 6 .3 4
3 9 9 .3 9
4 0 2 .4 4

BOTTOM OF 
INTERVAL 

1 8 2 .8 8  
2 0 7 .2 6
2 1 9 .4 5
2 6 2 .1 3
280.41
3 2 6 .1 3
3 3 2 .2 3  
3 8 1 .0 0
4 0 2 .3 3

137.16
265 .17

Downhole
depth

Elevation 
O

—  7 5 0
N /A

25

50
—  7 0 0

SP

SM

SP—

SW-

SW-

SP

SP

125

150 
-  6 0 0
175 S

200 
—  5 5 0

225

250
-  5 0 0
275

300
-  4 5 0
325

' m m

375

400

TOP OF BOTTOM OF
INTERVAL INTERVAL

0 .0 0  137.16
137.16  4 0 2 .3 3

H atchered  Intervals are  gravel (GW) and 
sandy gravel (GP).
Solid fill intervals are  dom inated by cem en ta tion  and 
called caliche on drillers’ log and here.
All units reported  in m e te rs , except degree o f cem en ta tion . 
Degree o f cem entation  is a 1 to  5  scale  
1 is weak cem entation  and 5  is s trong cem entation .
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H ydrogeo log ic  variation in well W90 (par t  2 )

a

I t

■5 I
o

i S
0

1 % 2
Q  O  a .  tji a .  _  
W S

II It
a  M

l i h Q. <

§
1

jC
1

1
1o
E 1

N /A25

50

SP75

100 SP

125 SP

150
SM

175 SP

200

225

250

275

300

SP
325

m m350
SP

_o;

_ o

‘ Ô
>
o

o
c

cn
CD
CD
o

c :
CD
O
L_
CD
CL

"03
>
o

O

si — 750
*0
II

1 n
n

1 _

I f

¥
2 y

700

ll
i ;

3
— 650

2 f
% 2 _ 600

»• c Ms —

4 y 550

/
500

sis c ;

■0 y

îà 3 - 450

6 y — 400

Cementation, and percentages (where available) increase to the right. 
Abbreviations W and S above cementation column ore week and strong. 
0, 50 and 100 above columns are percentages.
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H ydrogeo log ic  variation in well NWC (p a r t  1)
UTHOLOGY THICKNESS DEGREE OF BOTTOM OF

CEMENTATION INTERVAL
Silt 18.29 2.00 18.29
Silt 6.10 2.00 24.39
Silt 6 .09 2 .00 30.49
Silt 6.10 2.00 36 .59
Silt w Caliche 24 .38 3.50 60 .98
Silt w Caliche 9.15 3 .50 70.12
Gravel 6 .09 2 .00 76 .22
Gravel 15.24 3 .50 91.46
Silt w Caliche 9.15 3.50 100.61
Gravel 6 .09 2.00 106.71
Caliche 6.10 4 .00 112.80
Silt w Caliche 6 .09 3 .50 118.90
Silt w Caliche 9.15 3 .50 128.05
Silt 9.14 2.00 137.20
Gravel 24.39 3.50 161.59
Gravel 6 .09 3.50 167.68
Gravel 27 .43 3 .50 195.12
Sandy Gravel 27 .44 2 .00 222 .56
Silty Gravel 9.14 2 .00 231.71
Gravelly Caliche 51.82 4.00 283 .54
Sandy Silt 6 .09 2 .00 289 .63
Silt 7 ,62 2 .00 297 .26
SCREENED THICKNESS TOP OF BOTTOM OF
INTERVAL INTERVAL INTERVAL
Closed 76 ,20 0 .00 76 .20
Open 204 .22 76 .20 280 .42
Closed 16.76 280 .42 297.18
WATER LEVEL THICKNESS TOP OF BOTTOM OF
October 1993 INTERVAL INTERVAL
Unsaturated 60.96 0.00 60.96
Saturated 236 .22 60 .96 297.18

Downhole
depth

0 Elevation

ML

KM

KM

ML

G C

KG

Hatchered intervals are gravel (GW) and 
sandy gravel (GP).
Solid fill intervals ore dominated by cem entation and 
called caliche on drillers’ log and here.
All units reported in m eters, except degree of cem entation. 
Degree of cem entation is a 1 to  5 scale  
1 is weak cem entation and 5 is strong cem entation.
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H ydrogeologic  variation in well NWC (p a r t  2 )
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Cementation, and percentages (where available) increase to the right. 
Abbreviations W and S above cementation column are weak and strong. 
0, 50  and 100 above columns are percentages.
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APPENDIX C

