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Abstract 

The disease chytridiomycosis, caused by the aquatic fungal pathogen 

Batrachochytrium dendrobatidis (Bd), has emerged as a major contributing factor for 

worldwide amphibian declines. Although relatively recently described, the impacts from 

the disease this pathogen causes have been definitively tied to amphibian declines, 

including some that occurred decades ago. In some cases, declines of individual species 

occurred with little documentation and are thus poorly understood. The relict leopard frog 

(Rana onca = Lithobates onca) has experienced such a decline and by the latter part of 

the 20th century only occurred in two general areas in southern Nevada. Recent research 

has found Bd within the historical range of the species and that the species shows 

evidence of potential resistance to chytridiomycosis. Those authors, however, noted that 

the Bd strains used were not from the local environment and they speculated on possible 

attenuation. I addressed these concerns by challenging an anuran species known to be 

susceptible to chytridiomycosis to one of the previously used Bd isolates (SLL) that 

showed hypovirulence towards R. onca. I also performed a disease transmission 

experiment intended to increase virulence in SLL towards R. onca in an attempt to 

elucidate the possibility of attenuation. In other experiments, I isolated Bd from anurans 

in the local environment, and then used these isolates to challenge juvenile R. onca, as 

well as an earlier life-stage thought to be more vulnerable to chytridiomycosis. My results 

indicate that the SLL isolate is still virulent toward a susceptible host species, but R. onca 

continued to appear resistant toward this particular isolate. My challenge experiments 

using local isolates of Bd, however, showed that R. onca is susceptible to 
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chytridiomycosis from two Bd isolates found in southern Nevada, as well as an isolate I 

acquired from a commercial vender. I found that frogs from a currently Bd infected area 

cleared infections and survived in much higher proportions than those from a Bd-free 

area. This population-level effect, however, was dependent on life-stage and recently 

metamorphosed frogs from both areas showed low survivorship when challenged with 

Bd.  
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CHAPTER 1 

Introduction  

The aquatic fungal pathogen, Batrachochytrium dendrobatidis (commonly 

referred to as Bd), is a major driver of declines of amphibians worldwide (Stuart et al. 

2004). Bd has a broad physiological tolerance (Piotrowski et al. 2004) and is referred to 

as a generalist pathogen infecting hundreds of amphibian species from all three orders: 

caudates, anurans, and caecilians (Gower et al. 2013). Bd occurs on every continent 

where there are amphibians and continues to spread to new localities (Olson et al. 2013; 

Kolby 2014; Bletz et al. 2015). The pathogen is presented with unique challenges from 

host immune systems and for resource acquisition in different host species, which are 

generally thought to ultimately impact pathogen fitness in a host-dependent manner 

(Ellison et al. 2017). The pathogen, however, may respond to different species by 

changing what genes are expressed, thereby allowing the pathogen to shift resource 

allocation rather than undergoing evolutionary changes (Ellison et al. 2017).  

The Bd pathogen has a simple life-cycle consisting of a motile infectious zoospore 

stage and a reproductive structure called a zoosporangium (Berger et al. 2005). Infections 

are initiated when the motile zoospore, potentially guided by chemotaxis, attaches to a 

host’s outer surface of the stratum corneum (Berger et al. 2005). Subsequently, a 

germination tube is produced that extends deeper into the epidermis (van Rooij et al. 

2012). The germination tube carries cellular contents that mature into a zoosporangium, 
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which is a chitin-surrounded sphere with conspicuous hyphae that clonally produces 

zoospores (Berger et al. 2005; Greenspan et al. 2012; van Rooij et al. 2012).  

Infection by Bd can lead to the disease chytridiomycosis, which, among other 

symptoms, is characterized by excess skin sloughing, skin redness (erythema), 

hyperplasia, hyperkeratosis, and in terminally ill individuals, the loss of righting reflex 

(Voyles et al. 2009). Chytridiomycosis can be fatal and diseased amphibians are thought 

to succumb to infection through the loss of vital electrolytes, leading to asytolic cardiac 

arrest (Voyles et al. 2009). Chytridiomycosis can have severe impacts on amphibian 

populations and species diversity, which can occur over very short time scales 

(Rachowicz et al. 2006; Gillespie et al. 2015). For example, in the Sierra Nevada of 

California (USA), populations of Rana muscosa have been decimated by 

chytridiomycosis (Rachowicz et al. 2006). The disease has driven extirpations of the 

species from several localities, sometimes within only 1 year (Rachowicz et al. 2006). In 

the tropical forests of El Copé, Panama, 41% of amphibian diversity was lost shortly after 

the arrival of Bd (Crawford et al. 2010). Similar observations have also been made in 

Australia where approximately 20% of all amphibians are thought to have declined from 

chytridiomycosis (Scheele et al. 2017). In many cases, however, the impacts of 

chytridiomycosis were experienced many years before the disease or causative agent 

were described (Cheng et al. 2011; De León et al. 2017).  

The Monteverde golden toad (Bufo periglenes) disappeared from its cloud forest 

habitat in Costa Rica sometime between 1987 and 1988 (Pounds et al. 1994), which 
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preceded the description of Bd and chytridiomycosis by a decade (Berger et al. 1998, 

Longcore et al. 1999). Although not fully understood at the time, many thought the 

species vanished due to abnormal climatic conditions (Pounds et al. 1994). More recent 

work using museum specimens, however, demonstrated that the decline of amphibians in 

Costa Rica was likely coincident with the arrival of the Bd pathogen (Cheng et al. 2011). 

Museum specimens taken before observed amphibian declines in southern Mexico, 

Guatemala, and Costa Rica tested negative for Bd infection, while specimens taken 

during and after the years of declines tested positive (Cheng et al. 2011). The authors also 

proposed a southern spread of the pathogen, based on the temporal detection of Bd, 

suggesting the pathogen spread from southern Mexico in the 1970’s and arrived in Costa 

Rica by 1987 (Cheng et al. 2011). Similar research has been done in California, first 

identifying Bd in museum specimens of cascades frogs (Rana cascadae) in 1978 around 

the time when declines were first observed (De León et al. 2017). Other species, 

however, declined with little documentation (Pounds et al. 1994; Skerratt et al. 2007; 

Fisher et al. 2009). 

Sometime during the 20th century, the relict leopard frog (Rana onca = Lithobates 

onca) experienced a dramatic decline that has little documentation (Bradford et al. 2004). 

Although the species likely declined for many reasons, originally disease was not 

proposed as a contributing factor. Recently, however, the impacts of disease have been 

singled out as a possible facilitator for the decline of R. onca (Forrest & Schaepfler 2011; 

Jaeger et al. 2017).  
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Jaeger et al. (2017) found the Bd pathogen in several sites within the historical 

range of R. onca, including one of the persisting natural populations of the species. In 

laboratory challenge experiments, however, juvenile R. onca appeared to be resistant to at 

least two isolates of the fungus from California known to be extremely virulent toward 

other anuran species (Jaeger et al. 2017). The authors concluded that R. onca may be 

innately resistant to chytridiomycosis or may have recently evolved resistance. They 

cautioned, however, that the laboratory Bd strains used may have lowered levels of 

virulence than those in the local environment. Strains of Bd in the laboratory that are 

grown and serially transferred to new growth media have been shown to weaken in their 

virulence to their original host, referred to as attenuation. (Langhammer et al. 2013; 

Refsnider et al. 2015). Therefore, Jaeger et al. (2017) speculated that the isolates used 

may have had weaker virulence, potentially adapting to the culturing environment.  