DEFINITION OF 
ALLOSTRATIGRAPHIC UNITS IN THE 

1983 NORTH AMERICAN CODE OF 
STRATIGRAPHIC NOMENCLATURE 

(NACSN, 1983, p. 865-867)
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ALLOSTRATIGRAPHIC UNITS

Nature and Boundaries

Article 58.-Nature of Allostratigraphic Units. An Allostratigraphic unit is a 
mappable stratiform body of sedimentary rock that is defined and identified on the basis of its 
bounding discontinuities.

Remarks, (a) Purpose.-Formal Allostratigraphic units may be defined to distinguish 
between different (1) superposed discontinuity-bounded deposits of similar lithology (Figs.
7,9), (2) contiguous discontinuity-bounded deposits of similar lithology (Fig. 8) or (3) 
geographically separated discontinuity-bounded units of similar lithology (Fig. 9), or to 
distinguish as a single units discontinuity-bounded deposits characterized by lithic heterogeneity 
(Fig. 8)._____________ ____ ________________________________________________

866 North American Stratigraphie Code

OLDER ROCKS OLDER ROCKS

OLDER ROCKS

EXPLANATION

Gravw

AUottritigraphic unit 

Buried Mil 

Diiconfocmltv

FIG. 7.—Example of allostratigraphic classification of alluvial and lacustrine deposits in 
a graben.

The alluvial and lacustrine deposits may be included in a single formation, or may 
be separated laterally into formations distinguished on the basis of contrasting textiu*e 
(gravel, clay). Textural changes are abrupt and sharp, both vertically and laterally. The 
gravel deposits and clay deposits, respectively, are btbologically similar and thus cannot 
be distinguished as members of a formation. Four allostratigraphic units, each including 
two or three textural faces, may be defined on the basis of laterally traceable 
discontinuities (buried soils and disconformities).
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(b) Internal characteristics.-Intemal characteristics (physical, chemical, and 
paleontological) may very laterally and vertically throughout the unit.

(c) Boundaries.-Boundaries of allostratigraphic units are laterally traceable 
discontinuities (Figs. 7, 8, and 9).

(d) Mappability .-A  formal allostratigraphic unit must be mappable at the scale 
practiced in the region where the unit is defined.

(e) Type locality and extent.—A type locality and type area must be designated; a 
composite stratotype or a type section and several reference sections are desirable. An 
allostratigraphic unit may be laterally contiguous witli a formally defined lithostratigraphic unit; 
a vertical cut-off between such units is placed where the units meet.

(f) Relation to genesis.-Genetic interpretation is an inappropriate basis for defining an 
allostratigraphic unit. However, genetic interpretation may influence the choice of its 
boundaries.

(g) Relation to geomorphic surfaces.-A geomorphic surface may be used as a 
boundary of an allostratigraphic unit, but the unit should not be given the geographic name of 
the surface.

(h) Relation to soils and paleosols.—Soils and paleosols are composed of products of 
weathering and pedogenesis and differ in many respects from allostratigraphic units, which are 
depositional units (see "Pedostratigraphic Units," Article 55). The upper boundary of a surface 
or buried soil may be used as a boundary of an allostratigraphic unit.

(i) Relation to inferred geologic history.-lnferred geologic history is not used to 
define an allostratigraphic unit. However, well-documented geologic history may influence the 
choice of the unit's boundaries.

(j) Relation to time concepts—Inferred time spans, however measured, are not used 
to define an allostratigraphic unit. However, age relationships may influence the choice of the 
unit's boundaries.

(k) Extension of allostratigraphic units—An allostratigraphic unit is extended from 
its type area by tracing the boundary discontinuities or by tracing or matching the deposits 
between the discontinuities.
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Ranks of Allostratigraphic Units

Article 59.—Hierarchy. The 
hierarchy of allostratigraphic units, in 
order of decreasing rank, is allogroup, 
alloformation, and allomember.

Allostratigraphic units 1, 2, 
and 3 are physical records of three 
glaciations. They are lithoiogicaUy 
similar, reflecting derivation from the 
same bedrock, and constitute a single 
lithostratigraphic unit.