 

The purpose of my research was to provide clarity on the virulence characteristics 

of Bd from the local environment towards R. onca, and to assess the possible 

confounding factor of attenuation posed in the previous study. I also aimed to evaluate 

the susceptibility of R. onca to chytridiomycosis at a possibly vulnerable life-stage 

following metamorphosis. To do so, I initiated a set of laboratory challenge experiments 

with two general aims: determine R. onca susceptibility to Bd from the local 

environment, and determine if the Bd isolates used in Jaeger et al. (2017) had attenuated 

(referred to as SLL, described in Chapter 3). I addressed the first aim by challenging R. 

onca to isolates of Bd from the local environment at two distinct life-stages. I addressed 
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the second aim by exposing a group of White’s treefrogs (Litoria caerulea), a species 

known to be susceptible to chytridiomycosis (Voyles et al. 2009), to the SLL isolate. If 

SLL had attenuated, I expected high survivorship in the exposed L. caerulea. I also 

addressed this aim by exposing a group of R. onca to SLL, allowing infections to 

develop, and subsequently cohousing them with naïve, uninfected partners. Prior research 

by Brem et al. (2013) involving an attenuated laboratory strain of Bd showed that after 

infecting a host, the pathogen can regain some virulence. They infected a group of eastern 

spadefoot toads (Scaphiopus holbrooki) with a strain of Bd (JEL 284) that had been 

maintained in the lab for several years and appeared to have weakened virulence. The 

authors re-isolated the fungus from an infected toad and evaluated differences in 

virulence between the original isolate and the re-isolate. The re-isolated JEL 284 showed 

greater virulence towards hosts, resulting in high mortalities and decreased survival time. 

In my experiment, I chose to cohouse frogs rather than re-isolate the pathogen to make 

the experiment more ecologically relevant. If the Bd isolate SLL had attenuated, and R. 

onca was in fact susceptible to chytridomycosis, I expected low survivorship in the 

second exposure group. 

 

A major initial factor in my research was obtaining viable, isolated cultures of Bd from 

the local environment for challenge experiments. While initiating these efforts, I 

developed a refined protocol for isolating Bd. When I began Bd isolations, I had some 

success, but in many cases the microbial media used to grow Bd quickly became overrun 

with unwanted microbial growth. Therefore, working from published methods (Longcore 
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et al. 1999; Piovia-Scott et al. 2015), I optimized a Bd isolation protocol and conducted 

an analysis of my protocol’s efficacy using two common species found in the American 

Southwest, Pseudacris regilla and Pseudacris triseriata (Waddle et al. in review; Chapter 

2). I sampled tissue from three anatomical regions on these animals where the pathogen is 

thought to concentrate; the abdomen, thigh, and feet (Berger et al. 1998; Brannelly et al. 

2017; Ohmer et al. 2017). I then determined which region had the most utility in yielding 

isolated Bd, and evaluated the effects of infection intensity of the sampled frogs on Bd 

isolation success. All protocols involving these animals were approved under IACUC 

protocol 870994. 

 

Efforts to understand the effects of Bd on amphibians in southern Nevada have 

been limited to only two published studies (Forrest et al. 2015; Jaeger et al. 2017), and 

only one of these papers (Jaeger et al. 2017) regards R. onca and Bd, on which I am a 

coauthor. Jaeger et al. (2017) was the first to ask questions regarding the distribution of 

Bd within the historical range of the species, and the first attempt at determining the 

susceptibility of the species to chytridiomycosis. I began assisting on this project as an 

undergraduate and have formulated inquiries as I advanced into graduate school. My 

development of an optimized Bd isolation protocol was written and submitted as a 

manuscript intended for publication. The version of this work presented in Chapter 2 is 

written in the plural nominative “we” as it would appear in my publication. My efforts 

assessing attenuation of Bd and further evaluation of R. onca susceptibility to 
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chytridiomycosis is also presented in Chapter 3 as it would appear in a manuscript for 

publication. 

Although my research shows that R. onca can be highly susceptible to chytridiomycosis, 

I remain positive that future research and mitigation efforts will prove successful. My 

hope is that the information provided here may improve conservation activities for the 

species, provide opportunities for future inquiries into this system, and ultimately 

preserve R. onca for future generations. 
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CHAPTER 2 

A Systematic Approach to Isolating Batrachochytrium dendrobatidis 

INTRODUCTION 

The amphibian disease chytridiomycosis, caused by the pathogenic chytrid fungus, 

Batrachochytrium dendrobatidis (Bd), has been implicated in declines of amphibian 

populations and species worldwide (Berger et al. 1998; Longcore et al. 1999; Stuart et al. 

2004). Isolating Bd from the wild poses some challenges for researchers studying the 

ecology of this infectious pathogen and attempting to develop mitigation approaches. 

Protocols for isolating Bd from amphibians have been published (Longcore et al. 1999, 

2000; Piovia-Scott et al. 2015), and working from these protocols, we developed an 

approach that included a unique combination of antibiotics to reduce bacterial 

contamination. 

We systematically assessed the isolation success of our protocol on two Hylid 

frogs in the genus Pseudacris. We also evaluated the relationship between isolation 

success and Bd infection intensity of the frogs, and compared isolation success across 

tissues collected from three anatomical regions where the pathogen is thought to 

concentrate (Berger et al. 1998, 2005; Puschendorf and Bolanos 2006; Hyatt et al. 2007). 

Species of these treefrogs are quite common across North America and some are known 

to be resistant to chytridiomycosis while carrying high Bd infection loads (Reeder et al. 
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2012). Such frogs may provide opportunities for isolating and studying Bd across a 

diverse landscape without damaging populations of rare or endangered amphibians. 

 

METHODS 

 

Media preparations – We used four different antibiotics in growth media when 

isolating Bd from frog tissues: kanamycin, ciprofloxacin, streptomycin, and penicillin G. 

Both kanamycin sulfate and ciprofloxacin were prepared in separate solutions by adding 

10 g and 1 g to 1 L of autoclaved deionized (DI) water, respectively. Streptomycin sulfate 

(30g) and penicillin G (20 g) were added simultaneously to 1 L of autoclaved DI water. 

Aliquots of these solutions were kept frozen before use. 

  

We used TGhL and H-broth media for isolation and growth of Bd, following 

preparation protocols from Longcore (2000); however, lactose is not required for Bd 

growth and a 1% tryptone medium should suffice (Piotrowski et al. 2004). We prepared 

TGhL in 250 ml quantities to ameliorate issues with media hardening prior to pouring. 

We added antibiotics to both media types once the temperature of the solutions dropped 

below 50 °C. For each 250 ml of TGhL solution we added 1.25 ml of kanamycin solution 

(concentration in media = 50 µg•ml-1), 2.5 ml ciprofloxacin solution (concentration in 

media = 10 µg•ml-1), and 2.5 ml of streptomycin-penicillin G solution (concentrations in 

media = 300 µg•ml-1 and 200 µg•ml-1, respectively). For H-broth we added 10 ml of 
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streptomycin-penicillin G solution (with concentrations in media = 300 µg•ml-1and 200 

µg•ml-1, respectively). 

Each 250 ml solution of TGhL media made approximately 25 agar plates (5 cm). 

We previously experienced desiccation of this medium, so we poured plates (Petri dishes) 

~ half-full to maintain appropriate moisture content to facilitate Bd growth. Plates were 

poured under a sterilized laminar flow hood, and once solidified stored in plastic sleeves 

at 4 °C. We also stored H-broth at 4 °C. 

Animals – We used 26 P. regilla (potentially Hyliola regilla, see Duellman et al. 

2016) and 32 P. triseriata. We collected P. regilla from Spring Mountain Ranch State 

Park, Clark County, Nevada, and acquired P. triseriata from Arizona Game and Fish 

Department personnel who collected them at Coleman Lake, Coconino County, Arizona. 

We temporarily housed each frog individually in clear plastic boxes with clasping lids 

(20 cm W x 36 cm L x 12 cm H) containing ~ 1 L of aged, dechlorinated tap water, and a 

small plastic platform for cover and a dry surface. We kept the containers in an 

environmental chamber set to 19 °C under a 12:12 L:D photoperiod. 

Determining infection intensity – We determined Bd infection intensity of each 

frog prior to isolation attempts using quantitative real-time polymerase chain reaction 

(qRT-PCR) of skin swabs as described in Jaeger et al. (2017). Our reactions followed a 

common assay (Boyle et al. 2004) with infection intensity interpreted as the number of 
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Bd zoospore equivalents (ZE) per swab. To quantify infections, we used representative 

standards of Bd isolated from each of the geographic regions from which the frogs were 

collected (i.e., Spring Mountain Ranch and Coleman Lake) to reduce the possibility that 

variations in genomic content among Bd strains could affect our zoospore counts (Longo 

et al. 2013).  