FIG. 8.~Example of allostratigraphic
classification of contiguous deposits of similar 
lithology.

Remarks, (a) Alloformation.—The alloformation is the fundamental unit in 
allostratigraphic classification. An alloformation may be completely or only partly divided into 
allomembers, if some useful purpose is served, or it may have no allomembers.

(b) Allomember.—An allomember is the formal allostratigraphic unit next in rank 
below an alloformation.

(c) Allogroup.-An allogroup is the allostratigraphic unit next in rank above an 
alloformation. An allogroup is established only if a unit of that rank is essential to elucidation 
of geologic history. An allogroup may consist entirely of named alloformations or, 
alternatively, may contain one or more named alloformations which jointly do not comprise the 
entire allogroup.

(d) Changes in rank.—The principles and procedures for elevation and reduction in 
rank of formal allostratigraphic units are the same as those in Articles 19b, 19g and 28.

Allostratigraphic Nomenclature

Article 60.-Nomenclature. The principles and procedures for naming allostratigraphic 
units are the same as those for naming of lithostratigraphic units (see Articles 7,30).

Remarks, (a) Revision.-Allostratigraphic units may be revised or otherwise modified 
in accordance the recommendations in Articles 17 to 20.
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867North American Commission on Stratigraphie Nomenclature

Longitudinal profile of terrace deposits projected to axis of present 
floodplain. (Scale m uch smaller than in figures SB and SCI.

FLOODPLAIN
FLOODPLAIN

Transverse lateral cross section of valley wall at 
y - Y '  in figure SA.

Transverse lateral cross section of valley wall at 
X-X' in Figure SA.

FIG. 9.— Example of allostratigraphic classification of lithoiogicaUy similar,
discontinuous terrace deposits.

A, B, C, and D are terrace gravel imits of similar lithology at different 
topographic positions on the vaUey waU. The deposits may be defined as separate formal 
aUostratigraphic units if such units are useful and if the bounding discontinuities can be 
traced lateraUy. Terrace gravels are of the same age commonly separated geographicaUy 
by exposures of older rocks. Where the bounding discontinuities cannot be traced 
continuously, they may be extended geographically on the basis of objective correlation of 
internal properties of the deposits other than lithology (e.g. fossil content, included 
tephras) topographic position, numerical ages, or relative-age criteria (e.g. soils or other 
weathering phenomena. The criteria for such extension should be documented. Slope 
deposits, and eolian deposits (S) that mantle terrace surfaces may be of diverse ages and 
are not included in a terrace-gravel dominated aUostratigraphic units. A single terrace 
surface may be underlain by more than one aUostratigraphic unit (units B and C in section 
b and c).
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Nature and Boundaries

Article 98. — Nature of Hydrostratigraphic Units. A hydrostratigraphic unit is a body of 
rock distinguished and characterized by its porosity and permeability. A hydrostratigraphic 
unit may occur in one or more lithostratigraphic, allostratigraphic, or lithodemic units and is 
unified and delimited on the basis of its hydrologie characteristics and interstices.

Remarks, (a) Definition and recognition. -  Hydrostratigraphic units are defined and 
recognized by observable characteristics of the interstices in any body of rock, they are defined 
by the number, size, shape, arrangement, and interconnection of the interstices, and recognized 
on the basis of the nature, extent, and magnitude of the interstices in any body of sedimentary, 
metamorphic, or igneous rock.

(b) Purpose. — Hydrostratigraphic units are defined to distinguish bodies of rock that may 
be similar in other material categories on the basis of content or physical limits, but differ in 
the properties of their interstices. The primary observable rock characteristics of 
hydrostratigraphic units are their porosity, a rock property based on all rock openings, and 
permeability, a rock property based on the interconnection of the rock openings. 
Hydrostratigraphic units may be distinguished and recognized by hydrologie properties other 
than porosity and permeability, but porosity and permeability shall be the primary observable 
characteristics that define a hydrostratigraphic units. The interstices in hydrostratigraphic units 
are the result of the character, distribution, and structure of the rocks, that is, the geologic 
history of the region. An interstice is any intervening space between the solid rock material, 
including pores, fractures, and solution openings, or any space not occupied by solid rock 
material regardless of origin.