 

Isolation attempts –  Prior to isolation attempts we euthanized frogs following an 

accepted protocol, wrapped each in a laboratory wipe, and placed them into small re-

sealable plastic bags. We processed all frogs within 24 hours and kept euthanized frogs 

that were not immediately processed at 4 °C. We processed frogs on an open, sterilized 

bench. Forceps, small surgical scissors, and inoculating needles were flame sterilized 

before each use. For each frog, we used several pairs of TGhL-antibiotic plates and an 

additional ‘master plate.’ We divided the master plate into sections labeled thigh, 

abdomen, and foot. The first plate of each pair (referred to as cleaning plates) served as a 

cleaning substrate (see Longcore 2000), while the second plate eventually held the 

cleaned piece of tissue (referred to as tissue plates). We placed frogs ventral side up and 

excised ~ 4 x 4 mm pieces of tissue (see Figure 1), placing each piece into the appropriate 

section on the master plate. These frogs are quite small, so for foot samples we excised 

the most proximal ~ 1 mm portion of the largest toe of each foot and associated webbing. 

We subsequently dissected these samples into ~ 1 x 1 mm pieces, returning each piece to 

the appropriate section on the master plate.  

 



 

12 

 

   
 

Figure 1. Batrachochytrium dendrobatidis isolation approach. As indicated by squares in 

the first panel, tissue is excised in pieces from the thigh, abdomen, and foot. These tissues 

are plunged and dragged through antibiotic agar plates using a sterile inoculating needle 

and then left on a new antibiotic plate as indicate in the second panel. The last panel 

indicates the final steps of assessing Bd presence and growth, and then transfer to liquid 

media.  

 

We individually transferred pieces of tissue from the master plates to appropriately 

labeled cleaning plates using an inoculating needle. We plunged (submerged) each tissue 

into the agar and dragged it across and through the agar about ten times, with the intent of 

removing unwanted fungal spores and bacteria (Longcore 2000). We then spread the 

tissue sample out in a clean tissue plate, which was then wrapped in parafilm, inverted, 

and incubated at 23 °C. We took care to ensure that plates were fresh enough to provide a 

small halo of water around the tissue pieces, as observed under magnification; we 

believed this was especially important because Bd is highly susceptible to desiccation 

(Johnson et al. 2003). For each P. regilla, we collected 8 thigh samples, 4 abdomen 

samples, and 2 foot samples. For P. triseriata, we used 4 pieces of tissue from each of 

these anatomical regions.  
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We monitored plates weekly over one month for Bd growth under 40x 

magnification, and noted the number of plates in which Bd growth was observed. We also 

recorded the number of plates that were contaminated and presumed contaminant type; 

contaminants with hyphae were presumed to be fungal. Once Bd zoosporangia were 

visible, a chunk of the agar (~ 1 x 1 cm) containing the skin sample with Bd was 

transferred to a 125 ml flask containing 50 ml of H-broth with antibiotics. The identity of 

Bd on plates (as opposed to other fungal species) was confirmed with qRT-PCR.  

 

We determined the role of anatomical region (thigh, abdomen, or foot) on the 

success of Bd isolation for each species independently. We calculated proportions of 

successful plates for each region per individual and then applied a linear mixed multiple 

regression model. Because frogs were randomly collected from the field, randomness 

among samples taken from an individual frog were accounted for via variance-covariance 

structure. Bonferroni adjustments were used for multiple comparisons. The statistical 

analyses were conducted using SAS version 9.4 (SAS Institute, Cary NC, USA). We 

determined whether Bd infection intensities of frogs influenced Bd isolation success by 

assessing correlations (Spearman’s rho) among the proportion of successful plates (those 

with isolated Bd zoosporangia) and the infection intensity (ZE) of the frog from which 

samples were taken; infection intensity of each frog was divided by its snout-to-vent 

length (SVL) for size correction. 
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RESULTS 

 

We isolated Bd from 73% of P. regilla and 66% of P. triseriata (69% overall). Out 

of the total frogs used, 78% (45/58) tested positive for Bd infection (≥ 1 ZE). Of the Bd 

positive frogs, we isolated the pathogen from 89% of P. regilla and 70% of P. triseriata 

(78% overall). We also isolated Bd from 5 of 13 frogs that did not test positive for Bd 

infection. We found positive trends between Bd infection intensity (ZE/SVL) of frogs and 

the proportion of plates from which Bd was isolated for both species (P. triseriata, ρ = 

0.52, P-value = 0.002; P. regilla ρ = 0.53, P-value = 0.005).  

 

We isolated Bd from all three body regions (thigh, abdomen, foot) of both species 

(Figure 2). Of these body regions, success at isolating Bd was significantly higher for foot 

samples from both P. regilla (foot x abdomen P-value = 0.010; foot x thigh P-value = 

0.049) and P. triseriata (foot x abdomen P-value < 0.000; foot x thigh P-value < 0.000). 

Isolation success did not vary significantly between the abdomen and thigh for either P. 

regilla (P-value = 1.00) or P. triseriata (P-value = 0.605). The significance of these 

comparisons were generally consistent even when species were analyzed together.  

 

Contamination from bacteria and unwanted fungi for all plates was low (9.7% of 

1554 plates), with remaining plates either containing Bd (14.0%) or nothing at all. The 

most common type of contamination was presumed fungal (77% of total plates with 

contamination). We observed contamination on 9.5% of cleaning plates and 9.0% of 
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tissue plates, while 22.4% of the master plates were contaminated. We were able to start 

Bd cultures in H-broth with antibiotics from all the plates with isolated zoosporangia.  

 

 

Figure 2. Percentage of successful plates (with Batrachochytrium dendrobatidis) by 

body region (thigh, abdomen, foot) of Pseudacris regilla and Pseudacris triseriata. 

Letters indicate significant differences between body regions within each species.  

 

 

DISCUSSION 

 

We were highly successful using our protocol at isolating Bd from populations of 

P. regilla and P. triseriata that had high infection prevalence. We isolated Bd from each 

of the three anatomical regions from which we extracted skin samples (thigh, abdomen, 

foot), but our isolation attempts from the feet (toe and associated webbing) were 

significantly more successful. Similarly, webbing from hind feet of other ranids have 

been shown to carry higher Bd infections than other body regions, and the webbing of 
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hind feet has long been suggested as a primary area to sample for Bd detection (Longcore 

et al. 2007).  Excitingly, sampling webbing may prove to be an effective, nonlethal 

approach for isolating Bd (as has been suggested to us by Piovia-Scott, J. and Pope, K., 

pers. comm.).    

 

Bd infection intensity of frogs was positively correlated with isolation success, 

indicating that individuals with higher infection intensities may provide a more 

successful avenue for Bd isolation. We found that once Bd infection intensities reach ≥ 40 

ZE, we had high levels of isolation success (Bd isolated from 74% of P. triseriata and 

100% of P. regilla with such infections). Our success at isolating Bd from frogs that 

tested negative for Bd infection was puzzling, but may be due to low intensity infections 

often being missed using swabbing protocols (Shin et al. 2014). We used an established 

qRT-PCR method to detect and confirm Bd identity (Boyle et al. 2004), but microscopic 

examination of freshly collected tissue can also be used for detecting Bd (Longcore et al. 

1999, 2000; Longcore JR et al. 2007). Microscopy may be less costly and quicker then 

qRT-PCR, particularly if working with only a few frogs, as tissue samples can be excised 

and viewed immediately (Longcore JR et al. 2007).  

 

Our early preliminary attempts at isolating Bd using common antibiotic 

combinations (e.g., Longcore et al. 1999, 2000; Piovia-Scott et al. 2015) were mostly 

overrun with bacteria, but our combination of four antibiotics was effective at eliminating 

most bacterial contaminants. We used concentrations of streptomycin and penicillin as 
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described in the literature and kanamycin and ciprofloxacin as advised by the 

manufacturer for eliminating bacterial contaminants in cell cultures. We doubled the 

concentration of ciprofloxacin above that recommended by the manufacturer for use in 

cell cultures which did not appear to limit our isolation success, although we did not 

assess lower concentrations. Using 5 cm plates in pairs allowed us to isolate and monitor 

each piece of tissue for Bd growth (also see Piovia-Scott et al. 2015), and this alteration 

from earlier protocols using larger plates and multiple pieces of tissue per plate (e.g., 

Longcore et al. 2000) may keep contaminants contained to one or a few tissue pieces 

without affecting others. In a few instances, we observed Bd on cleaning and master 

plates which highlights the utility of keeping and monitoring all plates for isolations. 

Growth of Bd to the point of easy observation of zoospores and zoosporangia may also be 

quite slow, and we observed Bd presence on many plates only after 3 to 4 weeks 

following plating.  

 

Our adoption and refinement of established Bd protocols has benefited our 

research. Since developing this protocol, we have successfully applied it to isolate Bd 

from White’s treefrogs (L. caerulea) and relict leopard frogs (R. onca) used in laboratory 

experiments and from American bullfrogs (Rana catesbeiana) captured from the wild. 

We believe our alterations will be useful to other researchers conducting biological 

studies with Bd.  

 

 



 

18 

 

 

Simplified method  

1. Remove tissue and dissect into ~ 1 x 1 mm pieces using surgical scissors and 

forceps (see first panel in Figure 1) 

2. Clean tissue by plunging and wiping through agar plate (1% tryptone) containing 4 

antibiotics (see second panel in Figure 1 and text above) 

3. Place tissue on plate with antibiotic agar, cover in Parafilm®, and incubate at 

room temperature (21–23 °C) 

4. Monitor for zoospore activity under 40x magnification (a compound scope at up to 

100x magnification and sub-stage lighting has also been suggested)  

5. Transfer to H-broth once zoosporangia are visible (see third panel Figure 1) 

6. Refrigerate H-broth cultures once clumps of zoosporangia are observed and 

transfer to new media within 4–6 months 

7. For long-term storage, cryo-archive Bd isolate as soon as possible following the 

protocol of Boyle et al. (2003) 
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CHAPTER 3 

Effects of Attenuation, Differences in Pathogen Virulence, and Life-Stage on Rana 

onca Susceptibility to Chytridiomycosis 

 

INTRODUCTION 

 

Amphibians are likely experiencing extinction rates beyond what can be explained 

as a natural phenomenon (Stuart et al. 2004; McCallum et al. 2007; Wake & Vredenburg 

2008). Many contemporary declines of amphibians were initially described as 

“enigmatic”, occurring in pristine or protected environments (Stuart et al. 2004). 

Eventually, disease emerged as a recognized major explanatory factor (Lips et al. 2006; 

Wake & Vredenburg 2008; Greenspan et al. 2017). Although many diseases impact 

amphibians, chytridiomycosis is by far the most detrimental to amphibian biodiversity, 

driving hundreds of species declines and numerous extinctions (Skerratt et al. 2007). 

Chytridiomycosis is caused by the aquatic fungal pathogen, Batrachochytrium 

dendrobatidis (Bd), which now occurs on every continent where there are amphibians 

(Longcore et al. 1999; Fisher et al. 2009). In many cases the impacts of Bd were observed 

decades before the pathogen was described (Berger et al. 1998; Longcore et al. 1999; 

Stuart et al. 2004), and Bd epizootics drove some species declines and extinctions that 

originally had little explanation or were poorly documented (Shermann et al. 1993; 

Pounds & Crump 1994; Young et al. 2001; Stuart et al. 2004; Cheng et al. 2011). 
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The relict leopard frog (Rana onca = Lithobates onca) is a species of conservation 

concern that suffered a substantial, but poorly document, decline sometime during the 

20th century (Bradford et al. 2004). Although a narrow endemic known from springs, 

wetlands, and rivers in the northeastern Mojave Desert (Olah-Hemmings et al. 2010), by 

2001 populations only persisted naturally in two general areas of southern Nevada, both 

within the Lake Mead National Recreation Area (LMNRA; Bradford et al. 2004). 

Bradford et al. (2004) summarized possible reasons for the decline of R. onca as habitat 

destruction and alteration, loss of habitat-maintaining disturbance regimes such as 

grazing animals, and the introduction of non-native competitors and predators. Although 

Bd was known to be present in neighboring regions, these authors did not consider this 

disease as a contributing factor. Hot ambient temperatures, such as those experienced in 

the Mojave Desert, were thought at that time to limit Bd (Piotrowski et al. 2004; 

Puschendorf et al. 2009). Recent work on the Amargosa toad (Anaxyrus nelsoni), 

however, has shown that Bd can persist in a region of the Mojave Desert. Populations of 

this toad had high Bd infection prevalence and intensities even during summer months, 

when temperatures were high (24–33 °C) and ambient humidity generally low (Forrest et 

al. 2015).  

 

The decline of R. onca displays some attributes that favor epizootic disease as a 

contributing factor. Forrest and Schaepfler (2011) noted that all remaining natural 

populations of R. onca were restricted to hot springs, where source water temperatures 

exceed the thermal maxima for Bd. These authors speculated that the thermal waters may 
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provide refuge for the species from disease. Following this observation, the presence of 

Bd was documented in several anuran species within the historical range of R. onca, 

including one remnant historical population of this species (Jaeger et al. 2017).  

 

In contrast to the hypothesis that Bd may have been an important factor in the 

decline of R. onca, Jaeger et al. (2017) noted evidence from limited field observations 

that adults of this frog can persist with, and even potentially clear, Bd infections. 

Moreover, these authors showed that R. onca survivorship was not affected by infections 

of two Bd strains known to be highly virulent in other ranid species and that the juvenile 

frogs used in their experiments cleared infections at high rates (64% overall). Given these 

results, Jaeger et al. (2017) concluded that R. onca appeared to be resistant to 

chytridiomycosis. These authors qualified their interpretation by pointing to potentially 

confounding factors, including attenuation (weakening) of the Bd strains they used and 

that the strains were not those infecting frogs in the local environment.  

 

We followed these previous experiments by isolating Bd that is currently infecting 

frogs in southern Nevada, including from the infected population of R. onca. We also 

obtained a highly virulent isolate from a commercial vender that we inadvertently 

encountered in a shipment of sick and dying White’s treefrogs (Litoria caerulea). We 

subsequently exposed juvenile frogs of R. onca to two local isolates of Bd, as well as to 

the isolate from the commercial vender. In separate experiments to assess the possible 

attenuation of Bd used by Jaeger et al. (2017), we exposed young, healthy L. caerulea to 
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one of the previously used isolates (Section Line Lake; SLL). L. caerulea is highly 

susceptible to chytridiomycosis (Voyles et al. 2009) and if the Bd isolate remained 

virulent, we expected low survivorship of infected frogs. We also conducted an 

experiment using R. onca by infecting juvenile frogs with SLL, allowing these frogs to 

develop infections, and then exposed naïve juvenile frogs through cohousing. Previous 

research had shown that virulence of attenuated Bd increased following infection and re-

isolation of the pathogen from hosts (Brem et al. 2013). If SLL had attenuated, we 

expected little mortality in the initial group of frogs exposed but low survivorship of the 

second group of frogs exposed by cohousing.  

 

Juvenile frogs well past metamorphosis may not represent the most susceptible 

life-stage to disease (Rollins-Smith et al. 2011; add cite). During metamorphosis, 

amphibians go through dramatic anatomical and physiological changes, which includes 

the immune system (Rollins-Smith et al. 2011). Newly metamorphosed frogs may not 

have mature and/or functional immunological mechanisms to combat disease until many 

weeks after metamorphosis (Flajnik et al. 1987; Bakar et al. 2016). To gain insight into 

the potential impact of Bd in wild populations, we assessed the most susceptible life-stage 

by exposing late-stage tadpoles of R. onca to a local Bd isolate and then exposed these 

animals again as they metamorphosed. We then monitored infection intensity and 

survivorship as these animals developed into young frogs.  
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The areas occupied by remnant, naturally occurring populations of R. onca, 

referred to herein as Black Canyon and Northshore, differ in current exposure to Bd 

(Jaeger et al. 2017). Bd swabbing repeatedly detected the pathogen at a spring site in the 

Northshore area, but not at sites in Black Canyon (Jaeger et al. 2017). In laboratory 

experiments, Jaeger et al. (2017) reported that frogs derived from the Northshore area 

were able to clear Bd infections in higher proportions than frogs derived from Black 

Canyon. Although this pattern lacked statistical rigor, it hinted that previous population-

level exposure may have facilitated some level of adaptation to Bd. Therefore, we 

considered source area in all our experiments using R. onca, maintaining equal numbers 

from Black Canyon and Northshore. We hypothesized that animals derived from a 

population where Bd is present would be more resistant than those derived from a naïve 

population. 