(c) Type and reference localities. -  The definition of a hydrostratigraphic unit should be 
based on as full a knowledge as possible of its lateral and vertical variations and its contact 
relations. For purposes of nomenclatural stability, a type locality and type area must be 
designated; a composite stratotype Or a type section and several reference sections are 
desirable. The principles and procedures for designating stratotypes are those in Article 8, and 
Article 22 for lithostratigraphic units, Article 31 for lithodemic units, and Article 58 for 
allostratigraphic units. The exact relationship of hydrostratigraphic units to other rock material 
categories based on content and physical limits must be clear and unequivocal Reference to 
lithostratigraphic, lithodemic, or allostratigraphic units must be made where tliese units form 
the solid rock material containing the hydrostratigraphic units. Reference to magnetopolarity, 
biostratigraphic, and pedostratigraphic units may be made where a clear purpose is served.

(d) Relation to lithostratigraphic, lithodemic, and allostratigraphic units. —
Hydrostratigraphic units resemble other categories of units defined on the basis of content and 
physical limits. They are defined on the basis of objective recognizable properties, but differ 
fundamentally in that the properties are those of the interstices rather than of the solid rock 
material. Their boundaries may coincide with those of lithostratigraphic, lithodemic, or 
allostratigraphic units, or be parallel to but displaced from those of such units, may be crossed 
by them, or may be part of one or several of these units.

(e) Independence from inferred geologic history. — Concepts based on inferred geologic 
history play no part in the definition of a hydrostratigraphic unit. Nevertheless, considerations 
of well-documented geologic history properly may influence the choice of vertical and lateral 
boundaries of a new unit. The Law of Superposition may or may not apply to 
hydrostratigraphic units. Hydrostratigraphic units generally conform to the Law of
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Superposition where the rocks are lithostratigraphic units, and generally do not conform to the 
Law of Superposition where the rocks are lithodemic units.

(f) Independence from lithic characteristics. -  The nature of the interstices of the rock 
depend on the character and structure of the solid rock material. Concepts based solely on the 
lithic nature of the solid rock play no part in the definition of a hydrostratigraphic unit. 
Nevertheless, considerations of the lithic nature of the rock properly may influence the choice 
of vertical and lateral boundaries of a hydrostratigraphic unit A hydrostratigraphic unit may be 
contained within the limits of one lithic rock type, repetitions of two or more lithic types, or 
extreme lithic heterogeneity, but is fundamentally defined by the porosity and permeability of 
the rock, not its lithic content. Porosity and permeability may be distinctively represented by 
electrical, radioactive, seismic, or other properties, but these properties by themselves do not 
describe adequately the interstitial character of the unit. It is desirable that hydrostratigraphic 
units should, where, feasible, correspond to formational boundaries based on lithic 
characteristics, stratigraphie position when contained in lithostratigraphic units, or to 
lithodemes based on rock characteristics to facilitate an imderstanding of the geology of the 
region. Rarely will hydrostratigraphic units correspond to boundaries of allostratigraphic, 
biostratigraphic, magnetopolarity, or pedostratigraphic units.

(g) Independence from time concepts. — Inferred time spans, however measured, are not 
used to: define a hydrostratigraphic unit. However, age relationships may influence the choice 
of the unit's boundaries.

(h) Relation to genesis. — Genetic interpretation is an inappropriate basis for defining a 
hydrostratigraphic unit However, genetic interpretation may influence the choice of its 
boundaries.
Primary porosity and permeability, which are initial properties of the rock, and secondary 
porosity and permeabUity, which result from such phenomena as secondary solution or 
structurally controlled regional fracturing, properly play a significant role in influencing the 
choice of vertical and lateral boundaries of a hydrostratigraphic unit, and may aid in the 
recognition of similar hydrostratigraphic units far removed from the type locality.

(i) Relation to geomorphic surfaces. — A geomorphic surface may be used as a boundary 
of a hydrostratigraphic unit. Erosional morphology or secondary surface form may be a factor 
in the recognition of a hydrostratigraphic unit, but should properly play only a minor role in its 
definition. Surface expression is a mapping aid for hydrostradgraphic units, as it is for 
lithostratigraphic, lithodemic, and allostratigraphic units.

(j) Instrumentally defined units. — In subsurface investigations, as for lithostratigraphic
units (see Article 22h), certain bodies of rock have their interstices interpreted from 
geophysical data. Where other considerations do not prevail, the boundaries of subsurface 
hydrostratigraphic imits should be defined so as to correspond to useful geophysical markers; 
nevertheless, units defined exclusively on the basis of remotely sensed physical properties, 
although commonly useful in hydrogeologic analysis, stand completely apart from die hierarchy 
of formal hydrostratigraphic units and are considered informal.