 

METHODS 

 

Bd isolates – In our challenge experiments, we used 4 different Bd isolates: SLL, 

Spring Mountain Ranch (SMR), Lower Blue Point (LBP), and Litoria caerulea 63 

(LC63). SLL was isolated in 2009 from an infected Rana cascadae during an epizootic in 

the Klamath Mountains, California (Piovia-Scott et al. 2015). This isolate was previously 

frozen, and was on its 21st transfer (passage) when used in our experiments. In southern 

Nevada, we isolated SMR from an outwardly healthy adult Pseudacris regilla from 

Spring Mountain Ranch State Park, and LBP from an outwardly healthy juvenile R. onca 
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at lower Blue Point Spring in the Northshore area. As mentioned previously, we isolated 

LC63 from a deceased adult L. caerulea we acquired from a commercial vender; this 

isolate appeared highly virulent, as we observed mortality of half of the frogs within a 

month following arrival. We decided to use this isolate because of the evidence of 

virulence and because we could keep its passage history to a minimum, mitigating the 

possibility of attenuation. We isolated SMR, LBP, and LC63 in 2016 using an approach 

similar or identical to that described by Waddle et al. (in review; see Chapter 1).  

 

Experimental animals – We obtained juvenile frogs and late-stage tadpoles of R. 

onca from a conservation program where they had been raised in captivity from eggs 

collected in the wild (RLFCT 2016). The juvenile R. onca we used in the experiments 

were 9-12 weeks post-metamorphosis. These frogs were derived proportionately from 6 

egg masses, 3 each from Northshore and Black Canyon. We used R. onca tadpoles at 

Gosner stage 31-38, similarly derived from 6 different egg masses collected at these sites. 

We obtained healthy, young adult L. caerulea from a commercial vender. We confirmed 

that all animals were Bd negative prior to the experiments using the protocol described 

below. 

 

Challenge experiment with juvenile R. onca – We placed the 48 juvenile R. onca 

frogs into 4 treatment groups (n=12). Each group was proportionally represented by frogs 

from each egg mass and area from which the eggs were derived (Black Canyon and 

Northshore). As summarized below the first two groups were exposed to Bd isolates from 
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southern Nevada, the third group was exposed to the strain associated with mortality in L. 

caerulea, while the last group was an unexposed control.  

 

(1) Exposed with SMR 

(2) Exposed with LBP 

(3) Exposed with LC63 

(4) Unexposed Control 

 

Challenge experiment with R. onca during metamorphosis – We used the Bd 

isolate LBP to challenge early life-stages of R. onca, because this was the strain infecting 

R. onca in the wild. We placed 72 tadpoles derived proportionately from the egg masses 

into 4 treatment groups based on source location (Black Canyon and Northshore). We 

maintained tadpoles in groups of 12 to minimize crowding in the aquariums:  

 

1. Northshore Uninfected Control 

2. Black Canyon Uninfected Control 

3. Northshore Infected, Aquaria 1 and 2 

4. Black Canyon Infected, Aquaria 1 and 2 

 

Assessing potential attenuation of Bd isolate SLL – In one experiment, we exposed 12 

L. caerulea to SLL and maintained an unexposed control group of 13 animals. In another 

experiment, we exposed 12 juvenile R. onca frogs to SLL (1st group) and allowed these 
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frogs to developed high levels of Bd infection (see results). We then cohoused a second 

group of 12 juvenile R. onca (2nd group) with these previously infected animals, keeping 

1 or 2 uninfected frogs with an infected frog for a total of 5 weeks. We kept track of 

individual R. onca frogs using photographic references of morphological patterns. Once 

frogs were separated, each animal was treated identically to the other groups in terms of 

Bd sampling and husbandry (see below). 

 

Bd growth and exposures – We prepared Bd zoospore inoculum and infected frogs 

as described in Jaeger et al. (2017). Frogs were exposed to 1,000,000 Bd zoospores of 

their assigned strain for each of 3 days, for a total of 3,000,000 zoospores per frog. We 

exposed R. onca and L. caerulea identically. To expose the tadpoles to LBP, we placed 

tadpoles in groups of 6 into 200 ml baths containing 2500 zoospores of Bd per ml for 24 

hours (Venesky et al. 2009). Afterwards, the tadpoles were moved back into their 

respective tanks along with the infected water containing Bd zoospores. We repeated this 

procedure after one week, because the initial exposure resulted in only one of the 

tadpoles testing positive for infection. The control tadpoles underwent a similar 

procedure, except we used a sham inoculum derived from sterile agar plates. Prior to 

exposure, we confirmed tadpoles were Bd negative. At metamorphosis, we again exposed 

each new froglet to LBP, following the protocol for frogs.  

 

Housing – We conducted challenge experiments for frogs in an environmental 

chamber with a 12-hour photoperiod. We maintained temperatures at 19 °C, as this 
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temperature is environmentally relevant for the frogs and would likely favor Bd growth 

(Piotrowski et al. 2004, Jaeger et al. 2017). All frogs were allowed to acclimate to 

laboratory conditions for two weeks prior to the start of the study. We housed frogs 

individually in clear plastic containers with lids (36 cm L x 20 cm W x 12 cm H), which 

contained ~950 ml aged, dechlorinated tap water. Similar but somewhat larger containers 

(42 cm L x 33 cm W x 17 cm H) with slightly more water were used for cohousing. We 

maintained the arboreal L. caerulea with a smaller volume of water (~250 ml). All frogs 

were provided with a platform that served as a dry surface area and cover. We transferred 

frogs and their platforms each week to clean containers with fresh water. We fed frogs bi-

weekly with appropriately sized crickets maintained on a commercial cricket diet.  

 

We housed the groups of tadpoles in 76 L aquaria maintained at room temperature 

(23 °C) under a 12-hour photoperiod. Each aquarium contained sponge and power filters 

(250 LPH) to maintain water quality. We monitored ammonia levels using detectors and 

other nitrogen derivatives (nitrate, nitrite, etc.) using test strips. We conducted 25% water 

changes once per week or as needed using aged, dechlorinated tap water. We fed tadpoles 

ad libitum a varied diet of organic lettuce leaves, alfalfa (rabbit) pellets, and commercial 

algae discs. Following metamorphosis, we maintained the frogs in individual plastic 

containers as described above. 

 

Infection detection and intensity – We sampled frogs and tadpoles for Bd infection 

weekly. For each frog, we swabbed 10 times down each ventral side and five times on 
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each rear foot (Vredenburg et al. 2010; Jaeger et al 2017). We ran all challenge 

experiments on frogs for 18 weeks. We only swabbed the keratinized mouthparts of 

tadpoles 5 times per each sample. Once tadpoles underwent metamorphosis, we swabbed 

the resulting frogs for an additional 16 weeks. We maintained swab tips frozen until 

testing, and used quantitative real-time polymerase chain reaction (qRT-PCR) to 

determine infection presence and intensity (Boyle et al. 2004), measured as Bd zoospore 

equivalents per swab (ZE; Vredenburg et al. 2010; Jaeger et al. 2017). To mitigate the 

potential issue of variable genomic content between Bd strains (Longo et al. 2013), we 

created qrt-PCR standards for each isolate used in experiments following established 

protocols (Boyle et al. 2004; Longo et al. 2013; Lambertini et al. 2016); this allowed 

between isolate comparisons (Rebollar et al. 2017). 

 

Statistical analyses –  For the cohousing experiment, we used a 2-way repeated 

measures analysis of variance (ANOVA), followed with post-hoc Tukey Tests to analyze 

the differences in infection intensity between the first and second exposure group of R. 

onca. We also analyzed the effects of collection site on infection intensity for each R. 

onca exposure group in the cohousing experiment using the same statistic. Infection data 

was log-transformed to meet assumptions of normality.  

 

We used Chi-square tests (two-tailed) to determine the effects of collection site on 

the proportion of frogs that cleared Bd infection. We assumed clearance of Bd if a frog 

tested negative (0 ZE) at the end of the experiment, and only included frogs that tested 
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positive for Bd infection at least once during an experiment. We analyzed survivorship 

data for all experiments using Mantel-Cox tests. We conducted the statistical analyses in 

the program Prism 6.0f (Graphpad Software Inc., La Jolla, CA). 

 

RESULTS  

 

Challenge experiment with juvenile R. onca 

Infectability – Across all the juvenile R. onca frogs we exposed to Bd, 92% 

(33/36) became infected. The frogs we exposed to SMR and LC63 all became infected, 

but only 9 out of 12 frogs exposed to LBP became infected, with only 5 of these frogs 

testing positive for Bd for more than 1 week. None of the unexposed control frogs tested 

positive for infection.  

 

Infection intensities/clearance –  Mean weekly infection intensities for R. onca 

were high across all the Bd exposure groups. We observed the highest infection 

intensities with LC63. The mean weekly infection intensities for this group reached 

1,256,231 ± 1,179,612 ZE, with the highest individual measure recorded at 7,150,149 ZE. 

Frogs exposed to LBP reached mean weekly infection intensities of 882,828 ± 733,110 

ZE, with the highest individual infection intensity of 8,868,273 ZE. Frogs exposed to 

SMR reached a mean weekly value of 225,449 ± 170,812 ZE, with the highest individual 

value of 1,371,555 ZE (Figure 3). 
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Figure 3. Mean weekly infection intensity over 18 weeks for three groups of Rana onca 

exposed to three isolates of Batrachochytrium dendrobatidis (LBP, SMR, or LC63). 

Error bars denote standard error of the mean with only bottom error bar shown for clarity. 

As frogs died they were not included in subsequent weekly infection data and sample 

sizes in exposure groups decrease. 

 

Of the R. onca that became infected with the various Bd isolates we used, 36% 

(12/33) cleared their infections by the end of the experiment. We observed no difference 

in the proportions of clearance by isolate (χ2 = 0.35, df = 2, P-value = 0.84), with 33% 

(4/12) of the SMR group, 44% (4/9) of the LBP group, and 33% (4/12) of the LC63 

group clearing their infections. Across the various groups exposed to Bd, the frogs 

derived from Northshore cleared their infections at higher proportions than those derived 
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from Black Canyon (χ2 = 7.64, df = 1, P-value = 0.006; Figure 4), with 59% (10/17) of 

the frog from Northshore clearing infections compared to only 13% (2/16) of frogs from 

Black Canyon. The other 21 frogs in the experiment maintained their infections at the end 

of the experiment or had died. 

 

 

Figure 4. Clearance percentages of Rana onca frogs derived from Northshore and Black 

Canyon that were exposed to three isolates of Batrachochytrium dendrobatidis. Letters 

indicate significant differences between groups. 

 

Survivorship – We observed that Bd strains SMR and LC63 had significant effects 

on R. onca survivorship compared to the unexposed control group (SMR χ2 = 6.092, df = 

1, P-value = 0.014; LC63 χ2 = 9.62, df = 1, P-value = 0.002). Only 58% (7/12) of frogs 

exposed to SMR and 42% (5/12) of frogs exposed to LC63 survived to week 18, while all 

unexposed control frogs survived (Figure 5). We observed clinical signs of 
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chytridiomycosis (Berger et al. 1998; Voyles et al. 2009) in frogs exposed to LC63 at 

week 4 when these animals began to die. A similar pattern occurred with frogs exposed to 

SMR, but not until week 11. We observed mortality in 3 frogs exposed to LBP beginning 

in week 13, with these frogs also showing clinical signs of chytridiomycosis. As a group, 

however, the effect of LBP exposure on survivorship was not significant (χ2 = 3.1, df = 1, 

P-value = 0.078). 

 

 

Figure 5. Survivorship over 18 weeks of 4 groups of Rana onca either exposed to three 

isolates of Batrachochytrium dendrobatidis (LBP, SMR, LC63) or a sham inoculum 

(Control).  

 

Overall, we observed that 58% (21/36) of juvenile R. onca frogs survived Bd 

exposure. When analyzed by source area, frogs derived from Northshore survived at a 
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significantly higher proportion than those derived from Black Canyon (χ2 = 6.06, df=1, P-

value = 0.014; Figure 6). Of these frogs, 78% (28/36) from Northshore survived, as 

compared to only 39% (14/36) from Black Canyon. While survivorship of frogs from 

Northshore did not significantly differ from unexposed control frogs (χ2 = 2.92, df = 1, P-

value = 0.087), survivorship of frogs from Black Canyon was significantly lower (χ2 = 

10.6, df = 1, P-value = 0.0014). 

 

 

Figure 6. Rana onca survivorship over 18 weeks after exposure to Batrachochytrium 

dendrobatidis (Bd) analyzed by site from which frogs were originally derived. Frogs at 

Northshore have tested positive for Bd, while Bd has not been detected in Black Canyon.  
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Challenge experiment with R. onca during metamorphosis  

Infectability – For R. onca tadpoles, 23% (11/48) tested positive for Bd infection, 

while 94% (44/47) of those same animals tested positive for Bd infection as 

metamorphosed frogs following additional Bd exposure. None of the unexposed control 

tadpoles and resulting frogs tested positive for Bd infection.  

 

Infection intensities/clearance – Mean weekly high infection intensity for R. onca 

tadpoles sourced from Black Canyon reached 1 ± 0.5 ZE, with the highest individual 

infection intensity of only 6 ZE. Mean weekly infection intensity of the resulting 

metamorphosed frogs reached 66,781 ± 43,338 ZE, with the highest individual infection 

intensity of 399,584 ZE (Figure 7). Mean weekly high infection intensity for tadpoles 

sourced from Northshore reached 12 ± 12 ZE, with the highest individual infection 

intensity of 291 ZE. The mean weekly high infection intensity of the resulting frogs from 

this group reached 149,859 ± 72,281 ZE, with the highest individual infection intensity of 

703,327 ZE (Figure 7). By the end of this experiment, there was no significant difference 

in infection clearance between Black Canyon and Northshore frogs (χ2 = 0.03, df = 1, P-

value = 0.86), with 13% (3/24) of Black Canyon and 14% (3/21) of Northshore frogs 

clearing infections by the end of the experiment. 
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Figure 7. Mean weekly infection intensity for newly metamorphosed R. onca exposed to 

LBP isolate of Batrachochytrium dendrobatidis as late stage tadpoles and again during 

metamorphosis. Error bars denote standard error of the mean with only bottom error bar 

shown for clarity. As frogs died they were not included in subsequent weekly infection 

data and sample size in exposure group decreased. 

 

Survivorship – R. onca survivorship in the tadpole stage was not significantly 

affected by exposure to Bd isolate LBP (47/48 survived); however, survivorship of 

resulting frogs was significantly affected following the second exposure to LBP during 

metamorphosis (χ2 = 22.9, df = 1, P-value < 0.0001; Figure 8). By the end of the 

experiment, only 21% (10/47) of the newly metamorphosed frogs survived, while 

survivorship in the unexposed control group was 91% (21/23); one tadpole in the control 

group from Northshore had not metamorphosed after several months and was not 

included in these analyses. We observed signs of chytridiomycosis in many of the 
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infected frogs, while none of the unexposed control frogs showed signs of disease. When 

analyzed by source population, we found that LBP had significant effects on survivorship 

of frogs derived from both Northshore (χ2 = 9.59, df = 1, P-value = 0.0020) and Black 

Canyon (χ2 = 19.72, df = 1, P-value < 0.0001). There was, however, no difference in 

survivorship between Northshore and Black Canyon (χ2 = 0.048, df = 1. P-value = 0.83), 

with both groups having low survivorship (26% and 17%, respectively). 

 

 

Figure 8. Survivorship of Rana onca by site from which the tadpoles were derived over 

16 weeks after metamorphosis. Frogs were exposed to the LBP isolate of 

Batrachochytrium dendrobatidis as late-stage tadpoles (Gosner 31-18) and again as they 

were completing metamorphosis. Control animals were exposed to sham inoculum.  
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Assessing potential attenuation of Bd isolate SLL  

Litoria caerulea – All L. caerulea exposed to SLL became infected, while none of 

the unexposed control frogs tested positive for Bd. Mean weekly infection intensities of 

the exposed frogs reached 29,831 ± 27,245 ZE, with the highest individual infection 

intensity of 7,150,149 ZE (Figure 9). L. caerulea survivorship was significantly affected 

by exposure to SLL (χ2 = 8.35, df = 1, P-value = 0.004), with only 50% (6/12) survival of 

exposed frogs, while all of the unexposed control frogs survived. Just 25% (3/12) of L. 

caerulea exposed to SLL cleared their infections by the end of the experiment. We first 

observed mortalities at week 5 and again from weeks 12 to 15 (Figure 10). Deaths during 

the latter period followed development of clinical signs of chytridiomycosis.  