(k) Economically exploited units. -  Some hydrostratigraphic units are, in general,
informal units even though named. Some such units may be recognized formally because they 
are important in the elucidation of the regional geology, including structure, stratigraphy, 
geomorphology, and geologic history. Informal terms are appropriate for casually mentioned, 
innovative, and some economic units, those defined by unconventional criteria, including those 
used for ground-water flow modeling, and those that may be too thin to map at usual scales.
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(1) Relation to hydraulic flow system and fluid content. — Inferred flow systems and
fluid content have no place in the definition of a hydrostratigraphic unit, which must be based 
on a body of rock defined by its porosity and permeability. Both flow systems and fluid 
content are ephemeral in a geologic sense. Confinement (artesian) or unconfinement (water 
table) have no place in the definition of a hydrostratigraphic unit Saturation or the type of fluid 
content play no role in the definition of hydrostratigraphic units. Whereas the flow system and 
fluid content relate to the present position of the unit and do not directly affect the rock 
properties, they are extremely useful in aiding recognition of similar hydrostratigraphic units.
It is advisable where other factors do not countervail, to define hydrostratigraphic boundaries 
so as to coincide with hydrologie changes evidenced by mappable flow systems. However, 
saturation or nonsaturation, as well as the nature and chemistry of the enclosed fluids shall not 
play a part in the definition of a hydrostratigraphic unit. Such units, if defined on these bases, 
are economic units and informal.

(m) Nature of porosity and permeability. -- The porosity of a rock is its property of
containing interstices and may be expressed quantitatively as the ratio of the volume of its 
interstices to the total volume of solid rock or the percentage of rock that is not occupied by 
solid rock material. With respect to the movement of fluids, only the system of interconnected 
interstices is significant and is termed effective porosity. Intrinsic permeability is a measure of 
the relative ease with which a porous medium can transmit a liquid under a potential gradient.
It is a property of the medium alone and is independent of the nature of the liquid and of the 
force field causing movement Intrinsic permeability is measured in units of length squared. 
Intrinsic permeability and porosity are the preferred units used for the definition of 
hydrostratigraphic units. Definitions must be based on descriptions and measurements of actual 
rock materials.

(n) Internal characteristics. — A hydrostratigraphic unit should possess some degree of 
internal homogeneity in porosity and permeability, and, if possible, some degree of distinctive 
lithic features.

(o) Mappability and thickness. -  Practicability of surface and subsurface mapping is an 
essential characteristic of a hydrostratigraphic unit (see Article 24d). A formal 
hydrostratigraphic unit must be mappable at the scale practiced in the region where the unit is 
defined. Regional validity must be demonstrated for all such units. Thickness is not a 
determining parameter in dividing a rock succession into hydrostratigraphic units. Some thin 
units, however, or those of only local significance, may be informal and termed water-bearing 
zones.

Article 99. — Boundaries. Boundaries of hydrostratigraphic units are placed at positions of 
change of the porosity and permeability. Boundaries are placed at distinct contacts or may be 
fixed arbitrarily within zones of gradation. Both vertical and lateral boundaries are based on 
the changes in porosity and permeability that provide the greatest unity and practical utility.

Remarks, (a) Relation to boundaries of other stratigraphie units. — When the rocks are of a 
lithostratigraphic nature, the same principles and procedures as stated in Articles 10 and 23 
should be followed. When the rocks are of a lithodemic nature the same principles and 
procedures as stated in Article 32 should be followed. Boundaries of hydrostratigraphic units 
may have little or no relation to boundaries of magnetopolarity, biostratigraphic, 
pedostratigraphic, or allostratigraphic units.

(b) Boundaries within gradational zones. — Where a hydrostratigraphic imit changes 
through gradation into, or intertongues with, a rock mass with marked different porosity and
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permeability it is usually desirable to propose a new unit. It may be necessary to draw an 
arbitrary boundary within the zone of gradation. When the area of intergradation or 
intertonguing is sufficiently extensive, the rocks of mixed character may constitute a third unit

(c) Boundaries based on regional flow systems. — Flow systems, while useful in 
determining the boundaries of hydrostratigraphic units, in themselves play no proper part in 
determining the boundaries of hydrostratigraphic units.