 

Cohousing experiment – All but one of the juvenile R. onca frogs exposed to SLL 

in the initial exposure group (1st group), and all but one frog in the group exposed by 

cohousing (2nd group) became infected. The highest average infection intensity for the 1st 

group was 12,257 ± 5,163 ZE, while the 2nd group reached 123,522 ± 115,721 ZE. The 

highest individual infection intensities for these groups were 58,818 ZE and 1,395,298 

ZE, respectively.  
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Figure 9. Mean weekly infection intensity over 18 weeks after exposure of Litoria 

caerulea to the SLL isolate of Batrachochytrium dendrobatidis. Error bars denote 

standard error of the mean with only bottom error bar shown for clarity. As frogs died 

they were not included in subsequent weekly infection data and sample size in exposure 

group decreased. 
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Figure 10. Survivorship over 18 weeks for Litoria caerulea exposed to SLL isolate of 

Batrachochytrium dendrobatidis.  

 

 

We found no significant differences in infection intensities between the 1st and 2nd 

groups (P-values ≥ 0.083 for interaction, time, and exposure group; Figure 11). When 

analyzed independently by exposure group, we found significant interactions in both 

groups for time (weeks) and collection site (1st group F34,255 = 2.85, df = 34, P-value < 

0.0001; 2nd group F34,255 = 3.92, df = 34 P-value < 0.0001), explaining 9% and 12% of 

variation, respectively. In both groups, infection intensity was also significantly affected 

by collection site (1st group F2,15 = 19.68, df = 2, P-value < 0.0001; 2nd group F2.15 = 



 

40 

 

13.89, df = 2, P-value = 0.0004) and time (1st group F17,255 = 6.29, df = 17, P-value < 

0.0001; 2nd group F17,255 = 7.97, df = 17, P-value < 0.0001). In the 1st group, time 

explained 10% of the variation and collection site explained 41% of variation. In this 

group, the Black Canyon frogs carried higher average infections than Northshore frogs 

overall (Figure 12a), with their infection intensities being significantly greater for 11 of 

the 18 weeks (weeks 6-11, 13-15, 17-18; post hoc test P-values < 0.05). In the 2nd group, 

12% of the variation was explained by time, while 34% of the variation was explained by 

collection site. In this group, Black Canyon frogs also carried higher overall infection 

intensities (Figure 12b), with significant differences observed at weeks 16 and 17 (post 

hoc tests P-value < 0.05). 

 

In the cohousing experiment, we observed 100% survivorship of juvenile R. onca 

regardless of how they were exposed to SLL. By the end of the experiment, 55% (12/22) 

of the frogs had cleared infections, and there was no significant difference in clearance 

proportions between groups (χ2 =0.73, df = 1, P-value = 0.40). We observed that 64% 

(7/11) of the 1st group and 45% (5/11) of the 2nd group cleared their infections by the end 

of the experiment. Overall, the frogs derived from Northshore cleared their infections in 

higher proportions than those derived from Black Canyon (χ2 = 6.60, df = 1, P-value = 

0.01; Figure 13). Clearance of infections was 82% (9/11) for the Northshore frogs 

compared to only 27% (3/11) in the Black Canyon frogs. The 10 remaining frogs 

maintained infections through the end of the experiment.  
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Figure 11. Mean weekly infection intensity over 18 weeks for Rana onca exposed to 

SLL isolate of Batrachochytrium dendrobatidis (Bd) in cohousing experiment. Frogs in 

first group were directly exposed to the Bd isolate by inoculum, while frogs in the second 

group were exposed by cohousing with infected frogs. Error bars denote standard error of 

the mean with only bottom error bar shown for clarity.  
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Figure 12a-b. Mean weekly infection intensity of Rana onca in 1st (a) and 2nd (b) 

exposure groups of the cohousing experiment separated by site from which frogs were 

derived. Frogs were exposed to SLL isolate of Batrachochytrium dendrobatidis. Error 

bars denote standard error of the mean with only bottom error bar shown for clarity.   
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Figure 13. Percentages of Rana onca in cohousing experiment that cleared SLL isolate of 

Batrachochytrium dendrobatidis grouped by site from which the frogs were derived. 

Letters denote significant differences between groups. 

 

DISCUSSION 

 

Has the Bd isolate SLL attenuated? 

Previous research on R. onca showed evidence of resistant to chytridiomycosis 

(Jaeger et al. 2017). In that study, juvenile R. onca frogs were infected with 2 isolates of 

Bd associated with ranid population declines elsewhere, but survivorship of R. onca 

remained high and not affected by the exposures. One of the isolates used in that study, 

SLL, had demonstrated high virulence against the original host species, R. cascadae, 

leading to the mortality of over 90% of exposed frogs under laboratory conditions 

(Piovia-Scott et al. 2015). The other isolate was associated with an epizootic of 
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chytridiomycosis in Rana muscosa (Vredenburg et al. 2010). The lack of mortality in R. 

onca raised the question of whether these isolates had attenuated (Jaeger et al. 2017). We 

approached this question by challenging L. caerulea frogs with the SLL isolate used in 

the original study on R. onca, knowing that L. caerulea was susceptible to 

chytridiomycosis. The resulting low survivorship of these frogs (50%), along with most 

of the deaths being proceeded by clinical signs of chytridiomycosis, clearly indicates that 

SLL remained virulent towards this species. We also approached the question of SLL 

attenuation by passaging the fungus through R. onca frogs and then infecting other naïve 

R. onca through exposure to the infected animals by cohousing. If SLL had attenuated, 

we predicted that the isolate would be more virulent towards the second group of frogs, 

based on similar experiments with another anuran species (Brem et al. 2013). We did not, 

however, observe any significant differences in survivorship, infection intensities, or 

clearance rates between these different exposure groups, and all R. onca frogs survived 

regardless of how they were exposed to the SLL isolate. Given the virulence of SLL we 

observed in L. caerulea and the lack of virulence observed in R. onca despite our attempt 

to increase virulence toward this species, we conclude that SLL is still virulent towards 

some susceptible host species, but that R. onca has tolerance to this particular isolate.  

 

Is R. onca susceptible to Bd from the local environment? 

The virulence of Bd isolates can vary based on genotype and even between 

isolates within the same lineage (Fisher et al. 2009; Piovia-Scott et al. 2015). 

Furthermore, amphibian susceptibility to Bd varies widely, with some species showing 
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infection tolerance (e.g. Xenopus laevis, Solis et al. 2010), while others are highly 

susceptible and succumb to chytridiomycosis (e.g. Atelopus zeteki Ellison et al. 2014). 

Phylogenetic research on Bd has currently identified 6 distinct lineages (Bai et al. 2012; 

Rosenblum et al. 2013), but most amphibian declines have been associated with the 

emergence of a globally dispersed hypervirulent lineage referred to as the global 

panzootic lineage (or Bd-GPL; Rosenblum et al. 2013). This lineage has been further 

divided into two main groups, Bd-GPL1 and Bd-GPL2 (Rosenblum et al. 2013). We do 

not know which Bd lineage (or lineages) occurs within the historical range of R. onca, 

nor do we know when this pathogen colonized the region. Presumably Bd arrived with 

other invasive aquatic species within historical times, and the commercial trade in 

amphibians provides obvious routes for regional introduction which may be recurring 

(Picco et al. 2008; Woodhams et al. 2008; Schloegel et al. 2009).  

 

The impact of locally occurring Bd strains on R. onca was not entirely clear, but 

the previous exposure of this species to Bd isolates associated with ranid declines 

elsewhere, including SLL, suggested that the impact on R. onca was possibly not severe 

or may have been recently mitigated by adaptation of R. onca to Bd. As stated by Jaeger 

et al. (2017, p. 294), “These results may bode well for conservation efforts aimed at 

establishing R. onca populations across a landscape where Bd exists.”  Our exposure of 

R. onca to isolate SMR from P. regilla and LBP from R. onca in southern Nevada, as 

well as isolate LC63 from a commercial vendor, clearly shows that the species is 

susceptible to chytridiomycosis. Isolate LC63 and isolate SMR, acquired from an area of 
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southern Nevada unoccupied by R. onca, both had 100% infectablity in R. onca. LC63 

had highest mean infection intensities and greatest impact on survivorship we observed 

(> 1,250,000 ZE), with deaths from chytridiomycosis beginning only 4 weeks after 

exposure. Isolate SMR also significantly lowered survivorship, with only 58% of frogs 

surviving to the end of the experiment, although mean infection intensities were 

somewhat lower than those seen with LC63 and deaths from chytridiomycosis were not 

seen until 11 weeks after exposure. Interestingly, LBP from a wild caught R. onca 

appeared to have the least impact on R. onca. While this local isolate caused 

chytridiomycosis and death in 3 of the 12 juvenile frogs exposed, and we observed high 

infection intensities in some frogs (> 8 million ZE), infectablity appeared low, with only 

50% of the exposed frogs testing positive for Bd infection more than once.  

 

Bd can become enzootic, with hosts showing low pathogen loads, survivorship 

between years, and low population density that may limit disease transmission (Briggs et 

al. 2010). Although based on very limited field observations, some attributes of an 

enzootic have been noted at the spring site in Northshore where R. onca exists with the 

Bd pathogen (Jaeger et al. 2017). Adult R. onca have been observed to either clear Bd 

infection or persist with Bd infections over 8 to13 months (Jaeger et al. 2017).  In support 

of this perspective, we observed relatively low infectablity of R. onca with the LBP 

isolate, with only 5 of 12 exposed frogs testing positive for Bd more than once. We have, 

however, observed similar low infectablity with isolate SMR in on-going research 

challenging R. onca. In that experiment, we re-exposed the frogs and all became infected. 
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The SMR in both these exposures came from the same culture with the same passage 

history and we used the same exposure protocol; thus, the initial low infectablity was 

likely caused by factors other than the isolate’s innate ability to infect the host. However, 

the high infection intensities we observe for juvenile R. onca in the laboratory, including 

those sourced from Northshore, appear to be more indicative of epizootic dynamics. 

Therefore, we caution accepting the conclusion that LBP has low infectability or that the 

dynamics at Northshore are enzootic. We suspect that had we re-infected frogs during our 

during our challenge experiment with LBP, infectablity would have been higher and 

survivorship substantially lower. 

 

Amphibian populations and species in some cases can rebound after Bd epizootics 

(Catenazzi et al. 2017). The mechanisms by which populations recover from epizootics 

could be a result of local adaptation through the selection of specific immune system 

genes that confer disease resistance (Savage & Zamudio et al. 2016). We predicted, based 

on previous observations (Jaeger et al. 2017), that frogs sourced from the Northshore area 

where Bd is present would fare better in their response to Bd than frogs sourced from 

Black Canyon where Bd has not been detected. Incorporating all R. onca exposed to the 

various local Bd isolates (i.e., LBP, SMR, and LC63), we found that frogs from the 

Northshore were able to clear their infections in higher proportions than frogs from Black 

Canyon. More importantly, we observed significant differences in survivorship. While 

some Northshore frogs were susceptible to chytridiomycosis, as a group, frogs sourced 

from Northshore survived in much higher proportions than frogs from Black Canyon. 
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These exciting results suggest that the frogs at Northshore may have adapted to the 

presence of Bd. 

 

Are recently metamorphosed R. onca highly susceptible to chytridiomycosis? 

Newly metamorphosed frogs are thought to initially lack fully functional immune 

systems required for an effective immune response against Bd (Flajnik et al. 1987, 

Rollins-Smith et al. 2011). In an environment where Bd is present, the transition from 

tadpole to frog (metamorphosis) would likely occur with repeated, if not constant, 

exposures to the pathogen. We evaluated the susceptibility of R. onca exposed as late-

stage tadpoles and again as newly metamorphosed frogs, attempting to imitate such 

conditions. We observed very high survivorship for late-stage tadpoles, with all but one 

of the tadpoles metamorphosing. In contrast, survivorship following metamorphosis and 

second exposure to Bd, was extremely low (21%). Interestingly, the significant difference 

in survivorship we observed in the challenge experiments with juvenile frogs between the 

collection sites (Northshore and Black Canyon) was not repeated in this experiment with 

metamorphs. Survivorship was similarly low in newly metamorphosed frogs from both 

sites. The majority of mortalities we observed in newly metamorphosed frogs were 

within the first 8 weeks post-metamorphosis when immune responses may not yet be 

mature (Rollins-smith et al. 2011).We speculate that the comparatively low survivorship 

seen in recently metamorphosed frogs may be due to the lack of immunocompetence at 

this early life-stage (Bakar et al. 2016). 
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The observed difference in overall survivorship between our experiments using 

relatively older juvenile frogs and newly metamorphosed frogs is intriguing, and may 

indicate an evolved, life-stage dependent mechanism for resistance to chytridiomycosis. 

Both innate and adaptive immune responses have been shown to be of importance for 

resistance (Richmond et al. 2009). In Rana yavapaiensis, the sister taxon to R. onca 

(Jaeger et al. 2001), certain alleles of the major histocompatibility complex (MHC) class 

IIB have been suggested to be important for disease resistance (Richmond et al. 2009; 

Savage & Zamudio 2011; Bataille et al. 2016; Savage & Zamudio 2016). The MHC class 

II is composed of an alpha and beta chain that together present foreign, lysomally 

generated antigens to T-cells, which induces acquired immunity (Ohta et al. 2000). 

Immune suppression at the time of metamorphosis, however, may compromise these 

activities (Flajnik et al. 1987; Rollins-smith 2011; Bakar et al. 2016), which could explain 

the lower survivorship and lack of population-exposure effects seen in recently 

metamorphosed R. onca.  

 

Conservation implications 

Rana onca is a species of intense conservation concern and is currently managed 

under a voluntary conservation agreement and strategy (RFLCT 2016). Establishing new 

populations through headstarting and translocation has been a successful management 

strategy for this species. Our results support previous research showing that R. onca is 

resistant to some isolates of Bd (Jaeger et al. 2017), but we have also shown that the 
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species is susceptible to chytridiomycosis from Bd isolates found in southern Nevada, as 

well as an isolate found in frogs from a commercial vendor. Under the current 

management strategy for R. onca, sites where Bd is present have generally been avoided 

for translocations, but sites where Bd is not present are very limited. These sites are 

generally isolated from broader aquatic systems where other anurans known to be vectors 

of Bd (Garner et al. 2006; Reeder & Vredenburg 2012) are present.  

 

 When attempting to establish R. onca populations at sites where Bd is present, we 

advise not to use tadpoles or frogs younger than 8 weeks post-metamorphosis, since our 

laboratory results would suggest very low survivorship of these animals. Frogs derived 

from populations in the Northshore area are more likely to survive at sites where Bd is 

present, but strong selective pressure from Bd at Northshore sites, possibly targeting only 

one or a few genes, could have already reduced the genetic variation present in this area. 

Low genetic variation could leave these frogs vulnerable to other pathogens (Fu & 

Waldman 2017) or to other problems associated with inbreeding. An alternative 

approach, currently being used at one translocation site where Bd is present, is to use 

frogs derived from both Northshore and Black Canyon, thereby capturing as much 

genetic variation as possible at new sites and letting nature select the most beneficial 

alleles (J. Jaeger pers. comm.).  

 

Treatments that increase survivorship of frogs in Bd infected populations have 

been attempted with some success. Itraconazole is an effective treatment for clearing 
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frogs of Bd infections (Brannelly et al. 2012) and may serve as a tool to mitigate the 

impacts of chytridiomycosis outbreaks (Hudson et al. 2016). For example, itraconazole 

has been shown to increase interannual survivorship of  recently metamorphosed R. 

cascadae, allowing frogs to mature past the vulnerable life-stage when immune systems 

are not fully functional (Hardy et al. 2015).. For R. onca, we suggest similar treatments of 

recently metamorphosed frogs at sites where Bd is present, which may allow populations 

to persist, despite low natural recruitment caused by the pathogen.  
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