(d) Extension of hydrostratigraphic units. ~ A hydrostratigraphic unit may be extended 
from its type area by tracing the bounding discontinuities of porosity and permeability and 
defining die porosity and permeability between such discontinuities. Water level and other 
hydrologie information, as well as geophysical, geochemical, and geologic data may be utilized 
for this purpose.

Ranks of Hydrostratigraphic Units

Article 100. — Hierarchy. The hierarchy of hydrostratigraphic units, in order of decreasing 
rank, is aquigroup, aquiformation, aquimember, and aquibed.

Remarks (a) Aquiformation. -- The aquiformation is the fundamental unit of hydrostratigraphic 
classification. It may be an aquifer, aquitard, or aquifiige. An aquiformation may be 
completely divided or partly divided into aquimembers, if some useful purpose is served, or it 
may have no aquimembers.

(b) Aquimember. -  An aquimember is the formal hydrostratigraphic unit next in rank 
below an aquiformation. It may be an aquifer, aquitard, or aquifiige.

(c) Aquibed. -- An aquibed is the smallest formal hydrostratigraphic unit. The designation 
of an aquibed as a formally named hydrostratigraphic unit generally should be limited to certain 
distinctive beds whose recognition is particularly useful and of more than local economic 
significance.

(d) Aquigroup. — An aquigroup is the hydrostratigraphic unit next in rank above an 
aquiformation. It may consist of any combination of aquifers, aquitards, or aquifuges. An 
aquigroup may be established if it is essential to elucidation of the hydrogeology of a large 
regional ground-water body. An aquigroup may consist entirely of named aquiformations or, 
alternatively, need not be composed entirely of named aquiformations. Aquigroups are defined 
to express die natural relationships of associated aquiformations. The aquiformations making 
up the aquigroup need not necessarily be everywhere the same.

(e) Changes in rank. — The principles and procedures for revision and abandonment of 
formal hydrostratigraphic units are the same as those in Articles 17, 18, 19 and 20.

Hydrostratigraphic Nomenclature

Article 101. -  Nomenclature. The principles and procedures for naming hydrostratigraphic 
units the same as those in Article 7 and for naming lithostratigraphic units in Article 30 and 
lithodemic units in Article 39. For most categories, the name of the unit should consist of a 
geographic name combined
with an appropriate rank or descriptive term with the descriptive term preferred.
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Remarks (a) Unit Description. — The principles and procedures for unit description are the 
same as those in Article 9.

(b) Use of simple ground-water terms. — The ground-water part of the term should 
indicate the predominant or diagnostic interstitial space characteristic, even if subordinate 
interstices are included. An aquifer is a porous and permeable geologic unit that can transmit 
significant quantities of fluid under ordinary hydraulic gradients. An aquitard is a permeable 
and porous geologic unit that is incapable of transmitting significant quantities of fluid under 
ordinary hydraulic gradients. An aquifuge is a nonpermeable and nonporous geologic unit that, 
for all practical purposes, contains no interconnected openings or interstices, and, therefore, 
neither absorbs nor transmits water. The above three terms are equivalent to the compound 
part of the name used as descriptive lithic terms is for lithostratigraphic nomenclature (See 
Article 30) and for lithodemic nomenclature (See Article 40). The definitions of aquifer, 
aquitard, and aquifuge are purposely imprecise with respect to porosity and permeability so that 
the terms may be used in a relative sense. The use of aquifer, aquitard, and aquifuge is 
preferred over the rank term.

(c) Compound character. -  The formal name of a hydrostratigraphic unit is compound 
and follows the principles used in Article 7 and for lithostratigraphic units in Article 30 and 
lithodemic units in Article 40. It consists of a geographic term combined with a descriptive 
ground-water term (,see b) or with the appropriate rank term, or both. Initial letters of all 
words used in forming the names of formal hydrostratigraphic units are capitalized.

(d) Informai usage of identical geologic names. — The application of identical geologic 
names, whether based on content, physical limits, geologic age, topographic position, or other 
similar terms is considered informal and is discouraged. Informal units should not be 
capitalized. The use of formation names, or any formal stratigraphie name, and geologic age 
terms to designate hydrostratigraphic units is considered informal and is discouraged.
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